KR20220054061A - Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application - Google Patents

Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application Download PDF

Info

Publication number
KR20220054061A
KR20220054061A KR1020200138530A KR20200138530A KR20220054061A KR 20220054061 A KR20220054061 A KR 20220054061A KR 1020200138530 A KR1020200138530 A KR 1020200138530A KR 20200138530 A KR20200138530 A KR 20200138530A KR 20220054061 A KR20220054061 A KR 20220054061A
Authority
KR
South Korea
Prior art keywords
transition metal
metal nitride
bimetallic
bimetallic transition
nickel
Prior art date
Application number
KR1020200138530A
Other languages
Korean (ko)
Other versions
KR102483058B1 (en
Inventor
박상헌
임형규
윤덕현
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020200138530A priority Critical patent/KR102483058B1/en
Publication of KR20220054061A publication Critical patent/KR20220054061A/en
Application granted granted Critical
Publication of KR102483058B1 publication Critical patent/KR102483058B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/062Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present invention relates to a preparation method of a bimetallic transition metal nitride, a bimetallic transition metal nitride prepared thereby, and an application thereof. In the preparation method of the present invention, economic efficiency in a one-step process without using ammonia can be increased. In addition, the nitrogen oxide has a high electrochemical hydrogen production activity of platinum level and thus can be used as an electrode and a catalyst for hydrogen production.

Description

바이메탈릭 전이금속 질소화물 제조방법, 이에 의하여 제조된 바이메탈릭 전이금속 질소화물 및 그 응용 {Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application}Bimetallic transition metal nitride manufacturing method, bimetallic transition metal nitride manufactured thereby, and application thereof

본 발명은 바이메탈릭 전이금속 질소화물 제조방법, 이에 의하여 제조된 바이메탈릭 전이금속 질소화물 및 그 응용에 관한 것으로, 보다 상세하게는 암모니아를 사용하지 않고서도 1단계 공정으로 경제성을 높이며, 아울러 백금 수준의 높은 전기화학적 수소 생산 활성을 갖는, 바이메탈릭 전이금속 질소화물 제조방법, 이에 의하여 제조된 바이메탈릭 전이금속 질소화물 및 그 응용에 관한 것이다.The present invention relates to a method for manufacturing a bimetallic transition metal nitride, a bimetallic transition metal nitride prepared thereby, and an application thereof, and more particularly, to a one-step process without using ammonia, and to increase the economic feasibility, as well as to a platinum level It relates to a method for producing a bimetallic transition metal nitride having a high electrochemical hydrogen production activity, a bimetallic transition metal nitride prepared thereby, and applications thereof.

에너지 소비량의 증가로 화석연료의 고갈 문제 및 온실가스 배출과 같은 환경오염 문제가 대두되고 있다. 화석연료를 대체하기 위한 신재생 에너지 중 수소 에너지는 에너지 밀도가 높고 지구에 풍부하게 존재하는 물로부터 제조될 수 있기 때문에 대체 에너지원으로 주목받고 있다.Due to the increase in energy consumption, environmental pollution problems such as depletion of fossil fuels and greenhouse gas emission are emerging. Among the renewable energy to replace fossil fuels, hydrogen energy is attracting attention as an alternative energy source because it has a high energy density and can be manufactured from water abundantly present on the earth.

다양한 수소 생산 방법 중 태양열, 풍력과 같은 재생에너지와 연계한 형태의 전기화학적 물 분해 (수전해) 방법은 온실가스를 배출시키지 않는 청정한 수소 생산 시스템으로 평가되고 있다. 그러나 수전해조의 수소극 촉매로 백금과 같은 귀금속이 사용되기 때문에 경제성 문제를 지닌다.Among the various hydrogen production methods, the electrochemical water decomposition (water electrolysis) method in connection with renewable energy such as solar heat and wind power is evaluated as a clean hydrogen production system that does not emit greenhouse gases. However, since a noble metal such as platinum is used as a hydrogen electrode catalyst in a water electrolyzer, it has an economical problem.

수소극의 백금을 대체하기 위한 촉매로 전이금속 질소화물 (나이트라이드, nitride) 촉매가 보고된 바 있다. 특히 몰리브데늄 기반 질소화물이 (Mo2N, MoN) 다른 전이금속 질소화물에 비해 높은 수소 생산 활성을 보이는 것으로 알려져 있으나, 백금 혹은 다른 비귀금속 촉매들과 비교하면 여전히 낮은 활성을 보인다.A transition metal nitride (nitride, nitride) catalyst has been reported as a catalyst to replace platinum in the hydrogen electrode. In particular, molybdenum-based nitrides (Mo 2 N, MoN) are known to exhibit higher hydrogen production activity than other transition metal nitrides, but still show low activity compared to platinum or other non-noble metal catalysts.

이에 몰리브데늄 질소화물의 활성을 증가시키기 위해 니켈과 결합한 바이메탈릭 니켈 몰리브데늄 질소화물 (Ni0.2Mo0.8N, NiMo4N5 등)이 연구되고 있다. In order to increase the activity of molybdenum nitride, bimetallic nickel molybdenum nitride (Ni 0.2 Mo 0.8 N, NiMo 4 N 5 , etc.) combined with nickel is being studied.

기존의 니켈 몰리브데늄 질소화물은 2단계의 열처리를 거쳐서 제조되었다. 1단계는 몰리브데늄과 니켈 전구체를 수열합성법 등을 통해 니켈 몰리브데늄 (수)산화물로 만드는 과정이며, 2단계는 니켈 몰리브데늄 (수)산화물을 고온에서 암모니아 가스로 질화시켜 니켈 몰리브데늄 질소화물을 제조하는 과정이다. 이러한 니켈 몰리브데늄 질소화물 촉매는 전도도를 향상시키기 위해 주로 니켈 폼 (Ni foam) 혹은 카본지 (carbon paper) 위에 담지된 형태로 제조되고 있으며 몰리브데늄 질소화물에 비해 수소 생산 활성이 증가한다. Conventional nickel molybdenum nitride was manufactured through two-step heat treatment. Step 1 is a process of making molybdenum and nickel precursors into nickel molybdenum (hydroxide) oxide through hydrothermal synthesis, etc., and step 2 is nickel molybdenum (hydroxide) oxide by nitridation with ammonia gas at high temperature. It is a process for manufacturing denium nitride. These nickel molybdenum nitride catalysts are mainly manufactured in a form supported on nickel foam or carbon paper to improve conductivity, and hydrogen production activity is increased compared to molybdenum nitride.

그러나 2단계의 열처리 과정을 거치기 때문에 제조 과정이 복잡하며 독성의 암모니아 가스를 사용한다는 단점이 있다. 또한, 일부 합성법의 경우 순수한 니켈 몰리브데늄 질소화물이 아니라 불순물로 몰리브데늄 질소화물 혹은 니켈 질소화물이 함유되어 있다. However, since it undergoes a two-step heat treatment process, the manufacturing process is complicated and there are disadvantages in that toxic ammonia gas is used. In addition, in some synthetic methods, molybdenum nitride or nickel nitride is contained as an impurity rather than pure nickel molybdenum nitride.

이에, 높은 수소 생산 활성을 보일 뿐 아니라 기존의 방법에 비해 경제적인 바이메탈릭 전이금속 질소화물 촉매 제조의 필요성이 높아지고 있다.Accordingly, there is a growing need for preparing a bimetallic transition metal nitride catalyst that exhibits high hydrogen production activity and is more economical than the conventional method.

한국 등록특허 제0682033호Korean Patent No. 0682033

본 발명이 이루고자 하는 기술적 과제는 한번의 열처리 과정을 통해 바이메탈릭 전이금속 질소화물을 제조하는 것이다.The technical problem to be achieved by the present invention is to prepare a bimetallic transition metal nitride through a single heat treatment process.

또한, 본 발명의 다른 목적은 상기 바이메탈릭 전이금속 질소화물을 포함하는 촉매를 제공하는 것이다.Another object of the present invention is to provide a catalyst including the bimetallic transition metal nitride.

아울러, 본 발명의 또다른 목적은 상기 바이메탈릭 전이금속 질소화물을 포함하는 전극을 제공하는 것이다.In addition, it is another object of the present invention to provide an electrode including the bimetallic transition metal nitride.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위하여, 본 발명은 전이금속 전구체 용액에 요소를 첨가하여 반응용액을 제조하는 단계;In order to solve the above problems, the present invention comprises the steps of preparing a reaction solution by adding urea to a transition metal precursor solution;

상기 반응용액에 니켈 지지체를 침지시키는 단계;immersing the nickel support in the reaction solution;

상기 반응용액을 질소 분위기에서 열처리하여 상기 니켈 지지체 상에 바이메탈릭 전이금속 질소화물을 성장시키는 단계를 포함하는 바이메탈릭 전이금속 질소화물 제조방법을 제공한다.It provides a method for producing a bimetallic transition metal nitride comprising the step of growing the bimetallic transition metal nitride on the nickel support by heat-treating the reaction solution in a nitrogen atmosphere.

본 발명의 일 구현예로서, 상기 전이금속은, 몰리브데늄, 코발트, 니켈, 텅스텐 및 나이오븀으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.In one embodiment of the present invention, the transition metal may be at least one selected from the group consisting of molybdenum, cobalt, nickel, tungsten and niobium.

본 발명의 다른 구현예로서, 상기 전이금속 전구체 용액 1몰에 대하여 요소는 0.5 내지 3 몰 첨가되는 것일 수 있다.In another embodiment of the present invention, 0.5 to 3 moles of urea may be added with respect to 1 mole of the transition metal precursor solution.

본 발명의 또 다른 구현예로서, 상기 반응용액은 알코올, 물 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 1종 이상의 용액을 더 포함하는 것일 수 있다.As another embodiment of the present invention, the reaction solution may further include at least one solution selected from the group consisting of alcohol, water and ethylene glycol.

본 발명의 또 다른 구현예로서, 상기 바이메탈릭 전이금속 질소화물은 Ni2Mo3N의 화학식을 갖는 것일 수 있다.As another embodiment of the present invention, the bimetallic transition metal nitride may have a chemical formula of Ni 2 Mo 3 N.

본 발명의 또 다른 구현예로서, 상기 전이금속 전구체는 몰리브데늄 클로라이드(MoCl5)이고, 상기 니켈 지지체는 니켈 폼인 것일 수 있다.As another embodiment of the present invention, the transition metal precursor is molybdenum chloride (MoCl 5 ), and the nickel support may be a nickel foam.

본 발명의 또 다른 구현예로서, 상기 바이메탈릭 전이금속 질소화물 제조방법은 암모니아 가스를 상기 바이메탈릭 전이금속 질소화물의 질소공급원으로 사용하지 않는 것일 수 있다.As another embodiment of the present invention, the bimetallic transition metal nitride manufacturing method may not use ammonia gas as a nitrogen source of the bimetallic transition metal nitride.

본 발명의 또 다른 구현예로서, 상기 열처리는 섭씨 500 내지 800도로 1 내지 5시간 진행되는 것일 수 있다.As another embodiment of the present invention, the heat treatment may be performed at 500 to 800 degrees Celsius for 1 to 5 hours.

또한, 본 발명은 상기 방법에 의하여 제조된 바이메탈릭 전이금속 질소화물을 제공한다.In addition, the present invention provides a bimetallic transition metal nitride prepared by the above method.

또한, 본 발명은 상기 바이메탈릭 전이금속 질소화물을 포함하는 촉매를 제공한다.In addition, the present invention provides a catalyst comprising the bimetallic transition metal nitride.

아울러, 본 발명은 바이메탈릭 전이금속 질소화물을 포함하는 전극을 제공한다.In addition, the present invention provides an electrode comprising a bimetallic transition metal nitride.

본 발명은 종래 바이메탈릭 전이금속 질소화물의 제조법을 경제적으로 변화시킨 방법으로써 향후 다양한 조합의 바이메탈릭 전이금속 질소화물의 손쉬운 제조가 가능하다.The present invention is a method that economically changes the conventional method for producing a bimetallic transition metal nitride, and it is possible to easily prepare various combinations of bimetallic transition metal nitride in the future.

또한 본 발명에서 제시된 니켈 몰리브데늄 질소화물 촉매는 제조 과정에서 암모니아와 같은 독성 가스가 필요하지 않으며, 담지체인 니켈 폼이 열처리 과정에서 니켈 전구체로 작용하기 때문에 추가적인 니켈 전구체의 첨가도 필요 없는 경제적인 방법이다.In addition, the nickel molybdenum nitride catalyst presented in the present invention does not require a toxic gas such as ammonia in the manufacturing process, and since the nickel foam as a support acts as a nickel precursor in the heat treatment process, it is economical without the addition of an additional nickel precursor. way.

제조된 Ni2Mo3N는 백금과 근접하는 높은 전기화학적 수소 생산 활성을 나타내어 향후 수전해조의 수소극 촉매로 적용될 수 있다. 또한, 제시된 합성법으로 다양한 바이메탈릭 전이금속 질소화물의 제조가 가능하여 이들을 커패시터, 연료전지 및 chlor-alkali process 등에 전극으로 적용할 수 있다.The prepared Ni 2 Mo 3 N exhibits high electrochemical hydrogen production activity close to that of platinum, and thus can be applied as a hydrogen electrode catalyst for a water electrolyzer in the future. In addition, various bimetallic transition metal nitrides can be prepared by the proposed synthesis method, and these can be applied as electrodes to capacitors, fuel cells, and chlor-alkali processes.

도 1은 니켈 폼을 담지체로 적용하여 바이메탈릭 전이금속 질소화물 촉매를 (대표적으로 니켈 몰리브데늄 질소화물) 제조하는 방법을 도식화하여 나타낸 것이다.
도 2는 제조된 질소화물 촉매의 XRD 분석 결과를 나타낸 것이다.
도 3은 제조된 질소화물 촉매의 형태(morphology)를 확인하기 위한 SEM 및 TEM 분석 결과를 나타낸 것이다.
도 4는 제조된 Ni2Mo3N/NF 촉매의 전기화학적 수소 생산 특성을 확인한 결과를 나타낸 것이다.
1 schematically shows a method for preparing a bimetallic transition metal nitride catalyst (typically nickel molybdenum nitride) by applying a nickel foam as a support.
2 shows the results of XRD analysis of the prepared nitride catalyst.
3 shows the results of SEM and TEM analysis to confirm the morphology of the prepared nitride catalyst.
4 shows the results of confirming the electrochemical hydrogen production characteristics of the prepared Ni 2 Mo 3 N/NF catalyst.

본 발명자들은 열처리 과정을 1단계로 줄이고, 암모니아 가스를 사용하지 않는 바이메탈릭 전이금속 질소화물의 제조 방법을 확인하여 본 발명을 완성하였다.The present inventors completed the present invention by reducing the heat treatment process to one step and confirming a method for producing a bimetallic transition metal nitride that does not use ammonia gas.

보다 구체적으로 몰리브데늄 전구체 용액에 요소를 첨가하여 이를 니켈 지지체에 침지시킬 때, 한번의 열처리 과정으로도 니켈 지지체상에 바이메탈릭 전이금속 (니켈-몰리브데늄) 질소화물이 성장되는 것을 확인하였다.More specifically, when urea was added to the molybdenum precursor solution and immersed in the nickel support, it was confirmed that the bimetallic transition metal (nickel-molybdenum) nitride was grown on the nickel support even with a single heat treatment process. .

상기 결과로부터, 본 발명은 전이금속 전구체 용액에 요소를 첨가하여 반응용액을 제조하는 단계;From the above results, the present invention comprises the steps of preparing a reaction solution by adding urea to a transition metal precursor solution;

상기 반응용액에 니켈 지지체를 침지시키는 단계; 및immersing the nickel support in the reaction solution; and

상기 반응용액을 질소 분위기에서 열처리하여 상기 니켈 지지체 상에 바이메탈릭 전이금속 질소화물을 성장시키는 단계를 포함하는 바이메탈릭 전이금속 질소화물 제조방법을 제공할 수 있다. 본 발명의 제조방법을 도 1에 도식화하여 나타내었다. It is possible to provide a method for producing a bimetallic transition metal nitride comprising the step of growing the bimetallic transition metal nitride on the nickel support by heat-treating the reaction solution in a nitrogen atmosphere. The manufacturing method of the present invention is schematically shown in FIG. 1 .

상기 전이금속은, 몰리브데늄, 코발트, 니켈, 텅스텐 및 나이오븀으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다. 바람직하게는 본 발명과 같이 몰리브데늄일 수 있다.The transition metal may be at least one selected from the group consisting of molybdenum, cobalt, nickel, tungsten and niobium. Preferably, it may be molybdenum as in the present invention.

상기 바이메탈릭 전이금속 질소화물은 Ni2Mo3N의 화학식을 갖는 것을 특징으로 한다. 상기 질소화물은 기존의 결정 구조와 상이한 결정 구조를 갖는 것으로, 높은 수소 생산 활성을 가질 수 있다.The bimetallic transition metal nitride is characterized in that it has a chemical formula of Ni 2 Mo 3 N. The nitride has a crystal structure different from the conventional crystal structure, and may have high hydrogen production activity.

본 발명에서 상기 전이금속 전구체로서 몰리브데늄 전구체로 몰리브데늄 클로라이드(MoCl5)가 사용되고, 니켈 지지체로 니켈 폼을 사용하여 열처리 과정에서 니켈 전구체로서 작용하므로, 추가적인 니켈 전구체의 첨가가 필요 없이, 보다 효율적으로 바이메탈릭 전이금속 질소화물을 제조할 수 있다. In the present invention, as the transition metal precursor, molybdenum chloride (MoCl 5 ) is used as a molybdenum precursor, and since it acts as a nickel precursor in the heat treatment process using a nickel foam as a nickel support, there is no need to add an additional nickel precursor, Bimetallic transition metal nitride can be prepared more efficiently.

상기 바이메탈릭 전이금속 질소화물 제조방법은 암모니아 가스를 상기 바이메탈릭 전이금속 질소화물의 질소공급원으로 사용하지 않고 열처리 과정이 1단계인 것을 특징으로 하며, 요소를 첨가하여 사용함으로써, 독성 가스의 첨가 없이 질소공급이 가능한 장점이 있다. 상기 요소는, 전이금속 전구체 용액 1몰에 대하여 0.5 내지 3 몰의 비율로 첨가되는 것일 수 있다. The bimetallic transition metal nitride manufacturing method is characterized in that the heat treatment process is one step without using ammonia gas as a nitrogen source of the bimetallic transition metal nitride, and by adding urea and using it, there is no addition of toxic gas It has the advantage of being able to supply nitrogen. The element may be added in a ratio of 0.5 to 3 moles based on 1 mole of the transition metal precursor solution.

본 발명에서 니켈 지지체 상에 바이메탈릭 전이금속 질소화물을 성장시키는 단계는 섭씨 500 내지 800도로 1 내지 5시간 진행되는 것이 바람직하다. 상기 조건 범위 내에서 열처리가 진행되어, 니켈 지지체 상에 바이메탈릭 전이금속 질소화물이 효과적으로 성장될 수 있다.In the present invention, the step of growing the bimetallic transition metal nitride on the nickel support is preferably performed at 500 to 800 degrees Celsius for 1 to 5 hours. Heat treatment is performed within the above conditions, so that the bimetallic transition metal nitride can be effectively grown on the nickel support.

또한, 본 발명은 상기 방법에 의해 제조된 바이메탈릭 전이금속 질소화물을 제공할 수 있고, 상기 바이메탈릭 전이금속 질소화물을 포함하는 수소 또는 산소 생산용 촉매와 수소 전해조 수소극으로서의 전극 역시 제공할 수 있다.In addition, the present invention can provide a bimetallic transition metal nitride prepared by the above method, and a catalyst for hydrogen or oxygen production containing the bimetallic transition metal nitride and an electrode as a hydrogen electrode for a hydrogen electrolyzer can also be provided. there is.

상기 질소화물 촉매는 백금과 근접하는 높은 전기화학적 수소 생산 활성을 나타내어 향후 수전해조의 수소극 촉매로 활용될 수 있다. 또한, 상기 제조방법으로 다양한 바이메탈릭 전이금속 질소화물의 제조가 가능하여 이들을 커패시터, 연료전지 및 chlor-alkali process 등에 전극으로 적용할 수 있다.The nitride catalyst exhibits high electrochemical hydrogen production activity close to platinum, and thus can be utilized as a hydrogen electrode catalyst for a water electrolyzer in the future. In addition, various bimetallic transition metal nitrides can be manufactured by the above manufacturing method, and these can be applied as electrodes to capacitors, fuel cells, and chlor-alkali processes.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

[실시예][Example]

실시예 1. 니켈 몰리브데늄 질소화물 촉매의 합성Example 1. Synthesis of Nickel Molybdenum Nitride Catalyst

도 1은 본 발명의 니켈 폼을 담지체로 적용하여 니켈 몰리브데늄 질소화물을 제조하는 방법을 나타낸 것이다. 보다 세부적인 니켈 몰리브데늄 질소화물 합성 방법은 하기와 같다.1 shows a method for producing nickel molybdenum nitride by applying the nickel foam of the present invention as a support. A more detailed method for synthesizing nickel molybdenum nitride is as follows.

1g Molybdenum Chloride (몰리브데늄 클로라이드, MoCl5)을 2.53mL Ethanol (에탄올, C2H5OH)과 반응시켜 5분 동안 교반 후, 329.7mg Urea (요소, CH4N2O)를 첨가하여 1시간 동안 교반하였다(MoCl5 및 urea 몰비=1:1.5). 그 후 Ni foam (니켈 폼, NF)이 담긴 알루미나 보트 (Alumina boat)에 용액을 옮겨 담아 tube furnace에서 질소 분위기, 600℃, 3시간 동안 열처리를 통해 니켈 폼 위에 바이메탈릭 니켈 몰리브데늄 질소화물이 성장한 형태의 촉매(Ni2Mo3N/NF)의 제조가 완성되었다.1 g Molybdenum Chloride (molybdenum chloride, MoCl 5 ) was reacted with 2.53 mL Ethanol (ethanol, C 2 H 5 OH), stirred for 5 minutes, and 329.7 mg Urea (urea, CH 4 N 2 O) was added to 1 It was stirred for hours (MoCl 5 and urea molar ratio = 1:1.5). After that, the solution is transferred to an alumina boat containing Ni foam (nickel foam, NF), and bimetallic nickel molybdenum nitride is produced on the nickel foam through heat treatment in a tube furnace at 600° C. in a nitrogen atmosphere for 3 hours. Preparation of the grown catalyst (Ni 2 Mo 3 N/NF) was completed.

실시예 2. 촉매의 형태 확인Example 2. Confirmation of the shape of the catalyst

상기 실시예 1에서 제조된 촉매의 형태를 확인하기 위하여, XRD 분석을 수행하였다. 도 2는 제조된 촉매의 XRD (X-ray Diffraction, X-선 회절 분석)분석 결과를 나타낸 것으로, 검정 선은 cubic Ni2Mo3N의 기준 피크 (Reference peak)를 나타낸 것이고 (JCPDS 01-089-4564), 연두색 선은 니켈 폼의 XRD 패턴을 나타내었다. 빨간색 선은 본 발명에서 제조된 Ni2Mo3N/NF의 XRD 패턴을 나타내었다.In order to confirm the form of the catalyst prepared in Example 1, XRD analysis was performed. Figure 2 shows the XRD (X-ray Diffraction, X-ray diffraction analysis) analysis results of the prepared catalyst, the black line shows the reference peak (Reference peak) of cubic Ni 2 Mo 3 N (JCPDS 01-089) -4564), the yellow-green line indicates the XRD pattern of the nickel foam. The red line represents the XRD pattern of Ni 2 Mo 3 N/NF prepared in the present invention.

합성한 촉매의 XRD 패턴은 니켈 폼의 XRD 패턴과 Ni2Mo3N 기준 피크와 잘 일치하므로 니켈 몰리브데늄 질소화물 (Ni2Mo3N)이 불순물 없이 니켈 폼 위에 성장한 형태로 제조되었음을 확인할 수 있다.Since the XRD pattern of the synthesized catalyst matches well with the XRD pattern of the nickel foam and the Ni 2 Mo 3 N reference peak, it can be confirmed that nickel molybdenum nitride (Ni 2 Mo 3 N) was prepared in a form grown on the nickel foam without impurities. there is.

또한, 도 3에 제조된 촉매의 형태(morphology)를 확인하기 위한 SEM (Scanning Electron Microscope, 주사전자현미경) 및 TEM (Transition Electron Microscopy, 투과전자현미경) 분석 결과를 나타내었다.In addition, SEM (Scanning Electron Microscope) and TEM (Transition Electron Microscopy, transmission electron microscope) analysis results for confirming the morphology of the prepared catalyst are shown in FIG. 3 .

도 3a)는 SEM, EDS (Energy Dispersive X-ray Spectrometry, 에너지 분산형 X-선 분광분석법) 이미지이고, b), c)는 TEM 이미지로서, a) 이미지를 통해 니켈 폼 표면에 니켈, 몰리브데늄, 질소가 고르게 분포한 것으로 보아 Ni2Mo3N가 균일하게 형성된 것을 알 수 있었다. b) TEM 이미지를 통해 나노 크기의 (평균 7nm) Ni2Mo3N 입자가 잘 분산되어 있고, c)의 HRTEM (High Resolution TEM, 고해상 투과전자현미경) 이미지를 통하여 Ni2Mo3N의 (221), (310) 면에 해당하는 격자를 확인하였다.Figure 3a) is SEM, EDS (Energy Dispersive X-ray Spectrometry, energy dispersive X-ray spectroscopy) images, b), c) are TEM images, a) nickel, molyb on the surface of the nickel foam through the image It can be seen that denium and nitrogen are uniformly distributed, so that Ni 2 Mo 3 N is uniformly formed. b) Nano-sized (average 7nm) Ni 2 Mo 3 N particles are well dispersed through the TEM image, and (221) of Ni 2 Mo 3 N through the HRTEM (High Resolution TEM, High Resolution Transmission Electron Microscope) image of c) ) and (310) planes were identified.

따라서 본 발명의 제조방법에 따라, 안정화된 구조의 질소화물 촉매가 제조되었음을 알 수 있다.Therefore, it can be seen that, according to the preparation method of the present invention, a nitride catalyst having a stabilized structure was prepared.

실시예 3. 촉매의 수소 생성 효과 확인Example 3. Confirmation of the hydrogen production effect of the catalyst

상기 실시예 1에서 제조된 촉매의 수소 생산 효과를 확인하기 위하여, 전기화학적 활성을 확인하여 도 4에 나타내었다.In order to confirm the hydrogen production effect of the catalyst prepared in Example 1, the electrochemical activity was confirmed and shown in FIG. 4 .

순수한 니켈 폼과 수소 생산 반응에서 가장 뛰어난 활성을 보인다고 알려진 상용 Pt/C (Platinum on Carbon)와 본 발명에서 제조한 촉매의 전기화학적 활성을 비교하였으며, 제조한 촉매가 순수한 니켈 폼과 비교하여 월등히 높은 전기화학적 수소 생산 활성을 보였고, 상용 Pt/C와 비슷한 수준의 활성을 보인다는 것을 확인하였다.The electrochemical activity of the catalyst prepared in the present invention was compared with the commercially available Pt/C (Platinum on Carbon), which is known to show the most excellent activity in pure nickel foam and hydrogen production reaction, and the prepared catalyst was significantly higher than that of pure nickel foam. It was confirmed that the electrochemical hydrogen production activity was exhibited, and the activity was similar to that of commercial Pt/C.

전기화학적 활성은 동일한 전류밀도에서 과전압 값 (η)으로 비교하며, 기록된 η값이 작을수록 우수한 촉매이다. 본 발명에서 제조한 촉매는 전류밀도 10, 100mA/cm2에서 과전압 값 (η10, η100)이 21.3mV, 123.8mV를 나타내었으며 이는 Pt/C의 과전압 값 (η10=18.2, η100=123.8mV)과 유사하였으므로, 친환경적인 수소 생산법인 수전해조의 수소극 촉매로 적용될 수 있음을 예상할 수 있다.The electrochemical activity is compared with the overvoltage value (η) at the same current density, the lower the reported value of η the better the catalyst. The catalyst prepared in the present invention exhibited overvoltage values (η 10 , η 100 ) of 21.3 mV and 123.8 mV at current densities of 10 and 100 mA/cm 2 , which were the overvoltage values of Pt/C (η 10 =18.2, η 100 = 123.8 mV), so it can be expected that it can be applied as a hydrogen electrode catalyst for a water electrolyzer, an eco-friendly hydrogen production method.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (11)

전이금속 전구체 용액에 요소를 첨가하여 반응용액을 제조하는 단계;
상기 반응용액에 니켈 지지체를 침지시키는 단계; 및
상기 반응용액을 질소 분위기에서 열처리하여 상기 니켈 지지체 상에 바이메탈릭 전이금속 질소화물을 성장시키는 단계를 포함하는 바이메탈릭 전이금속 질소화물 제조방법.
preparing a reaction solution by adding urea to the transition metal precursor solution;
immersing the nickel support in the reaction solution; and
Heat-treating the reaction solution in a nitrogen atmosphere to grow a bimetallic transition metal nitride on the nickel support.
제1항에 있어서,
상기 전이금속은, 몰리브데늄, 코발트, 니켈, 텅스텐 및 나이오븀으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The transition metal is a bimetallic transition metal nitride production method, characterized in that at least one selected from the group consisting of molybdenum, cobalt, nickel, tungsten and niobium.
제1항에 있어서,
상기 전이금속 전구체 용액 1몰에 대하여 요소는 0.5 내지 3 몰의 비율로 첨가되는 것을 특징으로 하는, 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
A method for producing a bimetallic transition metal nitride, characterized in that the urea is added in a ratio of 0.5 to 3 moles with respect to 1 mole of the transition metal precursor solution.
제 1항에 있어서,
상기 반응용액은 알코올, 물 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 1종 이상의 용액을 더 포함하는 것을 특징으로 하는 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The reaction solution is a method for producing a bimetallic transition metal nitride, characterized in that it further comprises at least one solution selected from the group consisting of alcohol, water and ethylene glycol.
제 1항에 있어서,
상기 바이메탈릭 전이금속 질소화물은 Ni2Mo3N의 화학식을 갖는 것을 특징으로 하는 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The bimetallic transition metal nitride is a method for producing a bimetallic transition metal nitride, characterized in that it has a chemical formula of Ni 2 Mo 3 N.
제 1항에 있어서,
상기 전이금속 전구체는 몰리브데늄 클로라이드(MoCl5)이고, 상기 니켈 지지체는 니켈 폼인 것을 특징으로 하는 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The transition metal precursor is molybdenum chloride (MoCl 5 ), and the nickel support is a method for producing a bimetallic transition metal nitride, characterized in that the nickel foam.
제 1항에 있어서,
상기 바이메탈릭 전이금속 질소화물 제조방법은 암모니아 가스를 상기 바이메탈릭 전이금속 질소화물의 질소공급원으로 사용하지 않는 것을 특징으로 하는 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The bimetallic transition metal nitride manufacturing method is a bimetallic transition metal nitride manufacturing method, characterized in that the ammonia gas is not used as a nitrogen source of the bimetallic transition metal nitride.
제 1항에 있어서,
상기 열처리는 섭씨 500 내지 800도로 1 내지 5시간 1단계로 진행되는 것을 특징으로 하는 바이메탈릭 전이금속 질소화물 제조방법.
The method of claim 1,
The heat treatment is a method for producing a bimetallic transition metal nitride, characterized in that it is carried out in one step for 1 to 5 hours at 500 to 800 degrees Celsius.
제 1항 내지 제 8항 중 어느 한 항에 따른 방법에 의하여 제조된 바이메탈릭 전이금속 질소화물.
A bimetallic transition metal nitride prepared by the method according to any one of claims 1 to 8.
제 9항에 따른 바이메탈릭 전이금속 질소화물을 포함하는 촉매.
A catalyst comprising the bimetallic transition metal nitride according to claim 9 .
제 9항에 따른 바이메탈릭 전이금속 질소화물을 포함하는 전극.
An electrode comprising the bimetallic transition metal nitride according to claim 9.
KR1020200138530A 2020-10-23 2020-10-23 Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application KR102483058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200138530A KR102483058B1 (en) 2020-10-23 2020-10-23 Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200138530A KR102483058B1 (en) 2020-10-23 2020-10-23 Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application

Publications (2)

Publication Number Publication Date
KR20220054061A true KR20220054061A (en) 2022-05-02
KR102483058B1 KR102483058B1 (en) 2022-12-30

Family

ID=81593210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200138530A KR102483058B1 (en) 2020-10-23 2020-10-23 Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application

Country Status (1)

Country Link
KR (1) KR102483058B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682033B1 (en) 2005-12-30 2007-02-12 포항공과대학교 산학협력단 Photocatalyst complex and composition comprising same for producting hydrogen through water splitting
KR101733912B1 (en) * 2016-03-11 2017-05-24 아주대학교산학협력단 Method of manufacturing electrode material containing transition metal nitride and electrochemical apparatus including electrode having the electrode material as active material
KR20170109780A (en) * 2016-03-22 2017-10-10 고려대학교 산학협력단 Method for preparing molybdenum based nanoparticles using sol-gel method, and molybdenum based nanoparticles prepared by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682033B1 (en) 2005-12-30 2007-02-12 포항공과대학교 산학협력단 Photocatalyst complex and composition comprising same for producting hydrogen through water splitting
KR101733912B1 (en) * 2016-03-11 2017-05-24 아주대학교산학협력단 Method of manufacturing electrode material containing transition metal nitride and electrochemical apparatus including electrode having the electrode material as active material
KR20170109780A (en) * 2016-03-22 2017-10-10 고려대학교 산학협력단 Method for preparing molybdenum based nanoparticles using sol-gel method, and molybdenum based nanoparticles prepared by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Peng Zhou et al., Electrochimica Acta 337 (2020) 135689* *

Also Published As

Publication number Publication date
KR102483058B1 (en) 2022-12-30

Similar Documents

Publication Publication Date Title
Han et al. Recent advances in nanostructured metal nitrides for water splitting
CN111495395B (en) High-efficiency bimetallic nickel-molybdenum selenide electrocatalytic material and preparation method thereof
CN112076761B (en) Copper oxide nanowire loaded silver particle composite electrode, preparation method and application
CN110026210B (en) Preparation method and application of molybdenum disulfide composite material bifunctional electrocatalyst
CN110983361B (en) Tantalum nitride carbon nano film integrated electrode for limited-area growth of cobalt nanoparticles and preparation method and application thereof
KR102201082B1 (en) The method of generating oxygen vacancies in nickel-cobalt oxide for oxygen reduction reaction and nickel-cobalt oxide thereby
CN111939947B (en) Preparation method of nanosheet array electrocatalyst
Marimuthu et al. One-step fabrication of copper sulfide catalysts for HER in natural seawater and their bifunctional properties in freshwater splitting
CN111013634A (en) Non-noble metal Co/MoN composite nanosheet array catalyst and preparation method and application thereof
Kim et al. Photo-assisted electrolysis of urea using Ni-modified WO3/g-C3N4 as a bifunctional catalyst
Ma et al. Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts
CN113275027A (en) Preparation and application of bimetallic phosphide derived from prussian blue analogue as template and growing on foamed nickel
Hu et al. In situ construction of 3D low-coordinated bismuth nanosheets@ Cu nanowire core–shell nanoarchitectures for superior CO 2 electroreduction activity
CN111604061A (en) Caterpillar nickel-cobalt sulfide nano array and its synthesis and application
Li et al. Controllable synthesis of MOFs-derived porous and tubular bimetallic Fe–Ni phosphides for efficient electrocatalytic water splitting
KR102483058B1 (en) Manufacturing method of bimetallic transition metal nitride, the bimetallic transition metal nitride manufactured thereby and its application
CN116657185A (en) Woody carbon derived self-supporting integrated electrode material and preparation method and application thereof
CN112295581B (en) Electrocatalyst material and application thereof
Gao et al. Synergistic Co-N/VN dual sites in N-doped Co3V2O8 nanosheets: pioneering high-efficiency bifunctional electrolysis for high-current water splitting
CN113249752B (en) Fe2P-WOxPreparation method of oxygen evolution electrocatalyst
KR102498885B1 (en) Multifunctional catalyst comprising the nickel phosphide and method of preparing the same
Megersa et al. Chemical Vapor Deposition of Ru/RuSe2 Catalyst for Electrolytic Hydrogen Evolution Reaction
KR102393503B1 (en) Method for manufacturing transition metal carbide using lignin, transition metal carbide and catalyst comprising the same
KR102590111B1 (en) Metal layered double hydroxide nanosheet, method for manufacturing same, and electrocatalyst for oxygen evolution reaction comprising same
WO2023229382A1 (en) Transition metal oxide complex, and manufacturing method and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant