KR20220052252A - Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same - Google Patents

Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same Download PDF

Info

Publication number
KR20220052252A
KR20220052252A KR1020210028851A KR20210028851A KR20220052252A KR 20220052252 A KR20220052252 A KR 20220052252A KR 1020210028851 A KR1020210028851 A KR 1020210028851A KR 20210028851 A KR20210028851 A KR 20210028851A KR 20220052252 A KR20220052252 A KR 20220052252A
Authority
KR
South Korea
Prior art keywords
active material
composite active
glycerol
ion battery
lithium ion
Prior art date
Application number
KR1020210028851A
Other languages
Korean (ko)
Other versions
KR102531848B1 (en
Inventor
박경원
김지환
문상현
최진혁
박덕혜
신재훈
김성범
장재성
이학주
이우준
이슬기
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of KR20220052252A publication Critical patent/KR20220052252A/en
Application granted granted Critical
Publication of KR102531848B1 publication Critical patent/KR102531848B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a vanadium oxide-carbon composite negative electrode active material, a method for manufacturing the same, and a lithium ion battery including the same, wherein a mixed solvent of isopropanol and glycerol in an optimal ratio is used to manufacture a vanadium oxide-carbon composite negative electrode active material through a simple solvothermal synthesis method and a heat treatment process without a need for separate washing and centrifugation processes.

Description

산화바나듐-탄소 복합체 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬이온 배터리{Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same}Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same

본 발명은 산화바나듐-탄소 복합체 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬이온 배터리에 관한 것이다.The present invention relates to a vanadium oxide-carbon composite anode active material, a method for preparing the same, and a lithium ion battery comprising the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있다. 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries exhibiting high energy density and operating potential, long cycle life, and low self-discharge rate have been commercialized and widely used.

리튬 이차전지는 일반적으로 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 분리막 및 전해질로 구성되며 리튬 이온의 삽입-탈리(intercalation-decalation)에 의해 충전 및 방전이 이루어지는 이차전지이다.A lithium secondary battery is generally composed of a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and an electrolyte, and is a secondary battery that is charged and discharged by intercalation-decalation of lithium ions.

리튬 이차전지는 에너지 밀도(energy density)가 높고, 기전력이 크며 고용량을 발휘할 수 있는 장점을 가지므로 다양한 분야에 적용되고 있다.Lithium secondary batteries have advantages of high energy density, high electromotive force, and high capacity, and thus are being applied to various fields.

리튬 이차 전지의 양극을 구성하는 양극 활물질로서는 LiCoO2, LiMnO2, LiMn2O4 또는 LiCrO2와 같은 금속 산화물이 이용되고 있다. 음극을 구성하는 음극 활물질로서는 금속 리튬(metal lithium), 흑연(graphite) 또는 활성탄(activated carbon) 등의 탄소계 물질(carbon based meterial), 또는 산화실리콘(SiOx) 등의 물질이 사용되고있다.A metal oxide such as LiCoO 2 , LiMnO 2 , LiMn 2 O 4 or LiCrO 2 is used as a positive electrode active material constituting the positive electrode of a lithium secondary battery. As a negative active material constituting the negative electrode, a carbon-based material such as metal lithium, graphite, or activated carbon, or a material such as silicon oxide (SiO x ) is used.

최근에는 이론적인 용량이 매우 높은 V2O3 물질이 리튬이온 전지의 음극 활물질로 이용되고 있지만, 낮은 전기 전도도와 구조적 불안정성 때문에 실제 용량이 매우 낮고 율속 특성과 수명 안정성이 매우 떨어지는 문제점이 있어왔다.Recently, a V 2 O 3 material having a very high theoretical capacity has been used as an anode active material for a lithium ion battery, but due to low electrical conductivity and structural instability, the actual capacity is very low and the rate-limiting characteristics and lifespan stability are very poor.

따라서 리튬 이차전지의 음극 활물질로 이용되어 용량, 율속 특성 및 안정성이 우수한 V2O3 기반 물질에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on V 2 O 3 based materials that are used as anode active materials for lithium secondary batteries and have excellent capacity, rate-rate characteristics, and stability.

1. 대한민국 공개특허 제10-2019-0102612(2019.09.04. 공개)1. Republic of Korea Patent Publication No. 10-2019-0102612 (published on 04.09.2019)

본 발명의 목적은 리튬 이차전지의 음극 활물질로 이용되어 용량, 율속 특성 및 안정성이 우수한 V2O3 기반 물질의 제조방법을 제공하는 데에 있다.It is an object of the present invention to provide a method for preparing a V 2 O 3 based material that is used as a negative active material of a lithium secondary battery and has excellent capacity, rate-rate characteristics and stability.

또한, 본 발명의 다른 목적은 상기 제조방법으로 통해 제조된 V2O3 기반 활물질 및 이를 포함하는 리튬이온 배터리를 제공하는 데에 있다.In addition, another object of the present invention is to provide a V 2 O 3 based active material prepared by the above manufacturing method and a lithium ion battery including the same.

상기 목적을 달성이 하기 위하여, 본 발명은 메타바나듐산 암모늄(NH4VO3)을 용매에 용해시키는 단계; 상기 용액을 반응기에 넣고, 용매열 합성하여 전구체를 제조하는 단계; 및 상기 전구체를 열처리하는 단계; 를 포함하는 V2O3/C 복합체 활물질의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of dissolving ammonium metavanadate (NH 4 VO 3 ) in a solvent; preparing a precursor by putting the solution into a reactor and performing solvothermal synthesis; and heat-treating the precursor. It provides a method for preparing a V 2 O 3 /C composite active material comprising a.

또한, 본 발명은 상기의 제조방법에 따라 제조된 V2O3/C 복합체 활물질 및 이를 포함하는 리튬이온 배터리를 제공한다.In addition, the present invention provides a V 2 O 3 /C composite active material prepared according to the above manufacturing method and a lithium ion battery comprising the same.

본 발명에 따른 V2O3/C 복합체 활물질의 제조방법은 최적 비율의 이소프로판올 및 글리세롤 혼합용매를 이용하여 별도의 세척 및 원심분리를 위한 공정 필요 없이 간단한 용매열 합성법과 열처리 과정을 통해 산화바나듐-탄소 복합 음극 활물질을 제조할 수 있다.The V 2 O 3 /C composite active material production method according to the present invention uses a mixed solvent of isopropanol and glycerol in an optimal ratio, and uses a simple solvothermal synthesis method and a heat treatment process without the need for separate washing and centrifugation processes to vanadium oxide- A carbon composite anode active material may be prepared.

또한, 상기 제조방법을 통해 제조된 V2O3/C 복합체 활물질은 마이크로 크기의 구형의 나노입자가 상호 연결되어 있는 구조로 인해 리튬이온 배터리의 음극 활물질로 이용 시, 사이클 안정성이 우수하며, 리튬 이온이 균일하게 확산될 수 있고, 전도성 탄소가 네트워크를 형성함으로써 전기 전도도 및 이온 전도도가 향상되어 율속 특성 또한 우수한 효과가 있다.In addition, the V 2 O 3 /C composite active material prepared by the above method has excellent cycle stability when used as an anode active material of a lithium ion battery due to a structure in which micro-sized spherical nanoparticles are interconnected, and lithium Ions can be uniformly diffused, and as the conductive carbon forms a network, electrical conductivity and ionic conductivity are improved, so that rate-limiting properties are also excellent.

도 1은 (a) 상업용 V2O3, (b) V2O3(비교예 1), (c) V2O3/C(실시예 1)의 SEM 이미지를 나타낸 도면이다.
도 2는 (a) 상업용 V2O3, (b) V2O3(비교예 1), (c) V2O3/C(실시예 1)의 TEM & EDS 이미지를 나타낸 도면이다.
도 3은 (a) V2O3/C, (b) isopropanol 단일 용매로 합성한 샘플, (c) glycerol 단일 용매로 합성한 샘플의 XRD 패턴 결과를 나타낸 도면이다.
도 4는 Isopropanol/glycerol 혼합 용매 50 mL의 isopropanol 조성에 따라 합성한 시료들의 SEM 이미지 (a) 50 mL(glycerol 0 mL), (b) 35 mL(glycerol 15 mL), (c) 25 mL(glycerol 25 mL), (d) 0 mL(glycerol 50 mL)를 나타낸 도면이다.
도 5는 상업용 V2O3, V2O3(비교예 1), V2O3/C(실시예 1)을 음극 활물질로 이용한 리튬이온 배터리의 (a) 율속 특성 분석, (b) 수명 안정성 분석 결과를 나타낸 도면이다.
1 is a view showing an SEM image of (a) commercial V 2 O 3 , (b) V 2 O 3 (Comparative Example 1), (c) V 2 O 3 /C (Example 1).
2 is a view showing TEM & EDS images of (a) commercial V 2 O 3 , (b) V 2 O 3 (Comparative Example 1), and (c) V 2 O 3 /C (Example 1).
3 is a view showing the XRD pattern results of (a) V 2 O 3 /C, (b) a sample synthesized with a single solvent of isopropanol, and (c) a sample synthesized with a single solvent of glycerol.
4 is an SEM image of samples synthesized according to the isopropanol composition of an isopropanol/glycerol mixed solvent 50 mL (a) 50 mL (glycerol 0 mL), (b) 35 mL (glycerol 15 mL), (c) 25 mL (glycerol) 25 mL), (d) is a diagram showing 0 mL (glycerol 50 mL).
5 is a commercial V 2 O 3 , V 2 O 3 (Comparative Example 1), V 2 O 3 /C (Example 1) of a lithium ion battery using as an anode active material (a) rate characteristic analysis, (b) lifespan It is a figure showing the stability analysis result.

이하에서는 본 발명은 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 최적 비율의 이소프로판올 및 글리세롤 혼합용매를 이용하여 간단한 용매열 합성법과 열처리 과정을 통해 산화바나듐-탄소 복합 음극 활물질을 제조하였으며, 이렇게 제조된 활물질은 마이크로 크기의 구형의 나노입자가 상호 연결되어 있는 구조로 인해 사이클 안정성이 우수하며, 리튬 이온이 균일하게 확산될 수 있고, 전도성 탄소가 네트워크를 형성함으로써 전기 전도도 및 이온 전도도가 향상되어 율속 특성 또한 우수하여 리튬이온 배터리 음극 활물질로 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.The present inventors prepared a vanadium oxide-carbon composite anode active material through a simple solvothermal synthesis method and a heat treatment process using a mixed solvent of isopropanol and glycerol in an optimal ratio. Due to its structure, it has excellent cycle stability, lithium ions can be uniformly diffused, and electrical conductivity and ionic conductivity are improved due to the formation of a network of conductive carbon. It was found that the present invention was completed.

본 발명은 메타바나듐산 암모늄(NH4VO3)을 용매에 용해시키는 단계; 상기 용액을 반응기에 넣고, 용매열 합성하여 전구체를 제조하는 단계; 및 상기 전구체를 열처리하는 단계; 를 포함하는 V2O3/C 복합체 활물질의 제조방법을 제공한다.The present invention comprises dissolving ammonium metavanadate (NH 4 VO 3 ) in a solvent; preparing a precursor by putting the solution into a reactor and performing solvothermal synthesis; and heat-treating the precursor. It provides a method for preparing a V 2 O 3 /C composite active material comprising a.

이때, 상기 용매는 이소프로판올 및 글리세롤을 포함하는 혼합용매인 것으로, 상기 이소프로판올과 글리세롤의 부피비는 5 내지 10 : 1인 것을 특징으로 하며, 바람직하게는 43 : 7일 수 있으나, 이에 제한되는 것은 아니다.In this case, the solvent is a mixed solvent containing isopropanol and glycerol, and the volume ratio of isopropanol and glycerol is 5 to 10: 1, and preferably 43: 7, but is not limited thereto.

또한, 상기 용매열 합성은 150 내지 200 ℃에서 10 내지 15시간 반응시켜 이루어지는 것으로, 바람직하게는 180 ℃에서 12시간 반응시켜 이루어질 수 있으나, 이에 제한되는 것은 아니다.In addition, the solvothermal synthesis is performed by reacting at 150 to 200° C. for 10 to 15 hours, and preferably by reacting at 180° C. for 12 hours, but is not limited thereto.

또한, 상기 열처리는 500 내지 1000 ℃에서 3 내지 10시간 반응시키는 것으로, 600 ℃에서 5시간 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.In addition, the heat treatment may be performed at 500 to 1000° C. for 3 to 10 hours, and the reaction may be performed at 600° C. for 5 hours, but is not limited thereto.

또한, 상기 용매열 합성을 수행한 후 30 내지 70 ℃에서 20 내지 30시간 건조하는 단계를 더 포함하는 것으로, 바람직하게는 50 ℃에서 24시간 건조할 수 있으나, 이에 제한되는 것은 아니다.In addition, the method further comprises the step of drying at 30 to 70 °C for 20 to 30 hours after performing the solvothermal synthesis, preferably drying at 50 °C for 24 hours, but is not limited thereto.

이때, 상기 조건을 벗어나면 본 발명에 따른 산화바나듐-탄소 복합 음극 활물질이 제대로 형성되지 않아 리튬이온 배터리의 음극 활물질로서 우수한 사이클 안정성 및 율속 특성 효과를 가질 수 없어 리튬이온 배터리용 전극의 활물질로 유용하게 활용될 수 없는 문제가 야기될 수 있다.At this time, when the above conditions are exceeded, the vanadium oxide-carbon composite anode active material according to the present invention is not formed properly, and as an anode active material of a lithium ion battery, it cannot have excellent cycle stability and rate-rate characteristics, so it is useful as an active material for an electrode for a lithium ion battery Problems that cannot be used properly may arise.

또한, 본 발명은 상기의 제조방법에 따라 제조된 V2O3/C 복합체 활물질 및 이를 포함하는 리튬이온 배터리를 제공한다.In addition, the present invention provides a V 2 O 3 /C composite active material prepared according to the above manufacturing method and a lithium ion battery comprising the same.

이때, 상기 V2O3/C 복합체는 구형의 나노입자가 상호 연결되어 있는 구조인 것을 특징으로 하며, 상기 나노입자의 평균 직경은 0.5 내지 2 ㎛일 수 있다.In this case, the V 2 O 3 /C composite is characterized in that the spherical nanoparticles are interconnected, and the average diameter of the nanoparticles may be 0.5 to 2 μm.

또한, 상기 V2O3/C 복합체 활물질은 리튬이온 배터리의 음극 활물질로 이용될 수 있다.In addition, the V 2 O 3 /C composite active material may be used as an anode active material of a lithium ion battery.

본 발명의 일 실시예에 따르면, 본 발명에 따라 제조된 V2O3/C 복합체 활물질은 마이크로 크기의 구형의 나노입자가 상호 연결되어 있는 구조로 인해 사이클 안정성이 우수하며, 리튬 이온이 균일하게 확산될 수 있고, 전도성 탄소가 네트워크를 형성함으로써 전기 전도도 및 이온 전도도가 향상되어 율속 특성 또한 우수하여 리튬이온 배터리 음극 활물질로 유용하게 활용될 수 있다.According to an embodiment of the present invention, the V 2 O 3 /C composite active material prepared according to the present invention has excellent cycle stability due to a structure in which micro-sized spherical nanoparticles are interconnected, and lithium ions are uniformly It can be diffused, and as the conductive carbon forms a network, the electrical conductivity and ionic conductivity are improved, and the rate-limiting property is also excellent, so that it can be usefully used as an anode active material for a lithium ion battery.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for explaining the present invention in more detail, and it is to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples according to the gist of the present invention. it will be self-evident

<실시예 1> V<Example 1> V 22 OO 33 /C 합성/C synthesis

V2O3/C는 용매열 합성법과 열처리 과정을 통해 합성했다. NH4VO3 10 mmol을 이소프로판올(isopropanol) 43 mL와 글리세롤(glycerol) 7 mL로 이루어진 혼합 용매에 용해시킨 후, 소니케이션(sonication) 1시간 30분과 교반(stirring) 12시간을 거쳐 충분히 분산시켰다. 분산된 용액을 테프론-라인드 스테인리스 스틸 오토클레이브(Teflon-lined stainless steel autoclave)에 넣고, 머플로(muffle furnace)에서 180 ℃, 12시간 동안 열을 가해 용매열 합성을 진행하였다. 용매열 합성 후에 50 ℃ 오븐에서 24시간 동안 진공 건조하여 전구체를 제조하였다. 이후, 튜브 로(tube furnace)를 이용하여 건조된 전구체를 600 ℃, 질소 분위기에서 5시간 동안 열처리하여 V2O3/C를 합성했다. V 2 O 3 /C was synthesized through solvothermal synthesis and heat treatment. 10 mmol of NH 4 VO 3 was dissolved in a mixed solvent of 43 mL of isopropanol and 7 mL of glycerol, followed by sonication for 1 hour and 30 minutes and stirring for 12 hours to sufficiently disperse. The dispersed solution was placed in a Teflon-lined stainless steel autoclave, and solvothermal synthesis was performed by heating at 180° C. in a muffle furnace for 12 hours. After solvothermal synthesis, the precursor was prepared by vacuum drying in an oven at 50° C. for 24 hours. Thereafter, the dried precursor was heat-treated at 600° C. in a nitrogen atmosphere for 5 hours using a tube furnace to synthesize V 2 O 3 /C.

<비교예 1><Comparative Example 1>

상기 실시예 1과 동일한 방법으로 용매열 합성 후에 에탄올로 충분히 세척하고, 8000 rpm에서 10분 동안 3-5회 반복하여 원심분리한 후 50 ℃ 오븐에서 24시간 동안 진공 건조를 진행했다. 이후 상기 실시예 1과 동일한 조건 하에서 열처리를 진행하여 V2O3/C(C 함량이 매우 적어 이하 'V2O3'라 칭함)를 합성했다.After solvothermal synthesis in the same manner as in Example 1, washing was sufficiently performed with ethanol, centrifugation was repeated 3-5 times at 8000 rpm for 10 minutes, and vacuum drying was performed in an oven at 50° C. for 24 hours. Thereafter, heat treatment was performed under the same conditions as in Example 1 to synthesize V 2 O 3 /C (hereinafter referred to as 'V 2 O 3 ' because the C content was very small).

<비교예 2><Comparative Example 2>

이소프로판올/글리세롤 혼합 용매 50 mL 중 이소프로판올을 50 mL(글리세롤 0 mL), 35 mL(글리세롤 15 mL), 25 mL(글리세롤 25 mL), 0 mL(글리세롤 50 mL)으로 조절하여 합성한 것 외에는 상기 실시예 1과 동일한 조건으로 합성하였다.In 50 mL of an isopropanol/glycerol mixed solvent, 50 mL (glycerol 0 mL), 35 mL (glycerol 15 mL), 25 mL (glycerol 25 mL), 0 mL (glycerol 50 mL) It was synthesized under the same conditions as in Example 1.

<실험예 1> V<Experimental Example 1> V 22 OO 33 /C 구조 분석/C structure analysis

도 1은 상업용 V2O3 [Commercial V2O3, sigma-aldrich, 98% (CAS No. : 1314-34-7, CAT No. : 215988)], V2O3(비교예 1), V2O3/C(실시예 1)에 대한 SEM 이미지이다. 상업용 V2O3 와는 달리 V2O3 및 V2O3/C는 평균 직경 1 ㎛ 크기의 구형을 이루고 있음을 확인하였다.1 is a commercial V 2 O 3 [Commercial V 2 O 3 , sigma-aldrich, 98% (CAS No.: 1314-34-7, CAT No.: 215988)], V 2 O 3 (Comparative Example 1), SEM image for V 2 O 3 /C (Example 1). It was confirmed that, unlike commercial V 2 O 3 , V 2 O 3 and V 2 O 3 /C form a sphere having an average diameter of 1 μm.

도 2는 상업용 V2O3, V2O3, V2O3/C에 대한 TEM & EDS 이미지이다. 모든 샘플에서 바나듐(vanadium)과 산소(oxygen)가 균일하게 분포해 있었고, 비교예 1의 V2O3와 비교하여 실시예 1의 V2O3/C는 탄소(carbon)가 높은 함량으로 균일하게 분포해 있음을 관찰할 수 있었다. 이는, 비교예 1의 세척 및 원심분리 과정에서 탄소가 손실되었기 때문으로 판단된다.2 is a TEM & EDS image for commercial V 2 O 3 , V 2 O 3 , V 2 O 3 /C. In all samples, vanadium and oxygen were uniformly distributed, and compared to V 2 O 3 of Comparative Example 1, V 2 O 3 /C of Example 1 was uniform with a high carbon content. It can be observed that they are evenly distributed. This is considered to be because carbon was lost in the washing and centrifugation process of Comparative Example 1.

도 3은 실시예 1 및 비교예 2를 통해 isopropanol 또는 glycerol 단일 용매로 합성한 시료에 대한 XRD 패턴들이다. Isopropanol 단일 용매로 합성할 경우 V2O3 (V3+)가 형성되지 않고, V6O13 (V4.3+), VO2 (V4+)가 형성됨을 확인하였다(도 3(b)). 또한, Glycerol 단일 용매로 합성한 시료는 V2O3/C와 동일하게 V2O3 능면체(rhombohedral) 구조가 확인되었다(도 3(c)). 이를 통해 glycerol이 VO3 -를 V2O3로 환원시키는 환원제 역할을 수행함을 확인하였다. 또한, (a), (c)에서 carbon은 비정질(amorphous)한 상태이기 때문에 피크를 확인하기 어려웠다. 3 is XRD patterns of samples synthesized using isopropanol or glycerol single solvent through Example 1 and Comparative Example 2. FIG. When synthesized with a single solvent of Isopropanol, V 2 O 3 (V 3+ ) was not formed, but it was confirmed that V 6 O 13 (V 4.3+ ), VO 2 (V 4+ ) was formed (FIG. 3(b)) . In addition, in the sample synthesized with a single solvent of glycerol, a V 2 O 3 rhombohedral structure was confirmed as in V 2 O 3 /C (Fig. 3(c)). Through this, it was confirmed that glycerol acts as a reducing agent for reducing VO 3 - to V 2 O 3 . In addition, in (a) and (c), it was difficult to identify the peak because carbon was in an amorphous state.

도 4는 비교예 2와 같이 isopropanol과 glycerol 혼합 용매 50 mL에서 isopropanol과 glycerol의 조성에 따라 합성한 시료들의 SEM 이미지이다. Isopropanol 또는 glycerol 단일 용매로 합성할 경우, 평균 직경 1 ㎛ 크기의 구형이 형성되지 않았고, 불균일한 입자 형태와 크기가 확인되었다(도 4(a), (d)). 또한, isopropanol을 25 mL(glycerol 25 mL)로 참가하여 합성한 V2O3/C에 비해 35 mL(glycerol 15 mL) 첨가하였을 때, 비교적 균일한 구형의 형태를 확인할 수 있었으며, 도 1의 SEM 결과를 통해 isopropanol 43 mL, glycerol 7 mL 조성일 때 가장 균일한 입자를 확인하였다.4 is an SEM image of samples synthesized according to the composition of isopropanol and glycerol in 50 mL of a mixed solvent of isopropanol and glycerol as in Comparative Example 2. When synthesizing with isopropanol or glycerol as a single solvent, spheres with an average diameter of 1 μm were not formed, and non-uniform particle shapes and sizes were confirmed (Figs. 4(a), (d)). In addition, when 35 mL (15 mL of glycerol) was added compared to V 2 O 3 /C synthesized by participating in isopropanol in 25 mL (25 mL of glycerol), a relatively uniform spherical shape was confirmed, and the SEM of FIG. Through the results, the most uniform particles were confirmed when the composition was isopropanol 43 mL and glycerol 7 mL.

결과적으로, 환원을 통해 V2O3/C가 생성되면서 균일한 입자 크기 및 형태를 나타내기 위해 isopropanol 43 mL, glycerol 7 mL가 최적의 용매 조건임을 확인하였다.As a result, it was confirmed that 43 mL of isopropanol and 7 mL of glycerol were optimal solvent conditions in order to show a uniform particle size and shape while V 2 O 3 /C was generated through reduction.

<실험예 2> 전기화학 분석<Experimental Example 2> Electrochemical analysis

전기화학분석을 위해 실시예 1, 비교예 1, 상업용 V2O3 활물질, 도전재 (super P), 바인더 (Polyvinylidene fluoride; PVdF)를 8:1:1 비율로 NMP(N-Methyl-Pyrrolidinone) 용매에 넣고, 점도를 조절하여 슬러리로 제조하였고, doctor-blade를 이용하여 2mil 두께로 설정한 후, 10 mm/s 속도로 구리 집전체 위에 상기 제조한 슬러리를 비교적 균일한 두께로 캐스팅하였다. 그 후에 110 ℃ 오븐에서 24시간 건조를 진행하여 NMP를 모두 증발시켰고, 이어서 NMP가 제거된 빈 공간을 최소화하기 위해 roll-press를 이용하여 평균 두께의 80%로 압연시켜 음극을 제조하였다. For electrochemical analysis, Example 1, Comparative Example 1, commercial V 2 O 3 Active material, conductive material (super P), binder (Polyvinylidene fluoride; PVdF) in a ratio of 8:1:1 NMP (N-Methyl-Pyrrolidinone) It was put in a solvent, and the viscosity was adjusted to prepare a slurry, and after setting the thickness to 2 mil using a doctor-blade, the prepared slurry was cast to a relatively uniform thickness on a copper current collector at a speed of 10 mm/s. After that, all of the NMP was evaporated by drying in an oven at 110° C. for 24 hours. Then, to minimize the empty space from which the NMP was removed, it was rolled to 80% of the average thickness using a roll-press to prepare a negative electrode.

아르곤 기체로 채워진 글로브 박스 내에서 제조된 음극으로 코인 형태의 전지를 조립하였고, 상대 전극으로 리튬 금속을 사용하였다. 전해질은 에틸렌 카보네이트(ethylene carbonate)와 디메틸 카보네이트(dimethyl carbonate)가 1:1 부피비로 혼합된 유기 용매에 LiPF6 리튬염이 1.1 M 용해된 액체 전해질을 사용하였다.A coin-shaped battery was assembled as an anode prepared in a glove box filled with argon gas, and lithium metal was used as a counter electrode. As the electrolyte, a liquid electrolyte in which 1.1 M of LiPF 6 lithium salt was dissolved in an organic solvent in which ethylene carbonate and dimethyl carbonate were mixed in a 1:1 volume ratio was used.

도 5(a)는 상업용 V2O3, V2O3(비교예 1), V2O3/C(실시예 1)의 율속 특성 비교를 보여주며, 100, 200, 300, 500, 1000, 100 mA g-1의 전류 밀도로 충방전을 진행했을 때의 방전 용량을 보여준다. 가장 높은 1000 mA g-1 전류 밀도에서 세 샘플의 용량은 각각 41, 110, 230 mAh g-1이었다. Figure 5 (a) shows a comparison of the rate characteristics of commercial V 2 O 3 , V 2 O 3 (Comparative Example 1), V 2 O 3 /C (Example 1), 100, 200, 300, 500, 1000 , shows the discharge capacity when charging and discharging at a current density of 100 mA g -1 . At the highest 1000 mA g -1 current density, the capacities of the three samples were 41, 110 and 230 mAh g -1 , respectively.

이는, V2O3/C의 마이크로 스피어(microsphere) 구조 및 이들이 상호 연결된 구조로 인해 3차원적으로 리튬 이온이 균일하게 확산될 수 있는 환경이 조성되었고, 활물질 내에 포함된 전도성 탄소의 네트워크(conductive carbon network)로 인해 전기 전도도 및 이온 전도도가 향상되어 높은 용량을 나타낸 것으로 판단된다. 또한, 높은 전류 밀도에서도 비교적 우수한 성능을 나타내었다. This is because the V 2 O 3 /C microsphere structure and their interconnected structures create an environment in which lithium ions can be uniformly diffused three-dimensionally, and the conductive carbon network (conductive) contained in the active material. Carbon network), which improves electrical and ionic conductivity, and is considered to have high capacity. In addition, it exhibited relatively good performance even at high current density.

도 5(b)는 100 mA g-1 전류 밀도로 100 사이클 동안 충방전했을 때의 방전 용량을 보여준다. 상업용 V2O3, V2O3(비교예 1), V2O3/C(실시예 1)의 초기 용량은 각각 85, 308, 475 mAh g-1이었고, 초기 쿨롱 효율은 각각 54, 85, 96%이었다. 특히, V2O3/C는 초기부터 높은 쿨롱 효율을 보였고, 100 사이클 동안 99% 이상의 쿨롱 효율을 유지하여 가역성이 매우 우수함을 확인하였다. 또한, 100 사이클 충방전을 진행한 후, 세 샘플의 용량은 각각 63, 285, 508 mAh g-1이었고, 용량 유지율은 각각 75, 93, 107%이었다. Figure 5 (b) shows the discharge capacity when charging and discharging for 100 cycles at 100 mA g -1 current density. Commercial V 2 O 3 , V 2 O 3 (Comparative Example 1), V 2 O 3 /C (Example 1) The initial capacity of each was 85, 308, 475 mAh g -1 , respectively, the initial coulombic efficiency was 54, 85, 96%. In particular, V 2 O 3 /C showed a high coulombic efficiency from the beginning, and it was confirmed that the reversibility was very good by maintaining a coulombic efficiency of 99% or more for 100 cycles. In addition, after 100 cycles of charging and discharging, the capacities of the three samples were 63, 285, and 508 mAh g -1 , respectively, and the capacity retention rates were 75, 93, and 107%, respectively.

이는, 사이클 진행 동안, 상업용 V2O3는 입자들의 모양과 크기가 매우 불균일하기 때문에 충방전 과정에서 부피 팽창 및 수축으로 인해 활물질의 응집(aggregation)과 분쇄(pulverization)가 발생했을 것이다. 이로 인해 사이클이 진행될수록 점차 전기화학 반응을 위한 활성 사이트(active site) 수가 감소하여 용량이 감소한 것으로 판단된다. 이와 같이 상업용 V2O3는 구조적으로 매우 불안정하여 용량 및 용량 유지율이 매우 낮은 결과를 보였다. 그러나, V2O3 및 V2O3/C는 모양과 크기가 비교적 균일한 마이크로 스피어(microsphere) 형태로 구조적 안정성이 크게 향상되었다. This is, during the cycle, commercial V 2 O 3 Because the shape and size of the particles are very non-uniform, aggregation and pulverization of the active material would have occurred due to volume expansion and contraction during the charge/discharge process. As a result, as the cycle progresses, the number of active sites for the electrochemical reaction is gradually reduced, and it is determined that the capacity is reduced. As such, commercial V 2 O 3 was structurally very unstable, resulting in very low capacity and capacity retention. However, V 2 O 3 and V 2 O 3 /C have significantly improved structural stability in the form of microspheres having relatively uniform shapes and sizes.

특히, 본 발명의 V2O3/C의 경우 마이크로 스피어(microsphere) 입자간의 상호 연결된 구조와 전도성 탄소의 네트워크(conductive carbon network)가 충방전 과정에서의 부피 변화로 인한 전극의 응집(aggregation)과 분쇄(pulverization)를 완화시켜 주어 구조적 안정성이 가장 우수함을 확인하였다.In particular, in the case of V 2 O 3 /C of the present invention, the interconnected structure between the microsphere particles and the conductive carbon network cause aggregation of the electrode due to the volume change in the charging and discharging process and It was confirmed that the structural stability was the best by relaxing pulverization.

Claims (11)

메타바나듐산 암모늄(NH4VO3)을 용매에 용해시키는 단계;
상기 용액을 반응기에 넣고, 용매열 합성하여 전구체를 제조하는 단계; 및
상기 전구체를 열처리하는 단계; 를 포함하는 V2O3/C 복합체 활물질의 제조방법.
Dissolving ammonium metavanadate (NH 4 VO 3 ) in a solvent;
preparing a precursor by putting the solution into a reactor and performing solvothermal synthesis; and
heat-treating the precursor; A method for producing a V 2 O 3 /C composite active material comprising a.
제 1항에 있어서,
상기 용매는 이소프로판올 및 글리세롤을 포함하는 혼합용매인 것을 특징으로 하는 V2O3/C 복합체 활물질의 제조방법.
The method of claim 1,
The solvent is a method for producing a V 2 O 3 /C composite active material, characterized in that the mixed solvent comprising isopropanol and glycerol.
제 2항에 있어서,
상기 이소프로판올과 글리세롤의 부피비는 5 내지 10 : 1인 것을 특징으로 하는 V2O3/C 복합체 활물질의 제조방법.
3. The method of claim 2,
The volume ratio of the isopropanol and glycerol is 5 to 10: Method of producing a V 2 O 3 /C composite active material, characterized in that 1: 1.
제 1항에 있어서,
상기 용매열 합성은 150 내지 200 ℃에서 10 내지 15시간 반응시켜 이루어지는 것을 특징으로 하는 V2O3/C 복합체 활물질의 제조방법.
The method of claim 1,
The solvothermal synthesis is a method for producing a V 2 O 3 /C composite active material, characterized in that the reaction is performed at 150 to 200 ° C. for 10 to 15 hours.
제 1항에 있어서,
상기 열처리는 500 내지 1000 ℃에서 3 내지 10시간 반응시키는 것을 특징으로 하는 V2O3/C 복합체 활물질의 제조방법.
The method of claim 1,
The heat treatment is a method for producing a V 2 O 3 /C composite active material, characterized in that the reaction at 500 to 1000 ℃ 3 to 10 hours.
제 1항에 있어서,
상기 용매열 합성을 수행한 후 30 내지 70 ℃에서 20 내지 30시간 건조하는 단계를 더 포함하는 것을 특징으로 하는 V2O3/C 복합체 활물질의 제조방법.
The method of claim 1,
After performing the solvothermal synthesis, the method for producing a V 2 O 3 /C composite active material, characterized in that it further comprises the step of drying at 30 to 70 ° C. for 20 to 30 hours.
제 1항 내지 제 6항 중 어느 한 항의 제조방법에 따라 제조된 V2O3/C 복합체 활물질.A V 2 O 3 /C composite active material prepared according to the method of any one of claims 1 to 6. 제 7항에 있어서,
상기 V2O3/C 복합체는 구형의 나노입자가 상호 연결되어 있는 구조인 것을 특징으로 하는 V2O3/C 복합체 활물질.
8. The method of claim 7,
The V 2 O 3 /C composite is a V 2 O 3 /C composite active material, characterized in that it has a structure in which spherical nanoparticles are interconnected.
제 8항에 있어서,
상기 나노입자의 평균 직경은 0.5 내지 2 ㎛인 것을 특징으로 하는 V2O3/C 복합체 활물질.
9. The method of claim 8,
The average diameter of the nanoparticles is V 2 O 3 /C composite active material, characterized in that 0.5 to 2㎛.
제 7항에 있어서,
상기 V2O3/C 복합체 활물질은 리튬이온 배터리의 음극 활물질로 이용되는 것을 특징으로 하는 V2O3/C 복합체 활물질.
8. The method of claim 7,
The V 2 O 3 /C composite active material is a V 2 O 3 /C composite active material, characterized in that used as an anode active material of a lithium ion battery.
제 7항에 따른 V2O3/C 복합체 활물질을 포함하는 리튬이온 배터리.A lithium ion battery comprising the V 2 O 3 /C composite active material according to claim 7.
KR1020210028851A 2020-10-20 2021-03-04 Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same KR102531848B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200135678 2020-10-20
KR1020200135678 2020-10-20

Publications (2)

Publication Number Publication Date
KR20220052252A true KR20220052252A (en) 2022-04-27
KR102531848B1 KR102531848B1 (en) 2023-05-16

Family

ID=81391089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210028851A KR102531848B1 (en) 2020-10-20 2021-03-04 Vanadium oxide-carbon composite anode active material, manufacturing method thereof, and lithium ion battery comprising same

Country Status (1)

Country Link
KR (1) KR102531848B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160042714A (en) * 2014-10-10 2016-04-20 동아대학교 산학협력단 Manufacturing Method Of Positive Active Material For Lithium Secondary Battery To Form A Carbon Coating Layer By Using A Carboxylic Acid, The Positive Active Material By The Same And Lithium Secondary Battery Using The Positive Active Material
KR20190041669A (en) * 2017-10-13 2019-04-23 주식회사 엘지화학 Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
KR20190102612A (en) 2018-02-26 2019-09-04 주식회사 엘지화학 Negative electrode active material for lithium secondary battery, negative electrode for lithium secondry battery and lithium secondary battery comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160042714A (en) * 2014-10-10 2016-04-20 동아대학교 산학협력단 Manufacturing Method Of Positive Active Material For Lithium Secondary Battery To Form A Carbon Coating Layer By Using A Carboxylic Acid, The Positive Active Material By The Same And Lithium Secondary Battery Using The Positive Active Material
KR20190041669A (en) * 2017-10-13 2019-04-23 주식회사 엘지화학 Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
KR20190102612A (en) 2018-02-26 2019-09-04 주식회사 엘지화학 Negative electrode active material for lithium secondary battery, negative electrode for lithium secondry battery and lithium secondary battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. Guo et al., "Precursor-mediated synthesis of double-shelled V2O5 hollow nanospheres as cathode material for lithium-ion batteries", CrystEngComm, 2016, 18, 4068* *
J. Zheng et al., "V2O3/C nanocomposites with interface defects for enhanced intercalation pseudocapacitance", Electrochimica Acta 318 (2019) 635-643* *

Also Published As

Publication number Publication date
KR102531848B1 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
CN113036106A (en) Composite lithium supplement additive and preparation method and application thereof
JP5529286B2 (en) Hydrothermal method for the production of LiFePO4 powder
KR20220092556A (en) Anode active material for battery and manufacturing method thereof, battery negative electrode, battery
KR20140101640A (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP2010251302A (en) Manufacturing method of positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery and electrode for lithium ion battery, as well as lithium ion battery
CN115224254B (en) Cu, zn and Mg co-doped layered oxide sodium ion battery positive electrode material, and preparation method and application thereof
WO2020258764A1 (en) Positive electrode active material and preparation method therefor, and lithium battery
JP2013225471A (en) Cathode active material for secondary battery and method for producing the same
CN111029560A (en) Spinel structure positive active material doped with sodium ions in gradient manner and preparation method thereof
CN112018344A (en) Carbon-coated nickel sulfide electrode material and preparation method and application thereof
CN112331838A (en) High-capacity silicon monoxide composite negative electrode material of lithium ion battery and preparation method thereof
CN111646459A (en) Preparation method and application of boron-doped graphene material
KR101440003B1 (en) The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
CN110790248B (en) Iron-doped cobalt phosphide microsphere electrode material with flower-shaped structure and preparation method and application thereof
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR101554944B1 (en) The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
KR20180133141A (en) Cobalt concentration gradient cathode active material for lithium secondary battery and preparation method thereof
CN113764662A (en) Carbon-coated vanadium-titanium-manganese-sodium phosphate micro-spheres and preparation method and application thereof
KR20120123821A (en) Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
KR20120137809A (en) Synthesis method of micro-sized and porous lifepo4/c composites by the two-step crystallization process and their application method to cathode materials in li-ion batteries
CN114455563B (en) Modified lithium iron phosphate material and preparation method and application thereof
KR101957233B1 (en) A cathode active material for lithium secondary battery and a method of preparing the same
CN109817968B (en) Surface-coated lithium nickel manganese oxide particles and method for producing same
CN113113588B (en) Method for preparing lithium fast ion conductor material coated high-nickel ternary layered oxide by using covalent interface engineering strategy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant