KR20220036216A - Water Electroysis System and Operation Method Thereof - Google Patents

Water Electroysis System and Operation Method Thereof Download PDF

Info

Publication number
KR20220036216A
KR20220036216A KR1020200118512A KR20200118512A KR20220036216A KR 20220036216 A KR20220036216 A KR 20220036216A KR 1020200118512 A KR1020200118512 A KR 1020200118512A KR 20200118512 A KR20200118512 A KR 20200118512A KR 20220036216 A KR20220036216 A KR 20220036216A
Authority
KR
South Korea
Prior art keywords
bipolar plate
cathode
water electrolysis
anode
gas
Prior art date
Application number
KR1020200118512A
Other languages
Korean (ko)
Inventor
허덕재
고동신
Original Assignee
고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합 filed Critical 고등기술연구원연구조합
Priority to KR1020200118512A priority Critical patent/KR20220036216A/en
Publication of KR20220036216A publication Critical patent/KR20220036216A/en
Priority to KR1020230013622A priority patent/KR20230024930A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 수전해 시스템 및 그 운영 방법에 관한 것으로서, 보다 구체적으로는 수전해 시스템의 유동저항을 최소화하여 유동흐름을 향상시킴과 동시에 시스템 성능을 향상시킬 수 있는 수전해 시스템 및 그 운영 방법에 관한 것이다.
본 발명에 따른 수전해 시스템은, 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이의 멤브레인을 포함하는 수전해 어셈블리; 상기 수전해 어셈블리에 적층되며, 수전해 반응에 의해 생성된 산소 가스 및 수소 가스의 유로가 형성되는 바이폴라 플레이트; 상기 바이폴라 플레이트에 부착되는 초음파 장치; 및 초음파를 발생시켜 상기 초음파 장치에 공급함으로써 상기 바이폴라 플레이트에 부착된 산소 또는 수소 가스를 분리하거나 상기 바이폴라 플레이트에 산소 또는 수소 가스가 부착되지 않고 배출되도록 하는 초음파 발생기;를 포함한다.
The present invention relates to a water electrolysis system and a method of operating the same, and more specifically, to a water electrolysis system and a method of operating the same that can improve the flow and improve system performance by minimizing the flow resistance of the water electrolysis system. will be.
The water electrolysis system according to the present invention includes a water electrolysis assembly including an anode, a cathode, and a membrane between the anode and the cathode; A bipolar plate stacked on the water electrolysis assembly and forming a flow path for oxygen gas and hydrogen gas generated by the water electrolysis reaction; an ultrasonic device attached to the bipolar plate; and an ultrasonic generator that generates ultrasonic waves and supplies them to the ultrasonic device to separate the oxygen or hydrogen gas attached to the bipolar plate or to discharge the oxygen or hydrogen gas without adhering to the bipolar plate.

Description

수전해 시스템 및 그 운영 방법 {Water Electroysis System and Operation Method Thereof} Water electrolysis system and operation method {Water Electroysis System and Operation Method Thereof}

본 발명은 수전해 시스템 및 그 운영 방법에 관한 것으로서, 보다 구체적으로는 수전해 시스템의 유동저항을 최소화하여 유동흐름을 향상시킴과 동시에 시스템 성능을 향상시킬 수 있는 수전해 시스템 및 그 운영 방법에 관한 것이다.The present invention relates to a water electrolysis system and a method of operating the same, and more specifically, to a water electrolysis system and a method of operating the same that can improve the flow and improve system performance by minimizing the flow resistance of the water electrolysis system. will be.

화석 연료 사용으로 인한 환경 오염문제로 인하여 대체 에너지에 대한 관심이 높아지고 있다. 특히 수소는 연료전지의 연료로서, 온실가스가 발생하지 않는 청정 에너지원이며, 화석 연료를 대체할 차세대 에너지원으로 주목받고 있다. Interest in alternative energy is increasing due to environmental pollution problems caused by the use of fossil fuels. In particular, hydrogen is a fuel for fuel cells, a clean energy source that does not emit greenhouse gases, and is attracting attention as a next-generation energy source to replace fossil fuels.

다양한 수소 생성 방법 중에서 물의 전기분해 반응(수전해 반응)에 의한 수소 생성 방법은 물을 산소 가스 및 수소 가스로 분리 또는 해리함으로써 산소 가스 및 수소 가스를 생성할 수 있을 뿐 아니라, 환경오염이 적고, 연료전지와 연계가 가능하다는 점에서 장점이 있다. Among various hydrogen generation methods, the hydrogen generation method by electrolysis of water (water electrolysis reaction) not only produces oxygen gas and hydrogen gas by separating or dissociating water into oxygen gas and hydrogen gas, but also causes less environmental pollution. It has an advantage in that it can be linked to fuel cells.

수전해 반응은 수용액 상태에서 자연적으로 음이온 및 양이온으로 분리되지 않는 화합물을 전류를 인가하여 분리하는 과정이다. 이러한 수전해 반응에 사용되는 수전해 어셈블리는 일반적으로 외부 전원, 양극(anode) 및 음극(cathode)을 포함한다. Water electrolysis is a process of separating compounds that do not naturally separate into anions and cations in an aqueous solution by applying an electric current. The water electrolysis assembly used in this water electrolysis reaction generally includes an external power source, an anode, and a cathode.

외부 전원은 전해 대상물을 음이온 및 양이온으로 분리시키는데 필요한 전기력을 제공하고, 양극 및 음극은 각각 전기분해 대상물에 전기력을 전달하는 역할, 그리고 음이온 또는 양이온의 부착 지점을 제공할 수 있다. The external power source provides the electrical force necessary to separate the electrolytic object into negative ions and positive ions, and the anode and cathode each serve to transmit electrical force to the electrolytic object and provide an attachment point for the negative ion or positive ion.

양극 및 음극에서의 반응식 1은 다음과 같다. Reaction equation 1 at the anode and cathode is as follows.

[반응식 1] [Scheme 1]

양극 (산화반응) : H2O → ½O2 + 2H+ + 2e- Anode (oxidation reaction): H 2 O → ½O 2 + 2H + + 2e -

음극 (환원반응) : 2H+ + 2e- → H2 Cathode (reduction reaction): 2H + + 2e - → H 2

전체반응 : H2O → ½O2 + H2 Overall reaction: H 2 O → ½O 2 + H 2

물(H2O)을 수소 가스(H2) 및 산소 가스(O2)로 분리할 때 에너지가 소모되며, 수소 가스(H2) 및 산소 가스(O2)가 다시 결합되어 물(H2O)을 형성할 때 에너지가 방출된다. Energy is consumed when water (H 2 O) is separated into hydrogen gas (H 2 ) and oxygen gas (O 2 ), and hydrogen gas (H 2 ) and oxygen gas (O 2 ) are combined again to form water (H 2 ). Energy is released when forming O).

