KR20220035292A - Mixed absorbent for capturing carbon dioxide - Google Patents

Mixed absorbent for capturing carbon dioxide Download PDF

Info

Publication number
KR20220035292A
KR20220035292A KR1020200116938A KR20200116938A KR20220035292A KR 20220035292 A KR20220035292 A KR 20220035292A KR 1020200116938 A KR1020200116938 A KR 1020200116938A KR 20200116938 A KR20200116938 A KR 20200116938A KR 20220035292 A KR20220035292 A KR 20220035292A
Authority
KR
South Korea
Prior art keywords
amino
carbon dioxide
formula
pentanol
propanol
Prior art date
Application number
KR1020200116938A
Other languages
Korean (ko)
Other versions
KR102430665B1 (en
Inventor
이정현
곽노상
심재구
김의식
백점인
장영신
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020200116938A priority Critical patent/KR102430665B1/en
Publication of KR20220035292A publication Critical patent/KR20220035292A/en
Priority to KR1020220096723A priority patent/KR102487384B1/en
Priority to KR1020220096724A priority patent/KR102487385B1/en
Application granted granted Critical
Publication of KR102430665B1 publication Critical patent/KR102430665B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • B01D2252/604Stabilisers or agents inhibiting degradation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention relates to an absorbent for capturing carbon dioxide, which selectively absorbs carbon dioxide, and more specifically, to a mixed absorbent for capturing carbon dioxide, which is produced by mixing three or more other compounds and has excellent carbon dioxide absorption rates, absorption amounts, desorption speeds and desorption rates even under conditions of low concentration of carbon dioxide and high concentration of oxygen, as well as excellent durability of the absorbent.

Description

이산화탄소 포집용 혼합 흡수제{MIXED ABSORBENT FOR CAPTURING CARBON DIOXIDE}Mixed absorbent for carbon dioxide capture {MIXED ABSORBENT FOR CAPTURING CARBON DIOXIDE}

본 발명은 이산화탄소를 선택적으로 흡수하는 이산화탄소 포집용 흡수제에 관한 것으로, 보다 상세하게는 서로 다른 3종 이상의 화합물이 혼합하여 이산화탄소의 흡수성 등을 향상시킨 이산화탄소 포집용 혼합 흡수제에 관한 것이다.The present invention relates to an absorbent for trapping carbon dioxide that selectively absorbs carbon dioxide, and more particularly, to a mixed absorbent for trapping carbon dioxide in which three or more different compounds are mixed to improve absorption of carbon dioxide, etc.

이산화탄소의 포집 및 저장기술로는 흡수법, 흡착법, 막분리법, 심냉법 등의 다양한 방법이 제시되고 있으나, 이들 중 흡수법은 대용량, 저농도의 가스 분리에 적합하기 때문에 대부분의 산업체 및 발전소에서의 적용이 용이하다. 흡수법으로 CO2를 포집하기 위하여 에이비비 러머스 크레스트(ABB lummus Crest)사에서 제조한 모노에탄올아민(monoethanolamine,이하 MEA)을 사용하는 공정이 미국 트로나(Trona, CA, USA) 및 쉐디 포인트(Shady Point, Oklahoma, USA)에서 운전되었다. Various methods such as absorption method, adsorption method, membrane separation method, and deep cooling method have been suggested as carbon dioxide capture and storage technology. This is easy. A process using monoethanolamine (hereinafter referred to as MEA) manufactured by ABB lummus Crest to capture CO 2 by an absorption method is the United States Trona (Trona, CA, USA) and Sheddy Point (Shady Point, Oklahoma, USA).

그러나, MEA를 흡수제로서 사용한 흡수공정은 빠른 반응속도를 가진 반면, 이산화탄소 분리에 다량의 에너지가 소모되고 흡수액의 사용량이 많으며, 흡수액에 의한 설비의 부식문제가 있어서 이를 해결해 줄 수 있는 새로운 첨가제 또는 흡수제의 개발이 절실히 요구되고 있다. However, while the absorption process using MEA as an absorbent has a fast reaction rate, a large amount of energy is consumed for carbon dioxide separation, a large amount of absorbent is used, and there is a problem of corrosion of equipment by the absorbent. development is urgently needed.

흡수법의 다른 일례로서, 알칸올아민 수용액과의 화학적 반응을 이용하여 제철소 및 화력발전소 등에서 배출되는 혼합가스 중의 CO2, H2S, COS 등의 산성가스를 분리, 회수하는 방법 또한 많이 연구되어 현장에 적용되어 왔다. 기존에 널리 사용되던 알칸올아민은, 1차 계열의 모노에탄올아민(monoethanolamine, MEA), 2차 계열의 디에탄올아민(diethanolamine, DEA), 3차 계열의 트리에탄올아민(triethanolamine, TEA), N-메틸디에탄올아민(N-methyl diethanolamine, MDEA), 트리이소프로판올아민(triisopropanolamine, TIPA) 등이 있다. As another example of the absorption method, a method of separating and recovering acid gases such as CO 2 , H 2 S, and COS in the mixed gas discharged from steel mills and thermal power plants by using a chemical reaction with an aqueous alkanolamine solution has also been studied a lot. has been applied in the field. The alkanolamines that have been widely used in the past include primary series monoethanolamine (MEA), secondary series diethanolamine (DEA), tertiary series triethanolamine (TEA), N- Methyl diethanolamine (N-methyl diethanolamine, MDEA), triisopropanolamine (triisopropanolamine, TIPA), and the like.

그러나, 상기한 모노에탄올아민(MEA) 및 디에탄올아민(DEA)은 높은 반응속도를 갖는 장점 때문에 많이 사용되어 왔으나, 이들 화합물이 갖는 높은 부식성, 높은 재생에너지 및 열화 등의 문제 때문에 많은 이산화탄소 포집용 흡수제로 이용함에 어려움이 있는 것으로 알려져 있다. 또한, N-메틸디에탄올아민(MDEA)는 부식성과 재생열은 낮은 반면, 흡수속도가 늦다는 단점을 갖고 있다. 최근에는 새로운 알칸올 아민 계열 흡수제로서 아미노메틸프로판올(2-amino-2-methyl-1-propanol, AMP)와 같은 입체장애 아민에 대한 연구가 활발히 진행되고 있는데, 이들 입체장애 아민의 특징은 흡수용량 및 산성 가스의 선택도가 매우 높고 재생에 필요한 에너지가 적다는 장점이 있는 반면, 상대적으로 흡수속도가 느린 문제점이 있다.However, the above monoethanolamine (MEA) and diethanolamine (DEA) have been widely used because of the advantage of having a high reaction rate. It is known that it is difficult to use as an absorbent. In addition, while N-methyldiethanolamine (MDEA) has low corrosiveness and heat of regeneration, it has a disadvantage in that its absorption rate is slow. Recently, research on hindered amines such as aminomethylpropanol (2-amino-2-methyl-1-propanol, AMP) as a new alkanolamine-based absorbent is being actively conducted. The characteristics of these hindered amines are their absorption capacity. And while it has the advantage that the selectivity of the acid gas is very high and the energy required for regeneration is small, there is a problem that the absorption rate is relatively slow.

한국등록특허 제10-1746561호Korean Patent No. 10-1746561

상기와 같은 점을 감안한 본 발명의 목적은 혼합가스 중의 이산화탄소를 분리 회수함에 있어 효율성과 내구성이 향상된 이산화탄소 포집용 혼합 흡수제를 제공하는 것이다. 특히 석탄화력발전 대비 상대적으로 낮은 이산화탄소 농도를 가지는 LNG 복합화력발전과 같은 배가스 조성에 적용할 수 있는 상대적으로 빠른 흡수 속도와 높은 재생 속도를 가질 뿐만 아니라 상대적으로 많은 미반응 배가스에 활용 가능한 흡수제를 제공하고자 한다. 또한 산화성 열화도가 개선되어 석탄화력발전 대비 상대적으로 높은 산소 농도를 가지는 LNG 복합화력발전과 같은 배가스 조성에 효과적으로 사용되는 이산화탄소 포집용 혼합 흡수제를 제공하고자 한다.An object of the present invention in consideration of the above points is to provide a mixed absorbent for capturing carbon dioxide with improved efficiency and durability in separating and recovering carbon dioxide in a mixed gas. In particular, it has a relatively fast absorption rate and high regeneration rate applicable to flue gas compositions such as LNG combined cycle power plants, which have a relatively low carbon dioxide concentration compared to coal-fired power plants, and provides an absorbent that can be used for relatively many unreacted flue gases. want to Another object of the present invention is to provide a mixed absorbent for capturing carbon dioxide that is effectively used in flue gas composition such as LNG combined cycle power plants, which have a relatively high oxygen concentration compared to coal-fired power plants due to improved oxidative degradation.

상기와 같은 목적을 달성하기 위한 본 발명의 이산화탄소 포집용 혼합 흡수제는 하기 화학식 1 및 하기 화학식 2로 표시되는 화합물을 포함하고, 하기 화학식 3 및 하기 화학식 4로 표시되는 화합물 중에서 어느 하나 이상의 화합물을 포함할 수 있다.The mixed absorbent for capturing carbon dioxide of the present invention for achieving the above object includes a compound represented by the following Chemical Formula 1 and the following Chemical Formula 2, and includes any one or more compounds from among the compounds represented by the following Chemical Formula 3 and the following Chemical Formula 4 can do.

Figure pat00001
Figure pat00001

상기 화학식 1에서, a는 탄소수 0 내지 1의 탄화수소기이고, b와 c는 탄소수 0 내지 3의 탄화수소기이고, R1 및 R2는 -(CH2)f-H, -(CH2)m-NH2, -CH-(CH3)2 및 -C-(CH3)3 중에서 선택된 어느 하나이며, 여기서 f와 m은 0 내지 5의 정수이다.In Formula 1, a is a hydrocarbon group having 0 to 1 carbon atoms, b and c are a hydrocarbon group having 0 to 3 carbon atoms, and R 1 and R 2 are -(CH 2 ) f -H, -(CH 2 ) m -NH 2 , -CH-(CH 3 ) 2 and -C-(CH 3 ) 3 , wherein f and m are integers from 0 to 5.

상기 화학식 1의 화합물은 예를 들어, 디에틸렌트리아민(diethylenetriamine), 1,3-디아미노-2-프로판올(1,3-diamino-2-propanol), 1,5-디아미노-3-펜탄올(1,5-diamino-2-pentanol), 부틸렌디아민(butylenediamine), 펜타메틸렌디아민(pentamethylenediamine), 헥사메틸렌디아민(hexamethylenediamine), 비스(3-아미노프로필)아민(bis(3-aminopropyl)amine), 테트라에틸렌펜타아민(tetraethylenepentamine), N-이소프로필에틸렌디아민(N-isopropylethylenediamine), N-이소프로필-1,3-프로판디아민(N-isopropyl-1,3-propanediamine) 및 1,8-디아미노-파라-멘탄(1,8-diamino-p-menthane) 중에서 선택된 어느 하나이며, 이 중에서 가장 바람직하게는 테트라에틸렌펜타아민(tetraethylenepentamine)을 사용할 수 있다.The compound of Formula 1 is, for example, diethylenetriamine, 1,3-diamino-2-propanol (1,3-diamino-2-propanol), 1,5-diamino-3-pentane Ol (1,5-diamino-2-pentanol), butylenediamine (butylenediamine), pentamethylenediamine (pentamethylenediamine), hexamethylenediamine (hexamethylenediamine), bis (3-aminopropyl) amine (bis (3-aminopropyl) amine ), tetraethylenepentamine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine and 1,8-dia It is any one selected from mino-para-mentane (1,8-diamino-p-menthane), and among them, tetraethylenepentamine may be most preferably used.

Figure pat00002
Figure pat00002

상기 화학식 2에서, R3는 -(CH2NHCH2)g- 이며, 여기서 g는 1 내지 2의 정수이다.In Formula 2, R 3 is -(CH 2 NHCH 2 ) g -, where g is an integer of 1 to 2.

상기 화학식 2의 화합물은 예를 들어 1,4,7-트리아자사이클로노난(1,4,7-triazacyclononane) 및 1,4,7,10-테트라아자사이클로도디칸(1,4,7,10-tetraazacyclododecane) 중에서 선택된 어느 하나일 수 있으며, 바람직하게는 1,4,7,10-테트라아자사이클로도디칸(1,4,7,10-tetraazacyclododecane)을 사용할 수 있다.The compound of Formula 2 is, for example, 1,4,7-triazacyclononane (1,4,7-triazacyclononane) and 1,4,7,10-tetraazacyclododicane (1,4,7,10) -tetraazacyclododecane), preferably 1,4,7,10-tetraazacyclododecane (1,4,7,10-tetraazacyclododecane) may be used.

Figure pat00003
Figure pat00003

상기 화학식 3에서, d는 탄소수 1 내지 4의 탄화수소기이고, R4는 -(CH2)h-CH3, -CH-(CH3)2 및 -C-(CH3)3 중에서 선택된 어느 하나이며, 여기서 h는 0 내지 3의 정수이다.In Formula 3, d is a hydrocarbon group having 1 to 4 carbon atoms, and R 4 is -(CH 2 ) h -CH 3 , -CH-(CH 3 ) 2 and -C-(CH 3 ) 3 Any one selected from , where h is an integer from 0 to 3.

상기 화학식 3의 화합물은 예를 들면, 2-(메틸아미노)에탄올(2-(methylamino)ethanol), 2-(에틸아미노)에탄올(2-(ethylamino)ethanol), 2-(프로필아미노)에탄올(2-(propylamino)ethanol), 2-(이소프로필아미노)에탄올(2-(isopropylamino)ethanol), 2-(부틸아미노)에탄올(2-(butylamino)ethanol), 2-(터셜-부틸아미노)에탄올(2-(tert-butylamino)ethanol), 3-(메틸아미노)프로판올(3-(methylamino)propanol), 3-(에틸아미노)프로판올(3-(ethylamino)propanol), 3-(프로필아미노)프로판올(3-(propylamino)propanol), 3-(이소프로필아미노)프로판올(3-(isopropylamino)propanol), 3-(부틸아미노)프로판올(3-(butylamino)propanol), 3-(터셜-부틸아미노)프로판올(3-(tert-butylamino)propanol), 4-(메틸아미노)부탄올(4-(methylamino)butanol), 4-(에틸아미노)부탄올(4-(ethylamino)butanol), 4-(프로필아미노)부탄올(4-(propylamino)butanol), 4-(이소프로필아미노)부탄올(4-(isopropylamino)butanol), 4-(부틸아미노)부탄올(4-(butylamino)butanol), 4-(터셜-부틸아미노)부탄올(4-(tert-butylamino)butanol), 5-(메틸아미노)펜탄올(5-(methylamino)pentanol), 5-(에틸아미노)펜탄올(5-(ethylamino)pentanol), 5-(프로필아미노)펜탄올(5-(propylamino)pentanol), 5-(이소프로필아미노)펜탄올(5-(isopropylamino)pentanol), 5-(부틸아미노)펜탄올(5-(butylamino)pentanol) 및 5-(터셜-부틸아미노)펜탄올(5-(tert-butylamino)pentanol) 중에서 선택된 어느 하나일 수 있다. 이 중에서 바람직하게는 2-(이소프로필아미노)에탄올(2-(isopropylamino)ethanol)를 사용할 수 있다.The compound of Formula 3 is, for example, 2- (methylamino) ethanol (2- (methylamino) ethanol), 2- (ethylamino) ethanol (2- (ethylamino) ethanol), 2- (propylamino) ethanol ( 2-(propylamino)ethanol), 2-(isopropylamino)ethanol (2-(isopropylamino)ethanol), 2-(butylamino)ethanol (2-(butylamino)ethanol), 2-(tert-butylamino)ethanol (2-(tert-butylamino)ethanol), 3-(methylamino)propanol (3-(methylamino)propanol), 3-(ethylamino)propanol (3-(ethylamino)propanol), 3-(propylamino)propanol (3- (propylamino) propanol), 3- (isopropylamino) propanol (3- (isopropylamino) propanol), 3- (butylamino) propanol (3- (butylamino) propanol), 3- (tert-butylamino) Propanol (3-(tert-butylamino)propanol), 4-(methylamino)butanol (4-(methylamino)butanol), 4-(ethylamino)butanol (4-(ethylamino)butanol), 4-(propylamino) Butanol (4-(propylamino)butanol), 4-(isopropylamino)butanol (4-(isopropylamino)butanol), 4-(butylamino)butanol (4-(butylamino)butanol), 4-(tert-butylamino) )Butanol (4-(tert-butylamino)butanol), 5-(methylamino)pentanol (5-(methylamino)pentanol), 5-(ethylamino)pentanol (5-(ethylamino)pentanol), 5-( Propylamino)pentanol (5-(propylamino)pentanol), 5-(isopropylamino)pentanol (5-(isopropylamino)pentanol), 5-(butylamino)pentanol (5-(butylamino)pentanol) and 5 -(tert-butylamino)pentanol (5-(tert-butylamino)pentanol) It may be any one selected from among. Among them, 2-(isopropylamino)ethanol (2-(isopropylamino)ethanol) may be preferably used.

Figure pat00004
Figure pat00004

상기 화학식 4에서, e는 탄소수 0 내지 3의 탄화수소기이고, R5는 -(CH2)i-H, 또는 -CH-(CH3)2이고, R6은 -H 또는 CH3이고, R7, R8은 -(CH2)j-H이며, 여기서 i는 0 네지 6의 정수이고, j는 0 내지 3의 정수이다. In Formula 4, e is a hydrocarbon group having 0 to 3 carbon atoms, R 5 is -(CH 2 ) i -H, or -CH-(CH 3 ) 2 , R 6 is -H or CH 3 , and R 7 , R 8 is -(CH 2 ) j -H, where i is an integer from 0 to 6, and j is an integer from 0 to 3.

상기 화학식 4의 화합물은 알칸올 아민 계열 흡수제로서 예를 들면, 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol), 2-아미노-2-메틸-1-부탄올(2-amino-2-methyl-1-butanol), 2-아미노-2-메틸-1-펜탄올(2-amino-2-methyl-1-pentanol), 3-아미노-3-메틸-1-부탄올(3-amino-3-methyl-1-butanol), 4-아미노-4-메틸-1-펜탄올(4-amino-4-methyl-1-pentanol), N-메틸-2-아미노-1-프로판올(N-methyl-2-amino-1-propanol), N-에틸-2-아미노-1-프로판올(N-ethyl-2-amino-1-propanol), N-이소프로필-2-아미노-1-프로판올(N-isopropyl-2-amino-1-propanol), N-메틸-2-아미노-1-부탄올(N-methyl-2-amino-1-butanol), N-메틸-2-아미노-1-펜탄올(N-methyl-2-amino-1-pentanol), N-이소프로필-2-아미노-1-펜탄올(N-isopropyl-2-amino-1-pentanol), 2-아미노-1-프로판올(2-amino-1-propanol), 2-아미노-1-부탄올(2-amino-1-butanol), 2-아미노-3-메틸부탄올(2-amino-3-methylbutanol), 2-아미노-1-펜탄올(2-amino-1-pentanol), 2-아미노-1-헥산올(2-amino-1-hexanol), 3-아미노-1-부탄올(3-amino-1-butanol), 4-아미노-1-펜탄올(4-amino-1-pentanol), 5-아미노-1-헥산올(5-amino-1-hexanol), 3-아미노-1-펜탄올(3-amino-1-pentanol), 3-아미노-1-헥산올(3-amino-1-hexanol), 1-아미노-2-프로판올(1-amino-2-propanol), 1-아미노-2-부탄올(1-amino-2-butanol), 1-아미노-2-펜탄올(1-amino-2-pentanol) 및 1-아미노-3-메틸-2-부탄올(1-amino-3-methyl-2-butanol) 중에서 선택된 어느 하나일 수 있다.The compound of Formula 4 is an alkanol amine-based absorbent, for example, 2-amino-2-methyl-1-propanol (2-amino-2-methyl-1-propanol), 2-amino-2-methyl-1 -Butanol (2-amino-2-methyl-1-butanol), 2-amino-2-methyl-1-pentanol (2-amino-2-methyl-1-pentanol), 3-amino-3-methyl- 1-butanol (3-amino-3-methyl-1-butanol), 4-amino-4-methyl-1-pentanol (4-amino-4-methyl-1-pentanol), N-methyl-2-amino -1-propanol (N-methyl-2-amino-1-propanol), N-ethyl-2-amino-1-propanol (N-ethyl-2-amino-1-propanol), N-isopropyl-2- Amino-1-propanol (N-isopropyl-2-amino-1-propanol), N-methyl-2-amino-1-butanol (N-methyl-2-amino-1-butanol), N-methyl-2- Amino-1-pentanol (N-methyl-2-amino-1-pentanol), N-isopropyl-2-amino-1-pentanol (N-isopropyl-2-amino-1-pentanol), 2-amino -1-propanol (2-amino-1-propanol), 2-amino-1-butanol (2-amino-1-butanol), 2-amino-3-methylbutanol (2-amino-3-methylbutanol), 2 -Amino-1-pentanol (2-amino-1-pentanol), 2-amino-1-hexanol (2-amino-1-hexanol), 3-amino-1-butanol (3-amino-1-butanol) ), 4-amino-1-pentanol (4-amino-1-pentanol), 5-amino-1-hexanol (5-amino-1-hexanol), 3-amino-1-pentanol (3-amino -1-pentanol), 3-amino-1-hexanol (3-amino-1-hexanol), 1-amino-2-propanol (1-amino-2-propanol), 1-amino-2-butanol (1 -amino-2-butanol), 1-amino-2-pentanol (1-amino-2-pentanol) and It may be any one selected from 1-amino-3-methyl-2-butanol (1-amino-3-methyl-2-butanol).

본 발명의 이산화탄소 포집용 혼합 흡수제는 전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로 하여, 상기 화학식 1의 화합물은 5 내지 15 중량%, 상기 화학식 2의 화합물은 5 내지 15 중량%, 및 상기 화학식 3 및 상기 화학식 4의 화합물 중에서 어느 하나 이상의 화합물은 10 내지 30 중량%로 포함하고, 나머지 잔량의 물을 포함할 수 있다. The mixed absorbent for capturing carbon dioxide of the present invention is based on 100 wt% of the total absorbent for capturing carbon dioxide, wherein the compound of Formula 1 is 5 to 15 wt%, the compound of Formula 2 is 5 to 15 wt%, and the formula 3 and at least one compound of Formula 4 may be included in an amount of 10 to 30% by weight, and the remaining amount of water.

여기서 이산화탄소 포집용 혼합 흡수제에 포함되는 화합물의 성분은 전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로, 20 내지 60 중량%로 포함될 수 있고, 바람직하게는 체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로, 화합물의 성분 50 중량% 및 나머지 잔량의 물 50 중량%를 포함할 수 있다.Here, the component of the compound included in the mixed absorbent for capturing carbon dioxide may be included in an amount of 20 to 60% by weight based on 100% by weight of the total mixed absorbent for capturing carbon dioxide, preferably based on 100% by weight of the mixed absorbent for capturing carbon dioxide through the body , 50% by weight of the component of the compound and 50% by weight of water with the remaining balance.

만약 상기 이산화탄소 포집용 혼합 흡수제에서 화합물의 함량 범위가 제시된 범위를 벗어나면 이산화탄소 포집용 혼합 흡수제의 이산화탄소의 흡수속도, 흡수량, 탈거속도 및 탈거율이 저하되고, 또한 흡수제의 내구성도 저하되는 문제점이 발생되는 바, 상기 제시된 함량 범위를 만족하는 것이 바람직하다.If the content range of the compound in the mixed absorbent for carbon dioxide capture is out of the range suggested, the absorption rate, absorption amount, stripping rate and stripping rate of the carbon dioxide in the mixed absorbent for carbon dioxide capture are reduced, and also the durability of the absorbent is reduced. Therefore, it is preferable to satisfy the content range presented above.

본 발명의 이산화탄소 포집용 혼합 흡수제는 티아디아졸계 열화방제지를 더 포함할 수 있으며, 여기서 티아디아졸계 열화방지제는 디머캅토티아디아졸(dimercaptothiadiazole)인 것이 바람직하다.The mixed absorbent for capturing carbon dioxide of the present invention may further include a thiadiazole-based degradation inhibitor, wherein the thiadiazole-based degradation inhibitor is preferably dimercaptothiadiazole.

상기 티아디아졸계 열화방지제는 전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로 하여, 0 이상 1 중량% 이하로 포함할 수 있다. 만약 상기 열화방지제의 함량이 1 중량%를 초과하여 과량으로 첨가되면, 이산화탄소를 흡수 및 흡수제의 재생성능 저하 등의 문제점이 발생되므로, 흡수제 특성에 따라 제시된 범위 이내로 가능한 소량 사용하는 것이 바람직하다.The thiadiazole-based degradation inhibitor may be included in an amount of 0 or more and 1% by weight or less based on 100% by weight of the total carbon dioxide-collecting mixed absorbent. If the content of the degradation inhibitor is added in excess of 1% by weight, problems such as absorption of carbon dioxide and deterioration of the regeneration performance of the absorbent occur.

본 발명의 이산화탄소 포집용 혼합 흡수제는 0 내지 70℃ 미만의 온도 범우에서 이산화탄소를 흡수하고, 70℃ 내지 150℃ 범위에서 탈거된다.The mixed absorbent for capturing carbon dioxide of the present invention absorbs carbon dioxide in a temperature range of 0 to less than 70 °C, and is stripped in a range of 70 °C to 150 °C.

본 발명의 이산화탄소 포집용 혼합 흡수제는 이산화탄소의 흡수 및 탈거 압력은 1bar 내지 2bar이다.The mixed absorbent for capturing carbon dioxide of the present invention has a carbon dioxide absorption and stripping pressure of 1 bar to 2 bar.

본 발명에 따른 이산화탄소 포집용 혼합 흡수제는 이산화탄소의 흡수 및 탈거 시험과 산화성 열화 시험을 통해 습식 이산화탄소의 분리 공정에 적용함에 따라 저농도의 이산화탄소, 고농도의 산소 조건에서도 이산화탄소의 흡수속도, 흡수량, 탈거속도, 탈거율 뿐만 아니라 흡수제의 내구성도 우수한 것을 확인할 수 있다.The mixed absorbent for capturing carbon dioxide according to the present invention is applied to the separation process of wet carbon dioxide through carbon dioxide absorption and stripping tests and oxidative degradation tests. It can be seen that not only the removal rate but also the durability of the absorbent is excellent.

따라서 본 발명의 이산화탄소 포집용 혼합 흡수제는 석탄화력발전 배가스 외에도 LNG 복합발전 배가스와 같은 저농도 이산화탄소 배가스 조건에서도 상용 또는 기존 흡수제 대비 흡수속도, 흡수량, 탈거속도, 탈거량을 고려하였을 때 포집설비의 CAPEX 및 OPEX을 절감할 수 있도록 효율적으로 이산화탄소 포집이 가능하다.Therefore, the mixed absorbent for carbon dioxide capture of the present invention is compared to commercial or existing absorbents under low-concentration carbon dioxide flue gas conditions such as LNG combined cycle power plant flue gas, in addition to coal-fired power plant flue gas, considering the absorption rate, absorption amount, stripping rate, and stripping amount, the CAPEX and It is possible to efficiently capture carbon dioxide to reduce OPEX.

또한 본 발명의 이산화탄소 포집용 혼합 흡수제는 석탄화력발전 배가스 외에도 LNG 복합발전 배가스와 같은 고농도의 산소 배가스 조건에서도 내구성이 향상됨과 동시에 비말동반으로 인한 흡수제의 손실을 줄여 경제적인 운영이 가능하다.In addition, the mixed absorbent for capturing carbon dioxide of the present invention improves durability even under high-concentration oxygen flue gas conditions such as LNG combined cycle power plant flue gas in addition to coal-fired power plant flue gas, and at the same time reduces the loss of absorbent due to entrainment, enabling economical operation.

도 1은 이산화탄소 흡수 및 탈거 시험 장치를 간략하게 나타낸 모식도이다.
도 2는 산화성 열화 시험 장치의 반응기를 간략하게 나타낸 모식도이다.
1 is a schematic diagram briefly showing a carbon dioxide absorption and stripping test apparatus.
2 is a schematic diagram schematically showing a reactor of an oxidative degradation test apparatus.

이하 실시예 및 비교예를 통해 본 발명의 이산화탄소 포집용 혼합 흡수제를 보다 상세히 설명한다. Hereinafter, the mixed absorbent for capturing carbon dioxide of the present invention will be described in more detail through Examples and Comparative Examples.

본 명세서에서 사용되는 "구성된다", "포함한다" 또는 "첨가된다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들은 포함되지 않을 수도 있고, 또한 추가적인 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다.As used herein, terms such as “consisting of,” “comprising,” or “added” should not be construed as necessarily including all of the various components described in the specification, some of which may not be included. It should also be construed as being able to further include additional components.

본 명세서에서는 설명의 편의를 위해 '흡수제'는 '이산화탄소 흡수제' 또는 '이산화탄소 포집용 흡수제'라고 혼용하여 명명한다. 또한, 이하에서 설명될 실시예 1 내지 실시예 3의 '흡수제'는 '이산화탄소 포집용 혼합 흡수제'라고도 명명한다.In this specification, for convenience of explanation, the term 'absorbent' is used interchangeably with 'carbon dioxide absorbent' or 'absorbent for carbon dioxide capture'. In addition, the 'absorbent' of Examples 1 to 3, which will be described below, is also called a 'mixed absorbent for capturing carbon dioxide'.

다음 표 1과 같은 조성을 갖는 수용액 상태의 이산화탄소 포집용 혼합 흡수제를 제조하였다. 여기서 용매로는 정제된 물을 사용하였다.A mixed absorbent for capturing carbon dioxide in an aqueous solution having the composition shown in Table 1 was prepared. Here, purified water was used as a solvent.

하기 실시예 1 내지 실시예 3은 서로 다른 3종 이상의 화합물이 혼합된 이산화탄소 포집용 혼합 흡수제이며, 전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로 혼합 화합물 조성이 50 중량%이고, 나머지는 정제된 물 50 중량%의 조성 함량으로 제조하였다.The following Examples 1 to 3 are mixed absorbents for capturing carbon dioxide in which three or more different compounds are mixed, and the mixed compound composition is 50% by weight based on 100% by weight of the total mixed absorbent for capturing carbon dioxide, and the rest are purified It was prepared at a compositional content of 50% by weight of water.

하기 비교예 1 내지 비교예 7은 상기 실시예 1 내지 실시예 3의 이산화탄소 포집용 혼합 흡수제와 비교하기 위한 단일 성분의 이산화탄소 포집용 흡수제이거나, 서로 다른 2종의 화합물이 혼합된 형태의 이산화탄소 포집용 흡수제로서, 전체 이산화탄소 포집용 흡수제 100 중량%를 기준으로 화합물 조성은 30 중량%이고, 나머지는 정제된 물 70 중량%의 조성 함량으로 제조하였다.The following Comparative Examples 1 to 7 are single-component carbon dioxide-collecting absorbents for comparison with the carbon dioxide-collecting mixed absorbents of Examples 1 to 3, or a mixture of two different compounds for carbon dioxide capture As an absorbent, the compound composition was 30 wt% based on 100 wt% of the total absorbent for capturing carbon dioxide, and the remainder was prepared with a composition content of 70 wt% of purified water.

구분division 흡수제absorbent 농도
(wt%)
density
(wt%)
몰농도
(M)
molarity
(M)
비교예 1Comparative Example 1 MEAMEA 3030 4.924.92 비교예 2Comparative Example 2 MEA+DMTDMEA+DMTD 30:0.530:0.5 4.924.92 비교예 3Comparative Example 3 TEPATEPA 3030 1.591.59 비교예 4Comparative Example 4 IPAE+IPDEAIPAE+IPDEA 21:921:9 2.582.58 비교예 5Comparative Example 5 AMPAMP 3030 3.373.37 비교예 6Comparative Example 6 PzPz 3030 3.483.48 비교예 7Comparative Example 7 TACDTACD 3030 1.74 1.74 실시예 1Example 1 TEPA+IPAE+IPDEA+TACDTEPA+IPAE+IPDEA+TACD 10:21:9:1010:21:9:10 3.523.52 실시예 2Example 2 TEPA+AMP+TACDTEPA+AMP+TACD 10:30:1010:30:10 3.983.98 실시예 3Example 3 TEPA+IPAE+IPDEA+AMP+TACDTEPA+IPAE+IPDEA+AMP+TACD 10:14:6:10:1010:14:6:10:10 3.663.66

상기 표 1에서 MEA는 모노에탄올아민(monoethanolamine)이고, DMTD는 티아디아졸계 열화방지제로 디머캅토티아디아졸(dimercaptothiadiazole)이고, TEPA는 테트라에틸렌펜타아민(tetraethylenepentamine)으로 화학식 1의 화합물에 해당하고, IPAE는 2-(이소프로필아미노)에탄올(2-(isopropylamino)ethanol)로 화학식 3의 화합물에 해당하고, IPDEA는 2-(이소프로필)디에탄올아민(2-(isopropyl)diethanolamine 또는 N-isopropyl-2,2′-iminodiethanol)이고, AMP는 아미노메틸프로판올(2-amino-2-methyl-1-propanol)로 화학식 4의 화합물에 해당하고, Pz는 피페라진(piperazine)이며, TACD는 1,4,7,10-테트라아자사이클로도디칸(1,4,7,10-tetraazacyclododecane)으로 화학식 2의 화합물에 해당한다.In Table 1, MEA is monoethanolamine, DMTD is dimercaptothiadiazole as a thiadiazole-based degradation inhibitor, and TEPA is tetraethylenepentamine, which corresponds to the compound of Formula 1, IPAE is 2-(isopropylamino)ethanol (2-(isopropylamino)ethanol), which corresponds to the compound of Formula 3, and IPDEA is 2-(isopropyl)diethanolamine (2-(isopropyl)diethanolamine or N-isopropyl- 2,2′-iminodiethanol), AMP is aminomethylpropanol (2-amino-2-methyl-1-propanol), which corresponds to the compound of Formula 4, Pz is piperazine, and TACD is 1,4 ,7,10-tetraazacyclododecane (1,4,7,10-tetraazacyclododecane) corresponds to the compound of Formula 2.

상기 표 1과 같이 각각 제조된 실시예들의 이산화탄소 포집용 혼합 흡수제와 비교예들의 이산화탄소 포집용 흡수제의 이산화탄소 흡수 및 탈거 효율을 확인하기 위해 이산화탄소 흡수 및 탈거 시험을 수행하였으며, 이때 도 1과 같은 이산화탄소 흡수 및 탈거 시험 장치를 통해 수행하였다.As shown in Table 1 above, carbon dioxide absorption and stripping tests were performed to confirm the carbon dioxide absorption and stripping efficiency of the mixed absorbent for carbon dioxide capture of Examples and the absorbent for carbon dioxide capture of Comparative Examples, and at this time, carbon dioxide absorption as shown in FIG. and stripping test equipment.

이산화탄소 흡수 및 탈거 시험은 상기 실시예 1 내지 실시예 3과 비교예 1, 비교예 3, 비교예 4, 비교예 5, 비교예 6, 비교예 7에서 각각 제조된 이산화탄소 포집용 혼합 흡수제 50 g을 충진하였다. 반응용기 내부로 다공성의 디퓨저가 있는 관을 통해 대기압 조건에서 이산화탄소 4%, 질소 96% 조성을 가지는 기체를 1.5 리터/분의 속도로 주입 및 분산시켰다. 이후, 출구 기체 중 이산화탄소의 농도를 비분산형 적외선 분석 방식의 이산화탄소 농도 측정기를 이용하여 연속적으로 측정하여 이산화탄소의 흡수 속도와 흡수량을 측정하였다. 흡수제가 이산화탄소에 의해 어느 정도 포화가 된 일정 시점으로 약 90분에 반응용기의 온도를 70℃로 높여 흡수제로부터 탈거된 이산화탄소의 탈거 속도와 탈거량을 30분간 측정하였으며, 그에 따른 결과를 하기 표 2에 나타내었다.In the carbon dioxide absorption and removal test, 50 g of the mixed absorbent for capturing carbon dioxide prepared in Examples 1 to 3 and Comparative Examples 1, 3, 4, 5, 6, and 7, respectively, was used. filled. A gas having a composition of 4% carbon dioxide and 96% nitrogen was injected and dispersed at a rate of 1.5 liters/min at atmospheric pressure through a tube with a porous diffuser into the reaction vessel. Thereafter, the concentration of carbon dioxide in the outlet gas was continuously measured using a carbon dioxide concentration meter of a non-dispersive infrared analysis method to measure the absorption rate and amount of carbon dioxide absorbed. At a certain point in time when the absorbent was saturated with carbon dioxide, the temperature of the reaction vessel was raised to 70° C. in about 90 minutes, and the stripping rate and amount of carbon dioxide stripped from the absorbent were measured for 30 minutes, and the results are shown in Table 2 below. shown in

구분division 흡수속도(분-1)Absorption rate (min -1 ) 탈거속도(분-1)Stripping speed (min -1 ) 흡수용량(90분)Absorption capacity (90 minutes) 탈거량(30분)Removed amount (30 minutes) 탈거율removal rate g/kgg/kg M/MM/M g/kgg/kg M/MM/M g/kgg/kg M/MM/M g/kgg/kg M/MM/M %% 비교예 1Comparative Example 1 2.72.7 0.0120.012 1.21.2 0.00550.0055 118118 0.550.55 1313 0.060.06 1111 비교예 3Comparative Example 3 3.53.5 0.0500.050 1.01.0 0.0140.014 183183 2.62.6 2828 0.400.40 1515 비교예 4Comparative Example 4 2.22.2 0.0190.019 2.02.0 0.0180.018 7373 0.640.64 4242 0.370.37 5858 비교예 5Comparative Example 5 2.42.4 0.0160.016 1.31.3 0.00880.0088 114114 0.770.77 3636 0.240.24 3232 비교예 6Comparative Example 6 3.03.0 0.0200.020 0.50.5 0.00330.0033 136136 0.890.89 1818 0.120.12 1313 비교예 7Comparative Example 7 3.23.2 0.0420.042 1.61.6 0.0210.021 172172 2.22.2 5050 0.650.65 2929 실시예 1Example 1 5.45.4 0.0350.035 2.62.6 0.0170.017 232232 1.51.5 8282 0.530.53 3535 실시예 2Example 2 6.06.0 0.0340.034 2.22.2 0.0130.013 260260 1.51.5 8383 0.470.47 3232 실시예 3Example 3 5.85.8 0.0360.036 2.62.6 0.0160.016 245245 1.51.5 8484 0.520.52 3434

상기 표 2에 나타낸 바와 같이, 실시예 1 내지 실시예 3에 따른 이산화탄소 포집용 흡수제는 비교예들의 이산화탄소 포집용 흡수제보다 이산화탄소 흡수속도, 탈거속도, 흡수용량, 탈거량 및 탈거율 모두 우수한 것으로 나타내었다.As shown in Table 2, the carbon dioxide trapping absorbents according to Examples 1 to 3 were superior to the carbon dioxide trapping absorbents of Comparative Examples in terms of carbon dioxide absorption rate, stripping rate, absorption capacity, stripping amount, and stripping rate. .

또한, 상기 표 1과 같이 제조된 상기 실시예들과 비교예들의 이산화탄소 포집용 흡수제의 산화성 열화도를 알아보고자, 도 2에 도시된 산화성 열화 시험 장치를 이용하여 산화성 열화 시험을 수행하였다.In addition, in order to determine the degree of oxidative degradation of the absorbents for capturing carbon dioxide of the Examples and Comparative Examples prepared as shown in Table 1, an oxidative degradation test was performed using the oxidative degradation test apparatus shown in FIG. 2 .

구체적으로 산화성 열화 시험은 60℃로 설정된 수조에 담긴 1 리터의 유리 반응용기에 상기 실시예 1 내지 실시예 3과 비교예 1 내지 비교예 7에서 각각 제조된 이산화탄소 포집용 흡수제 0.7 리터를 충진하였다. 반응용기 내부로 다공성의 디퓨저가 있는 관을 통해 대기압 조건에서 산소(O2) 98%, 이산화탄소(CO2) 2%의 조성을 가지는 기체를 가습장치를 통과하여 100 mL/분의 속도로 주입 및 분산시켰다. 이후, 1,200시간 동안 50 내지 100시간의 간격으로 흡수제를 1 mL씩 채취하여 가스 크로마토그래피를 이용하여 분석하였다. 이 때 얻어진 분석 결과를 하기 표 3에 나타내었다.Specifically, in the oxidative degradation test, 0.7 liters of the absorbent for capturing carbon dioxide prepared in Examples 1 to 3 and Comparative Examples 1 to 7, respectively, was filled in a 1 liter glass reaction vessel contained in a water bath set at 60°C. A gas having a composition of 98% oxygen (O 2 ) and 2% carbon dioxide (CO 2 ) is injected and dispersed at a rate of 100 mL/min through a humidifier at atmospheric pressure through a tube with a porous diffuser into the reaction vessel. made it Thereafter, 1 mL of the absorbent was collected at intervals of 50 to 100 hours for 1,200 hours and analyzed using gas chromatography. The analysis results obtained at this time are shown in Table 3 below.

구분division 산화성 열화도
(wt%/시간)
Oxidative Degradation
(wt%/hour)
끓는점(℃)Boiling Point (℃)
비교예 1Comparative Example 1 3.83.8 170170 비교예 2Comparative Example 2 0.340.34 170170 비교예 3Comparative Example 3 2.92.9 340340 비교예 4Comparative Example 4 2.72.7 172172 비교예 5Comparative Example 5 1.51.5 165165 비교예 6Comparative Example 6 2.22.2 146146 비교예 7Comparative Example 7 1.81.8 284284 실시예 1Example 1 2.42.4 -- 실시예 2Example 2 2.22.2 -- 실시예 3Example 3 1.91.9 --

산화성 열화도는 시간당 열화된 흡수제의 양을 나타낸 값으로 그 값이 적을수록 내구성이 우수한 것을 의미한다. 하기 [표 2]을 참조하면, 비교예 1, 비교예 3 내지 7에서와 같이 이산화탄소 포집용 흡수제의 단일성분별 산화성 열화도는 비교예 1(MEA) > 비교예 3(TEPA) ≫ 비교예 6(Pz) ≒ 비교예 4(IPAE+IPDEA) ≒ 비교예 7(TACD) ≒ 비교예 5(AMP)의 순서를 가진다. 즉 이산화탄소 흡수속도 및 흡수량이 월등히 높은 비교예 3(TEPA)도 비교예 1(MEA) 보다 산화성 열화도 측면에서 우수하며, 또한 비교예 4(IPAE+IPDEA), 비교예 5(AMP), 비교예 6(Pz), 비교예 7(TACD)도 비교예 1(MEA) 대비 월등히 우수하다.The degree of oxidative degradation is a value indicating the amount of the absorbent deteriorated per hour, and the smaller the value, the better the durability. Referring to [Table 2], as in Comparative Example 1 and Comparative Examples 3 to 7, the degree of oxidative degradation for each single component of the carbon dioxide trapping agent is Comparative Example 1 (MEA) > Comparative Example 3 (TEPA) » Comparative Example 6 ( Pz) ≒ Comparative Example 4 (IPAE+IPDEA) ≒ Comparative Example 7 (TACD) ≒ Comparative Example 5 (AMP). That is, Comparative Example 3 (TEPA), which has significantly higher carbon dioxide absorption rate and absorption amount, is also superior to Comparative Example 1 (MEA) in terms of oxidative degradation, and Comparative Example 4 (IPAE+IPDEA), Comparative Example 5 (AMP), Comparative Examples 6 (Pz) and Comparative Example 7 (TACD) are also significantly superior to Comparative Example 1 (MEA).

상기 표 3에서와 같이 실시예 1 내지 실시예 3은 산화성 열화도가 낮은 화합물의 혼합물로 구성되어, 산화성 열화도가 기존 흡수제로서 비교예 1의 모노에탄올아민(MEA)보다 36% 이상 향상됨을 알 수 있다.As shown in Table 3, Examples 1 to 3 are composed of a mixture of compounds having a low degree of oxidative degradation, and it can be seen that the degree of oxidative degradation is improved by 36% or more than that of monoethanolamine (MEA) of Comparative Example 1 as a conventional absorbent. can

상기 표 3의 비교예 2에서처럼, 이산화탄소 포집용 흡수제에 티아디아졸계 열화방지제인 디머캅토티아디아졸(DMTD)를 총 흡수제 중량 대비 0.5 중량%로 혼합하였을 때 산화성 열화도는 매우 감소한다.As in Comparative Example 2 of Table 3, when dimercaptothiadiazole (DMTD), a thiadiazole-based degradation inhibitor, is mixed with the absorbent for capturing carbon dioxide in an amount of 0.5% by weight based on the total weight of the absorbent, the degree of oxidative degradation is greatly reduced.

그러므로 실시예 1 내지 실시예 3의 이산화탄소 포집용 혼합 흡수제에 티아디아졸계 열화방지제인 디머캅토티아디아졸(DMTD)를 총 흡수제 중량 대비 0.5 중량%로 혼합하였을 때, 상기 표 3의 비교예 2로부터 산화성 열화도는 매우 감소함을 유추할 수 있다. Therefore, when the mixed absorbent for capturing carbon dioxide of Examples 1 to 3 was mixed with dimercaptothiadiazole (DMTD), a thiadiazole-based degradation inhibitor, in an amount of 0.5% by weight based on the total weight of the absorbent, from Comparative Example 2 of Table 3 It can be inferred that the degree of oxidative degradation is greatly reduced.

그리고 상기 표 3에서 나타낸 바와 같이 비교예 1 내지 비교예 7 끓는점을 고려하면, 비교예 3(TEPA)과 비교예 7(TACD)이 끓는점이 가장 높게 나타났으므로, 테트라에틸렌펜타아민(TEPA)와 1,4,7,10-테트라아자사이클로도디칸(TACD)이 모두 포함된 실시예 1 내지 실시예 3의 이산화탄소 포집용 혼합 흡수제의 휘발 및 비말동반을 방지하는 효과가 있음을 알 수 있다.And, considering the boiling point of Comparative Examples 1 to 7 as shown in Table 3, Comparative Example 3 (TEPA) and Comparative Example 7 (TACD) showed the highest boiling point, so tetraethylenepentaamine (TEPA) and It can be seen that 1,4,7,10-tetraazacyclododicane (TACD) is effective in preventing volatilization and entrainment of the mixed absorbent for capturing carbon dioxide of Examples 1 to 3, which includes all of them.

Claims (11)

하기 화학식 1 및 하기 화학식 2로 표시되는 화합물을 포함하고,
하기 화학식 3 및 하기 화학식 4로 표시되는 화합물 중에서 어느 하나 이상의 화합물을 포함하는 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
[화학식 1]
Figure pat00005

상기 화학식 1에서, a는 탄소수 0 내지 1의 탄화수소기이고, b와 c는 탄소수 0 내지 3의 탄화수소기이고, R1 및 R2는 -(CH2)f-H, -(CH2)m-NH2, -CH-(CH3)2 및 -C-(CH3)3 중에서 선택된 어느 하나이며, 여기서 f와 m은 0 내지 5의 정수이다.
[화학식 2]
Figure pat00006

상기 화학식 2에서, R3는 -(CH2NHCH2)g- 이며, 여기서 g는 1 내지 2의 정수이다.
[화학식 3]
Figure pat00007

상기 화학식 3에서, d는 탄소수 1 내지 4의 탄화수소기이고, R4는 -(CH2)h-CH3, -CH-(CH3)2 및 -C-(CH3)3 중에서 선택된 어느 하나이며, 여기서 h는 0 내지 3의 정수이다.
[화학식 4]
Figure pat00008

상기 화학식 4에서, e는 탄소수 0 내지 3의 탄화수소기이고, R5는 -(CH2)i-H, 또는 -CH-(CH3)2이고, R6은 -H 또는 CH3이고, R7, R8은 -(CH2)j-H이며, 여기서 i는 0 네지 6의 정수이고, j는 0 내지 3의 정수이다.
Including a compound represented by the following formula (1) and the following formula (2),
A mixed absorbent for capturing carbon dioxide, comprising any one or more compounds of the compounds represented by the following Chemical Formulas 3 and 4.
[Formula 1]
Figure pat00005

In Formula 1, a is a hydrocarbon group having 0 to 1 carbon atoms, b and c are a hydrocarbon group having 0 to 3 carbon atoms, and R 1 and R 2 are -(CH 2 ) f -H, -(CH 2 ) m -NH 2 , -CH-(CH 3 ) 2 and -C-(CH 3 ) 3 , wherein f and m are integers from 0 to 5.
[Formula 2]
Figure pat00006

In Formula 2, R 3 is -(CH 2 NHCH 2 ) g -, where g is an integer of 1 to 2.
[Formula 3]
Figure pat00007

In Formula 3, d is a hydrocarbon group having 1 to 4 carbon atoms, and R 4 is -(CH 2 ) h -CH 3 , -CH-(CH 3 ) 2 and -C-(CH 3 ) 3 Any one selected from , where h is an integer from 0 to 3.
[Formula 4]
Figure pat00008

In Formula 4, e is a hydrocarbon group having 0 to 3 carbon atoms, R 5 is -(CH 2 ) i -H, or -CH-(CH 3 ) 2 , R 6 is -H or CH 3 , and R 7 , R 8 is -(CH 2 ) j -H, where i is an integer from 0 to 6, and j is an integer from 0 to 3.
제1항에 있어서,
전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로 하여,
상기 화학식 1의 화합물은 5 내지 15 중량%;
상기 화학식 2의 화합물은 5 내지 15 중량%; 및
상기 화학식 3 및 상기 화학식 4의 화합물 중에서 어느 하나 이상의 화합물은 10 내지 30 중량%;인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
The method of claim 1,
Based on 100% by weight of the mixed absorbent for capturing carbon dioxide,
5 to 15% by weight of the compound of Formula 1;
5 to 15% by weight of the compound of Formula 2; and
The mixed absorbent for capturing carbon dioxide, characterized in that; 10 to 30% by weight of any one or more compounds of the compounds of Formula 3 and Formula 4;
제1항에 있어서,
상기 이산화탄소 포집용 혼합 흡수제는,
티아디아졸계 열화방제지를 포함하는 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
The method of claim 1,
The mixed absorbent for capturing carbon dioxide,
A mixed absorbent for capturing carbon dioxide, characterized in that it contains a thiadiazole-based degradation control paper.
제3항에 있어서,
상기 티아디아졸계 열화방지제는 디머캅토티아디아졸(dimercaptothiadiazole)인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
4. The method of claim 3,
The thiadiazole-based degradation inhibitor is a mixed absorbent for capturing carbon dioxide, characterized in that dimercaptothiadiazole.
제3항에 있어서,
상기 티아디아졸계 열화방지제는, 전체 이산화탄소 포집용 혼합 흡수제 100 중량%를 기준으로 하여, 0 이상 1 중량% 이하로 포함하는 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
4. The method of claim 3,
The thiadiazole-based anti-degradation agent, based on 100% by weight of the total carbon dioxide-collecting mixed absorbent, a mixed absorbent for carbon dioxide capture, characterized in that it contains 0 or more and 1% by weight or less.
제1항에 있어서,
상기 이산화탄소 포집용 혼합 흡수제는,
이산화탄소 탈거온도가 70℃ 내지 150℃인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
According to claim 1,
The mixed absorbent for capturing carbon dioxide,
A mixed absorbent for capturing carbon dioxide, characterized in that the carbon dioxide stripping temperature is 70 °C to 150 °C.
제1항에 있어서,
상기 이산화탄소 포집용 혼합 흡수제는,
이산화탄소 흡수 및 탈거 압력이 1bar 내지 2bar인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
According to claim 1,
The mixed absorbent for capturing carbon dioxide,
A mixed absorbent for capturing carbon dioxide, characterized in that the carbon dioxide absorption and stripping pressure is 1 bar to 2 bar.
제1항에 있어서,
상기 화학식 1의 화합물은,
디에틸렌트리아민, 1,3-디아미노-2-프로판올, 1,5-디아미노-3-펜탄올, 부틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 비스(3-아미노프로필)아민, 테트라에틸렌펜타아민, N-이소프로필에틸렌디아민, N-이소프로필-1,3-프로판디아민 및 1,8-디아미노-파라-멘탄 중에서 선택된 어느 하나인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
According to claim 1,
The compound of Formula 1 is,
Diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylenediamine, hexamethylenediamine, bis(3-aminopropyl)amine, tetra A mixed absorbent for capturing carbon dioxide, characterized in that it is any one selected from ethylenepentaamine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, and 1,8-diamino-para-mentane.
제1항에 있어서,
상기 화학식 2의 화합물은,
1,4,7-트리아자사이클로노난 및 1,4,7,10-테트라아자사이클로도디칸 중에서 선택된 어느 하나인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
According to claim 1,
The compound of Formula 2 is,
A mixed absorbent for capturing carbon dioxide, characterized in that it is any one selected from 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododicane.
제1항에 있어서,
상기 화학식 3의 화합물은,
2-(메틸아미노)에탄올, 2-(에틸아미노)에탄올, 2-(프로필아미노)에탄올, 2-(이소프로필아미노)에탄올, 2-(부틸아미노)에탄올, 2-(터셜-부틸아미노)에탄올, 3-(메틸아미노)프로판올, 3-(에틸아미노)프로판올, 3-(프로필아미노)프로판올, 3-(이소프로필아미노)프로판올, 3-(부틸아미노)프로판올, 3-(터셜-부틸아미노)프로판올, 4-(메틸아미노)부탄올, 4-(에틸아미노)부탄올, 4-(프로필아미노)부탄올, 4-(이소프로필아미노)부탄올, 4-(부틸아미노)부탄올, 4-(터셜-부틸아미노)부탄올, 5-(메틸아미노)펜탄올, 5-(에틸아미노)펜탄올, 5-(프로필아미노)펜탄올, 5-(이소프로필아미노)펜탄올, 5-(부틸아미노)펜탄올 및 5-(터셜-부틸아미노)펜탄올 중에서 선택된 어느 하나인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
The method of claim 1,
The compound of Formula 3 is,
2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(propylamino)ethanol, 2-(isopropylamino)ethanol, 2-(butylamino)ethanol, 2-(tert-butylamino)ethanol , 3-(methylamino)propanol, 3-(ethylamino)propanol, 3-(propylamino)propanol, 3-(isopropylamino)propanol, 3-(butylamino)propanol, 3-(tert-butylamino) Propanol, 4-(methylamino)butanol, 4-(ethylamino)butanol, 4-(propylamino)butanol, 4-(isopropylamino)butanol, 4-(butylamino)butanol, 4-(tert-butylamino) )butanol, 5-(methylamino)pentanol, 5-(ethylamino)pentanol, 5-(propylamino)pentanol, 5-(isopropylamino)pentanol, 5-(butylamino)pentanol and 5 A mixed absorbent for capturing carbon dioxide, characterized in that it is any one selected from -(tert-butylamino)pentanol.
제1항에 있어서,
상기 화학식 4의 화합물은,
2-아미노-2-메틸-1-프로판올, 2-아미노-2-메틸-1-부탄올, 2-아미노-2-메틸-1-펜탄올, 3-아미노-3-메틸-1-부탄올, 4-아미노-4-메틸-1-펜탄올, N-메틸-2-아미노-1-프로판올, N-에틸-2-아미노-1-프로판올, N-이소프로필-2-아미노-1-프로판올, N-메틸-2-아미노-1-부탄올, N-메틸-2-아미노-1-펜탄올, N-이소프로필-2-아미노-1-펜탄올, 2-아미노-1-프로판올, 2-아미노-1-부탄올, 2-아미노-3-메틸부탄올, 2-아미노-1-펜탄올, 2-아미노-1-헥산올, 3-아미노-1-부탄올, 4-아미노-1-펜탄올, 5-아미노-1-헥산올, 3-아미노-1-펜탄올, 3-아미노-1-헥산올, 1-아미노-2-프로판올, 1-아미노-2-부탄올, 1-아미노-2-펜탄올 및 1-아미노-3-메틸-2-부탄올 중에서 선택된 어느 하나인 것을 특징으로 하는 이산화탄소 포집용 혼합 흡수제.
The method of claim 1,
The compound of Formula 4 is,
2-Amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, 3-amino-3-methyl-1-butanol, 4 -Amino-4-methyl-1-pentanol, N-methyl-2-amino-1-propanol, N-ethyl-2-amino-1-propanol, N-isopropyl-2-amino-1-propanol, N -Methyl-2-amino-1-butanol, N-methyl-2-amino-1-pentanol, N-isopropyl-2-amino-1-pentanol, 2-amino-1-propanol, 2-amino- 1-Butanol, 2-amino-3-methylbutanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 3-amino-1-butanol, 4-amino-1-pentanol, 5- amino-1-hexanol, 3-amino-1-pentanol, 3-amino-1-hexanol, 1-amino-2-propanol, 1-amino-2-butanol, 1-amino-2-pentanol and A mixed absorbent for capturing carbon dioxide, characterized in that it is any one selected from 1-amino-3-methyl-2-butanol.
KR1020200116938A 2020-09-11 2020-09-11 Mixed absorbent for capturing carbon dioxide KR102430665B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200116938A KR102430665B1 (en) 2020-09-11 2020-09-11 Mixed absorbent for capturing carbon dioxide
KR1020220096723A KR102487384B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide
KR1020220096724A KR102487385B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200116938A KR102430665B1 (en) 2020-09-11 2020-09-11 Mixed absorbent for capturing carbon dioxide

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020220096723A Division KR102487384B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide
KR1020220096724A Division KR102487385B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide

Publications (2)

Publication Number Publication Date
KR20220035292A true KR20220035292A (en) 2022-03-21
KR102430665B1 KR102430665B1 (en) 2022-08-16

Family

ID=80937470

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020200116938A KR102430665B1 (en) 2020-09-11 2020-09-11 Mixed absorbent for capturing carbon dioxide
KR1020220096724A KR102487385B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide
KR1020220096723A KR102487384B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020220096724A KR102487385B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide
KR1020220096723A KR102487384B1 (en) 2020-09-11 2022-08-03 Mixed absorbent for capturing carbon dioxide

Country Status (1)

Country Link
KR (3) KR102430665B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571062B1 (en) * 2014-11-11 2015-12-04 한국에너지기술연구원 Degradation Inhibited Amine CO2 Absorbent and Methods for Capturing CO2 using the same
KR101746561B1 (en) 2015-06-24 2017-06-13 광주과학기술원 Carbon dioxide absorbents and method for regenerating of carbon dioxide absorbents

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889552B1 (en) * 2011-06-24 2018-08-21 한국전력공사 Method for preventing solvent degradation in acid gas capture system
KR102102379B1 (en) * 2018-07-20 2020-04-21 한국전력공사 Mixed absorbent for acid gas separation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571062B1 (en) * 2014-11-11 2015-12-04 한국에너지기술연구원 Degradation Inhibited Amine CO2 Absorbent and Methods for Capturing CO2 using the same
KR101746561B1 (en) 2015-06-24 2017-06-13 광주과학기술원 Carbon dioxide absorbents and method for regenerating of carbon dioxide absorbents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS Omega 2020, 5, 23533-23541(2020.09.04.)* *
Energy Procedia 63(2014) 1795-1804(2014.12.)* *
NATURE COMMUNICATIONS / 6:6124 / DOI: 10.1038/ncomms7124(2015.02.05.)* *

Also Published As

Publication number Publication date
KR102430665B1 (en) 2022-08-16
KR102487385B1 (en) 2023-01-12
KR102487384B1 (en) 2023-01-12
KR20220113333A (en) 2022-08-12
KR20220113334A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
KR100768383B1 (en) Absorbent for separation of carbon dioxide
JP5688455B2 (en) Carbon dioxide absorbent and method for separating and recovering carbon dioxide using the absorbent
EP2804690B1 (en) Process for absorbing co2 from a gas mixture with an absorption medium comprising amines
EP2589424B1 (en) Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
KR101035148B1 (en) Absorbents for separation of acidic gas
GB1591417A (en) Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
KR101746561B1 (en) Carbon dioxide absorbents and method for regenerating of carbon dioxide absorbents
WO2014086560A1 (en) Process for absorption of co2 from a gas mixture using an aqueous solution of a diamine
JP2016507355A (en) Aqueous CO2 absorbent comprising 2-amino-2-methyl-1-propanol and 3-aminopropanol or 2-amino-2-methyl-1-propanol and 4-aminobutanol
KR20090032375A (en) Highly efficient absorbents for acidic gas separation
US9468884B2 (en) Process for removing acidic compounds from a gaseous effluent with an absorbent solution based on dihydroxyalkylamines bearing severe steric hindrance of the nitrogen atom
KR101210929B1 (en) Carbon dioxide absorbent and method of removal of carbon dioxide from landfill gas by the simultaneous generation of barium carbonate using the same
KR101094328B1 (en) Absorbent for acidic gas separation
KR20110032940A (en) Absorbents for separation of acidic gas
KR102430665B1 (en) Mixed absorbent for capturing carbon dioxide
KR102102379B1 (en) Mixed absorbent for acid gas separation
EP3827893B1 (en) Absorbent liquid for co2 and/or h2s, and apparatus and method using same
KR101559563B1 (en) Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
KR20240026329A (en) Mixed absorbent for capturing acidic gas and uses thereof
KR20190110898A (en) Absorbents For Acidic Gas Separation
KR20190125734A (en) Polyhydroxyamine-based carbon dioxide absorbent and method for absorbing/separating carbon dioxide using the same
KR101798976B1 (en) Carbon Dioxide Absorbent
KR20230132105A (en) Acidic gas absorbent and composition for absorbing acidic gas comprising same, and apparatus and method for removing acid gas
KR20240039342A (en) Absorbent, solution for acidic gas separation and acid gas separation device
KR100375024B1 (en) Solution Composition for the Removal of Acid Gas from Gas Mixture

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
A107 Divisional application of patent