KR20220046158A - Analysis method of mixed ratio of waste cooking-oils for biodiesel production process - Google Patents

Analysis method of mixed ratio of waste cooking-oils for biodiesel production process Download PDF

Info

Publication number
KR20220046158A
KR20220046158A KR1020200129254A KR20200129254A KR20220046158A KR 20220046158 A KR20220046158 A KR 20220046158A KR 1020200129254 A KR1020200129254 A KR 1020200129254A KR 20200129254 A KR20200129254 A KR 20200129254A KR 20220046158 A KR20220046158 A KR 20220046158A
Authority
KR
South Korea
Prior art keywords
model
waste
oil
cooking oil
waste cooking
Prior art date
Application number
KR1020200129254A
Other languages
Korean (ko)
Other versions
KR102421770B1 (en
Inventor
박두산
이호서
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020200129254A priority Critical patent/KR102421770B1/en
Publication of KR20220046158A publication Critical patent/KR20220046158A/en
Application granted granted Critical
Publication of KR102421770B1 publication Critical patent/KR102421770B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3125Measuring the absorption by excited molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to an analysis method which develops a PLSR model to non-destructively measure a raw material mixing ratio of waste cooking oil for predicting an amount of each raw material in mixed waste cooking oil by using a near-infrared spectroscope. The present invention can determine the PLSA model indicating high linearity and a low prediction error and can greatly contribute to improvement of biodiesel yield when applying the PLSA model to a biodiesel production process using the waste cooking oil.

Description

바이오 디젤 생산 공정에 적용 가능한 폐식용유의 원료 혼합 비율 분석방법{Analysis method of mixed ratio of waste cooking-oils for biodiesel production process}Analysis method of mixed ratio of waste cooking-oils for biodiesel production process applicable to biodiesel production process

본 발명은 폐식용유의 원료 혼합 비율 분석방법에 관한 것으로서, 더욱 구체적으로 바이오 디젤 생산 공정에서 혼합된 폐식용유 원료 혼합비를 비파괴적으로 측정하는 분석방법에 관한 것이다.The present invention relates to a method for analyzing the raw material mixing ratio of waste cooking oil, and more particularly, to an analysis method for non-destructively measuring the mixing ratio of the waste cooking oil raw material mixed in a biodiesel production process.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다.Background to the present disclosure is provided herein, which does not necessarily imply known art.

최근 환경문제에 대한 관심이 급증하고 화석연료가 점점 고갈되어 감에 따라 바이오디젤은 화석연료의 대체연료로서 많은 주목을 받고 있으며 그에 따라 바이오디젤에 관한 많은 연구들이 이루어지고 있다. 바이오디젤은 일반 디젤연료에 비해 이산화탄소, 황, 부유입자 등의 온실가스뿐만 아니라 공기오염의 주요 원인이 되는 물질들의 방출량이 적다. 또한 지구온난화를 가속하는 지구 전체의 탄소의 양을 증가시키지 않고 보존하는 장점을 가지고 있다.Recently, as interest in environmental problems has rapidly increased and fossil fuels have been increasingly depleted, biodiesel has received a lot of attention as an alternative fuel to fossil fuels, and accordingly, many studies on biodiesel are being conducted. Compared to general diesel fuel, biodiesel emits less greenhouse gases, such as carbon dioxide, sulfur, and suspended particles, as well as substances that cause air pollution. In addition, it has the advantage of preserving the amount of carbon in the entire planet without increasing the amount of carbon that accelerates global warming.

바이오디젤의 생산 원료로는 국제적으로 조류, 팜유, 코코넛유 그리고 여러 종류의 식용유들이 주로 사용된다. 하지만, 이 원료들의 가격이 비싸기 때문에 이 원료들을 바이오디젤의 생산원료로 사용했을 때 발생하는 생산비용이 석유디젤 생산비보다 비싸기 때문에 바이오디젤의 대량 생산과 개발에 경제적으로 어려움이 있다. As raw materials for biodiesel production, algae, palm oil, coconut oil, and various types of cooking oil are mainly used internationally. However, since these raw materials are expensive, the production cost incurred when these raw materials are used as raw materials for biodiesel production is more expensive than petroleum diesel production cost, so it is economically difficult to mass-produce and develop biodiesel.

바이오디젤의 생산에 사용되는 기존의 생산원료를 폐식용유로 대체하는 것은 경제적으로나 환경적으로나 유리하다. 폐식용유의 가격은 버진 오일(virgin oil)의 반 정도의 가격이기 때문에 폐식용유를 바이오디젤의 생산원료로 사용한다면 바이오디젤의 생산비를 많이 줄일 수 있다. 그리고 기존에 폐기 및 처리가 힘들었던 폐식용유를 바이오디젤의 생산에 사용하면 물의 오염을 줄이고 배수 환경에 도움을 줄 수 있다. It is economically and environmentally advantageous to replace the existing raw materials used in the production of biodiesel with waste cooking oil. Since the price of waste cooking oil is about half that of virgin oil, if waste cooking oil is used as a raw material for biodiesel production, the production cost of biodiesel can be greatly reduced. In addition, if waste cooking oil, which was previously difficult to dispose and dispose of, is used for biodiesel production, it can reduce water pollution and help the drainage environment.

폐식용유는 식용유의 사용량에 따라 발생량이 나라마다 다르지만 매우 큰 규모의 양의 폐식용유가 매해 배출되고 있다. ECOFYS의 조사에 따르면 2013년 기준으로 영국을 제외한 유럽국가들에서 100만톤, 비유럽국가들(미국, 중국, 인도네시아, 아르헨티나)에서 450만 톤 가량의 폐식용유를 배출했다. 그리고 전세계 인구가 증가함에 따라 폐식용유의 배출량은 앞으로 더 늘어날 것으로 추정된다.Although the amount of waste cooking oil generated varies from country to country depending on the amount of cooking oil used, a very large amount of waste cooking oil is discharged every year. According to an ECOFYS survey, as of 2013, European countries excluding the UK produced 1 million tons of waste cooking oil, and non-European countries (USA, China, Indonesia and Argentina) produced about 4.5 million tons of waste cooking oil. And as the world's population increases, it is estimated that the emission of waste cooking oil will increase further in the future.

폐식용유를 이용한 바이오디젤의 생산은 일반적으로 유지에 알코올과 촉매를 첨가하여 메틸에스테르와 글리세롤이 생성되는 에스테르 교환반응을 통해 이루어진다. 에스테르 교환반응에서 주반응의 속도를 가속화하는 촉매는 알칼리 촉매 또는 산성 촉매가 널리 사용되고 알코올은 보통 메탄올이 쓰인다. 에스테르 교환반응을 통해 폐식용유의 주성분인 트리글리세리드에 포함된 자유지방산은 메틸에스테르로 변환되고 이것이 곧 바이오디젤로 사용된다. The production of biodiesel using waste cooking oil is generally made through a transesterification reaction in which methyl ester and glycerol are produced by adding alcohol and a catalyst to fats and oils. In the transesterification reaction, an alkali catalyst or an acid catalyst is widely used as a catalyst for accelerating the rate of the main reaction, and methanol is usually used as an alcohol. Through transesterification, free fatty acids contained in triglycerides, the main component of waste cooking oil, are converted into methyl esters, which are then used as biodiesel.

바이오디젤 생산 공정에 사용되는 식용유 원료들은 각각 구성하는 지방산의 종류가 다르고 차지하는 비율이 다르다. 그러나, 이 원료들은 가열이 되어 폐식용유가 되어도 각각의 원료를 구성하는 지방산 종류마다 차지하는 비율이 크게 변하지는 않는다.The edible oil raw materials used in the biodiesel production process have different types of fatty acids and different proportions. However, even if these raw materials are heated and turned into waste cooking oil, the proportion of fatty acids constituting each raw material does not change significantly.

폐식용유의 원료가 구성하는 지방산의 종류와 원료를 차지하는 비율은 폐식용유를 이용한 바이오디젤 생산 공정에서 필요한 알코올의 양, 촉매의 종류, 촉매의 양, 반응온도 등과 같은 변수들에 영향을 주고 결국 바이오디젤 수율에 영향을 준다. 즉, 폐식용유의 원료 혼합비가 바뀌면 혼합된 폐식용유를 구성하는 지방산의 종류와 구성비율이 바뀌기 때문에 바이오디젤 생산 공정에서의 에스테르 교환반응에 필요한 최적의 알코올의 양, 촉매의 종류 및 양 그리고 반응온도가 결정된다. 그러므로 바이오디젤 생산 공정에 필요한 변수들을 선택함에 있어 폐식용유의 원료 혼합비를 먼저 아는 것은 매우 중요하다.The type of fatty acid constituting the raw material of the waste cooking oil and the ratio of the raw material to the raw material affect variables such as the amount of alcohol required in the biodiesel production process using the waste cooking oil, the type of catalyst, the amount of the catalyst, and the reaction temperature, and eventually the biodiesel production process. Affects diesel yield. That is, when the raw material mixing ratio of the waste cooking oil is changed, the type and composition ratio of fatty acids constituting the mixed waste cooking oil changes. Therefore, the optimal amount of alcohol required for the transesterification reaction in the biodiesel production process, the type and amount of the catalyst, and the reaction temperature is decided Therefore, it is very important to know the raw material mixing ratio of waste cooking oil first in selecting the parameters necessary for the biodiesel production process.

그러나, 식용유의 원료 분류에 대한 연구들은 있어왔지만 폐식용유의 원료 혼합비 분석에 대한 연구들은 찾아보기 힘들다. However, although there have been studies on the classification of raw materials for cooking oil, it is difficult to find studies on the analysis of the raw material mixing ratio of waste cooking oil.

유지류의 정량적인 분석에는 시차열분석(Differential Thermal Analyzer)과 고성능 액체 크로마토그래피(High-Performance Liquid Chromatography, HPLC) 분석, 기체 크로마토그래피(Gas Chromatography, GC) 분석 등이 사용된다. 이 분석법들은 정확도는 높지만 민감도나 한계에 문제가 있고 연속적이지 않고 파괴적이다. Differential thermal analysis (Differential Thermal Analyzer), High-Performance Liquid Chromatography (HPLC) analysis, Gas Chromatography (GC) analysis, etc. are used for quantitative analysis of oils and fats. These assays are highly accurate, but suffer from sensitivity or limitations, and are not continuous and destructive.

본 발명은 근적외선 분광기를 이용하여 혼합된 폐식용유 내 각 원료의 양을 예측하기 위해 PLSR 모델을 개발하여 폐식용유의 원료 혼합비를 비파괴적으로 측정하는 분석 시스템을 제공하는 것이다. The present invention provides an analysis system for non-destructively measuring the raw material mixing ratio of waste cooking oil by developing a PLSR model to predict the amount of each raw material in the mixed waste cooking oil using a near-infrared spectrometer.

그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 적어도 2종 이상의 폐식용유를 혼합하여 혼합된 원료 각각의 농도별 근적외선 흡광 스펙트럼 데이터를 수집하는 데이터 수집단계(S1); 상기 얻어진 근적외선 흡광 스펙트럼 데이터로부터 다변량 통계분석(Partial Least Squares Analysis; PLSA) 방법을 이용하여 파장 영역에 따른 예측 후보 모델을 얻는 모델링단계(S2); 상기 얻어진 예측 후보 모델에 대하여 결정계수(coefficient of determination, R2) 및 평균 제곱근 오차(Root Mean Square Error, RMSE) 중 어느 하나 이상을 이용하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 후보 모델을 예측 모델로 결정하는 모델 결정단계(S3); 및 분석하고자 하는 혼합 폐식용유 샘플에 대하여 근적외선 흡광 스펙트럼을 측정한 후 상기 결정된 파장 영역의 예측 모델에 대입하여 특정 원료의 함량을 예측하는 분석단계(S4);를 포함하는 폐식용유의 원료 혼합 비율 분석방법을 제공한다.The present invention is a data collection step (S1) of mixing at least two or more kinds of waste cooking oil to collect near-infrared absorption spectrum data for each concentration of the mixed raw material; a modeling step (S2) of obtaining a prediction candidate model according to a wavelength region using a multivariate statistical analysis (Partial Least Squares Analysis; PLSA) method from the obtained near-infrared absorption spectrum data; With respect to the obtained prediction candidate model, the prediction candidate model of the wavelength region having the highest prediction performance is predicted using any one or more of a coefficient of determination (R 2 ) and a root mean square error (RMSE). a model determination step (S3) of determining a model; and an analysis step (S4) of predicting the content of a specific raw material by measuring the near-infrared absorption spectrum of the mixed waste cooking oil sample to be analyzed and then substituting it into the prediction model of the determined wavelength region; provide a way

또한 상기 모델링단계(S2)에서 상기 파장 영역은 898.77nm에서 2132.65nm 인 제1 영역, 1,100nm에서 1250nm 인 제2 영역, 1,600nm에서 1800nm 인 제3 영역, 1,100nm에서 1250nm과 1,600nm에서 1800nm 인 제4 영역을 포함하는 것을 특징으로 한다.In addition, in the modeling step (S2), the wavelength region is a first region from 898.77 nm to 2132.65 nm, a second region from 1,100 nm to 1250 nm, a third region from 1,600 nm to 1800 nm, and 1,100 nm to 1250 nm and 1,600 nm to 1800 nm. It is characterized in that it includes a fourth region.

또한 상기 모델 결정단계(S3)는 상기 파장 영역에 따른 예측 후보 모델 중에서 실제값과 비교하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 한다.In addition, the model determining step ( S3 ) is a step of determining, as a prediction model, a prediction candidate model in the wavelength region having the highest prediction performance compared with an actual value among the prediction candidate models according to the wavelength region.

상기 폐식용유가 폐해바라기유(sunflower oil) 및 폐카놀라유(canola oil)를 혼합하였을 때 폐해바라기유의 함량을 예측하기 위한 상기 모델 결정단계(S3)는 898.77nm에서 2132.65nm 인 제1 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 한다.The model determination step (S3) for predicting the content of the waste sunflower oil when the waste cooking oil is a mixture of sunflower oil and waste canola oil is a prediction candidate in the first region from 898.77 nm to 2132.65 nm It is characterized in that it is a step of determining the model as a predictive model.

상기 폐식용유가 폐대두유(soybean oil), 폐올리브유(olive oil) 및 폐해바라기유(sunflower oil)를 혼합하였을 때 폐올리브유의 함량을 예측하기 위한 상기 모델 결정단계(S3)는 1600nm에서 1800nm 인 제3 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 한다.The model determination step (S3) for predicting the content of waste olive oil when the waste cooking oil is a mixture of waste soybean oil, waste olive oil and waste sunflower oil (S3) is 1600nm to 1800nm It is characterized in that it is a step of determining a prediction candidate model of three regions as a prediction model.

상기 폐식용유가 폐대두유(soybean oil), 폐올리브유(olive oil), 폐카놀라유(canola oil) 및 폐해바라기유(sunflower oil)를 혼합하였을 때 폐올리브유의 함량을 예측하기 위한 상기 모델 결정단계(S3)는 898.77nm에서 2132.65nm 인 제1 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 한다.When the waste cooking oil is mixed with waste soybean oil, waste olive oil, waste canola oil and waste sunflower oil, the model determination step (S3) for predicting the content of waste olive oil ) is a step of determining a prediction candidate model of the first region ranging from 898.77 nm to 2132.65 nm as a prediction model.

본 발명은 근적외선 분광기를 이용하여 얻어지는 흡광 스펙트럼을 통해 파장 영역에 따른 PLS 모델을 생성하여 높은 선형성과 낮은 예측 오차를 보여주는 PLSA 모델을 결정 가능하며, 이 PLSA 모델을 통해 혼합 폐 식용유의 흡수 스펙트럼으로부터 특정 원료의 함량을 비파괴적으로 예측할 수 있다. 이로써 폐 식용유를 이용한 바이오 디젤 생산 공정에 근적외선 분광기와 PLSA 모델을 적용하면 바이오 디젤 수율 향상에 크게 기여할 수 있는 효과를 제공한다.The present invention can determine a PLSA model showing high linearity and low prediction error by generating a PLS model according to the wavelength region through the absorption spectrum obtained using a near-infrared spectrometer, and through this PLSA model, a specific The content of raw materials can be predicted non-destructively. Accordingly, if the near-infrared spectroscopy and PLSA model are applied to the biodiesel production process using waste edible oil, it provides an effect that can greatly contribute to the improvement of biodiesel yield.

도 1은 본 발명의 일실시예에 따른 폐식용유 샘플의 근적외 영역 흡광도 측정 이미지를 나타낸 것이다.
도 2는 본 발명의 일실시예에 따른 폐식용유 및 생식용유의 PCA 모델링 결과를 나타낸 것이다.
도 3은 본 발명의 일실시예에 따른 폐대두유 및 폐올리브유를 혼합하고 폐대두유의 농도를 0.3 ml 부터 2.4ml로 한 8종류의 흡광 스펙트럼 데이터를 나타낸 것이다.
도 4는 본 발명의 일실시예에 따른 정적 상태에서 폐유 혼합물 (O-S)의 폐 올리브유 양을 PLSR 모델로 예측한 결과(A) 및 정적 상태에서 폐유 혼합물 (O-S)의 폐 올리브유 양을 예측한 PLSR 모델의 검증 결과(B)를 나타낸 것이다.
1 shows an image of a near-infrared region absorbance measurement of a waste cooking oil sample according to an embodiment of the present invention.
Figure 2 shows the PCA modeling results of waste cooking oil and reproductive oil according to an embodiment of the present invention.
3 shows the absorption spectrum data of 8 types of mixing waste soybean oil and waste olive oil according to an embodiment of the present invention, and changing the concentration of waste soybean oil from 0.3 ml to 2.4 ml.
4 is a PLSR model for predicting the amount of waste olive oil in the waste oil mixture (OS) in a static state according to an embodiment of the present invention (A) and PLSR predicting the amount of waste olive oil in the waste oil mixture (OS) in a static state according to an embodiment of the present invention; The model verification result (B) is shown.

본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다. 또한 본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.All technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, unless otherwise stated. Also throughout this specification and claims, unless otherwise indicated, the term comprise, comprises, comprising is meant to include the recited object, step or group of objects, and steps, and any other It is not used in the sense of excluding an object, step, or group of objects or groups of steps.

이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다.Prior to describing the present invention in detail below, it is to be understood that the terminology used herein is for the purpose of describing specific embodiments and is not intended to limit the scope of the present invention, which is limited only by the appended claims. shall.

한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the other hand, various embodiments of the present invention may be combined with any other embodiments unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.

본 발명의 일실시예에 따른 폐식용유의 원료 혼합 비율 분석방법은 적어도 2종 이상의 폐식용유를 혼합하여 혼합된 원료 각각의 농도별 근적외선 흡광 스펙트럼 데이터를 수집하는 단계(S1); 상기 얻어진 근적외선 흡광 스펙트럼 데이터로부터 다변량 통계분석(Partial Least Squares Analysis; PLSA) 방법을 이용하여 파장 영역에 따른 예측 후보 모델을 얻는 모델링단계(S2); 상기 얻어진 예측 후보 모델에 대하여 결정계수(coefficient of determination, R2) 및 평균 제곱근 오차(Root Mean Square Error, RMSE) 중 어느 하나 이상을 이용하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 모델을 결정하는 모델 결정단계(S3); 및 분석하고자 하는 혼합 폐식용유 샘플에 대하여 근적외선 흡광 스펙트럼을 측정한 후 상기 결정된 파장 영역의 예측 모델에 대입하여 특정 원료의 함량을 예측하는 분석단계(S4);를 포함한다. The raw material mixing ratio analysis method of the waste cooking oil according to an embodiment of the present invention comprises the steps of: collecting near-infrared absorption spectrum data for each concentration of each of the mixed raw materials by mixing at least two or more kinds of waste cooking oil (S1); a modeling step (S2) of obtaining a prediction candidate model according to a wavelength region using a multivariate statistical analysis (Partial Least Squares Analysis; PLSA) method from the obtained near-infrared absorption spectrum data; Determining a prediction model of a wavelength region having the highest prediction performance by using any one or more of a coefficient of determination (R 2 ) and a root mean square error (RMSE) with respect to the obtained prediction candidate model model determination step (S3); and an analysis step (S4) of predicting the content of a specific raw material by measuring the near-infrared absorption spectrum of the mixed waste cooking oil sample to be analyzed and then substituting it into the prediction model of the determined wavelength region.

상기 데이터 수집단계(S1)는 적어도 2종 이상의 폐식용유를 혼합하여 혼합된 원료 각각의 농도별 근적외선 흡광 스펙트럼 데이터를 수집하는 단계로서, 예측 모델을 결정하고 특정 원료의 혼합 비율을 예측하기 위한 분석 데이터를 수집하는 단계이다. The data collection step (S1) is a step of mixing at least two or more kinds of waste cooking oil to collect near-infrared absorption spectrum data for each concentration of each mixed raw material, and analysis data for determining a prediction model and predicting a mixing ratio of a specific raw material is the step of collecting

상기 데이터 수집단계(S1)는 폐식용유의 혼합 종류 및 혼합 비율에 따른 근적외선 흡광 스펙트럼을 측정한다. 예를 들어, 2종의 폐식용유를 n가지 농도별로 혼합하는 경우 총 2n개의 근적외선 흡광 스펙트럼 데이터를 수집하며, 4종의 폐식용유 중에서 임의의 2종의 폐식용유를 n가지 농도별로 혼합하는 경우 총 6n개의 근적외선 흡광 스펙트럼 데이터를 수집한다.The data collection step (S1) measures the near-infrared absorption spectrum according to the mixing type and mixing ratio of the waste cooking oil. For example, when two types of waste cooking oil are mixed by n concentrations, a total of 2n near-infrared absorption spectral data are collected, and when any two types of waste cooking oil among 4 types of waste cooking oil are mixed by n concentrations, the total Collect 6n near-infrared absorption spectral data.

상기 모델링단계(S2)는 상기 얻어진 근적외선 흡광 스펙트럼 데이터로부터 다변량 통계분석(Partial Least Squares Analysis; PLSA) 방법을 이용하여 파장 영역에 따른 예측 후보 모델을 얻는 단계로서, 적어도 2개 이상의 파장 영역을 분류한 후 분류된 각각의 파장 영역에 따른 예측 후보 모델을 얻는다. 바람직하게는 4개의 파장 영역으로 분류하여 혼합 종류 및 특정 원료별 각각 4개의 예측 후보 모델을 얻는다. The modeling step (S2) is a step of obtaining a prediction candidate model according to a wavelength region using a Partial Least Squares Analysis (PLSA) method from the obtained near-infrared absorption spectrum data. At least two wavelength regions are classified. Then, a prediction candidate model is obtained according to each classified wavelength region. Preferably, it is classified into four wavelength regions to obtain four prediction candidate models for each type of mixture and a specific raw material.

상기 4개의 파장 영역은 898.677nm에서 2132.65nm 인 제1 영역, 1,100nm에서 1250nm 인 제2 영역, 1,600nm에서 1800nm 인 제3 영역, 1,100nm에서 1250nm과 1,600nm에서 1800nm 인 제4 영역을 포함한다. 제1 영역은 전체 파장대이고, 제2 영역은 물의 흡광도 파장을 포함하지 않는 C-H 결합의 두 번째 배음 영역이며, 제3 영역은 C-H 결합의 첫번째 배음 영역이며, 제4 영역은 제2 영역 및 제3 영역을 합친 영역이다.The four wavelength regions include a first region from 898.677 nm to 2132.65 nm, a second region from 1,100 nm to 1250 nm, a third region from 1,600 nm to 1800 nm, and a fourth region from 1,100 nm to 1250 nm and 1,600 nm to 1800 nm . The first region is the entire wavelength band, the second region is the second overtone region of the C-H bond not including the absorbance wavelength of water, the third region is the first harmonic region of the C-H bond, and the fourth region is the second region and the third region It is a combined area.

예를 들어, 2종의 폐식용유를 혼합한 경우 혼합된 2종의 원료 각각에 대하여 4개의 파장 영역별로 총 8(=2x4)개의 예측 후보 모델이 얻어지고, 4종의 폐식용유 중 임의의 2종의 폐식용유를 혼합한 경우 6가지 혼합 경우의 수가 존재하며 혼합된 2종의 원료 각각에 대하여 4개의 파장 영역별로 총 48(=6x2x4)개의 예측 후보 모델이 얻어진다.For example, when two types of waste cooking oil are mixed, a total of 8 (=2x4) prediction candidate models are obtained for each of the 4 wavelength ranges for each of the 2 types of mixed raw materials, and any 2 of the 4 types of waste cooking oil are obtained. In the case of mixing waste cooking oil of different species, there are 6 mixing cases, and a total of 48 (=6x2x4) prediction candidate models are obtained for each of the two mixed raw materials for each of the 4 wavelength regions.

상기 모델 결정단계(S3)는 상기 얻어진 예측 후보 모델에 대하여 결정계수(coefficient of determination, R2) 및 평균 제곱근 오차(Root Mean Square Error, RMSE) 중 어느 하나 이상을 이용하여 가장 높은 예측 성능을 갖는 예측 모델을 결정하는 단계로서, 상기 폐식용유의 혼합 종류 및 특정 원료별로 얻어지는 파장 영역에 따른 예측 후보 모델 중에서 실제값과 비교하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 모델을 결정하는 단계이다. The model determining step S3 uses any one or more of a coefficient of determination (R 2 ) and a root mean square error (RMSE) for the obtained prediction candidate model to have the highest prediction performance. As a step of determining a prediction model, it is a step of determining a prediction model of a wavelength range having the highest prediction performance compared with an actual value among prediction candidate models according to a wavelength range obtained for each type of mixture of the spent cooking oil and a specific raw material.

상기 모델 결정단계(S3)는 상기 폐식용유의 혼합 종류 및 특정 원료별 파장 영역에 따른 예측 후보 모델 각각에 대하여 결정계수(coefficient of determination, R2)와 실제값과 모델에서 예측한 값의 차이인 평균 제곱근 오차(Root Mean Square Error, RMSE)를 비교하여 결정한다. 즉, 적어도 2개 이상의 파장 영역에 따른 예측 후보 모델 중 결정계수가 가장 1에 가깝고 평균 제곱근 오차가 가장 적은 파장 영역의 예측 후보 모델을 해당 혼합 종류 및 특정 원료에 대한 예측 모델로 결정한다.The model determining step (S3) is the difference between the coefficient of determination (R 2 ) and the actual value and the value predicted by the model for each prediction candidate model according to the type of mixture of the waste cooking oil and the wavelength range for each specific raw material. It is determined by comparing the root mean square error (RMSE). That is, among the prediction candidate models according to at least two wavelength regions, the prediction candidate model of the wavelength region having the closest coefficient of determination to 1 and the smallest root mean square error is determined as the prediction model for the corresponding mixture type and specific raw material.

예를 들어, 후술할 실험예에 나타나는 것과 같이 폐올리브유(O) 및 폐해바라기유(S)를 혼합한 경우 올리브유(O)의 양을 예측하기 위한 4가지 파장 영역의 예측 후보 모델들의 R2 및 RMSE를 비교하여 R2가 가장 높고 RMSE가 가장 낮은 영역인 제1 영역의 예측 후보 모델을 가장 우수한 성능의 예측 모델로 결정한다.For example, as shown in an experimental example to be described later, when waste olive oil (O) and waste sunflower oil (S) are mixed, R 2 and By comparing the RMSE, the prediction candidate model of the first region, which has the highest R 2 and the lowest RMSE, is determined as the prediction model with the best performance.

상기 분석단계(S4)는 분석하고자 하는 혼합 폐식용유 샘플에 대하여 근적외선 흡광 스펙트럼을 측정한 후 상기 결정된 예측 모델에 대입하여 특정 원료의 함량을 예측하는 단계로서, 혼합 폐식용유 샘플에 포함된 특정 원료의 예측 모델에 측정 결과를 대입하여 혼합 비율을 예측한다.The analysis step (S4) is a step of predicting the content of a specific raw material by measuring the near-infrared absorption spectrum of the mixed waste cooking oil sample to be analyzed and then substituting it into the determined prediction model. The mixing ratio is predicted by substituting the measurement results into the prediction model.

본 발명에 따라 결정되는 혼합 폐식용유의 특정 원료의 혼합 비율 예측 모델은 높은 선형성과 낮은 예측 오차를 보여주며, 이 생성된 PLSA 모델을 통해 혼합 폐 식용유의 흡수 스펙트럼으로부터 특정 원료의 함량을 비파괴적으로 예측할 수 있다. 이로써 폐 식용유를 이용한 바이오 디젤 생산 공정에 근적외선 분광기와 PLS 모델을 적용하면 바이오 디젤 수율 향상에 크게 기여할 수 있다.The mixing ratio prediction model of the specific raw material of the mixed waste cooking oil determined according to the present invention shows high linearity and low prediction error, and the content of the specific raw material from the absorption spectrum of the mixed waste cooking oil through the generated PLSA model is non-destructively predictable. Accordingly, the application of near-infrared spectroscopy and PLS models to the biodiesel production process using waste edible oil can greatly contribute to the improvement of biodiesel yield.

<실시예 및 실험예><Examples and Experimental Examples>

(1) 폐식용유 샘플 준비(One) Waste Cooking Oil Sample Preparation

폐식용유의 종류는 시중에서 쉽게 얻을 수 있는 폐 대두유(soybean oil, B), 폐 해바라기유(sunflower oil, S), 폐 카놀라유(canola oil, C), 폐 올리브유(olive oil, O) 총 4가지를 준비하였다. 폐 대두유, 폐 해바라기유, 폐 카놀라유는 인근 식당에서 얻었고 폐 올리브유는 생 식용유를 구입한 뒤 실험실에서 냉동 식품을 넣고 오랜 시간 동안 가열하여 얻었다. There are four types of waste cooking oil: waste soybean oil (B), waste sunflower oil (S), waste canola oil (C), and waste olive oil (O) that can be easily obtained in the market was prepared. Waste soybean oil, waste sunflower oil, and waste canola oil were obtained from a nearby restaurant. Waste olive oil was obtained by purchasing raw cooking oil and heating it for a long time in a laboratory after adding frozen food.

혼합된 폐식용유의 근적외 영역(Near-infrared, NIR) 흡광도를 측정하기 위해 4가지의 원료들 중 2개 내지 4개를 선택한 뒤 총 부피가 3ml이 되도록 각 원료들을 농도별로 다르게 조합하였다. 각 원료들의 농도는 0.3ml 내지 2.4ml로 8종류의 농도로 혼합하여 샘플을 제작하였다. To measure the near-infrared (NIR) absorbance of the mixed waste cooking oil, two to four of the four raw materials were selected, and then each raw material was differently combined for each concentration so that the total volume was 3 ml. The concentration of each raw material was 0.3ml to 2.4ml, and samples were prepared by mixing 8 kinds of concentrations.

(2) 혼합된 폐식용유 샘플의 NIR 흡광 스펙트럼 측정(2) Measurement of NIR Absorption Spectrum of Mixed Waste Cooking Oil Sample

폐식용유 샘플의 NIR 흡광도는 도 1에 나타낸 것과 같이 샘플을 12 mm 투과거리를 가진 큐벳(b)에 두고 텅스텐 할로겐 광원(a)을 조사한 채로 NIR 분광기 (NIRQUEST, Ocean Optics, USA)(c)를 사용하여 898.677 nm 에서 2132.65 nm 파장대를 3 반복하여 측정하였다. Reference는 빈 큐벳의 스펙트럼을 사용하였다.The NIR absorbance of the waste cooking oil sample was measured with a NIR spectrometer (NIRQUEST, Ocean Optics, USA) (c) with the sample placed in a cuvette (b) with a 12 mm transmission distance and irradiated with a tungsten halogen light source (a) as shown in FIG. The wavelength band from 898.677 nm to 2132.65 nm was measured three times using the As a reference, the spectrum of an empty cuvette was used.

(3) NIR 흡광도 스펙트럼 분석(3) NIR absorbance spectrum analysis

획득한 흡광 스펙트럼은 혼합된 폐식용유의 샘플 내에 있는 원료의 양을 예측할 수 있는 PLSR (partial Least Squares Regression) 모델을 Unscrambler (ver. 9.7, CAMO Software, Norway)을 통해 개발하는데 사용되었다. The obtained absorbance spectrum was used to develop a PLSR (partial least squares regression) model that can predict the amount of raw material in the mixed waste cooking oil sample through Unscrambler (ver. 9.7, CAMO Software, Norway).

NIR 분광기로부터 획득한 흡광도 데이터의 파장 영역을 1,100nm에서 1250nm(제1 영역), 1,600nm에서 1800nm(제2 영역), 1,100nm에서 1250nm과 1,600nm에서 1800nm(제3 영역), 898.677nm에서 2132.65nm(제4 영역) 총 4가지 타입으로 구분하여 PLSR 모델을 개발하는데 사용하였다. The wavelength ranges of the absorbance data obtained from NIR spectroscopy were 1,100 nm to 1250 nm (first region), 1,600 nm to 1800 nm (second region), 1,100 nm to 1250 nm, and 1,600 nm to 1800 nm (third region), 898.677 nm to 2132.65 The nm (fourth region) was divided into four types and used to develop the PLSR model.

모델의 예측성에 대한 검증 방법은 교차타당화(cross validation) 방법을 사용하였다.The cross validation method was used as a validation method for the predictability of the model.

(4) 분석 결과 - 1(4) Analysis result - 1

먼저 혼합되지 않은 4가지 종류의 폐식용유(B', C', O', S')와 생식용유(B, C, O, S)의 흡광도를 측정하였다. 획득한 흡광도 스펙트럼 데이터를 바탕으로 주성분 분석 (Principle Component Analysis, PCA) 모델을 개발하였다. 개발된 PCA 모델은 도 2에 나타난 것과 같이 원점을 지나는 직선을 기준으로 좌측에는 생식용유, 우측에는 폐식용유의 흡광도 분포를 보여주었고 이를 통해 생식용유와 폐식용유를 구분할 수 있음을 확인하였다.First, the absorbance of four unmixed types of waste cooking oil (B', C', O', S') and raw food oil (B, C, O, S) was measured. Based on the acquired absorbance spectrum data, a Principle Component Analysis (PCA) model was developed. The developed PCA model showed the absorbance distribution of raw cooking oil on the left and waste cooking oil on the right based on a straight line passing through the origin as shown in FIG.

(5) 분석결과 - 2(5) Analysis result - 2

도 3에 폐대두유 및 폐올리브유를 혼합하고 폐대두유의 농도를 0.3 ml 부터 2.4ml로 한 8종류의 흡광 스펙트럼 데이터를 나타내었다. 도 3에 나타난 것과 같이 혼합된 폐식용유의 흡광도 스펙트럼은 혼합된 폐식용유 내 원료의 농도에 따라 가시적으로 큰 변화를 보이지 않고 개형이 비슷한 모습을 보였으나 후술할 PLSR 모델링시 R2 값 및 RMSE 값을 통해 농도 구별이 가능하였다. In FIG. 3, the absorption spectrum data of 8 types of waste soybean oil and waste olive oil were mixed and the concentration of the waste soybean oil was changed from 0.3 ml to 2.4 ml. As shown in FIG. 3 , the absorbance spectrum of the mixed waste cooking oil showed a similar shape without visible significant change depending on the concentration of the raw material in the mixed waste cooking oil. It was possible to distinguish the concentration through

(6) 분석결과 - 3(6) Analysis result - 3

획득한 혼합된 폐식용유의 흡광도는 혼합된 폐식용유 샘플 내에 있는 특정 원료의 양을 예측하기 위해 개발되었다. 다변량 통계분석(Partial Least Squares-Discriminant Analysis) 모델을 개발하는데 사용된 흡광도 데이터는 폐식용유를 구성하는 지방산의 구성 비율을 대변하는 NIR 파장대의 영역으로 총 4가지 타입으로 분류하였다. The absorbance of the obtained blended waste cooking oil was developed to predict the amount of specific raw materials in the blended waste cooking oil sample. The absorbance data used to develop the multivariate statistical analysis (Partial Least Squares-Discriminant Analysis) model was classified into a total of four types as the region of the NIR wavelength band representing the composition ratio of fatty acids constituting the waste cooking oil.

첫 번째 타입에서 선택된 흡광도 파장대의 영역은 전체 파장대인 898.677nm에서 2132.65nm이고, 두 번째 타입은 물의 흡광도 파장을 포함하지 않는 C-H 결합의 두 번째 배음 영역인 1,100nm에서 1250nm이며, 세 번째 타입은 C-H 결합의 첫번째 배음 영역인 1,600nm에서 1800nm이고 마지막으로 네 번째 타입은 두 번째와 세 번째 타입을 합친 1,100nm에서 1250nm와 1,600nm에서 1800nm이다. 이를 바탕으로 각 타입마다 총 12개의 모델이 생성되었다. The absorbance wavelength band selected from the first type is from 898.677 nm to 2132.65 nm, which is the entire wavelength band, the second type is from 1,100 nm to 1250 nm, the second overtone region of the C-H bond that does not include the absorbance wavelength of water, and the third type is C-H The first overtone region of coupling is 1,600 nm to 1800 nm, and finally, the fourth type is 1,100 nm to 1250 nm and 1,600 nm to 1800 nm, the second and third types combined. Based on this, a total of 12 models were created for each type.

생성된 PLSR 모델들은 2가지 종류의 폐식용유가 혼합된 샘플 내 특정 원료의 양을 예측하는 12개의 모델로 구성이 되어있다. 모델의 성능은 결정 상관계수인 R2와 실제값과 모델에서 예측한 값의 차이인 RMSE(Root Mean Square Error)를 사용하여 비교하였다. The generated PLSR models consist of 12 models that predict the amount of a specific raw material in a sample mixed with two types of waste cooking oil. The performance of the model was compared using R 2 , which is the correlation coefficient, and RMSE (Root Mean Square Error), which is the difference between the actual value and the value predicted by the model.

각 폐식용유(Waste Cooking Oil, WCO) 성분의 양을 예측 한 PLSR 모델의 결과를 하기 표 1 및 표 2에 나타내었다. 하기 표 1 및 표 2에 나타낸 것과 같이 전체 파장의 흡광도 스펙트럼을 기반으로 생성된 첫 번째 타입(제1 영역)의 PLSR 모델이 혼합된 폐식용유 내 특정 원료의 양을 예측하는데 가장 높은 성능을 보였다. The results of the PLSR model predicting the amount of each waste cooking oil (WCO) component are shown in Tables 1 and 2 below. As shown in Tables 1 and 2 below, the PLSR model of the first type (first region) generated based on the absorbance spectrum of the entire wavelength showed the highest performance in predicting the amount of specific raw materials in the mixed waste cooking oil.

WCO
Mixture
WCO
Mixture
WCO ComponentWCO Component Wavelength[nm]Wavelength [nm] R2_calR 2 _cal R2_valR 2 _val RMSECRMSEC RMSEVRMSEV 결정
모델
decision
Model
B-CB-C BB 1100-12501100-1250 0.9980.998 0.9970.997 0.1130.113 0.1480.148 1600-18001600-1800 0.9980.998 0.9970.997 0.1090.109 0.1330.133 1100-1250, 1600-18001100-1250, 1600-1800 0.9980.998 0.9970.997 0.1130.113 0.1480.148 Full spectrumfull spectrum 0.9980.998 0.9970.997 0.0940.094 0.1310.131 OO CC 1100-12501100-1250 0.9930.993 0.9740.974 0.2010.201 0.3950.395 1600-18001600-1800 0.9980.998 0.9970.997 0.1090.109 0.1350.135 1100-1250, 1600-18001100-1250, 1600-1800 0.9980.998 0.9960.996 0.1130.113 0.1430.143 Full spectrumfull spectrum 0.9980.998 0.9970.997 0.0940.094 0.1340.134 OO B-OB-O BB 1100-12501100-1250 0.9970.997 0.9960.996 0.1410.141 0.1720.172 OO 1600-18001600-1800 0.9870.987 0.9850.985 0.2880.288 0.3140.314 1100-1250, 1600-18001100-1250, 1600-1800 0.9910.991 0.9880.988 0.2560.256 0.2820.282 Full spectrumfull spectrum 0.9900.990 0.9900.990 0.2470.247 0.2720.272 OO 1100-12501100-1250 0.9970.997 0.9960.996 0.1410.141 0.1710.171 OO 1600-18001600-1800 0.9870.987 0.9830.983 0.2880.288 0.3240.324 1100-1250, 1600-18001100-1250, 1600-1800 0.9910.991 0.9890.989 0.2360.236 0.2550.255 Full spectrumfull spectrum 0.9910.991 0.9910.991 0.2470.247 0.2610.261 B-SB-S BB 1100-12501100-1250 0.9910.991 0.9860.986 0.2340.234 0.3070.307 1600-18001600-1800 0.9960.996 0.9940.994 0.1500.150 0.2230.223 1100-1250, 1600-18001100-1250, 1600-1800 0.9970.997 0.9950.995 0.1320.132 0.1800.180 Full spectrumfull spectrum 0.9970.997 0.9950.995 0.1300.130 0.1710.171 OO SS 1100-12501100-1250 0.9910.991 0.9850.985 0.2340.234 0.3110.311 1600-18001600-1800 0.9960.996 0.9910.991 0.1500.150 0.2240.224 1100-1250, 1600-18001100-1250, 1600-1800 0.9970.997 0.9950.995 0.1320.132 0.1780.178 Full spectrumfull spectrum 0.9970.997 0.9960.996 0.1300.130 0.1750.175

WCO
Mixture
WCO
Mixture
WCO ComponentWCO Component Wavelength[nm]Wavelength [nm] R2_calR 2 _cal R2_valR 2 _val RMSECRMSEC RMSEVRMSEV 결정
모델
decision
Model
C-OC-O CC 1100-12501100-1250 0.9890.989 0.9780.978 0.2620.262 0.3850.385 1600-18001600-1800 0.9910.991 0.9890.989 0.2420.242 0.2970.297 1100-1250, 1600-18001100-1250, 1600-1800 0.9920.992 0.9890.989 0.2200.220 0.2870.287 Full spectrumfull spectrum 0.9930.993 0.9900.990 0.2020.202 0.2750.275 OO OO 1100-12501100-1250 0.9890.989 0.9780.978 0.2620.262 0.3730.373 1600-18001600-1800 0.9910.991 0.9870.987 0.2420.242 0.2900.290 1100-1250, 1600-18001100-1250, 1600-1800 0.9920.992 0.9900.990 0.2200.220 0.2700.270 Full spectrumfull spectrum 0.9930.993 0.9900.990 0.2020.202 0.2530.253 OO C-SC-S CC 1100-12501100-1250 0.9880.988 0.9870.987 0.2820.282 0.3040.304 1600-18001600-1800 0.9940.994 0.9930.993 0.1840.184 0.2050.205 OO 1100-1250, 1600-18001100-1250, 1600-1800 0.9930.993 0.9910.991 0.2120.212 0.2340.234 Full spectrumfull spectrum 0.9890.989 0.9890.989 0.2640.264 0.2850.285 SS 1100-12501100-1250 0.9880.988 0.9870.987 0.2820.282 0.3050.305 1600-18001600-1800 0.9940.994 0.9940.994 0.1840.184 0.2050.205 1100-1250, 1600-18001100-1250, 1600-1800 0.9930.993 0.9930.993 0.2120.212 0.2300.230 Full spectrumfull spectrum 0.9990.999 0.9980.998 0.0810.081 0.1050.105 OO O-SO-S OO 1100-12501100-1250 0.9890.989 0.9740.974 0.2700.270 0.4600.460 1600-18001600-1800 0.9930.993 0.9920.992 0.2120.212 0.2320.232 1100-1250, 1600-18001100-1250, 1600-1800 0.9890.989 0.9890.989 0.2660.266 0.2830.283 Full spectrumfull spectrum 0.9980.998 0.9970.997 0.0980.098 0.1270.127 OO SS 1100-12501100-1250 0.9890.989 0.9700.970 0.2700.270 0.4560.456 1600-18001600-1800 0.9930.993 0.9920.992 0.2120.212 0.2290.229 1100-1250, 1600-18001100-1250, 1600-1800 0.9890.989 0.9880.988 0.2660.266 0.2870.287 Full spectrumfull spectrum 0.9980.998 0.9970.997 0.0980.098 0.1260.126 OO

이는 폐식용유를 구성하고 있는 지방산의 종류와 그 구성비율이 다르기 때문에 분자 구조에 따른 C-H 배음대와 C-H 결합대의 구성비율 또한 다른데, 첫 번째 타입(제1 영역)의 PLSR 모델은 이 영역을 다 포함하는 전체 파장을 사용하였기 때문에 모델의 예측 성능이 가장 좋았던 것으로 판단된다.This is because the type and composition ratio of fatty acids composing waste cooking oil are different, so the composition ratio of the C-H harmonic band and the C-H bond band according to the molecular structure is also different. It is judged that the prediction performance of the model was the best because the entire wavelength was used.

개발한 모델들의 평균값은 R2_cal = 0.987, R2_val=0.979, RMSEC=0.250으로 선형성이 높고 예측오차가 낮은 것으로 확인되었다. 생성된 PLSR 모델 중에서 가장 성능이 좋은 예측 모델은 혼합된 C-S에서 S의 양을 예측하기 위한 Full spectrum 모델이며 R2_val=0.998, RMSEV=0.105을 나타냈다. The average values of the developed models were R 2 _cal = 0.987, R 2 _val = 0.979, and RMSEC = 0.250, which was confirmed to have high linearity and low prediction error. Among the generated PLSR models, the predictive model with the best performance is a full spectrum model for predicting the amount of S in mixed CS, showing R 2 _val=0.998 and RMSEV=0.105.

도 4에 검증 결과의 일 예시로, 정적 상태에서 폐유 혼합물 (O-S)의 폐 올리브유 양을 PLSR 모델로 예측한 결과(A) 및 정적 상태에서 폐유 혼합물 (O-S)의 폐 올리브유 양을 예측한 PLSR 모델의 검증 결과(B)를 나타내었다.As an example of the verification result in FIG. 4 , the PLSR model predicts the amount of waste olive oil in the waste oil mixture (O-S) in a static state (A) and the PLSR model predicts the amount of waste olive oil in the waste oil mixture (O-S) in the static state (A) The verification result (B) is shown.

(7) 분석결과 - 4(7) Analysis result - 4

생성된 PLSR 모델들은 3가지 종류의 폐식용유가 혼합된 샘플 내 특정 원료의 양을 예측하는 12개의 모델로 구성이 되어있다. 모델의 성능은 결정 상관계수인 R2와 실제값과 모델에서 예측한 값의 차이인 RMSE(Root Mean Square Error)를 사용하여 비교하였다. The generated PLSR models consist of 12 models that predict the amount of a specific raw material in a sample mixed with three types of waste cooking oil. The performance of the model was compared using R 2 , which is the correlation coefficient, and RMSE (Root Mean Square Error), which is the difference between the actual value and the value predicted by the model.

각 폐식용유(Waste Cooking Oil, WCO) 성분의 양을 예측 한 PLSR 모델의 결과를 하기 표 3 및 표 4에 나타내었다. 하기 표 3 및 표 4에 나타낸 것과 같이 혼합 종류에 따라 가장 높은 성능을 보이는 PLSR 모델의 파장 영역이 다양한 것을 확인할 수 있다.The results of the PLSR model predicting the amount of each waste cooking oil (WCO) component are shown in Tables 3 and 4 below. As shown in Tables 3 and 4 below, it can be seen that the wavelength range of the PLSR model showing the highest performance according to the type of mixture is varied.

생성된 PLSR 모델 중에서 가장 성능이 좋은 예측 모델은 혼합된 B-O-S에서 O의 양을 예측하기 위한 1600-1800nm 영역 모델이며 R2_val=0.994, RMSEV=0.144을 나타냈다. Among the generated PLSR models, the best performing predictive model is the 1600-1800 nm region model for predicting the amount of O in the mixed BOS, and R 2 _val=0.994, RMSEV=0.144.

WCO
Mixture
WCO
Mixture
WCO ComponentWCO Component Wavelength[nm]Wavelength [nm] R2_calR 2 _cal R2_valR 2 _val RMSECRMSEC RMSEVRMSEV 결정
모델
decision
Model
B-C-SB-C-S BB 1100-12501100-1250 0.9760.976 0.9670.967 0.3040.304 0.3650.365 1600-18001600-1800 0.9870.987 0.9860.986 0.2160.216 0.2330.233 1100-1250, 1600-18001100-1250, 1600-1800 0.9890.989 0.9880.988 0.2050.205 0.2160.216 Full spectrumfull spectrum 0.9930.993 0.9920.992 0.1610.161 0.1740.174 OO CC 1100-12501100-1250 0.9500.950 0.9490.949 0.4370.437 0.4480.448 1600-18001600-1800 0.9850.985 0.9850.985 0.2340.234 0.2430.243 OO 1100-1250, 1600-18001100-1250, 1600-1800 0.9840.984 0.9830.983 0.2420.242 0.2540.254 Full spectrumfull spectrum 0.9850.985 0.9780.978 0.2380.238 0.2920.292 SS 1100-12501100-1250 0.9730.973 0.9720.972 0.3210.321 0.3330.333 1600-18001600-1800 0.9890.989 0.9880.988 0.1990.199 0.2130.213 OO 1100-1250, 1600-18001100-1250, 1600-1800 0.9840.984 0.9830.983 0.2430.243 0.2570.257 Full spectrumfull spectrum 0.9830.983 0.9800.980 0.2560.256 0.2690.269 B-C-OB-C-O BB 1100-12501100-1250 0.9100.910 0.8620.862 0.5890.589 0.7340.734 1600-18001600-1800 0.9590.959 0.9300.930 0.3950.395 0.5190.519 1100-1250, 1600-18001100-1250, 1600-1800 0.9870.987 0.9780.978 0.2240.224 0.2930.293 Full spectrumfull spectrum 0.9940.994 0.9900.990 0.1470.147 0.1950.195 OO CC 1100-12501100-1250 0.7250.725 0.5560.556 1.0321.032 1.3241.324 1600-18001600-1800 0.8280.828 0.7090.709 0.8160.816 1.0721.072 1100-1250, 1600-18001100-1250, 1600-1800 0.9680.968 0.9180.918 0.3520.352 0.5660.566 Full spectrumfull spectrum 0.9880.988 0.9740.974 0.2150.215 0.3170.317 OO OO 1100-12501100-1250 0.9340.934 0.8880.888 0.5040.504 0.6610.661 1600-18001600-1800 0.9500.950 0.9190.919 0.4400.440 0.5670.567 1100-1250, 1600-18001100-1250, 1600-1800 0.9820.982 0.9690.969 0.2630.263 0.3460.346 Full spectrumfull spectrum 0.9910.991 0.9840.984 0.1860.186 0.2490.249 OO

WCO
Mixture
WCO
Mixture
WCO ComponentWCO Component Wavelength[nm]Wavelength [nm] R2_calR 2 _cal R2_valR 2 _val RMSECRMSEC RMSEVRMSEV 결정
모델
decision
Model
B-O-SB-O-S BB 1100-12501100-1250 0.9770.977 0.9760.976 0.2930.293 0.3010.301 1600-18001600-1800 0.9850.985 0.9840.984 0.2360.236 0.2520.252 1100-1250, 1600-18001100-1250, 1600-1800 0.9910.991 0.9900.990 0.1840.184 0.1980.198 OO Full spectrumfull spectrum 0.9880.988 0.9860.986 0.2140.214 0.2310.231 OO 1100-12501100-1250 0.9760.976 0.9620.962 0.3000.300 0.3860.386 1600-18001600-1800 0.9940.994 0.9940.994 0.1400.140 0.1440.144 OO 1100-1250, 1600-18001100-1250, 1600-1800 0.9940.994 0.9930.993 0.1490.149 0.1560.156 Full spectrumfull spectrum 0.9900.990 0.9900.990 0.1890.189 0.1960.196 SS 1100-12501100-1250 0.9670.967 0.9470.947 0.3570.357 0.4530.453 1600-18001600-1800 0.9820.982 0.9800.980 0.2590.259 0.2760.276 1100-1250, 1600-18001100-1250, 1600-1800 0.9880.988 0.9870.987 0.2140.214 0.2270.227 OO Full spectrumfull spectrum 0.9870.987 0.9850.985 0.2200.220 0.2390.239 C-O-SC-O-S CC 1100-12501100-1250 0.9560.956 0.9520.952 0.4110.411 0.4320.432 1600-18001600-1800 0.9760.976 0.9590.959 0.3020.302 0.3970.397 1100-1250, 1600-18001100-1250, 1600-1800 0.9910.991 0.9850.985 0.1800.180 0.2420.242 OO Full spectrumfull spectrum 0.9850.985 0.9820.982 0.2410.241 0.2660.266 OO 1100-12501100-1250 0.9520.952 0.9100.910 0.4280.428 0.5870.587 1600-18001600-1800 0.9810.981 0.9780.978 0.2650.265 0.2950.295 1100-1250, 1600-18001100-1250, 1600-1800 0.9910.991 0.9900.990 0.1780.178 0.1920.192 Full spectrumfull spectrum 0.9930.993 0.9920.992 0.1530.153 0.1690.169 OO SS 1100-12501100-1250 0.9430.943 0.9000.900 0.4690.469 0.6320.632 1600-18001600-1800 0.9850.985 0.9810.981 0.2390.239 0.2650.265 1100-1250, 1600-18001100-1250, 1600-1800 0.9880.988 0.9860.986 0.2100.210 0.2300.230 OO Full spectrumfull spectrum 0.9850.985 0.9830.983 0.2370.237 0.2620.262

(8) 분석결과 - 5(8) Analysis result - 5

생성된 PLSR 모델들은 4가지 종류의 폐식용유가 혼합된 샘플 내 특정 원료의 양을 예측하는 12개의 모델로 구성이 되어있다. 모델의 성능은 결정 상관계수인 R2와 실제값과 모델에서 예측한 값의 차이인 RMSE(Root Mean Square Error)를 사용하여 비교하였다. The generated PLSR models consist of 12 models that predict the amount of a specific raw material in a sample mixed with 4 types of waste cooking oil. The performance of the model was compared using R 2 , which is the correlation coefficient, and RMSE (Root Mean Square Error), which is the difference between the actual value and the value predicted by the model.

각 폐식용유(Waste Cooking Oil, WCO) 성분의 양을 예측 한 PLSR 모델의 결과를 하기 표 5에 나타내었다. 하기 표 5에 나타낸 것과 같이 혼합 종류에 따라 가장 높은 성능을 보이는 PLSR 모델의 파장 영역이 다양한 것을 확인할 수 있다.The results of the PLSR model predicting the amount of each waste cooking oil (WCO) component are shown in Table 5 below. As shown in Table 5 below, it can be seen that the wavelength range of the PLSR model showing the highest performance according to the type of mixture is varied.

생성된 PLSR 모델 중에서 가장 성능이 좋은 예측 모델은 혼합된 B-C-O-S에서 O의 양을 예측하기 위한 Full spectrum 영역 모델이며 R2_val=0.963, RMSEV=0.286을 나타냈다.Among the generated PLSR models, the best performing prediction model is a full spectrum domain model for predicting the amount of O in the mixed BCOS, and it showed R 2 _val=0.963 and RMSEV=0.286.

WCO
Mixture
WCO
Mixture
WCO ComponentWCO Component Wavelength[nm]Wavelength [nm] R2_calR 2 _cal R2_valR 2 _val RMSECRMSEC RMSEVRMSEV 결정
모델
decision
Model
B-C-O-SB-C-O-S BB 1100-12501100-1250 0.7610.761 0.6870.687 0.7320.732 0.8410.841 1600-18001600-1800 0.7610.761 0.5970.597 0.7320.732 0.9550.955 1100-1250, 1600-18001100-1250, 1600-1800 0.8870.887 0.7720.772 0.5030.503 0.7170.717 Full spectrumfull spectrum 0.9680.968 0.9220.922 0.2640.264 0.4180.418 OO CC 1100-12501100-1250 0.8020.802 0.7620.762 0.6660.666 0.7330.733 1600-18001600-1800 0.8350.835 0.7930.793 0.6080.608 0.6830.683 1100-1250, 1600-18001100-1250, 1600-1800 0.8460.846 0.8140.814 0.8560.856 0.6460.646 Full spectrumfull spectrum 0.9460.946 0.8910.891 0.3480.348 0.4960.496 OO OO 1100-12501100-1250 0.9380.938 0.9270.927 0.3720.372 0.4050.405 1600-18001600-1800 0.9610.961 0.9490.949 0.2930.293 0.3370.337 1100-1250, 1600-18001100-1250, 1600-1800 0.9710.971 0.9610.961 0.2510.251 0.2950.295 Full spectrumfull spectrum 0.9700.970 0.9630.963 0.2570.257 0.2860.286 OO SS 1100-12501100-1250 0.7490.749 0.6710.671 0.7420.742 0.8570.857 1600-18001600-1800 0.6900.690 0.5940.594 0.8250.825 0.9490.949 1100-1250, 1600-18001100-1250, 1600-1800 0.8860.886 0.7570.757 0.5000.500 0.7320.732 Full spectrumfull spectrum 0.9690.969 0.9160.916 0.2790.279 0.4140.414 OO

개발된 PLSR 모델은 선형성이 높고 예측 오차가 낮은 모델의 성능을 보여주었다. 바이오디젤 생산을 위해 바이오디젤 생산 공정에 근적외선 분광법 및 PLSR 모델을 적용하면 바이오디젤 수율 향상에 크게 기여할 것으로 예상된다.The developed PLSR model showed the performance of the model with high linearity and low prediction error. The application of near-infrared spectroscopy and PLSR model to the biodiesel production process for biodiesel production is expected to greatly contribute to the improvement of biodiesel yield.

전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, etc. exemplified in each of the above-described embodiments may be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

Claims (6)

적어도 2종 이상의 폐식용유를 혼합하여 혼합된 원료 각각의 농도별 근적외선 흡광 스펙트럼 데이터를 수집하는 데이터 수집단계(S1);
상기 얻어진 근적외선 흡광 스펙트럼 데이터로부터 다변량 통계분석(Partial Least Squares Analysis; PLSA) 방법을 이용하여 파장 영역에 따른 예측 후보 모델을 얻는 모델링단계(S2);
상기 얻어진 예측 후보 모델에 대하여 결정계수(coefficient of determination, R2) 및 평균 제곱근 오차(Root Mean Square Error, RMSE) 중 어느 하나 이상을 이용하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 후보 모델을 예측 모델로 결정하는 모델 결정단계(S3); 및
분석하고자 하는 혼합 폐식용유 샘플에 대하여 근적외선 흡광 스펙트럼을 측정한 후 상기 결정된 파장 영역의 예측 모델에 대입하여 특정 원료의 함량을 예측하는 분석단계(S4);를 포함하는 폐식용유의 원료 혼합 비율 분석방법.
A data collection step (S1) of mixing at least two or more types of waste cooking oil to collect near-infrared absorption spectrum data for each concentration of the mixed raw material;
a modeling step (S2) of obtaining a prediction candidate model according to a wavelength region using a multivariate statistical analysis (Partial Least Squares Analysis; PLSA) method from the obtained near-infrared absorption spectrum data;
With respect to the obtained prediction candidate model, the prediction candidate model of the wavelength region having the highest prediction performance is predicted using any one or more of a coefficient of determination (R 2 ) and a root mean square error (RMSE). a model determination step (S3) of determining a model; and
After measuring the near-infrared absorption spectrum of the mixed waste cooking oil sample to be analyzed, the analysis step (S4) of predicting the content of a specific raw material by substituting it into the prediction model of the determined wavelength region; .
제1항에 있어서,
상기 모델링단계(S2)에서 상기 파장 영역은 898.77nm에서 2132.65nm 인 제1 영역, 1,100nm에서 1250nm 인 제2 영역, 1,600nm에서 1800nm 인 제3 영역, 1,100nm에서 1250nm과 1,600nm에서 1800nm 인 제4 영역을 포함하는 것을 특징으로 하는 폐식용유의 원료 혼합 비율 분석방법.
According to claim 1,
In the modeling step (S2), the wavelength region is a first region from 898.77 nm to 2132.65 nm, a second region from 1,100 nm to 1250 nm, a third region from 1,600 nm to 1800 nm, and a third region from 1,100 nm to 1250 nm and 1,600 nm to 1800 nm. A raw material mixing ratio analysis method of waste cooking oil, characterized in that it includes 4 areas.
제1항에 있어서,
상기 모델 결정단계(S3)는 상기 파장 영역에 따른 예측 후보 모델 중에서 실제값과 비교하여 가장 높은 예측 성능을 갖는 파장 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 하는 폐식용유의 원료 혼합 비율 분석방법.
According to claim 1,
The model determining step (S3) is a step of determining a prediction candidate model in the wavelength region having the highest prediction performance compared with the actual value among the prediction candidate models according to the wavelength region as the prediction model. Mixing ratio analysis method.
제1항에 있어서,
상기 모델 결정단계(S3)는 폐식용유가 폐해바라기유(sunflower oil) 및 폐카놀라유(canola oil)를 혼합한 경우 폐해바라기유의 함량을 예측하기 위하여 898.77nm에서 2132.65nm 인 제1 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 하는 폐식용유의 원료 혼합 비율 분석방법.
According to claim 1,
The model determining step (S3) is a prediction candidate model of the first region from 898.77 nm to 2132.65 nm in order to predict the content of the waste sunflower oil when the waste cooking oil is a mixture of sunflower oil and canola oil. A method for analyzing the raw material mixing ratio of waste cooking oil, characterized in that it is the step of determining as a predictive model.
제1항에 있어서,
상기 모델 결정단계(S3)는 폐식용유가 폐대두유(soybean oil), 폐올리브유(olive oil) 및 폐해바라기유(sunflower oil)를 혼합한 경우 폐올리브유의 함량을 예측하기 위하여 1600nm에서 1800nm 인 제3 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 하는 폐식용유의 원료 혼합 비율 분석방법.
According to claim 1,
The model determination step (S3) is a third of 1600 nm to 1800 nm in order to predict the content of the waste olive oil when the waste cooking oil is a mixture of waste soybean oil, waste olive oil, and waste sunflower oil Raw material mixing ratio analysis method of waste cooking oil, characterized in that the step of determining the prediction candidate model of the region as the prediction model.
제1항에 있어서,
상기 모델 결정단계(S3)는 폐식용유가 폐대두유(soybean oil), 폐올리브유(olive oil), 폐카놀라유(canola oil) 및 폐해바라기유(sunflower oil)를 혼합한 경우 폐올리브유의 함량을 예측하기 위하여 898.77nm에서 2132.65nm 인 제1 영역의 예측 후보 모델을 예측 모델로 결정하는 단계인 것을 특징으로 하는 폐식용유의 원료 혼합 비율 분석방법.


According to claim 1,
The model determining step (S3) is to predict the content of waste olive oil when the waste cooking oil is a mixture of waste soybean oil, waste olive oil, waste canola oil and sunflower oil. A method for analyzing the raw material mixing ratio of waste cooking oil, characterized in that the step of determining the prediction candidate model of the first region of 898.77 nm to 2132.65 nm as the prediction model for the purpose.


KR1020200129254A 2020-10-07 2020-10-07 Analysis method of mixed ratio of waste cooking-oils for biodiesel production process KR102421770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200129254A KR102421770B1 (en) 2020-10-07 2020-10-07 Analysis method of mixed ratio of waste cooking-oils for biodiesel production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200129254A KR102421770B1 (en) 2020-10-07 2020-10-07 Analysis method of mixed ratio of waste cooking-oils for biodiesel production process

Publications (2)

Publication Number Publication Date
KR20220046158A true KR20220046158A (en) 2022-04-14
KR102421770B1 KR102421770B1 (en) 2022-07-15

Family

ID=81211473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200129254A KR102421770B1 (en) 2020-10-07 2020-10-07 Analysis method of mixed ratio of waste cooking-oils for biodiesel production process

Country Status (1)

Country Link
KR (1) KR102421770B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101881A1 (en) * 2022-11-11 2024-05-16 채재훈 Method for providing waste raw material trading platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003648U (en) * 2009-02-12 2009-04-20 (주) 휴마스 Detector of fuel oil
KR20120068927A (en) * 2009-09-22 2012-06-27 비피 코포레이션 노쓰 아메리카 인코포레이티드 Methods and apparatuses for measuring biological processes using mid-infrared spectroscopy
JP2019094813A (en) * 2017-11-21 2019-06-20 株式会社豊田中央研究所 Biofuel measuring device and engine system
JP2020112478A (en) * 2019-01-15 2020-07-27 直富商事株式会社 Estimation method of fatty acid ester content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003648U (en) * 2009-02-12 2009-04-20 (주) 휴마스 Detector of fuel oil
KR20120068927A (en) * 2009-09-22 2012-06-27 비피 코포레이션 노쓰 아메리카 인코포레이티드 Methods and apparatuses for measuring biological processes using mid-infrared spectroscopy
JP2019094813A (en) * 2017-11-21 2019-06-20 株式会社豊田中央研究所 Biofuel measuring device and engine system
JP2020112478A (en) * 2019-01-15 2020-07-27 直富商事株式会社 Estimation method of fatty acid ester content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101881A1 (en) * 2022-11-11 2024-05-16 채재훈 Method for providing waste raw material trading platform

Also Published As

Publication number Publication date
KR102421770B1 (en) 2022-07-15

Similar Documents

Publication Publication Date Title
Pimentel et al. Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration
Correia et al. Portable near infrared spectroscopy applied to fuel quality control
Zawadzki et al. Biodiesel blend level detection using ultraviolet absorption spectra
US8781757B2 (en) Method and apparatus for determining properties of fuels
Dorado et al. Visible and NIR Spectroscopy to assess biodiesel quality: Determination of alcohol and glycerol traces
Gaydou et al. Evaluation of multiblock NIR/MIR PLS predictive models to detect adulteration of diesel/biodiesel blends by vegetal oil
Corsetti et al. Characterization of gasoline/ethanol blends by infrared and excess infrared spectroscopy
Mendes et al. Determination of octane numbers in gasoline by distillation curves and partial least squares regression
Abbas et al. PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio
JP2005512051A (en) A method of analyzing unknowns as a blend of known substances calculated to match specific analytical data and predicting the properties of unknowns based on the calculated blend
US20090316139A1 (en) Biodiesel/diesel blend level detection using absorbance
Choquette et al. Identification and quantitation of oxygenates in gasoline ampules using Fourier transform near-infrared and Fourier transform Raman spectroscopy
CN112782146B (en) Gasoline olefin content analysis method based on Raman spectrum
Nespeca et al. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR‐FTIR Analysis
Ng et al. Nuclear magnetic resonance spectroscopic characterisation of palm biodiesel and its blends
Liu et al. Raman spectroscopy for the discrimination and quantification of fuel blends
KR102421770B1 (en) Analysis method of mixed ratio of waste cooking-oils for biodiesel production process
US7973926B1 (en) Methods for determining olefin concentrations in olefin-containing fuels
Aleme et al. Determination of specific gravity and kinematic viscosity of diesel using distillation curves and multivariate calibration
Aleme et al. Determination of ethanol and specific gravity in gasoline by distillation curves and multivariate analysis
Vrtiška et al. Prediction of HVO content in HVO/diesel blends using FTIR and chemometric methods
Issa Prediction of octane numbers for commercial gasoline using distillation curves: a comparative regression analysis between principal component and partial least squares methods
Monteiro et al. 1H NMR and multivariate calibration for the prediction of biodiesel concentration in diesel blends
Veses et al. Prediction of elemental composition, water content and heating value of upgraded biofuel from the catalytic cracking of pyrolysis bio-oil vapors by infrared spectroscopy and partial least square regression models
Soyemi et al. Multivariate analysis of near-infrared spectra using the G-programming language

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant