KR20220038047A - Electrocatalyst for Electrolysis - Google Patents

Electrocatalyst for Electrolysis Download PDF

Info

Publication number
KR20220038047A
KR20220038047A KR1020220034402A KR20220034402A KR20220038047A KR 20220038047 A KR20220038047 A KR 20220038047A KR 1020220034402 A KR1020220034402 A KR 1020220034402A KR 20220034402 A KR20220034402 A KR 20220034402A KR 20220038047 A KR20220038047 A KR 20220038047A
Authority
KR
South Korea
Prior art keywords
electrode catalyst
curved
cell stack
protrusion
electrocatalyst
Prior art date
Application number
KR1020220034402A
Other languages
Korean (ko)
Inventor
이광용
Original Assignee
에콜그린텍(주)
이광용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에콜그린텍(주), 이광용 filed Critical 에콜그린텍(주)
Priority to KR1020220034402A priority Critical patent/KR20220038047A/en
Publication of KR20220038047A publication Critical patent/KR20220038047A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present invention relates to an electrocatalyst cell stack for water electrolysis made of a plastic CNT composite material and an expensive metal material, and more specifically, to an electrocatalyst cell stack for water electrolysis capable of highly efficient electrolyzed water circulation, which can minimize energy loss due to bubbles compared to applied power and increase efficiency by forming a surface of an electrode catalyst into an elliptical curved surface and using the difference in flow rate to remove hydrogen (H_2) and oxygen (O_2) gases which may be attached to a surface of a cell stack during water electrolysis. The present invention comprises: a plurality of plate-shaped electrode catalysts continuously provided at regular intervals, wherein the electrode catalyst is used as any one among a one-sided central protruding type in which a curved protrusion part is convexly protruded at a center of one surface; a one-side upper protruding type in which a curved protrusion part is convexly protruded on an upper side of one side; a one-sided lower protruding type in which a curved protrusion part is convexly protruded on a lower side of one side; a double-sided center protruding type in which a curved protrusion part is convexly protruded in a center of both sides; a double-sided upper protruding type in which a curved protrusion part is convexly protruded on a top of both sides; and a double-sided lower protruding type in which a curved protrusion part is convexly protruded on a lower side of both sides.

Description

고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택{Electrocatalyst for Electrolysis}Electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolytic water circulation {Electrocatalyst for Electrolysis}

본 발명은 플라스틱 CNT 복합소재 및 귀금속 소재로 제조된 물 전기분해용 전극촉매 셀스택에 관한 것으로, 더욱 상세하게는 전극촉매의 면을 타원 곡면으로 형성하여 유속의 차이를 이용해 물 전기분해시 셀스택 표면에 부착될 수 있는 수소(H2), 산소(O2) 가스를 제거함으로써 인가 전원 대비 기포로 인한 에너지 손실을 최소화시키고 효율을 상승시킬 수 있는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택에 관한 것이다.The present invention relates to an electrode catalyst cell stack for water electrolysis made of a plastic CNT composite material and a noble metal material. Electrocatalyst cell stack for water electrolysis with high-efficiency electrolytic water circulation that can minimize energy loss due to bubbles compared to applied power and increase efficiency by removing hydrogen (H2) and oxygen (O2) gases that may adhere to the surface is about

경제적이고 효율적인 물 전기분해용 전극촉매 소재 개발은 많은 연구기관과 학계, 산업계에서 개발을 하여 왔다. 또한, 전극촉매 소재로 사용되는 것은 많이 있으나 고가의 귀금속(백금, 이리듐, 루테늄 外)은 생산량의 한계가 있었고, 플라스틱 CNT 복합소재 및 그래핀 소재는 대부분 저함량에 코팅용 위주로 개발되어 왔다.The development of economical and efficient electrocatalyst materials for water electrolysis has been developed by many research institutes, academia, and industry. In addition, there are many used as electrode catalyst materials, but expensive noble metals (platinum, iridium, ruthenium, etc.) have limited production capacity, and most plastic CNT composite materials and graphene materials have low content and have been mainly developed for coating.

종래의 물 전기분해용 전극촉매는 금속 또는 귀금속으로 다양한 두께의 판 시트형태를 제관하여 백금, 루테늄, 이리듐을 Ti(티타늄)에 0.5 ~ 8㎛ 두께로 코팅하여 사용하였으나,Conventional electrode catalysts for water electrolysis are made of metal or precious metal in the form of plate sheets of various thicknesses, and platinum, ruthenium, and iridium are coated on Ti (titanium) to a thickness of 0.5 to 8 μm.

물 전기분해시 발생된 수소, 산소 기포층과 물속의 Mg, K, Ca, Na, Fe 등이 환원전극(-극) 표면에 고착화 되는 현상에 의해 전해질과 전극 간의 접촉 면적이 줄어 전기분해 효율을 저하시키는 문제점이 있다.The contact area between the electrolyte and the electrode is reduced by the phenomenon in which the hydrogen and oxygen bubble layer generated during water electrolysis and Mg, K, Ca, Na, Fe, etc. in the water are fixed to the surface of the cathode (-pole), thereby improving the electrolysis efficiency. There is a problem of lowering.

KR 등록특허 제10-1978380호(2019.05.08)KR Registered Patent No. 10-1978380 (2019.05.08) KR 등록특허 제10-1902859호(2018.09.20)KR Registered Patent No. 10-1902859 (2018.09.20) KR 등록실용신안 제20-0342518호(2004.02.09)KR Registered Utility Model No. 20-0342518 (2004.02.09)

본 발명은 종래와 같은 문제점을 해결하기 위해 창안한 것으로, 소재적인 측면의 한계를 극복하기 위해 전극촉매에 기구 설계 관점에서 개발하여 동일한 전기 에너지 인가시 고효율에 성능을 얻을 수 있는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택을 제공하는데 그 목적이 있다.The present invention was devised to solve the same problems as in the prior art. In order to overcome the limitations of material aspects, it was developed from the viewpoint of designing an electrode catalyst in a mechanism, and a high-efficiency electrolyzed water circulation that can obtain high-efficiency performance when the same electrical energy is applied. An object of the present invention is to provide an electrocatalyst cell stack for possible water electrolysis.

상기 목적을 달성하기 위한 본 발명에 따른 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택은,Electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolytic water circulation according to the present invention for achieving the above object,

판 형상으로 이루어진 전극촉매를 일정한 간격으로 복수 개 연속 구비하되,A plurality of plate-shaped electrode catalysts are continuously provided at regular intervals,

상기 전극촉매는,The electrode catalyst is

일면 중앙에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 일면 중앙 돌출형,One-sided central protrusion type, in which a curved protrusion is formed to protrude in a streamlined convex form at the center of one side;

일면 상부에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 일면 상부 돌출형,One-sided upper protrusion type, in which a curved protrusion is formed to protrude convexly in a streamlined shape on the upper side of one side;

일면 하부에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 일면 하부 돌출형,One-side lower protrusion type in which a curved protrusion is formed to protrude convexly in a streamlined shape on the lower side of one side,

양면 중앙에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 양면 중앙 돌출형,Double-sided central protrusion in which curved protrusions protrude in a streamlined convex form at the center of both sides;

양면 상부에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 양면 상부 돌출형,Double-sided upper protrusion type in which curved protrusions protrude in a streamlined convex shape on both sides of the upper part,

양면 하부에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 양면 하부 돌출형 중 택 1종이 사용됨을 특징으로 한다.It is characterized in that one of the double-sided lower protrusion types in which the curved protrusions protrude in a streamlined convex shape are used on both sides of the lower part.

또한, 상기 전극촉매 사이에는 평면 형태의 평면형 전극촉매가 각각 구비됨을 특징으로 한다.In addition, it is characterized in that a planar electrode catalyst of a planar shape is provided between the electrode catalysts, respectively.

또한, 상기 전극촉매는 티타늄(Ti) 소재를 곡면 형태의 틀에서 용융 성형하거나, 티타늄 소재의 재료를 곡면 형태로 절삭 가공하고, 백금, 루테늄, 이리듐 중 택 1 또는 택 2종 이상의 촉매를 0.5 ~ 8㎛ 두께로 코팅한 것임을 특징으로 한다.In addition, the electrode catalyst is melt-molded titanium (Ti) material in a curved mold, or titanium material is cut into a curved shape, and one or two or more catalysts selected from platinum, ruthenium, and iridium are selected from 0.5 to It is characterized in that it is coated with a thickness of 8 μm.

또한, 상기 전극촉매는 PP, PE, SEbs, PC, ABS, PA66, PET, SAN의 열가소성 소재 중 택 1 된 소재에 Al, Cu, Fe, 페라이트, Ti, 그래핀 중 택 1종 이상의 소재와 CNT가 첨가되어 표면 저항이 0.5Ω/□(오옴) 이하인 플라스틱 CNT 복합소재임을 특징으로 한다.In addition, the electrode catalyst is a material selected from among thermoplastic materials of PP, PE, SEbs, PC, ABS, PA66, PET, and SAN, and at least one material selected from among Al, Cu, Fe, ferrite, Ti, and graphene and CNT It is characterized in that it is a plastic CNT composite material with a surface resistance of 0.5Ω/□ (Ohm) or less.

또한, 상기 전극촉매는 단부의 두께가 0.5 ~ 8mm일때, 곡면 돌출부는 단부로부터 0.5 ~ 2mm 두께로 돌출됨을 특징으로 한다.In addition, when the thickness of the end of the electrode catalyst is 0.5 to 8 mm, the curved protrusion is characterized in that it protrudes from the end to a thickness of 0.5 to 2 mm.

또한, 상기 전극촉매는 이웃한 전극촉매와의 간격이 곡면 돌출부 기준으로 0.2 ~ 2.2mm, 단부의 간격은 0.7 ~ 4.2mm임을 특징으로 한다.In addition, the electrode catalyst is characterized in that the interval with the adjacent electrode catalyst is 0.2 to 2.2 mm based on the curved protrusion, and the interval between the ends is 0.7 to 4.2 mm.

본 발명에 따른 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택은 서로 마주보는 면이 타원 곡면 형태로 개선됨에 따라 양력 발생으로 인해 물 전기분해시 발생된 수소, 산소 가스 및 물의 대류 현상을 가속화시켜 셀스택 표면에 기포가 부착되지 않아 동일한 전기 에너지 대비 고효율의 성능을 얻을 수 있는 효과가 있다.The electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolysis water circulation according to the present invention is improved in the form of an elliptical curved surface, so that the convection phenomenon of hydrogen, oxygen gas and water generated during water electrolysis due to the generation of lift is improved. By accelerating it, bubbles do not adhere to the surface of the cell stack, which has the effect of obtaining high-efficiency performance compared to the same electrical energy.

도 1은 본 발명에 따른 물 전기분해용 전극촉매를 도시한 사시도.
도 2는 본 발명에 따른 물 전기 분해용 전극촉매를 도시한 측면도.
도 3 내지 도 7은 본 발명에 따른 물 전기분해용 전극촉매의 형상을 도시한 예시도.
도 8, 9은 본 발명에 따른 물 전기분해용 전극촉매 셀스택의 구조를 도시한 예시도.
도 10, 11은 본 발명의 다른 실시 예에 따른 물 전기분해용 전극촉매 셀스택의 구조를 도시한 예시도.
도 12는 본 발명의 또다른 실시 예에 따른 물 전기분해용 전극촉매 셀스택의 구조를 도시한 예시도.
1 is a perspective view showing an electrode catalyst for water electrolysis according to the present invention.
Figure 2 is a side view showing the electrocatalyst for water electrolysis according to the present invention.
3 to 7 are exemplary views showing the shape of the electrode catalyst for water electrolysis according to the present invention.
8 and 9 are exemplary views showing the structure of the electrocatalyst cell stack for water electrolysis according to the present invention.
10 and 11 are exemplary views showing the structure of an electrode catalyst cell stack for water electrolysis according to another embodiment of the present invention.
12 is an exemplary view showing the structure of an electrode catalyst cell stack for water electrolysis according to another embodiment of the present invention.

이하, 본 발명에 따른 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a preferred embodiment of the electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolysis water circulation according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 물 전기분해용 전극촉매를 도시한 사시도이고, 도 2는 본 발명에 따른 물 전기 분해용 전극촉매를 도시한 측면도이며, 도 3 내지 도 7은 본 발명에 따른 물 전기분해용 전극촉매의 형상을 도시한 예시도이고, 도 8, 9는 본 발명에 따른 물 전기분해용 전극촉매 셀스택을 도시한 예시도이다.1 is a perspective view showing the electrocatalyst for water electrolysis according to the present invention, FIG. 2 is a side view showing the electrocatalyst for water electrolysis according to the present invention, and FIGS. 3 to 7 are water electricity according to the present invention It is an exemplary view showing the shape of the electrocatalyst for decomposition, and FIGS. 8 and 9 are exemplary views showing the cell stack of the electrocatalyst for water electrolysis according to the present invention.

이들 도면에 도시된 바와 같이 본 발명에 따른 물 전기분해용 전극촉매 셀스택(100)은 판 형상으로 이루어진 전극촉매(10)를 일정한 간격으로 복수 개 연속 구비하여 이루어진다.As shown in these drawings, the electrocatalyst cell stack 100 for water electrolysis according to the present invention is formed by continuously providing a plurality of electrode catalysts 10 having a plate shape at regular intervals.

상기 전극촉매(10)는 일면 또는 양면에 곡면 돌출부(11)가 돌출 형성된다. 여기서 곡면 돌출부(11)가 돌출되는 위치는 여러 형태로 이루어질 수 있다. 즉, 도 1, 2에 도시된 바와 같이 전극촉매(10)의 일면 중앙에 곡면 돌출부가 유선형으로 볼록하게 돌출 형성된 일면 중앙 돌출형(10a), 도 3에 도시된 바와 같이 전극촉매(10)의 일면 상부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 일면 상부 돌출형(10b), 도 4에 도시된 바와 같이 전극촉매(10)의 일면 하부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 일면 하부 돌출형(10c), 도 5에 도시된 바와 같이 전극촉매(10)의 양면 중앙에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 중앙 돌출형(10d), 도 6에 도시된 바와 같이 전극촉매(10)의 양면 상부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 상부 돌출형(10e), 도 7에 도시된 바와 같이 양면 하부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 하부 돌출형(10f)으로 형성될 수 있다.The electrode catalyst 10 is formed with curved protrusions 11 protruding from one or both surfaces. Here, a position at which the curved protrusion 11 protrudes may have various shapes. That is, as shown in FIGS. 1 and 2 , the one-sided central protrusion 10a in which a curved protrusion is formed to protrude in a streamlined convex form at the center of one surface of the electrode catalyst 10, as shown in FIG. 3 , the electrode catalyst 10 As shown in FIG. 4 , the curved protrusion 11 is formed to protrude in a streamlined convex shape on one surface of the upper surface of the curved protrusion 11 , and the curved protrusion 11 is protruded in a streamlined convex shape at the lower part of one surface of the electrode catalyst 10 as shown in FIG. 4 . The formed one-sided lower protrusion 10c, as shown in FIG. 5, a double-sided central protrusion 10d in which the curved protrusions 11 protrude in a streamlined convex form at the center of both sides of the electrode catalyst 10, as shown in FIG. As shown in the double-sided upper protrusion 10e, in which the curved protrusions 11 are formed to protrude in a streamlined convex shape on both surfaces of the electrode catalyst 10 as shown in FIG. It may be formed in a protruding double-sided lower protrusion type (10f).

상기 곡면 돌출부(11)는 상단부터 하단까지 유선형의 곡면을 형성하되, 가장 많이 돌출되는 부분의 위치를 달리할 수 있는 것이다. 이와 같이 곡면 돌출부(11)가 유선형으로 형성되므로 양력 발생으로 인해 대류 현상을 가속화시켜 전극촉매(10) 표면으로 기포가 달라붙지 않게 된다. 결국, 기포가 부착되지 않음으로써 물과 접촉되는 전극촉매(10)의 표면적을 그대로 유지하여 고효율의 성능을 유지할 수 있다.The curved protrusion 11 forms a streamlined curved surface from the upper end to the lower end, but the position of the most protruding portion may be changed. As such, since the curved protrusion 11 is formed in a streamlined shape, the convection phenomenon is accelerated due to the generation of lift, so that the air bubbles do not stick to the surface of the electrode catalyst 10 . As a result, since the bubble is not attached, the surface area of the electrocatalyst 10 in contact with water can be maintained as it is, thereby maintaining high-efficiency performance.

또한, 유선형의 곡면 돌출부(11)에 의해 전해수가 전극촉매(10)의 표면을 모두 접촉하며 가속화되어 전극촉매(10) 표면에 기포가 부착되더라도 가속화되는 대류 현상에 의해 금방 탈락된다.In addition, the electrolyzed water is accelerated by contacting all the surfaces of the electrode catalyst 10 by the streamlined curved protrusion 11 , so that even if bubbles are attached to the surface of the electrode catalyst 10 , they are quickly removed by the accelerated convection phenomenon.

이러한 전극촉매(10)는 티타늄(Ti) 소재 또는 플라스틱 CNT 소재를 이용하여 성형한다.The electrode catalyst 10 is molded using a titanium (Ti) material or a plastic CNT material.

전극촉매(10)를 티타늄 소재로 이용할 경우 티타늄 소재를 곡면 형태의 틀에서 용융 성형하거나, 티타늄 소재의 재료를 곡면 형태로 절삭 가공한다. 그리고 백금, 루테늄, 이리듐 중 택 1 또는 택 2종 이상의 금속 또는 귀금속 촉매(15)를 0.5 ~ 8㎛ 두께로 코팅한다. 코팅의 두께는 용도 및 전기분해시간, 용량에 따라 다르게 할 수 있다.When the electrode catalyst 10 is used as a titanium material, the titanium material is melt-molded in a curved frame, or the titanium material is cut into a curved shape. Then, a metal or noble metal catalyst 15 of one or two or more types of platinum, ruthenium, and iridium is coated to a thickness of 0.5 to 8 μm. The thickness of the coating can be different depending on the use, electrolysis time, and capacity.

전극촉매(10)를 플라스틱 CNT 소재로 이용할 경우 PP, PE, SEBS, PC, ABS, PA66, PET, SAN 등의 열가소성 소재 중 택 1된 소재를 사용 할 수 있으나, 바람직하게는 내화학성이 우수한 PP, PE, SEbs 중 택 1 된 소재와 Al, Cu, Fe, Ti, 페라이트, 그레핀 중 택 1종 이상의 소재와 CNT가 첨가된 복합소재로 표면 저항이 0.5Ω/□(오옴) 이하인 플라스틱 CNT 복합소재를 이용한다. 또한, 자성체 특성이 있는 소재로 컴파운딩 압출된 펠렛 상의 소재를 사출 성형하여 셀스택을 제조하여 사용할 수 있다. 금속계 소재보다 플라스틱 CNT 복합소재가 경제적이고 성형의 편리성과 자유로운 디자인이 가능하므로 플라스틱 CNT 복합소재 사용함이 바람직하다.When the electrode catalyst 10 is used as a plastic CNT material, a material selected from among thermoplastic materials such as PP, PE, SEBS, PC, ABS, PA66, PET, and SAN may be used, but preferably PP with excellent chemical resistance A plastic CNT composite with a surface resistance of 0.5Ω/□ (ohm) or less with a material selected from among , PE, and SEbs, and CNT with one or more selected from Al, Cu, Fe, Ti, ferrite, and graphene use the material In addition, it is possible to manufacture and use a cell stack by injection molding a material in the form of compounded and extruded pellets with a material having magnetic properties. Plastic CNT composite material is more economical than metal-based material, and it is preferable to use plastic CNT composite material because molding convenience and free design are possible.

상기 CNT는 MW CNT를 사용하고, 도면 설계된 형상에 맞게 금형을 제작하여 사출기 스크류 온도 210 ~ 250℃로 전극촉매 셀스택을 제조한다. 도 2에 도시된 바와 같이 전극촉매(10)의 두께는 0.5 ~ 8mm로 하되, 곡면 돌출부(11)와 상하 끝선의 두께 차이는 0.5 ~ 2mm로 한다. 물론, 용도와 전기분해 시간, 용량에 따라 다르게 할 수 있음을 밝혀둔다. 여기서 전극촉매의 곡면 돌출부의 돌출 정도가 2mm이상이면 전기분해의 기능이 저하될 수 있고, 0.5mm 이하가 되면 곡면 부분이 완만하여 대류 및 발생 수소, 산소 가스의 흐름이 저하되어 효능이 저감될 수 있다.For the CNT, MW CNT is used, and a mold is manufactured according to the shape designed in the drawing to prepare an electrode catalyst cell stack at a screw temperature of 210 to 250° C. As shown in FIG. 2 , the thickness of the electrode catalyst 10 is 0.5 to 8 mm, and the difference in thickness between the curved protrusion 11 and the upper and lower end lines is 0.5 to 2 mm. Of course, it is pointed out that it can be done differently depending on the use, electrolysis time, and capacity. Here, if the protrusion of the curved protrusion of the electrode catalyst is 2 mm or more, the function of electrolysis may be reduced, and if it is 0.5 mm or less, the curved portion is gentle and the flow of convection and generated hydrogen and oxygen gas is lowered, thereby reducing the efficacy. there is.

더욱 상세하게는 도 3에 도시된 바와 같이 전극촉매(10)의 곡면 돌출부(11) 두께가 6mm이면 상하 끝의 두께는 5.5 ~ 4mm로 한다. 따라서, 상하 끝의 두께가 5.5mm일 때는 0.5mm의 편차, 상하 끝의 두께가 5mm일 때는 1mm의편차, 4mm일 때는 2mm 편차가 되도록 형성한다.More specifically, as shown in FIG. 3 , when the thickness of the curved protrusion 11 of the electrode catalyst 10 is 6 mm, the thickness of the upper and lower ends is 5.5 to 4 mm. Therefore, when the thickness of the upper and lower ends is 5.5mm, the deviation is 0.5mm, when the thickness of the upper and lower ends is 5mm, the deviation is 1mm, and when the thickness is 4mm, the deviation is 2mm.

이러한 형상으로 이루어진 전극촉매(10)를 수직형태로 세워 측 방향으로 다수 설치하여 셀스텍(100)을 형성한다. 이때, 전극촉매(10)의 배열은 도 8, 9에 도시된 바와 같이 전극촉매(10)의 형상에 따라 여러 형태로 배열할 수 있다. 전극촉매(10)를 수평 형태로 설치하면 목적한 기능이 상실될 수 있으므로 수직 형태로 세워서 설치한다.A plurality of electrode catalysts 10 having such a shape are erected in a vertical form and installed in a lateral direction to form the cells stack 100 . At this time, the arrangement of the electrode catalyst 10 may be arranged in various forms according to the shape of the electrode catalyst 10 as shown in FIGS. 8 and 9 . If the electrode catalyst 10 is installed in a horizontal form, the intended function may be lost, so the electrode catalyst 10 is installed in a vertical form.

상기 셀스택(100)은 도 8에 도시된 바와 같이 이웃한 전극촉매(10)와의 간격이 곡면 돌출부(11) 기준으로 0.2 ~ 2.2mm일때, 단부의 간격은 0.7 ~ 4.2mm가 되도록 한다. 바람직하게는 물 전기분해시 곡면 돌출부(11)의 간격이 2mm일 경우 전극촉매(10)의 상하 끝부분 간격을 2mm로 하되 상하 끝부분의 간격이 3mm이상이 되면 효능이 떨어질 수 있다.As shown in FIG. 8, when the distance between the cell stack 100 and the adjacent electrode catalyst 10 is 0.2 to 2.2 mm based on the curved protrusion 11, the distance between the ends is 0.7 to 4.2 mm. Preferably, when the distance between the curved protrusions 11 is 2 mm during water electrolysis, the distance between the upper and lower ends of the electrode catalyst 10 is 2 mm.

그리고 도 10, 11에 도시된 바와 같이 각각의 전극촉매(10) 사이에 양면이 평면 형태를 가지는 평면형 전극촉매(10g)가 각각 구비될 수 있고, 금속계 전극촉매와 플라스틱 CNT 복합소재 전극촉매를 혼용하여 사용할 수도 있다.And as shown in FIGS. 10 and 11, a planar electrocatalyst 10g having a planar shape on both sides may be provided between each electrocatalyst 10, and a metal-based electrode catalyst and a plastic CNT composite electrode catalyst are mixed. can also be used.

도 12는 본 발명의 또다른 실시 예에 따른 물 전기분해용 전극촉매 셀스택의 구조를 도시한 예시도로서, 도면에 도시된 바와 같이 상기 전극촉매(10)의 일면 또는 양면에 수직의 요홈(12)을 형성한다. 상기 요홈(12)은 사각, 삼각, 반원 등의 단면으로 이루어지며, 여러 줄 형성한다.12 is an exemplary view showing the structure of an electrocatalyst cell stack for water electrolysis according to another embodiment of the present invention. As shown in the figure, vertical grooves ( 12) is formed. The groove 12 is made of a cross section such as a square, a triangle, a semicircle, and is formed in several lines.

이러한 요홈(12)이 형성된 구간에서는 저기압 상태가 되어 유속이 빨라지고, 이로 인해 전극촉매(10) 표면으로 기포가 달라붙지 않게 되며, 동일한 크기의 셀스택 대비 물과 접촉되는 표면적이 넓어져 효율이 더욱 좋아진다. 결국, 기포가 부착되지 않음으로써 물과 접촉되는 전극촉매(10)의 표면적을 그대로 유지하여 고효율의 성능을 유지할 수 있다.In the section in which the grooves 12 are formed, the flow rate is increased due to the low pressure state, which prevents air bubbles from sticking to the surface of the electrode catalyst 10, and the surface area in contact with water becomes wider compared to the cell stack of the same size, so that the efficiency is further increased get better As a result, since the bubble is not attached, the surface area of the electrocatalyst 10 in contact with water can be maintained as it is, thereby maintaining high-efficiency performance.

이러한 구조뢰 이루어진 물 전기분해 전극촉매 셀스택(100)은 산업계, 세척시장, 생활가전, 수소산소 발생기, 수소 자동차 등 연료 저감기와 같이 다양한 분야에 적용이 가능하며 수소 에너지 시장에 큰 도움이 된다.The water electrolysis electrode catalyst cell stack 100 made of such a structure can be applied to various fields such as fuel reduction devices such as industries, washing markets, household appliances, hydrogen-oxygen generators, and hydrogen cars, and is of great help to the hydrogen energy market.

[실험 1] 물 전기분해량 테스트[Experiment 1] Water electrolysis amount test

A. 플라스틱 CNT 복합소재를 사출기 스크류 온도 210℃ ~ 250℃로 사출 성형하여 표면저항이 0.5Ω/□(오옴)인 전극촉매를 제조하되, 가로 100mm, 세로 100mm, 곡면 돌출부 두께 6mm, 상하 끝의 두께 5mm로 형성된 전극촉매 셀스택.A. An electrode catalyst with a surface resistance of 0.5Ω/□ (ohm) is manufactured by injection molding a plastic CNT composite material at a screw temperature of 210°C to 250°C in an injection machine, but the width is 100mm, the length is 100mm, the thickness of the curved protrusion is 6mm, and the Electrocatalyst cell stack formed with a thickness of 5 mm.

B. 상기 소재를 가로 100mm, 세로 100mm, 두께 6mm로 평면 사출하여 비교 실험.B. Comparative experiment by flat injection of the material with a width of 100 mm, a length of 100 mm, and a thickness of 6 mm.

C. 상기 A조건의 전극촉매를 도 3의 형상으로 제조하고, 도 7의 형태로 배열하되, 전극촉매의 상하 끝 선 간격을 2mm, 곡면 돌출부의 돌출 정도는 1mm가 되도록 병렬로 전극봉을 연결하여 전극촉매를 3장 조립한 셀스택.C. The electrode catalyst of condition A was prepared in the shape of FIG. 3 and arranged in the shape of FIG. 7, but the electrode electrodes were connected in parallel so that the distance between the upper and lower ends of the electrode catalyst was 2 mm and the protrusion of the curved protrusion was 1 mm. A cell stack in which three electrode catalysts are assembled.

D. 상기 B조건의 전극촉매 3장을 병렬로 전극봉을 연결하고, 전극촉매의 간격을 2mm 조립한 셀스택.D. A cell stack in which the three electrode catalysts of the condition B are connected in parallel with electrodes and the electrode catalysts are separated by 2 mm.

실험 조건 : 상기 셀스택을 절연 용기 물(TDS 110 물 온도 23℃) 8,000g에 투입한 후 DC 12V를 인가하여 전기분해량을 측정한다.Experimental conditions: After putting the cell stack into 8,000 g of water in an insulated container (TDS 110 water temperature 23° C.), DC 12V is applied to measure the amount of electrolysis.

Test DC 12V인가시 물 온도 23℃Test Water temperature 23℃ when DC 12V is applied

전류(A)Current (A) 전기분해 된( H₂/O₂) 증발량(g)Electrolyzed ( H₂/O₂) evaporation (g) 10분 후 after 10 minutes 20분 후after 20 minutes 30분 후30 minutes later 분당 평균average per minute 60분 후 물 온도Water temperature after 60 minutes CC 2.57A2.57A 2.612.61 5.315.31 8.128.12 0.26g0.26g 32.4℃32.4℃ DD 1.62A1.62A 1.741.74 3.493.49 5.245.24 0.17g0.17g 27.1℃27.1℃

상기 데이터는 동일한 조건으로 3회 반복 실험 후 평균 수치임.상기 결과로 DC 12V 인가시 평면 타입 D는 1.62A, 평면 타입 C는 2.57A로 D번 대비 C번이 50%의 전원 효율이 더 좋은 특성을 보였고, 전기분해 된 분당 평균 증발량은 C번이 0.26g, D번이 0.17g으로 C번이 55%의 효율이 더 우수했다.The above data is the average value after 3 repeated experiments under the same conditions. As a result, when DC 12V is applied, flat type D is 1.62A and flat type C is 2.57A, which is 50% better power efficiency of C than D. The average evaporation rate per minute electrolyzed was 0.26 g for C and 0.17 g for D, and the efficiency of C was 55% better.

또한, 전원효율과 전기분해 효율이 일치하지 않은 것은 물의 온도 상승으로 인해 손실이 발생된 것이다.In addition, the fact that the power efficiency and the electrolysis efficiency do not match is a loss due to an increase in the temperature of the water.

10 : 전극촉매
11 : 곡면 돌출부
12 : 요홈
100 : 셀스택
10: electrode catalyst
11: curved protrusion
12: groove
100: cell stack

Claims (5)

판 형상으로 이루어진 전극촉매(10)를 일정한 간격으로 복수 개 연속 구비하되,
상기 전극촉매(10)는,
일면 중앙에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 일면 중앙 돌출형(10a),
일면 상부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 일면 상부 돌출형(10b),
일면 하부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 일면 하부 돌출형(10c),
양면 중앙에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 중앙 돌출형(10d),
양면 상부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 상부 돌출형(10e),
양면 하부에 곡면 돌출부(11)가 유선형으로 볼록하게 돌출 형성된 양면 하부 돌출형(10f) 중 택 1종이 사용됨을 특징으로 하는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택.
A plurality of electrode catalysts 10 made of a plate shape are continuously provided at regular intervals,
The electrode catalyst 10,
One-sided central protrusion (10a) in which the curved protrusion 11 is formed to protrude in a streamlined convex form in the center of one surface;
One-surface upper protrusion (10b), in which the curved protrusion 11 is formed to protrude in a streamlined convex shape on the upper part of one surface;
One surface lower protrusion (10c) in which the curved protrusion 11 is formed to protrude in a streamlined convex form on the lower side of one side,
A double-sided central protrusion (10d) in which the curved protrusion 11 protrudes in a streamlined convex form at the center of both sides;
A double-sided upper protrusion type (10e) in which the curved protrusion (11) protrudes in a streamlined convex shape on both sides of the upper portion,
Electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolytic water circulation, characterized in that one of the double-sided lower protrusions 10f in which the curved protrusions 11 are protruded in a streamlined convex shape on the lower sides are used.
제1 항에 있어서, 상기 전극촉매(10)와 전극촉매(10) 사이에는 평면 형태의 평면형 전극촉매(10g)가 각각 구비됨을 특징으로 하는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택.
The electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolysis water circulation according to claim 1, wherein a planar electrode catalyst (10 g) of a planar shape is provided between the electrode catalyst (10) and the electrode catalyst (10), respectively. .
제1 항 또는 제2 항에 있어서, 상기 전극촉매(10)는 티타늄(Ti) 소재를 곡면 형태의 틀에서 용융 성형하거나, 티타늄 소재의 재료를 곡면 형태로 절삭 가공하고, 백금, 루테늄, 이리듐 중 택 1종 또는 택 2종 이상의 촉매를 0.5 ~ 8㎛ 두께로 코팅한 것임을 특징으로 하는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택.
The method according to claim 1 or 2, wherein the electrode catalyst (10) is formed by melt-molding a titanium (Ti) material in a curved frame or cutting a titanium material into a curved shape, and includes platinum, ruthenium, and iridium. Electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolytic water circulation, characterized in that it is coated with one or two or more catalysts with a thickness of 0.5 to 8㎛.
제1 항 또는 제2 항에 있어서, 상기 전극촉매(10)는 PP, PE, SEbs, PC, ABS, PA66, PET, SAN의 열가소성 소재 중 택 1 된 소재에 Al, Cu, Fe, 페라이트, Ti, 그래핀 중 택 1종 이상의 소재와 CNT가 첨가되어 표면 저항이 0.5Ω/□(오옴) 이하인 플라스틱 CNT 복합소재임을 특징으로 하는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택.
The method of claim 1 or 2, wherein the electrode catalyst (10) is Al, Cu, Fe, ferrite, Ti in a material selected from among the thermoplastic materials of PP, PE, SEbs, PC, ABS, PA66, PET, and SAN. Electrocatalyst cell stack for water electrolysis capable of high-efficiency electrolysis water circulation, characterized in that it is a plastic CNT composite material with a surface resistance of 0.5Ω/□(ohm) or less by adding CNT and at least one material selected from graphene.
제1 항 또는 제2 항에 있어서, 상기 전극촉매(10)는 일면 또는 양면에 수직의 요홈(12)이 형성됨을 특징으로 하는 고효율의 전해수 순환이 가능한 물 전기분해용 전극촉매 셀스택.
The electrode catalyst cell stack for water electrolysis with high efficiency according to claim 1 or 2, wherein the electrode catalyst (10) has vertical grooves (12) formed on one or both sides thereof.
KR1020220034402A 2020-06-18 2022-03-21 Electrocatalyst for Electrolysis KR20220038047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220034402A KR20220038047A (en) 2020-06-18 2022-03-21 Electrocatalyst for Electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200074154A KR102378078B1 (en) 2020-06-18 2020-06-18 Electrocatalyst for Electrolysis
KR1020220034402A KR20220038047A (en) 2020-06-18 2022-03-21 Electrocatalyst for Electrolysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200074154A Division KR102378078B1 (en) 2020-06-18 2020-06-18 Electrocatalyst for Electrolysis

Publications (1)

Publication Number Publication Date
KR20220038047A true KR20220038047A (en) 2022-03-25

Family

ID=79177152

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200074154A KR102378078B1 (en) 2020-06-18 2020-06-18 Electrocatalyst for Electrolysis
KR1020220034402A KR20220038047A (en) 2020-06-18 2022-03-21 Electrocatalyst for Electrolysis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200074154A KR102378078B1 (en) 2020-06-18 2020-06-18 Electrocatalyst for Electrolysis

Country Status (1)

Country Link
KR (2) KR102378078B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200342518Y1 (en) 2003-11-11 2004-02-18 김정욱 a pole for electrolysis of water
KR101902859B1 (en) 2017-05-17 2018-10-01 오경희 Electrode plate module for electrolysis of water and apparatus for generating hydrogen water having the same
KR101978380B1 (en) 2016-09-21 2019-05-14 주식회사 파이노 Electrode cell for electrolysis and module for manufacturing ionic water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290790A (en) * 1999-04-06 2000-10-17 Osaka Gas Co Ltd Electrode for water electrolysis
JP2012144778A (en) * 2011-01-12 2012-08-02 Kobe Steel Ltd Electrolysis electrode and device for generating ozone using the electrolysis electrode
KR102024357B1 (en) * 2019-06-04 2019-09-23 에콜그린텍(주) Plastic magnet cnt composite electrode catalyst and method for fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200342518Y1 (en) 2003-11-11 2004-02-18 김정욱 a pole for electrolysis of water
KR101978380B1 (en) 2016-09-21 2019-05-14 주식회사 파이노 Electrode cell for electrolysis and module for manufacturing ionic water
KR101902859B1 (en) 2017-05-17 2018-10-01 오경희 Electrode plate module for electrolysis of water and apparatus for generating hydrogen water having the same

Also Published As

Publication number Publication date
KR102378078B1 (en) 2022-03-24
KR20210156495A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
JP5484723B2 (en) Distribution plate
CN101748423B (en) Efficient electrochemical reactor of electro-catalysis in-situ hydrogen peroxide
GB2039954A (en) Low cost bipolar current collector separator for electrochemical cells
CN104711634A (en) Diffusion layer of solid polymer electrolyte water electrolysis cell, and preparation method and application thereof
JP2002184422A (en) Separator for fuel cell
WO2020235237A1 (en) Metal porous sheet, fuel cell, and water electrolysis device
CN114262909A (en) Proton exchange membrane water electrolyzer, system and method
CN109803920B (en) Electrochemical cell and method of making same
CN201877504U (en) Novel plate grid of lead-acid storage battery
CN216972701U (en) Proton exchange membrane water electrolyzer and system
KR102378078B1 (en) Electrocatalyst for Electrolysis
US6083641A (en) Titanium carbide bipolar plate for electrochemical devices
CN206059706U (en) A kind of probe
CN203983400U (en) A kind of accumulator pole plate structure
CN1248347C (en) Flow field demarcation strip for proton exchange membrane fuel cell
CN205645995U (en) Polar plate and fuel cell for proton exchange membrane fuel cell
JP3130802U (en) Fuel cell
CN213835556U (en) Ozone electrolytic tank
CN113755859A (en) Electrolytic cell with multi-channel frame structure inside
KR100704437B1 (en) Electrochemical unit cell and electrochemical cell assembly with non-conductive separator
CN203910913U (en) Novel solid oxide fuel electrode current collector
CN109735865B (en) Electrolytic hydrogen and oxygen production matching device and preparation method thereof
CN113948748A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
Tugirumubano et al. Numerical simulation of the polymer electrolyte membrane electrolyzer
CN111463448A (en) Gas distributor structure for fuel cell and electrolyzer

Legal Events

Date Code Title Description
A107 Divisional application of patent