도 1에는 기존의 수전해 시스템이 간략하게 도시되어 있다. 도 1을 참조하면, 기존의 수전해 시스템은, 산소 가스가 생성되는 양극 채널(A) 및 수소 가스가 생성되는 음극 채널(C)을 포함하며, 양극 채널(A)과 음극 채널(C) 사이에는 수전해 어셈블리(M)가 구비된다. Figure 1 schematically shows an existing water electrolysis system. Referring to Figure 1, the existing water electrolysis system includes an anode channel (A) in which oxygen gas is generated and a cathode channel (C) in which hydrogen gas is generated, between the anode channel (A) and the cathode channel (C). is provided with a water electrolysis assembly (M).

양극 채널(A)로 액체 상태의 물(H2O)이 공급되면, 수전해 반응에 의해 수소 이온(H+)과 산소 가스(O2)가 생성되고, 수소 이온은 수전해 어셈블리(M)의 멤브레인(membrane)을 통해 음극 채널(C)로 이동한다. 음극 채널(C)에서는 양극 채널(A)로부터 이동한 수소 이온이 반응에 참여하여 수소 가스(H2)가 생성된다.When liquid water (H 2 O) is supplied to the anode channel (A), hydrogen ions (H + ) and oxygen gas (O 2 ) are generated through a water electrolysis reaction, and the hydrogen ions are transferred to the water electrolysis assembly (M). It moves to the cathode channel (C) through the membrane. In the cathode channel (C), hydrogen ions moving from the anode channel (A) participate in the reaction to generate hydrogen gas (H 2 ).

양극 채널(A)에서 수전해 반응에 의해 생성된 산소 가스(O2)와, 음극 채널(C)에서 수전해 반응에 의해 생성된 수소 가스(H2)는 각각 액체 상태의 물과 기액 혼합, 즉 2상(2-phase)으로 흐를 수 있다. 2상으로 배출된 기액 혼합물은 각각, 수소 가스와 액체 상태의 물, 산소 가스와 액체 상태의 물로 기액분리된 후 분리된 물은 다시 수전해 시스템으로 재순환된다.Oxygen gas (O 2 ) generated by a water electrolysis reaction in the anode channel (A) and hydrogen gas (H 2 ) generated by a water electrolysis reaction in the cathode channel (C) are a mixture of liquid water and gas-liquid, respectively. In other words, it can flow in 2-phase. The gas-liquid mixture discharged into the two phases is separated into hydrogen gas and liquid water, oxygen gas and liquid water, respectively, and the separated water is recycled back to the water electrolysis system.

한편, 수전해 시스템은, 반응식 1의 역반응으로 수소와 산소를 반응시켜 물이 생성되는 반응을 통해 전기에너지를 생성하는 연료전지로도 작용한다Meanwhile, the water electrolysis system also functions as a fuel cell that generates electrical energy through the reaction of hydrogen and oxygen in the reverse reaction of Scheme 1 to produce water.

이와 같은 수전해 반응 또는 그 역반응이 반복됨에 따라, 양극 채널(A) 및 음극 채널(C)에 기포 상태로 수소 및 산소 분자가 부착되어 접촉 효율을 저하시킴으로써 반응을 저해할 뿐 아니라, 유로를 막아 유동 흐름을 방해함으로써 수전해 시스템의 성능이 저하되는 문제가 발생하고 있다. As this water electrolysis reaction or the reverse reaction is repeated, hydrogen and oxygen molecules attach to the anode channel (A) and cathode channel (C) in the form of bubbles, which not only inhibits the reaction by lowering the contact efficiency but also blocks the flow path. There is a problem that the performance of the water electrolysis system is degraded by interfering with the flow.

따라서, 본 발명은, 상술한 문제점을 해결하고자 하는 것으로, 수전해 시스템 내 2상 유체의 유동 흐름을 활성화하고, 시스템 내 부착되어 있는 버블 형태의 수소 및 산소 분자를 효과적으로 분리하여 시스템 성능 및 효율을 향상시킬 수 있는 수전해 시스템 및 그 운영 방법을 제공하고자 한다. Therefore, the present invention is intended to solve the above-mentioned problems, by activating the flow of two-phase fluid in the water electrolysis system and effectively separating hydrogen and oxygen molecules in the form of bubbles attached in the system, thereby improving system performance and efficiency. We aim to provide an improved water electrolysis system and its operation method.

상술한 목적을 달성하기 위한 본 발명의 일 측면에 의하면, 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이의 멤브레인을 포함하는 수전해 어셈블리; 상기 수전해 어셈블리에 적층되며, 수전해 반응에 의해 생성된 산소 가스 및 수소 가스의 유로가 형성되는 바이폴라 플레이트; 상기 바이폴라 플레이트에 부착되는 초음파 장치; 및 초음파를 발생시켜 상기 초음파 장치에 공급함으로써 상기 바이폴라 플레이트에 부착된 산소 또는 수소 가스를 분리하거나 상기 바이폴라 플레이트에 산소 또는 수소 가스가 부착되지 않고 배출되도록 하는 초음파 발생기;를 포함하는, 수전해 시스템이 제공된다. According to one aspect of the present invention for achieving the above-described object, there is provided a water electrolysis assembly including an anode, a cathode, and a membrane between the anode and the cathode; A bipolar plate stacked on the water electrolysis assembly and forming a flow path for oxygen gas and hydrogen gas generated by the water electrolysis reaction; an ultrasonic device attached to the bipolar plate; And an ultrasonic generator that generates ultrasonic waves and supplies them to the ultrasonic device to separate oxygen or hydrogen gas attached to the bipolar plate or to discharge oxygen or hydrogen gas without adhering to the bipolar plate. A water electrolysis system comprising a. provided.

바람직하게는, 상기 바이폴라 플레이트는, 상기 수전해 어셈블리의 양극 측에 적층되어 산소 가스의 유로가 형성되는 양극 바이폴라 플레이트; 및 상기 수전해 어셈블리의 음극 측에 적층되어 수소 가스의 유로가 형성되는 음극 바이폴라 플레이트;를 포함하고, 상기 초음파 장치는, 초음파 진동자로서 상기 양극 바이폴라 플레이트에 부착되는 양극 초음파 장치; 및 초음파 진동자로서 상기 음극 바이폴라 플레이트에 부착되는 음극 초음파 장치;를 포함할 수 있다. Preferably, the bipolar plate includes: an anode bipolar plate stacked on an anode side of the water electrolysis assembly to form a flow path for oxygen gas; and a cathode bipolar plate stacked on the cathode side of the water electrolysis assembly to form a flow path for hydrogen gas, wherein the ultrasonic device includes: an anode ultrasonic device attached to the anode bipolar plate as an ultrasonic vibrator; and a cathode ultrasonic device attached to the cathode bipolar plate as an ultrasonic vibrator.

바람직하게는, 상기 초음파 발생기는, 20 kHz 내지 50 kHz 범위의 초음파를 발생시켜 상기 초음파 장치로 공급할 수 있다.Preferably, the ultrasonic generator can generate ultrasonic waves in the range of 20 kHz to 50 kHz and supply them to the ultrasonic device.

바람직하게는, 상기 바이폴라 플레이트와 수전해 어셈블리 사이에 구비되며 반응에 의해 생성된 전자를 전도시키는 가스 확산층;을 더 포함하고, 상기 초음파 장치에 의해 상기 가스 확산층에 버블 형태로 부착된 산소 가스 및 수소 가스가 분리되거나 또는 상기 가스 확산층에 산소 가스 및 수소 가스가 부착되지 않도록 할 수 있다. Preferably, it further includes a gas diffusion layer provided between the bipolar plate and the water electrolysis assembly and conducting electrons generated by the reaction, and oxygen gas and hydrogen attached to the gas diffusion layer in the form of bubbles by the ultrasonic device. Gas may be separated or oxygen gas and hydrogen gas may not be attached to the gas diffusion layer.

바람직하게는, 상기 수전해 어셈블리는, 상기 가스 확산층과 멤브레인 사이에 구비되는 촉매층;을 더 포함하고, 상기 가스 확산층에 의해 반응물이 상기 촉매층으로 확산되며, 상기 초음파 장치에 의해 상기 촉매층에 버블 형태로 부착된 산소 가스 및 수소 가스가 분리되거나 또는 상기 촉매층에 산소 가스 및 수소 가스가 부착되지 않도록 할 수 있다. Preferably, the water electrolysis assembly further includes a catalyst layer provided between the gas diffusion layer and the membrane, wherein the reactants are diffused into the catalyst layer by the gas diffusion layer and are bubbled into the catalyst layer by the ultrasonic device. The attached oxygen gas and hydrogen gas can be separated or the oxygen gas and hydrogen gas can be prevented from adhering to the catalyst layer.

상술한 목적을 달성하기 위한 본 발명의 다른 일 측면에 의하면, 양극 바이폴라 플레이트의 입구로 공급된 액체 상태의 물의 수전해 반응에 의해 수소 이온과, 전자와, 산소 가스를 생성하고, 상기 반응에 의해 생성된 산소 가스는, 액체 상태의 물과 함께 양극 바이폴라 플레이트의 출구로 배출되고, 상기 반응에 의해 생성된 수소 이온은 멤브레인을 통해 음극 바이폴라 플레이트로 이동하고, 상기 음극 바이폴라 플레이트에서는 상기 수소 이온이 전자와 반응하여 수소 가스를 생성하고, 상기 반응에 의해 생성된 수소 가스는, 액체 상태의 물과 함께 음극 바이폴라 플레이트의 출구로 배출되며, 상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 초음파를 가진하여 상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 부착된 산소 가스 및 수소 가스를 분리시키거나 부착되지 않도록 하는, 수전해 시스템의 운영 방법이 제공된다. According to another aspect of the present invention for achieving the above-described object, hydrogen ions, electrons, and oxygen gas are generated through a water electrolysis reaction of liquid water supplied to the inlet of the anode bipolar plate, and through the reaction, The generated oxygen gas is discharged to the outlet of the anode bipolar plate along with liquid water, and the hydrogen ions generated by the reaction move to the cathode bipolar plate through the membrane, and in the cathode bipolar plate, the hydrogen ions are converted to electrons. reacts with and generates hydrogen gas, and the hydrogen gas generated by the reaction is discharged to the outlet of the cathode bipolar plate along with liquid water, and the anode bipolar plate and the cathode bipolar plate are excited with ultrasonic waves to form the anode bipolar plate. A method of operating a water electrolysis system is provided, which separates or prevents oxygen gas and hydrogen gas attached to a plate and a cathode bipolar plate from attaching.

상술한 목적을 달성하기 위한 본 발명의 또 다른 일 측면에 의하면, 양극 바이폴라 플레이트의 입구로 공급된 액체 상태의 물의 수전해 반응에 의해 수소 이온과, 전자와, 산소 가스를 생성하고, 상기 반응에 의해 생성된 산소 가스는, 액체 상태의 물과 함께 양극 바이폴라 플레이트 출구로 배출되고, 상기 반응에 의해 생성된 수소 이온은 멤브레인을 통해 음극 바이폴라 플레이트로 이동하고, 상기 음극 바이폴라 플레이트에서는 상기 수소 이온이 전자와 반응하여 수소 가스를 생성하고, 상기 반응에 의해 생성된 수소 가스는, 액체 상태의 물과 함께 음극 바이폴라 플레이트 출구로 배출되며, 상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 초음파를 가진하여 상기 양극 바이폴라 플레이트와 멤브레인 사이 및 상기 음극 바이폴라 플레이트와 멤브레인 사이에 구비되는 촉매층에 부착된 산소 가스 및 수소 가스를 분리시키거나 부착되지 않도록 하는, 수전해 시스템의 운영 방법이 제공된다. According to another aspect of the present invention for achieving the above-described object, hydrogen ions, electrons, and oxygen gas are generated through a water electrolysis reaction of liquid water supplied to the inlet of the anode bipolar plate, and the reaction The oxygen gas generated by this is discharged to the anode bipolar plate outlet along with liquid water, and the hydrogen ions generated by the reaction move to the cathode bipolar plate through the membrane, and in the cathode bipolar plate, the hydrogen ions are converted to electrons. reacts with and generates hydrogen gas, and the hydrogen gas generated by the reaction is discharged to the outlet of the cathode bipolar plate along with liquid water, and the anode bipolar plate and the cathode bipolar plate are excited with ultrasonic waves to form the anode bipolar plate. A method of operating a water electrolysis system is provided to separate or prevent oxygen gas and hydrogen gas attached to a catalyst layer provided between a cathode bipolar plate and a membrane and between the cathode bipolar plate and the membrane.

본 발명에 따른 수전해 시스템 및 그 운영 방법은, 초음파를 가진하여 버블 형태의 산소 및 수소 분자가 액체 상태의 물에 혼합되는 것을 촉진시켜 2상 유체의 원활한 유동흐름을 확보할 수 있다. The water electrolysis system and its operating method according to the present invention can ensure smooth flow of two-phase fluid by promoting the mixing of oxygen and hydrogen molecules in the form of bubbles into liquid water by exciting ultrasonic waves.

또한, 초음파를 가진하여 촉매층 및 가스 확산층과 같은 대상체에 버블 형태로 부착되어 있는 수소 및 산소 분자를 효과적으로 탈착하여 유동저항을 최소화할 수 있다. In addition, ultrasonic waves can effectively desorb hydrogen and oxygen molecules attached to objects such as catalyst layers and gas diffusion layers in the form of bubbles, thereby minimizing flow resistance.

또한, 초음파를 가진하여 유동저항을 최소화함으로써 유동흐름을 향상시킴과 동시에, 기체 상태의 수소 및 산소의 응집력을 낮춰 대상체에 부착되는 것을 억제하여 출구로의 가스 배출 효율을 증가시킬 수 있다. In addition, by minimizing flow resistance by exciting ultrasonic waves, the flow can be improved, and at the same time, the cohesion of hydrogen and oxygen in the gaseous state can be reduced to suppress adhesion to the object, thereby increasing the efficiency of gas discharge to the outlet.

또한, 대상체에 부착된 분자를 효과적으로 탈착시킴으로써 접촉효율을 높일 수 있어 수소 가스의 발생량을 극대화할 수 있다. In addition, contact efficiency can be increased by effectively desorbing molecules attached to the object, thereby maximizing the amount of hydrogen gas generated.

도 1은 기존의 수전해 시스템 구조 및 원리를 간략하게 도시한 구성도이다.
도 2는 본 발명의 일 실시예에 따른 수전해 시스템 구조 및 원리를 간략하게 도시한 구성도이다.
도 3은 본 발명의 일 실시예에 따른 수전해 시스템을 간략하게 도시한 구성도이다.
도 4는 본 발명의 일 실시예에 따른 수전해 시스템의 양극 바이폴라 플레이트에서의 분자 분리 효과 및 혼합 효과를 초음파를 가진하기 전과 후를 비교하여 도식적으로 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 수전해 시스템의 음극 바이폴라 플레이트에서의 분자 분리 효과 및 혼합 효과를 초음파를 가진하기 전과 후를 비교하여 도식적으로 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 수전해 시스템의 양극 및 음극, 그리고 양극 및 음극의 각 촉매층에 부착된 분자의 분리 효과를 초음파를 가진하기 전과 후를 비교하여 도식적으로 나타낸 도면이다.
Figure 1 is a configuration diagram briefly showing the structure and principle of an existing water electrolysis system.
Figure 2 is a configuration diagram briefly showing the structure and principle of a water electrolysis system according to an embodiment of the present invention.
Figure 3 is a schematic diagram illustrating a water electrolysis system according to an embodiment of the present invention.
Figure 4 is a diagram schematically showing the molecular separation effect and mixing effect at the anode bipolar plate of the water electrolysis system according to an embodiment of the present invention compared before and after ultrasonic stimulation.
Figure 5 is a diagram schematically showing the molecular separation effect and mixing effect at the cathode bipolar plate of the water electrolysis system according to an embodiment of the present invention compared before and after ultrasonic stimulation.
Figure 6 is a diagram schematically showing the separation effect of the anode and cathode of the water electrolysis system according to an embodiment of the present invention, and the separation effect of the molecules attached to each catalyst layer of the anode and cathode before and after exciting the ultrasonic waves.

본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the operational advantages of the present invention and the objectives achieved by practicing the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다. Hereinafter, the structure and operation of a preferred embodiment of the present invention will be described in detail with reference to the attached drawings. Here, in adding reference numerals to components in each drawing, it should be noted that identical components are indicated with the same reference numerals as much as possible, even if they are shown in different drawings.

하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.The following examples may be modified into various other forms, and the scope of the present invention is not limited to the following examples.

이하, 도 2 내지 도 6을 참조하여 본 발명의 일 실시예에 따른 수전해 시스템 및 그 운영 방법을 설명하기로 한다. 본 발명의 일 실시예에 따른 수전해 시스템은 연료전지 셀일 수 있다. Hereinafter, a water electrolysis system and its operating method according to an embodiment of the present invention will be described with reference to FIGS. 2 to 6. The water electrolysis system according to an embodiment of the present invention may be a fuel cell.

먼저, 도 2를 참조하면, 본 발명의 일 실시예에 따른 수전해 시스템은, 양극(anode)(1-3), 음극(cathode)(1-5) 및 멤브레인(1-1)(membrane)을 포함하는 수전해 어셈블리(MEA; Membrane Electrode Assembly)(1), 수전해 어셈블리(1)의 양면에 각각 부착되며, 수전해 반응에 의해 생성된 수소 가스와 산소 가스의 유로가 형성되어 있는 바이폴라 플레이트(bi-polar plate)(4, 9) 및 바이폴라 플레이트(4, 9)에 부착되며, 초음파를 가진하기 위한 초음파 장치(6, 11)(ultra-sonic device)를 포함한다. First, referring to FIG. 2, the water electrolysis system according to an embodiment of the present invention includes an anode (1-3), a cathode (1-5), and a membrane (1-1). A water electrolysis assembly (MEA; Membrane Electrode Assembly) (1), which is attached to both sides of the water electrolysis assembly (1) and a bipolar plate in which a flow path for hydrogen gas and oxygen gas generated by the water electrolysis reaction is formed. It is attached to the (bi-polar plate) (4, 9) and the bipolar plate (4, 9) and includes an ultrasonic device (6, 11) (ultra-sonic device) for exciting ultrasonic waves.

또한, 초음파 장치(6, 11)는 초음파 진동자를 포함할 수 있고, 본 실시예에 따른 수전해 시스템은, 도 3에 도시된 바와 같이, 초음파를 생성하여 초음파 진동자에 공급하는 초음파 발생기(ultra-sonic generator)(12)를 더 포함할 수 있다. In addition, the ultrasonic devices 6 and 11 may include an ultrasonic vibrator, and the water electrolysis system according to this embodiment includes an ultrasonic generator (ultra- A sonic generator) (12) may be further included.

또한, 수전해 어셈블리(1)는, 멤브레인(1-1)과 양극(1-3) 사이에 구비되는 양극 촉매층(anode catalyst)(1-2) 및 멤브레인(1-1)과 음극(1-5) 사이에 구비되는 음극 촉매층(cathode catalyst)(1-4)을 더 포함할 수 있다. In addition, the water electrolysis assembly (1) includes an anode catalyst layer (1-2) provided between the membrane (1-1) and the anode (1-3), and the membrane (1-1) and the cathode (1-3). 5) It may further include a cathode catalyst layer (1-4) provided therebetween.

본 실시예의 촉매층(1-2, 1-4)은, 후술할 가스 확산층(3, 8)과 멤브레인(1-1) 사이에 구비된다. The catalyst layers (1-2, 1-4) of this embodiment are provided between the gas diffusion layers (3, 8), which will be described later, and the membrane (1-1).

본 실시예의 멤브레인(1-1)은 선택적 이온 교환막으로서, 선택적으로 수소 이온이 양극에서 음극으로 이동하는 통로를 제공하는 것일 수 있다. The membrane 1-1 of this embodiment is a selective ion exchange membrane and may selectively provide a passage for hydrogen ions to move from the anode to the cathode.

본 실시예의 바이폴라 플레이트(4, 9)는, 표면에 유로가 형성되어 있는 기판으로서, 일면이 후술할 가스 확산층(3, 8)과 접촉하도록 구비된다. The bipolar plates 4 and 9 of this embodiment are substrates with flow paths formed on their surfaces, and one surface is provided to contact gas diffusion layers 3 and 8, which will be described later.

본 실시예의 바이폴라 플레이트(4, 9)는 양극 채널에 구비되며 양극에서 생성된 산소 가스와 물(기액 혼합물)의 유로가 형성된 양극 바이폴라 플레이트(4) 및 음극 채널에 구비되며 음극에서 생성된 수소 가스와 물(기액 혼합물)의 유로가 형성된 음극 바이폴라 플레이트(9)를 포함한다. The bipolar plates 4 and 9 of this embodiment are provided in the anode channel and have a flow path for oxygen gas and water (gas-liquid mixture) generated at the anode, and the anode bipolar plate 4 is provided in the cathode channel and have hydrogen gas generated at the cathode. and a cathode bipolar plate 9 in which a flow path for water (gas-liquid mixture) is formed.

또한, 바이폴라 플레이트(4, 9)는 산소 및 수소를 이송시키고 고르게 분포시키기 위한 역할, 반응에 의해 생성된 전자가 이동하도록 하는 역할 및 연료전지를 구성하는 둘 이상의 단위 전지를 연결하는 역할을 할 수 있고, 연료전지 스택 부피의 대부분을 차지한다. In addition, the bipolar plates 4 and 9 can serve to transport and evenly distribute oxygen and hydrogen, allow electrons generated by the reaction to move, and connect two or more unit cells that make up the fuel cell. and occupies most of the fuel cell stack volume.

본 실시예에 따른 수전해 시스템은, 수전해 어셈블리(1)로부터 멤브레인(1-1) 내부에, 채널 형성을 위해 채워져 있는 물 등의 물질이 새어나오지 않도록 하는 가스켓(2, 7), 수전해 어셈블리(1)에 있는 산소 및 수소 가스를 멤브레인(1-1)으로 또는 그 역방향으로 확산시켜주는 가스 확산층(3, 8)(GDL; Gas Diffusion Layer) 및 바이폴라 플레이트(4, 9)가 가스 확산층(3, 8)과 접촉하는 면의 반대쪽 전면에 구비되는 엔드 플레이트(end plate)(5, 10)를 더 포함할 수 있다. The water electrolysis system according to this embodiment includes gaskets 2 and 7 that prevent substances such as water filled to form channels from leaking from the water electrolysis assembly 1 inside the membrane 1-1, and water electrolysis. The gas diffusion layer (3, 8) (GDL; Gas Diffusion Layer) and bipolar plates (4, 9) that diffuse the oxygen and hydrogen gases in the assembly (1) to the membrane (1-1) or vice versa are the gas diffusion layer. It may further include an end plate (5, 10) provided on the front surface opposite to the surface in contact with (3, 8).

본 실시예의 가스 확산층(3, 8)은, 바이폴라 플레이트(4, 9)와 촉매층(1-2, 1-4) 사이에 구비되는 다공성 매체로서, 반응에 의해 생성 및 소모되는 전자를 전도시키는 역할과, 촉매층으로 반응물을 확산시켜 반응을 촉진시키는 역할을 한다. The gas diffusion layers 3 and 8 of this embodiment are porous media provided between the bipolar plates 4 and 9 and the catalyst layers 1-2 and 1-4, and serve to conduct electrons generated and consumed by the reaction. It serves to promote the reaction by diffusing the reactants into the catalyst layer.

본 실시예의 가스 확산층(3, 8)은, 양극 바이폴라 플레이트(4) 측에 구비되어 양극 바이폴라 플레이트(4)와 멤브레인(1-1) 사이에 반응물을 상호 확산시켜주는 양극 가스 확산층(3) 및 음극 바이폴라 플레이트(9) 측에 구비되어 음극 바이폴라 플레이트(9)와 멤브레인(1-1) 사이에 반응물을 상호 확산시켜주는 음극 가스 확산층(8)을 포함한다. The gas diffusion layers 3 and 8 of this embodiment are provided on the anode bipolar plate 4 side to mutually diffuse reactants between the anode bipolar plate 4 and the membrane 1-1, and It includes a cathode gas diffusion layer (8) provided on the cathode bipolar plate (9) to mutually diffuse reactants between the cathode bipolar plate (9) and the membrane (1-1).

또한, 상술한 수전해 시스템은, 다수개가 직렬로 연결되어 구비될 수 있다. Additionally, the above-described water electrolysis system may be provided with multiple units connected in series.

이하, 상술한 본 발명의 일 실시예에 따른 수전해 시스템의 작동 원리를 설명하기로 한다. Hereinafter, the operating principle of the water electrolysis system according to an embodiment of the present invention described above will be described.

양극 바이폴라 플레이트(4)의 입구로 공급된 액체 상태의 물(H2O)은 수전해 반응에 의해 수소 이온(H+)과, 전자(e-)와, 산소 가스(O2)를 생성한다. 반응에 의해 생성된 산소 가스는, 액체 상태의 물과 함께 양극 매니폴드 출구로 배출된다. Liquid water (H 2 O) supplied to the inlet of the anode bipolar plate (4) generates hydrogen ions (H + ), electrons (e - ), and oxygen gas (O 2 ) through a water electrolysis reaction. . The oxygen gas generated by the reaction is discharged from the anode manifold outlet along with liquid water.

또한, 반응에 의해 생성된 전자는 양극 가스 확산층(3)을 통해 전도되고, 수소 이온은 멤브레인(1-1)을 통해 통해 음극 바이폴라 플레이트(9)로 이동한다. Additionally, electrons generated by the reaction are conducted through the anode gas diffusion layer (3), and hydrogen ions move to the cathode bipolar plate (9) through the membrane (1-1).

음극 바이폴라 플레이트(9)에서 수소 이온은 음극 가스 확산층(8)을 통해 이동해온 전자와 만나 반응하여 수소 가스(H2)가 생성된다. 음극 바이폴라 플레이트(9)에서 생성된 수소 가스는 음극 바이폴라 플레이트(9)의 유로를 따라 유동하면서 음극 매니폴드 입구를 통해 유입된 물에 버블형태로 존재하게 되고, 물과 함께 음극 매니폴드 출구로 배출된다. In the cathode bipolar plate (9), hydrogen ions react with electrons moving through the cathode gas diffusion layer (8) to generate hydrogen gas (H 2 ). The hydrogen gas generated in the cathode bipolar plate (9) flows along the flow path of the cathode bipolar plate (9) and exists in the form of bubbles in the water flowing in through the cathode manifold inlet, and is discharged along with the water through the cathode manifold outlet. do.

한편, 양극(1-3)에서 수전해 반응에 의해 생성된 산소 가스는 양극 바이폴라 플레이트(4)의 유로를 따라 유동하면서 양극 매니폴드 입구를 통해 유입된 물에 버블형태로 존재하게 되고, 물과 함께 양극 매니폴드 출구로 배출된다. Meanwhile, the oxygen gas generated by the water electrolysis reaction at the anode (1-3) flows along the flow path of the anode bipolar plate (4) and exists in the form of bubbles in the water flowing in through the inlet of the anode manifold. Together, they are discharged to the anode manifold outlet.

이와 같이, 바이폴라 플레이트(4, 9)에서 생성되고, 유로를 따라 이동하는 산소 및 수소 가스는, 버블 형태로 존재하므로, 산소 및 수소 가스가 생성됨에 따라 응집력에 의해 점차 바이폴라 플레이트(4, 9)에 부착되어 쌓이게 되어 유동을 방해할 뿐 아니라, 물과 바이폴라 플레이트(4, 9)와의 접촉을 방해하여 반응을 저해한다. 또한, 산소 및 수소 가스가 바이폴라 플레이트(4, 9)와 맞닿아 있는 가스 확산층(3, 8) 및 촉매층(1-2, 1-4)의 기공을 막아 가스의 이동을 방해하여 반응을 저해하고 따라서 수소 가스의 생성량이 줄어들게 된다. In this way, the oxygen and hydrogen gases generated in the bipolar plates (4, 9) and moving along the flow path exist in the form of bubbles, so as the oxygen and hydrogen gases are generated, they gradually move to the bipolar plates (4, 9) due to cohesive force. It not only adheres and accumulates, interfering with the flow, but also inhibits the reaction by interfering with the contact between water and the bipolar plates (4, 9). In addition, oxygen and hydrogen gas blocks the pores of the gas diffusion layers (3, 8) and catalyst layers (1-2, 1-4) in contact with the bipolar plates (4, 9), preventing the movement of gas and inhibiting the reaction. Therefore, the amount of hydrogen gas produced decreases.

본 발명의 일 실시예에 따르면, 초음파 발생기(12)를 연속적으로 또는 주기적으로 가동시켜 초음파를 생성하고, 초음파 장치(6, 10)를 통해 바이폴라 플레이트(4, 9)를 가진함으로써, 초음파에 의해 바이폴라 플레이트(4, 9)에 부착되어 있는 수소 및 산소 가스를 분리시킨다. According to one embodiment of the present invention, ultrasonic waves are generated by operating the ultrasonic generator 12 continuously or periodically, and by exciting the bipolar plates 4 and 9 through the ultrasonic devices 6 and 10, the ultrasonic waves are generated by ultrasonic waves. Hydrogen and oxygen gases attached to the bipolar plates (4, 9) are separated.

또한, 초음파에 의해 바이폴라 플레이트(4, 9)로부터 분리된 수소 및 산소 가스는 액체 상태의 물과의 혼합이 촉진된다. In addition, the hydrogen and oxygen gases separated from the bipolar plates 4 and 9 by ultrasonic waves are promoted to mix with liquid water.

또한, 도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따라 초음파를 가진하면 바이폴라 플레이트(4, 9) 뿐 아니라, 전극(1-3, 1-5)에 버블 형태로 부착되어 있는 산소와 수소 가스도 분리하여 배출시킬 수 있으므로, 손실 없이 산소 및 수소 가스를 배출시킬 수 있다. In addition, referring to Figures 4 and 5, according to an embodiment of the present invention, when excited by ultrasonic waves, not only the bipolar plates 4 and 9, but also the electrodes 1-3 and 1-5 are attached in the form of bubbles. Since oxygen and hydrogen gases can also be discharged separately, oxygen and hydrogen gases can be discharged without loss.

또한, 도 6을 참조하면, 본 발명의 일 실시예에 따라 초음파를 가진하여 촉매층(1-2, 1-4)에 버블 형태로 부착되어 있는 산소와 수소 가스를 분리함으로써 반응을 촉진시킬 수도 있다. In addition, referring to FIG. 6, according to an embodiment of the present invention, the reaction can be promoted by separating the oxygen and hydrogen gases attached to the catalyst layers 1-2 and 1-4 in the form of bubbles by exciting them with ultrasonic waves. .

본 실시예에서 초음파는, 20 kHz ~ 50 kHz 범위에서 가할 수 있다. In this embodiment, ultrasonic waves can be applied in the range of 20 kHz to 50 kHz.

본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다. The present invention is not limited to the above-mentioned embodiments, and it is obvious to those skilled in the art that the present invention can be implemented with various modifications or variations without departing from the technical gist of the present invention. It was done.

1 : 수전해 어셈블리
1-1 : 멤브레인
1-2 : 양극 촉매층 1-4 : 음극 촉매층
1-3 : 양극 1-5 : 음극
2 : 양극 가스켓 7 : 음극 가스켓
3 : 양극 가스 확산층 8 : 음극 가스 확산층
4 : 양극 바이폴라 플레이트 9 : 음극 바이폴라 플레이트
5 : 양극 엔드 플레이트 10 : 음극 엔드 플레이트
6 : 양극 초음파 장치 11 : 음극 초음파 장치
12 : 초음파 발생기
1: Water electrolysis assembly
1-1: Membrane
1-2: anode catalyst layer 1-4: cathode catalyst layer
1-3: anode 1-5: cathode
2: anode gasket 7: cathode gasket
3: anode gas diffusion layer 8: cathode gas diffusion layer
4: anode bipolar plate 9: cathode bipolar plate
5: positive end plate 10: negative end plate
6: Anode ultrasonic device 11: Cathode ultrasonic device
12: Ultrasonic generator

Claims (7)

양극(anode), 음극(cathode) 및 상기 양극과 음극 사이의 멤브레인을 포함하는 수전해 어셈블리;
상기 수전해 어셈블리에 적층되며, 수전해 반응에 의해 생성된 산소 가스 및 수소 가스의 유로가 형성되는 바이폴라 플레이트;
상기 바이폴라 플레이트에 부착되는 초음파 장치; 및
초음파를 발생시켜 상기 초음파 장치에 공급함으로써 상기 바이폴라 플레이트에 부착된 산소 또는 수소 가스를 분리하거나 상기 바이폴라 플레이트에 산소 또는 수소 가스가 부착되지 않고 배출되도록 하는 초음파 발생기;를 포함하는, 수전해 시스템.
A water electrolysis assembly including an anode, a cathode, and a membrane between the anode and the cathode;
A bipolar plate stacked on the water electrolysis assembly and forming a flow path for oxygen gas and hydrogen gas generated by the water electrolysis reaction;
an ultrasonic device attached to the bipolar plate; and
An ultrasonic generator that generates ultrasonic waves and supplies them to the ultrasonic device to separate oxygen or hydrogen gas attached to the bipolar plate or to discharge oxygen or hydrogen gas without adhering to the bipolar plate.
청구항 1에 있어서,
상기 바이폴라 플레이트는,
상기 수전해 어셈블리의 양극 측에 적층되어 산소 가스의 유로가 형성되는 양극 바이폴라 플레이트; 및
상기 수전해 어셈블리의 음극 측에 적층되어 수소 가스의 유로가 형성되는 음극 바이폴라 플레이트;를 포함하고,
상기 초음파 장치는,
초음파 진동자로서 상기 양극 바이폴라 플레이트에 부착되는 양극 초음파 장치; 및
초음파 진동자로서 상기 음극 바이폴라 플레이트에 부착되는 음극 초음파 장치;를 포함하는, 수전해 시스템.
In claim 1,
The bipolar plate is,
An anode bipolar plate stacked on the anode side of the water electrolysis assembly to form a flow path for oxygen gas; and
It includes a cathode bipolar plate stacked on the cathode side of the water electrolysis assembly to form a flow path for hydrogen gas,
The ultrasonic device,
a bipolar ultrasonic device attached to the bipolar plate as an ultrasonic vibrator; and
A water electrolysis system comprising: a cathode ultrasonic device attached to the cathode bipolar plate as an ultrasonic oscillator.
청구항 1에 있어서,
상기 초음파 발생기는, 20 kHz 내지 50 kHz 범위의 초음파를 발생시켜 상기 초음파 장치로 공급하는, 수전해 시스템.
In claim 1,
The ultrasonic generator generates ultrasonic waves in the range of 20 kHz to 50 kHz and supplies them to the ultrasonic device.
청구항 1에 있어서,
상기 바이폴라 플레이트와 수전해 어셈블리 사이에 구비되며 반응에 의해 생성된 전자를 전도시키는 가스 확산층;을 더 포함하고,
상기 초음파 장치에 의해 상기 가스 확산층에 버블 형태로 부착된 산소 가스 및 수소 가스가 분리되거나 또는 상기 가스 확산층에 산소 가스 및 수소 가스가 부착되지 않도록 하는, 수전해 시스템.
In claim 1,
It further includes a gas diffusion layer provided between the bipolar plate and the water electrolysis assembly and conducting electrons generated by the reaction,
A water electrolysis system in which the oxygen gas and hydrogen gas attached to the gas diffusion layer in the form of bubbles are separated by the ultrasonic device or the oxygen gas and hydrogen gas are prevented from attaching to the gas diffusion layer.
청구항 4에 있어서,
상기 수전해 어셈블리는,
상기 가스 확산층과 멤브레인 사이에 구비되는 촉매층;을 더 포함하고,
상기 가스 확산층에 의해 반응물이 상기 촉매층으로 확산되며,
상기 초음파 장치에 의해 상기 촉매층에 버블 형태로 부착된 산소 가스 및 수소 가스가 분리되거나 또는 상기 촉매층에 산소 가스 및 수소 가스가 부착되지 않도록 하는, 수전해 시스템.
In claim 4,
The water electrolysis assembly,
It further includes a catalyst layer provided between the gas diffusion layer and the membrane,
Reactants diffuse into the catalyst layer by the gas diffusion layer,
A water electrolysis system in which the oxygen gas and hydrogen gas attached to the catalyst layer in the form of bubbles are separated by the ultrasonic device or the oxygen gas and hydrogen gas are prevented from attaching to the catalyst layer.
양극 바이폴라 플레이트의 입구로 공급된 액체 상태의 물의 수전해 반응에 의해 수소 이온과, 전자와, 산소 가스를 생성하고,
상기 반응에 의해 생성된 산소 가스는, 액체 상태의 물과 함께 양극 바이폴라 플레이트의 출구로 배출되고, 상기 반응에 의해 생성된 수소 이온은 멤브레인을 통해 음극 바이폴라 플레이트로 이동하고,
상기 음극 바이폴라 플레이트에서는 상기 수소 이온이 전자와 반응하여 수소 가스를 생성하고,
상기 반응에 의해 생성된 수소 가스는, 액체 상태의 물과 함께 음극 바이폴라 플레이트의 출구로 배출되며,
상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 초음파를 가진하여 상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 부착된 산소 가스 및 수소 가스를 분리시키거나 부착되지 않도록 하는, 수전해 시스템의 운영 방법.
Hydrogen ions, electrons, and oxygen gas are generated through a water electrolysis reaction of liquid water supplied to the inlet of the anode bipolar plate.
The oxygen gas generated by the reaction is discharged along with liquid water to the outlet of the anode bipolar plate, and the hydrogen ions generated by the reaction move to the cathode bipolar plate through the membrane,
In the cathode bipolar plate, the hydrogen ions react with electrons to generate hydrogen gas,
Hydrogen gas generated by the reaction is discharged from the outlet of the cathode bipolar plate along with liquid water,
A method of operating a water electrolysis system, wherein the anode bipolar plate and the cathode bipolar plate are excited with ultrasonic waves to separate or prevent the oxygen gas and hydrogen gas attached to the anode bipolar plate and the cathode bipolar plate from being attached.
양극 바이폴라 플레이트의 입구로 공급된 액체 상태의 물의 수전해 반응에 의해 수소 이온과, 전자와, 산소 가스를 생성하고,
상기 반응에 의해 생성된 산소 가스는, 액체 상태의 물과 함께 양극 바이폴라 플레이트 출구로 배출되고, 상기 반응에 의해 생성된 수소 이온은 멤브레인을 통해 음극 바이폴라 플레이트로 이동하고,
상기 음극 바이폴라 플레이트에서는 상기 수소 이온이 전자와 반응하여 수소 가스를 생성하고,
상기 반응에 의해 생성된 수소 가스는, 액체 상태의 물과 함께 음극 바이폴라 플레이트 출구로 배출되며,
상기 양극 바이폴라 플레이트 및 음극 바이폴라 플레이트에 초음파를 가진하여 상기 양극 바이폴라 플레이트와 멤브레인 사이 및 상기 음극 바이폴라 플레이트와 멤브레인 사이에 구비되는 촉매층에 부착된 산소 가스 및 수소 가스를 분리시키거나 부착되지 않도록 하는, 수전해 시스템의 운영 방법.

Hydrogen ions, electrons, and oxygen gas are generated through a water electrolysis reaction of liquid water supplied to the inlet of the anode bipolar plate.
The oxygen gas generated by the reaction is discharged along with liquid water to the outlet of the anode bipolar plate, and the hydrogen ions generated by the reaction move to the cathode bipolar plate through the membrane,
In the cathode bipolar plate, the hydrogen ions react with electrons to generate hydrogen gas,
Hydrogen gas generated by the reaction is discharged to the cathode bipolar plate outlet along with liquid water,
A faucet that excites the anode bipolar plate and the cathode bipolar plate with ultrasonic waves to separate or prevent oxygen gas and hydrogen gas attached to the catalyst layer provided between the anode bipolar plate and the membrane and between the cathode bipolar plate and the membrane. How the system operates.

KR1020200118512A 2020-09-15 2020-09-15 Water Electroysis System and Operation Method Thereof KR20220036216A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200118512A KR20220036216A (en) 2020-09-15 2020-09-15 Water Electroysis System and Operation Method Thereof
KR1020230013622A KR20230024930A (en) 2020-09-15 2023-02-01 Water Electroysis System and Operation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200118512A KR20220036216A (en) 2020-09-15 2020-09-15 Water Electroysis System and Operation Method Thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230013622A Division KR20230024930A (en) 2020-09-15 2023-02-01 Water Electroysis System and Operation Method Thereof

Publications (1)

Publication Number Publication Date
KR20220036216A true KR20220036216A (en) 2022-03-22

Family

ID=80988530

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200118512A KR20220036216A (en) 2020-09-15 2020-09-15 Water Electroysis System and Operation Method Thereof
KR1020230013622A KR20230024930A (en) 2020-09-15 2023-02-01 Water Electroysis System and Operation Method Thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230013622A KR20230024930A (en) 2020-09-15 2023-02-01 Water Electroysis System and Operation Method Thereof

Country Status (1)

Country Link
KR (2) KR20220036216A (en)

Also Published As

Publication number Publication date
KR20230024930A (en) 2023-02-21

Similar Documents

Publication Publication Date Title
US8900435B2 (en) Separating gas using ion exchange
JP2005522846A (en) Control of gas transport in fuel cells.
CN100454624C (en) Fuel cell system, and unit cell and bipolar plate used therefor
JP2007165196A (en) Fuel cell system and fuel cell vehicle
CN105762396A (en) Flat-plate heat regeneration ammonium battery adopting foam metal electrode
Liu et al. Potassium permanganate as an oxidant for a microfluidic direct formate fuel cell
CN110459789B (en) Single-electrolyte microfluid fuel cell with cathode and anode arranged in concurrent flow
JP5140123B2 (en) Water electrolysis system
US20060141322A1 (en) Fuel cell system
CN105392925B (en) Hydrogen reclaimer and operating method
KR100859458B1 (en) Stack structure for fuel cell
KR20220036216A (en) Water Electroysis System and Operation Method Thereof
Chapman et al. Development of Biomimetic™ flow field plates for PEM fuel cells
CN113026042B (en) Micro electrochemical reactor based on micro-fluidic technology
JP2012052208A (en) Method of operating water electrolysis system
JP5059416B2 (en) Fuel cell
KR100414880B1 (en) Apparatus for generating oxygen and hydrogen gas using electrolysis
US11965254B2 (en) Manufacturing apparatus and manufacturing method for synthetic gas with controlled H2/CO ratio
KR100455196B1 (en) Purge apparatus for fuel cell
JP2010277968A (en) Fuel cell
KR100829428B1 (en) Fuel tank for fuel cell
JP2009517807A (en) Method and corresponding apparatus for operating a direct oxidation fuel cell
KR20240076578A (en) Bipolar plate and water electrolysis device comprising it
KR20040000556A (en) Fuel tank for fuel cell
KR100830939B1 (en) Apparatus for removing hydrogen gas of fuel cell

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination