KR20220026200A - Method for controlling bandgap of a quantum dot and system using same - Google Patents
Method for controlling bandgap of a quantum dot and system using same Download PDFInfo
- Publication number
- KR20220026200A KR20220026200A KR1020200106941A KR20200106941A KR20220026200A KR 20220026200 A KR20220026200 A KR 20220026200A KR 1020200106941 A KR1020200106941 A KR 1020200106941A KR 20200106941 A KR20200106941 A KR 20200106941A KR 20220026200 A KR20220026200 A KR 20220026200A
- Authority
- KR
- South Korea
- Prior art keywords
- probe
- quantum dots
- bandgap
- quantum dot
- enhanced
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 168
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000005424 photoluminescence Methods 0.000 claims abstract description 22
- 238000003825 pressing Methods 0.000 claims abstract description 15
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 238000000691 measurement method Methods 0.000 claims abstract description 3
- 239000000523 sample Substances 0.000 claims description 88
- 230000003287 optical effect Effects 0.000 claims description 58
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000000772 tip-enhanced Raman spectroscopy Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 238000005401 electroluminescence Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 238000000628 photoluminescence spectroscopy Methods 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 238000001069 Raman spectroscopy Methods 0.000 claims description 3
- 238000004611 spectroscopical analysis Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- -1 transition metal chalcogen compound Chemical class 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004574 scanning tunneling microscopy Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DZVPMKQTULWACF-UHFFFAOYSA-N [B].[C].[N] Chemical compound [B].[C].[N] DZVPMKQTULWACF-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical group 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/02—Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
- G01Q30/025—Optical microscopes coupled with SPM
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/02—Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
본 발명은, 양자점의 밴드갭 제어 방법 및 이를 이용한 시스템에 관한 것으로, 보다 구체적으로, 양자점의 밴드갭 제어 방법, 양자점의 광신호 측정 방법 및 양자점 밴드갭 제어 및 광신호 측정을 위한 시스템에 관한 것이다. The present invention relates to a method for controlling a bandgap of a quantum dot and a system using the same, and more particularly, to a method for controlling a bandgap of a quantum dot, a method for measuring an optical signal of a quantum dot, and a system for controlling the quantum dot bandgap and measuring an optical signal .
벌크 시스템에서 이러한 한계를 극복하기 위해, 우수한 성능을 보이는 알려지지 않은 재료를 발견하기 위해 상당한 노력을 기울이고 있고, 종래의 벌크 시스템의 크기 감소는 양자 구속 효과 및 유전체 스크리닝 효과(dielectric screening effect)와 같은 새로운 물리적 현상을 일으켜 기능과 특이 크게 개선되고, 저차원 양자 물질은 차세대 장치에 적용 가능한 매력적인 재료로 관심을 받고 있다. 양자 물질의 물리적 길이 스케일이 나노 스케일로 감소함에 따라 자연 스케일에서 물리적 특성의 이해와 저차원 양자 물질의 구조적 특성을 관찰하고 분석하기 위한 다양한 분석법이 요구된다.In order to overcome this limitation in bulk systems, considerable efforts are being made to discover unknown materials with superior performance, and reduction in the size of conventional bulk systems has led to novel approaches such as quantum confinement effect and dielectric screening effect. Due to physical phenomena, which significantly improve function and specificity, low-dimensional quantum materials are attracting attention as attractive materials that can be applied to next-generation devices. As the physical length scale of quantum materials decreases to the nanoscale, various analytical methods are required to understand the physical properties at the natural scale and to observe and analyze the structural properties of low-dimensional quantum materials.
저차원 양자 물질의 구조적 특성을 조사하기 위한 장치에 대한 수요는 증가하고 있고, 예를 들어, 표면 거칠기(surface roughness), 격자 구조 및 구조적 결함, 주사 터널링 현미경 (STM, scanning tunneling microscopy) 및 투과전자현미경 (TEM) 등이 분석툴로 활용되고 있고, STM은 원자 분해능으로 전기적 특성 및 스핀 정보를 제공할 수 있으나, 측정 시료 준비가 복잡하고, 환경 조건 제어에 어려움이 있다. 또한, 저차원 양자물질의 광흡수 및 광발광에 관련된 광학 특성을 관찰하기 위한 장비 및 방법 관련 기술이 부족하다. The demand for devices to investigate the structural properties of low-dimensional quantum materials is increasing, for example, surface roughness, lattice structure and structural defects, scanning tunneling microscopy (STM) and transmission electrons. A microscope (TEM) is used as an analysis tool, and STM can provide electrical properties and spin information at atomic resolution, but preparation of a measurement sample is complicated and it is difficult to control environmental conditions. In addition, equipment and method related technologies for observing optical properties related to light absorption and photoluminescence of low-dimensional quantum materials are lacking.
현재 양자점은 디스플레이, 태양전지 등 여러 응용분야에서 활발히 사용되고, 또 연구되고 있다. 양자점은 한 번 합성할 경우 고유의 밴드갭을 형성하고 이를 조절하기 위해서는 양자점이 코팅된 기판 자체를 늘리는 방식을 이용하여 양자점의 밴드갭을 앙상블 형태로 조절하는 방식을 적용하고 있다. 또한, 일반적인 AFM으로 단일 양자점에 압력을 가하는 것은 가능하지만 단일 양자점의 PL(photoluminescence)을 관찰할 수 없으므로 응용성이 떨어진다.Currently, quantum dots are actively used and studied in various application fields such as displays and solar cells. When a quantum dot is synthesized once, a unique bandgap is formed, and in order to control this, a method of adjusting the bandgap of the quantum dot in an ensemble form is applied by using a method of extending the substrate coated with the quantum dot. In addition, although it is possible to apply pressure to a single quantum dot with a general AFM, it is not possible to observe PL (photoluminescence) of a single quantum dot, so its applicability is poor.
본 발명은, 상기 언급한 문제점을 해결하기 위해서, 탐침증강 나노분광현미경 (tip-enhanced nano-spectroscopy)의 탐침 위치 제어를 통해 양자점, 예를 들어, 단일 양자점에 가해지는 압력을 조절하여 밴드갭과 광발광 에너지를 제어할 수 있는, 양자점의 밴드갭 제어 방법을 제공하는 것이다. The present invention, in order to solve the above-mentioned problems, by controlling the pressure applied to the quantum dots, for example, single quantum dots through the probe position control of the tip-enhanced nano-spectroscopy (tip-enhanced nano-spectroscopy), the band gap and It is to provide a method for controlling the bandgap of quantum dots, which can control the photoluminescence energy.
본 발명은, 탐침증강 나노분광현미경의 탐침 위치 제어를 통해 양자점에 가해지는 압력을 조절하여 밴드갭과 광발광 에너지를 제어하고, 양자점의 광학적 특성을 측정하고 분석할 수 있는, 양자점의 광신호 측정 방법을 제공하는 것이다. The present invention is to control the band gap and photoluminescence energy by controlling the pressure applied to the quantum dots through the probe position control of the probe-enhanced nanospectroscopic microscope, and to measure and analyze the optical properties of the quantum dots. Optical signal measurement of quantum dots to provide a way
본 발명은, 양자점의 광신호를 제어하고 관찰할 수 있는, 양자점 밴드갭 제어 및 광신호 측정을 위한 시스템을 제공하는 것이다.The present invention is to provide a system for controlling and observing the optical signal of the quantum dot, for controlling the quantum dot bandgap and measuring the optical signal.
본 발명의 일 실시예에 따라, 기판 상에 양자점을 포함하는 시편을 준비하는 단계; 상기 시편에 광조사하는 단계; 상기 시편의 양자점 위로 탐침증강 나노분광현미경의 탐침을 위치시키는 단계; 및 상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계; 를 포함하는, 탐침증강 나노분광현미경을 이용한, 양자점의 밴드갭 제어 방법에 관한 것이다. According to an embodiment of the present invention, the method comprising: preparing a specimen including quantum dots on a substrate; irradiating light to the specimen; positioning a probe of a probe-enhanced nanospectroscopic microscope on the quantum dots of the specimen; and controlling the band gap by applying pressure to the quantum dots in a vertical direction using the probe. It relates to a bandgap control method of quantum dots using a probe-enhanced nanospectroscopic microscope, including a.
본 발명의 일 실시예에 따라, 상기 탐침증강 나노분광현미경은, TEPL(tip-enhanced photoluminescence spectroscopy), TERS(tip-enhanced Raman spectroscopy) 및 TEEL(tip-enhanced electroluminescence) 중 적어도 하나 이상인 것일 수 있다. According to an embodiment of the present invention, the probe-enhanced nanospectroscopic microscope may be at least one of tip-enhanced photoluminescence spectroscopy (TEPL), tip-enhanced Raman spectroscopy (TERS), and tip-enhanced electroluminescence (TEEL).
본 발명의 일 실시예에 따라, 상기 기판 상에 양자점을 포함하는 시편을 준비하는 단계는, 금속 기판의 산화물층 상에 양자점을 형성하는 단계를 포함하는 것일 수 있다. According to an embodiment of the present invention, the step of preparing a specimen including quantum dots on the substrate may include forming quantum dots on an oxide layer of a metal substrate.
본 발명의 일 실시예에 따라, 상기 양자점은, 단일 양자점, 양자점 필름 또는 양자점 시트인 것일 수 있다. According to an embodiment of the present invention, the quantum dot may be a single quantum dot, a quantum dot film, or a quantum dot sheet.
본 발명의 일 실시예에 따라, 상기 양자점 상에 산화물층을 형성하는 단계를 더 포함하는 것일 수 있다. According to an embodiment of the present invention, the method may further include forming an oxide layer on the quantum dots.
본 발명의 일 실시예에 따라, 상기 탐침(probe)은, 15 nm 이하의 크기의 팁(tip)을 갖는 것일 수 있다. According to an embodiment of the present invention, the probe may have a tip having a size of 15 nm or less.
본 발명의 일 실시예에 따라, 상기 탐침은, Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti 및 Ni로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다. According to an embodiment of the present invention, the probe may include at least one selected from the group consisting of Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti and Ni.
본 발명의 일 실시예에 따라, 상기 밴드갭을 제어하는 단계는, 단일 양자점의 밴드갭 제어를 통해 광신호를 제어하는 것일 수 있다. According to an embodiment of the present invention, the controlling of the bandgap may include controlling an optical signal through bandgap control of a single quantum dot.
본 발명의 일 실시예에 따라, 상기 광신호는 광발광(PL), 라만 산란 또는 전계발광인 것일 수 있다. According to an embodiment of the present invention, the optical signal may be photoluminescence (PL), Raman scattering, or electroluminescence.
본 발명의 일 실시예에 따라, 상기 탐침증강 나노분광현미경의 탐침을 위치시키는 단계는, 탐침의 수평적 위치에서 탐침을 위치시키는 것일 수 있다. According to an embodiment of the present invention, the step of positioning the probe of the probe-enhanced nanospectroscopic microscope may include positioning the probe in a horizontal position of the probe.
본 발명의 일 실시예에 따라, 기판 상에 양자점을 포함하는 시편을 준비하는 단계; 상기 시편에 광조사하는 단계;상기 시편의 양자점 위로 탐침증강 나노분광현미경의 탐침을 위치시키는 단계;상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계; 및 단일 양자점에서 발산하는 광신호를 플라즈모닉 안테나 효과로 탐침 증강시켜 광신호를 측정하는 단계; 를 포함하는, 탐침증강 나노분광현미경을 이용한, 양자점의 광신호 측정 방법에 관한 것이다. According to an embodiment of the present invention, the method comprising: preparing a specimen including quantum dots on a substrate; irradiating light to the specimen; positioning a probe of a probe-enhanced nanospectroscopic microscope over the quantum dots of the specimen; controlling a band gap by applying pressure to the quantum dots in a vertical direction using the probe; and measuring the optical signal by enhancing the probe with the plasmonic antenna effect for the optical signal emitted from the single quantum dot; It relates to a method for measuring an optical signal of a quantum dot, using a probe-enhanced nanospectroscopic microscope, including a.
본 발명의 일 실시예에 따라, 상기 단일 양자점의 광신호 측정 방법은, 근거리 장에서 광신호를 증강하고 광신호를 측정하는 것일 수 있다. According to an embodiment of the present invention, the method for measuring the optical signal of the single quantum dot may be to enhance the optical signal in the near field and measure the optical signal.
본 발명의 일 실시예에 따라, 시편부; 및 탐침증강 나노분광현미경; 을 포함하고, 상기 시편부는, 금속 기판; 및 상기 기판 상에 형성된 금속 산화물층;을 포함하고, 상기 탐침증강 나노분광현미경은, 탐침을 이용하여 시편의 양자점에 압력을 가하여 밴드갭과 광신호를 제어하고, 광신호를 증강시키는 것인, 양자점 밴드갭 제어 및 광신호 측정을 위한, 시스템에 관한 것이다. According to an embodiment of the present invention, a specimen portion; and probe-enhanced nanospectroscopy; Including, the specimen part, a metal substrate; and a metal oxide layer formed on the substrate, wherein the probe-enhanced nanospectroscopic microscope controls the band gap and the optical signal by applying pressure to the quantum dots of the specimen using a probe, and to enhance the optical signal, It relates to a system for controlling a quantum dot bandgap and measuring an optical signal.
본 발명의 일 실시예에 따라, 상기 금속 기판은, Au, Ag, Cu, Al, Pt, Ti, Cr 및 Ni로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다. According to an embodiment of the present invention, the metal substrate may include at least one selected from the group consisting of Au, Ag, Cu, Al, Pt, Ti, Cr, and Ni.
본 발명의 일 실시예에 따라, 상기 탐침증강 나노분광현미경은, TEPL(tip-enhanced photoluminescence spectroscopy), TERS(tip-enhanced Raman spectroscopy) 및 TEEL(tip-enhanced electroluminescence) 중 적어도 하나 이상인 것일 수 있다. According to an embodiment of the present invention, the probe-enhanced nanospectroscopic microscope may be at least one of tip-enhanced photoluminescence spectroscopy (TEPL), tip-enhanced Raman spectroscopy (TERS), and tip-enhanced electroluminescence (TEEL).
본 발명의 일 실시예에 따라, 상기 시스템은, 근거리 장에서 광신호를 증강하고 광신호를 측정하는 것일 수 있다. According to an embodiment of the present invention, the system may be to enhance the optical signal in the near field and measure the optical signal.
본 발명은, 양자점, 예를 들어, 단일 양자점에 직접적으로 압력을 가하여 단일 양자점 단위로 밴드갭을 제어하고, 최대 압력의 크기를 조절하여 가역적으로 일시적인 밴드갭 변화를 유도할 수 있을 뿐만 아니라, 밴드갭의 영구적인 비가역적 변화를 유도할 수 있다. 또한, 밴드갭과 광발광 에너지의 제어가 가능하고 플라즈몬 탐침에 의한 광신호를 증강시켜 단일 양자점의 광신호의 측정 및 분석을 제공할 수 있다.In the present invention, it is possible to control the bandgap in units of a single quantum dot by directly applying pressure to a quantum dot, for example, a single quantum dot, and to reversibly induce a temporary bandgap change by adjusting the magnitude of the maximum pressure. It can lead to permanent and irreversible changes in the gap. In addition, it is possible to control the band gap and photoluminescence energy, and to enhance the optical signal by the plasmon probe to provide measurement and analysis of the optical signal of a single quantum dot.
본 발명은, 단체적 양자점의 밴드갭을 넘어서 단일 양자점의 밴드갭을 가역적, 비가역적으로 조절이 가능하므로, 양자점이 이용되는 여러 응용분야의 소자 축소화 연구에 큰 도약이 될 수 있을 뿐만 아니라 밴드갭의 조절은 양자점이 들어간 QLED 소자의 발광파장과 바로 연결이 된다는 점에서 특히 디스플레이 분야의 기술에 접목시킬 수 있다. Since the present invention can reversibly and irreversibly control the bandgap of a single quantum dot beyond the bandgap of a single quantum dot, it can be a great leap forward in device reduction research in various applications where quantum dots are used as well as Since the control is directly connected to the emission wavelength of the QLED device containing the quantum dots, it can be applied to the technology of the display field.
도 1은 본 발명의 일 실시예에 따라, 본 발명에 의한 탐침 증강 PL과 단일 양자점 압력 조절 공정을 예시적으로 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따라, 본 발명에 의한 단일 양자점 위에서의 위치에 따른 신호 증강을 도식화하고, (b) 원거리 장에서의 양자점 PL (검정) 및 근거리 장에서의 갭 플라즈몬 (초록), 근거리 장에서의 양자점 탐침 증강 PL (파랑) 스펙트럼을 나타낸 것이다.
도 3은, 본 발명의 일 실시예에 따라, 단일 양자점에 가하는 (a) (b) 압력 증가와 감소에 따른 단일 양자점 스펙트럼 발전과 이를 등고선으로 표현한 이미지, (c) 가장 압력이 강하게 가해졌을 때의 스펙트럼 및 (d) 단일 양자점이 없는 지점에서 위와 같이 압력을 가했을 때의 스펙트럼 발전과 이를 등고선으로 표현한 이미지를 나타낸 것이다.1 is an exemplary view of a probe-enhanced PL and single quantum dot pressure control process according to the present invention, according to an embodiment of the present invention.
2 is a schematic diagram of signal enhancement according to position on a single quantum dot according to the present invention, according to an embodiment of the present invention, (b) quantum dot PL in the far field (black) and gap plasmons in the near field (abstract) ), showing the quantum dot probe-enhanced PL (blue) spectrum in the near field.
3 is, according to an embodiment of the present invention, (a) (b) single quantum dot spectrum development according to the increase and decrease of pressure applied to a single quantum dot and an image expressed as a contour line, (c) when the pressure is most strongly applied (d) shows the spectrum development when pressure is applied as above at a point where there is no single quantum dot, and the image expressed as a contour line.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms used in this specification are terms used to properly express a preferred embodiment of the present invention, which may vary depending on the intention of a user or operator or a custom in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the content throughout this specification. Like reference numerals in each figure indicate like elements.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located "on" another member, this includes not only a case in which a member is in contact with another member but also a case in which another member exists between the two members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components.
이하, 본 발명의 양자점의 밴드갭 제어 방법, 양자점의 광신호 측정 방법 및 양자점 밴드갭 제어 및 광신호 측정을 위한 시스템에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, the quantum dot bandgap control method, the quantum dot optical signal measurement method, and the quantum dot bandgap control and optical signal measurement system of the present invention will be described in detail with reference to examples and drawings. However, the present invention is not limited to these examples and drawings.
본 발명은, 양자점의 밴드갭 제어 방법에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 양자점, 예를 들어, 단일 양자점의 밴드갭 제어 방법은, 탐침증강 나노분광현미경 (tip-enhanced nano-spectroscopy)의 탐침 위치 제어를 통해 양자점에 가해지는 압력을 조절하여 밴드갭과 광신호 에너지, 즉 광발광 에너지를 제어할 수 있고, 기존에 보고되지 않은 단일 양자점의 광신호, 즉, 광발광의 측정과 이를 이용한 양자 물질, 예를 들어, 단일 양자점의 구조적 및 광학적 특성 분석에 활용될 수 있다.The present invention relates to a method for controlling a bandgap of a quantum dot, and according to an embodiment of the present invention, the method for controlling a bandgap of a quantum dot, for example, a single quantum dot, is a tip-enhanced nanospectroscopic microscope (tip-enhanced nano- The band gap and optical signal energy, that is, the photoluminescence energy, can be controlled by controlling the pressure applied to the quantum dots through the control of the probe position of spectroscopy. and quantum materials using the same, for example, can be utilized for structural and optical properties analysis of single quantum dots.
본 발명의 일 실시예에 따라, 상기 양자점의 밴드갭 제어 방법은, 기판 상에 양자점을 포함하는 시편을 준비하는 단계; 상기 시편에 광조사하는 단계; 탐침증강 나노분광현미경의 탐침을 위치시키는 단계; 및 상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계; 를 포함할 수 있다.According to an embodiment of the present invention, the method for controlling the band gap of the quantum dots includes: preparing a specimen including quantum dots on a substrate; irradiating light to the specimen; Positioning a probe of a probe-enhanced nanospectroscopic microscope; and controlling the band gap by applying pressure to the quantum dots in a vertical direction using the probe. may include
본 발명의 일 실시예에 따라, 상기 기판 상에 양자점을 포함하는 시편을 준비하는 단계는, 금속 기판 상에 금속 기판의 산화물층을 형성하는 단계; 및 금속 기판의 산화물층에 양자점을 형성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, preparing a specimen including quantum dots on the substrate includes: forming an oxide layer of the metal substrate on the metal substrate; and forming quantum dots on the oxide layer of the metal substrate.
본 발명의 일 실시예에 따라, 상기 금속 기판의 산화물층에 양자점을 포함하는 물질층을 형성하는 단계는, 상기 물질층은, 본 발명의 기술 분야에서 알려진 증착, 코팅 등의 방법으로 형성되고, 예를 들어, 원자층 증착 방법을 이용할 수 있다.According to an embodiment of the present invention, the step of forming a material layer comprising quantum dots on the oxide layer of the metal substrate, the material layer is formed by a method such as deposition, coating, etc. known in the art, For example, an atomic layer deposition method may be used.
본 발명의 일 실시예에 따라, 금속 기판의 산화물층에 양자점을 형성하는 단계는 양자점(Quantum Dot)을 상기 산화물층 상에 코팅하며, 상기 코팅은 분사 코팅, 스핀 코팅 등일 수 있다. 상기 코팅은 휘발성 강한 유기용매, 즉 Hexane과 양자점을 혼합한 이후에 양자점을 코팅하고 유기용매는 제거하고, 단일(single level) 양자점, 양자점 필름 또는 양자점 시트의 양자점 층을 획득할 수 있으며, 바람직하게는 단일 양자점일 수 있다. 상기 양자점을 형성한 이후에 상기 양자점 상에 산화물층을 더 형성할 수 있다.According to an embodiment of the present invention, the forming of quantum dots on the oxide layer of the metal substrate may include coating quantum dots on the oxide layer, and the coating may be spray coating, spin coating, or the like. The coating is a highly volatile organic solvent, that is, after mixing hexane and quantum dots, the quantum dots are coated and the organic solvent is removed, and a single level quantum dot, quantum dot film or quantum dot layer of a quantum dot sheet can be obtained, preferably may be a single quantum dot. After forming the quantum dots, an oxide layer may be further formed on the quantum dots.
본 발명의 일 예로, 상기 양자점은 0D (zero dimensional) 물질이며, 스트레인에 의해 밴드갭이 영향을 받거나 및/또는 밴드갭 제어가 가능한 모든 물질이라면 제한 없이 적용될 수 있으며, 예를 들어, 반도체 물질 및/또는 2차원 물질일 수 있다. 예를 들어, 페로브스카이트 물질, 전이금속 칼코겐 화합물(예를 들어, MX2 (M은 전이금속원소 (주기율표 4~6족), X는 칼코겐 원소(주기율표. 16족)이다), 그래핀, h-BN(Hexagonal Boron Nitride), h-BCN(hexagonal boron-carbon-nitrogen), 플루오르그래핀(fluorographene), 산화그래핀(graphene oxide) 등일 수 있으나, 이에 제한되지 않는다.As an example of the present invention, the quantum dot is a 0D (zero dimensional) material, and can be applied without limitation as long as the bandgap is affected by strain and/or any material capable of controlling the bandgap, for example, a semiconductor material and / or may be a two-dimensional material. For example, a perovskite material, a transition metal chalcogen compound (eg, MX 2 (M is a transition metal element (Groups 4 to 6 of the Periodic Table), X is a chalcogen element (Group 16 of the Periodic Table)), It may be graphene, hexagonal boron nitride (h-BN), hexagonal boron-carbon-nitrogen (h-BCN), fluorographene, graphene oxide, and the like, but is not limited thereto.
본 발명의 일 예로, 상기 금속 기판은, 예를 들어, Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti 및 Ni으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.As an example of the present invention, the metal substrate may include, for example, at least one selected from the group consisting of Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti, and Ni.
본 발명의 일 예로, 상기 산화물은, 퀀칭(quenching) 효과와 캡핑(capping) 효과를 주는 유전체(dielectric) 물질이라면 제한 없이 적용될 수 있고, 예를 들어, 이리듐(Ir), 몰리브덴(Mo), 레늄(Re), 스칸듐(Sc), 저마늄(Ge), 안티몬(Sb), 백금(Pt), 니켈(Ni), 금(Au), 은(Ag), 인듐(In), 주석(Sn), 실리콘(Si), 티타늄(Ti), 바나듐(V), 가돌륨(Ga), 망간(Mn), 철(Fe), 코발트(Co), 구리(Cu), 징크(Zn), 지르코늄(Zr), 하프늄(Hf), 알루미늄(Al), 니오븀(Nb), 니켈(Ni), 크롬(Cr), 몰리브데늄(Mo), 탄탈(Ta), 루테늄(Ru) 및 텅스텐(W)으로 이루어진 군에서 선택된 1종 이상을 포함하는 금속 산화물일 수 있으나, 이에 제한되지 않는다.As an example of the present invention, the oxide may be applied without limitation as long as it is a dielectric material that gives a quenching effect and a capping effect, for example, iridium (Ir), molybdenum (Mo), rhenium (Re), scandium (Sc), germanium (Ge), antimony (Sb), platinum (Pt), nickel (Ni), gold (Au), silver (Ag), indium (In), tin (Sn), Silicon (Si), Titanium (Ti), Vanadium (V), Gadolium (Ga), Manganese (Mn), Iron (Fe), Cobalt (Co), Copper (Cu), Zinc (Zn), Zirconium (Zr) , hafnium (Hf), aluminum (Al), niobium (Nb), nickel (Ni), chromium (Cr), molybdenum (Mo), tantalum (Ta), ruthenium (Ru) and tungsten (W) It may be a metal oxide including at least one selected from, but is not limited thereto.
본 발명의 일 예로, 상기 산화물층의 두께는, 10 nm 이하; 5 nm 이하; 2 nm 이하; 1 nm 이하; 또는 0.5 nm 이하일 수 있다.In one embodiment of the present invention, the thickness of the oxide layer is 10 nm or less; 5 nm or less; 2 nm or less; 1 nm or less; or 0.5 nm or less.
본 발명의 일 실시예에 따라, 상기 시편에 광조사하는 단계는, 물질층의 광방출을 위해서 광에너지를 조사하는 것으로 본 발명의 기술 분야에서 적용 가능한 광에너지라면 제한 없이 적용될 수 있다.According to an embodiment of the present invention, the step of irradiating light to the specimen is irradiating light energy for light emission of the material layer, and any light energy applicable in the technical field of the present invention may be applied without limitation.
본 발명의 일 실시예에 따라, 상기 탐침증강 나노분광현미경의 탐침을 위치시키는 단계는, 상기 시편의 양자점 위로 정확하게 탐침의 수평적 위치에서 탐침을 위치시키는 단계이다.According to an embodiment of the present invention, the step of positioning the probe of the probe-enhanced nanospectroscopic microscope is a step of positioning the probe in a horizontal position of the probe precisely above the quantum dots of the specimen.
본 발명의 일 실시예에 따라, 상기 양자점에 압력을 가하여 밴드갭을 제어하는 단계는, 상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계이다.According to an embodiment of the present invention, the step of controlling the bandgap by applying pressure to the quantum dots is a step of controlling the bandgap by applying pressure to the quantum dots in a vertical direction using the probe.
본 발명의 일 예로, 상기 탐침은, 양자점에 직접적으로 압력을 가하며, 예를 들어, 단일 양자점 단위로 밴드갭을 제어할 수 있다. 또한, 최대 압력의 크기를 조절하여 가역적으로 일시적인 밴드갭 변화를 유도할 수 있을 뿐만 아니라, 밴드갭의 영구적인 비가역적 변화를 유도할 수 있다. 즉, 도 2를 참조하면, 도 2는 본 발명의 일 실시예에 따라, 본 발명에 의한 탐침 증강 PL과 단일 양자점 압력 조절 공정을 예시적으로 나타낸 것으로, 단일 양자점 상에 탐침을 위치시키고 밴드갭을 제어하여 단일 양자점의 광신호를 증강시킬 수 있다.As an example of the present invention, the probe directly applies pressure to the quantum dots, for example, it is possible to control the band gap in units of a single quantum dot. In addition, by adjusting the magnitude of the maximum pressure, it is possible to induce a reversible and temporary bandgap change, as well as a permanent and irreversible change in the bandgap. That is, referring to FIG. 2, FIG. 2 exemplarily shows the probe enhancement PL and the single quantum dot pressure control process according to the present invention, according to an embodiment of the present invention. can be controlled to enhance the optical signal of a single quantum dot.
또한, 도 3을 참조하면, 도 3은 본 발명의 일 실시예에 따라, 단일 양자점에 가하는 (a) 및 (b) 압력 증가와 감소에 따른 단일 양자점 스펙트럼 발전과 이를 등고선으로 표현한 이미지, (c) 가장 압력이 강하게 가해졌을 때의 스펙트럼 및 (d) 단일 양자점이 없는 지점에서 위와 같이 압력을 가했을 때의 스펙트럼 발전과 이를 등고선으로 표현한 이미지를 나타낸 것이다. 도 3에서 탐침에 의해 압력을 가할 경우에 밴드갭의 제어가 가능한 것으로 확인할 수 있다.In addition, referring to FIG. 3, FIG. 3 is a single quantum dot spectrum development according to (a) and (b) pressure increase and decrease applied to a single quantum dot, and an image expressed as a contour line, (c) according to an embodiment of the present invention. ) The spectrum when the pressure is most strongly applied and (d) the spectrum development when the pressure is applied at the point where there is no single quantum dot as above, and the image expressed as a contour line. In FIG. 3 , it can be confirmed that the control of the band gap is possible when pressure is applied by the probe.
본 발명의 일 예로, 상기 탐침은, 양자점의 손상이 없다면 양자점과 거리 제한 없이 압력을 가할 수 있으며, 예를 들어, 상기 탐침은 양자점과 1 nm 이하; 0.8 nm 이하; 0.6nm 이하; 0.4nm 이하; 또는 0.2 nm 이하의 간격의 거리에서 수직 방향(Z축)으로 양자점을 눌러 압력을 가할 수 있다.As an example of the present invention, the probe can apply pressure without limiting the distance to the quantum dots if there is no damage to the quantum dots, for example, the probe is less than 1 nm from the quantum dots; 0.8 nm or less; 0.6 nm or less; 0.4 nm or less; Alternatively, pressure can be applied by pressing the quantum dots in the vertical direction (Z-axis) at a distance of 0.2 nm or less.
본 발명의 일 예로, 상기 탐침은, 플라즈모닉 탐침이며, 기본적으로 플라즈몬 탐침의 필드 향상은 다음과 같은 두 가지 현상에 기인합니다. 첫째, 정전기 피뢰침 효과(electrostatic lightning rod effect)로 인해 플라즈몬 탐침 근처에 전하가 집중되고, 둘째, 외부 전자기장(external electromagnetic field) 즉, 여기 레이저 빔이 팁에 적용될 때, 광학 필드는 전자들의 집합 공명 진동(collective resonant oscillations)으로 인해 국소 표면 플라즈몬 진동(localized surface plasmon resonance, LSPR) 효과를 제공한다. 상기 탐침증강 나노분광현미경은, TEPL(tip-enhanced photoluminescence spectroscopy), TERS(tip-enhanced Raman spectroscopy) 및 TEEL(tip-enhanced electroluminescence) 중 적어도 하나 이상을 포함할 수 있다.As an example of the present invention, the probe is a plasmonic probe, and basically, the field improvement of the plasmonic probe is due to the following two phenomena. Firstly, the charge is concentrated near the plasmonic probe due to the electrostatic lightning rod effect, and secondly, when an external electromagnetic field, i.e., an excitation laser beam is applied to the tip, the optical field causes the collective resonant oscillation of electrons (collective resonant oscillations) provide a localized surface plasmon resonance (LSPR) effect. The probe-enhanced nanospectroscopy microscope may include at least one of tip-enhanced photoluminescence spectroscopy (TEPL), tip-enhanced Raman spectroscopy (TERS), and tip-enhanced electroluminescence (TEEL).
본 발명의 일 예로, 상기 탐침(probe)은, 15 nm 이하의 크기의 팁(tip)을 갖고, 상기 탐침은, 플라즈모닉 금속이며, 예를 들어, Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti 및 Ni으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.In one embodiment of the present invention, the probe (probe), has a tip (tip) having a size of 15 nm or less, the probe, is a plasmonic metal, for example, Au, Ag, Al, Cu, Co, Cr , Pt, Pd, Rh, may include one or more selected from the group consisting of Ti and Ni.
본 발명의 일 실시예에 따라, 상기 단일 양자점의 밴드갭 제어 방법 중 적어도 하나 이상의 단계는, 다양한 온도 범위에서 실시되고, 예를 들어, 다양한 온도 범위 내에서 안정적으로 단일 양자점의 밴드갭을 제어할 수 있으며, 예를 들어, 0 ℃ 내지 50 ℃의 온도; 20 ℃ 내지 40 ℃; 또는 25 ℃ 내지 35 ℃ 온도에서 실시될 수 있다.According to an embodiment of the present invention, at least one or more steps of the method for controlling the bandgap of a single quantum dot are performed in various temperature ranges, for example, to stably control the bandgap of a single quantum dot within various temperature ranges. may be, for example, a temperature of 0 ℃ to 50 ℃; 20°C to 40°C; Or it may be carried out at a temperature of 25 ℃ to 35 ℃.
본 발명은, 양자점의 광신호 측정 방법에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 양자점, 예를 들어, 단일 양자점의 광신호 측정 방법은, 일반적으로 단일 양자점이 발산하는 빛의 세기는 매우 약하여 검출하기가 매우 힘들지만, 본 발명은, 밴드갭이 제어된 양자점의 광신호를 탐침 증강, 즉 TEPL 분광법을 이용하면 탐침의 끝에 매우 높게 증강된 빛의 장이 형성되기 때문에 효과적으로 단일 양자점이 발산하는 빛을 검출할 수 있다. 또한, 본 발명은, 탐침을 이용한 압력 제어 기술과 플라즈모닉 안테나 효과에 의한 단일 양자점 광신호, 즉 광발광(PL), 라만 산란 또는 전계발광 신호의 증강 기술을 결합하여 기존에 불가능했던 단일 양자점의 광신호의 관찰과 제어를 동시에 가능할 수 있다.The present invention relates to a method for measuring an optical signal of a quantum dot, and according to an embodiment of the present invention, the optical signal measuring method of the quantum dot, for example, a single quantum dot, generally, the intensity of light emitted by a single quantum dot is Although it is very weak and very difficult to detect, in the present invention, a single quantum dot is effectively emitted because a very highly enhanced light field is formed at the tip of the probe when the optical signal of a quantum dot with a controlled bandgap is used with probe enhancement, that is, TEPL spectroscopy. light can be detected. In addition, the present invention combines the pressure control technology using a probe and the augmentation technology of a single quantum dot optical signal by the plasmonic antenna effect, that is, photoluminescence (PL), Raman scattering, or electroluminescence signal, which was not possible in the past. It may be possible to observe and control the optical signal at the same time.
본 발명의 일 예로, 도 2를 참조하면, 도 2는 본 발명의 일 실시예에 따라, (a) 단일 양자점 위에서의 신호 증강 도식화하고, (b) 원거리 장에서의 양자점 PL (검정), 근거리 장에서의 갭 플라즈몬 (초록), 근거리 장에서의 양자점 탐침 증강 PL (파랑) 스펙트럼을 나타낸 것이다. 탐침의 수평적 위치를 양자점 위에 정확히 위치시킬 수 있고, 약 15 nm 이하의 꼭지점 크기를 가진 탐침을 이용하여 단일 양자점에 직접적으로 압력을 가하여 밴드갭을 제어하고, 단일 양자점의 광발광을 탐침으로 증가시켜 일반적인 AFM에서 관찰할 수 없는 단일 양자점의 PL을 관찰 및 제어할 수 있다.As an example of the present invention, referring to FIG. 2 , FIG. 2 is a schematic diagram of (a) signal enhancement on a single quantum dot, (b) quantum dot PL (black), near field in the far field, according to an embodiment of the present invention Gap plasmons in the field (green) and quantum dot probe-enhanced PL (blue) spectra in the near field are shown. The horizontal position of the probe can be precisely positioned on the quantum dot, and the bandgap is controlled by directly applying pressure to the single quantum dot using a probe with a vertex size of about 15 nm or less, and the photoluminescence of a single quantum dot is increased with the probe It is possible to observe and control the PL of a single quantum dot, which cannot be observed in general AFM.
본 발명의 일 실시예에 따라, 상기 양자점의 광신호 측정 방법은, 기판 상에 양자점을 포함하는 시편을 준비하는 단계; 상기 시편에 광조사하는 단계; 탐침증강 나노분광현미경의 탐침을 위치시키는 단계; 상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계; 및 탐침 증강시켜 광신호를 측정하는 단계를 포함할 수 있다. 상기 기판 상에 양자점을 포함하는 시편을 준비하는 단계; 상기 시편에 광조사하는 단계; 탐침증강 나노분광현미경의 탐침을 위치시키는 단계; 상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계는 상기 언급한 바와 같다. 상기 탐침 증강시켜 광신호를 측정하는 단계는, 밴드갭이 제어된 양자점에서 발산하는 광신호를 플라즈모닉 안테나 효과로 탐침 증강시켜 광신호를 측정하는 단계이다.According to an embodiment of the present invention, the method for measuring an optical signal of quantum dots includes: preparing a specimen including quantum dots on a substrate; irradiating light to the specimen; Positioning a probe of a probe-enhanced nanospectroscopic microscope; controlling the band gap by applying pressure to the quantum dots in a vertical direction using the probe; and measuring the optical signal by augmenting the probe. preparing a specimen including quantum dots on the substrate; irradiating light to the specimen; Positioning a probe of a probe-enhanced nanospectroscopic microscope; The step of controlling the band gap by applying pressure to the quantum dots in the vertical direction using the probe is the same as described above. The step of measuring the optical signal by augmenting the probe is a step of measuring the optical signal by enhancing the probe with the plasmonic antenna effect for the optical signal emitted from the quantum dots having a controlled bandgap.
예를 들어, 상기 양자점은, 단일 양자점, 양자점 필름 또는 양자점 시트일 수 있다.For example, the quantum dot may be a single quantum dot, a quantum dot film, or a quantum dot sheet.
본 발명의 일 실시예에 따라, 원거리 장, 근거리 장 또는 이 둘에서 광신호를 증강하여 광신호 측정이 가능하고, 바람직하게는 근거리 장에서 광신호를 증강하는데 효율적일 수 있다.According to an embodiment of the present invention, it is possible to measure an optical signal by augmenting the optical signal in the far field, the near field, or both, and preferably, it can be effective in enhancing the optical signal in the near field.
본 발명은, 양자점 밴드갭 제어 및 광신호 측정을 위한, 시스템에 관한 것으로, 시편부; 및 탐침증강 나노분광현미경; 을 포함할 수 있다. 상기 시편부는, 금속 기판; 및 상기 기판 상에 형성된 금속 산화물층; 을 포함하고, 상기 탐침증강 나노분광현미경은, 탐침을 이용하여 시편의 양자점에 압력을 가하여 밴드갭과 광신호를 제어하고, 광신호를 증가할 수 있다. 또한, 양자점의 광신호를 측정 및 분석할 수 있다. 본 발명의 시스템의 기본 구성은 상기 방법에서 언급한 바와 같고, 본 발명의 목적의 벗어나지 않는다면, 측정 및 분석을 위한 추가 구성(또는, 장비) 및 시스템 운영 및 작동을 위한 추가 구성(또는, 장비)은 본 발명의 기술 분야에서 알려진 것을 적용할 수 있으며, 본 명세서에는 구체적으로 언급하지 않는다. The present invention relates to a system for controlling a quantum dot bandgap and measuring an optical signal, comprising: a specimen unit; and probe-enhanced nanospectroscopy; may include The specimen part may include a metal substrate; and a metal oxide layer formed on the substrate. Including, the probe-enhanced nanospectroscopy microscope, by using a probe to apply pressure to the quantum dots of the specimen to control the band gap and the optical signal, it is possible to increase the optical signal. In addition, it is possible to measure and analyze the optical signal of the quantum dot. The basic configuration of the system of the present invention is as described in the above method, and, without departing from the purpose of the present invention, additional configuration (or equipment) for measurement and analysis and additional configuration (or equipment) for system operation and operation What is known in the technical field of the present invention can be applied, and it is not specifically mentioned in this specification.
예를 들어, 상기 양자점은, 단일 양자점, 양자점 필름 또는 양자점 시트일 수 있다.For example, the quantum dot may be a single quantum dot, a quantum dot film, or a quantum dot sheet.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.As described above, although the embodiments have been described with reference to the limited embodiments and drawings, various modifications and variations are possible from the above description by those skilled in the art. For example, even if the described techniques are performed in an order different from the described method, and/or the described components are combined or combined in a different form from the described method, or replaced or substituted by other components or equivalents Appropriate results can be achieved. Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.
Claims (16)
상기 시편에 광조사하는 단계;
상기 시편의 양자점 위로 탐침증강 나노분광현미경의 탐침을 위치시키는 단계; 및
상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계;
를 포함하는,
탐침증강 나노분광현미경을 이용한, 양자점의 밴드갭 제어 방법.
preparing a specimen including quantum dots on a substrate;
irradiating light to the specimen;
positioning a probe of a probe-enhanced nanospectroscopic microscope on the quantum dots of the specimen; and
controlling the band gap by applying pressure to the quantum dots in a vertical direction using the probe;
containing,
A method for controlling the band gap of quantum dots using a probe-enhanced nanospectroscopy microscope.
상기 탐침증강 나노분광현미경은, TEPL(tip-enhanced photoluminescence spectroscopy), TERS(tip-enhanced Raman spectroscopy) 및 TEEL(tip-enhanced electroluminescence) 중 적어도 하나 이상인 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The probe-enhanced nanospectroscopic microscope, TEPL (tip-enhanced photoluminescence spectroscopy), TERS (tip-enhanced Raman spectroscopy), and TEEL (tip-enhanced electroluminescence) at least one or more,
A method for controlling the bandgap of quantum dots.
상기 기판 상에 양자점을 포함하는 시편을 준비하는 단계는,
금속 기판의 산화물층 상에 양자점을 형성하는 단계
를 포함하는 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The step of preparing a specimen including quantum dots on the substrate,
Forming quantum dots on an oxide layer of a metal substrate
which includes,
A method for controlling the bandgap of quantum dots.
상기 양자점은, 단일 양자점, 양자점 필름 또는 양자점 시트인 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The quantum dot will be a single quantum dot, a quantum dot film or a quantum dot sheet,
A method for controlling the bandgap of quantum dots.
상기 기판 상에 양자점을 포함하는 시편을 준비하는 단계는,
상기 양자점 상에 산화물층을 형성하는 단계를 더 포함하는 것인,
양자점의 밴드갭 제어 방법.
4. The method of claim 3,
The step of preparing a specimen including quantum dots on the substrate,
Which further comprises the step of forming an oxide layer on the quantum dots,
A method for controlling the bandgap of quantum dots.
상기 탐침(probe)은, 15 nm 이하의 크기의 팁(tip)을 갖는 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The probe is to have a tip (tip) of a size of 15 nm or less,
A method for controlling the bandgap of quantum dots.
상기 탐침은, Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti 및 Ni로 이루어진 군에서 선택된 1종 이상을 포함하는 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The probe is one comprising at least one selected from the group consisting of Au, Ag, Al, Cu, Co, Cr, Pt, Pd, Rh, Ti and Ni,
A method for controlling the bandgap of quantum dots.
상기 밴드갭을 제어하는 단계는, 양자점의 밴드갭 제어를 통해 광신호를 제어하는 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The step of controlling the bandgap is to control the optical signal through the bandgap control of the quantum dots,
A method for controlling the bandgap of quantum dots.
상기 광신호는, 광발광(PL), 라만 산란 또는 전계발광인 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The light signal is, photoluminescence (PL), Raman scattering or electroluminescence,
A method for controlling the bandgap of quantum dots.
상기 탐침증강 나노분광현미경의 탐침을 위치시키는 단계는, 탐침의 수평적 위치에서 탐침을 위치시키는 것인,
양자점의 밴드갭 제어 방법.
According to claim 1,
The step of positioning the probe of the probe-enhanced nanospectroscopic microscope is to position the probe in a horizontal position of the probe,
A method for controlling the bandgap of quantum dots.
상기 시편에 광조사하는 단계;
상기 시편의 양자점 위로 탐침증강 나노분광현미경의 탐침을 위치시키는 단계;
상기 탐침을 이용하여 수직 방향으로 양자점에 압력을 가하여 밴드갭을 제어하는 단계; 및
단일 양자점에서 발산하는 광신호를 플라즈모닉 안테나 효과로 탐침 증강시켜 광신호를 측정하는 단계;
를 포함하는,
탐침증강 나노분광현미경을 이용한, 양자점의 광신호 측정 방법.
preparing a specimen including quantum dots on a substrate;
irradiating light to the specimen;
positioning a probe of a probe-enhanced nanospectroscopic microscope on the quantum dots of the specimen;
controlling the band gap by applying pressure to the quantum dots in a vertical direction using the probe; and
measuring the optical signal by enhancing the probe with the plasmonic antenna effect for the optical signal emitted from the single quantum dot;
containing,
A method for measuring optical signals of quantum dots using a probe-enhanced nanospectroscopy microscope.
상기 단일 양자점의 광신호 측정 방법은, 근거리 장에서 광신호를 증강하고 광신호를 측정하는 것인,
양자점의 광신호 측정 방법.
12. The method of claim 11,
The optical signal measurement method of the single quantum dot is to enhance the optical signal in the near field and measure the optical signal,
A method for measuring optical signals of quantum dots.
탐침증강 나노분광현미경;
을 포함하고,
상기 시편부는, 금속 기판; 및 상기 기판 상에 형성된 금속 산화물층;을 포함하고,
상기 탐침증강 나노분광현미경은, 탐침을 이용하여 시편의 양자점에 압력을 가하여 밴드갭과 광신호를 제어하고, 광신호를 증강시키는 것인,
양자점 밴드갭 제어 및 광신호 측정을 위한, 시스템.
psalm section; and
probe-enhanced nanospectroscopy;
including,
The specimen part may include a metal substrate; and a metal oxide layer formed on the substrate;
The probe-enhanced nanospectroscopic microscope is to control the band gap and optical signal by applying pressure to the quantum dots of the specimen using a probe, and to enhance the optical signal,
A system for quantum dot bandgap control and optical signal measurement.
상기 금속 기판은, Au, Ag, Cu, Al, Pt, Ti, Cr 및 Ni로 이루어진 군에서 선택된 1종 이상을 포함하는 것인,
시스템.
14. The method of claim 13,
The metal substrate will include at least one selected from the group consisting of Au, Ag, Cu, Al, Pt, Ti, Cr and Ni,
system.
상기 탐침증강 나노분광현미경은, TEPL(tip-enhanced photoluminescence spectroscopy), TERS(tip-enhanced Raman spectroscopy) 및 TEEL(tip-enhanced electroluminescence) 중 적어도 하나 이상인 것인,
시스템.
14. The method of claim 13,
The probe-enhanced nanospectroscopic microscope, TEPL (tip-enhanced photoluminescence spectroscopy), TERS (tip-enhanced Raman spectroscopy), and TEEL (tip-enhanced electroluminescence) at least one or more,
system.
상기 시스템은, 근거리 장에서 광신호를 증강하고 광신호를 측정하는 것인,
시스템.14. The method of claim 13,
The system is to enhance the optical signal in the near field and measure the optical signal,
system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200106941A KR102482223B1 (en) | 2020-08-25 | 2020-08-25 | Method for controlling bandgap of a quantum dot and system using same |
PCT/KR2020/018973 WO2022045489A1 (en) | 2020-08-25 | 2020-12-23 | Quantum dot band gap control method and system using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200106941A KR102482223B1 (en) | 2020-08-25 | 2020-08-25 | Method for controlling bandgap of a quantum dot and system using same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220026200A true KR20220026200A (en) | 2022-03-04 |
KR102482223B1 KR102482223B1 (en) | 2022-12-27 |
Family
ID=80353382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200106941A KR102482223B1 (en) | 2020-08-25 | 2020-08-25 | Method for controlling bandgap of a quantum dot and system using same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102482223B1 (en) |
WO (1) | WO2022045489A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005535878A (en) * | 2002-08-09 | 2005-11-24 | カリフォルニア インスティテュート オブ テクノロジー | Improved method and system for a scanning apertureless fluorescence microscope |
JP2006210341A (en) * | 2005-01-24 | 2006-08-10 | Samsung Electronics Co Ltd | Photoelectrode, its manufacturing method and solar cell adopting the photoelectrode |
KR20090002787A (en) * | 2007-07-04 | 2009-01-09 | 삼성전자주식회사 | Light emitting device and light-receiveing device using transistor structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5504418B2 (en) * | 2008-07-07 | 2014-05-28 | 株式会社東芝 | Plasmon evaluation method and plasmon evaluation apparatus |
US9373547B1 (en) * | 2014-08-15 | 2016-06-21 | Stc.Unm | Large-scale patterning of germanium quantum dots by stress transfer |
-
2020
- 2020-08-25 KR KR1020200106941A patent/KR102482223B1/en active IP Right Grant
- 2020-12-23 WO PCT/KR2020/018973 patent/WO2022045489A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005535878A (en) * | 2002-08-09 | 2005-11-24 | カリフォルニア インスティテュート オブ テクノロジー | Improved method and system for a scanning apertureless fluorescence microscope |
JP2006210341A (en) * | 2005-01-24 | 2006-08-10 | Samsung Electronics Co Ltd | Photoelectrode, its manufacturing method and solar cell adopting the photoelectrode |
KR20090002787A (en) * | 2007-07-04 | 2009-01-09 | 삼성전자주식회사 | Light emitting device and light-receiveing device using transistor structure |
Non-Patent Citations (2)
Title |
---|
E. D. Minot, et al., Physical Review Letters, Vol. 90, No. 15, 156401, pp.1-4 (2003.04.18.) 1부.* * |
Y. Ogawa, et al., Physical Review B 83, 081302(R)(2011) pp.1-4 (2011.02.10.) 1부.* * |
Also Published As
Publication number | Publication date |
---|---|
KR102482223B1 (en) | 2022-12-27 |
WO2022045489A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shao et al. | Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials | |
Xiong et al. | Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires | |
Lucas et al. | Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science | |
Parzefall et al. | Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions | |
Huth et al. | Infrared-spectroscopic nanoimaging with a thermal source | |
Huber et al. | Infrared nanoscopy of strained semiconductors | |
US20110168954A1 (en) | Carbon nanotube based composite surface enhanced raman scattering (sers) probe | |
Zhu et al. | Gold nanoparticle thin films fabricated by electrophoretic deposition method for highly sensitive SERS application | |
CN107850621B (en) | Metal device for scanning near field optical microscope and spectroscope and manufacturing method | |
Liu et al. | Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation | |
Péchou et al. | Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope | |
Richards | Near-field microscopy: throwing light on the nanoworld | |
Lebedev et al. | Scanning tunneling microscopy-induced light emission and I (V) study of optical near-field properties of single plasmonic nanoantennas | |
Kato et al. | One-side metal-coated pyramidal cantilever tips for highly reproducible tip-enhanced Raman spectroscopy | |
Fafin et al. | Surface plasmon resonances and local field enhancement in aluminum nanoparticles embedded in silicon nitride | |
US10012674B2 (en) | Nanoantenna scanning probe tip, and fabrication methods | |
Balois et al. | Development of tip-enhanced Raman spectroscopy based on a scanning tunneling microscope in a controlled ambient environment | |
KR102482223B1 (en) | Method for controlling bandgap of a quantum dot and system using same | |
Kumar et al. | In Situ Optical Tracking of Electroablation in Two-Dimensional Transition-Metal Dichalcogenides | |
Eschimèse et al. | Comparative investigation of plasmonic properties between tunable nanoobjects and metallized nanoprobes for optical spectroscopy | |
Kühn et al. | Modification of single molecule fluorescence by a scanning probe | |
Pavlič | Tip-Enhanced Raman Spectroscopy (TERS) under electrochemical conditions: towards the in situ characterization of functional nanomaterials | |
Pat et al. | Studies on the surface and optical properties of Ta-doped ZnO thin films deposited by thermionic vacuum arc | |
Milekhin et al. | Plasmon-enhanced vibrational spectroscopy of semiconductors nanocrystals | |
Wang et al. | Optical Extinction-Based 3D Nano-Imaging of WS2 on Gold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |