KR20220054838A - 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법 - Google Patents

이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법 Download PDF

Info

Publication number
KR20220054838A
KR20220054838A KR1020227010179A KR20227010179A KR20220054838A KR 20220054838 A KR20220054838 A KR 20220054838A KR 1020227010179 A KR1020227010179 A KR 1020227010179A KR 20227010179 A KR20227010179 A KR 20227010179A KR 20220054838 A KR20220054838 A KR 20220054838A
Authority
KR
South Korea
Prior art keywords
coated surface
array
coated
plate
light
Prior art date
Application number
KR1020227010179A
Other languages
English (en)
Inventor
요차이 단지거
Original Assignee
루머스 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루머스 리미티드 filed Critical 루머스 리미티드
Publication of KR20220054838A publication Critical patent/KR20220054838A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/132Overhead projectors, i.e. capable of projecting hand-writing or drawing during action
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Abstract

스택으로 배열된 코팅된 표면은 제1 세그먼트를 포함하는 일련의 세그먼트를 갖는 주기적인 형성을 나타낸다. 상기 제1 세그먼트는 제1, 제2 및 제3 코팅된 표면을 갖고, 정해진 횟수만큼 반복되어 주기적인 형성을 형성한다. 상기 스택은 2개의 주 외부 표면, 및 상기 2개의 주 외부 표면 사이에 하나의 세그먼트의 코팅된 표면을 각각 갖는 인접한 구획들을 갖는 슬라이스를 형성하도록 슬라이싱된다. 상기 슬라이스는 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 절단된다. 각각의 기판은 2개의 주 표면 및 상기 2개의 주 표면 사이에 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖는다. 특정 실시양태에서, 제1 코팅된 표면은 제1 광 컬러를 반사시키고, 제2 코팅된 표면은 제1 광 컬러를 투과시키고, 제2 광 컬러를 반사시키고, 제3 표면은 제3 광 컬러를 반사시키고, 제1 및 제2 광 컬러를 투과시킨다.

Description

이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법
관련 출원에 대한 상호 참조
본 출원은 미국 특허 가출원 번호 62/895,519(출원일: 2019년 9월 4일, 전체 내용이 본 명세서에 병합됨)의 우선권을 주장한다.
기술 분야
본 발명은 이색성 빔 결합기에 관한 것이다.
콤팩트한 광학 디바이스는 특히 헤드 마운트 디스플레이(HMD) 분야에서 필요하며, 여기서 광학 모듈은 관찰자의 눈으로 전달하기 위해 이미지를 생성하는 기능과 이미지를 무한대로 시준하는 기능을 수행한다. 이미지는, 직접 공간 조명 변조기, 예를 들어, 음극선관(CRT), 액정 디스플레이(LCD), 실리콘 상의 액정(LCoS), 디지털 마이크로 미러 디바이스(DMD), OLED 디스플레이, 스캐닝 소스 또는 유사한 디바이스로부터 또는 간접적으로 중계 렌즈 또는 광섬유 다발에 의해 디스플레이 디바이스로부터 획득될 수 있다. 픽셀 어레이로 구성된 이미지는 시준 배열에 의해 무한대로 초점이 맞춰지고, 각각 비-시스루 응용(non-see-through application) 및 시스루 응용을 위해 일반적으로 부분적으로 결합기로 작용하는 반사 표면 또는 부분 반사 표면에 의해 관찰자의 눈으로 전달된다. 일반적으로, 기존의 자유 공간 광학 모듈이 이러한 목적을 위해 사용된다.
HMD 및 근안 디스플레이(NED)를 위한 특히 유리한 솔루션 제품군은 일반적으로 사용자의 눈에 이미지를 전달하기 위해 부분적으로 반사성 표면 또는 기타 적용 가능한 광학 요소가 있는 광 안내 기판(도파로)을 사용하는, 리무스사(Lumus Ltd.)(이스라엘)로부터 상업적으로 입수할 수 있다.
SLM을 디스플레이 디바이스로 사용하는 특정 광학 아키텍처, 특히 LCoS 또는 LCD를 사용하여 이미지 픽셀을 생성하는 아키텍처에서, 디스플레이 디바이스의 활성 영역은 이미지 픽셀을 생성하기 위해 상이한 컬러의 조명 소스로부터 유래하는 구성 컬러 빔으로 구성된 결합된 컬러 빔으로부터의 조명을 필요로 한다. 결합된 컬러 빔을 형성하기 위해 개별 컬러 빔을 결합하기 위해 이색성 반사기를 이용하는 이색성 빔 결합기에 대한 제안을 포함하여, 컬러 결합기에 대한 다양한 광학 아키텍처 개념이 제안되었다. 도 1은 일반적으로 LED 또는 레이저 다이오드와 같은 레이저 광원으로 구현되는 각각의 컬러 광원(12a, 12b 및 12c)과 연관된 3개의 이색성 반사기(18a, 18b 및 18c)를 갖는 이색성 빔 결합기(10)에 대한 하나의 이러한 제안을 도시한다. 제1 컬러(예를 들어, 적색)의 광 빔(광선(14a)으로 개략적으로 표시됨)은 광원(12a)에 의해 방출되는 반면, 제2 컬러(예를 들어, 녹색)의 광 빔(광선(14b)으로 개략적으로 표시됨)은 광원(12b)에 의해 방출되고, 제3 컬러(예를 들어, 청색)의 광 빔(개략적으로 광선(14c)으로 표시됨)은 광원(12c)에 의해 방출된다. 빔(14a, 14b 및 14c)은 빔을 시준하는 각각의 시준 광학기(16a, 16b 및 16c)(각각 렌즈 또는 렌즈 세트일 수 있음)를 통과한다. 시준된 빔은 이색성 반사기(18a, 18b 및 18c)에 충돌하고, 이색성 반사기는 각각 특정 컬러 또는 컬러들의 광을 투과시키고 다른 컬러 또는 컬러들의 광을 반사시키도록 구성된다. 도 1에서, 이색성 반사기(18a)는 제1 컬러의 광을 반사시키고, 이색성 반사기(18b)는 제1 컬러의 광을 투과시키고 제2 컬러의 광을 반사시키고, 이색성 반사기(18c)는 제1 컬러의 광과 제2 컬러의 광을 투과시키고, 제3 컬러의 광을 반사시킨다. 그 결과, 개별 컬러 광 빔은 컬러 결합된 출력 빔(20)으로 결합된다.
그러나, 시준 광학기(16a, 16b 및 16c)를 배치하는 것과 함께 이색성 반사기(18a, 18b 및 18c) 사이의 간격으로 인해 도 1에 도시된 이색성 빔 결합기(10)는 HMD 및 NED에 사용된 것과 같은 콤팩트한 광학 디바이스 및 시스템에 사용하기에 일반적으로 부적합한 폼 팩터(form factor)를 갖는다.
본 발명은 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용될 수 있는 광 빔을 방출하는 광학 디바이스, 및 이러한 광학 디바이스를 제조하는 방법에 관한 것이다.
본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 일련의 세그먼트를 포함하는 주기적인 형성을 나타내도록 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 일련의 세그먼트는 제1 세그먼트를 포함하고, 상기 주기적인 형성은 정해진 횟수만큼 상기 제1 세그먼트를 반복함으로써 형성되고, 상기 제1 세그먼트는, 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 제1 코팅된 표면, 제2 파장 범위의 파장을 갖는 광을 반사시키고 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 제2 코팅된 표면, 및 제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 제3 코팅된 표면을 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 평행한 주 외부 표면 및 복수의 인접한 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계로서, 각각의 구획은 상기 2개의 주 외부 표면 사이에 상기 주기적인 형성의 하나의 세그먼트의 코팅된 표면을 갖는, 상기 스택을 슬라이싱하는 단계; 및 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 평행한 주 표면 및 상기 2개의 주 표면 사이에 상기 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖는, 상기 슬라이스를 적어도 한번 절단하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 반사 코팅을 도포함으로써 형성된다.
본 발명의 일 실시형태의 또 다른 특징에 따르면, 상기 제2 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 제1 이색성 코팅을 도포함으로써 형성되고, 상기 제3 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 제2 이색성 코팅을 도포함으로써 형성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면을 동시에 연마하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향과 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스를 적어도 한번 절단하는 단계는, 정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하기 위해 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 평면을 따라 상기 슬라이스를 절단하는 단계를 포함한다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 적어도 하나의 평면을 따라 상기 슬라이스를 슬라이싱함으로써 형성된 적어도 하나의 표면을 연마하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스를 적어도 한번 절단하는 단계는, 상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계를 더 포함한다.
본 발명의 일 실시형태의 또 다른 특징에 따르면, 평면 표면을 형성하도록 상기 적어도 하나의 평면에 대해 비스듬한 평면을 따라 상기 적어도 하나의 기판의 기판을 슬라이싱하는 단계; 및 상기 기판이 상기 기판의 연신 방향에 수직이고 상기 기판의 2개의 주 표면에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되도록 상기 제1, 제2 또는 제3 파장 범위의 파장을 갖는 광에 대해 반사성이도록 상기 평면 표면을 연마하고 반사 코팅으로 코팅하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제3 코팅된 표면은 상기 제3 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시킨다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스를 적어도 한번 절단하는 단계는, 정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및 상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고; 상기 적어도 하나의 제1 평면에 형성된 표면에 입방체(cuboid) 구조물을 부착하는 단계가 더 제공되고, 상기 입방체 구조물은 상기 적어도 하나의 평면에 형성된 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제3 코팅된 표면은 상기 제3 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 반사시킨다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스를 적어도 한번 절단하는 단계는, 정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및 상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고; 상기 2개의 주 외부 표면 중 하나의 주 외부 표면의 일부에 입방체 구조물을 부착하는 단계가 더 제공되고, 상기 입방체 구조물은 상기 2개의 주 외부 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 세그먼트는 상기 제1, 제2 또는 제3 파장 범위의 파장을 갖는 광을 반사시키는 제4 코팅된 표면을 추가로 포함한다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스를 적어도 한번 절단하는 단계는, 정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및 상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고; 상기 2개의 주 외부 표면 중 하나의 주 외부 표면의 일부에 입방체 구조물을 부착하는 단계가 더 제공되고, 상기 입방체 구조물은 상기 2개의 주 외부 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된다.
본 발명의 일 실시형태의 또 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면 중 제1 주 외부 표면과 제1 판을 정렬하는 단계로서, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 제4 코팅된 표면이 상기 제2 판의 어레이의 하나의 렌즈와 연관되도록 배열되는, 상기 제2 판을 정렬하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면 중 제1 주 외부 표면과 제1 판을 정렬하는 단계가 더 제공되고, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면과 제2 판을 정렬하는 단계가 더 제공되고, 상기 제2 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열된다.
본 발명의 일 실시형태의 또 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면에 적어도 하나의 지연 판을 부착하는 단계; 및 상기 지연 판과 제2 판을 정렬하는 단계가 더 제공되고, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제2 판과 제3 판을 정렬하는 단계가 더 제공되고, 상기 제3 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 세그먼트가 적어도 하나의 지연 판을 포함하도록 상기 스택에 복수의 지연 판을 배치하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 판을 정렬하는 단계가 더 제공되고, 상기 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 판은 상기 판 상에 상기 검출기를 지지하는 전기 전도성 캐리어 포일을 추가로 포함한다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 판에 전기 전도성 표면을 부착하는 단계가 더 제공되고, 상기 전기 전도성 표면은 복수의 전기 접점을 포함하고, 각각의 접점은 상기 검출기 각각과 연관된다.
또한, 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은, 적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면, 제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면, 제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면, 및 상기 제1 파장 범위, 상기 제2 파장 범위, 또는 상기 제3 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제4 코팅된 표면을 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 정확히 하나의 제3 코팅된 표면, 및 상기 적어도 하나의 제4 코팅된 표면 중 정확히 하나를 갖는, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 주 외부 표면과 상기 2개의 주 외부 표면 사이에 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및 상기 적어도 하나의 구획의 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 단일 세그먼트의 코팅된 표면을 갖는, 상기 슬라이스를 적어도 한번 절단하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 적어도 한번 반복되는 제1 세그먼트를 포함하는 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 복수의 코팅된 표면은, 제1 편광 방향으로 편광된 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 편광 방향으로 편광된 상기 제1 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제1 코팅된 표면, 및 상기 제1 편광 방향으로 편광된 제2 파장 범위의 파장을 갖는 광 및 상기 제2 편광 방향으로 편광된 상기 제1 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제2 편광 방향으로 편광된 상기 제2 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제2 코팅된 표면, 및 상기 제1 편광 방향으로 편광된 제3 파장 범위의 파장을 갖는 광 및 상기 제2 편광 방향으로 편광된 상기 제1 또는 제2 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제2 편광 방향으로 편광된 상기 제3 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면에 지연 판을 부착하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 적어도 하나의 구획의 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계가 더 제공되고, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖는다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 지연 판과 제1 판을 정렬하는 단계로서, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 다른 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제2 판을 정렬하는 단계가 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 판과 제3 판을 정렬하는 단계가 더 제공되고, 상기 제3 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 복수의 코팅된 표면은 편광 선택성인 적어도 하나의 제4 코팅된 표면을 추가로 포함하고, 상기 제1 세그먼트는 정확히 하나의 제4 코팅된 표면을 추가로 포함한다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 적어도 하나의 제4 코팅된 표면은 상기 제1 편광 방향으로 편광된 광을 투과시키고, 상기 제2 편광 방향으로 편광된 광을 반사시킨다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 적어도 하나의 제4 코팅된 표면은 상기 제2 편광 방향으로 편광된 광을 투과시키고, 상기 제1 편광 방향으로 편광된 광을 반사시킨다.
또한, 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은, 적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면, 제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면, 및 제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 2차원 렌즈 어레이를 갖는 판을 정렬하는 단계로서, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 상기 판을 정렬하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 복수의 투명 판을 획득하는 단계; 적어도 하나의 제1 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제1 표면에 편광 선택성 코팅을 도포하는 단계; 적어도 하나의 제2 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제2 표면에 제1 색 편광 선택성 코팅을 도포하는 단계; 적어도 하나의 제3 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제3 표면에 제2 색 편광 선택성 코팅을 도포하는 단계; 적어도 하나의 세그먼트를 갖는 스택으로 상기 판을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면의 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 판을 배열하는 단계; 적어도 제1 및 제2 주 외부 표면 및 상기 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 상기 제1 또는 제2 주 외부 표면과 상기 제1 판을 정렬하는 단계로서, 상기 제1 판은, 제1 편광 방향과 연관된 제1 방향으로 배열된 2차원 렌즈 어레이를 포함하고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 다른 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 제2 편광 방향과 연관된 제2 방향으로 배열된 2차원 렌즈 어레이를 포함하고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되고, 상기 제2 배향과 제2 편광 방향은 상기 제1 배향과 상기 제1 편광 방향에 각각 직교하는, 상기 제2 판을 정렬하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은, 적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면, 제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면, 및 제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및 상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 판을 정렬하는 단계로서, 상기 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 상기 판을 정렬하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 복수의 투명 판 및 적어도 하나의 지연 판을 획득하는 단계; 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면과 상기 적어도 하나의 지연 판을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은, 상기 투명 판과 연관된 적어도 하나의 표면에 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제1 코팅된 표면, 상기 투명 판과 연관된 적어도 하나의 표면에 제1 색 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제2 코팅된 표면, 상기 투명 판과 연관된 적어도 하나의 표면에 제2 색 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제3 코팅된 표면을 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 지연 판의 하나 이상의 지연 판을 포함하는, 상기 복수의 코팅된 표면과 적어도 하나의 지연 판을 배열하는 단계; 및 적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면과 적어도 하나의 지연 판을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 복수의 투명 판을 획득하는 단계; 복수의 코팅된 표면을 형성하도록 상기 투명 판과 연관된 복수의 표면에 편광 선택성 코팅을 도포하는 단계로서, 상기 복수의 코팅된 표면은 제1 편광 방향으로 편광된 코팅된 표면으로 입사광을 투과시키고, 상기 제1 편광 방향과 직교하는 제2 편광 방향으로 편광된 상기 코팅된 표면으로 입사광을 반사시키는, 상기 편광 선택성 코팅을 도포하는 단계; 상기 코팅된 표면들이 서로 평행하도록 스택으로 상기 판을 배열하는 단계; 적어도 제1 및 제2 주 외부 표면과 복수의 인접한 구획을 포함하는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계로서, 상기 각각의 구획은 상기 제1 및 제2 주 외부 표면 사이에 정확히 2개의 코팅된 표면을 포함하는, 상기 스택을 슬라이싱하는 단계; 상기 제1 또는 제2 주 외부 표면에 제1 지연 판 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제1 코팅된 표면이 상기 제1 지연 판 어레이의 지연 판 각각과 연관되도록 상기 제1 지연 판 어레이를 부착하는 단계; 상기 제2 또는 제1 주 외부 표면에 제2 지연 판 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제2 코팅된 표면이 상기 제2 지연 판 어레이의 지연 판 각각과 연관되도록 상기 제2 지연 판 어레이를 부착하는 단계; 상기 제1 지연 판 어레이에 제1 배향으로 배치된 제1 렌즈 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제1 코팅된 표면이 상기 제1 렌즈 어레이의 렌즈 각각과 연관되도록 상기 제1 렌즈 어레이를 부착하는 단계; 및 상기 제2 지연 판 어레이에 상기 제1 배향에 직교하는 제2 배향으로 배치된 제2 렌즈 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제2 코팅된 표면이 상기 제2 렌즈 어레이의 렌즈 각각과 연관되도록 상기 제2 렌즈 어레이를 부착하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
또한, 본 발명의 일 실시형태의 내용에 따르면, 광학 디바이스를 제조하는 방법으로서, 일련의 세그먼트를 포함하는 주기적인 형성을 나타내도록 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 일련의 세그먼트는 제1 세그먼트를 포함하고, 상기 주기적인 형성은 상기 제1 세그먼트를 정해진 횟수만큼 반복함으로써 형성되고, 상기 제1 세그먼트는 상기 제1 코팅된 표면과 제2 코팅된 표면을 포함하고, 상기 코팅된 표면 각각은 특정 유형의 광을 투과시키고, 다른 유형의 광을 반사시키도록 구성된, 상기 복수의 코팅된 표면을 배열하는 단계; 적어도 2개의 주 외부 표면과 복수의 인접한 구획을 갖는 슬라이스를 형성하도록 상기 코팅된 표면에 대해 비스듬한 각도로 상기 스택을 슬라이싱하는 단계로서, 각각의 구획은, 상기 2개의 주 외부 표면에 대해 비스듬하고 상기 2개의 주 외부 표면 사이에 주기적인 형성의 하나의 세그먼트의 코팅된 표면을 갖는, 상기 스택을 슬라이싱하는 단계; 및 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 내장된 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖고, 상기 코팅된 표면을 생성하는 데 사용되는 코팅과 비스듬한 각도는, 상기 적어도 하나의 기판의 각각의 기판에 대해, 상기 코팅된 표면에 의해 투과 및 반사되는 광이 상기 기판을 통해 안내되지 않은 광으로 전파되도록 이루어진, 상기 슬라이스를 적어도 한번 절단하는 단계를 포함하는, 광학 디바이스를 제조하는 방법이 더 제공된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 코팅된 표면은 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 파장 범위의 파장을 갖는 광을 반사시키도록 구성되고, 상기 제2 코팅된 표면은 상기 제1 파장 범위의 파장을 갖는 광 및 상기 제2 파장 범위의 광을 투과시키고, 제3 파장 범위의 파장을 갖는 광을 반사시키도록 구성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 코팅된 표면은 상기 제1 코팅된 표면에 대해 제1 편광 방향으로 편광을 갖는 광을 투과시키고, 상기 제1 코팅된 표면에 대해 상기 제1 편광 방향에 직교하는 제2 편광 방향으로 편광을 갖는 광을 반사시키도록 구성되고, 상기 제2 코팅된 표면은 상기 제2 코팅된 표면에 대해 상기 제1 편광 방향으로 편광을 갖는 광을 투과시키고, 상기 제2 코팅된 표면에 대해 상기 제2 편광 방향으로 편광을 갖는 광을 반사시키도록 구성된다.
본 발명의 일 실시형태의 다른 특징에 따르면, 상기 제1 및 제2 코팅된 표면은 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 파장 범위의 파장을 갖는 광을 반사시키도록 구성된다.
본 명세서에서 사용된 "컬러 결합" 및 "컬러 결합된"이라는 용어는 "컬러 혼합", "혼합된 컬러", "컬러 다중화" 및 "파장 혼합"이라는 용어와 상호 교환 가능하게 사용될 수 있다.
본 명세서에 사용된 "기판"이라는 용어는 임의의 광파 투과체, 바람직하게는 광파 투과성 고형 몸체를 말하며, 이는 "광학 기판" 또는 "광파 투과성 기판"으로도 지칭될 수 있다.
본 명세서에서 달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및/또는 과학적 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 일반적으로 이해하는 것과 동일한 의미를 갖는다. 본 명세서에 설명된 바와 유사하거나 균등한 방법 및 재료를 본 발명의 실시형태를 실시하거나 또는 시험하는 데 사용할 수 있지만, 예시적인 방법 및/또는 재료를 아래에 설명한다. 내용이 상충하는 경우, 정의를 포함하는 본 특허 명세서가 우선한다. 또한, 재료, 방법 및 실시예는 예시적인 것에 불과하며 본 발명을 제한하려고 의도된 것은 아니다.
본 발명의 일부 실시형태는 첨부 도면을 참조하여 단지 예로서 본 명세서에 설명된다. 도면을 구체적으로 참조할 때 도시된 세부사항은 예로서 그리고 본 발명의 실시형태를 예시적으로 논의하기 위해 제시된 것임이 강조된다. 이와 관련하여, 도면과 함께 취해진 설명은 이 기술 분야에 통상의 지식을 가진 자에 본 발명의 실시형태를 실시할 수 있는 방법을 명확하게 한다.
이제 동일한 참조 부호 또는 문자는 대응하는 또는 동일한 구성요소를 나타내는 도면을 참조한다.
도 1은 종래 기술의 빔 결합기의 개략 측면도이다;
도 2는 컬러 결합된 출력 빔을 생성하기 위해 상이한 광원에 의해 방출된 빔을 결합하기 위한 3개의 내장된 반사기를 갖는 기판이 있는 이색성 빔 결합기를 포함하는, 본 발명의 일 실시형태에 따라 구성되고 동작하는 광학 디바이스의 개략 측면도이다;
도 3은 도 2의 광학 디바이스와 유사하지만 2개의 내장된 반사기가 있는 광학 디바이스의 개략 측면도이다;
도 4a는 도 2의 이색성 빔 결합기를 제조하기 위한 공정 단계들 중 하나에 따른 복수의 투명 판의 개략 측면도이다;
도 4b는 도 2의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 도 4a의 투명 판과 연관된 3개의 반사기에 대응하는 코팅된 표면의 개략 측면도이다;
도 4c는 도 2의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 스택으로 배열된 코팅된 표면의 개략 측면도이다;
도 4d는 도 2의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 스택으로부터 슬라이스를 생성하기 위해 스택 상에 중첩된 한 쌍의 평행한 절단 평면이 있는 도 4c의 스택의 개략 측면도이다;
도 4e는 도 2의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 도 4d의 한 쌍의 절단 평면을 따라 슬라이싱함으로써 생성된 슬라이스, 및 슬라이스로부터 구획을 생성하기 위한 다른 한 쌍의 절단 평면의 개략 사시도이다;
도 4f는 도 2의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 도 4e의 한 쌍의 절단 평면을 따라 절단함으로써 생성된 구획, 및 구획으로부터 기판을 생성하기 위한 다른 한 쌍의 절단 평면의 개략 사시도이다;
도 5는 도 4b에 도시된 단계에 대한 대안으로서 투명 박판의 코팅된 표면의 개략 측면도이다;
도 6은 컬러 결합된 출력 빔의 전파 방향을 변경하기 위해 도 2의 광학 디바이스와 유사하지만 도 2의 반사기와 다른 투과 및 반사 특성을 갖는 다른 반사기가 반사기들 중에 있는 본 발명의 다른 실시형태에 따라 구성되고 동작하는 광학 디바이스의 개략 측면도이다;
도 7은 컬러 결합된 출력 빔의 전파 방향을 변경하기 위해 도 2의 광학 디바이스와 유사하지만 이색성 빔 결합기의 기판에 내장된 제4 반사기가 있는 본 발명의 다른 실시형태에 따라 구성되고 동작하는 광학 디바이스의 개략 측면도이다;
도 8a는 도 7의 이색성 빔 결합기를 제조하기 위한 공정 단계에 따라 스택으로 배열된, 4개의 내장된 반사기에 대응하는, 코팅된 표면의 개략 측면도이다;
도 8b는 도 7의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 스택으로부터 슬라이스를 생성하기 위해 스택 상에 중첩된 한 쌍의 평행한 절단 평면이 있는 도 8a의 스택의 개략 측면도이다;
도 8c는 도 7의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 도 8b의 한 쌍의 절단 평면을 따라 슬라이싱함으로써 생성된 슬라이스, 및 슬라이스로부터 구획을 생성하기 위한 다른 한 쌍의 절단 평면의 개략 사시도이다;
도 8d는 도 7의 이색성 빔 결합기를 제조하기 위한 공정의 다른 단계에 따라 도 8c의 한 쌍의 절단 평면을 따라 절단함으로써 생성된 구획, 및 구획으로부터 기판을 생성하기 위한 다른 한 쌍의 절단 평면의 개략 사시도이다;
도 9a는 컬러 결합된 출력 빔의 전파 방향을 변경하기 위해 기판이 절단될 수 있는 대각선 절단 평면을 도시하는, 도 2의 이색성 빔 결합기의 기판의 개략 사시도이다;
도 9b는 도 9a의 대각선 절단 평면을 따라 절단한 결과 대각선 평면 표면을 갖는, 도 2의 기판의 개략 사시도이다;
도 9c는 각각의 광원으로부터 기판을 통해 광 빔의 전파를 도시하는, 도 9b의 기판의 개략 사시도이다;
도 10a는 컬러 결합된 출력 빔의 전파 방향을 변경하기 위해 입방체의 주 표면에 대해 비스듬한 평면으로 배치된 반사기를 갖는 입방체 옆에 놓인 도 2의 이색성 빔 결합기의 기판의 개략 사시도이다;
도 10b는 제1 부착 구성에 따라 서로 광학적으로 부착된 도 10a의 기판과 입방체의 개략 사시도이다;
도 10c는 각각의 광원으로부터 기판과 입방체를 통해 광 빔의 전파를 도시하는, 도 10b의 부착된 기판과 입방체의 개략 사시도이다;
도 10d는 제2 부착 구성에 따라 서로 광학적으로 부착된 도 10a의 기판과 입방체의 개략 사시도이다;
도 10e는 각각의 광원으로부터 기판과 입방체를 통해 광 빔의 전파를 도시하는, 도 10d의 부착된 기판과 입방체의 개략 사시도이다;
도 11a는 컬러 결합된 출력 빔의 전파 방향을 변경하기 위해 입방체의 주 표면에 대해 비스듬한 평면으로 배치된 반사기를 갖는 입방체 옆에 놓인 도 7의 이색성 빔 결합기의 기판의 개략 사시도이다;
도 11b는 부착 구성에 따라 서로 광학적으로 부착된 도 11a의 기판과 입방체의 개략 사시도이다;
도 11c는 각각의 광원으로부터 기판과 입방체를 통해 광 빔의 전파를 도시하는, 도 11b의 부착된 기판과 입방체의 개략 사시도이다;
도 12a는 도 10a 내지 도 11c의 입방체를 제조하기 위한 공정의 단계에 따라 코팅되지 않은 투명 판과 코팅된 투명 판의 배열의 개략 측면도이다;
도 12b는 도 10a 내지 도 11c의 입방체를 제조하기 위한 공정의 다른 단계에 따라 스택으로 배열된, 도 12a의 코팅되지 않은 투명 판과 코팅된 투명 판의 개략 측면도이다;
도 12c는 도 10a 내지 도 11c의 입방체를 생성하기 위해 스택 상에 중첩된 제1 쌍의 평행한 절단 평면 및 제1 쌍의 절단 평면에 수직인 추가 쌍의 절단 평면이 있는 도 12b의 스택의 개략 측면도이다;
도 13은 반사기와 연관된 시준 광학기와 배율 광학기를 포함하도록 수정된, 도 7의 광학 디바이스의 개략 측면도이다;
도 14a는 도 13의 광학 디바이스를 제조하기 위한 공정의 단계에 따라 도 8c의 슬라이스에 부착될 시준 광학기와 배율 광학기를 각각 갖는 판의 개략 사시도이다;
도 14b는 슬라이스의 주 표면과 정렬된 후 시준 광학기를 갖는 판을 위에서 본, 도 14a에 대응하는 개략 평면도이다;
도 14c는 슬라이스의 다른 주 표면과 정렬된 후 배율 광학기를 갖는 판을 아래에서 본, 도 14a에 대응하는 개략 평면도이다;
도 14d는 슬라이스에 부착된 판과, 슬라이스를 절단하기 위한 절단 평면을 도시하는, 도 14a 내지 도 14c에 대응하는 개략 사시도이다;
도 15는 본 발명의 일 실시형태에 따라 이색성 빔 결합기의 기판에 부착된 시준 광학기와 검출기 배열을 포함하도록 수정된, 도 7의 광학 디바이스의 개략 측면도이다;
도 16a는 도 15의 광학 디바이스를 제조하는 공정의 단계에 따라 도 8c의 슬라이스에 부착될 시준 광학기와 검출기 배열의 구성요소를 각각 갖는 판의 개략 사시도이다;
도 16b는 슬라이스의 주 표면과 정렬된 후 도 16a의 검출기 배열의 검출기 구성요소를 갖는 판들 중 하나의 판을 위에서 본 개략 평면도이다;
도 16c는 슬라이스에 부착된 시준 광학기와 검출기 배열의 구성요소를 도시하는, 도 16a에 대응하는 개략 측면도이다;
도 17은 본 발명의 다른 실시형태에 따라 이색성 빔 결합기의 기판에 부착된 시준 광학기와 검출기 배열을 포함하도록 수정된, 도 7의 광학 디바이스의 개략 측면도이다;
도 18은 4개의 내장된 편광 선택성 반사기를 갖는 기판, 2세트의 직교 배향된 원통형 시준 광학기, 지연 판, 및 3개의 편광 선택성 반사기와 연관된 검출기 배열이 있는 이색성 빔 결합기를 갖는 본 발명의 실시형태에 따라 구성되고 동작하는 광학 디바이스의 개략 측면도이다;
도 19는 도 18의 광학 디바이스를 제조하기 위한 공정의 단계에 따라, 4개의 내장된 편광 선택성 반사기의 세그먼트를 갖는 슬라이스에 부착될 원통형 시준 광학기, 검출기 배열의 구성요소 및 지연 판을 각각 갖는 판의 개략 사시도이다;
도 20은 본 발명의 일 실시형태에 따라 기판의 측면에 부착된 추가 반사 표면과 지연 판이 있는, 도 18의 광학 디바이스와 유사한 광학 디바이스의 개략 측면도이다;
도 21은 도 17의 광학 디바이스와 유사한 광학 디바이스를 제조하기 위한 공정의 단계에 따라, 도 19와 유사하지만 상이한 세트의 지연 판이 있는 개략 사시도이다;
도 22a는 도 18 및 도 20의 광학 디바이스와 유사하지만 적어도 한 쌍의 편광 선택성 반사기 사이에 지연 판이 배치된 광학 디바이스의 기판을 제조하는 공정의 단계에 따라 코팅되지 않은 투명 판, 코팅된 투명 판 및 코팅된 지연 판의 배열의 개략 측면도이다;
도 22b는 도 22a에 도시된 단계에 대한 대안으로서, 코팅되지 않은 투명 판, 코팅된 박판 및 코팅된 지연 판의 배열의 개략 측면도이다;
도 22c는 기판을 제조하기 위한 공정의 다른 단계에 따라, 스택으로 배열된 도 22a 또는 도 22b의 배열의 개략 측면도이다;
도 22d는 기판을 제조하기 위한 공정의 다른 단계에 따라, 스택으로부터 슬라이스를 생성하기 위해 스택 상에 중첩된 한 쌍의 평행한 절단 평면이 있는 도 22c의 스택의 개략 측면도이다;
도 22e는 도 22d의 한 쌍의 절단 평면을 따라 슬라이싱함으로써 생성된 슬라이스, 및 기판을 생성하기 위한 한 쌍의 직교 절단 평면의 개략 사시도이다;
도 23은 한 쌍의 내장된 편광 선택성 빔 스플리터 구성이 있는 기판, 제1 편광 방향을 따라 광학 배율을 적용하기 위한 수평 원통형 렌즈, 제2 편광 방향을 따라 광학 배율을 적용하기 위한 수직 원통형 렌즈 세트, 편광 회전을 위한 한 쌍의 지연 판, 및 파워 모니터링을 위한 검출기 세트를 갖는, 본 발명의 일 실시형태에 따라 구성되고 동작하는 광학 디바이스의 개략 측면도이다;
도 24는 도 23에 대응하는 개략 평면도이다;
도 25는 광학 디바이스 뒤에서 본, 도 23에 대응하는 개략 사시도이다;
도 26은 광학 디바이스 앞에서 본, 도 23에 대응하는 개략 사시도이다;
도 27a는 도 23 내지 도 26의 광학 디바이스를 제조하기 위한 공정의 단계에 따라 투명 판과 연관된, 광학 디바이스의 편광 선택성 빔 스플리터 구성에 대응하는, 코팅된 표면의 배열의 개략 측면도이다;
도 27b는 도 27a에 도시된 단계에 대한 대안으로서 투명 박판의 코팅된 표면 배열의 개략 측면도이다;
도 27c는 도 23 내지 도 26의 광학 디바이스를 제조하기 위한 공정의 단계에 따라 스택으로 배열된 도 27a의 코팅된 표면 배열의 개략 측면도이다;
도 27d는 도 23 내지 도 26의 광학 디바이스를 제조하기 위한 공정의 다른 단계에 따라 스택으로부터 슬라이스를 생성하기 위해 스택 상에 중첩된 한 쌍의 평행한 절단 평면이 있는 도 27c의 스택의 개략 측면도이다;
도 27e는 도 27d의 한 쌍의 절단 평면을 따라 슬라이싱함으로써 생성된 슬라이스, 및 도 23 내지 도 26의 광학 디바이스의 기판을 제조하기 위한 2쌍의 직교 절단 평면의 개략 사시도이다;
도 27f는 도 23 내지 도 26의 광학 디바이스를 제조하기 위한 공정의 다른 단계에 따라 도 27e의 슬라이스에 부착될 수평 원통형 렌즈, 수직 원통형 렌즈 세트, 지연 판 및 검출기 세트를 각각 갖는 판의 개략 사시도이다;
도 28은 본 발명의 일 실시형태에 따라 도 2의 이색성 빔 결합기에 결합된 도 23 내지 도 26의 광학 디바이스를 포함하는 광학 시스템/디바이스의 개략 사시도이다;
도 29는 본 발명의 일 실시형태에 따라 이미지 프로젝터 디바이스 및 광파 투과성 기판에 결합된, 컬러 결합된 출력 빔을 생성하는, 광학 디바이스를 포함하는 광학 시스템의 개략 평면도이다;
도 30a 및 도 30b는 본 발명의 일 실시형태에 따라 광 도파로로 광을 투사하기 위한 광학 배열체에 결합된, 컬러 결합된 출력 빔을 생성하는 광학 디바이스를 포함하는 광학 시스템을 각각 도시하는 개략 정면도 및 측면도이다.
본 발명은 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용될 수 있는 광 빔을 방출하는 광학 디바이스, 및 이러한 광학 디바이스를 제조하는 방법에 관한 것이다.
본 발명에 따른 광학 디바이스는 기판 내에 내장된 (코팅된 표면으로 형성된) 평행한 반사기 세트를 갖는 광 투과성 재료(기판)를 포함한다. 내장된 평행한 반사기는 각각 특정 유형의 광을 투과시키고 다른 유형의 광을 반사시키도록 구성된다. 일부 실시형태에서, 특정 반사기에 의해 투과되는 광의 유형과 반사되는 광의 유형 사이의 구별은 반사기에 입사하는 광의 파장에 기초하는 반면, 다른 실시형태에서 구별은 반사기에 입사하는 광의 편광 방향에 기초하는 반면, 또 다른 실시형태에서 구별은 반사기에 입사하는 광의 편광 방향 및 파장에 모두 기초한다. 투과되는 광의 유형과, 반사되는 광의 유형은 각각의 특정 실시형태에서 명백해질 것이다. 그러나, 특정 경우에 투과되는 광의 유형과, 반사되는 광의 유형에 대한 설명이 제공된다.
본 발명에 따른 광학 디바이스 및 방법의 원리 및 동작은 설명을 첨부한 도면을 참조하여 더 잘 이해될 수 있다.
본 발명의 적어도 하나의 실시형태를 상세히 설명하기 전에, 본 발명은 적용에서 구성의 세부사항 및 구성요소의 배열 및/또는 하기 설명에 제시되고 및/또는 도면 및/또는 실시예에 도시된 방법으로 제한되지 않는 것으로 이해된다. 본 발명은 다른 실시형태도 가능하고 또는 다양한 방식으로 실시되거나 또는 수행될 수 있다. 처음에, 본 명세서 전체에서, 예를 들어, 앞, 뒤, 위, 아래 등과 같은 방향을 언급한다. 이러한 방향의 언급은 본 발명 및 그 실시형태를 설명하기 위한 예시일 뿐이다. 또한, 임의로 표시된 축이 있는 좌표계가 일부 도면에 제공된다. 이 좌표계는 본 발명의 광학 디바이스의 구성요소의 배향을 설명하기 위한 보조 수단으로 사용되도록 의도된다.
이제 도면을 참조하면, 도 2는 컬러 결합 기능을 갖는, 본 발명의 다양한 양태에 따라 구성되고 동작하는 일반적으로 (100)으로 표시된 광학 디바이스를 도시한다. 일반적으로, 광학 디바이스(100)는 이색성 빔 결합기(102), 광원(12a, 12b 및 12c)(각각의 광 빔(14a, 14b 및 14c)을 생성하도록 구성됨), 및 각각의 광원(12a, 12b 및 12c)과 연관된 시준 광학기(16a, 16b 및 16c)를 포함한다. 각각의 시준된 빔(14a, 14b 및 14c)은 대응하는 광선으로 간략하게 표현되지만, 각각의 시준된 빔은 빔에 걸쳐 평행한 광선의 세트를 포함한다는 것이 일반적으로 주목된다.
이색성 빔 결합기(102)는 이색성 빔 결합기(102)의 연신 방향을 정의하는 연신 방향(여기서는 임의로 "x-축"에 대응하는 것으로 도시함)을 갖는, 평행한 면을 갖는 슬래브(parallel-faced slab)로서 형성된 기판(103)을 포함한다. 기판(103)은 (xy-평면에서) 직사각형 단면을 형성하는 한 쌍의 평행한 주 외부 평면 표면(면)(106, 108)을 갖는다. 기판(103)은 한 쌍의 평행한 외부 평면 표면(109, 110)을 더 포함하며, 여기서 표면(110)은 이색성 빔 결합기(102)의 출력(또는 광파 출사) 표면으로서 작용하고, 표면(109)과 표면(110) 사이의 거리는 일반적으로 표면(106)과 표면(108) 사이의 거리보다 10배 더 크다. 상호 평행한 선택성 반사 표면(이하 "반사기"라고 함)(104a, 104b 및 104c)은 연신 방향에 대해 경사진 각도(즉, 평행하지도 않고 수직도 아닌 각도)(α)로 (그리고 등가적으로 표면(106, 108)에 대해 동일한 경사 각도(α)로) 주 표면(106)과 주 표면(108) 사이에서 기판(103) 내에 내장된다.
반사기(104a, 104b 및 104c)는 연신 방향을 따라 겹치지 않는 것이 바람직하다. 다시 말해, 표면(106)의 평면으로 반사기(104a, 104b 및 104c)의 투영은 겹치지 않는다.
반사기(104a, 104b 및 104c)는 특정 바람직한 구현예에서 레이저 광원(예를 들어, 레이저 다이오드), 발광 다이오드(LED) 또는 초발광 다이오드(SLED)로서 구현되는 각각의 광원(12a, 12b 및 12c)과 연관된다. 도 1을 참조하여 설명된 바와 유사하게, 광원(12a)은 제1 파장 범위의 파장을 갖는 광을 방출하도록 구성되고, 광원(12b)은 제2 파장 범위의 파장을 갖는 광을 방출하도록 구성되고, 광원(12c)은 제3 파장 범위의 파장을 갖는 광을 방출하도록 구성된다. 광원(12a, 12b 및 12c)은 빔(14a, 14b 및 14c)의 광파 입사 표면으로서 기능하는 표면(106)과 연관된다.
반사기(104a)는 다양한 방식으로 구현될 수 있다. 하나의 비제한적인 구현예에서, 반사기(104a)는 적어도 제1 파장 범위의 광을 포함하는 상이한 파장의 광을 반사시키도록 구성된 반사 표면(예를 들어, 단순 거울)이다. 다른 비제한적인 구현예에서, 반사기(104a)는 제1 파장 범위의 파장을 갖는 광만을 반사시키고, 다른 파장 범위의 파장을 갖는 광을 투과시키기 위해 이색성(색 선택) 특성을 갖는 색 선택성 반사기이다. 반사기(104b)는 제2 파장 범위의 파장을 갖는 광을 반사시키고, 제1 파장 범위의 파장을 갖는 광을 투과시키기 위해 이색성을 갖는 색 선택성 반사기이다. 반사기(104c)는 제3 파장 범위의 파장을 갖는 광을 반사시키고, 제1 파장 범위 또는 제2 파장 범위의 파장을 갖는 광을 투과시키기 위해 이색성 특성을 갖는 색 선택성 반사기이다.
여기서, 반사기(104a)에 의해 반사되는 광의 유형은 제1 파장 범위의 파장을 갖는 광이다. 반사기(104b)에 의해 투과되는 광의 유형은 제1 파장 범위의 파장을 갖는 광이고, 반사기(104b)에 의해 반사되는 광의 유형은 제2 파장 범위의 파장을 갖는 광이다. 반사기(104c)에 의해 투과되는 광의 유형은 제1 또는 제2 파장 범위의 파장을 갖는 광이고, 반사기(104c)에 의해 반사되는 광의 유형은 제3 파장 범위의 파장을 갖는 광이다.
특히 바람직하지만 비제한적인 구현예에서, 전술한 파장 범위는 가시광 컬러의 상이한 컬러에 대응하는 전자기 스펙트럼의 파장 범위이다. 특히, 제1 파장 범위는 제1 파장에 중심이 있는 제1 가시 컬러(예를 들어, 대략 638 나노미터(nm)에 중심이 있는 적색 광)에 대응하고, 제2 파장 범위는 제2 파장에 중심이 있는 제2 가시 컬러(예를 들어, 약 532 nm에 중심이 있는 녹색 광)에 대응하며, 제3 파장 범위는 제3 파장에 중심이 있는 제3 가시 컬러(예를 들어, 약 456 nm에 중심이 있는 청색 광)에 대응한다. 따라서, 많은 경우에, "파장 범위"와 "컬러"라는 용어는 상호 교환 가능하게 사용되고, 일반성을 잃지 않고 본 발명의 실시형태는 가시 컬러 광의 맥락 내에서 설명되고, 이에 의해 광원(12a, 12b 및 12c)은 상이한 컬러의 광을 방출하고, 반사기는 특정 컬러의 광을 반사/투과시켜 컬러 결합을 달성하도록 구성된다. 그러나, 이 기술 분야에 통상의 지식을 가진 자에게는 자명한 바와 같이, 본 발명의 실시형태는 가시 스펙트럼 밖의 파장 범위에 적용될 수 있고, 그리고/또는 2개의 (또는 그 이상의) 광원이 동일한 "컬러"에 대응하는 동일한 파장 영역 내의 광을 방출하고, 반사기가 파장 영역 내의 파장 범위에 따라 광을 투과/반사시키도록 구성된 경우에도 적용될 수 있다. 예를 들어, 모두 3개의 광원은 전자기 스펙트럼의 "적색" 영역 내에 있는 광을 방출하도록 구성될 수 있고, 여기서 광원(12a)은 450 nm 내지 460 nm의 제1 범위의 파장의 광을 방출하고, 광원(12b)은 460 nm 내지 470 nm의 제2 범위의 파장의 광을 방출하고, 광원(12c)은 470 nm 내지 480 nm의 제3 범위의 파장의 광을 방출한다. 따라서, 반사기(104b)는 450 nm 내지 460 nm 범위의 파장의 광을 투과시키고, 460 nm 내지 470 nm 범위의 파장의 광을 반사시키도록 구성될 수 있고, 반사기(104c)는 450 nm 내지 470 nm 범위의 파장의 광을 투과시키고, 470 nm 내지 480 nm 범위의 파장의 광을 반사시키도록 구성될 수 있다. 이러한 개념은 적외선(IR) 및 근적외선(NIR) 영역을 포함하는 전자기 스펙트럼의 비가시 영역에도 외삽될 수 있다.
이러한 사항을 염두에 두고, 광학 디바이스(100)는 일반적으로 도 1의 광학 디바이스(10)와 동일한 방식으로 컬러 결합된 출력 빔(112)을 생성한다. 광원(12a)은 제1 컬러의 빔(개략적으로 광선(14a)으로 표시됨)을 방출하고, 이 빔은 표면(106)을 통해 기판(103)에 입사하고, 반사기(104a)에 의해 반사되고, 반사기(104b)에 의해 투과되고, 반사기(104c)에 의해 투과된다. 광원(12b)은 제2 컬러의 빔(개략적으로 광선(14b)으로 표시됨)을 방출하고, 이 빔은 표면(106)을 통해 기판(103)에 입사하고, 반사기(104b)에 의해 반사되고(빔(14a)과 혼합되고), 반사기(104c)에 의해 투과된다. 광원(12c)은 컬러의 빔(개략적으로 광선(14c)으로 표시됨)을 방출하고, 이 빔은 표면(106)을 통해 기판(103)에 입사하고, 반사기(104c)에 의해 반사되고, 여기서 반사된 빔(14c)은 빔(14a 및 14b)과 결합하고, 컬러 결합된 출력 빔(112)으로서 출력 표면(110)을 통해 기판(103)을 빠져나간다. 도 2에 도시된 이색성 빔 결합기(102)의 특정 구성에서, 빔(14a, 14b 및 14c)은 일반적으로 기판(103)의 연신 방향에 수직인 공통 전파 방향(투사 방향)을 따라 표면(106)을 향해 전파함으로써 각각의 반사기(104a, 104b 및 104c)를 조명한다. 출력 빔(112)은 기판(103)을 빠져나와 연신 방향(즉, 투사 방향에 수직인 방향)을 따라 전파된다.
이하의 단락은 이색성 빔 결합기(102)를 제조하기 위한 단계를 설명한다. 제조 공정의 다양한 단계를 도시하는 도 4a 내지 도 4f를 참조한다. 먼저 도 4a를 참조하면, 제조 공정의 제1 단계가 도시되어 있으며, 여기서 복수의 투명 판(120)이 획득된다. 각각의 투명 판(120)은 2개의 평행한 주 표면(122, 124)을 갖는다. 일반적으로, 모든 투명 판(120)은 동일한 길이(본 명세서에서는 임의로 x-축으로부터 α만큼 회전 오프셋되어 있는 "x' 축"을 따라 측정되고, 주 표면(122, 124)의 길이에 대응하는 것으로 도시됨)와 동일한 폭(지면의 평면에 수직인 축을 따라 측정됨)을 갖는 것이 바람직하다. 특정 실시형태에서, 모든 투명 판(120)은 동일한 두께(본 명세서에서는 임의로 "y' 축"을 따라 측정되고, 주 표면(122)과 주 표면(124) 사이의 거리에 대응하는 것으로 도시됨)를 갖는 반면, 다른 실시형태에서 다수의 투명 판(120)은 제1 두께를 갖고, 나머지 (소수 세트의) 투명 판(120)은 제1 두께보다 큰 제2 두께를 갖는다(즉, 소수 세트의 투명 판(120)은 다수 세트의 투명 판(120)보다 더 두껍다).
다음 단계에서, 코팅은 복수의 코팅된 표면을 생성하기 위해 투명 판(120)과 연관된 다양한 표면에 도포된다. 일반적으로, 제1 코팅은 복수의 코팅된 표면(126a)을 형성하기 위해 투명 판(120)과 연관된 제1 세트의 표면에 도포된다. 제1 코팅은 적어도 제1 컬러의 광에 대해 반사성인 반사 코팅일 수 있고, 또는 제1 컬러의 광에 대해서만 반사성인 이색성 코팅일 수 있다. 제2 코팅은 복수의 코팅된 표면(126b)을 형성하기 위해 투명 판(120)과 연관된 제2 세트의 표면에 도포된다. 제2 코팅은 바람직하게는 제2 컬러의 광에 대해 반사성이고 제1 컬러의 광에 대해 투과성인 이색성 코팅이다. 제3 코팅은 복수의 코팅된 표면(126c)을 형성하기 위해 투명 판(120)과 연관된 제3 세트의 표면에 도포된다. 제3 코팅은 바람직하게는 제3 컬러의 광에 대해 반사성이고 제1 컬러의 광과 제2 컬러의 광에 대해 투과성인 이색성 코팅이다. 3개의 코팅이 각각의 세트의 표면에 도포되고, 코팅된 표면(코팅된 투명 판(120)을 포함할 수 있음)은 일련의 동일하고 겹치지 않는 세그먼트로 구성된 주기적인 형성을 생성하도록 배열되고, 여기서 각각의 세그먼트는 정확히 하나의 코팅된 표면(126a), 정확히 하나의 코팅된 표면(126b) 및 정확히 하나의 코팅된 표면(126c)을 포함한다. 코팅된 표면(126a, 126b 및 126c)은 궁극적으로 각각의 반사기(104a, 104b 및 104c)를 형성한다. 각각의 코팅된 표면이 하나의 (그리고 단 하나의) 세그먼트에 속한다는 점에서 세그먼트는 겹치지 않는다. 주기적인 형성은 (일련의 세그먼트 중) 제1 세그먼트를 정해진 횟수만큼 반복함으로써 형성된다. 이 정해진 횟수("반복 계수"라고도 함)는 원칙적으로 임의의 양의 정수일 수 있고, 이는 단일 세그먼트로 구성된 세그먼트 시퀀스를 생성하는 1의 반복 계수의 하한 케이스를 포함한다. 본 발명의 실시형태는 바람직하게는 2 내지 30 중 임의의 반복 계수로 구현되고, 가장 일반적으로 적어도 4의 반복 계수로 구현되고, 일부 특히 바람직한 경우에는 5 내지 10의 반복 계수로 구현된다.
표면에 코팅을 도포하는 단계는 다양한 방식으로 수행될 수 있다. 도 4b는 (투명 판(120)의 서브세트를 정의하는) 투명 판(120) 중 매 두 번째 투명 판에 대해 투명 판(120)의 각각의 주 표면(122, 124)이 (3개의 코팅 중에서 선택된) 코팅으로 코팅되는 하나의 비제한적인 실시예를 도시한다. 다시 말해, 코팅은 투명 판(120) 중 매 두 번째 투명 판의 주 표면의 양면 모두에 직접 도포된다. (서브세트에 없는) 나머지 투명 판(120)의 표면(122, 124)은 코팅되지 않는다. 여기서, 투명 판(120)과 연관된 표면은 사실상 일부 투명 판(120)의 주 표면(122, 124)이다. 3개의 코팅이 있기 때문에 모든 세그먼트가 정확히 3개의 코팅된 표면을 갖는 것을 보장하기 위해 투명 판(120) 중 하나의 투명 판이 주 표면 중 단 하나의 주 표면에만 코팅되는 경우가 있을 수 있음이 주목된다. 이것은 도 4b에 도시된 경우이다. 이 "양면" 코팅 방법을 사용하는 경우 투명 판(120) 중 하나의 투명 판의 단 하나의 표면만을 코팅할 필요 없이 짝수의 세그먼트를 달성할 수 있다. 일반적으로, 2k개의 세그먼트(여기서 k는 임의의 양의 정수)를 달성하기 위해서는 6k+1개의 투명 판(120)이 필요하다.
도 5는 투명 판(120)들 사이에 복수의 얇은 투명 판(121)이 교대로 배열된 다른 비제한적인 실시예를 도시한다. 얇은 투명 판(121)은 "박판"이라고 하며, 일반적으로 투명 판(120)의 두께보다 10배 더 작은 두께를 갖는다. 각각의 박판(121)은 3개의 코팅 중에서 선택된 코팅으로 (도시되지 않은 주 표면에) 코팅된다. 코팅된 박판(121)과 투명 판(120)은 투명 판(120)과 코팅된 박판(121)을 교대로 적층함으로써 주기적인 형성을 이루도록 배열된다. 여기서, 투명 판(120)과 연관된 표면은 박판(121)의 코팅된 표면이다.
다른 비제한적인 실시예(도시되지 않음)에서, 코팅은 (투명 판(120) 중 코팅되지 않은 것은 제외하고) 모든 투명 판(120)의 동일한 면(예를 들어, 표면(122) 또는 표면(124))에 도포된다. 여기서, 도 4b와 유사하게, 투명 판(120)과 연관된 표면은 사실상 일부 투명 판(120)의 주 표면(122, 124)이다. 특정 경우에 투명 판(120) 각각의 단일 면을 코팅하는 것은 코팅 공정 동안 투명 판에 응력을 가하여 판이 뒤틀리게 하여 판에 원치 않는 곡률을 야기하고 컬러 결합 기능의 효율을 저하시킬 수 있는 것으로 밝혀졌다는 것이 주목된다. 이와 달리, "양면" 코팅 방법(도 4b에 도시됨)은 코팅 공정 동안 투명 판에 가해지는 코팅 응력을 감소시켜 뒤틀림 가능성을 감소시키는 것으로 밝혀졌다.
일반적으로 판(120 및 121)은 3개의 파장 범위 중 임의의 파장 범위의 파장을 갖는 광파에 투명한 유리(예를 들어, BK-7)와 같은 광 투과성 재료로 형성된 투명 기판이라는 것이 주목된다. 각각의 도포된 코팅은 그 자체로 다수의 코팅 층을 포함할 수 있음이 추가로 주목된다. 이러한 (이색성) 코팅을 제공하기 위한 일반적인 접근 방법은 코팅된 표면(126a, 126b 및 126c)에 원하는 반사 및 투과 특성을 달성하기 위해 기판(예를 들어, 투명 판(120) 또는 박판(121) 등)에 대해 상이한 굴절률을 갖는 광학 코팅 층을 교대로 구축하는 것이다.
코팅된 표면(126a, 126b 및 126c)을 형성하기 위해 코팅을 관련 표면에 도포한 후, 코팅된 표면(126a, 126b 및 126c)은 적어도 하나의 세그먼트, 보다 바람직하게는 복수의 동일한 세그먼트를 갖는 일련의 세그먼트로 구성된 주기적인 형성을 생성하도록 (코팅된 투명 판(120), 또는 코팅된 박판(121)과 함께 투명 판(120)을 적절히 적층함으로써) 배열된다. 도 4c는 투명 판(120)(또는 코팅된 박판(121)과 함께 투명 판(120))이 모든 코팅된 표면(126a, 126b 및 126c)이 서로 평행하고, 각각의 세그먼트가 정확히 하나의 코팅된 표면(126a), 정확히 하나의 코팅된 표면(126b) 및 정확히 하나의 코팅된 표면(126c)으로 구성되도록 스택(130)으로 배열된 코팅된 표면(126a, 126b 및 126c)의 원하는 배열을 도시한다. 도면에는 도시되지 않았지만, 스택은 엇갈린 스택(staggered stack)일 수 있다.
스택(130)의 코팅된 표면은 주기적인 형성을 나타내고, 여기서 주기적인 형성의 각각의 세그먼트는 동일하고, 동일한 수의 코팅을 동일한 순서로 포함한다. 세그먼트 내의 코팅 순서는 컬러 결합을 달성하기 위해 이색성 빔 결합기의 반사기의 필수 순서에 대응하여야 한다. 도 4c에서, 파선 직사각형은 일련의 세그먼트에서 제1 세그먼트(129)를 나타낸다. 제1 세그먼트(129)는 3개의 세그먼트의 시퀀스를 형성하기 위해 3회 반복된 총 3개의 코팅된 표면(126a, 126b 및 126c)을 포함한다. 스택(130)의 아래에서 시작하여, 각각의 세그먼트는 정확히 하나의 코팅된 표면(126c), 정확히 하나의 코팅된 표면(126b), 및 정확히 하나의 코팅된 표면(126a)으로 구성된다. 제1 세그먼트(129)의 코팅된 표면에 대응하는 투명 판(120)의 표면은 다음과 같은 데, 즉 도 4a의 아래에서 두 번째 투명 판(120)의 표면(124)은 코팅된 표면(126c)을 형성하기 위해 코팅되고, 도 4a의 아래에서 두 번째 투명 판(120)의 표면(122)은 코팅된 표면(126b)을 형성하기 위해 코팅되고, 도 4a의 아래에서 4번째 투명 판(120)의 표면(124)은 코팅된 표면(126a)을 형성하도록 코팅된다. 도 4c에서, 2개의 추가 세그먼트가 도시되어 총 9개의 코팅된 표면(3개의 코팅된 표면(126a), 3개의 코팅된 표면(126b), 및 3개의 코팅된 표면(126c))이 형성되어 있고, 이는 스택(130)의 아래에서 시작하여 다음과 같은 순서(대괄호는 세그먼트를 나타냄), 즉 [코팅된 표면(126c), 코팅된 표면(126b), 코팅된 표면(126a)], [코팅된 표면(126c), 코팅된 표면(126b), 코팅된 표면(126a)], [코팅된 표면(126c), 코팅된 표면(126b), 및 코팅된 표면(126a)]의 순서를 갖는다.
스택(130)의 판은 예를 들어 스택(130)의 인접한 표면들 사이에 광학 접합제를 도포함으로써 함께 부착(즉, 접착)된다. 반사기(104a, 104b 및 104c)들 간에 고도의 평행도를 얻는 것은 반사기(104a, 104b 및 104c)에 의한 효율적인 빔 결합을 달성하는 데 매우 중요하다는 것이 주목된다. 이러한 고도의 평행도는 스택(130)의 판을 부착하기 전에 코팅된 표면(126a, 126b 및 126c)들 간에 대응하는 고도의 평행도를 보장함으로써 얻어질 수 있다. 코팅된 표면(126a, 126b 및 126c) 간의 평행도는 다양한 도량형 기술을 사용하여 얻을 수 있다.
다음 단계에서, 도 4d에 도시된 바와 같이, 스택(130)은 슬라이스(132)(또는 "조각")를 생성하기 위해 (128)로 표시된 한 쌍의 평행한 평면을 따라 슬라이싱(절단)된다. 도 4d는 단일 슬라이스(132)(또는 "조각")를 생성하기 위해 단일 쌍의 평행한 평면(128)만을 도시하지만, 단일 쌍의 평면(128)은 스택(130)으로부터 다수의 이러한 슬라이스(132)를 생성하는 데 사용될 수 있는 다수의 쌍의 평행한 평면일 수 있는 것의 대표적인 샘플이다. 평면(128)은 평면(128)이 공통 경사 각도(β)(여기서 β = 180 - α)로 모든 평면 코팅된 표면(126a, 126b 및 126c)과 교차하도록 스택(130)의 모든 투명 판(120)의 주 표면에 대해 대각선이다.
부가적으로, 많은 경우에 이색성 코팅에 의해 제공되는 반사율과 투과율은 입사광의 파장과 입사광의 입사각(AOI) 모두의 함수이다. 예를 들어, 코팅된 표면(126b)을 형성하는 이색성 코팅은 AOI의 제1 특정 범위에서 제1 컬러의 광의 피크 투과율과 제2 컬러의 광의 피크 반사율을 나타낼 수 있다. 유사하게, 코팅된 표면(126c)을 형성하는 이색성 코팅은 AOI의 제2 특정 범위에서 제1 및 제2 컬러의 광의 피크 투과율과 제3 컬러의 광의 피크 반사율을 나타낼 수 있다. 따라서 공통 경사 각도가 이러한 두 입사각 범위 내에 있는 입사각에 대응하도록 스택(130)을 슬라이싱하는 것이 바람직하다. 빔(14a, 14b 및 14c)은 기판(103)에 입사하기 전에 시준되기 때문에, 빔은 표면(106)에 대략 수직으로 그리고 이에 따라 (반사기(104a, 104b 및 104c)의 법선에 대해 측정된) α의 AOI로 기판(103)에 입사한다. 따라서, 절단 각도(β)와 AOI는 보각이므로, 절단 각도(β)는 AOI가 이색성 코팅이 원하는 피크 반사율과 투과율을 제공하는 범위 내에 있도록 선택될 수 있다.
도 4d를 참조하면, 슬라이스(132)의 단부 부분은 슬라이스(132)가 일반적으로 직사각형 슬래브를 형성하도록 평면(128)에 대해 90도로 절단될 수 있다. 스택(130)은 스택(130)의 (주 표면(122, 124)에 직교하는) 전방 평면 표면(127)에 바이어스되지 않은 (즉, 직교하는) 각도로 평면(128)을 따라 슬라이싱된다는 것이 주목된다. 인접한 평면(128)들 사이의 간격은 반사기(104a, 104b 및 104c)의 길이(및 반사기(104a, 104b 및 104c)의 활성 영역의 크기)를 결정하고 이에 따라 간격과 길이는 동일하다는 것에 추가로 주목된다.
도 4e는 주 외부 표면(106, 108)들 사이에 내장된 주기적인 코팅된 표면(126a, 126b 및 126c)(다수의 세그먼트에 대응함)을 갖는 슬라이스(132)를 도시한다. 코팅된 표면(126a, 126b 및 126c)은 스택(130)의 대각선 절단으로 인해 주 표면(106, 108)에 대해 비스듬하다. 주 표면(106)(최종 이색성 빔 결합기(102) 제품의 광파 입사 표면으로 작용함)은 바람직하게는 광학 품질을 증가시키기 위해 연마된다. 투명 판(120)은 코팅된 표면(126a, 126b 및 126c)이 서로 겹치지 않을 정도로(즉, 표면(106)의 평면으로 코팅된 표면(126a, 126b 및 126c)의 투영이 겹치지 않을 정도로) 충분히 두꺼운 것이 바람직하다.
선택적으로, 지연 판, 바람직하게는 반파장 판은, 반사기(104a, 104b 및 104c)로 입사하는 광의 편광 회전을 달성하기 위해 표면(106)에 부착될 수 있다. 이러한 구성에서 각각의 광원(12a, 12b 및 12c)에 의해 방출된 빔(14a, 14b 및 14c)은 반사기(104a, 104b 및 104c)의 반사 표면에 대해 제1 편광 방향(예를 들어, p-편광)으로 편광된다. 편광된 빔은 (표면(106)을 통해) 기판(103)에 입사하기 전에 지연 판을 통과하고, 지연 판은 편광을 제2 편광 방향(제1 편광 방향에 직교하는 방향, 예를 들어, s-편광)으로 회전시킨다. 이러한 실시형태에서, 광원(12a, 12b 및 12c)은 그 자체가 편광된 광원일 수 있고, 또는 선형 편광자와 비편광된 광원의 조합일 수 있다.
다음 단계에서, 도 4e에 도시된 바와 같이, 슬라이스(132)는 슬라이스(132)를 다수의 인접한 구획(140)으로 분리하기 위해 (134)로 표시된 적어도 하나의 평면(바람직하게는 평행한 평면 세트)을 따라 절단(슬라이싱)된다. 평면(들)(134)은 주 표면(106, 108)에 직교하고, 구획(140)을 형성하는 동안 표면(127)으로부터 형성된 전방 평면 표면에 직교한다. 도 4e에 임의로 표시된 좌표계에서, 평면(들)(134)은 yz-평면에 있고, 각각 y-축 및 z-축을 따라 연장되는 135a, 135b로 표시된 한 쌍의 직교 라인에 의해 정의된다. 각각의 구획(140)은 주기적인 형성의 정확히 하나의 세그먼트에 대응하는 코팅된 표면을 포함한다. 다시 말해, 각각의 구획(140)("서브-슬라이스"라고도 함)은 정확히 하나의 코팅된 표면(126a), 정확히 하나의 코팅된 표면(126b) 및 정확히 하나의 코팅된 표면(126c)을 갖는다. 분명한 바와 같이, 코팅된 표면의 순서는 구획마다 변경되지 않는다(즉, 코팅된 표면의 순서는 각각의 구획에서 동일하다). 절단은 인접한 세그먼트들 사이의 영역에서 이루어져서 슬라이스(132)를 정확히 하나의 세그먼트를 포함하는 구획들로 효과적으로 분리한다. 2개의 인접한 세그먼트로부터의 코팅된 표면과 연관된 투명 판(120)은 인접한 세그먼트의 코팅된 표면들 사이에 더 큰 간격을 제공하기 위해(예를 들어, 도 4c 내지 도 4e에서, 코팅된 표면(126a)과 코팅된 표면(126c) 사이에 더 큰 간격을 제공하기 위해) 다른 투명 판(120)보다 약간 더 큰 두께를 가질 수 있다는 것이 주목된다.
평면(들)(134)을 따른 절단(들)은 또한 바람직하게는 바이어스 상태로 이루어지지 않는다. 평면(들)(134)을 따른 절단은 각각의 구획(140)에 (주 표면(106, 108)에 수직인) 직사각형 표면(110)을 형성한다. 궁극적으로 이색성 빔 결합기(102)의 출력 표면인 표면(110)은 바람직하게는 광학 품질을 증가시키기 위해 연마된다.
스택(130)이 단일 세그먼트만을 포함하는 상황에서는, 슬라이스(132)는 반드시 단일 구획(140)만을 포함할 것이고, 이에 따라 평면(134)을 따라 절단하는 것이 필요치 않다는 것이 주목된다.
다음 단계에서, 각각의 구획(140)은 구획(140)을 다수의 기판(103)으로 분리하기 위해 (136)으로 표시된 적어도 하나의 평면(바람직하게는 평행한 평면 세트)을 따라 슬라이싱(절단)된다. 평면(들)(136)은 주 표면(106, 108)에 직교하고 평면(들)(134)에 직교한다. 도 4f에 임의로 표시된 좌표계에서, 평면(들)(136)은 xy-평면에 있고 x-축 및 y-축을 따라 각각 연장되는 (137a), (175b)로 표시된 한 쌍의 직교 라인에 의해 정의된다. 각각의 기판(103)은 주 표면(106, 108)과 기판(103)의 연신 방향에 대해 비스듬한 각도로 기판 내에 내장된 (각각의 코팅된 표면(126a, 126b 및 126c)으로 형성된) 단일 세트의 반사기(104a, 104b 및 104c)를 포함한다.
투명 판(120)의 두께는 이색성 빔 결합기(102)의 인접한 반사기들 사이의 간격이 대략 1밀리미터(㎜) 정도이고 이에 따라 기판(103)의 총 길이가 2㎜ 내지 6㎜ 범위에 있도록 선택된다는 것이 주목된다. 또한 반사기(104a, 104b 및 104c)는 균일하게 이격되는 것(즉, 반사기(104a 및 104b)들 사이의 간격은 반사기(104b 및 104c)들 사이의 간격과 동일(또는 대략 동일)한 것)이 바람직하다.
도 4a 내지 도 4f를 참조하여 설명된 바와 같이, 이색성 빔 결합기를 제조하는 방법은 빔 결합기를 대량 생산하는 것이 필요한 상황에 특히 적합하여 단일 스택(130)으로 수 십 개 내지 수 백 개의 이색성 빔 결합기를 생산할 수 있다. 예를 들어, 스택(130)은, 대략 10개의 슬라이스(132)가 (평면(128)을 따라 절단함으로써) 스택(132)으로부터 생성될 수 있고, 각각의 슬라이스(132)의 주기적인 형성은 (평면(134)을 따라 절단함으로써) 각각의 슬라이스(132)로부터 4개의 구획(140)(각각의 구획은 단일 세그먼트를 가짐)을 생성하도록 대략 4개의 세그먼트를 포함하고, 각각의 구획(140)이 대략 7개의 빔 결합기를 형성하도록 (평면(136)을 따라) 더 절단될 수 있도록 치수와 크기가 정해질 수 있다. 따라서, 이 실시예에서, 스택(132)은 10*4*7 = 280개의 이색성 빔 결합기를 생성할 수 있다. 그러나, 명백한 바와 같이, 스택의 치수, 특히 투명 판의 폭(지면의 평면에 수직인 축을 따라 측정된 폭)은 단일 구획(140)으로부터 최대 20개의 이색성 빔 결합기를 생성하기 위해 (10*4*20 = 800개의 이색성 빔 결합기를 생성하는 단일 스택을 생성하기 위해) 평면(136)을 따라 추가 절단이 가능하도록 증가될 수 있다.
본 발명의 모든 광학 디바이스에 대해, 기판에 입사하고 기판 내에 내장된 반사기에 의해 반사/투과되는 광 빔(예를 들어, 빔(14a, 14b 및 14c))은 안내되지 않은 광 빔으로서 기판 내에서 전파된다는 것을 주목하는 것이 중요하다. 본 발명의 맥락 내에서 사용된 "안내되지 않는"이라는 용어는 일반적으로 안내되지 않는 광을 말한다. 안내되지 않은 광은 광 투과성 재료 내에 갇히지 않고, 즉, 내부 반사(내부 전반사)에 의해 광 투과성 재료의 외부 주 표면 사이에 갇히지 않고, 보다 바람직하게는 광 투과성 재료의 외부 주 표면으로부터 어떠한 반사도 받지 않고 광 투과성 재료(예를 들어, 기판)를 횡단한다. 기판을 통한 광 빔(14a, 14b 및 14c)의 안내되지 않은 전파는 코팅된 표면을 형성하는(궁극적으로 반사기를 형성하는) 데 사용되는 코팅 설계, 및 코팅된 표면에 대해 절단 평면(128)의 경사 각도(β)(반사기가 배치되는 경사 각도(α)를 결정함)에 의해 달성된다.
도 2에 도시된 이색성 빔 결합기(102)는 표면(106)을 통해 기판(103)에 입사하기 위해 공통 투사 방향을 따라 각각의 빔(14a, 14b 및 14c)을 방출하는 3개의 광원(12a, 12b 및 12c)을 사용하지만, 광원(12a)으로부터의 빔(14a)이 빔(14b 및 14c)과 다른 투사 방향을 갖고 표면(106) 대신 표면(109)을 통해 기판(103)으로 입사하는 다른 구성도 가능하다. 이러한 설계에서, 광원(12a)과 시준 광학기(16a)는 표면(109)과 연관되고, 제1 코팅은 적어도 제1 컬러의 광에 대해 투과성이도록 설계된다(바람직하게는 제1 컬러의 광에 대해 투과성이고 다른 컬러의 광에 대해서는 반사성인 이색성 코팅으로 설계된다). 이러한 구성에 따른 이색성 빔 결합기를 제조하기 위해서, 표면(109)(도 4e에 도시된 바와 같이 평면(들)(134)을 따라 절단한 후에 생성된 표면)은 평면(들)(136)을 따라 슬라이싱하기 전에 (표면(110)과 함께) 연마되는 것이 바람직하다.
대안적으로, 빔 결합 기능은 반사기(104a)를 사용하지 않고 달성될 수 있다. 이러한 구성은 도 3에 도시되어 있고, 여기서 광원(12a)과 시준 광학기(16a)는 표면(109)(이제는 광파 입사 표면임)과 연관된다. 도 3의 이색성 빔 결합기는 이색성 빔 결합기(102)와 유사하게 제조될 수 있으며, 주요 차이점은 주기적인 형성의 정확히 하나의 1회 사이클을 포함하는 세그먼트가 정확히 하나의 코팅된 표면(126b) 및 정확히 하나의 코팅된 표면(126c)으로 제한된다는 것이다. 또한, 표면(109)은 광파 입사 표면(109)의 광학적 품질을 개선하기 위해 구획(140) 레벨에서 연마된다. 이 연마 단계는 표면적이 더 작은 것으로 인해 표면(106, 108)을 연마하는 것에 비해 수행하기 더 어려울 수 있지만, 도 3의 이색성 빔 결합기는 이색성 빔 결합기(102)에 비해 장점, 특히 연신 방향을 따른 길이의 감소를 제공하여 광학 디바이스의 감소된 폼 팩터를 제공할 수 있다.
다시 도 2를 참조하면, 각각의 광원(12a, 12b 및 12c)이 반사기(104a, 104b 및 104c)를 조명하는 것에 응답하여 생성된 출력 빔(112)은, 기판(103)의 연신 방향과 평행하고 시준된 빔(14a, 14b 및 14c)의 투사 방향에 수직인 전파 방향으로 전파한다. 특정 경우에, 예를 들어, HMD 또는 NED의 일부인 광학 기판을 통해 보이는 이미지를 투사하기 위해 이색성 빔 결합기를 사용하여 공간 광 변조기(예를 들어, LCoS)를 조명할 때, 출력 빔의 전파 방향에 대해 다른 옵션을 제공하는 것이 유리할 수 있다.
출력 빔의 다른 전파 방향을 제공하는 하나의 구성 옵션은 도 6에 도시되어 있고, 이 구성 옵션은 반사기(104c)가 제3 컬러의 광을 투과시키고 제1 컬러의 광과 제2 컬러의 광을 반사시키도록 반사기(104c)를 생성하는 데 사용된 코팅 설계를 수정하는 것에 의존한다. 이러한 구성에서, 반사기(104b)에 의해 각각 투과 및 반사된 빔(14a 및 14b)은 반사기(104c)에 충돌하고 이 반사기는 빔(14a, 14b)을 반사시키고 빔(14c)을 투과시켜 컬러 결합된 빔(112)을 생성한다. 빔(112)은 표면(108)을 통해 기판(103)을 빠져나가 투사 방향을 따라 그리고 연신 방향에 수직으로 전파된다. 이러한 구성에서, 슬라이스(132)의 주 표면(108)(광파 출사 표면으로서 작용함)은 광학 품질을 증가시키기 위해 연마된다. 가장 바람직하게는, 표면(106, 108)은 "양면 연마"라고 하는 기술을 사용하여 슬라이스 레벨(132)에서 동시에 연마된다. 또한, 표면(110)은 광파 출사 표면으로서 기능하지 않기 때문에, 표면(110)은 연마를 필요로 하지 않는다. 일반적으로, 주 표면(106, 108)을 양면 연마하는 것은 부분적으로 표면(106, 108)의 표면적이 더 큰 것으로 인해 측 표면(110)(및 측 표면(109))을 연마하는 것보다 더 간단한 연마 절차이다. 그러므로, 반사기(104c)가 제3 컬러의 광을 투과시키고 제1 컬러의 광과 제2 컬러의 광을 반사시키는 구성은 반사기(104c)가 제3 컬러의 광을 반사시키고 제1 컬러의 광과 제2 컬러의 광을 투과시키는 구성에 비해 제조 공정에 장점을 제공할 수 있다.
출력 빔의 다른 전파 방향을 제공하는 다른 구성 옵션은 기판(103) 내에 내장된 및/또는 기판(103)으로부터 분리된 광학 구조물에 내장된 추가 반사기를 사용하는 것에 의존한다. 이하 단락에서는 이러한 다양한 구성 옵션에 따른 광학 디바이스에 대해 설명한다.
도 2를 계속 참조하면서 도 7을 더 참조하며, 이 도면은 일반적으로 도 2의 광학 디바이스(100)와 유사한 광학 디바이스(100A)를 도시하고, 여기서 등가 요소는 유사하게 표시된다. 광학 디바이스(100A)는 기판(103A)을 포함하는 이색성 빔 결합기(102A)를 포함한다. 기판(103A)은 반사기(104a, 104b 및 104c)와 평행한 것을 포함하고, 추가로 반사기(104a, 104b 및 104c)와 평행하고 반사기(104c) 뒤에 위치되어 출력 빔의 방향을 변경하는 기능을 하는 제4 반사 표면(반사기)(104d)을 더 포함한다. 여기서, 반사기(104c)로부터 컬러 결합된 빔은 반사기(104d)에 충돌하고, 이 반사기(104d)는 투사 방향을 따라 전파하고 주 표면(108)을 통해 기판(103)을 빠져나가도록 연신 방향에 수직인 빔(112)을 재지향시킨다.
이색성 빔 결합기(102A)를 제조하기 위한 공정은 일반적으로 제4 반사기(104d)를 생성하기 위한 추가 단계와 함께 이색성 빔 결합기(102)를 제조하기 위한 공정과 유사하다. 복수의 코팅된 표면(126a, 126b 및 126c)을 형성하기 위해 3개의 코팅을 도포하는 것에 더하여, 복수의 코팅된 표면(126d)을 형성하기 위해 투명 판(120)과 연관된 제4 세트의 표면에 제4 코팅이 도포된다. 제4 코팅은 모두 3개의 컬러의 광에 대해 반사성이어서, 3개의 컬러 중 임의의 컬러의 광이 코팅된 표면들 중 임의의 코팅된 표면(126d)에 충돌할 때 광은 코팅된 표면(126d)에 의해 반사된다.
코팅은 예를 들어 도 4b 및 도 5를 참조하여 전술한 바와 유사한 방식으로 코팅된 표면(126a, 126b, 126c 및 126d)을 형성하도록 표면에 도포될 수 있다. 코팅된 표면(126a, 126b, 126c 및 126d)은 도 8a에 도시된 바와 같이, 스택(130A)으로 배열된다. 스택(130A)의 판은 예를 들어 스택(130A)의 인접한 표면들 사이에 광학 접합제를 도포하는 것에 의해 함께 부착(즉, 접착)된다.
도 4c와 유사하게, 각각의 세그먼트는 주기적인 형성의 정확히 하나의 1회 사이클을 포함한다. 그러나, 도 8a에서 1회 사이클은 1회 사이클이 정확히 하나의 코팅된 표면(126a), 정확히 하나의 코팅된 표면(126b), 정확히 하나의 코팅된 표면(126c), 및 정확히 하나의 코팅된 표면(126d)으로 구성되도록 코팅된 표면(126d)을 추가로 포함한다. 코팅된 표면(126a, 126b, 126c 및 126d)은 궁극적으로 각각의 반사기(104a, 104b, 104c 및 104d)를 형성한다. 제4 코팅과 연관된 투명 판(120)은 인접한 코팅된 표면(126c 및 126d)들 사이에 더 큰 간격을 이루도록 다른 투명 판에 비해 증가된 두께를 가질 수 있다는 것이 주목된다.
스택(130A)의 판이 접착된 후, 스택(130A)은 도 8b에 도시된 바와 같이, 슬라이스(132A)를 생성하기 위해 (128)로 표시된 2개의 평행한 평면을 따라 슬라이싱(절단)된다. 도 8c에 도시된 슬라이스(132A)는, 주 표면(106)과 주 표면(108) 사이에 내장된 주기적인 코팅된 표면(126a, 126b, 126c 및 126d)(다수의 세그먼트에 대응)을 갖는다. 주 표면(106)(최종 이색성 빔 결합기(102A) 제품의 광파 입사 표면으로 기능함)은 바람직하게는 광학 품질을 증가시키기 위해 연마된다. 또한, 주 표면(108)(최종 이색성 빔 결합기(102A) 제품의 광파 출사 표면으로 기능함)은 바람직하게는 광학 품질을 증가시키기 위해 연마된다. 가장 바람직하게는, 표면(106, 108)을 연마하기 위해 슬라이스(132A)에 양면 연마가 적용된다. 선택적으로, 지연 판, 바람직하게는 반파장 판이 표면(106)에 부착되어 반사기(104a, 104b 및 104c)로 입사하는 광에 편광 회전을 달성할 수 있다. 이러한 구성에서 각각의 광원(12a, 12b 및 12c)에 의해 방출된 빔(14a, 14b 및 14c)은 제1 편광 방향(예를 들어, p-편광)으로 편광된다. 편광된 빔은 (표면(106)을 통해) 기판(103A)에 입사하기 전에 지연 판을 통과하고, 지연 판은 편광을 제2 편광 방향(제1 편광 방향에 직교하는 방향, 예를 들어 s-편광)으로 회전시킨다. 이러한 실시형태에서, 광원(12a, 12b 및 12c)은 그 자체가 편광된 광원일 수 있고, 또는 선형 편광자와 비편광된 광원의 조합일 수 있다.
다음 단계에서, 도 8c에 도시된 바와 같이, 슬라이스(132A)는 슬라이스(132A)를 다수의 구획(140A)으로 분리하기 위해 적어도 하나의 평면(134)을 따라 절단(슬라이싱)되고, 여기서 각각의 구획(140A)은 주기적인 형성의 정확히 하나의 세그먼트에 대응하는 코팅된 표면을 포함한다. 그 다음 단계에서, 도 8d에 도시된 바와 같이, 각각의 구획(140A)은 구획(140A)을 다수의 기판(103A)으로 분리하기 위해 적어도 하나의 평면(136)을 따라 슬라이싱(절단)된다. 각각의 기판(103A)은 주 표면(106, 108)과 기판(103A)의 연신 방향에 대해 비스듬한 각도로 기판 내에 내장된 단일 세트의 반사기(104a, 104b, 104c 및 104d)(각각의 코팅된 표면(126a, 126b, 126c 및 126d)으로 형성됨)를 포함한다.
출력 빔의 전파 방향에 대한 추가 옵션을 제공하기 위해 이색성 빔 결합기를 제조하는 공정에서 추가 단계가 제공될 수 있다. 예를 들어, 이색성 빔 결합기(102)는 외부 평면 표면(110)을 제거하기 위해 각각의 기판(103)에 대각선 절단을 제공하도록 제조 동안 수정될 수 있다. 제3 코팅된 표면(126c)과 연관된 투명 판(120)은 제3 코팅된 표면(126c)과 외부 평면 표면(110) 사이에 추가적인 공간을 제공하기 위해 나머지 투명 판보다 더 두꺼울 수 있다.
도 9a는 도 2에 도시된 것과 유사하지만 반사기(104c)와 평면 표면(110) 사이에 추가 간격이 있는 이색성 빔 결합기의 기판의 사시도이다. 대각선 절단은 외부 평면 표면(109, 110)에 대해 비스듬한 평면을 따라, 바람직하게는 외부 평면 표면(109, 110)에 대해 45도 각도를 이루는 평면(142)을 따라 일어난다.
도 9b는 평면(142)을 따라 절단된 결과를 도시하며, 여기서 평면(142)을 따라 절단된 결과 외부 평면 표면(109)에 대해 비스듬한 평면 표면(144)이 형성된다. 기판(103)의 출력(광파 출사) 표면(144)인 표면(144)은 모두 3개의 컬러의 광에 대해 반사성이도록 연마되고 반사 코팅으로 코팅된다. 도 9c는 도 9b의 이색성 빔 결합기를 통한 광의 횡단을 도시한다. 입사하는 시준된 빔(14a, 14b 및 14c)은 반사기(104a, 104b 및 104c)의 투과 및 반사 특성에 따라 반사기(104a, 104b 및 104c)에 의해 반사/투과된다. 반사기(104c)로부터 컬러 결합된 빔은 표면(144)에 충돌하고, 이 표면은 빔이 평면 외부 주 표면(111)을 통해 기판(103)을 빠져나가도록 연신 방향에 수직으로 빔(112)을 재지향시킨다. 표면(111)은 표면(108 및 109)에 직교한다. 이와 같이, 표면(144)은 빔이 시준된 빔(14a, 14b 및 14c)의 연신 방향과 투사 방향 모두에 수직인 방향으로 전파하도록 "평면외" 전파를 위해 출력 빔을 재지향시킨다.
평면(142)을 따라 절단하고 표면(144)을 연마하는 것은 특정 기술적인 도전을 제시할 수 있다. 이러한 단계를 피하기 위해, 출력 빔의 "평면외" 전파를 달성하기 위한 대안적인 방법이 도 10a 내지 도 11c를 참조하여 제시된다. 이러한 방법은 단일체 이색성 빔 결합기를 형성하기 위해 추가 광학 구조물을 이색성 빔 결합기 기판에 부착하는 것에 의존한다.
먼저 도 10a를 참조하면, 도 2의 기판(103)과 입방체(150)의 사시도가 도시되어 있고, 이 입방체는 입방체(150)의 평행한 표면(154, 156, 158 및 160) 세트에 대해 비스듬한 평면(예를 들어, 이 평면은 표면(154)에 대해 γ의 비스듬한 각도로 있을 수 있음)에 반사 표면(반사기)(152)을 갖는다. 반사기(152)는 모두 3개의 컬러의 광에 대해 반사성이다. 평면외 전파를 달성하기 위해, 입방체(150)는 기판(103)의 주 표면 중 하나에서 기판(103)에 부착된다. 도 10b는 반사기(152)가 표면(110)에 대해 비스듬한 평면에 있도록 표면(110 및 160)에서 기판(103)에 입방체(150)를 부착한 것을 도시한다. 부착은 기계적인 부착일 수 있지만, 바람직하게는 입방체(150)와 기판(103)이 단일체 이색성 빔 결합기 구조물(162)을 형성하도록 표면(110 및 160)을 서로 광학적으로 접합함으로써 이루어진다. 바람직하게는, 입방체(150)와 기판(103)은 입방체(150)와 기판(103) 사이의 계면에서 원치 않는 반사 및/또는 굴절을 최소화하기 위해 동일한 굴절률을 갖는 재료로 제조된다. 표면(110)과 표면(160) 사이의 계면 영역은 입방체(150)와 기판(103) 사이의 연마 필요성을 줄이기 위해 굴절률 정합 재료로 채워질 수 있다.
도 10c는 이색성 빔 결합기(162)를 통해 광이 횡단하는 것을 도시한다. 기판(103)을 통한 전파는 도 9c를 참조하여 설명된 빔 전파와 유사하고, 여기서 반복 설명되지 않는다. 컬러 결합된 빔은 표면(110)을 통해 기판(103)을 빠져나가고, 표면(160)을 통해 입방체(150)에 입사하고, 반사기(152)에 충돌하고, 이 반사기는 표면(156)을 통해 입방체(150) 밖으로 빔을 반사시킨다.
도 10d는 기판(103)에 입방체(150)를 부착하는 대안적인 위치를 도시한다. 여기서, 입방체(150)와 기판(103) 사이의 부착(접합)은 단일체 이색성 빔 결합기(162)를 형성하도록 표면(108)과 표면(160) 간에 이루어진다. 반사기(152)가 주 표면(106, 108)에 대해 비스듬한 평면에 있고, 표면(154)과 표면(110)이 정렬되고 동일 평면에 있도록 부착이 이루어진다. 이 구성에서, 반사기(104c)는 도 6을 참조하여 설명된 설계에 따른 코팅으로 설계되고, 즉 반사기(104c)는 제3 컬러의 광을 투과시키고, 제1 컬러의 광과 제2 컬러의 광을 반사시킨다.
도 10d의 이색성 빔 결합기를 통한 광의 횡단은 도 10e에 도시되어 있다. 도시된 바와 같이, 빔(14a 및 14b)은 반사기(104c)에 의해 반사되고, 빔(14c)은 반사기(104c)에 의해 투과된다. 반사기(104c)로부터, 컬러 결합된 빔은 표면(108)을 통해 기판(103)을 빠져나가고, 표면(160)을 통해 입방체(150)에 입사하고, 반사기(152)에 충돌하고, 이 반사기는 표면(156)을 통해 입방체(150) 밖으로 빔을 반사시킨다.
이색성 빔 결합기 기판이 입방체(150)에 부착되는 다른 구성은 도 11a 내지 도 11c를 참조하여 도시되어 있고, 여기서 입방체(150)는 도 7의 기판(103A)에 부착된다. 먼저 도 11a를 참조하면, 이것은 입방체(150), 기판(103A), 및 이 기판(103A) 내에 내장된 반사기(104a, 104b, 104c 및 104d)의 사시도를 도시한다. 도 11b는 기판(103A)에 부착된 입방체(150)를 도시한다. 입방체(150)와 기판(103A) 간의 부착은 도 11d를 참조하여 설명된 바와 유사하고, 여기서 단일체 이색성 빔 결합기(162A)를 형성하도록 표면(108)과 표면(160) 간에 부착이 이루어진다. 반사기(152)가 주 표면(106, 108)에 대해 비스듬한 평면에 있고, 표면(154)과 표면(110)이 정렬되고 동일 평면에 있도록 부착이 이루어진다. 여기서도 입방체(150)와 기판(103A)은 동일한 굴절률을 갖는 재료로 제조되어 입방체(150)와 기판(103A) 사이의 계면에서 원치 않는 반사 및/또는 굴절을 최소화하는 것이 바람직하다. 표면(108)과 표면(160) 사이의 계면 영역은 입방체(150)와 기판(103A) 사이에 연마 필요성을 감소시키기 위해 굴절률 정합된 재료로 채워질 수 있다.
이색성 빔 결합기(162A)를 통한 광의 횡단은 도 11c에 도시되어 있다. 기판(103A)을 통한 광의 횡단은 도 7을 참조하여 설명된 바와 유사하고, 여기서는 반복 설명되지 않는다. 컬러 결합된 빔은, 반사기(104d)에 의해 반사되고 표면(108)을 통해 기판(103A)을 빠져나간 후, 표면(160)을 통해 입방체(150)에 입사하고, 반사기(152)에 충돌하고, 이 반사기는 표면(156)을 통해 입방체(150) 밖으로 빔을 반사시킨다.
내장된 반사기(152)가 있는 입방체(150)는 이색성 빔 결합기(102 및 102A)를 제조하기 위한 공정과 유사한 공정을 사용하여 제조될 수 있다. 예를 들어, 도 12a에 도시된 바와 같이, 복수의 투명 판(120)(도 4a를 참조하여 설명된 바와 유사한 치수를 가짐)이 얻어질 수 있고, 매 두 번째 판의 양면(주 표면)은 복수의 코팅된 표면(164)을 생성하기 위해 반사 코팅(코팅된 표면(126d)을 생성하는 데 사용되는 반사 코팅과 유사함)으로 코팅될 수 있다. 그런 다음 코팅된 표면(164)은 스택(166)으로 배열될 수 있다(도 12b). 대안적으로, 복수의 박판은 반사 코팅으로 코팅될 수 있고, 도 5를 참조하여 설명된 바와 유사하게 투명 판들 사이에 교대로 배열될 수 있다. 대안적으로, 모든 투명 판의 상부 측(주 표면)은 반사 코팅으로 코팅될 수 있다.
도 12c를 참조하면, 스택(166)은 그런 다음 반사기(152)를 형성하는 코팅된 표면이 입방체(150)의 주 표면(154, 156, 158 및 160)에 대해 45도 각도(즉, γ는 45도임)가 되도록 비스듬한 각도, 바람직하게는 135도 각도로 2개의 평행한 평면(168)을 따라 절단된다. 평면(166)에 수직인 평면(170) 쌍을 따라 일련의 절단이 구획(151)을 형성하도록 이루어지고, 이 구획은 평면(168, 170)에 직교하는 평면을 따라 추가로 절단되어 입방체(150)를 형성할 수 있다. 입방체(150)의 기하학적 파라미터는 절단 각도와 한 쌍의 평면 사이의 간격을 변경함으로써 조정될 수 있다.
특정 바람직한 실시형태에서, 입방체(150)는 정육면체(즉, 입방체(150)의 6개의 주 표면이 정사각형임)로 형성된다. 이러한 실시형태에서, 평면(168)들 사이의 간격(및 한 쌍의 평면(170)에서 평면들 사이의 간격)은 바람직하게는 정사각형 단면을 갖는 구획(151)을 형성하기 위해 투명 판(120)의 두께와 동일하다. 이러한 실시형태에서, 투명 판의 폭은 투명 판의 두께와 동일하여 구획(151)이 입방체(150)(정육면체)를 형성할 수 있다. 대안적으로, 투명 판의 폭은 투명 판의 두께의 정수 배수여서, 각각의 구획(151)이 절단되면 정수 개의 입방체(150)(정육면체)를 형성할 수 있다. 그런 다음 각각의 입방체(150)의 외부 표면은 적절히 연마될 수 있다.
지금까지 설명한 이색성 빔 결합기는 2개의 주 외부 표면(106, 108), 및 이 외부 표면(106, 108)에 대해 비스듬한 각도로 외부 표면(106)과 외부 표면(108) 사이의 기판 내에 내장된 반사기(104a, 104b 및 104c)(및 선택적으로 104d) 세트를 갖는 일반적으로 직사각형 슬래브형 기판에 속한다. 결합된 출력 빔의 품질을 증가시키기 위해, 입력 빔(14a, 14b 및 14c)은 기판에 입사하기 전에 기판와는 분리된 시준 광학기(16a, 16b 및 16c)에 의해 시준된다. 보다 콤팩트한 빔 결합기 디바이스를 제공하기 위해, 빔 결합기 디바이스의 일부로서 내장된 시준 광학기를 포함하는 것이 특히 유리할 수 있다.
이제 도 13을 참조하면, 도 7의 광학 디바이스(100A)와 유사한 광학 디바이스(100B)가 도시되어 있고, 여기서 등가 요소는 유사하게 표시된다. 광학 디바이스(100B)는 내장된 광학기를 갖는 이색성 빔 결합기(102B)를 포함한다. 광학기는 각각의 광원(12a, 12b 및 12c) 및 각각의 반사기(104a, 104b 및 104c)와 연관된 시준 광학기(180a, 180b 및 180c)(예를 들어, 렌즈 또는 렌즈 세트)를 포함한다. 광학기는 출력 빔(112)에 광학 배율을 적용하기 위해 반사기(104d)와 연관된 배율 광학기(182)(예를 들어, 렌즈)를 더 포함한다.
광학기는 기판(103B)의 주 표면(106, 108)에 광학적으로 부착된다. 바람직하게는, 주 표면(106, 108)에 광학기를 부착하는 것은 평면(들)(134)(도 8c)을 따라 절단(들)을 하기 전에 슬라이스 레벨에서 제조 공정 동안 수행된다.
도 8c를 참조하면, 슬라이스(132B)의 주 표면(106, 108)에 광학기를 부착하는 제1 단계를 도시하는 도 14a를 참조한다. 슬라이스(132B)의 주 표면(108)과 대략 동일한 크기와 치수의 투명 판(186)은 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된 렌즈(182)로 구성된 마이크로렌즈 어레이(187)를 지지한다. 판(186)은 각각의 개별 코팅된 표면(126d)이 어레이(187)의 개별 열의 하나 이상의 렌즈(182)와 연관되도록 주 표면(108)과 정렬된다. 도 14b는 가상으로 도시된 코팅된 표면(126a, 126b, 126c 및 126d)이 있는 판(186)을 위에서 본, 주 표면(108)과 정렬되어 접촉하는 렌즈(182)가 있는 판(186)의 평면도를 도시한다. 일반적으로, 어레이의 열의 수는 슬라이스(132B)의 코팅된 표면(126d)의 수와 일대일 대응한다. 도 14b에 도시된 실시예에서, 3개의 코팅된 표면(126d)에 대응하는 3개의 열이 있다. 또한, 행의 수(즉, 각각의 코팅된 표면(126d)과 연관된 렌즈의 수)는 평면(들)(136)을 따라 절단을 수행한 후 생성될 기판의 수와 일대일 대응한다. 도 14b에 도시된 실시예에서, 2개의 평면(136)을 따라 절단하여 형성된 3개의 기판에 대응하는 3개의 렌즈 행이 있다. 따라서, 각각의 코팅된 표면(126d)은 동일한 열의 3개의 렌즈(182)와 연관된다.
(슬라이스(132B)의 주 표면(106)과 대략 동일한 크기와 치수의) 다른 투명 판(184)은 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된 렌즈(180a, 180b 및 180c)로 구성된 마이크로렌즈 어레이(188)를 지지한다. 판(184)은 각각의 개별 코팅된 표면(126a)이 어레이(188)의 개별 열의 하나 이상의 렌즈(180a)와 연관되고, 각각의 개별 코팅된 표면(126b)이 어레이(188)의 개별 열의 하나 이상의 렌즈(180b)와 연관되고, 각각의 개별 코팅된 표면(126c)이 어레이(188)의 개별 열의 하나 이상의 렌즈(180c)와 연관되도록 주 표면(106)과 정렬된다. 도 14c는 가상으로 도시된 코팅된 표면(126a, 126b, 126c 및 126d)이 있는 판(184)을 아래에서 본, 주 표면(106)과 정렬되어 접촉하는 판(184)의 평면도를 도시한다. 어레이의 열의 수는 슬라이스(132B)의 코팅된 표면(126a, 126b 및 126c)의 총 수와 일대일 대응한다. 도 14c에 도시된 실시예에서, 3개의 코팅된 표면(126a, 126b 및 126c)의 3세트에 대응하는 9개의 열이 있다. 또한, 행의 수(즉, 코팅된 표면(126a, 126b 및 126c) 각각과 연관된 렌즈의 수)는 평면(들)(136)을 따라 절단을 수행한 후 생성될 기판의 수와 일대일 대응한다. 도 14c에 도시된 실시예에서, 2개의 평면(136)을 따라 절단하여 형성된 3개의 기판에 대응하는 3개의 렌즈 행이 있다. 따라서, 각각의 코팅된 표면(126a)은 동일한 열의 3개의 렌즈(180a)와 연관되고, 각각의 코팅된 표면(126b)은 동일한 열의 3개의 렌즈(180b)와 연관되고, 각각의 코팅된 표면(126c)은 동일한 열의 3개의 렌즈(180c)와 연관된다.
렌즈(180a, 180b 및 180c)는 각각의 코팅된 표면(126a, 126b 및 126c)에 이웃하는 코팅된 표면의 투영 중 임의의 투영과도 겹치지 않고, 바람직하게는 표면(106)의 평면으로 각각의 코팅된 표면(126a, 126b 및 126c)의 투영과 정렬되도록 크기와 치수가 정해진다. 또한, 렌즈(182)는 바람직하게는 각각의 코팅된 표면(126d)에 이웃하는 코팅된 표면의 투영 중 임의의 투영과 겹치지 않고, 표면(108)의 평면으로 각각의 코팅된 표면(126d)의 투영과 정렬되도록 크기와 치수가 정해진다.
판(184 및 186)이 표면(106 및 108)과 적절하게 정렬되면, 마이크로렌즈 어레이(188, 187)의 렌즈는 렌즈를 슬라이스(132B)에 접합하기 위해 광학 접착제(즉, 접합제)를 통해 각각의 표면(106 및 108)에 광학적으로 부착된다. 판(184 및 186)은 렌즈를 슬라이스(132B)에 부착한 후에 선택적으로 제거될 수 있다. 대안적으로, 판(184 및 186)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(184 및 186) 자체는 광학 접착제를 통해 슬라이스(132B)의 각각의 표면(106 및 108)에 접합될 수 있다.
렌즈를 슬라이스(132B)에 부착한 후, 도 14d에 도시된 바와 같이, 슬라이스(132B)는 도 8c를 참조하여 설명된 바와 유사하게 슬라이스(132B)를 다수의 구획으로 분리하기 위해 적어도 하나의 평면(134)을 따라 절단(슬라이싱)된다. 그런 다음 각각의 구획은 기판(103B)을 형성하기 위해, 도 8d를 참조하여 설명된 바와 유사하게 적어도 하나의 평면(136)을 따라 절단된다.
일반적으로 세기의 변동을 식별하고 이러한 변동을 보상하기 위해 출력 파워(output power)를 응답 가능하게 감쇠시키기 위해 광원(12a, 12b 및 12c) 각각의 파워 출력을 지속적으로 모니터링하는 것이 바람직하다. 이것은 광원(12a, 12b 및 12c)에 의해 출력되는 세기를 나타내는 세기를 측정하기 위해 각각의 반사기(104a, 104b 및 104c)와 관련하여 검출기(파워 검출기 또는 광검출기)를 배치함으로써 달성될 수 있다. 또한, 실제로 반사기(104a, 104b 및 104c)의 (선택성) 반사 표면은 이상적인 반사기로서 기능하지 않고, 각각의 반사기와 연관된 약간의 광 누출이 있다. 도 2의 이색성 빔 결합기(102)의 동일한 예시적인 구성을 사용하여, 반사기(104a)는 제1 컬러의 입사광 세기의 작은 부분을 투과시킨다. 유사하게, 반사기(104b)는 제2 컬러의 입사광 세기의 작은 부분을 투과시키고, 제1 컬러의 입사광 세기의 작은 부분을 반사시킨다. 유사하게, 반사기(104c)는 제3 컬러의 입사광 세기의 작은 부분을 투과시키고, 제1 및 제2 컬러의 입사광 세기의 작은 부분을 반사시킨다.
이 누출은 컬러 결합된 출력 빔의 전체 세기를 감소시켜 전체 빔 품질에 부정적인 영향을 미칠 수 있다. 따라서, 파워/세기 모니터링을 통해 누출을 정량화하는 것도 바람직할 수 있다. 검출기에 전기적으로 연결된 컴퓨터 프로세서는, 광원(12a, 12b 및 12c) 각각의 파워 출력을 결정하고, 필요한 경우, 측정된 세기에 기초하여 반사기를 통한 누출을 설명하는 알고리즘을 실행하도록 프로그래밍될 수 있다.
이제 도 15를 참조하면, 일반적으로 도 12의 광학 디바이스(100B)와 유사한 광학 디바이스(100C)가 도시되어 있고, 여기서 등가 요소는 유사하게 표시된다. 광학 디바이스(100C)는, 각각의 광원(12a, 12b 및 12c)에 의해 출력되는 파워를 나타내는 세기를 측정하고, 각각의 반사기(104a, 104b 및 104c)에 의해 누출된 광의 세기를 측정하기 위해, 각각의 반사기(104a, 104b 및 104c)와 연관된 검출기(192a, 192b 및 192c)를 갖는 검출기 배열(190)이 있는 이색성 빔 결합기(102C)를 포함한다. 반사기(104a, 104b 및 104c)에 의해 누출된 광은 열린 화살표로 표시된다. 광학 디바이스(100B)와 달리, 도 15에 도시된 광학 디바이스(100C)는 반사기(104d)에 의해 반사되는 출력 빔(112)에 광학 배율을 적용하기 위한 배율 광학기(182)(예를 들어, 렌즈)를 포함하지 않지만, 광학 디바이스(100C)에 배율 광학기(182)가 포함되는 실시형태도 고려된다는 것이 주목된다.
검출기 배열(190)은 기판(103C)의 주 표면(106)에 광학적으로 부착된다. 바람직하게는, 주 표면(106)에 검출기 배열(190)을 부착하는 것은 (도 8c에서와 같이) 평면(들)(134)을 따라 절단(들)을 수행하기 전에 슬라이스 레벨에서 제조 공정 동안 수행된다.
도 8c, 도 14a 및 도 14c를 참조하면서, 슬라이스(132C)의 각각의 주 표면(108 및 106)에 검출기 배열(190)과 광학기를 부착하는 제1 단계를 도시하는 도 16a를 더 참조한다. 마이크로렌즈 어레이(188)를 갖는 투명 판(184)은 도 14a 및 도 14c를 참조하여 설명된 바와 유사하게 주 표면(106)에 정렬되고 부착된다.
슬라이스(132C)의 주 표면(108)과 대략 동일한 크기와 치수의 투명 판(194)은 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된 검출기(192a, 192b 및 192c)를 지지한다. 검출기(192a, 192b 및 192c)는 캐리어 포일(196)을 통해 투명 판(194) 상의 제 위치에 유지된다. 특정 실시형태에서, 포일(196)은 검출기(192a, 192b 및 192c)에 전기 접점을 제공하는 전도성 요소를 포함할 수 있다. 도 15 및 도 16a에 도시된 실시형태와 같은 다른 실시형태에서, 검출기(192a, 192b 및 192c)에 전기 접점을 제공하는 전기 전도성 요소(198a, 198b 및 198c)를 갖는 전기 전도성 표면(200)은 검출기(192a, 192b 및 192c)와 연관되어 검출기에 부착되고, 포일(196)은 판(194)이 주 표면(108)에 부착된 후에 제거된다.
판(194)은 각각의 개별 코팅된 표면(126a)이 개별 열의 하나 이상의 검출기(192a)와 연관되고, 각각의 개별 코팅된 표면(126b)이 개별 열의 하나 이상의 검출기(192b)와 연관되고, 각각의 개별 코팅된 표면(126c)이 개별 열의 하나 이상의 검출기(192c)와 연관되도록 주 표면(108)과 정렬된다. 도 16b는 가상으로 도시된 코팅된 표면(126a, 126b, 126c 및 126d)이 있는 판(194)을 위에서 본, 주 표면(108)과 정렬되어 접촉하는 판(194)의 평면도를 도시한다. 검출기의 어레이의 열의 수는 슬라이스(132C)의 코팅된 표면(126a, 126b 및 126c)의 총 수와 일대일 대응한다. 도 16a 및 도 16b에 도시된 실시예에서, 3개의 코팅된 표면(126a, 126b 및 126c)의 3개 세트에 대응하는 9개의 열이 있다. 또한, 행의 수(즉, 코팅된 표면(126a, 126b 및 126c) 각각과 연관된 검출기의 수)는 평면(들)(136)을 따라 절단을 수행한 후 생성될 기판의 수와 일대일 대응한다. 도 16a 및 도 16b에 도시된 실시예에서, 2개의 평면(136)을 따라 절단하여 형성된 3개의 기판에 대응하는 3개의 검출기 열이 있다. 따라서, 각각의 코팅된 표면(126a)은 동일한 열의 3개의 검출기(192a)와 연관되고, 각각의 코팅된 표면(126b)은 동일한 열의 3개의 검출기(192b)와 연관되며, 각각의 코팅된 표면(126c)은 동일한 열의 3개의 검출기(192c)와 연관된다.
주 표면(108)과 판(194)을 정렬한 후, 판(194)은 슬라이스(132C)에 판(194)을 접합하기 위해 광학 접착제(즉, 접합제)를 통해 표면(108)에 부착된다. 이후, 포일(196)이 판(194)으로부터 제거되고, 전도성 표면(200)이 판(194)과 정렬된다. 전도성 요소(198a, 198b 및 198c)는 전도성 요소(198a, 198b 및 198c)와 검출기(192a, 192b 및 192c) 사이에 일대일 대응 관계가 있도록 검출기의 어레이의 그리드 크기에 대응하는 수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된다. 전도성 표면(200)은 각각의 검출기(192a, 192b 및 192c)가 하나의 개별 전도성 요소(198a, 198b 및 198c)와 연관되도록(즉, 각각의 요소(198a)는 각각의 검출기(198a)와 연관되고, 각각의 요소(192b)는 각각의 검출기(192b)와 연관되며, 각각의 요소(198c)는 각각의 검출기(192c)와 연관되도록) 판(194)과 정렬된다. 일단 정렬되면, 전도성 요소(198a, 198b 및 198c)는 전기 전도성 접착제를 통해 검출기(192a, 192b 및 192c)에 부착된다. 그 결과, 각각의 전도성 요소는 도 16c에 도시된 바와 같이 연관된 검출기와 전도성 표면(200) 사이에 끼워진다.
(판(184)을 통해) 광학기를 부착하고 (판(194)과 전도성 표면(200) 및 요소(198a, 198b 및 198c)를 통해) 검출기 배열(190)을 부착한 후에, 슬라이스(132C)는 도 8c를 참조하여 설명된 바와 유사하게, 슬라이스(132C)를 다수의 구획으로 분리하기 위해 적어도 하나의 평면(134)을 따라 절단(슬라이싱)된다. 그런 다음 각각의 구획은 도 8d를 참조하여 설명된 바와 유사하게, 기판(103C)을 형성하도록 적어도 하나의 평면(136)을 따라 절단된다. 대안적으로, 전도성 요소(198a, 198b 및 198c)가 있는 전도성 표면(200)은 슬라이스 레벨이 아니라 기판 레벨에서 검출기(192a, 192b 및 192c)에 부착될 수 있다는 것이 주목된다.
도 17은 포일(196)이 검출기(192a, 192b 및 192c)에 전기 접점을 제공하는 전도성 요소를 포함하는, 광학 디바이스(100C)의 다른 구성을 도시한다. 여기서, 전도성 표면(200)과 전도성 요소(198a, 198b 및 198c)의 어레이는 필요치 않다.
예를 들어, 선형 편광된 광 빔을 방출하는 레이저 다이오드와 같은 특정 유형의 편광된 광원에서 방출된 빔은 비대칭 빔일 수 있으며, 여기서 하나의 축("고속 축(fast-axis)"이라고 함)을 따라 전파하는 광은 직교 축("저속 축(slow-axis)"이라고 함)을 따라 전파하는 광보다 몇 배(보통 2배 내지 3배) 더 넓게 발산한다. 빔 발산은 생성된 출력 빔에서 파워 손실로 이어진다. 따라서 빔 출력 파워를 가능한 한 많이 이용하기 위해 대칭 빔을 생성함으로써 발산을 줄이는 것이 일반적으로 바람직하다. 대칭 빔을 생성하는 하나의 접근 방법은 각각의 축을 따라 전파하는 광에 광학 배율을 개별적으로 적용하는 2개의 직교 배향된 원통형 렌즈를 배치하는 것에 의존한다.
도 18은 대칭 빔을 생성하기 위해 고속 축과 저속 축을 따라 전파하는 광에 광학 배율을 개별적으로 적용하기 위한 원통형 렌즈 세트가 있는 이색성 빔 결합기(102D)를 포함하는 광학 디바이스(100D)를 도시한다. 각각의 반사기(204a, 204b 및 204c)와 연관된 원통형 렌즈(208a, 208b 및 208c)를 갖는 렌즈 배열(206)이 (도 13 내지 도 17을 참조하여 설명된 바와 유사하게) 주 표면(106)에 부착된다. 이 렌즈(208a, 208b 및 208c)는 고속 축과 저속 축 모두에 광학 배율을 적용할 수 있지만, 렌즈(208a, 208b 및 208c)가 대부분 고속 축에서 동작하는 것이 유리하다. 지연 판(202), 바람직하게는 1/4 파장 판은 주 표면(108)에 부착된다. 각각의 반사기(204a, 204b 및 204c)와 연관되고 원통형 렌즈(208a, 208b 및 208c)에 직교하게 배향된 원통형 렌즈(212a, 212b 및 212c)를 갖는 렌즈 배열(210)은, 지연 판(202)이 렌즈 배열(210)과 주 표면(108) 사이에 끼워지도록 지연 판(202)에 부착된다. 렌즈(212a, 212b 및 212c)는 고속 축과 저속 축 모두에 광학 배율을 적용할 수 있지만, 렌즈(212a, 212b 및 212c)는 대부분 저속 축에서 동작하는 것이 유리하다. 또한, 렌즈(212a, 212b 및 212c)는 부분 반사 코팅으로 코팅된다. (도 15 내지 도 17을 참조하여 설명된 바와 유사한) 검출기 배열(190)은 광원(12a, 12b 및 12c) 각각에 의해 출력되는 파워를 나타내는 광의 세기를 측정하기 위해 렌즈 배열(210)에 부착된다.
반사기(204a, 204b, 204c 및 204d)는 일반적으로 두 가지 예외를 제외하고는 반사기(104a, 104b, 104c 및 104d)와 유사하다. 첫째, 반사기(204a, 204b, 204c 및 204d)는 편광 선택성이다. 이것은 반사기(204a, 204b 및 204c)가 편광 색 선택성 반사기이고, 반사기(204d)가 편광 선택성 반사기임을 의미한다. 반사기(204a, 204b 및 204c)는 편광 선택성 및 색 선택성 모두를 나타내는 (코팅된 표면(126a, 126b 및 126c)을 형성하는) 코팅을 도포함으로써 이색성 빔 결합기(102D)를 제조하는 공정 동안 편광 색 선택성으로 만들어질 수 있다. 유사하게, 반사기(204d)는 편광 선택성을 나타내는 (코팅된 표면(126d)을 형성하는) 코팅을 도포함으로써 이색성 빔 결합기(102D)를 제조하는 공정 동안 편광 선택성으로 만들어질 수 있다. 특정 코팅 요건은 본 명세서의 후속 단락에서 상세히 설명될 것이다.
둘째, 반사기(204a, 204b, 204c 및 204d)는 반사기(104a, 104b, 104c 및 104d)와는 다른 배향을 가지며, 이에 의해 반사기(204a, 204b, 204c 및 204d)는 수평 축(기판(103D)의 연신 방향)을 중심으로 (180도) 플립(flipped)된다. 이러한 배향의 변화는 제조 동안 평면(128)에 직교하는 평면을 따라 슬라이싱함으로써 달성된다.
도 18에 도시된 구성에서, 반사기(204a)는 반사기(204a)의 표면에 대해 제1 편광 방향으로 편광된(예를 들어, 수직 편광, 이는 p-편광으로 지칭됨) 제1 컬러의 광을 투과시키고, 제1 편광 방향에 직교하는, 반사기(204a)의 표면에 대해 제2 편광 방향으로 편광된(예를 들어, 수평 편광, 이는 s-편광으로 지칭됨) 제1 컬러의 광을 반사시키도록 구성된다. 반사기(204b)는 반사기(204b)의 표면에 대해 제1 편광 방향으로 편광된(예를 들어, p-편광된) 제2 컬러의 광을 투과시키고, 반사기(204b)의 표면에 대해 제2 편광 방향으로 편광된(예를 들어, s-편광된) 제1 컬러의 광을 투과시키고, 반사기(204b)의 표면에 대해 제2 편광 방향으로 편광된(예를 들어, s-편광된) 제2 컬러의 광을 반사시키도록 구성된다. 반사기(204c)는 반사기(204c)의 표면에 대해 제1 편광 방향으로 편광된(예를 들어, p-편광된) 제3 컬러의 광을 투과시키고, 반사기(204c)의 표면에 대해 제2 편광 방향으로 편광된(예를 들어, s-편광된) 제1 및 제2 컬러의 광을 투과시키고, 반사기(204c)의 표면에 대해 제2 편광 방향으로 편광된(예를 들어, s-편광된) 제3 컬러의 광을 반사시키도록 구성된다. 반사기(204d)는 제2 편광 방향으로 편광된(예를 들어, s-편광된) 모두 3개의 컬러의 광을 반사시키도록 구성된다.
렌즈(208a, 208b 및 208c)는 대부분 고속 축을 따라 광 파워를 적용하도록 광원(12a, 12b 및 12c)(즉, 제1 편광 방향)으로부터 입사되는 광파의 편광 방향에 직교하는 제1 방향으로 배향된다(즉, 이 실시예에서 렌즈(208a, 208b 및 208c)는 x-축을 따라 수평으로 배향된다). 렌즈(212a, 212b 및 212c)는 주로 저속 축을 따라 광학 배율을 적용하도록 (렌즈(208a, 208b 및 208c)의 배향과 직교하고, 제2 편광 방향과 직교하는) 제2 배향으로 배향된다(즉, 이 실시예에서 렌즈(212a, 212b 및 212c)는 z-축을 따라 수직으로 배향된다).
다음 단락은 이색성 빔 결합기(102D)를 통한 빔(14a, 14b 및 14c)의 전파를 설명한다. 여기서, 각각의 광원(12a, 12b 및 12c)에 의해 방출된 빔(14a, 14b 및 14c)은 반사기(204a, 204b 및 204c)의 표면에 대해 선형 편광, 예를 들어, p 편광된다. 편광된 빔(14a, 14b 및 14c)은 각각의 렌즈(208a, 208b 및 208c)에 의해 고속 축에서 시준되고 각각의 반사기(204a, 204b 및 204c)에 충돌한다.
p-편광된 시준된 빔(14a)은 반사기(204a)에 의해 투과되고, 지연 판(202)을 통과하고, 이 지연 판은 편광 방향을 원편광으로 회전시킨다. 원형 편광된 광은 렌즈(212a)에 도달하고, 여기서 광의 일부(세기의 일부)는 렌즈(212a)를 통해 검출기(192a)로 전달되고, 광의 일부(세기의 다수)는 부분 반사 코팅에 의해 반사되고 렌즈(212a)에 의해 저속 축에서 시준된다. 반사된 시준된 광은 지연 판(202)을 통과하고, 이 지연 판은 광의 편광 방향을 s-편광으로 회전시킨다. 이제 s-편광된 광은 반사기(204a)에 의해 반사되고, 반사기(204b)에 의해 투과되며, 반사기(204c)에 의해 투과되어 출력 빔(112)의 일부를 형성한다.
p-편광된 시준된 빔(14b)은 반사기(204b)에 의해 투과되고 지연 판(202)을 통과하고, 이 지연 판은 편광 방향을 원편광으로 회전시킨다. 원편광된 광은 렌즈(212b)에 도달하고, 여기서 광의 일부(세기의 일부)는 렌즈(212b)를 통해 검출기(192b)로 전달되고, 광의 일부(세기의 다수)는 부분 반사 코팅에 의해 반사되고 렌즈(212b)에 의해 저속 축에서 시준된다. 반사된 시준된 광은 지연 판(202)을 통과하고, 이 지연 판은 광의 편광 방향을 s-편광으로 회전시킨다. 이제 s-편광된 광은 반사기(204b)에 의해 반사되고 반사기(204c)에 의해 투과되어 출력 빔(112)의 일부를 형성한다.
p-편광된 시준된 빔(14b)은 반사기(204c)에 의해 투과되고 지연 판(202)을 통과하고, 이 지연 판은 편광 방향을 원편광으로 회전시킨다. 원편광된 광은 렌즈(212c)에 도달하고, 여기서 광의 일부(세기의 일부)는 렌즈(212c)를 통해 검출기(192c)로 전달되고, 광의 일부(세기의 다수)는 부분 반사 코팅에 의해 반사되고 렌즈(212c)에 의해 저속 축에서 시준된다. 반사된 시준된 광은 지연 판(202)을 통과하고, 이 지연 판은 광의 편광 방향을 s-편광으로 회전시킨다. 이제 s-편광된 광은 반사기(204c)에 의해 반사되어 출력 빔(112)의 일부를 형성한다.
모두 3개의 컬러의 s-편광된 성분으로 구성된 출력 빔(112)은 반사기(204d)에 충돌하고, 이 반사기는 s-편광된 광을 반사시켜 빔이 주 표면(106)을 통해 기판(103D)을 빠져나가도록 연신 방향에 수직으로 (즉, 일반적으로 투사 방향과 반대 방향, 즉 다시 광원(12a, 12b 및 12c)을 향하여) 출력 빔(112)을 편향(재지향)시킨다.
바람직하게는, 기판(103D)에 렌즈 배열(206), 지연 판(202), 렌즈 배열(210), 및 검출기 배열(190)을 부착하는 것은 (도 8c, 도 14a 및 도 16a에서와 같이) 평면(들)(134)을 따라 절단(들)을 수행하기 전에 슬라이스 레벨에서 제조 공정 동안 수행된다.
도 19는 슬라이스(132D)에 렌즈 배열(206), 지연 판(202), 렌즈 배열(210), 및 검출기 배열(190)을 부착하는 제1 단계를 도시한다. 도 8c, 도 14a 및 도 16a를 또한 참조한다. 슬라이스(132D)의 주 표면(106)과 대략 동일한 크기와 치수의 투명 판(216)은 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된 원통형 렌즈(208a, 208b 및 208c) 세트를 포함한다. 렌즈는 규정된 제1 배향에 의해 지시된 (본 실시예에서 기판(103D)의 연신 방향인 슬라이스(132D)의 연신 방향과 일치하는) 연신 방향을 갖는다. 원통형 렌즈(208a, 208b 및 208c)의 만곡된 부분은 판(216)(도면에 도시되지 않음)의 밑면까지 하방으로 연장된다. 판(216)은 각각의 개별 코팅된 표면(126a)이 어레이의 개별 열의 하나 이상의 렌즈(208a)와 연관되고, 각각의 개별 코팅된 표면(126b)이 어레이의 개별 열의 하나 이상의 렌즈(208b)와 연관되고, 각각의 개별 코팅된 표면(126c)이 어레이의 개별 열의 하나 이상의 렌즈(208c)와 연관되도록 주 표면(106)과 정렬된다. 어레이의 열의 수는 일반적으로 슬라이스(132D)의 코팅된 표면(126a, 126b 및 126c)의 총 수와 일대일 대응한다. 도 19에 도시된 실시예에서, 3개의 코팅된 표면(126a, 126b 및 126c)의 3개 세트에 대응하는 9개의 열이 있다. 또한, 행의 수(즉, 코팅된 표면(126a, 126b 및 126c) 각각과 연관된 렌즈의 수)는 평면(들)(136)을 따라 절단을 수행한 후 생성될 기판의 수와 일대일 대응한다. 도 19에 도시된 실시예에서, 2개의 평면(136)을 따라 절단하여 형성된 3개의 기판에 대응하는 3개의 렌즈 행이 있다. 따라서, 각각의 코팅된 표면(126a)은 동일한 열의 3개의 렌즈(208a)와 연관되고, 각각의 코팅된 표면(126b)은 동일한 열의 3개의 렌즈(208b)와 연관되며, 각각의 코팅된 표면(126c)은 동일한 열의 3개의 렌즈(208c)와 연관된다.
판(216)이 표면(106)과 적절히 정렬되면, 렌즈(208a, 208b 및 208c)는 슬라이스(132D)에 렌즈(208a, 208b 및 208c)를 접합하기 위해 광학 접착제를 통해 표면(106)에 광학적으로 부착된다. 판(216)이 제거 가능하다면, 판(216)은 렌즈(208a, 208b 및 208c)를 부착한 후에 제거될 수 있다. 대안적으로, 판(216)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(216) 자체는 광학 접착제를 통해 표면(106)에 접합될 수 있다.
슬라이스(132D)의 주 표면(108)과 대략 동일한 크기와 치수를 갖는 파장 판(218)(바람직하게는 1/4 파장 판)은 주 표면(108)과 정렬된다. 슬라이싱 단계(즉, 평면(134 및 136)을 따라 절단하는 단계) 동안, 파장판(218)은 개별 조각으로 절단되며, 여기서 각각의 조각은 지연 판(202)을 형성한다. 파장판(218)이 표면(108)과 적절하게 정렬되면, 파장판(218)은 슬라이스(132D)에 파장판(218)을 접합하기 위해 광학 접착제(즉, 접합제)를 통해 표면(108)에 부착된다.
파장판(218)(및 슬라이스(132D)의 주 표면(108))과 대략 동일한 크기와 치수의 투명 판(220)은 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 배열된 원통형 렌즈(212a, 212b 및 212c) 세트를 포함한다. 렌즈는 렌즈(208a, 208b 및 208c)의 연신 방향에 직교하는 규정된 제2 배향에 의해 지시된 연신 방향을 갖는다. 여기서, 원통형 렌즈(212a, 212b 및 212c)의 만곡된 부분은 판(220)의 상부 면으로부터 상방으로 연장된다. 판(220)은 각각의 코팅된 표면(126a)이 하나의 개별 렌즈(212a)와 연관되고, 각각의 코팅된 표면(126b)이 하나의 개별 렌즈(212b)와 연관되고, 각각의 코팅된 표면(126c)이 하나의 개별 렌즈(212c)와 연관되도록 파장판(218) 및 주 표면(108)과 정렬된다. 어레이의 열의 수는 슬라이스(132D)에서 코팅된 표면(126a, 126b 및 126c)의 총 수에 대응한다. 도 19에 도시된 실시예에서, 3개의 코팅된 표면(126a, 126b 및 126c)의 3개 세트에 대응하는 9개의 열이 있다. 일반적으로, 원통형 렌즈(212a, 212b 및 212c)는 단일 행을 형성하고, 평면(들)(136)을 따른 절단은 각각의 원통형 렌즈를 다수의 원통형 렌즈 세트로 효과적으로 세분화하고, 여기서 원통형 렌즈의 각각의 세트는 각각의 기판(103D)과 연관된다.
판(220)이 파장판(218)(및 주 표면(108))과 적절하게 정렬되면, 렌즈(212a, 212b 및 212c)는 슬라이스(132D)에 렌즈(212a, 212b 및 212c)를 접합하기 위해 광학 접착제를 통해 파장판(218)에 광학적으로 부착된다. 판(220)이 제거 가능하다면, 판(220)은 렌즈(212a, 212b 및 212c)를 부착한 후에 제거될 수 있다. 대안적으로, 판(220)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(220) 자체는 광학 접착제를 통해 파장판(218)에 접합될 수 있다.
마지막으로, 검출기(192a, 192b 및 192c)를 포함하는 투명 판(194)이 판(220)과 정렬되어 판에 부착된다. 투명 판(194)을 정렬 및 부착하는 것은 일반적으로 도 16a를 참조하여 설명된 바와 유사하다. 특히, 투명 판(194)은 각각의 렌즈(212a)가 하나 이상의 개별 검출기(192a)와 연관되고, 각각의 렌즈(212b)가 하나 이상의 개별 검출기(192b)와 연관되고, 각각의 렌즈(212c)가 하나 이상의 개별 검출기(192c)와 연관되도록 판(220)과 정렬된다. 또한, 투명 판(194)은 특정 렌즈(212a)와 연관된 코팅된 표면(126a)이 이 렌즈(212a)와 연관된 하나 이상의 개별 검출기(192a)와도 연관되고, 특정 렌즈(212b)와 연관된 코팅된 표면(126b)이 이 렌즈(212b)와 연관된 하나 이상의 개별 검출기(192b)와도 연관되고, 특정 렌즈(212c)와 연관된 코팅된 표면(126c)이 이 렌즈(212c)와 연관된 하나 이상의 개별 검출기(192c)와도 연관되도록 판(220)과 정렬된다.
도 19에 도시되지는 않았지만, 전기 전도성 표면(200)은 (도 16a를 참조하여 설명된 바와 유사하게) 전도성 표면(200)의 각각의 전도성 요소(198a, 198b 및 198c)와 검출기(192a, 192b 및 192)를 연관시키도록 판(194)과 정렬될 수 있다. 대안적으로, 판(194)의 포일(196)은 (이전에 논의된 바와 같이) 전도성일 수 있다.
렌즈 배열(206)(즉, 판(216)), 지연 판(202)(즉, 파장판(218)), 렌즈 배열(210)(즉, 판(220)), 및 검출기 배열(190)(즉, 판(194) 및 선택적으로 전도성 표면(200))이 (직접 또는 간접 부착을 통해) 슬라이스(132D)에 결합된 후, 슬라이스(132D)는 도 8c를 참조하여 설명된 바와 유사하게, 슬라이스(132C)를 다수의 구획으로 분리하기 위해 적어도 하나의 평면(134)을 따라 절단(슬라이싱)된다. 그런 다음 각각의 구획은, 도 8d를 참조하여 설명된 바와 유사하게, 기판(103D)을 형성도록 적어도 하나의 평면(136)을 따라 절단된다.
특정 실시형태에서, 예를 들어, 렌즈(208a, 208b 및 208c)가 (도 19에 도시된 바와 같이) 연신 방향이 x-축을 따르는 배향을 가질 경우, 각각의 세그먼트에 대해 단일 행의 렌즈(208a, 208b 및 208c)는 3개의 별개의 원통형 렌즈 대신, 단일 세장형 원통형 렌즈로서 결합될 수 있다는 것이 주목된다. 이것은 광원(12a, 12b 및 12c)으로부터 입사되는 광파의 편광 방향이 수평 방향으로 편광되는(즉, s-편광된) 경우는 그렇지 않을 수 있다. 이러한 시나리오에서는, 렌즈(208a, 208b 및 208c)와 렌즈(212a, 212b 및 212c)의 배향이 교환될 것이다(즉, 렌즈(208a, 208b 및 208c)는 수직으로 배향될 것이고, 렌즈(212a, 212b 및 212c)는 수평으로 배향될 것이다). 또한, p-편광된 광과 s-편광된 광에 대한 반사기(204a, 204b, 204c 및 204d)의 응답이 교환될 것이다(즉, p-편광된 광의 각각의 언급은 s-편광된 광으로 대체되고 그 반대로도 될 수 있다).
도 20은 도 18의 광학 디바이스(100D)의 변형예인 광학 디바이스(100E)를 도시한다. 광학 디바이스(100E)는 외부 평면 표면(210) 상에 지연 판(바람직하게는 반파장 판)과 함께 반사 코팅을 포함하는 일반적으로 (214)로 표시된 표면을 포함한다. 여기서, 반사기(204d)는 제2 편광 방향으로 편광된(예를 들어, s-편광된) 모두 3개의 컬러의 광을 투과시키고, 제1 편광 방향으로 편광된(예를 들어, p-편광된) 모두 3개의 컬러의 광을 반사시키도록 구성된다. s-편광된 출력 빔(112)은 반사기(204c)로부터 나올 때 반사기(204d)에 의해 투과되고, 표면(214)에 의해 반사되고, 이 표면은 편광을 제2 편광 방향으로 (예를 들어, p-편광으로) 회전시킨다. 이제 p-편광된 빔은 반사기(204d)에 충돌하고, 이 반사기는 p-편광된 광을 반사시키고, 이에 의해 빔이 주 표면(108)을 통해 기판(103E)을 빠져나가도록 연신 방향에 수직으로 그리고 투사 방향을 따라 출력 빔(112)을 편향(재지향)시킨다.
표면(214)은 단면 레벨에서 제조 공정 동안 평면(들)(134)을 따라 절단(들)을 수행한 후, 그러나 평면(들)(136)을 따라 절단(들)을 수행하기 전에 포함될 수 있다. 여기서, 각각의 구획에 대해, 표면(214)(지연 판(반파장판)과 반사 표면을 가짐)은 외부 평면 표면(110)에 대응하는 평면 표면에 (광학 접착제를 통해) 광학적으로 부착될 수 있다.
반사기(204a, 204b, 204c 및 204d)에 대한 상이한 코팅 설계를 사용하여 빔 결합의 상이한 컬러 순서 또는 성분 컬러 빔 및/또는 출력 빔의 상이한 편광 방향을 부과할 수 있음이 주목된다. 편광 방향을 변경하는 하나의 실시예는 렌즈 배열(206)과 주 표면(106) 사이에 각각의 광원(12a, 12b 및 12c)과 관련하여 상이한 개별 지연 판을 도입하는 것에 의한다. 이러한 지연 판은 도 19를 참조하여 파장 판(218)을 내장하기 위해 설명된 바와 유사한 기술을 사용하여 광학 디바이스를 제조하는 동안 렌즈 배열(206)과 주 표면(106) 사이에 도입될 수 있다. 일 실시예는 도 21에 도시되어 있고, 여기에서는 파장 판(218)이 코팅된 표면(126a, 126b 및 126c)과 각각 연관된 (그리고 이에 따라 광원(12a, 12b 및 12c)과 각각 연관된) 파장 판(219a, 219b 및 219c) 세트로 대체된다는 점을 제외하고는 일반적으로 도 19와 유사하다. 광원(12a, 12b 및 12c) 중 하나의 광원에 의해 방출된 빔에 대해 편광 회전이 필요하지 않은 상황에서, 이 광원과 연관된 코팅된 표면과 연관된 파장 판은 빈 투명 판으로 대체될 수 있다는 것이 주목된다.
편광 방향을 변경하는 다른 실시예는 반사기(204a, 204b, 204c 및 204d)와 평행한 주 표면(106, 108) 사이에 그리고 일부 반사기 사이의 기판(103D) 내에 하나 이상의 지연 판을 내장하는 것에 의한다. 여기서, 내장된 지연 판과 반사기(204a, 204b, 204c 및 204d)는 모두 주 표면(106, 108)에 대해 α의 비스듬한 각도에 있다. 반사기(204a, 204b, 204c 및 204d)들 중 일부 반사기 사이에 지연 판을 내장하면 기판 내에서 편광 회전을 구현할 수 있어 반사기에 대한 편광 선택성 및 색 선택성 코팅 요건을 완화시킬 수 있다.
기판 내에 하나 이상의 지연 판을 내장하기 위한 공정은 도 22a 내지 도 22e를 참조하여 설명된다. 먼저 도 22a를 참조하면, 이것은 투명 판(120) 및 복수의 지연 판(222)과 연관된 표면의 코팅을 도시한다. 이 구성에서, 투명 판(120) 중 매 두 번째 투명 판의 주 표면(122, 124) 모두는 (도 4b 및 도 8a를 참조하여 설명된 바와 유사하게) 코팅된다. 이 특정 실시예에서, 코팅된 투명 판(120)과 지연 판(222)은 코팅된 표면(126b)을 생성하도록 코팅된 코팅된 투명 판(120)의 표면과 코팅되지 않은 투명 판(120) 사이에 지연 판(222)이 위치되도록 배열된다. 도 22a에 도시된 배열의 아래에서 시작하여, 투명 판과 지연 판은 다음과 같은 순서로 배열되는 데, 즉 코팅되지 않은 투명 판(120), 코팅된 표면(126d)을 형성하기 위해 하부 표면이 코팅되고, 코팅된 표면(126c)을 형성하기 위해 상부 표면이 코팅된 투명 판(120), 코팅되지 않은 투명 판(120), 지연 판(222), 코팅된 표면(126b)을 형성하기 위해 하부 표면이 코팅되고, 코팅된 표면(126a)을 형성하기 위해 상부 표면이 코팅된 투명 판(120), 코팅되지 않은 투명 판(120)의 순서로 배열된다. 이 주기적인 패턴은 필요에 따라 반복될 수 있다.
도 22b는 투명 판(120), 코팅된 박판(121), 및 지연 판(222)을 이용하는 대안적인 코팅 방법을 도시한다. 여기서, 모든 투명 판(120)은 코팅되지 않았다. 도 22a에 도시된 배열의 아래에서 시작하여, 판의 주기적인 순서는 다음과 같은 데, 즉 코팅되지 않은 투명 판(120), 코팅된 표면(126d)을 형성하기 위해 상부 표면이 코팅된 박판(121), 코팅되지 않은 투명 판(120), 코팅된 표면(126c)을 형성하기 위해 상부 표면이 코팅된 박판(121), 코팅되지 않은 투명 판(120), 코팅된 표면(126b)을 형성하기 위해 상부 표면이 코팅된 지연 판(222), 코팅되지 않은 투명 판(120), 코팅된 표면(126a)을 형성하기 위해 상부 표면이 코팅된 박판(121), 코팅되지 않은 투명 판(120)의 순서이다. 여기에서도 이 주기적인 패턴은 필요에 따라 반복될 수 있다.
도 22c는 복수의 동일한 세그먼트로 구성된 주기적인 형성을 생성하도록 스택(230)으로 배열된 코팅된 표면(126a, 126b, 126c 및 126d) 및 지연 판(222)을 도시하고, 여기서 각각의 세그먼트는 주기적인 형성의 정확히 하나의 1회 사이클을 포함한다. 이 예시적인 실시예에서, 각각의 세그먼트는 정확히 하나의 코팅된 표면(126a), 정확히 하나의 코팅된 표면(126b), 정확히 하나의 지연 판(222), 정확히 하나의 코팅된 표면(126c), 및 정확히 하나의 코팅된 표면(126d)을 포함한다. 스택(230)의 판은 예를 들어 스택(230)의 인접한 표면들 사이에 광학 접합제를 도포함으로써 함께 부착(즉, 접착)된다.
다음 단계에서, 도 22d에 도시된 바와 같이, 스택(230)은 슬라이스(232)(또는 "조각")를 생성하기 위해 (228)로 표시된 2개의 평행한 평면을 따라 슬라이싱(절단)된다. 이 단계는 도 4d를 참조하여 설명된 슬라이스(132)를 생성하기 위한 단계와 유사하고, 이를 유추하여 이해될 수 있다. 이 단계의 결과, 코팅된 표면(126a, 126b, 126c 및 126d) 및 지연 판(222)은 주기적인 형성에 따라 주기적인 순서로 슬라이스(232) 내에 내장된다. 도 22e는 주 표면(106)과 주 표면(108) 사이에 코팅된 표면(126a, 126b, 126c 및 126d)과 지연 판(222)이 내장된 슬라이스(232)의 도면을 도시한다. 또한 (예를 들어, 도 4e 및 도 4f를 참조하여 본 명세서에 이전에 설명된 바와 유사하게) 개별 구획 및 기판을 생성하기 위해 슬라이스(232)가 후속적으로 절단될 수 있는 평면(134 및 136)의 실시예가 도 22e에 도시되어 있다.
도 22a 내지 도 22e에 도시된 바와 유사한 기술을 사용하여, 코팅된 표면들 사이, 예를 들어, 코팅된 표면(126a)과 코팅된 표면(126b) 사이 그리고/또는 코팅된 표면(126c)과 코팅된 표면(126d) 사이에 추가적인 지연 판이 도입될 수 있음이 주목된다. 또한 (도 22a 내지 도 22e와 같이) 기판 내에 하나 이상의 지연 판을 내장하는 공정 및 (도 21을 참조하여 설명된 바와 같이) 렌즈 배열(206)과 주 표면(106) 사이에 상이한 개별 지연 판을 도입하는 공정은 상호 배타적이지 않고 조합으로 사용될 수 있음이 주목된다. 사실상, 렌즈 배열(206, 210), 검출기 배열(190), 및 파장판(218 또는 219a, 219b 및 219c)은 내장된 광학기, 검출기 및 파장판을 갖는 콤팩트한 광학 디바이스를 생성하기 위해 이전에 설명된 기술을 사용하여 슬라이스(232)에 결합될 수 있다.
이러한 콤팩트한 광학 디바이스뿐만 아니라 도 18 및 도 20에 도시된 콤팩트한 광학 디바이스는, 컬러 결합을 수행하는 것에 더하여 광학기(206 및 210)를 통한 대칭 빔 생성(즉, 고속 축과 저속 축의 발산 감소) 및 빔 시준뿐만 아니라 (검출기 배열(190)을 통한) 광원 파워 모니터링 기능을 더 수행한다. 특정 경우에 이러한 광학 디바이스에 의해 방출된 출력 빔이 후속 광학 디바이스에 대한 입력으로 사용되는 경우, 이러한 광학 디바이스에 의해 방출된 출력 빔은 후속 광학 디바이스에 의해 직접 사용하기 위해 과도하게 시준될 수 있다. 이 경우는, 예를 들어, 이러한 광학 디바이스에 의해 방출된 출력 빔이 광 도파로로 광을 투사하는 스캐닝 배열에서 사용되는 경우이다. 그 결과, 출력 빔을 역시준하고 재시준하기 위해 광학 디바이스와 광 도파로 사이의 광학 경로에 중계 광학기가 필요할 수 있다. 후속 광학 디바이스에서 출력 빔을 직접 사용할 수 있기 위해, 컬러 결합 기능과 대칭 빔 생성 및 시준 기능을 분리하여 이러한 기능을 2개의 별개의 광학 디바이스에 의해 수행하는 것이 바람직할 수 있다.
도 23 내지 도 26은 대칭 빔 생성 및 빔 시준 기능뿐만 아니라 파워 모니터링 기능을 제공하는, 본 발명의 다른 양태에 따라 구성되고 동작하는 일반적으로 (300)으로 표시된 광학 디바이스의 다양한 도면을 도시한다. 광학 디바이스(300)의 구성요소 중 일부는 도 23 내지 도 26의 일부에서는 볼 수 있지만, 도 23 내지 도 26의 다른 곳에서는 보이지 않음이 주목된다. 예를 들어, 파워 모니터링 및 편광 회전 구성요소는 도 23 및 도 24에서는 볼 수 있지만, 도 25 및 도 26에서는 보이지 않는다.
일반적으로, 광학 디바이스(300)는 제1 연신 방향(여기서 임의로 "y-축"에 대응하는 것으로 도시됨) 및 제1 연신 방향에 직교하는 제2 연신 방향(여기서 임의로 "z-축"에 대응하는 것으로 도시됨)을 갖는, 평행한 면을 갖는 슬래브로서 형성된 기판(302)을 포함한다. 기판(302)은 (xy-평면에서) 직사각형 단면을 형성하는 제1 쌍의 평행한 주 외부 평면 표면(면)(306, 308)을 갖는다. 주 표면(306 및 308)은 주로 광파 입사 표면과 광파 출사 표면으로 각각 기능한다. 기판(302)은 제2 쌍의 평행한 외부 평면 표면(310, 312) 및 제3 쌍의 평행한 외부 평면 표면(326, 328)을 더 포함하고, 여기서 표면(310)과 표면(312) 사이의 거리는 일반적으로 표면(306)과 표면(308) 사이의 거리보다 10배 더 크고, 표면(326)과 표면(328) 사이의 거리는 표면(306)과 표면(308) 사이의 거리와 대략 동일하다.
상호 평행한 다색 편광 선택성 빔 스플리터 구성("PBS"로 지칭될 수 있음)(314 및 316)은 제1 연신 방향에 대해 비스듬한 각도(
Figure pct00001
)로 (그리고 등가적으로 표면(306, 308)에 대해 동일한 비스듬한 각도로), 바람직하게는 45도의 각도로 주 표면(306)과 주 표면(308) 사이의 기판(302) 내에 내장된다. 바람직하게는, PBS(314 및 316)를 형성하는 평면 표면들은 표면(306)의 평면으로 PBS(314 및 316)의 투영이 겹치지 않도록 치수가 정해진다.
PBS(314)는 PBS(314)의 표면에 대해 제1 편광 방향으로 편광된 입사광을 투과시키고, PBS(314)의 표면에 대해 (제1 편광 방향에 직교하는) 제2 편광 방향으로 편광된 입사광을 반사시키도록 구성된다. PBS(316)는 PBS(314)와 동일한 투과 및 반사 특성을 가지며, 구체적으로, PBS(316)는 PBS(316)의 표면에 대해 제1 편광 방향으로 편광된 입사광을 투과시키고, PBS(316)의 표면에 대해 제2 편광 방향으로 편광된 입사광을 반사시키도록 구성된다. 따라서, PBS(314 및 316)에서 투과되는 광의 유형은 제1 편광 방향으로 편광된 광이고, PBS(314 및 316)에서 반사되는 광의 유형은 제2 편광 방향으로 편광된 광이다.
광원(12a, 12b 및 12c)은 주 표면(306) 및 PBS(314)와 연관된다. 광원(12a, 12b 및 12c)은 (제2 연신 방향을 따라) 표면(326)과 표면(328) 사이에서 측방향으로 연장되는 어레이로 배열된다. 지연 판(318), 바람직하게는 1/4 파장 판은 PBS(314)와 연관되고, 주 표면(308)에서 기판(302)에 광학적으로 부착된다. 부분 반사 원통형 렌즈(320)는 PBS(314)와 연관되고, 지연 판(318)에 광학적으로 부착된다. 원통형 렌즈(320)는 광원(12a, 12b 및 12c)에 의해 방출된 광의 선형 편광 방향과 직교하는 제1 배향으로 배치된다(즉, 광원(12a, 12b 및 12c)이 제1 편광 방향으로 편광된 광을 방출하는 경우, 원통형 렌즈(320)는 제2 편광 방향에 대응하는 방향으로 배향된다). 원통형 렌즈(320)는 적절히 배향되면 제1 편광 방향에 대응하는 방향을 따라 광학 배율을 적용한다. 이 배향에서, 원통형 렌즈(320)는 기판(302)의 제2 연신 방향에 평행한 연신 방향을 갖고, 원통형 렌즈(320)는 기판(302)의 제2 연신 방향을 따라 표면(326)과 표면(328) 사이에서 측방향으로 연장된다.
지연 판(324), 바람직하게는 1/4 파장 판은 PBS(316)와 연관되고, 주 표면(306)에서 기판(302)에 광학적으로 부착된다. 제1 배향에 직교하는 제2 배향으로 배치된 부분 반사 원통형 렌즈(322a, 322b 및 322c) 세트는 PBS(316)와 연관되고 지연 판(324)에 광학적으로 부착된다. 제2 배향은 광원(12a, 12b 및 12c)에 의해 방출된 광의 선형 편광 방향과 동일한 방향을 따른다(즉, 광원(12a, 12b 및 12c)이 제1 편광 방향으로 편광된 광을 방출한다면, 원통형 렌즈(322a, 322b 및 322c)는 제1 편광 방향에 대응하는 방향으로 배향된다). 원통형 렌즈(322a, 322b 및 322c)는 적절히 배향될 때 제2 편광 방향에 대응하는 방향으로 광학 배율을 적용한다. 이 배향에서, 원통형 렌즈(322a, 322b 및 322c)는 기판(302)의 제1 연신 방향과 평행한 연신 방향을 갖는다. 원통형 렌즈(322a, 322b 및 322c)는 표면(326)과 표면(328) 사이에서 측방향으로 연장되는 어레이로 나란히 배열된다.
검출기(326a, 326b 및 326c)는 각각의 광원(12a, 12b 및 12c)과 연관되고 원통형 렌즈(320)에 부착된다. 광원(12a, 12b 및 12c)과 같이 검출기(326a, 326b 및 326c)는 표면(326)과 표면(328) 사이에서 측방향으로 연장되는 어레이로 배열된다. 대안적으로, 검출기(326a, 326b 및 326c)는 각각의 원통형 렌즈(322a, 322b 및 322c)에 부착될 수 있다.
광원(12a, 12b 및 12c)은 선형 편광된 광 빔(14a, 14b 및 14c)을 방출하도록 구성된다. 빔(14a, 14b 및 14c)은 PBS(314, 316)의 표면에 대해 제1 편광 방향으로 편광된다. 본 비제한적인 예시적인 실시예에서, 제1 편광 방향은 수직 편광(양방향 화살표로 도시되고 p-편광으로 지칭됨)이며, 여기서 빔(14a, 14b 및 14c)의 고속 축은 수직으로 확장된다.
다음 단락은 기판(302)을 통한 빔(14c)의 전파 경로를 설명한다. 도 23 내지 도 26을 참조한다. p-편광된 빔(14c)은 표면(306)을 통해 기판(302)에 입사하고, PBS(314)에 의해 투과되고, 표면(308)을 통해 기판(302)을 빠져나간다. 빔(14c)은 빔(14c)의 편광 방향을 원편광으로 회전시키는 지연 판(318)을 통과하여 (수평 배향을 갖는) 원통형 렌즈(320)에 충돌한다. 원통형 렌즈(320)에 충돌하는 광의 일부(세기의 작은 부분)는 렌즈(320)를 통해 검출기(326c)로 전달되고, 이 검출기는 (광원(12c)의 출력 파워를 나타내는) 광의 세기를 측정한다. 광의 다른 부분(세기의 대부분)은 렌즈(320)에 의해 반사되고, 이 렌즈는 수직 광학 배율을 적용하여 빔(14c)이 수직으로 발산하는 고속 축을 시준한다(빔(14c)이 고속 축을 따라 확장되는 것을 방지한다). 반사된 빔(14c)은 지연 판(318)을 되 통과하며, 이 지연 판은 빔(14c)의 편광 방향을 제2 편광 방향으로 회전시키고, 이 제2 편광 방향은 이 상황에서 수평 편광(도트(dot)로 표시되고 s-편광이라고 함)이다.
이제 s-편광된 빔(14c)은 표면(308)을 통해 기판(302)에 다시 입사하고, PBS(314)에 의해 반사되고, PBS(316)에 의해 반사되고, 표면(306)을 통해 기판을 빠져나간다. 빔(14c)은 빔(14c)의 편광 방향을 원편광으로 회전시키는 지연 판(324)을 통과하여 (수직 배향을 갖는) 원통형 렌즈(322c)에 충돌한다. 빔(14c)은 원통형 렌즈(322c)에 의해 반사되고, 이 원통형 렌즈는 수평 광학 배율을 적용하여 빔(14c)이 수평으로 발산하는 저속 축을 시준한다(빔(14c)이 저속 축을 따라 확장되는 것을 방지한다). 반사된 빔(14c)은 지연 판(324)을 다시 통과하고, 이 지연 판은 빔(14c)의 편광 방향을 제1 편광 방향(p-편광)으로 회전시킨다. 이제 p-편광된 빔(14c)은 표면(306)을 통해 기판(302)에 재입사하고, PBS(316)에 의해 투과되고, 대략 원형 (대칭) 빔(15c)으로서 표면(308)을 통해 기판을 빠져나간다.
빔(14a 및 14b)은 대략 원형 빔(15a 및 15b)을 각각 생성하기 위해 빔(14c)의 전파 경로와 유사한 전파 경로를 따른다. 이해되는 바와 같이, 빔(14a 및 14b)이 전파됨에 따라, 원통형 렌즈(320)에 충돌하는 광의 일부는 렌즈(320)를 통해 검출기(326a 및 326b)로 각각 전달되고, 이 검출기는 (광원(12a 및 12b)의 출력 파워를 나타내는) 광의 세기를 각각 측정한다. 또한, 빔(14a 및 14b)은 (편광이 원편광으로 회전된 후) 각각 (수직 배향을 갖는) 원통형 렌즈(322a 및 322b)에 충돌한다. 빔(14a 및 14b)은 원통형 렌즈(322a 및 322)에 의해 각각 반사되고, 이 원통형 렌즈는 수평 광학 배율을 적용하여 빔(14a 및 14b)이 수평으로 발산하는 저속 축을 시준한다. 반사된 빔(14a 및 14b)은 지연 판(324)을 다시 통과하고, 이 지연 판은 빔(14a 및 14b)의 편광 방향을 제1 편광 방향(p-편광)으로 회전시킨다. 이제 p-편광된 빔(14a 및 14b)은 표면(306)을 통해 기판(302)에 재입사하고, PBS(316)에 의해 투과되고, 대략 원형 (대칭) 빔(15a 및 15b)으로서 표면(308)을 통해 기판을 빠져나간다.
다음 단락은 광학 디바이스(300)를 제조하기 위한 단계를 설명한다. 제조 공정의 다양한 단계를 도시하는 도 27a 내지 도 27f를 참조한다. 도 4a, 도 4e, 도 4f, 도 16a 내지 도 16c 및 도 19뿐만 아니라 도 23 내지 도 26을 또한 참조한다.
제조 공정의 제1 단계에서, 복수의 투명 판(120)이 도 4a를 참조하여 설명된 바와 유사하게 획득된다. 다음 단계에서, 투명 판(120)과 연관된 다양한 표면에 코팅이 적용되어 복수의 코팅된 표면을 생성한다. 도 27a는 코팅이 도포되는 방법에 대한 하나의 비제한적인 실시예를 도시하지만, 일반적으로 코팅은 복수의 코팅된 표면(329)을 형성하기 위해 투명 판(120)과 연관된 제1 세트의 표면에 도포된다. 코팅은 다색 편광 선택성 빔 스플리터 구성(314 및 316)을 형성하는 다색 편광 선택성 코팅이다. 이와 같이, 각각의 코팅된 표면(329)은 표면(329)에 대해 제1 편광 방향으로 편광된 입사광을 투과시키고, 표면(329)에 대해 (제1 편광 방향에 직교하는) 제2 편광 방향으로 편광된 입사광을 반사시킨다.
도 27a의 비제한적인 예시적인 실시예에서, 투명 판(120)들 중 (투명 판(120)의 서브세트를 정의하는) 매 두 번째 투명 판의 주 표면(122, 124) 모두는 다색 편광 선택성 코팅으로 코팅된다. (서브세트에 없는) 나머지 투명 판(120)의 표면(122, 124)은 코팅되지 않는다. 여기서, 투명 판(120)과 연관된 표면은 사실상 일부 투명 판(120)의 주 표면(122, 124)이다. 코팅된 투명 판(120)과 코팅되지 않은 투명 판(120)은 투명 판(120)과 코팅된 투명 판(120) 사이에 교대로 배열된다. 다시 말해, 판은 다음 순서로, 즉 코팅되지 않은 투명 판(120), 양면 코팅된 투명 판(120), 코팅되지 않은 투명 판(120), 양면 코팅된 투명 판(120), 코팅되지 않은 투명 판(120) 등과 같이 교대로 배열된다.
도 27b는 코팅을 도포하는 다른 비제한적인 실시예를 도시한다. 여기서, 투명 판(120)들 사이에는 복수의 얇은 투명 판(121)이 교대로 배열된다. 각각의 박판(121)은 다색 편광 선택성 코팅으로 (도시되지 않은 주 표면에) 코팅된다. 코팅된 박판(121)과 투명 판(120)은 투명 판(120)과 코팅된 박판(121)이 교대하도록 배열된다. 다시 말해, 판은 다음 순서로, 즉 투명 판(121), 코팅된 박판(121), 투명 판(120), 코팅된 박판(121), 투명 판(120) 등과 같이 교대로 배열된다. 여기서, 투명 판(120)과 연관된 표면은 박판(121)의 코팅된 표면이다.
다른 비제한적인 실시예(도시되지 않음)에서, 다색 편광 선택성 코팅은 (투명 판(120) 중 코팅되지 않는 투명 판은 제외하고) 모든 투명 판(120)의 동일한 면(예를 들어, 표면(122) 또는 표면(124))에 도포된다. 여기서, 도 27a와 유사하게, 투명 판(120)과 연관된 표면은 사실상 일부 투명 판(120)의 주 표면(122, 124)이다.
언급된 바와 같이, 다색 편광 선택성 코팅이 관련 표면에 도포되어 코팅된 표면(329)을 형성하면, 코팅된 표면(329)은 (코팅된 투명 판(120), 또는 코팅된 박판(121)과 함께 투명 판(120)을 적절하게 적층함으로써) 배열된다. 배열은, 도 27c에 도시된 바와 같이, 모든 코팅된 표면(329)이 서로 평행한 상태로 적층된 스택(330)의 형태를 갖는다. 스택(330) 내의 코팅된 표면(329)은 복수의 동일하고 겹치지 않는 세그먼트로 구성된 주기적인 형성을 가지며, 여기서 각각의 세그먼트는 주기적인 형성의 정확히 하나의 1회 사이클을 포함하고, 1회 사이클은 정확히 2개의 (즉, 한 쌍의) 코팅된 표면(329)으로 구성된다. 각각의 코팅된 표면이 하나의 (단 하나의) 세그먼트에 속한다는 점에서 이들 세그먼트는 겹치지 않는다. 유사하게, 주기적인 형성은 정확히 2개의 (즉, 한 쌍의) 코팅된 표면(329)을 포함하는 제1 세그먼트를 정해진 횟수만큼 반복함으로써 형성된다.
표면(329)이 스택(330)에 배열된 후, 스택(330)의 판은 예를 들어 스택(330)의 (예를 들어, 투명 판(120)의 코팅되지 않은 표면에서) 인접한 표면들 사이에 광학 접합제를 도포함으로써 함께 부착(즉, 접착)된다.
다음 단계에서, 도 27d에 도시된 바와 같이, 스택(330)은 슬라이스(332)(또는 "조각")를 생성하기 위해 (331)로 표시된 2개의 평행한 평면을 따라 슬라이싱(절단)된다. 이 단계는 일반적으로 도 4d 및 도 8b를 참조하여 설명된 슬라이싱 단계와 유사하다. 평면(331)은 평면(331)이 공통 경사 각도로 모든 평면 코팅된 표면(329)과 교차하도록 스택(330)의 모든 투명 판(120)의 주 표면에 대해 대각선이다. 슬라이싱 각도(즉, 공통 경사 각도)와, PBS(314, 316)가 기판(302) 내에 배치되는 경사 각도(
Figure pct00002
)는 보각이다. 따라서, 슬라이싱 각도는 다색 편광 선택성 코팅이 원하는 피크 반사율 및 투과율 특성을 제공하는 범위 내에 속하는 AOI에 대응하는 각도(
Figure pct00003
)를 생성하도록 선택되는 것이 바람직하다.
도 27e는 제1 연신 방향(여기서 임의로 "y-축"에 대응하고 기판(302)의 제1 연신 방향에 대응하는 것으로 도시됨)을 갖고 제2 연신 방향(여기서 임의로 "z-축"에 대응하고 기판(302)의 제2 연신 방향에 대응하는 것으로 도시됨)을 갖는 단일 슬라이스(332)를 도시한다. 다수의 슬라이스는 다수 쌍의 평행한 평면(331)을 따라 스택(330)을 슬라이싱함으로써 생성될 수 있는 것으로 이해된다. 슬라이스(332)는 주 표면(306)과 주 표면(308) 사이에 내장된 주기적인 코팅된 표면(329)(다수의 세그먼트에 대응함)을 갖는다. 코팅된 표면(329)은 스택(330)의 대각선 절단으로 인해 주 표면(306, 308)에 대해 경사진 각도(
Figure pct00004
)로 있다. 볼 수 있는 바와 같이, (한 쌍의 코팅된 표면(329)을 포함하는) 각각의 세그먼트에 대해, 코팅된 표면(329)들 중 제1 코팅된 표면은 PBS(314)를 형성하고, 코팅된 표면(329)들 중 제2 코팅된 표면은 PBS(316)를 형성한다. (기판(302)의 광파 입사 및 출사 표면으로 기능하는) 주 표면(306, 308)은 바람직하게는 광학 품질을 증가시키기 위해 연마된다.
또한 (예를 들어, 도 4e 및 도 4f를 참조하여 본 명세서를 통해 이전에 설명된 바와 유사하게) 개별 구획(340)과 기판(302)을 생성하기 위해 슬라이스(332)가 후속적으로 절단(슬라이싱)될 수 있는 평면(134 및 136)의 실시예가 도 27e에 도시되어 있다. 인접한 세그먼트들 사이에 있는 투명 판(120)은 바람직하게 절단 평면(들)(134)에 의해 분리된 인접한 세그먼트의 코팅된 표면(329)들 사이에 추가 공간을 제공하기 위해 (다른 투명 판(120)에 비해) 증가된 두께를 갖는다는 것이 주목된다.
파장판(지연 판(318, 324)에 대응함), 광학기(원통형 렌즈(320, 322a, 322b 및 322c)에 대응함), 및 검출기 배열(검출기(326a, 326b 및 326c)에 대응함)을 적용하는 단계는 도 19를 참조하여 설명된 바와 유사하게 슬라이스 레벨에서 수행되는 것이 바람직하다.
도 27f는 검출기(326a, 326b, 326c), 원통형 렌즈(320), 지연 판(318), 지연 판(324) 및 원통형 렌즈(322a, 322b, 322c)를 각각 지지(즉, 유지)하는 (광학적으로) 투명한 및/또는 제거 가능한 판(350, 360, 370, 380 및 390)의 배열을 도시한다.
지연 판(318)(바람직하게는 1/4 파장 판)을 지지하는 판(370)은, 각각의 개별 지연 판(318)이 PBS(314)를 형성하는 코팅된 표면(329) 각각과 연관되도록 슬라이스(332)의 주 표면(308)과 정렬된다. PBS(314)를 형성하는 코팅된 표면(329)과 지연 판(318) 사이에는 일대일 대응 관계가 있다. 정렬 후, 지연 판(318)은 광학 접착제(즉, 접합제)를 통해 표면(308)에 광학적으로 부착되어 지연 판(318)을 슬라이스(332)에 결합시킨다. 판(370)이 제거 가능한 경우, 판(370)은 지연 판(318)을 부착한 후에 제거될 수 있다. 대안적으로, 판(370)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(370) 자체는 광학 접착제를 통해 슬라이스(332)에 결합될 수 있다.
다음으로, 원통형 렌즈(320)를 지지하는 판(360)은 각각의 개별 렌즈(320)가 각각의 지연 판(318)과 연관되도록 지연 판(318)과 정렬된다. 렌즈(320)와 지연 판(318) 사이에는 일대일 대응 관계가 있다. 렌즈(320)는 렌즈(320)의 연신 방향이 슬라이스(332)의 제2 연신 방향과 일치하도록 배치된다. 정렬 후에, 슬라이스(332)에 렌즈(320)를 결합시키기 위해 렌즈(320)는 광학 접착제(즉, 접합제)를 통해 지연 판(318)에 광학적으로 부착된다. 판(360)이 제거 가능한 경우, 판(360)은 렌즈(320)를 부착한 후에 제거될 수 있다. 대안적으로, 판(360)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(360) 자체는 광학 접착제를 통해 지연 판(318) 또는 판(370)에 결합될 수 있다.
다음으로, 검출기(326a, 326b 및 326c)를 지지하는 판(350)은 렌즈(320)와 정렬된다. 검출기(326a, 326b 및 326c)는 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 판(350) 상에 배열된다. 행은 슬라이스(332)의 제1 연신 방향에 임의로 대응하는 반면, 열은 슬라이스(332)의 제2 연신 방향에 임의로 대응한다. 각각의 개별 렌즈(320)가 개별 열과 연관되도록 열과 렌즈(320) 사이에는 일대일 대응 관계가 있다. 어레이의 각각의 열은 N+1개의 검출기 그룹을 포함하며, 여기서 각각의 그룹은 검출기(326a) 중 하나, 검출기(326b) 중 하나, 및 검출기(326c) 중 하나로 구성되며, 여기서 N은 평면(136)의 수를 나타내는 정수이다(즉, N+1은 각각의 구획(340)으로부터 생산될 기판(302)의 수이다). 각각의 그룹 내의 검출기(326a, 326b 및 326c)의 순서는 그룹 간에 일관되게 유지된다.
판(350)은 각각의 열의 검출기(326a, 326b 및 326c)가 렌즈(320) 각각과 연관되도록 렌즈(320)와 정렬된다. 정렬 후에, 검출기(326a, 326b 및 326c)는 예를 들어 접착제(예를 들어, 광학 접합제)를 통해 렌즈(320)에 결합된다. 도 16a 내지 도 16c 및 도 19를 참조하여 앞서 설명한 바와 유사하게, 판(350)은 검출기(326a, 326b 및 326c)에 전기 전도성 접점을 제공하는 전기 전도성 캐리어 포일을 포함할 수 있다. 대안적으로, 포일은 검출기(326a, 326b 및 326c)를 위한 임시 홀더로서 작용할 수 있고, 검출기(326a, 326b 및 326c)를 렌즈(320)에 부착한 후에 제거될 수 있다. 이러한 경우에, 전기 전도성 요소를 갖는 전기 전도성 표면이 검출기(326a, 326b 및 326c) 각각에 부착될 수 있다.
지연 판(324)(바람직하게는 1/4 파장 판)을 지지하는 판(380)은, 각각의 개별 지연 판(324)이 PBS(316)를 형성하는 코팅된 표면(329) 각각과 연관되도록 슬라이스(332)의 주 표면(306)과 정렬된다. PBS(316)를 형성하는 코팅된 표면(329)과 지연 판(324) 사이에는 일대일 대응 관계가 있다. 정렬 후, 지연 판(324)은 지연 판(324)을 슬라이스(332)에 결합시키기 위해 광학 접착제(즉, 접합제)를 통해 표면(306)에 광학적으로 부착된다. 판(380)이 제거 가능한 경우, 판(380)은 지연 판(324)을 부착한 후에 제거될 수 있다. 대안적으로, 판(380)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(380) 자체는 광학 접착제를 통해 슬라이스(332)에 결합될 수 있다.
다음으로, 원통형 렌즈(322a, 322b 및 322c)를 지지하는 판(390)은 지연 판(324)과 정렬된다. 렌즈(322a, 322b 및 322c)는 렌즈(322a, 322b 및 322c)의 연신 방향이 슬라이스(332)의 제1 연신 방향과 일치하도록(즉, 렌즈(322a, 322b 및 322c)와 렌즈(320)가 직교하게 배향되도록) 배치된다. 렌즈(322a, 322b 및 322c)는 다수의 행과 열을 갖는 2차원 어레이 또는 그리드로 판(350) 상에 배열된다. 검출기(326a, 326b 및 326c)의 어레이와 유사하게, 행은 슬라이스(332)의 제1 연신 방향에 임의로 대응하는 반면, 열은 슬라이스(332)의 제2 연신 방향에 임의로 대응한다. 각각의 개별 지연 판(324)이 개별 열과 연관되도록 열과 지연 판(324) 사이에는 일대일 대응 관계가 있다. 검출기(326a, 326b 및 326c)의 어레이와 유사하게, 어레이의 각각의 열은 N+1개의 렌즈 그룹을 포함하고, 여기서 각각의 그룹은 원통형 렌즈(322a) 중 하나, 원통형 렌즈(322b) 중 하나, 및 원통형 렌즈(322c) 중 하나로 구성된다. 각각의 그룹 내에서 원통형 렌즈(322a, 322b 및 322c)의 순서는 그룹 간에 일관되게 유지된다. 판(390)은 각각의 열의 원통형 렌즈(322a, 322b 및 322c)가 지연 판(324) 각각과 연관되도록 지연 판(324)과 정렬된다. 정렬 후, 원통형 렌즈(322a, 322b 및 322c)는 원통형 렌즈(322a, 322b 및 322c)를 슬라이스(332)에 결합시키기 위해 광학 접착제(즉, 접합제)를 통해 지연 판(324)에 광학적으로 부착된다. 판(390)이 제거 가능한 경우, 판(390)은 원통형 렌즈(322a, 322b 및 322c)를 부착한 후에 제거될 수 있다. 대안적으로, 판(390)이 (광원(12a, 12b 및 12c)에 의해 방출된 광에 대해) 광학적으로 투명한 경우, 판(390) 자체는 광학 접착제를 통해 지연 판(324) 또는 판(380)에 결합될 수 있다.
도 27f를 참조하여 설명된 정렬 및 부착 단계는 일반적으로 원통형 렌즈, 지연 판, PBS 및 검출기 세트 간의 전체적인 정렬과 연관성이 유지되는 한, 임의의 순서로 수행될 수 있음이 주목된다. 판(350, 360, 370, 380 및 390)에 의해 지지되는 구성요소가 (직접 또는 판에 의해 지지되는 다른 구성요소를 통해 간접) 슬라이스(332)에 부착된 후, 슬라이스(332)는 평면(들)(134)(도 27e)을 따라 절단되어 다수의 구획(340)을 생성할 수 있고, 여기서 각각의 구획은 한 쌍의 코팅된 표면(329)으로 구성된다. 그런 다음 각각의 구획(340)은 도 23 내지 도 26에 도시되고 이를 참조하여 설명된 바와 같이 부착된 구성요소를 각각 갖는 기판(302)을 생성하기 위해 평면(들)(136)을 따라 절단될 수 있다.
논의된 바와 같이, 광학 디바이스(300)는, 편광 빔(14a, 14b 및 14c)의 조명에 응답하여, 대략 원형 (대칭) 시준된 편광 출력 빔(15a, 15b 및 15c)을 제공한다. 출력 빔(15a, 15b 및 15c)을 결합시키기 위해, 광학 디바이스(300)는 컬러 결합된 출력 빔을 생성하기 위해 이색성 빔 결합기와 결합될 수 있다. 광학 디바이스(300)는 파워 모니터링, 시준 및 빔 발산 감소(즉, 대칭 빔 생성) 기능을 제공하기 때문에, 광학 디바이스(300)는 예를 들어, 도 2, 도 6, 도 7, 도 9b, 도 10b, 도 10d 및 도 11b에 도시된 이색성 빔 결합기와 같은, 컬러 결합 기능으로 제한되는 이색성 빔 결합기로 동작하는 데 특히 적합하다.
도 28은 광학 디바이스(300) 및 (이 예시적인 실시예에서 도 2에 도시된 이색성 빔 결합기(102)로 구현된) 이색성 빔 결합기를 포함하는 광학 시스템/디바이스(400)를 도시한다. 광학 디바이스(300)와 이색성 빔 결합기(102)는 2개의 디바이스 사이의 계면 영역(계면 평면)을 정의하는 표면(308 및 106)에서 서로 광학적으로 결합된다. 광학적 결합은 표면(308)과 표면(106) 사이에 공기 갭 또는 굴절률 정합 재료로 채워진 표면(308)과 표면(106) 사이에 갭을 두고 기계적 결합으로 구현될 수 있다. 대안적으로, 광학 디바이스(300)와 이색성 빔 결합기(102)는 표면(308)과 표면(106) 사이의 광학 접착제 층을 통해 결합될 수 있다. 명백한 바와 같이, 광학 디바이스(300)와 이색성 빔 결합기(102)를 제조하는 데 사용되는 판(120)(또는 판(120 및 121))은 광학 디바이스(300)와 이색성 빔 결합기(102) 사이의 계면 영역에서 빔(15a, 15b 및 15c)이 원치 않게 굴절하는 것을 최소화하기 위해 동일한 굴절률을 가져야 한다.
지금까지 설명한 광학 디바이스는 소형 컬러 결합기가 필요한 광범위한 응용에 사용될 수 있다. 적합한 응용의 실시예는 근안 디스플레이(NED), 헤드 마운트 디스플레이(HMD) 및 헤드업 디스플레이(HUD)의 구성요소에 이미지를 투사하는 이미지 프로젝터를 이용하는 NED, HMD, 및 HUD, 휴대폰, 콤팩트 디스플레이, 3D 디스플레이, 콤팩트 빔 확장기와 같은 다양한 이미징 응용 분야뿐만 아니라, 평면 패널 표시기 및 스캐너와 같은 비이미징 응용 분야를 포함하지만 이들로 제한되지 않는다. 본 실시형태의 광학 디바이스는 이미지 픽셀을 생성하기 위해 편광된 광에 의한 조명을 필요로 하는 SLM 마이크로 디스플레이를 사용하는 이미지 프로젝터의 조명 구성요소로서 사용될 때 특히 유용할 수 있다. NED, HMD 및 HUD 응용에 적합한 다양한 유형의 이미지 프로젝터는 루무스사(Lumus Ltd.)(이스라엘)로부터 상업적으로 입수할 수 있다. 이러한 이미지 프로젝터는 반사 디스플레이 디바이스(예를 들어, LCoS)와 함께 조명 프리즘 및 시준 프리즘을 포함하는 다양한 프리즘 조립체를 사용할 수 있다. 또한 본 실시형태의 광학 디바이스는 다수의 비가시성 레이저 광원이 필요한 LIDAR 유형 시스템에 특히 적용될 수 있는 비가시성 레이저 다이오드와 같은 비가시성 광원과 함께 사용될 수 있다. 이러한 LIDAR 유형 시스템은 본 명세서에 설명된 광학 디바이스와 조합하여 사용될 수 있고, 예를 들어, 차량의 계기판 또는 앞유리에 설치된 차량 HUD 환경에 배치될 수 있다.
특히 바람직하지만 비제한적인 응용의 서브세트의 예로서, 도 29는 광학 시스템을 형성하기 위해, 컬러 결합된 출력 빔을 생성하는 광학 디바이스(500), 시준된 이미지를 생성하는 이미지 프로젝터 디바이스(502), 및 이미지 프로젝터 디바이스(502)로부터 주입된 이미지를 수신하는 광 안내 기판(514)이 결합된 것을 도시한다. 광학 디바이스(500)는 도 2, 도 6, 도 7, 도 9b, 도 10b, 도 10d, 도 11b, 도 13, 도 15, 도 17, 도 18, 도 20 및 도 28과 관련하여 설명된 광학 디바이스 및 대응하는 구성요소 중 임의의 것에 구조적으로 대응할 수 있다.
이제 이미지 프로젝터 디바이스(502)와 기판(514)의 일반적인 구조를 설명하지만, 이미지 프로젝터 디바이스(502)와 기판(514)에 대한 보다 상세한 설명은 PCT 특허 공보 WO 2018/100582, WO 01/95027, 및 WO 2008/023367(이들 문헌은 전체 내용이 본 명세서에 병합됨)에서 찾아볼 수 있다. 본 명세서에 설명된 이미지 프로젝터 디바이스(502)와 기판(514)은 광학 디바이스(100)가 유리하게 사용될 수 있는 광 안내 광학 요소와 이미지 투사 디바이스의 단지 일례일 뿐이라는 점이 주목된다.
이미지 프로젝터 디바이스(502)는 이미지 시준 프리즘을 형성하는 2개의 구성 프리즘(504, 506)을 포함한다. 편광 선택성 빔 스플리터 구성(510)(PBS(510))은 이미지 시준 프리즘 내에 배치된다. 광학 디바이스(500)로부터 출력된 광파(112)는 바람직하게는 s-편광된 광파로서 프리즘(504)에 입사한다. 원하는 s-편광을 달성하기 위해 하나 이상의 지연 판이 광학 디바이스(500)와 이미지 프로젝터 디바이스(502) 사이에 배치될 수 있다. s-편광된 광파는 PBS(510)에 의해 이미지 디스플레이 표면을 향해 반사되어 여기서 반사 디스플레이 디바이스(522)(바람직하게는 LCoS로 구현됨)에 충돌한다. 이미지의 밝은 영역에 대응하는 픽셀은 변조된 회전 편광과 함께 반사되어 광파를 s-편광으로부터 p-편광으로 변환하여, 밝은 픽셀의 복사선은 PBS(510)를 통해 투과되고, 적어도 하나의 지연 판(도시되지 않음), 바람직하게는 1/4 파장판을 통과하고, 이후 지연 판의 적어도 일부 위에 놓인 적어도 하나의 광파 시준 구성요소(508)에 입사하고, 1/4 파장 판을 통해 다시 반사되어 광파를 다시 s-편광으로 변환한다. 그런 다음 s-편광된 광파는 프리즘(506) 밖으로 PBS(510)에 의해 반사되어 여기서 기판(514)으로 입사한다.
기판(514)은 일반적으로 서로 평행한 적어도 2개의 주 표면(516 및 518), 하나 이상의 부분 반사 표면(520), 및 광을 기판(514)으로 결합시키기 위한 광학 쐐기 요소(optical wedge element)(512)를 포함한다. 이미지 프로젝터 디바이스(502)로부터 출력 광파(112)는 광학 쐐기 요소(512)를 통해 기판(514)으로 입사한다. (기판(514)으로) 입사하는 광파는 도 29에 도시된 바와 같이 내부 전반사(TIR)에 의해 기판(514)에 갇힌다. 갇힌 광파가 기판(514)으로부터 밖으로 아웃커플링하는 것은 부분 반사 표면(520) 또는 회절 요소, 또는 임의의 다른 적절한 아웃커플링 배열에 의해 수행될 수 있다. 광학 쐐기 요소(512)는 단지 하나의 비제한적 광학 결합 구성의 일례일 뿐이므로, 다른 요소와 구성을 사용하여 이미지 프로젝터 디바이스(502)로부터 기판(514)으로 광을 결합시킬 수 있다.
도 30a 및 도 30b는 본 발명의 이색성 빔 결합기가 특히 사용될 수 있는 응용 분야의 다른 비제한적인 서브세트를 도시한다. 여기서, 컬러 결합된 출력 빔을 생성하는 광학 디바이스(600)는 광 도파로로 광을 투사하기 위한 광학 배열체와 결합되어 광학 시스템(레이저 스캐닝 시스템)을 형성한다. 광학 디바이스(600)는 도 2, 도 6, 도 7, 도 9b, 도 10b, 도 10d, 도 11b, 도 13, 도 15, 도 17, 도 18, 도 20 및 도 28과 관련하여 설명된 광학 디바이스 및 대응하는 구성요소 중 임의의 것에 구조적으로 대응할 수 있다.
광원(12a)은 컬러 광 빔(14a)을 방출하고, 이 빔은 이색성 빔 결합기(602)의 반사기들 중 하나에 충돌하기 전에 마이크로 렌즈(604)(도 13에서와 같은 렌즈(180a)일 수 있음)에 의해 시준된다. 이색성 빔 결합기(602)의 다른 이색성 반사기에 충돌하는 다른 광원으로부터 시준된 광 빔(14b 및 14c)은 화살표로만 표시된다. 이색성 빔 결합기(602)는 (본 명세서에 걸쳐 상세히 논의된 바와 같이) 광 빔(14a, 14b 및 14c)을 결합시켜 컬러 결합된 출력 빔을 생성하고, 중계 광학기(606)를 향해 출력 빔을 반사시키고, 이 중계 광학기는 (출력 빔이 과도하게 시준된 경우) 빔을 역시준하고 빔을 재시준하도록 작용한다. 한 쌍의 스캐닝 미러(608)는 조명 필드를 생성하기 위해 출력 빔의 각도를 스캐닝한다. 스캐닝 미러(608)의 조명 필드는 렌즈(610)에 의해 (도 30b에 도시된) 출사 동공(618)으로 이미징된다. 일부 경우에, 출력 빔의 개구수는 마이크로 렌즈 어레이(612)에 의해 확장된다. 도 30b는 레이저 스캐닝 시스템의 하부 구획의 측면도를 도시하고, 여기서 출력 빔은 PBS(614)에 의해 반사 렌즈(616)로 반사되고, 이 반사 렌즈는 출력 빔을 시준하고 시준된 빔을 출사 동공(618)으로 투과시키고, 이 출사 동공은 도 29의 기판(524)과 같은 광 도파로에 광학적으로 결합될 수 있다.
부가적으로, 도 28의 광학 디바이스(400)가 컬러 결합된 출력 빔을 생성하기 위해 레이저 스캐닝 시스템과 함께 사용된다면, 개별 컬러 빔이 결합 전에 시준되어 대칭으로 되어서 출력 빔을 역시준하고 재시준할 필요가 없기 때문에 마이크로 렌즈(604)와 중계 광학기(606)가 필요치 않게 된다.
각각의 경우 본 명세서에 설명된 실시예에서 특정 편광된 전파 경로를 따른 경우 편광은 상호 교환 가능하고, 이에 의해 다양한 선택적 반사 표면(예를 들어, 반사기(204a, 204b, 204c 및 204d), 표면(214), PB(314), PBS(316) 등)의 편광 선택 특성을 교대하면, p-편광된 광이라는 각각의 언급은 s-편광된 광으로 대체될 것이고 그 반대로도 가능하다는 것이 주목된다.
본 명세서에 걸쳐 특정 컬러의 광, 구체적으로, 적색 광, 녹색 광 및 청색 광이 언급되었다. 이러한 광은 총칭하여 "컬러 광"이라고 칭한다. 논의된 바와 같이, 이러한 특정 컬러 각각의 광은 가시 스펙트럼의 특정 대응 스펙트럼 영역에 있는 중심 파장을 가지며, 이에 따라 적색 광은 일반적으로 중심 파장이 638 나노미터(nm) 또는 약 638nm이고, 녹색 광은 일반적으로 중심 파장이 532nm 또는 약 532nm이고, 청색 광은 일반적으로 중심 파장이 456nm 또는 약 456nm이다. 그러나, 이러한 특정 파장은 단지 예시일 뿐이며, 다양한 유형의 컬러 광의 특정 파장은 가시 스펙트럼의 관련 스펙트럼 영역 내 어느 것으로 선택될 수 있고, 청색 광의 경우 대략 450nm 내지 485nm 범위에 있고(그러나 특정 경우에 이 범위를 벗어날 수 있음), 녹색 광의 경우 대략 500nm 내지 565nm 범위에 있고(그러나 특정 경우에 이 범위를 벗어날 수 있음), 적색 광의 경우 대략 625nm 내지 740nm 범위에 있다(그러나 특정 경우에 이 범위를 벗어날 수 있음). 본 발명의 빔 결합기의 반사기의 코팅은 대응하는 컬러 광에 대해 선택된 특정 중심 파장과 파장 범위에 대해 원하는 반사율과 투과율을 달성하도록 설계되어야 한다.
또한, 본 발명의 실시형태는 가시광, 특히 적색 광, 녹색 광 및 청색 광을 결합시키는 맥락에서 설명되었지만, 본 발명의 빔 결합기에 의해 구현되는 빔 결합 기능은 가시 스펙트럼의 다른 컬러 광 세트를 결합시키거나, 또는 예를 들어 적외선(IR) 영역, 근적외선(NIR) 영역 등을 포함하는 다른 영역의 전자기 스펙트럼의 광 빔을 결합시키는 데에도 동일하게 적용될 수 있다.
본 발명의 다양한 실시형태의 설명은 예시의 목적으로 제시되었을 뿐, 개시된 실시형태를 제한하려고 의도된 것도 아니고 모든 실시형태를 제시하려고 의도된 것도 아니다. 설명된 실시형태의 범위 및 정신을 벗어나지 않으면서 많은 수정과 변형이 이 기술 분야에 통상의 지식을 가진 자에게 자명할 것이다. 본 명세서에 사용된 용어는 실시형태의 원리, 실제 응용 분야, 또는 시장에서 발견되는 기술보다 기술적 개선을 가장 잘 설명하거나, 또는 이 기술 분야에 통상의 지식을 가진 자가 본 명세서에 개시된 실시형태를 이해하게 하기 위해 선택된 것이다.
본 명세서에 사용된 단수형 요소와 "상기" 요소는 문맥이 명백하게 달리 지시하지 않는 한, 복수의 요소를 포함한다.
"예시적인"이라는 단어는 본 명세서에서 "실시예, 사례 또는 예시로 제공되는" 것을 의미하는 데 사용된다. "예시적인" 것으로 설명된 임의의 실시형태는 반드시 다른 실시형태에 비해 선호되거나 유리한 것으로 해석되어서도 안 되고/되거나 다른 실시형태의 특징을 포함하는 것을 배제하는 것으로 해석되어서는 안 된다.
명료함을 위해 별개의 실시형태의 맥락에서 설명된 본 발명의 특정 특징은 단일 실시형태에서 조합으로 제공될 수도 있는 것으로 이해된다. 역으로, 간결함을 위해 단일 실시형태의 맥락에서 설명된 본 발명의 다양한 특징은 개별적으로 또는 임의의 적절한 하위 조합으로 또는 본 발명의 임의의 다른 설명된 실시형태에서 적절한 것으로 제공될 수도 있다. 다양한 실시형태의 맥락에서 설명된 특정 특징은, 실시형태가 이러한 요소 없이 작동하지 않는 경우가 아닌 한, 이러한 실시형태의 필수 특징인 것으로 간주되지 않는다.
첨부된 청구항이 다중 종속항 없이 작성되는 정도까지 이것은 이러한 다중 종속항을 허용하지 않는 관할 구역의 공적 요건을 수용하기 위해서만 수행되었다. 청구항을 다중 종속항으로 만드는 것으로 암시될 수 있는 모든 가능한 특징의 조합은 명시적으로 예상되고, 본 발명의 일부로 간주되어야 한다는 것이 주목된다.
본 발명이 특정 실시형태와 관련하여 설명되었지만, 많은 대안, 수정 및 변형이 이 기술 분야에 통상의 지식을 가진 자에게 자명할 것임이 명백하다. 따라서, 첨부된 청구범위의 정신과 넓은 범위에 속하는 모든 대안, 수정 및 변형을 포함하도록 의도된다.

Claims (41)

  1. 광학 디바이스를 제조하는 방법으로서,
    일련의 세그먼트를 포함하는 주기적인 형성을 나타내도록 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 일련의 세그먼트는 제1 세그먼트를 포함하고, 상기 주기적인 형성은 정해진 횟수만큼 상기 제1 세그먼트를 반복함으로써 형성되고, 상기 제1 세그먼트는,
    제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 제1 코팅된 표면,
    제2 파장 범위의 파장을 갖는 광을 반사시키고 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 제2 코팅된 표면, 및
    제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 제3 코팅된 표면을 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 평행한 주 외부 표면 및 복수의 인접한 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계로서, 각각의 구획은 상기 2개의 주 외부 표면 사이에 상기 주기적인 형성의 하나의 세그먼트의 코팅된 표면을 갖는, 상기 스택을 슬라이싱하는 단계; 및
    각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 평행한 주 표면 및 상기 2개의 주 표면 사이에 상기 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖는, 상기 슬라이스를 적어도 한번 절단하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  2. 제1항에 있어서, 상기 제1 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 반사 코팅을 도포함으로써 형성되는, 광학 디바이스를 제조하는 방법.
  3. 제1항에 있어서, 상기 제2 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 제1 이색성 코팅을 도포함으로써 형성되고, 상기 제3 코팅된 표면은 적어도 하나의 투명 판과 연관된 표면에 제2 이색성 코팅을 도포함으로써 형성된, 광학 디바이스를 제조하는 방법.
  4. 제1항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면을 동시에 연마하는 단계를 더 포함하는, 광학 디바이스를 제조하는 방법.
  5. 제1항에 있어서, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향과 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성된, 광학 디바이스를 제조하는 방법.
  6. 제1항에 있어서, 상기 슬라이스를 적어도 한번 절단하는 단계는,
    정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하기 위해 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 평면을 따라 상기 슬라이스를 절단하는 단계를 포함하는, 광학 디바이스를 제조하는 방법.
  7. 제6항에 있어서,
    상기 적어도 하나의 평면을 따라 상기 슬라이스를 슬라이싱함으로써 형성된 적어도 하나의 표면을 연마하는 단계를 더 포함하는, 광학 디바이스를 제조하는 방법.
  8. 제6항에 있어서, 상기 슬라이스를 적어도 한번 절단하는 단계는,
    상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계를 더 포함하는, 광학 디바이스를 제조하는 방법.
  9. 제6항에 있어서,
    평면 표면을 형성하도록 상기 적어도 하나의 평면에 대해 비스듬한 평면을 따라 상기 적어도 하나의 기판의 기판을 슬라이싱하는 단계; 및
    상기 기판이 상기 기판의 연신 방향에 수직이고 상기 기판의 2개의 주 표면에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되도록 상기 제1, 제2 또는 제3 파장 범위의 파장을 갖는 광에 대해 반사성이도록 상기 평면 표면을 연마하고 반사 코팅으로 코팅하는 단계
    를 더 포함하는, 광학 디바이스를 제조하는 방법.
  10. 제1항에 있어서, 상기 제3 코팅된 표면은 상기 제3 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키는, 광학 디바이스를 제조하는 방법.
  11. 제10항에 있어서, 상기 슬라이스를 적어도 한번 절단하는 단계는,
    정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및
    상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계
    를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고;
    상기 방법은,
    상기 적어도 하나의 제1 평면에 형성된 표면에 입방체 구조물을 부착하는 단계를 더 포함하되, 상기 입방체 구조물은 상기 적어도 하나의 평면에 형성된 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된, 광학 디바이스를 제조하는 방법.
  12. 제1항에 있어서, 상기 제3 코팅된 표면은 상기 제3 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 반사시키는, 광학 디바이스를 제조하는 방법.
  13. 제12항에 있어서, 상기 슬라이스를 적어도 한번 절단하는 단계는,
    정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및
    상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계
    를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고;
    상기 방법은,
    상기 2개의 주 외부 표면 중 하나의 주 외부 표면의 일부에 입방체 구조물을 부착하는 단계를 더 포함하되, 상기 입방체 구조물은 상기 2개의 주 외부 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된, 광학 디바이스를 제조하는 방법.
  14. 제1항에 있어서, 상기 제1 세그먼트는 상기 제1, 제2 또는 제3 파장 범위의 파장을 갖는 광을 반사시키는 제4 코팅된 표면을 추가로 포함하는, 광학 디바이스를 제조하는 방법.
  15. 제14항에 있어서, 상기 슬라이스를 적어도 한번 절단하는 단계는,
    정확히 하나의 세그먼트를 포함하는 단일 구획을 형성하도록 상기 슬라이스의 2개의 주 외부 표면에 수직인 적어도 하나의 제1 평면을 따라 상기 슬라이스를 절단하는 단계; 및
    상기 적어도 하나의 기판을 형성하도록 상기 슬라이스의 2개의 주 외부 표면 및 상기 적어도 하나의 제1 평면에 수직인 적어도 하나의 제2 평면을 따라 상기 단일 구획을 슬라이싱하는 단계
    를 포함하고, 상기 적어도 하나의 기판의 각각의 기판은 연신 방향을 갖고, 상기 연신 방향에 평행한 전파 방향을 갖는 결합된 빔을 출력하도록 구성되고;
    상기 방법은,
    상기 2개의 주 외부 표면 중 하나의 주 외부 표면의 일부에 입방체 구조물을 부착하는 단계를 더 포함하되, 상기 입방체 구조물은 상기 2개의 주 외부 표면에 대해 비스듬한 평면에 배치된 반사 표면을 갖고, 상기 반사 표면은, 상기 연신 방향에 수직이고 상기 주 외부 표면에 평행한 방향으로 결합된 빔을 편향시키도록 구성된, 광학 디바이스를 제조하는 방법.
  16. 제1항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면 중 제1 주 외부 표면과 제1 판을 정렬하는 단계로서, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 제4 코팅된 표면이 상기 제2 판의 어레이의 하나의 렌즈와 연관되도록 배열되는, 상기 제2 판을 정렬하는 단계
    를 더 포함하는, 광학 디바이스를 제조하는 방법.
  17. 제1항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면 중 제1 주 외부 표면과 제1 판을 정렬하는 단계를 더 포함하되, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  18. 제17항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면과 제2 판을 정렬하는 단계를 더 포함하되, 상기 제2 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  19. 제17항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면 중 제2 주 외부 표면에 적어도 하나의 지연 판을 부착하는 단계; 및
    상기 지연 판과 제2 판을 정렬하는 단계
    를 더 포함하고, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  20. 제19항에 있어서,
    상기 제2 판과 제3 판을 정렬하는 단계를 더 포함하되, 상기 제3 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  21. 제20항에 있어서,
    상기 제1 세그먼트가 적어도 하나의 지연 판을 포함하도록 상기 스택에 복수의 지연 판을 배치하는 단계를 더 포함하는, 광학 디바이스를 제조하는 방법.
  22. 제1항에 있어서,
    상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 판을 정렬하는 단계를 더 포함하되, 상기 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  23. 제22항에 있어서, 상기 판은 상기 판 상에 상기 검출기를 지지하는 전기 전도성 캐리어 포일을 추가로 포함하는, 광학 디바이스를 제조하는 방법.
  24. 제22항에 있어서,
    상기 판에 전기 전도성 표면을 부착하는 단계를 더 포함하되, 상기 전기 전도성 표면은 복수의 전기 접점을 포함하고, 각각의 접점은 상기 검출기 각각과 연관되는, 광학 디바이스를 제조하는 방법.
  25. 광학 디바이스를 제조하는 방법으로서,
    적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은,
    적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면,
    제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면,
    제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면, 및
    상기 제1 파장 범위, 상기 제2 파장 범위, 또는 상기 제3 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제4 코팅된 표면을 포함하고,
    상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 정확히 하나의 제3 코팅된 표면, 및 상기 적어도 하나의 제4 코팅된 표면 중 정확히 하나를 갖는, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 주 외부 표면과 상기 2개의 주 외부 표면 사이에 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및
    상기 적어도 하나의 구획의 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 단일 세그먼트의 코팅된 표면을 갖는, 상기 슬라이스를 적어도 한번 절단하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  26. 광학 디바이스를 제조하는 방법으로서,
    적어도 한번 반복되는 제1 세그먼트를 포함하는 적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 복수의 코팅된 표면은,
    제1 편광 방향으로 편광된 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 편광 방향으로 편광된 상기 제1 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제1 코팅된 표면, 및
    상기 제1 편광 방향으로 편광된 제2 파장 범위의 파장을 갖는 광 및 상기 제2 편광 방향으로 편광된 상기 제1 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제2 편광 방향으로 편광된 상기 제2 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제2 코팅된 표면, 및
    상기 제1 편광 방향으로 편광된 제3 파장 범위의 파장을 갖는 광 및 상기 제2 편광 방향으로 편광된 상기 제1 또는 제2 파장 범위의 파장을 갖는 광을 투과시키고, 상기 제2 편광 방향으로 편광된 상기 제3 파장 범위의 파장을 갖는 광을 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고,
    상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면에 지연 판을 부착하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  27. 제26항에 있어서,
    상기 적어도 하나의 구획의 각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계를 더 포함하되, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖는, 광학 디바이스를 제조하는 방법.
  28. 제26항에 있어서,
    상기 지연 판과 제1 판을 정렬하는 단계로서, 상기 제1 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 다른 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 2차원 렌즈 어레이를 갖고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제2 판을 정렬하는 단계
    를 더 포함하는, 광학 디바이스를 제조하는 방법.
  29. 제28항에 있어서,
    상기 제1 판과 제3 판을 정렬하는 단계를 더 포함하되, 상기 제3 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 검출기의 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 광학 디바이스를 제조하는 방법.
  30. 제28항에 있어서, 상기 복수의 코팅된 표면은 편광 선택성인 적어도 하나의 제4 코팅된 표면을 추가로 포함하고, 상기 제1 세그먼트는 정확히 하나의 제4 코팅된 표면을 추가로 포함하는, 광학 디바이스를 제조하는 방법.
  31. 제30항에 있어서, 상기 적어도 하나의 제4 코팅된 표면은 상기 제1 편광 방향으로 편광된 광을 투과시키고, 상기 제2 편광 방향으로 편광된 광을 반사시키는, 광학 디바이스를 제조하는 방법.
  32. 제30항에 있어서, 상기 적어도 하나의 제4 코팅된 표면은 상기 제2 편광 방향으로 편광된 광을 투과시키고, 상기 제1 편광 방향으로 편광된 광을 반사시키는, 광학 디바이스를 제조하는 방법.
  33. 광학 디바이스를 제조하는 방법으로서,
    적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은,
    적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면,
    제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면, 및
    제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고,
    상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 2차원 렌즈 어레이를 갖는 판을 정렬하는 단계로서, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 상기 판을 정렬하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  34. 광학 디바이스를 제조하는 방법으로서,
    복수의 투명 판을 획득하는 단계;
    적어도 하나의 제1 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제1 표면에 편광 선택성 코팅을 도포하는 단계;
    적어도 하나의 제2 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제2 표면에 제1 색 편광 선택성 코팅을 도포하는 단계;
    적어도 하나의 제3 코팅된 표면을 형성하도록 상기 투명 판과 연관된 적어도 하나의 제3 표면에 제2 색 편광 선택성 코팅을 도포하는 단계;
    적어도 하나의 세그먼트를 갖는 스택으로 상기 판을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면의 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 판을 배열하는 단계;
    적어도 제1 및 제2 주 외부 표면 및 상기 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계;
    상기 제1 또는 제2 주 외부 표면과 상기 제1 판을 정렬하는 단계로서, 상기 제1 판은, 제1 편광 방향과 연관된 제1 방향으로 배열된 2차원 렌즈 어레이를 포함하고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되는, 상기 제1 판을 정렬하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 다른 주 외부 표면과 제2 판을 정렬하는 단계로서, 상기 제2 판은 제2 편광 방향과 연관된 제2 방향으로 배열된 2차원 렌즈 어레이를 포함하고, 상기 2차원 렌즈 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제1 렌즈와 연관되고, 상기 제2 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제2 렌즈와 연관되고, 상기 제3 코팅된 표면이 상기 제2 판의 어레이의 적어도 하나의 제3 렌즈와 연관되도록 배열되고, 상기 제2 배향과 제2 편광 방향은 상기 제1 배향과 상기 제1 편광 방향에 각각 직교하는, 상기 제2 판을 정렬하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  35. 광학 디바이스를 제조하는 방법으로서,
    적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은,
    적어도 제1 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키는 적어도 하나의 제1 코팅된 표면,
    제2 파장 범위의 파장을 갖는 광을 반사시키고, 상기 제1 파장 범위의 파장을 갖는 광을 투과시키는 적어도 하나의 제2 코팅된 표면, 및
    제3 파장 범위의 파장을 갖는 광을 반사시키거나 또는 투과시키고, 상기 제1 파장 범위 또는 상기 제2 파장 범위의 파장을 갖는 광을 투과시키거나 또는 반사시키는 적어도 하나의 제3 코팅된 표면을 포함하고,
    상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나를 포함하는, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계; 및
    상기 슬라이스의 2개의 주 외부 표면 중 하나의 주 외부 표면과 판을 정렬하는 단계로서, 상기 판은 2차원 검출기 어레이를 갖고, 상기 2차원 검출기 어레이는, 각각의 세그먼트에 대해, 상기 제1 코팅된 표면이 상기 어레이의 적어도 하나의 제1 검출기와 연관되고, 상기 제2 코팅된 표면이 상기 어레이의 적어도 하나의 제2 검출기와 연관되고, 상기 제3 코팅된 표면이 상기 어레이의 적어도 하나의 제3 검출기와 연관되도록 배열되는, 상기 판을 정렬하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  36. 광학 디바이스를 제조하는 방법으로서,
    복수의 투명 판 및 적어도 하나의 지연 판을 획득하는 단계;
    적어도 하나의 세그먼트를 갖는 스택으로 복수의 코팅된 표면과 상기 적어도 하나의 지연 판을 배열하는 단계로서, 상기 적어도 하나의 세그먼트는 적어도 한번 반복되는 제1 세그먼트를 포함하고, 상기 복수의 코팅된 표면은,
    상기 투명 판과 연관된 적어도 하나의 표면에 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제1 코팅된 표면,
    상기 투명 판과 연관된 적어도 하나의 표면에 제1 색 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제2 코팅된 표면,
    상기 투명 판과 연관된 적어도 하나의 표면에 제2 색 편광 선택성 코팅을 도포함으로써 형성된 적어도 하나의 제3 코팅된 표면을 포함하고,
    상기 제1 세그먼트는 상기 적어도 하나의 제1 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제2 코팅된 표면 중 정확히 하나, 상기 적어도 하나의 제3 코팅된 표면 중 정확히 하나, 및 상기 적어도 하나의 지연 판의 하나 이상의 지연 판을 포함하는, 상기 복수의 코팅된 표면과 적어도 하나의 지연 판을 배열하는 단계; 및
    적어도 2개의 주 외부 표면 및 상기 2개의 주 외부 표면 사이에 상기 적어도 하나의 세그먼트의 하나의 세그먼트의 코팅된 표면과 적어도 하나의 지연 판을 갖는 적어도 하나의 구획을 갖는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  37. 광학 디바이스를 제조하는 방법으로서,
    복수의 투명 판을 획득하는 단계;
    복수의 코팅된 표면을 형성하도록 상기 투명 판과 연관된 복수의 표면에 편광 선택성 코팅을 도포하는 단계로서, 상기 복수의 코팅된 표면은 제1 편광 방향으로 편광된 코팅된 표면으로 입사광을 투과시키고, 상기 제1 편광 방향과 직교하는 제2 편광 방향으로 편광된 상기 코팅된 표면으로 입사광을 반사시키는, 상기 편광 선택성 코팅을 도포하는 단계;
    상기 코팅된 표면들이 서로 평행하도록 스택으로 상기 판을 배열하는 단계;
    적어도 제1 및 제2 주 외부 표면과 복수의 인접한 구획을 포함하는 슬라이스를 형성하도록 상기 스택을 슬라이싱하는 단계로서, 상기 각각의 구획은 상기 제1 및 제2 주 외부 표면 사이에 정확히 2개의 코팅된 표면을 포함하는, 상기 스택을 슬라이싱하는 단계;
    상기 제1 또는 제2 주 외부 표면에 제1 지연 판 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제1 코팅된 표면이 상기 제1 지연 판 어레이의 지연 판 각각과 연관되도록 상기 제1 지연 판 어레이를 부착하는 단계;
    상기 제2 또는 제1 주 외부 표면에 제2 지연 판 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제2 코팅된 표면이 상기 제2 지연 판 어레이의 지연 판 각각과 연관되도록 상기 제2 지연 판 어레이를 부착하는 단계;
    상기 제1 지연 판 어레이에 제1 배향으로 배치된 제1 렌즈 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제1 코팅된 표면이 상기 제1 렌즈 어레이의 렌즈 각각과 연관되도록 상기 제1 렌즈 어레이를 부착하는 단계; 및
    상기 제2 지연 판 어레이에 상기 제1 배향에 직교하는 제2 배향으로 배치된 제2 렌즈 어레이를 부착하는 단계로서, 각각의 구획에 대해, 상기 구획의 2개의 코팅된 표면 중 제2 코팅된 표면이 상기 제2 렌즈 어레이의 렌즈 각각과 연관되도록 상기 제2 렌즈 어레이를 부착하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  38. 광학 디바이스를 제조하는 방법으로서,
    일련의 세그먼트를 포함하는 주기적인 형성을 나타내도록 스택으로 복수의 코팅된 표면을 배열하는 단계로서, 상기 일련의 세그먼트는 제1 세그먼트를 포함하고, 상기 주기적인 형성은 상기 제1 세그먼트를 정해진 횟수만큼 반복함으로써 형성되고, 상기 제1 세그먼트는 상기 제1 코팅된 표면과 제2 코팅된 표면을 포함하고, 상기 코팅된 표면 각각은 특정 유형의 광을 투과시키고, 다른 유형의 광을 반사시키도록 구성된, 상기 복수의 코팅된 표면을 배열하는 단계;
    적어도 2개의 주 외부 표면과 복수의 인접한 구획을 갖는 슬라이스를 형성하도록 상기 코팅된 표면에 대해 비스듬한 각도로 상기 스택을 슬라이싱하는 단계로서, 각각의 구획은, 상기 2개의 주 외부 표면에 대해 비스듬하고 상기 2개의 주 외부 표면 사이에 주기적인 형성의 하나의 세그먼트의 코팅된 표면을 갖는, 상기 스택을 슬라이싱하는 단계; 및
    각각의 구획으로부터 적어도 하나의 기판을 형성하도록 상기 슬라이스를 적어도 한번 절단하는 단계로서, 상기 적어도 하나의 기판의 각각의 기판은 적어도 2개의 주 표면 및 상기 2개의 주 표면 사이에 내장된 주기적인 형성의 단일 세그먼트의 코팅된 표면을 갖고, 상기 코팅된 표면을 생성하는 데 사용되는 코팅과 비스듬한 각도는, 상기 적어도 하나의 기판의 각각의 기판에 대해, 상기 코팅된 표면에 의해 투과 및 반사되는 광이 상기 기판을 통해 안내되지 않은 광으로 전파되도록 이루어진, 상기 슬라이스를 적어도 한번 절단하는 단계
    를 포함하는, 광학 디바이스를 제조하는 방법.
  39. 제38항에 있어서, 상기 제1 코팅된 표면은 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 파장 범위의 파장을 갖는 광을 반사시키도록 구성되고, 상기 제2 코팅된 표면은 상기 제1 파장 범위의 파장을 갖는 광 및 상기 제2 파장 범위의 광을 투과시키고, 제3 파장 범위의 파장을 갖는 광을 반사시키도록 구성된, 광학 디바이스를 제조하는 방법.
  40. 제38항에 있어서, 상기 제1 코팅된 표면은 상기 제1 코팅된 표면에 대해 제1 편광 방향으로 편광을 갖는 광을 투과시키고, 상기 제1 코팅된 표면에 대해 상기 제1 편광 방향에 직교하는 제2 편광 방향으로 편광을 갖는 광을 반사시키도록 구성되고, 상기 제2 코팅된 표면은 상기 제2 코팅된 표면에 대해 상기 제1 편광 방향으로 편광을 갖는 광을 투과시키고, 상기 제2 코팅된 표면에 대해 상기 제2 편광 방향으로 편광을 갖는 광을 반사시키도록 구성된, 광학 디바이스를 제조하는 방법.
  41. 제38항에 있어서, 상기 제1 및 제2 코팅된 표면은 제1 파장 범위의 파장을 갖는 광을 투과시키고, 제2 파장 범위의 파장을 갖는 광을 반사시키도록 구성된, 광학 디바이스를 제조하는 방법.
KR1020227010179A 2019-09-04 2020-08-30 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법 KR20220054838A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962895519P 2019-09-04 2019-09-04
US62/895,519 2019-09-04
PCT/IL2020/050944 WO2021044409A1 (en) 2019-09-04 2020-08-30 Optical devices having dichroic beam combiners, optical devices for use with dichroic beam combiners, and methods of manufacture therefor

Publications (1)

Publication Number Publication Date
KR20220054838A true KR20220054838A (ko) 2022-05-03

Family

ID=74852334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227010179A KR20220054838A (ko) 2019-09-04 2020-08-30 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법

Country Status (8)

Country Link
US (1) US20220317467A1 (ko)
EP (1) EP4025954A4 (ko)
JP (1) JP2022547813A (ko)
KR (1) KR20220054838A (ko)
CN (1) CN114341712A (ko)
IL (1) IL290971A (ko)
TW (1) TW202127106A (ko)
WO (1) WO2021044409A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL289182B1 (en) 2019-07-04 2024-02-01 Lumus Ltd Figure waveguide with symmetric light beam multiplication
TW202115445A (zh) 2019-09-15 2021-04-16 以色列商魯姆斯有限公司 橫向光導管
EP4078288A4 (en) 2019-12-19 2023-06-07 Lumus Ltd. IMAGE PROJECTOR WITH A PHASE IMAGE GENERATOR
WO2021214745A1 (en) 2020-04-20 2021-10-28 Lumus Ltd. Near-eye display with enhanced laser efficiency and eye safety
KR20240020206A (ko) * 2021-07-04 2024-02-14 루머스 리미티드 근안 디스플레이를 위한 색상 시프트된 광학 시스템
US20230120547A1 (en) * 2021-10-18 2023-04-20 Microsoft Technology Licensing, Llc Compliance voltage based on diode output brightness
GB2622446A (en) 2022-09-19 2024-03-20 Exalos Ag Compact light source module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153546A (en) * 1984-02-02 1985-08-21 Pilkington Perkin Elmer Ltd Optical filtering devices
US5096520A (en) * 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
TW401530B (en) * 1996-03-12 2000-08-11 Seiko Epson Corp Polarized light separation device, method of fabricating the same and projection display apparatus using the polarized light separation device
US6404550B1 (en) * 1996-07-25 2002-06-11 Seiko Epson Corporation Optical element suitable for projection display apparatus
TWI375108B (en) * 2007-12-14 2012-10-21 Young Optics Inc Light projection apparatus and light-mixing module thereof
CN102449520B (zh) * 2009-05-28 2015-01-07 西铁城控股株式会社 光源装置
CN102147505B (zh) * 2010-02-08 2015-06-03 菲尼萨公司 增强型多体式光学设备
EP3460928A3 (en) * 2010-07-30 2019-08-21 Sony Corporation Light source unit, illuminator, and display
US9638988B2 (en) * 2013-12-12 2017-05-02 Corning Incorporated Light multiplexer with color combining element
WO2015188058A1 (en) * 2014-06-06 2015-12-10 Bribbla Dynamics Llc Cascaded beam combiner
US10313643B2 (en) * 2017-03-13 2019-06-04 Omnivision Technologies, Inc. Imaging system having four image sensors
US11187900B2 (en) * 2017-03-21 2021-11-30 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators

Also Published As

Publication number Publication date
EP4025954A1 (en) 2022-07-13
IL290971A (en) 2022-05-01
CN114341712A (zh) 2022-04-12
EP4025954A4 (en) 2022-11-09
US20220317467A1 (en) 2022-10-06
WO2021044409A1 (en) 2021-03-11
TW202127106A (zh) 2021-07-16
JP2022547813A (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
KR20220054838A (ko) 이색성 빔 결합기를 갖는 광학 디바이스, 이색성 빔 결합기와 함께 사용하기 위한 광학 디바이스 및 이를 제조하는 방법
CN112969955B (zh) 具有二向色分束器颜色组合器的光学装置和系统
CN208953803U (zh) 具紧凑型准直图像投影仪的光学系统
JP2022160457A (ja) ウェアラブルディスプレイのための照明装置
US8403496B2 (en) High efficiency micro projection optical engine
US9010938B2 (en) Projector with multiple different types of illumination devices
US20130328866A1 (en) Spatially multiplexed imaging directional backlight displays
US9122140B2 (en) Refractive polarization converter and polarized color combiner
US20110044046A1 (en) High brightness light source and illumination system using same
RU2011123396A (ru) Тонкая система подсветки и жидкокристаллический дисплей
US11598971B2 (en) Image device with a compact homogenizer
CN107436526B (zh) 一种光源装置以及投影显示装置
CN101546045A (zh) 偏振转换装置及使用其的投影系统
CN111176059A (zh) 照明系统
CN214375582U (zh) 显示装置、近眼显示设备以及光波导元件
KR20100081194A (ko) 조명 유닛 및 이를 구비한 투사영 조명장치
TWI597532B (zh) 背光模組及其應用之立體顯示裝置
US20230314689A1 (en) Optical systems including light-guide optical elements for two-dimensional expansion with retarder element
CN117452758A (zh) 一种LCoS芯片投影光机及投影仪
TW202346937A (zh) 採用與光導集成的二向色組合器的顯示器
TW202323933A (zh) 用於近眼顯示器的光學系統
JP2010067552A (ja) バックライト装置および液晶ディスプレイ装置