KR20220033430A - Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby - Google Patents
Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby Download PDFInfo
- Publication number
- KR20220033430A KR20220033430A KR1020210115101A KR20210115101A KR20220033430A KR 20220033430 A KR20220033430 A KR 20220033430A KR 1020210115101 A KR1020210115101 A KR 1020210115101A KR 20210115101 A KR20210115101 A KR 20210115101A KR 20220033430 A KR20220033430 A KR 20220033430A
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- sand
- civil
- construction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
- C04B14/068—Specific natural sands, e.g. sea -, beach -, dune - or desert sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/0418—Wet materials, e.g. slurries
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/12—Acids or salts thereof containing halogen in the anion
- C04B22/124—Chlorides of ammonium or of the alkali or alkaline earth metals, e.g. calcium chloride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/16—Sulfur-containing compounds
- C04B24/18—Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/243—Phosphorus-containing polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/40—Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
- C04B24/42—Organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
- C04B2103/14—Hardening accelerators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭의 제조방법 및 이에 의해 제조된 건축· 토목 블럭에 관한 것으로, 보다 상세하게는 빠른 경화속도, 우수한 강도 및 우수한 탄성을 갖는 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭의 제조방법 및 이에 의해 제조된 건축· 토목 블럭에 관한 것이다. The present invention relates to a method for manufacturing a building/engineering block using sand or building waste, and to a building/engineering block manufactured by the method, and more particularly, to a method for manufacturing a building/civil block using sand or building waste using sand or building waste having a fast curing rate, excellent strength, and excellent elasticity. It relates to a method for manufacturing a building and civil engineering block, and to a building and civil engineering block manufactured thereby.
최근 토목 공사 및 건설 사업 등의 수행시 양질의 건설재료 확보의 어려움으로 인해 공사기간이 지연되어 경비를 증가시키는 요인으로 작용하고 있으며, 건설자재 확보를 위하여 석산 개발을 하거나 하천, 해상 등에서 골재를 채취함으로써 자연환경을 훼소하고 생태계를 교란시키는 문제가 야기되고 있다. Recently, the construction period is delayed due to the difficulty in securing high-quality construction materials when performing civil works and construction projects, which increases the cost. By doing so, the problem of destroying the natural environment and disturbing the ecosystem is caused.
구체적으로는, 기존 항만매립 공법, 기존 아스팔트 및 콘크리트 포장공법 등에서는 석재 등의 입상재료를 사용하여 채석을 위하여 산야를 훼손하고 있고, 채석, 운반, 깨기 작업이 공사비를 증가시키는 요인이 되고 있다. Specifically, in the existing port reclamation method, the existing asphalt and concrete paving method, etc., granular materials such as stone are used to damage the mountains for quarrying, and quarrying, transporting, and breaking works are factors that increase the construction cost.
이러한 방안으로서, 종래에 시멘트 안정처리공법(Cement stabilization), LAC(Lignin Rosin Asphalt Concrete) 공법 등이 개발되어 활용되고 있으나, 마무리 양생시간이 길어 조기 압축강도를 얻기 힘들며, 압축강도 또한 30kgf/㎠ 이하로 낮아 사용할 수 있는 분야가 도로건설의 보조 기층재 등에 국한되어 있어서 활용성이 매우 낮았다.As such, conventional cement stabilization and LAC (Lignin Rosin Asphalt Concrete) methods have been developed and utilized. Due to the low cost, the usable fields were limited to auxiliary base materials for road construction, so the usability was very low.
대한민국 특허공개 제10-1996-29280호는 경화제 조성물을 사용하여 산업폐기물 및 토양 혼합물을 경화하는 방법을 개시하고 있다. 이때 사용된 경화제 조성물은 탄산나트륨 25%, 염화가리 25%, 탄산마그네슘 15%, 염화암모늄 10%,규산화가리 8%, 실리케이트 7%, 황산철 5% 및 산화티탄 5%를 포함하도록 구성되어 있다. 이 경화제는 산업폐기물과 토양의 혼합물을 경화하기에 적합한 조성으로 기재되어 있으나, 탄산나트륨과 산화티탄을 주성분으로 사용함으로써 제조비용이 고가이며 이를 사용하여 제조되는 경화체의 강도 또한 크게 향상되지 못하는 단점이 있었다.Korean Patent Laid-Open No. 10-1996-29280 discloses a method for curing industrial waste and soil mixture using a curing agent composition. The curing agent composition used at this time is composed of sodium carbonate 25%, potassium chloride 25%, magnesium carbonate 15%, ammonium chloride 10%, potassium silicate 8%, silicate 7%, iron sulfate 5% and titanium oxide 5%. Although this curing agent is described as having a composition suitable for curing a mixture of industrial waste and soil, it is expensive to manufacture because sodium carbonate and titanium oxide are used as main components, and the strength of the cured product manufactured using the curing agent is also not significantly improved. .
이에, 우수한 물성을 가지면서도 동일한 물성이 유지되고, 제조 시간이 절약될 수 있는 건축·토목 자재에 대한 기술 개발히 여전히 요구되고 있는 실정이다. Accordingly, there is still a demand for technology development for building and civil engineering materials that have excellent properties while maintaining the same properties and saving manufacturing time.
본 발명은 종래 기술의 상기와 같은 단점을 해결하기 위하여 안출된 것으로서, 빠른 제조 속도 및 균일한 물성을 구비한 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭의 제조방법을 제공하는 것을 목적으로 한다. The present invention has been devised to solve the above disadvantages of the prior art, and an object of the present invention is to provide a method for manufacturing a building/civil block using sand or building waste having a fast manufacturing speed and uniform physical properties.
또한, 본 발명은 우수한 강도 및 우수한 내구성을 갖는 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭을 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a building/engineering block using sand or building waste having excellent strength and excellent durability.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따라 모래 및 산업 폐기물 중 적어도 어느 하나에 경화제를 투입하여 교반하는 단계; 상기 교반된 혼합물을 성형하여 건조하는 단계; 및 상기 건조된 성형품을 850∼1250℃의 온도에서 소성하는 단계;를 포함하는 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭의 제조방법이 제공된다. In order to achieve the above object, according to an embodiment of the present invention, the step of adding a hardening agent to at least one of sand and industrial waste and stirring; forming and drying the stirred mixture; and calcining the dried molded product at a temperature of 850 to 1250° C.; is provided a method of manufacturing a building/civil block using sand or building waste, including a.
이때, 상기 경화제는 2-(메타크릴로일옥시)에틸 포스페이트 단량체 및 3-(트리메톡시실릴)프로필 메타크릴레이트 단량체를 1:1의 몰비로 첨가하고, 전체 단량체 100 중량부에 노르말 머캡탄 0.5 중량부를 혼합하여 제조된 고분자를 포함할 수 있다. In this case, as the curing agent, 2-(methacryloyloxy)ethyl phosphate monomer and 3-(trimethoxysilyl)propyl methacrylate monomer are added in a molar ratio of 1:1, and normal mercaptan is added to 100 parts by weight of the total monomer. It may contain a polymer prepared by mixing 0.5 parts by weight.
이때, 상기 고분자는 하기 화학식 1일 수 있다.In this case, the polymer may be of the following formula (1).
[화학식 1][Formula 1]
상기 화학식 1에서 R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며, m과 n은 몰분율로서 m은 0.3~0.7이며, n은 0.3~0.7이며, m + n = 1이다.In Formula 1, R1 and R2 are each independently hydrogen or a methyl group, m and n are mole fractions, m is 0.3 to 0.7, n is 0.3 to 0.7, and m + n = 1.
이때, 상기 고분자의 중량 평균 분자량은 70,000 내지 80,000일 수 있다.In this case, the weight average molecular weight of the polymer may be 70,000 to 80,000.
또한, 상기 경화제는 염화나트륨, 알루미늄 트리스(O-에칠포스포네이트), 염화칼륨, 염화칼슘, 산화마그네슘, 황산나트륨, Na2SiO3, 리그닌술폰산염, 및 시멘트를 더 포함할 수 있다. In addition, the curing agent may further include sodium chloride, aluminum tris (O-ethyl phosphonate), potassium chloride, calcium chloride, magnesium oxide, sodium sulfate, Na 2 SiO 3 , lignin sulfonate, and cement.
본 발명의 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭의 제조방법은 빠른 경화 속도에 따라 제조 시간을 단축시키는 이점이 있으며, 우수한 강도, 우수한 탄성 및 우수한 내구성을 가지면서도 균일한 물성을 유지할 수 있는 이점이 있다. The method of manufacturing a building/civil block using sand or building waste of the present invention has the advantage of shortening the manufacturing time according to the fast curing speed, and has the advantage of maintaining uniform physical properties while having excellent strength, excellent elasticity and excellent durability There is this.
도 1은 본 발명의 일 실시예에 따른 건축· 토목 블럭의 제조방법의 순서도이다.
도 2는 본 발명을 일 실시예에 따른 건축· 토목 블럭의 모형도이다.
도 3은 본 발명을 일 실시예에 따른 건축· 토목 블럭의 모형도이다.
도 4는 본 발명을 일 실시예에 따른 건축· 토목 블럭의 모형도이다.
도 5는 본 발명을 일 실시예에 따른 건축· 토목 블럭의 모형도이다. 1 is a flowchart of a method of manufacturing a building/civil block according to an embodiment of the present invention.
2 is a model diagram of a building/civil engineering block according to an embodiment of the present invention.
3 is a model diagram of a building/civil engineering block according to an embodiment of the present invention.
4 is a schematic diagram of a building/civil engineering block according to an embodiment of the present invention.
5 is a schematic diagram of a building and civil engineering block according to an embodiment of the present invention.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적으로 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에서 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, the present invention will be described in detail. Prior to this, the terms or words used in the present specification and claims are not to be construed as being limited to conventional meanings, and the inventor must properly understand the concept of the term in order to best describe his invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. Accordingly, the configurations described in the embodiments described in this specification are only the most preferred embodiment of the present invention, and do not represent all the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and variations.
도 1은 본 발명의 일 실시예에 따른 건축· 토목 블럭의 제조방법의 순서도이다. 도 1을 참조하면, 본 발명의 건축· 토목 블럭의 제조방법은 교반하는 단계(S10), 건조하는 단계(S20) 및 소성하는 단계(S30)를 포함한다. 1 is a flowchart of a method of manufacturing a building/civil block according to an embodiment of the present invention. Referring to FIG. 1 , the method for manufacturing a building/civil block of the present invention includes a stirring step (S10), a drying step (S20), and a firing step (S30).
상기 교반하는 단계(S10)는 모래 및 산업 폐기물 중 적어도 어느 하나에 경화제를 투입하여 교반하는 단계이다. The stirring step (S10) is a step of stirring by adding a curing agent to at least one of sand and industrial waste.
이때 본 발명에 적용할 수 모래는 토사, 해사, 사막 모래를 단독 또는 혼합하여 사용할 수 있다.In this case, the sand applicable to the present invention may be used alone or in a mixture of sand, sand, and desert sand.
또한, 이때, 상기 토사는 화강토, 이토, 강모래, 바다모래, 자연토사 등을 단독 또는 혼합한 것일 수 있다. In addition, at this time, the soil may be granite soil, clay soil, river sand, sea sand, natural soil, etc. alone or mixed.
한편, 본 발명에 적용할 수 있는 산업 폐기물은 오니, 잔재물, 화산재, 환경폐기물, 슬래그, 분슬래그, 폐콘크리트 및 슬러지 등을 용도에 따라 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. On the other hand, industrial waste applicable to the present invention may be used alone or in combination with sludge, residues, volcanic ash, environmental waste, slag, powder slag, waste concrete and sludge depending on the use, but is not limited thereto.
아울러, 본 발명에 적용할 수 있는 경화제는 하기 화학식 1로 표시되는 화합물 1~5 중량부, 염화나트륨 1~3 중량부, 알루미늄 트리스(O-에칠포스포네이트) 0.5~1 중량부, 염화칼륨 1~3 중량부, 염화칼슘 1~2.5 중량부, 산화마그네슘 0.2~2 중량부, 황산나트륨 0.2~1.5중량부, Na2SiO3 0.2~2 중량부, 리그닌술폰산염 0.2~1 중량부, 및 시멘트 100 중량부를 포함할 수 있다. In addition, the curing agent applicable to the present invention is 1 to 5 parts by weight of the compound represented by the following formula (1), 1-3 parts by weight of sodium chloride, 0.5 to 1 parts by weight of aluminum tris (O-ethylphosphonate), 1 to potassium chloride 3 parts by weight, 1 to 2.5 parts by weight of calcium chloride, 0.2 to 2 parts by weight of magnesium oxide, 0.2 to 1.5 parts by weight of sodium sulfate, 0.2 to 2 parts by weight of Na2SiO3, 0.2 to 1 parts by weight of lignin sulfonate, and 100 parts by weight of cement. there is.
[화학식 1][Formula 1]
상기 식에서 R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며, m과 n은 몰분율로서 m은 0.3~0.7이며, n은 0.3~0.7이며, m + n = 1이다.In the above formula, R1 and R2 are each independently hydrogen or a methyl group, m and n are mole fractions, m is 0.3 to 0.7, n is 0.3 to 0.7, and m + n = 1.
이때, 상기 화학식 1의 고분자는 2-(메타크릴로일옥시)에틸 포스페이트(2-(Methacryloyloxy)ethyl phosphate) 단량체 및 3-(트리메톡시실릴)프로필 메타크릴레이트(3-(Trimethoxysilyl)propyl methacrylate) 단량체를 1:1의 몰비로 첨가하고, 전체 단량체 100 중량부에 노르말 머캡탄 0.5 중량부를 혼합하여 균일하게 만든 후, 교반기가 부착된 스테인레스 스틸 고압 반응기에 이온교환수 130 중량부에 소량의 디소듐하이드로겐 포스페이트를 용해시키고 교반하며, 질소 등의 불활성 기체로 반응기 내부를 채우고 가열하고, 72 ℃에서 3시간, 110℃에서 2시간을 중합하여 반응을 종결하였으며, 반응이 종결된 후 세척, 탈수, 건조하여 제조할 수 있다. In this case, the polymer of Formula 1 is a 2-(methacryloyloxy)ethyl phosphate (2-(Methacryloyloxy)ethyl phosphate) monomer and 3-(trimethoxysilyl)propyl methacrylate (3-(Trimethoxysilyl)propyl methacrylate ) monomers are added in a molar ratio of 1:1, and 0.5 parts by weight of normal mercaptan is mixed with 100 parts by weight of the total monomer to make it uniform, and then a small amount of DI is added to 130 parts by weight of ion-exchanged water in a stainless steel high-pressure reactor equipped with a stirrer. Sodium hydrogen phosphate was dissolved and stirred, and the inside of the reactor was filled with an inert gas such as nitrogen and heated, and the reaction was terminated by polymerization at 72 ° C. for 3 hours and 110 ° C. for 2 hours. After the reaction was completed, washing and dehydration , can be prepared by drying.
상기 화학식 1로 표시되는 화합물은 말단에 포스포산을 포함하고 있어서 경화용 조성물의 응고기능을 향상시키며, 트리메톡시실란기를 포함하고 있어서 유무기 물질 간의 결합력을 향상시킨다. 또한 중량평균분자량이 50,000~100,000이거나, 바람직하게는 70,000 내지 80,000이므로 경화용 조성물과 다른 성분들 간의 결합을 강하게 하는 기능을 수행한다. 1 중량부 미만으로 포함되는 경우에는 목적하는 효과를 달성하기 어려우며, 5 중량부를 초과하는 경우에는 추가적이 효과 향상에 의한 이점보다 경제적인 단점이 더 커서 바람직하지 않다.The compound represented by Formula 1 contains phospho acid at the terminal to improve the coagulation function of the curing composition, and contains a trimethoxysilane group to improve bonding between organic and inorganic materials. In addition, since the weight average molecular weight is 50,000 to 100,000, preferably 70,000 to 80,000, it functions to strengthen the bond between the curing composition and other components. When included in less than 1 part by weight, it is difficult to achieve the desired effect, and when it exceeds 5 parts by weight, the economic disadvantage is greater than the advantage of additional effect improvement, which is not preferable.
상기 염화나트륨(Sodium chloride)은 무색결정으로 마그네슘 등의 염류를 함유하며 조해성이 있다. 나트륨염의 제조원료로서 시멘트의 수화 반응을 촉진시키는 역할을 한다. 1 중량부 미만의 양으로 함유될 경우 수분과의 원활한 수용이 되지 않아 수화열이 높게 발생하여 경화체 구체에 균열을 유발할 수 있으며, 3 중량부의 양으로 함유될 경우 시멘트의 원활한 포졸란 반응을 억제하여 강도 구현에 문제점이 야기될 수 있다.The sodium chloride is colorless crystals and contains salts such as magnesium and has deliquescent properties. As a raw material for the production of sodium salt, it plays a role in accelerating the hydration reaction of cement. When it is contained in an amount of less than 1 part by weight, it cannot be smoothly accommodated with moisture, and the heat of hydration is high, which can cause cracks in the sphere of the hardened body. may cause problems.
상기 알루미늄 트리스(O-에칠포스포네이트)는 금속 이온을 봉쇄하는 성질이 있고 응고제 역할을 한다. 0.5 중량부 미만의 양으로 함유될 경우 경화체의 강도 개선에 도움을 주기 어려우며, 1 중량부를 초과하는 경우에는 경제성이 결여되고 환경에 바람직하지 않다. 상기 염화칼륨(Potassium chloride)은 흰색의 정방정계에 속하는 결정으로 공업적으로 칼륨염의 제조 원료로 사용되며 흡수성이 강한 성질이 있어서 감수제로 사용된다. 1 중량부 미만의 양으로 함유될 경우 경화체의 경화속도 및 양생 시간을 늦추어 공기에 영향을 주며, 3 중량부 초과의 양으로 함유될 경우 시멘트의 원활한 포졸란 반응을 억제하여 강도 구현에 문제점이 있을 뿐만 아니라 경화체의 조기 경화로 시공 품질의 저하를 가져올 수 있다. The aluminum tris (O-ethyl phosphonate) has a property of blocking metal ions and serves as a coagulant. When contained in an amount of less than 0.5 parts by weight, it is difficult to help improve the strength of the cured body, and when it exceeds 1 part by weight, economical efficiency is lacking and it is undesirable for the environment. The potassium chloride (Potassium chloride) is a white crystal belonging to the tetragonal system, and is industrially used as a raw material for the production of potassium salt, and is used as a water reducing agent because of its strong absorbency. When contained in an amount of less than 1 part by weight, it affects the air by slowing the curing speed and curing time of the hardened body. However, it may lead to deterioration of construction quality due to premature hardening of the hardening body.
상기 염화칼슘(Calcium chloride)은 시멘트와 혼합하여 흡수성을 촉진할 수 있으며, 2.5 중량부 초과의 양으로 함유될 경우 무수물이 다량 발생하여 경화제가 수분과 만났을 때 액상을 이루기 어려운 문제점이 있을 수 있다.The calcium chloride may be mixed with cement to promote absorption, and when it is contained in an amount of more than 2.5 parts by weight, a large amount of anhydride is generated, and there may be a problem in that it is difficult to achieve a liquid phase when the curing agent meets moisture.
상기 산화마그네슘은 응고제의 기능을 수행한다. 0.2 중량부 미만으로 포함되면 목적효과를 제공하기 어려우며, 2 중량부를 초과하는 경우 MgO 일부는 페리클레스(periclase, MgO로부터 구성된 광물)로서 클링커 중에 생성하게 되는 문제가 야기된다. The magnesium oxide functions as a coagulant. When included in less than 0.2 parts by weight, it is difficult to provide the intended effect, and when it exceeds 2 parts by weight, some MgO is generated in the clinker as periclase (a mineral composed of MgO).
상기 황산나트륨(Sodium sulfate)은 비교적 안정한 무색의 결정으로 유리나 황화 나트륨의 제조에 쓰인다. 경화체 반응에서는 토사 중의 유기물 건조에 사용된다. 0.2 중량부 미만의 양으로 함유될 경우 시멘트의 원활한 수화작용(포졸란 반응)응 충분히 수행치 못하게 하여 강도에 문제점이 있을 수 있으며, 1.5 중량부 초과의 양으로 함유될 경우 수화작용 향상에는 도움이 되지만 제품비용을 증대시킬 수 있다. The sodium sulfate is a relatively stable colorless crystal and is used in the manufacture of glass or sodium sulfide. In the hardening body reaction, it is used to dry organic matter in soil. When it is contained in an amount of less than 0.2 parts by weight, it may not sufficiently perform the smooth hydration (pozzolan reaction) of the cement, so there may be a problem in strength. It can increase product cost.
상기 Na2SiO3 0.2~2 중량부 알칼리화이다. 0.2 중량부 미만으로 포함되면 목적효과를 얻기 어려우며, 2중량부를 초과하면 알칼리도가 너무 증가하여 문제가 될 수 있다.The Na 2 SiO 3 is 0.2 to 2 parts by weight alkalization. When included in less than 0.2 parts by weight, it is difficult to obtain the intended effect, and when it exceeds 2 parts by weight, alkalinity increases too much, which may cause a problem.
상기 리그닌술폰산염(Sodium lignosulfonate)은 토사, 산업폐기물, 하천준설 오니 및 해사와 사막모래, 시멘트 등의 혼합물질을 감수, 분산시키는 역할을 하며 시멘트와 혼합물질을 결합하여 강도를 증대시킨다. 0.2 중량부 미만의 양으로 함유될 경우 입자분산을 저해하며 재료의 완성 후 강도를 저하시키는 문제점이 있을 수 있으며, 1 중량부 초과의 양으로 함유될 경우 재료의 특성상 3차원 망상구조이므로 다른 물질의 화학적 반응을 저해하는 문제점이 있을 수 있다. The lignin sulfonate (Sodium lignosulfonate) serves to absorb and disperse the mixture of soil, industrial waste, river dredging sludge, sea sand, desert sand, cement, etc., and increases strength by combining the cement and the mixture. When contained in an amount of less than 0.2 parts by weight, there may be a problem of inhibiting particle dispersion and lowering the strength after completion of the material. There may be a problem that inhibits the chemical reaction.
상기 시멘트로는 이 분야에 공지된 시멘트가 제한 없이 사용될 수 있다. 예를 들어, 가장 일반적으로 사용되고 있는 포틀랜드 시멘트가 사용될 수 있다. As the cement, any cement known in the art may be used without limitation. For example, the most commonly used Portland cement may be used.
한편, 본 발명의 경화제는 함께 사용되는 모래 및 산업 폐기물 중 적어도 어느 하나 100 중량부에 대하여, 3~15 중량부로 사용되는 것이 바람직하다. 3 중량부 미만으로 포함되는 경우에는 목적효과를 달성하기 어렵고, 15 중량부를 초과하는 경우에는 경제적으로 바람직하지 않다. Meanwhile, the curing agent of the present invention is preferably used in an amount of 3 to 15 parts by weight based on 100 parts by weight of at least any one of sand and industrial waste used together. When included in less than 3 parts by weight, it is difficult to achieve the intended effect, and when it exceeds 15 parts by weight, it is not economically preferable.
본 발명의 건조하는 단계(S20)는 모래 및 산업 폐기물 중 적어도 어느 하나에 경화제를 투입하여 교반한 혼합물을 성형하여 건조하는 단계이다. The drying step (S20) of the present invention is a step of molding and drying the stirred mixture by adding a curing agent to at least one of sand and industrial waste.
이때, 상기 성형은 교반이 완성된 혼합물을 건축자재 또는 토목 자재로 사용하기 위하여 정형화하는 것으로 도 2, 도 3 도 4 및 도 5는 본 발명의 일 실시예에 따라 다양하게 성형된 블럭으로, 대표적인 블럭형태를 비제한적으로 도시한 것일 뿐, 당해 기술분야에서 요구되는 형태는 모두 제한없이 성형하여 제조할 수 있다.At this time, the molding is to standardize the stirred mixture for use as a building material or civil engineering material. The block shape is only shown without limitation, and any shape required in the art can be manufactured by molding without limitation.
한편, 성형된 혼합물은 1차 건조로로 이동하여 자연건조 또는 200 내지 400℃ 온도에서 저온 건조할 수 있다. 저온 건조함으로써 형태 변형 문제가 발생하지 않고 균일한 물성이 전체적으로 고루게 형성될 수 있다. On the other hand, the molded mixture may be moved to a primary drying furnace and dried naturally or at a low temperature of 200 to 400°C. By drying at a low temperature, a problem of shape deformation does not occur and uniform physical properties can be formed evenly throughout.
본 발명에서 소성하는 단계(S30)는 건조된 성형품을 850∼1250℃의 온도에서 소성하는 단계로, 블럭의 강도, 탄성, 내구성 등의 물성을 확정짓는 단계이며, 본 발명자들은 무수한 실험을 통하여 전술 조성을 갖는 본 발명의 성형품의 경우, 850∼1250℃의 온도에서 소성하는 경우 우수한 강도, 탄성 및 내구성을 갖는 블럭이 제조됨을 확인하였다. In the present invention, the firing step (S30) is a step of firing the dried molded product at a temperature of 850 to 1250° C. In the case of the molded article of the present invention having a composition, it was confirmed that blocks having excellent strength, elasticity and durability were produced when calcined at a temperature of 850 to 1250 °C.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다. Hereinafter, the present invention will be described in more detail through examples. However, the following examples are provided to explain the present invention in more detail, and the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
제조예 1 내지 제조예 3 : 교반된 혼합물의 제조Preparation Examples 1 to 3 Preparation of a stirred mixture
하기 화학식 1의 화합물 4 중량부, 염화나트륨 2 중량부, 알루미늄 트리스(O-에칠포스포네이트) 1 중량부, 염화칼륨 2 중량부, 염화칼슘 15 중량부, 산화마그네슘 1 중량부, 황산나트륨 0.8 중량부, Na2SiO3 1 중량부, 리그닌술폰산염 0.7 중량부, 시멘트 100 중량부를 혼합하여 경화제를 준비하였다.4 parts by weight of the compound of Formula 1, 2 parts by weight of sodium chloride, 1 part by weight of aluminum tris(O-ethylphosphonate), 2 parts by weight of potassium chloride, 15 parts by weight of calcium chloride, 1 part by weight of magnesium oxide, 0.8 parts by weight of sodium sulfate, Na 2 SiO 3 1 part by weight, 0.7 parts by weight of lignin sulfonate, and 100 parts by weight of cement were mixed to prepare a curing agent.
[화학식 1][Formula 1]
상기 식에서 R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며, m과 n은 몰분율로서 m은 0.5이며, n은 0.5이며, m + n = 1이다In the above formula, R1 and R2 are each independently hydrogen or a methyl group, m and n are mole fractions, m is 0.5, n is 0.5, and m + n = 1
이렇게 준비한 경화제를 하기 표 1과 같은 비율로 모래 또는 산업 폐기물에 투입하고 교반하여 교반된 혼합물을 제조하였다.The prepared curing agent was added to sand or industrial waste in the ratio shown in Table 1 below and stirred to prepare a stirred mixture.
분슬래그/30Oni/40 Slag/30
Powder slag/30
실시예 1 Example 1
제조예 1의 교반된 혼합물을 가로 30cm x 세로 10cm x 높이 10cm의 직육면체로 성형하여 200℃에서 2시간 동안 저온 건조하였다. 이후, 저온 건조된 성형품을 1000℃에서 8시간 동안 소성시켜 건축 또는 토목에 적용 가능한 블럭을 제조하였다. The stirred mixture of Preparation Example 1 was molded into a rectangular parallelepiped having a width of 30 cm x 10 cm x 10 cm and dried at low temperature at 200 °C for 2 hours. Thereafter, the low-temperature dried molded article was fired at 1000° C. for 8 hours to prepare a block applicable to construction or civil engineering.
실시예 2Example 2
제조예 2의 교반된 혼합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 블럭을 제조하였다. A block was prepared in the same manner as in Example 1, except that the stirred mixture of Preparation Example 2 was used.
실시예 3Example 3
제조예 3의 교반된 혼합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 블럭을 제조하였다. A block was prepared in the same manner as in Example 1, except that the stirred mixture of Preparation Example 3 was used.
실시예 4Example 4
저온 건조된 성형품을 850℃에서 10시간 동안 소성시키는 것을 제외하고는 실시예 1과 동일한 방법으로 블럭을 제조하였다.A block was prepared in the same manner as in Example 1, except that the low-temperature dried molded article was calcined at 850° C. for 10 hours.
실시예 5Example 5
저온 건조된 성형품을 1250℃에서 7시간 동안 소성시키는 것을 제외하고는 실시예 1과 동일한 방법으로 블럭을 제조하였다.A block was prepared in the same manner as in Example 1, except that the low-temperature dried molded article was calcined at 1250° C. for 7 hours.
비교예 1Comparative Example 1
제조예 1의 교반된 혼합물을 가로 30cm x 세로 10cm x 높이 10cm의 직육면체로 성형한 후 이후, 저온 건조된 성형품을 1000℃에서 8시간 동안 소성시켜 건축 또는 토목에 적용 가능한 블럭을 제조하였다. After molding the stirred mixture of Preparation Example 1 into a rectangular parallelepiped having a width of 30 cm x 10 cm x 10 cm in height, the low-temperature dried molded article was fired at 1000 ° C. for 8 hours to prepare a block applicable to construction or civil engineering.
비교예 2Comparative Example 2
제조예 1의 교반된 혼합물을 가로 30cm x 세로 10cm x 높이 10cm의 직육면체로 성형하여 200℃에서 2시간 동안 저온 건조하였다. 이후, 저온 건조된 성형품을 800 ℃에서 12시간 동안 소성시켜 건축 또는 토목에 적용 가능한 블럭을 제조하였다. The stirred mixture of Preparation Example 1 was molded into a rectangular parallelepiped having a width of 30 cm x 10 cm x 10 cm and dried at low temperature at 200 °C for 2 hours. Thereafter, the low-temperature dried molded article was fired at 800° C. for 12 hours to prepare a block applicable to construction or civil engineering.
비교예 3Comparative Example 3
제조예 1의 교반된 혼합물을 가로 30cm x 세로 10cm x 높이 10cm의 직육면체로 성형하여 200℃에서 2시간 동안 저온 건조하였다. 이후, 저온 건조된 성형품을 1300℃에서 6시간 동안 소성시켜 건축 또는 토목에 적용 가능한 블럭을 제조하였다. The stirred mixture of Preparation Example 1 was molded into a rectangular parallelepiped having a width of 30 cm x 10 cm x 10 cm and dried at low temperature at 200 °C for 2 hours. Thereafter, the low-temperature dried molded article was fired at 1300° C. for 6 hours to prepare a block applicable to construction or civil engineering.
시험예test example
상기 실시예 1 내지 5 및 비교예 1 내지 3에서 제조된 블럭을 KSF 2405에 따라 시험기를 사용하여 압축강도를 측정하였다. 하중은 압축응력의 증가가 매초 2~3 kgf/㎠가 되도록 하였으며, 블럭이 급격한 변형을 시작한 후에는 하중을 가하는 속도의 조정을 중지하고 하중을 계속 가하여 일축압축강도를 측정하고, 그 결과를 하기 표 2에 나타내었다.The blocks prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were measured for compressive strength using a testing machine according to KSF 2405. For the load, the increase in compressive stress was 2~3 kgf/cm2 per second. After the block started to deform rapidly, stop adjusting the speed of applying the load and continue to apply the load to measure the uniaxial compressive strength, and then perform the result. Table 2 shows.
상기 표 2의 시험결과로부터 확인되는 바와 같이, 본 발명에 따른 모래 또는 건축 폐기물을 이용한 건축· 토목 블럭인 실시예 1 내지 5의 블럭은 매우 우수한 압축 강도를 나타냈으며, 시험하는 동안 모형의 변형도 일어나지 않았다. 반면, 1차 건조 과정을 거치지 않은 비교예 1은 매우 낮은 압축 강도를 나타냈을 뿐만 아니라, 시험하는 동안 블럭 모서리 대부분이 금이 가거나 변형이 일어났다. 한편, 800 ℃의 낮은 온도로 소성한 비교예 2는 소성 시간이 길었으며, 낮은 압축 강도를 나타냈다. 또한, 1000 ℃의 높은 온도로 소성한 비교예 3도 낮은 압축 강도를 나타냈고, 시험하는 동안 블럭 모서리 일부가 금이 가는 문제가 있었다.As can be seen from the test results in Table 2, the blocks of Examples 1 to 5, which are building/civil blocks using sand or building waste according to the present invention, exhibited very excellent compressive strength, and the degree of deformation of the model during the test didn't happen On the other hand, Comparative Example 1, which was not subjected to the primary drying process, exhibited very low compressive strength, and most of the corners of the block were cracked or deformed during the test. On the other hand, Comparative Example 2, which was calcined at a low temperature of 800 °C, had a long calcination time and showed low compressive strength. In addition, Comparative Example 3, which was fired at a high temperature of 1000 ° C., also exhibited low compressive strength, and there was a problem in that some corners of the block were cracked during the test.
100a, 100b, 100c, 100d : 건축· 토목 블럭100a, 100b, 100c, 100d: Building and civil engineering blocks
Claims (1)
상기 교반된 혼합물을 성형하여 200℃에서 저온 건조하는 단계; 및
상기 건조된 성형품을 850~1250℃의 온도에서 소성하는 단계;를 포함하고,
상기 경화제는 하기 화학식 1의 화합물 4 중량부, 염화나트륨 2 중량부, 알루미늄 트리스(O-에칠포스포네이트) 1 중량부, 염화칼륨 2 중량부, 염화칼슘 15 중량부, 산화마그네슘 1 중량부, 황산나트륨 0.8 중량부, Na2SiO3 1 중량부, 리그닌술폰산염 0.7 중량부 및 시멘트 100 중량부를 혼합한 것이고,
하기 화학식 1은 2-(메타크릴로일옥시)에틸 포스페이트 단량체 및 3-(트리메톡시실릴)프로필 메타크릴레이트 단량체를 1:1의 몰비로 첨가하고, 전체 단량체 100 중량부에 노르말 머캡탄 0.5 중량부를 혼합하여 제조된 것이며,
상기 모래는 화강토 또는 해사인, 모래를 이용한 건축· 토목 블럭의 제조방법:
[화학식 1]
상기 화학식 1에서 R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며, m과 n은 몰분율로서 m은 0.3~0.7이며, n은 0.3~0.7이며, m + n = 1이다.adding a hardener to the sand and stirring;
molding the stirred mixture and drying at a low temperature at 200°C; and
Including; sintering the dried molded article at a temperature of 850 ~ 1250 ℃,
The curing agent is 4 parts by weight of the compound of Formula 1, 2 parts by weight of sodium chloride, 1 part by weight of aluminum tris(O-ethylphosphonate), 2 parts by weight of potassium chloride, 15 parts by weight of calcium chloride, 1 part by weight of magnesium oxide, 0.8 parts by weight of sodium sulfate part, Na 2 SiO 3 1 part by weight, 0.7 parts by weight of lignin sulfonate, and 100 parts by weight of cement,
In Formula 1 below, 2-(methacryloyloxy)ethyl phosphate monomer and 3-(trimethoxysilyl)propyl methacrylate monomer are added in a molar ratio of 1:1, and 0.5 normal mercaptan is added to 100 parts by weight of the total monomer. It is prepared by mixing parts by weight,
The sand is granite or sea sand, a method of manufacturing a building/civil block using sand:
[Formula 1]
In Formula 1, R1 and R2 are each independently hydrogen or a methyl group, m and n are mole fractions, m is 0.3 to 0.7, n is 0.3 to 0.7, and m + n = 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210115101A KR20220033430A (en) | 2020-09-09 | 2021-08-30 | Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200115077 | 2020-09-09 | ||
KR1020210115101A KR20220033430A (en) | 2020-09-09 | 2021-08-30 | Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200115077 Division | 2020-09-09 | 2020-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220033430A true KR20220033430A (en) | 2022-03-16 |
Family
ID=80937844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210115101A KR20220033430A (en) | 2020-09-09 | 2021-08-30 | Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20220033430A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960029280A (en) | 1995-01-10 | 1996-08-17 | 이영창 | Hardening method of industrial waste and soil mixture |
-
2021
- 2021-08-30 KR KR1020210115101A patent/KR20220033430A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960029280A (en) | 1995-01-10 | 1996-08-17 | 이영창 | Hardening method of industrial waste and soil mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101366003B1 (en) | Method for producing concrete block using non-cement binder | |
EP0650940B1 (en) | Inorganic hardening composition | |
KR100777940B1 (en) | Cement base grouting material and constructing method using the same | |
US7682448B2 (en) | High compressive strength silica mortar and manufacturing method thereof | |
KR101809485B1 (en) | Ultra rapid harding,high early strength waterproof and mothproof mortar composition | |
KR20150006853A (en) | Dimensionally stable geopolymer composition and method | |
WO2000034197A1 (en) | Inorganic cementitious material | |
KR101363896B1 (en) | Accelerate dry concrete mix composition | |
CN104909709A (en) | Green rapid-hardening early-strength magnesium phosphate-based healant and preparation method thereof | |
AU2020259147A1 (en) | Shotcrete composition | |
KR101877528B1 (en) | Cement composition having rapid hardening properties for runway reparing and runway repairing method using the same | |
CN107746233A (en) | A kind of mortar for building and its production method | |
KR101963579B1 (en) | High Early Strength Concrete Composition and Constructing Methods using Thereof | |
KR101333294B1 (en) | Composition for preparing of concrete using dust of fluidized bed boiler | |
CN113716928A (en) | Road, water-stable layer thereof and preparation process | |
KR101852957B1 (en) | Composition for hardening soil, wastes, sea sand or desert sand, and hardening composition comprising the same | |
KR101664273B1 (en) | cement mortar compositon and cement mortar comprising the same, method thereof | |
KR101086098B1 (en) | Composition for preparing of concrete using dust of fluidized bed boiler | |
KR100253886B1 (en) | Cement mortar composition for rapid cementation | |
KR20220033430A (en) | Method of manufacturing construction/civil blocks using sand or construction waste, and construction/civil blocks manufactured thereby | |
CN116535147A (en) | Method for preparing self-compacting concrete by utilizing tailing sand and application | |
KR101983072B1 (en) | Hardening composition for fast-curing | |
KR101309115B1 (en) | High early strength cement comprising fly ash and concrete comprising thereof | |
KR20220134746A (en) | Rapid setting pavement composition, method for manufacturing the same and construction method using the same | |
KR100876143B1 (en) | High strength silica mortar composition and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |