KR20220024499A - 변환에 기반한 영상 코딩 방법 및 그 장치 - Google Patents

변환에 기반한 영상 코딩 방법 및 그 장치 Download PDF

Info

Publication number
KR20220024499A
KR20220024499A KR1020227001032A KR20227001032A KR20220024499A KR 20220024499 A KR20220024499 A KR 20220024499A KR 1020227001032 A KR1020227001032 A KR 1020227001032A KR 20227001032 A KR20227001032 A KR 20227001032A KR 20220024499 A KR20220024499 A KR 20220024499A
Authority
KR
South Korea
Prior art keywords
block
transform
lfnst
intra prediction
prediction mode
Prior art date
Application number
KR1020227001032A
Other languages
English (en)
Inventor
구문모
김승환
임재현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20220024499A publication Critical patent/KR20220024499A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 문서에 따른 영상 디코딩 방법은 비트스트림으로부터 인트라 예측 모드 정보 및 LFNST 인덱스를 획득하는 단계와; 상기 인트라 예측 모드 정보를 기반으로 크로마 블록의 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와; 상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와; 상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와; 상기 LFNST 세트 및 상기 LFNST 인덱스를 기반으로 상기 LFNST 매트릭스들 중 하나를 선택하는 단계와; 상기 선택된 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 변환 계수들을 도출하는 단계를 포함할 수 있다.

Description

변환에 기반한 영상 코딩 방법 및 그 장치
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 변환(transform)에 기반한 영상 코딩 방법 및 그 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 변환 인덱스 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 LFNST를 활용한 영상 코딩 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 CCLM 모드 시 루마 블록의 인트라 모드를 차용하여 LFNST 변환 세트를 도출하는 것에 대한 영상 코딩 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법을 제공한다. 상기 방법은 비트스트림으로부터 인트라 예측 모드 정보 및 LFNST 인덱스를 획득하는 단계와; 상기 인트라 예측 모드 정보를 기반으로 크로마 블록의 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와; 상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와; 상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와; 상기 LFNST 세트 및 상기 LFNST 인덱스를 기반으로 상기 LFNST 매트릭스들 중 하나를 선택하는 단계와; 상기 선택된 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 변환 계수들을 도출하는 단계를 포함할 수 있다.
현재 블록에 대한 분할 트리 구조가 듀얼 트리 타입이면, 상기 루마 블록 및 상기 크로마 블록 각각에 대하여 상기 LFNST 인덱스가 수신될 수 있다.
비트스트림으로부터 레지듀얼 정보를 획득하는 단계와; 상기 레지듀얼 정보를 기반으로 현재 블록에 대한 변환 계수들을 도출하는 단계; 상기 현재 블록의 DC 영역을 제외한 영역에 유효 계수가 존재하는지 여부를 나타내는 제1 변수를 도출하는 단계와; 상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 유효 계수가 존재하는지 여부를 나타내는 제2 변수를 도출하는 단계를 더 포함하고, 상기 제1 변수가 상기 DC 영역을 제외한 영역에 상기 유효 계수가 존재하는 것을 나타내고, 상기 제2 변수가 상기 제2 영역에 상기 유효 계수가 존재하지 않는 것을 나타내면, 상기 LFNST 인덱스를 파싱할 수 있다.
본 문서의 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 영상 인코딩 방법을 제공한다. 상기 방법은 크로마 블록에 대한 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와; 상기 CCLM 모드에 기초하여 상기 크로마 블록에 대한 예측 샘플을 도출하는 단계와; 상기 예측 샘플에 기초하여 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와; 상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와; 상기 레지듀얼 샘플, 상기 LFNST 세트 및 상기 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 수정된 변환 계수들을 도출하는 단계를 포함할 수 있다.
본 문서의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행된 영상 인코딩 방법에 따라 생성된 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서의 또 다른 일 실시예에 따르면, 디코딩 장치에 의하여 상기 영상 디코딩 방법을 수행하도록 야기하는 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서에 따르면 변환 인덱스 코딩의 효율을 높일 수 있다.
본 문서의 또 다른 기술적 과제는 LFNST를 활용한 영상 코딩 방법 및 장치를 제공한다.
본 문서의 또 다른 기술적 과제는 CCLM 모드 시 루마 블록의 인트라 모드를 차용하여 LFNST 변환 세트를 도출하는 것에 대한 대한 영상 코딩 방법 및 장치를 제공할 수 있다.
본 명세서의 구체적인 일례를 통해 얻을 수 있는 효과는 이상에서 나열된 효과로 제한되지 않는다. 예를 들어, 관련된 기술분야의 통상의 지식을 자긴 자(a person having ordinary skill in the related art)가 본 명세서로부터 이해하거나 유도할 수 있는 다양한 기술적 효과가 존재할 수 있다. 이에 따라 본 명세서의 구체적인 효과는 본 명세서에 명시적으로 기재된 것에 제한되지 않고, 본 명세서의 기술적 특징으로부터 이해되거나 유도될 수 있는 다양한 효과를 포함할 수 있다.
도 1은 본 문서가 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 65개 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 5는 본 문서의 일 실시예에 따른 광각 인트라 예측 모드들을 도시한 도면이다.
도 6은 일 실시예에 따른 크로마 블록의 인트라 예측 모드 도출 시 적용될 수 있는 CCLM을 설명하기 위한 도면이다.
도 7은 본 문서의 일 실시예에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 8은 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
도 9는 일 예에 따라 순방향 1차 변환의 출력 데이터를 1차원 벡터로 배열하는 순서를 도시한 도면이다.
도 10은 일 예에 따라 순방향 2차 변환의 출력 데이터를 2차원 벡터로 배열하는 순서를 도시한 도면이다
도 11은 LFNST가 적용되는 블록 모양을 도시한 도면이다.
도 12는 일 예에 따라 순방향 LFNST의 출력 데이터의 배열을 도시한 도면이다.
도 13은 일 예에 따라 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정한 것을 나타낸 도면이다.
도 14는 일 예에 따라 4x4 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 15는 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 16은 다른 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 17은 일 예에 따른 영상의 디코딩 방법을 설명하기 위한 도면이다.
도 18은 일 예에 따른 영상의 인코딩 방법을 설명하기 위한 도면이다.
도 19는 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서를 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (Versatile Video Coding) 표준 (ITU-T Rec. H.266), VVC 이후의 차세대 비디오/이미지 코딩 표준, 또는 그 이외의 비디오 코딩 관련 표준들(예를 들어, HEVC (High Efficiency Video Coding) 표준 (ITU-T Rec. H.265), EVC(essential video coding) 표준, AVS2 표준 등)과 관련될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 또는 샘플은 공간 도메인에서의 픽셀값을 의미할 수도 있고, 이러한 픽셀값이 주파수 도메인으로 변환되면 주파수 도메인에서의 변환 계수를 의미할 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 “/”와 ","는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. (In this document, the term “/” and "," should be interpreted to indicate “and/or.” For instance, the expression “A/B” may mean “A and/or B.” Further, “A, B” may mean “A and/or B.” Further, “A/B/C” may mean “at least one of A, B, and/or C.” Also, “A/B/C” may mean “at least one of A, B, and/or C.”)
추가적으로, 본 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다. (Further, in the document, the term “or” should be interpreted to indicate “and/or.” For instance, the expression “A or B” may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term “or” in this document should be interpreted to indicate “additionally or alternatively.”)
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “예측(인트라 예측)”로 표시된 경우, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “예측”은 “인트라 예측”으로 제한(limit)되지 않고, “인트라 예측”이 “예측”의 일례로 제안될 것일 수 있다. 또한, “예측(즉, 인트라 예측)”으로 표시된 경우에도, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
도 1은 본 문서를 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 소스 디바이스 및 수신 디바이스를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포맷을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)는 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)를 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽처, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
감산부(231)는 입력 영상 신호(원본 블록, 원본 샘플들 또는 원본 샘플 어레이)에서 예측부(220)로부터 출력된 예측 신호(예측된 블록, 예측 샘플들 또는 예측 샘플 어레이)를 감산하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들 또는 레지듀얼 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 예측부(220)는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(220)는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 상기 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다.
인터 예측부(221) 및/또는 인트라 예측부(222)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 등을 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 후술되는 시그널링/전송되는 정보 및/또는 신택스 요소들은 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(250)는 복원된 레지듀얼 신호를 예측부(220)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플들 또는 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset, SAO), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)는 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(290)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(290)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(280)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(200)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270)의 DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(330)로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼에 대한 정보, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 역양자화부(321)로 입력될 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 예측부(330), 가산부(340), 필터링부(350) 및 메모리(360) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 상기 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다.
인트라 예측부(332)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(332)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(331)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(331)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(330)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(60), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(331)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(331)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(332)에 전달할 수 있다.
본 명세서에서, 디코딩 장치(300)의 예측부(330), 역양자화부(321), 역변환부(322) 및 필터링부(350) 등에서 설명된 실시예들은 각각 인코딩 장치(200)의 예측부(220), 역양자화부(234), 역변환부(235) 및 필터링부(260) 등에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
본 문서의 일 실시예에 따른 인트라 예측 시 도 4와 같이 67개의 인트라 예측 모드가 사용될 수 있다.
이는 고해상도 영상의 인트라 부호화 및 더 정확한 예측을 위해 기존의 35가지 방향성 모드를 67가지 방향성 모드로 확장한 것이다. 도 4에서 점선으로 나타낸 화살표는 35개의 방향성 모드에서 새로 추가된 32가지 방향성 모드를 나타낸다.
인트라 플래너(INTRA_PLANAR) 모드와 인트라 DC(INTRA_DC) 모드는 기존의 인트라 플래너 모드와 인트라 DC 모드와 동일하다. 추가된 32가지 방향성 모드는 모든 블록 크기에서 적용될 수 있고, 휘도(루마) 성분과 크로마(크로마) 성분의 인트라 부호화 및 복호화에 모두 적용될 수 있다.
도 4를 참조하면, 우하향 대각 예측 방향을 갖는 34번 인트라 예측 모드를 중심으로 수평 방향성(horizontal directionality)을 갖는 인트라 예측 모드와 수직 방향성(vertical directionality)을 갖는 인트라 예측 모드를 구분할 수 있다. 도 5의 H와 V는 각각 수평 방향성과 수직 방향성을 의미하며, -32 ~ 32의 숫자는 샘플 그리드 포지션(sample grid position) 상에서 1/32 단위의 변위를 나타낸다. 이는 모드 인덱스 값에 대한 오프셋을 나타낼 수 있다. 2번 내지 33번 인트라 예측 모드는 수평 방향성, 34번 내지 66번 인트라 예측 모드는 수직 방향성을 갖는다. 한편, 34번 인트라 예측 모드는 엄밀히 말해 수평 방향성도 수직 방향성도 아니라고 볼 수 있으나, 2차 변환의 변환 세트를 결정하는 관점에서 수평 방향성에 속한다고 분류될 수 있다. 이는, 34번 인트라 예측 모드를 중심으로 대칭되는 수직 방향 모드에 대해서는 입력 데이터를 트랜스포즈(transpose)해서 사용하고 34번 인트라 예측 모드에 대해서는 수평 방향 모드에 대한 입력 데이터 정렬 방식을 사용하기 때문이다. 입력 데이터를 트랜스포즈하는 것은 2차원 블록 데이터 MxN에 대해 행이 열이 되고 열이 행이 되어 NxM 데이터를 구성하는 것을 의미한다. 18번 인트라 예측 모드와 50번 인트라 예측 모드는 각각 수평 인트라 예측 모드(horizontal intra prediction mode), 수직 인트라 예측 모드(vertical intra prediction mode)를 나타내며, 2번 인트라 예측 모드는 왼쪽 참조 픽셀을 가지고 우상향 방향으로 예측하므로 우상향 대각 인트라 예측 모드라 불릴 수 있고, 동일한 맥락으로 34번 인트라 예측 모드는 우하향 대각 인트라 예측 모드, 66번 인트라 예측 모드는 좌하향 대각 인트라 예측 모드라고 불릴 수 있다.
도 5는 본 문서의 일 실시예에 따른 광각 인트라 예측 모드들을 도시한 도면이다.
일반적인 인트라 예측 모드 값은 0 ~ 66과 81 ~ 83까지의 값을 가질 수 있으며, 도시된 바와 같이, WAIP로 인해 확장된 인트라 예측 모드 값은 -14 ~ 83까지의 값을 가질 수 있다. 81 ~ 83까지의 값은 CCLM(Cross Compoonent Linear Model) 모드를 가리키며, -14 ~ -1까지의 값과 67 ~ 80까지의 값은 WAIP 적용으로 인해 확장된 인트라 예측 모드 값을 가리킨다.
예측 현재 블록의 폭이 높이보다 큰 경우, 대체로 위쪽 참조 픽셀들이 예측하고자 하는 블록 내부의 위치들과 더 가깝다. 따라서, 우상단(top-right) 방향으로 예측하는 것보다 좌하단(bottom-left) 방향으로 예측하는 것이 보다 정확할 수 있다. 반대로 블록의 높이가 폭 보다 큰 경우는, 왼쪽 참조 픽셀들이 예측하고자 하는 블록 내부의 위치들과 대체로 가깝다. 따라서, 좌하단(bottom-left) 방향으로 예측하는 것보다 우상단(top-right) 방향으로 예측하는 것이 보다 정확할 수 있다. 따라서, 광각 인트라 예측 모드의 인덱스로 리맵핑, 즉, 모드 인덱스 변환을 적용하는 것이 유리할 수 있다.
광각 인트라 예측이 적용되는 경우, 기존의 인트라 예측에 대한 정보가 시그널링될 수 있고, 상기 정보가 파싱된 이후, 상기 정보가 상기 광각 인트라 예측 모드의 인덱스로 리맵핑될 수 있다. 따라서, 특정 블록(예를 들어, 특정 사이즈의 비정방형 블록)에 대한 총 인트라 예측 모드의 수는 변경되지 않을 수 있고, 즉, 총 인트라 예측 모드의 수는 67개이며, 상기 특정 블록에 대한 인트라 예측 모드 코딩은 변경되지 않을 수 있다.
아래 표 1은 인트라 예측 모드를 광각 인트라 예측 모드로 리매핑하여 수정된 인트라 모드를 도출하는 과정을 나타내고 있다.
Figure pct00001
표 1에서 최종적으로 predModeIntra 변수에 확장된 인트라 예측 모드 값이 저장되고, ISP_NO_SPLIT는 현재 VVC 표준에 채택된 Intra Sub Partitions(ISP) 기술에 의해 CU 블록이 서브 파티션들로 분할되지 않는 것을 나타내며, cIdx 변수 값이 0, 1, 2인 것은 각기 루마, Cb, Cr 컴포넌트인 경우를 가리킨다. 표 3에서 등장하는 Log2 함수는 베이스(base)가 2인 로그 값을 리턴하며, Abs 함수는 절대값을 리턴한다.
광각 인트라 예측 모드의 매핑 과정(Wide angle intra prediction mode mapping process)의 입력값으로 인트라 예측 모드를 지시하는 변수 predModeIntra, 변환 블록의 높이 및 너비 등이 사용되고, 출력값은 수정된 인트라 예측 모드(the modified intra prediction mode predModeIntra)가 된다. 변환 블록 또는 코딩 블록의 높이 및 너비가 인트라 예측 모드의 리매핑을 위한 현재 블록의 높이 및 너비가 될 수 있다. 이 때, 너비와 폭의 비율을 반영하는 변수 whRatio 는 Abs( Log2( nW / nH ) )로 설정될 수 있다.
정방형이 아닌 블록에 대하여, 인트라 예측 모드는 두 가지 경우로 구분되어 수정될 수 있다.
우선, (1)현재 블록의 너비가 높이보다 크고, (2) 수정 전의 인트라 예측 모드가 2와 같거나 크고, (3) 인트라 예측 모드가, 변수 whRatio 가 1보다 크면 (8 + 2 * whRatio)으로, 변수 whRatio 가 1보다 같거나 작으면 8로 도출되는 값보다 작다[predModeIntra is less than ( whRatio > 1 ) ? ( 8 + 2 * whRatio ) : 8]는 모든 조건을 만족하면, 인트라 예측 모드는 인트라 예측 모드보다 65 큰 값으로 설정된다[predModeIntra is set equal to ( predModeIntra + 65 )].
상기와 다른 경우, (1)현재 블록의 높이가 너비보다 크고, (2) 수정 전의 인트라 예측 모드가 66와 같거나 작고, (3) 인트라 예측 모드가, 변수 whRatio 가 1보다 크면 ( 60 - 2 * whRatio )으로, 변수 whRatio 가 1보다 같거나 작으면 60로 도출되는 값보다 크다[predModeIntra is greater than ( whRatio > 1 ) ? ( 60 - 2 * whRatio ) : 60]는 모든 조건을 만족하면, 인트라 예측 모드는 인트라 예측 모드보다 67 작은 값으로 설정된다[predModeIntra is set equal to ( predModeIntra - 67 )].
한편, 현재 블록에 인트라 예측이 수행되는 경우, 현재 블록의 루마 성분 블록(루마 블록)에 대한 예측 및 크로마 성분 블록(크로마 블록)에 대한 예측이 수행될 수 있으며, 이 경우 크로마 성분(크로마 블록)에 대한 인트라 예측 모드는 루마 성분(루마 블록)에 대한 인트라 예측 모드와 개별적으로 설정될 수 있다.
본 명세서에서 “크로마(chroma) 블록”, “크로마 영상” 등은 크로마 블록, 크로마 영상 등과 동일한 의미를 나타낼 수 있으므로, 크로마와 크로마는 혼용되어 사용될 수 있다. 마찬가지로, “루마(luma) 블록”, “루마 영상” 등은 휘도 블록, 휘도 영상 등과 동일한 의미를 나타낼 수 있으므로, 루마와 휘도는 혼용되어 사용될 수 있다.
본 명세서에서 “현재 크로마 블록”은 현재의 코딩 단위인 현재 블록의 크로마 성분 블록을 의미할 수 있고, “현재 루마 블록”은 현재의 코딩 단위인 현재 블록의 루마 성분 블록을 의미할 수 있다. 따라서 현재 루마 블록과 현재 크로마 블록은 상호 대응된다. 다만 현재 루마 블록과 현재 크로마 블록의 블록 형태 및 블록 개수가 항상 상호 동일한 것은 아니고, 경우에 따라서 상이할 수 있다. 일부의 경우에 현재 크로마 블록은 현재 루마 영역과 대응될 수 있고, 이때 현재 루마 영역은 적어도 하나의 루마 블록으로 구성될 수 있다.
이러한, 크로마 성분에 대한 인트라 예측 모드는 인트라 크로마 예측 모드 정보를 기반으로 지시될 수 있으며, 이러한 인트라 크로마 예측 모드 정보는 intra_chroma_pred_mode 신택스 요소의 형태로 시그널링될 수 있다. 일 예로, 상기 인트라 크로마 예측 모드 정보는 플래너(Planar) 모드, DC 모드, 수직(vertical) 모드, 수평(horizontal) 모드, DM(Derived Mode), CCLM 모드들 중 하나를 가리킬 수 있다. 여기서, 도 4와 같은 67개의 인트라 예측 모드가 사용되는 경우, 상기 플래너 모드는 0번 인트라 예측 모드, 상기 DC 모드는 1번 인트라 예측 모드, 상기 수직 모드는 50번 인트라 예측 모드, 상기 수평 모드는 18번 인트라 예측 모드를 나타낼 수 있다. DM은 direct mode라고 불릴 수도 있다. CCLM은 LM이라고 불릴 수 있다.
한편, DM과 CCLM은 루마 블록의 정보를 이용하여 크로마 블록을 예측하는 종속적인 인트라 예측 모드이다. 상기 DM은 상기 루마 성분에 대한 인트라 예측 모드와 동일한 인트라 예측 모드가 상기 크로마 성분에 대한 인트라 예측 모드로 적용되는 모드를 의미할 수 있다. 또한, 상기 CCLM은 크로마 블록에 대한 예측 블록을 생성하는 과정에서 루마 블록의 복원된 샘플들을 서브샘플링한 후, 서브샘플링된 샘플들에 CCLM 파라미터인 α 및 β를 적용하여 도출된 샘플들을 상기 크로마 블록의 예측 샘플들로 사용하는 인트라 예측 모드를 나타낼 수 있다.
도 6은 일 실시예에 따른 크로마 블록의 인트라 예측 모드 도출 시 적용될 수 있는 CCLM을 설명하기 위한 도면이다.
본 명세서에서 “참조 샘플 템플릿”은 현재 크로마 블록을 예측하기 위한 현재 크로마 블록 주변의 참조 샘플들의 집합을 의미할 수 있다. 참조 샘플 템플릿은 기 정의될 수 있고, 참조 샘플 템플릿에 관한 정보가 인코딩 장치(200)에서 디코딩 장치(300)로 시그널링될 수도 있다.
도 6을 참조하면, 현재 크로마 블록인 4x4 블록의 주변에 1 라인으로 음영 표시된 샘플들의 집합은 참조 샘플 템플릿을 나타낸다. 참조 샘플 템플릿이 1 라인의 참조 샘플로 구성된 반면, 참조 샘플 템플릿과 대응되는 루마 영역 내 참조 샘플 영역은 2 라인으로 구성된 것을 도 6에서 확인할 수 있다.
일 실시예에서, JVET(Joint Video Exploration Team)에서 사용되는 JEM(Joint Explolation TEST Model)에서 크로마 영상의 화면 내 부호화를 수행할 시, CCLM(Cross Component Linear Model)을 이용할 수 있다. CCLM은 크로마 영상의 화소값을 복원된 휘도 영상의 화소값에서 예측하는 방법으로, 휘도 영상과 크로마 영상 간의 상관도(correlation)이 높은 특성에 기반한 것이다.
Cb 및 Cr 크로마 영상의 CCLM 예측은 아래의 수학식을 기반으로 할 수 있다.
Figure pct00002
여기서, predc (i,j)는 예측될 Cb 혹은 Cr 크로마 영상을, RecL’(i,j)은 크로마 블록 사이즈로 조절된 복원된 휘도 영상을, (i,j)는 화소의 좌표를 의미한다. 4:2:0 컬러 포맷(color format)에서는 휘도 영상의 크기가 색채 영상의 2배이기 때문에 다운샘플링(downsampling)을 통해 색차 블록 크기의 RecL’을 생성해야 하며, 따라서 색차 영상 predc (i,j)에 사용될 휘도 영상의 화소는 RecL(2i,2j) 외에 주변 화소까지 모두 고려하여 사용할 수 있다. 상기 RecL’(i,j)는 다운샘플링된 루마 샘플이라고 나타낼 수 있다.
예를 들어, 상기 RecL’(i,j)은 다음의 수학식과 같이 6개의 주변 화소들을 이용하여 도출될 수 있다.
Figure pct00003
또한, α, β는 도 6의 음영 표시된 영역과 같이 Cb 혹은 Cr 크로마 블록 주변 템플릿과 휘도 블록 주변 템플릿 간의 cross-correlation 및 평균값의 차이를 나타내는 α, β는, 예를 들어 아래의 수학식 3과 같다.
Figure pct00004
여기서 L(n)은 현재 크로마 영상에 대응하는 루마 블록의 주변 참조 샘플을 및/또는 좌측 주변 샘플들, C(n)는 현재 부호화가 적용되는 현재 크로마 블록의 주변 참조 샘플 및/또는 좌측 주변 샘플들을 의미하며, (i,j)는 화소 위치를 의미한다. 또한, L(n)은 상기 현재 루마 블록의 다운샘플링(down-sampled)된 상측 주변 샘플들 및/또는 좌측 주변 샘플들을 나타낼 수 있다. 또한, N 은 CCLM 파라미터 계산에 사용된 총 화소 짝(pair, 휘도 및 크로마) 값의 수를 나타낼 수 있고, 상기 현재 크로마 블록의 폭(width)과 높이(height) 중 작은 값의 2배인 값을 나타낼 수 있다.
한편, 픽처들은 코딩 트리 유닛들(CTUs)의 시퀀스로 분할될(divided into a sequence) 수 있다. CTU는 코딩 트리 블록(CTB)에 대응될 수 있다. 혹은 CTU는 루마 샘플들의 코딩 트리 블록과, 대응하는 크로마 샘플들의 코딩 트리 블록을 포함할 수 있다. 트리 타입은 루마 블록과 대응하는 크로마 블록이 개별적인 분할 구조를 갖는지 여부에 따라 싱글 트리(SINGLE_TREE) 또는 듀얼 트리(DUAL_TREE)로 구분될 수 있다. 크로마 블록이 루마 블록과 동일한 분할 구조를 가지면 싱글 트리, 크로마 성분 블록이 루마 성분 블록과 다른 분할 구조를 가지면 듀얼 트리로 나타낼 수 있다.
한편, 이하에서는 본 문서의 영상 코딩 또는 디코딩 과정에 수반되는 변환 과정에 대하어 설명한다.
도 7은 본 문서에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 7을 참조하면, 변환부는 상술한 도 2의 인코딩 장치 내의 변환부에 대응될 수 있고, 역변환부는 상술한 도 2의 인코딩 장치 내의 역변환부 또는 도 3의 디코딩 장치 내의 역변환부에 대응될 수 있다.
변환부는 레지듀얼 블록 내의 레지듀얼 샘플들(레지듀얼 샘플 어레이)를 기반으로 1차 변환을 수행하여 (1차) 변환 계수들을 도출할 수 있다(S710). 이러한 1차 변환(primary transform)은 핵심 변환(core transform)으로 지칭될 수 있다. 여기서 상기 1차 변환은 다중 변환 선택(Multiple Transform Selection, MTS)에 기반할 수 있으며, 1차 변환으로 다중 변환이 적용될 경우 다중 핵심 변환으로 지칭될 수 있다.
다중 핵심 변환은 DCT(Discrete Cosine Transform) 타입 2과 DST(Discrete Sine Transform) 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 추가적으로 사용하여 변환하는 방식을 나타낼 수 있다. 즉, 상기 다중 핵심 변환은 상기 DCT 타입 2, 상기 DST 타입 7, 상기 DCT 타입 8 및 상기 DST 타입 1 중 선택된 복수의 변환 커널들을 기반으로 공간 도메인의 레지듀얼 신호(또는 레지듀얼 블록)를 주파수 도메인의 변환 계수들(또는 1차 변환 계수들)로 변환하는 변환 방법을 나타낼 수 있다. 여기서 상기 1차 변환 계수들은 변환부 입장에서 임시 변환 계수들로 불릴 수 있다.
다시 말하면, 기존의 변환 방법이 적용되는 경우, DCT 타입 2를 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들이 생성될 수 있었다. 이와 달리, 상기 다중 핵심 변환이 적용되는 경우, DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1 등을 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들(또는 1차 변환 계수들)이 생성될 수 있다. 여기서, DCT 타입 2, DST 타입 7, DCT 타입 8, 및 DST 타입 1 등은 변환 타입, 변환 커널(kernel) 또는 변환 코어(core)라고 불릴 수 있다. 이러한 DCT/DST 변환 타입들은 기저 함수들을 기반으로 정의될 수 있다.
상기 다중 핵심 변환이 수행되는 경우, 상기 변환 커널들 중 대상 블록에 대한 수직 변환 커널 및 수평 변환 커널이 선택될 수 있고, 상기 수직 변환 커널을 기반으로 상기 대상 블록에 대한 수직 변환이 수행되고, 상기 수평 변환 커널을 기반으로 상기 대상 블록에 대한 수평 변환이 수행될 수 있다. 여기서, 상기 수평 변환은 상기 대상 블록의 수평 성분들에 대한 변환을 나타낼 수 있고, 상기 수직 변환은 상기 대상 블록의 수직 성분들에 대한 변환을 나타낼 수 있다. 상기 수직 변환 커널/수평 변환 커널은 레지듀얼 블록을 포함하는 대상 블록(CU 또는 서브블록)의 예측 모드 및/또는 변환 인덱스를 기반으로 적응적으로 결정될 수 있다.
또한, 일 예에 따르면, MTS을 적용하여 1차 변환을 수행하는 경우, 특정 기저 함수들을 소정 값으로 설정하고, 수직 변환 또는 수평 변환일 때 어떠한 기저 함수들이 적용되는지 여부를 조합하여 변환 커널에 대한 매핑 관계를 설정할 수 있다. 예를 들어, 수평 방향 변환 커널을 trTypeHor로 나타내고, 수직 방향 변환 커널을 trTypeVer로 나타내는 경우, trTypeHor 또는 trTypeVer 값 0은 DCT2로 설정되고, trTypeHor 또는 trTypeVer 값 1은 DST7 로 설정되고, trTypeHor 또는 trTypeVer 값 2는 DCT8로 설정될 수 있다.
이 경우, 다수의 변환 커널 세트들 중 어느 하나를 지시하기 위하여 MTS 인덱스 정보가 인코딩되어 디코딩 장치로 시그널링될 수 있다. 예를 들어, MTS 인덱스가 0이면 trTypeHor 및 trTypeVer 값이 모두 0인 것을 지시하고, MTS 인덱스가 1이면 trTypeHor 및 trTypeVer 값이 모두 1 인 것을 지시하고, MTS 인덱스가 2이면 trTypeHor 값은 2이고 trTypeVer 값은 1 인 것을 지시하고, MTS 인덱스가 3이면 trTypeHor 값은 1이고 trTypeVer 값은 2 인 것을 지시하고, MTS 인덱스가 4이면 trTypeHor 및 trTypeVer 값이 모두 2 인 것을 지시할 수 있다.
일 예에 따라, MTS 인덱스 정보에 따른 변환 커널 세트를 표로 나타내면 다음과 같다.
Figure pct00005
변환부는 상기 (1차) 변환 계수들을 기반으로 2차 변환을 수행하여 수정된(2차) 변환 계수들을 도출할 수 있다(S720). 상기 1차 변환은 공간 도메인에서 주파수 도메인으로의 변환이고, 상기 2차 변환은 (1차) 변환 계수들 사이에 존재하는 상관 관계(correlation)를 이용하여 보다 압축적인 표현으로 변환하는 것을 의미한다. 상기 2차 변환은 비분리 변환(non- separable transform)을 포함할 수 있다. 이 경우 상기 2차 변환은 비분리 2차 변환(non-separable secondary transform, NSST) 또는 MDNSST(mode-dependent non-separable secondary transform)이라고 불릴 수 있다. 상기 비분리 2차 변환은 상기 1차 변환을 통하여 도출된 (1차) 변환 계수들을 비분리 변환 매트릭스(non-separable transform matrix)를 기반으로 2차 변환하여 레지듀얼 신호에 대한 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환을 나타낼 수 있다. 여기서, 상기 비분리 변환 매트릭스를 기반으로 상기 (1차) 변환 계수들에 대하여 수직 변환 및 수평 변환을 분리하여(또는 수평 수직 변환을 독립적으로) 적용하지 않고 한번에 변환을 적용할 수 있다. 다시 말해, 상기 비분리 2차 변환은 상기 (1차) 변환 계수들의 수직 성분 및 수평 성분 분리하지 않고, 예를 들어 2차원 신호(변환 계수)들을 특정 정해진 방향(예컨대, 행 우선(row-first) 방향 또는 열 우선(column-first) 방향)을 통하여 1차원 신호로 재정렬한 후, 상기 비분리 변환 매트릭스를 기반으로 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환 방법을 나타낼 수 있다. 예를 들어, 행 우선 순서는 MxN 블록에 대해 1번째 행, 2번째 행, ... , N번째 행의 순서로 일렬로 배치하는 것이고, 열 우선 순서는 MxN 블록에 대해 1번째 열, 2번째 열, ... , M번째 열의 순서로 일렬로 배치하는 것이다. 상기 비분리 2차 변환은 (1차) 변환 계수들로 구성된 블록(이하, 변환 계수 블록이라고 불릴 수 있다)의 좌상단(top-left) 영역에 대하여 적용될 수 있다. 예를 들어, 상기 변환 계수 블록의 폭(W) 및 높이(H)가 둘 다 8 이상인 경우, 8×8 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 8×8 영역에 대하여 적용될 수 있다. 또한, 상기 변환 계수 블록의 폭(W) 및 높이(H)가 둘 다 4 이상이면서, 상기 변환 계수 블록의 폭(W) 또는 높이(H)가 8보다 작은 경우, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수 있다. 다만 실시예는 이에 한정되지 않으며, 예를 들어 상기 변환 계수 블록의 폭(W) 또는 높이(H)가 모두 4 이상인 조건만 만족하더라도, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수도 있다.
구체적으로 예를 들어, 4×4 입력 블록이 사용되는 경우 비분리 2차 변환은 다음과 같이 수행될 수 있다.
상기 4×4 입력 블록 X는 다음과 같이 나타내어질 수 있다.
Figure pct00006
상기 X를 벡터 형태로 나타내는 경우, 벡터
Figure pct00007
는 다음과 같이 나타내어질 수 있다.
Figure pct00008
수학식 5와 같이, 벡터
Figure pct00009
는 행 우선(row-first) 순서에 따라 수학식 4의 X의 2차원 블록을 1차원 벡터로 재배열한다.
이 경우, 상기 2차 비분리 변환은 다음과 같이 계산될 수 있다.
Figure pct00010
여기서,
Figure pct00011
는 변환 계수 벡터를 나타내고, T는 16×16 (비분리) 변환 매트릭스를 나타낸다.
상기 수학식 6을 통하여 16×1 변환 계수 벡터
Figure pct00012
가 도출될 수 있으며, 상기
Figure pct00013
는 스캔 순서(수평, 수직, 대각(diagonal) 등)를 통하여 4×4 블록으로 재구성(re-organized)될 수 있다. 다만, 상술한 계산은 예시로서 비분리 2차 변환의 계산 복잡도를 줄이기 위하여 HyGT(Hypercube-Givens Transform) 등이 비분리 2차 변환의 계산을 위하여 사용될 수도 있다.
한편, 상기 비분리 2차 변환은 모드 기반(mode dependent)으로 변환 커널(또는 변환 코어, 변환 타입)이 선택될 수 있다. 여기서 모드는 인트라 예측 모드 및/또는 인터 예측 모드를 포함할 수 있다.
상술한 바와 같이 상기 비분리 2차 변환은 상기 변환 계수 블록의 너비(W) 및 높이(H)를 기반으로 결정된 8×8 변환 또는 4×4 변환에 기반하여 수행될 수 있다. 8x8 변환은 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 변환은 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다. 예를 들어, 8x8 변환 커널 매트릭스는 64x64/16x64 행렬, 4x4 변환 커널 매트릭스는 16x16/8x16 행렬이 될 수 있다.
이때, 모드 기반 변환 커널 선택을 위하여, 8×8 변환 및 4×4 변환 둘 다에 대하여 비분리 2차 변환을 위한 변환 세트당 2개씩의 비분리 2차 변환 커널들이 구성될 수 있고, 변환 세트는 4개일 수 있다. 즉, 8×8 변환에 대하여 4개의 변환 세트가 구성되고, 4×4 변환에 대하여 4개의 변환 세트가 구성될 수 있다. 이 경우 8×8 변환에 대한 4개의 변환 세트에는 각각 2개씩의 8×8 변환 커널들이 포함될 수 있고, 이 경우 4×4 변환에 대한 4개의 변환 세트에는 각각 2개씩의 4×4 변환 커널들이 포함될 수 있다.
다만, 상기 변환의 사이즈, 즉 변환이 적용되는 영역의 사이즈는 예시로서 8×8 또는 4×4 이외의 사이즈가 사용될 수 있고, 상기 세트의 수는 n개, 각 세트 내 변환 커널들의 수는 k개일 수도 있다.
상기 변환 세트는 NSST 세트 또는 LFNST 세트라고 불릴 수 있다. 상기 변환 세트들 중 특정 세트의 선택은 예를 들어, 현재 블록(CU 또는 서브블록)의 인트라 예측 모드에 기반하여 수행될 수 있다. LFNST(Low-Frequency Non-Separable Transform)는 후술될 감소된 비분리 변환의 일 예일 수 있으며, 저주파 성분에 대한 비분리 변환을 나타낸다.
참고로, 예를 들어, 인트라 예측 모드는 2개의 비방향성(non-directinoal, 또는 비각도성(non-angular)) 인트라 예측 모드들과 65개의 방향성(directional, 또는 각도성(angular)) 인트라 예측 모드들을 포함할 수 있다. 상기 비방향성 인트라 예측 모드들은 0번인 플래너(planar) 인트라 예측 모드 및 1번인 DC 인트라 예측 모드를 포함할 수 있고, 상기 방향성 인트라 예측 모드들은 2번 내지 66번의 65개의 인트라 예측 모드들을 포함할 수 있다. 다만, 이는 예시로서 본 문서는 인트라 예측 모드들의 수가 다른 경우에도 적용될 수 있다. 한편, 경우에 따라 67번 인트라 예측 모드가 더 사용될 수 있으며, 상기 67번 인트라 예측 모드는 LM(linear model) 모드를 나타낼 수 있다.
일 예에 따라, 도 4 또는 도 5의 인트라 예측 모드에 따라 4개의 변환 세트들이 매핑(mapping)은 예를 들어 다음 표와 같이 나타내어질 수 있다.
Figure pct00014
표 3과 같이, 인트라 예측 모드에 따라 4개의 변환 세트 중 어느 하나, 즉 lfnstTrSetIdx가 0 부터 3, 즉 4개 중 어느 하나에 매핑될 수 있다.
한편, 비분리 변환에 특정 세트가 사용되는 것으로 결정되면, 비분리 2차 변환 인덱스를 통하여 상기 특정 세트 내 k개의 변환 커널들 중 하나가 선택될 수 있다. 인코딩 장치는 RD(rate-distortion) 체크 기반으로 특정 변환 커널을 가리키는 비분리 2차 변환 인덱스를 도출할 수 있으며, 상기 비분리 2차 변환 인덱스를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 비분리 2차 변환 인덱스를 기반으로 특정 세트 내 k개의 변환 커널들 중 하나를 선택할 수 있다. 예를 들어, lfnst 인덱스 값 0은 첫번째 비분리 2차 변환 커널을 가리킬 수 있고, lfnst 인덱스 값 1은 두번째 비분리 2차 변환 커널을 가리킬 수 있으며, lfnst 인덱스 값 2는 세번째 비분리 2차 변환 커널을 가리킬 수 있다. 또는 lfnst 인덱스 값 0은 대상 블록에 대하여 첫번째 비분리 2차 변환이 적용되지 않음을 가리킬 수 있고, lfnst 인덱스 값 1 내지 3은 상기 3개의 변환 커널들을 가리킬 수 있다.
변환부는 선택된 변환 커널들을 기반으로 상기 비분리 2차 변환을 수행하고 수정된(2차) 변환 계수들을 획득할 수 있다. 상기 수정된 변환 계수들은 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
한편, 상술한 바와 같이 2차 변환이 생략되는 경우 상기 1차 (분리) 변환의 출력인 (1차) 변환 계수들이 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
역변환부는 상술한 변환부에서 수행된 절차의 역순으로 일련의 절차를 수행할 수 있다. 역변환부는 (역양자화된) 변환 계수들을 수신하여, 2차 (역)변환을 수행하여 (1차) 변환 계수들을 도출하고(S750), 상기 (1차) 변환 계수들에 대하여 1차 (역)변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다(S760). 여기서 상기 1차 변환 계수들은 역변환부 입장에서 수정된(modified) 변환 계수들로 불릴 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 디코딩 장치는 2차 역변환 적용 여부 결정부(또는 이차 역변환의 적용 여부를 결정하는 요소)와, 2차 역변환 결정부(또는 이차 역변환을 결정하는 요소)를 더 포함할 수 있다. 2차 역변환 적용 여부 결정부는 2차 역변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 역변환은 NSST, RST 또는 LFNST 일 수 있고, 2차 역변환 적용 여부 결정부는 비트스트림으로부터 파싱한 이차 변환 플래그에 기초하여 2차 역변환의 적용 여부를 결정할 수 있다. 다른 일 예로, 2차 역변환 적용 여부 결정부는 레지듀얼 블록의 변환 계수에 기초하여 2차 역변환의 적용 여부를 결정할 수도 있다.
이차 역변환 결정부는 2차 역변환을 결정할 수 있다. 이때, 2차 역변환 결정부는 인트라 예측 모드에 따라 지정된 LFNST(NSST 또는 RST) 변환 세트에 기초하여 현재 블록에 적용되는 이차 역변환을 결정할 수 있다. 또한, 일 실시예로서, 1차 변환 결정 방법에 의존적으로(depend on) 이차 변환 결정 방법이 결정될 수 있다. 인트라 예측 모드에 따라 일차 변환과 이차 변환의 다양한 여러 조합이 결정될 수 있다. 또한, 일 예로, 이차 역변환 결정부는 현재 블록의 크기에 기초하여 이차 역변환이 적용되는 영역을 결정할 수도 있다.
한편, 상술한 바와 같이 2차 (역)변환이 생략되는 경우 (역양자화된) 변환 계수들을 수신하여 상기 1차 (분리) 역변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 본 문서에서는 비분리 2차 변환에 수반되는 계산량과 메모리 요구량의 저감을 위하여 NSST의 개념에서 변환 매트릭스(커널)의 크기가 감소된 RST(reduced secondary transform)을 적용할 수 있다.
한편, 본 문서에서 설명된 변환 커널, 변환 매트릭스, 변환 커널 매트릭스를 구성하는 계수, 즉 커널 계수 또는 매트릭스 계수는 8비트로 표현될 수 있다. 이는 디코딩 장치 및 인코딩 장치에서 구현되기 위한 하나의 조건일 수 있으며, 기존의 9비트 또는 10비트와 비교하여 합리적으로 수용할 수 있는 성능 저하를 수반하면서 변환 커널을 저장하기 위한 메모리 요구량을 줄일 수 있다. 또한, 커널 매트릭스를 8비트로 표현함으로써 작은 곱셈기를 사용할 수 있고, 최적의 소프트웨어 구현을 위하여 사용되는 SIMD(Single Instruction Multiple Data) 명령에 보다 적합할 수 있다.
본 명세서에서 RST는 간소화 팩터(factor)에 따라 크기가 감소된 변환 매트릭스(transform matrix)를 기반으로 대상 블록에 대한 레지듀얼 샘플들에 대하여 수행되는 변환을 의미할 수 있다. 간소화 변환을 수행하는 경우, 변환 매트릭스의 크기 감소로 인해 변환 시 요구되는 연산량이 감소될 수 있다. 즉, RST은 크기가 큰 블록의 변환 또는 비분리 변환 시 발생하는 연산 복잡도(complexity) 이슈를 해소하기 위해 이용될 수 있다.
RST는 감소된 변환, 감소 변환, reduced transform, reduced secondary transform, reduction transform, simplified transform, simple transform 등 다양한 용어로 지칭될 수 있으며, RST이 지칭될 수 있는 명칭은 나열된 예시들에 한정되지 않는다. 또는 RST는 주로 변환 블록에서 0이 아닌 계수를 포함하는 저주파 영역에서 이루어지므로 LFNST(Low-Frequency Non-Separable Transform)로 지칭될 수도 있다. 상기 변환 인덱스는 LFNST 인덱스로 명명될 수 있다.
한편, 2차 역변환이 RST를 기반으로 이루어지는 경우, 인코딩 장치(200)의 역변환부(235)와 디코딩 장치(300)의 역변환부(322)는 변환 계수들에 대한 역 RST을 기반으로 수정된 변환 계수들을 도출하는 역 RST부와, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역 1차변환부를 포함할 수 있다. 역 1차변환은 레지듀얼에 적용되었던 1차 변환의 역변환을 의미한다. 본 문서에서 변환을 기반으로 변환 계수를 도출하는 것은 해당 변환을 적용하여 변환 계수를 도출하는 것을 의미할 수 있다.
도 8은 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
본 명세서에서 “대상 블록”은 코딩이 수행되는 현재 블록 또는 레지듀얼 블록 또는 변환 블록을 의미할 수 있다.
일 실시예에 따른 RST에서, N차원 벡터(N dimensional vector)가 다른 공간에 위치한 R차원 벡터(R dimensional vector)에 매핑되어 감소된 변환 매트릭스가 결정될 수 있으며, 여기서 R은 N보다 작다. N은 변환이 적용되는 블록의 한 변의 길이(length)의 제곱 또는 변환이 적용되는 블록과 대응되는 변환 계수들의 총 개수를 의미할 수 있고, 간소화 팩터는 R/N값을 의미할 수 있다. 간소화 팩터는 감소된 팩터, 감소 팩터, reduced factor, reduction factor, simplified factor, simple factor 등 다양한 용어로 지칭될 수 있다. 한편, R은 간소화 계수(reduced coefficient)로 지칭될 수 있으나, 경우에 따라서는 간소화 팩터가 R을 의미할 수도 있다. 또한, 경우에 따라서 간소화 팩터는 N/R값을 의미할 수도 있다.
일 실시예에서, 간소화 팩터 또는 간소화 계수는 비트스트림을 통하여 시그널링될 수 있으나, 실시예가 이에 한정되는 것은 아니다. 예를 들어, 간소화 팩터 또는 간소화 계수에 대한 기 정의된 값이 각 인코딩 장치(200) 및 디코딩 장치(300)에 저장되어 있을 수 있으며, 이 경우 간소화 팩터 또는 간소화 계수는 별도로 시그널링되지 않을 수 있다.
일 실시예에 따른 간소화 변환 매트릭스의 사이즈는 통상의 변환 매트릭스의 사이즈 NxN보다 작은 RxN이며, 아래의 수학식 7과 같이 정의될 수 있다.
Figure pct00015
도 8의 (a)에 도시된 Reduced Transform 블록 내의 매트릭스 T는 수학식 7의 매트릭스 TRxN를 의미할 수 있다. 도 8의 (a)와 같이 대상 블록에 대한 레지듀얼 샘플들에 대하여 간소화 변환 매트릭스 TRxN가 곱해지는 경우, 대상 블록에 대한 변환 계수들이 도출될 수 있다.
일 실시예에서, 변환이 적용되는 블록의 사이즈가 8x8이고, R=16 (즉, R/N=16/64=1/4이다)인 경우, 도 8의 (a)에 따른 RST는 아래의 수학식 8과 같은 행렬 연산으로 표현될 수 있다. 이 경우, 메모리와 곱하기 연산이 간소화 팩터에 의하여 대략 1/4로 감소할 수 있다.
본 문서에서 행렬 연산이란, 행렬을 열 벡터의 왼쪽에 두고 행렬과 열 벡터를 곱하여 열 벡터를 얻는 연산으로 이해될 수 있다.
Figure pct00016
수학식 8에서 r1 내지 r64는 대상 블록에 대한 레지듀얼 샘플들을 나타낼 수 있고, 보다 구체적으로, 일차 변환을 적용하여 생성된 변환 계수일 수 있다. 수학식 8의 연산 결과 대상 블록에 대한 변환 계수들 ci가 도출될 수 있으며, ci의 도출 과정은 수학식 9와 같을 수 있다.
Figure pct00017
수학식 9의 연산 결과, 대상 블록에 대한 변환 계수들 c1 내지 cR이 도출될 수 있다. 즉, R=16인 경우, 대상 블록에 대한 변환 계수들 c1 내지 c16이 도출될 수 있다. 만약 RST가 아니라 통상의(regular) 변환이 적용되어 사이즈가 64x64(NxN)인 변환 매트릭스가 사이즈가 64x1(Nx1)인 레지듀얼 샘플들에 곱해졌다면 대상 블록에 대한 변환 계수들이 64개(N개)가 도출되었겠지만, RST가 적용되었기 때문에 대상 블록에 대한 변환 계수들이 16개(R개)만 도출되는 것이다. 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 인코딩 장치(200)가 디코딩 장치(300)로 전송하는 데이터의 양이 감소하므로 인코딩 장치(200)-디코딩 장치(300) 간 전송 효율이 증가할 수 있다.
변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 변환 매트릭스의 사이즈는 16x64(RxN)로 감소하므로, 통상의 변환을 수행할 때와 비교하면 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(RxN)시킬 수 있다.
일 실시예에서, 인코딩 장치(200)의 변환부(232)는 대상 블록에 대한 레지듀얼 샘플들을 1차 변환 및 RST 기반의 2차 변환을 수행함으로써 대상 블록에 대한 변환 계수들을 도출할 수 있다. 이러한 변환 계수들은 디코딩 장치(300)의 역변환부로 전달될 수 있으며, 디코딩 장치(300)의 역변환부(322)는 변환 계수들에 대한 역 RST(reduced secondary transform)을 기반으로 수정된 변환 계수들을 도출하고, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다.
일 실시예에 따른 역 RST 매트릭스 TNxR의 사이즈는 통상의 역변환 매트릭스의 사이즈 NxN보다 작은 NxR이며, 수학식 7에 도시된 간소화 변환 매트릭스 TRxN과 트랜스포즈(transpose) 관계에 있다.
도 8의 (b)에 도시된 Reduced Inv. Transform 블록 내의 매트릭스 Tt는 역 RST 매트릭스 TRxN T을 의미할 수 있다(위첨자 T는 트랜스포즈를 의미한다). 도 8의 (b)와 같이 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지는 경우, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다. 역 RST 매트릭스 TRxN T는 (TRxN)T NxR로 표현할 수도 있다.
보다 구체적으로, 2차 역변환으로 역 RST가 적용되는 경우에는, 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지면 대상 블록에 대한 수정된 변환 계수들이 도출될 수 있다. 한편, 역 1차변환으로 역 RST가 적용될 수 있고, 이 경우 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxNT가 곱해지면 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다.
일 실시예에서, 역변환이 적용되는 블록의 사이즈가 8x8이고, R=16(즉, R/N=16/64=1/4인 경우)인 경우, 도 8의 (b)에 따른 RST는 아래의 수학식 10과 같은 행렬 연산으로 표현될 수 있다.
Figure pct00018
수학식 10에서 c1 내지 c16은 대상 블록에 대한 변환 계수들을 나타낼 수 있다. 수학식 10의 연산 결과 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 ri가 도출될 수 있으며, ri의 도출 과정은 수학식 11과 같을 수 있다.
Figure pct00019
수학식 11의 연산 결과, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 r1 내지 rN이 도출될 수 있다. 역변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 역변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 역변환 매트릭스의 사이즈는 64x16(NxR)으로 감소하므로, 통상의 역변환을 수행할 때와 비교하면 역 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 역변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 역변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(NxR)시킬 수 있다.
한편, 8x8 RST에 대해서도, 표 3과 같은 변환 세트 구성을 적용할 수 있다. 즉, 표 3에서의 변환 세트에 따라 해당 8x8 RST가 적용될 수 있다. 하나의 변환 세트는 화면 내 예측 모드에 따라 2개 또는 3개의 변환 (커널)들로 구성되어 있으므로 2차 변환을 적용하지 않는 경우까지 포함하여 최대 네 개의 변환 중 하나를 선택하도록 구성될 수 있다. 2차 변환을 적용하지 않을 때의 변환은 항등 행렬이 적용된 것이 라고 간주될 수 있다. 네 개의 변환에 대해 각기 0, 1, 2, 3의 인덱스를 부여한다고 했을 때(예를 들어, 0번 인덱스를 항등 행렬, 즉 2차 변환을 적용하지 않는 경우로 할당할 수 있음), 변환 인덱스 또는 lfnst 인덱스라는 신택스 요소(syntax element)를 변환 계수 블록마다 시그널링하여 적용될 변환을 지정할 수 있다. 즉, 변환 인덱스를 통해 8x8 좌상단 블록에 대해서, RST 구성에서는 8x8 RST를 지정할 수 있고, 또는 LFNST가 적용되는 경우 8x8 lfnst를 지정할 수 있다. 8x8 lfnst 및 8x8 RST는 변환의 대상이 되는 대상 블록의 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 lfnst 및 4x4 RST는 대상 블록의 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다.
한편, 본 문서의 일 실시예에 따라, 인코딩 과정의 변환에서, 8 x 8 영역을 구성하는 64개의 데이터에 대해 16 x 64 변환 커널 매트릭스가 아닌, 48개의 데이터만을 선택하여 최대 16 x 48 변환 커널 매트릭스를 적용할 수 있다. 여기서, “최대”라는 것은 m 개의 계수를 생성할 수 있는 m x 48 변환 커널 매트릭스에 대해 m의 최대 값이 16이라는 것을 의미한다. 즉, 8 x 8 영역에 m x 48 변환 커널 매트릭스(m ≤ 16)를 적용하여 RST를 수행할 경우, 48개의 데이터를 입력 받아서 m개의 계수를 생성해 낼 수 있다. m이 16인 경우, 48개의 데이터를 입력 받아서 16개의 계수를 생성한다. 즉, 48개의 데이터가 48 x 1 벡터를 이룬다고 했을 때, 16 x 48 행렬과 48 x 1 벡터를 순서대로 곱하여 16 x 1 벡터가 생성될 수 있다. 이 때, 8 x 8 영역을 이루는 48개의 데이터를 적절히 배열하여 48 x 1 벡터를 구성할 수 있다. 예를 들어, 8 x 8 영역 중 우하단 4 x 4 영역을 제외한 영역을 구성하는 48 개의 데이터에 기초하여 48 x 1 벡터를 구성할 수 있다. 이때, 최대 16 x 48 변환 커널 매트릭스를 적용하여 행렬 연산을 수행하면 16개의 수정된 변환 계수가 생성되는데, 16개의 수정된 변환 계수는 스캐닝 순서에 따라 좌상단 4 x 4 영역에 배치될 수 있고, 우상단 4 x 4 영역과 좌하단 4 x 4 영역은 0으로 채워질 수 있다.
디코딩 과정의 역변환에는 상기 서술된 변환 커널 매트릭스의 트랜스포즈된 매트릭스가 사용될 수 있다. 즉, 디코딩 장치에서 수행되는 역변환 과정으로 역 RST 또는 LFNST가 수행되는 경우, 역 RST를 적용할 입력 계수 데이터는 소정의 배열 순서에 따라 1차원 벡터로 구성되고, 1차원 벡터에 해당 역 RST 행렬을 왼쪽에서 곱하여 얻어진 수정된 계수 벡터를 소정의 배열 순서에 따라 2차원 블록에 배열될 수 있다.
정리하면, 변환 과정에서, 8x8 영역에 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 우하단 영역을 제외한 좌상단, 우상단, 좌하단 영역의 48개 변환 계수들과 16x48의 변환 커널 매트릭스와의 행렬 연산이 수행된다. 행렬 연산을 위하여 48개의 변환 계수들은 1차원 배열로 입력된다. 이러한 행렬 연산이 수행되면 16개의 수정된 변환 계수들이 도출되고, 수정된 변환 계수들은 8x8 영역의 좌상단 영역에 배열될 수 있다.
역으로, 역 변환 과정에서, 8x8 영역에 역 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 좌상단에 대응하는 16개의 변환 계수들은 스캐닝 순서에 따라 1차원 배열 형태로 입력되어 48 x 16의 변환 커널 매트릭스와 행렬 연산될 수 있다. 즉, 이러한 경우의 행렬 연산은 (48 x 16 행렬) * (16x1 변환 계수 벡터) = (48 x 1 수정된 변환계수벡터)로 나타낼 수 있다. 여기서 nx1 벡터는 nx1 행렬과 같은 의미로 해석될 수 있으므로, nx1 열 벡터로 표기될 수도 있다. 또한, *은 행렬 곱셈 연산을 의미한다. 이러한 행렬 연산이 수행되면, 48개의 수정된 변환 계수가 도출될 수 있고, 48개의 수정된 변환 계수들은 8x8 영역의 우하단 영역을 제외한 좌상단, 우상단, 좌하단 영역에 배열될 수 있다.
한편, 2차 역변환이 RST를 기반으로 이루어지는 경우, 인코딩 장치(200)의 역변환부(235)와 디코딩 장치(300)의 역변환부(322)는 변환 계수들에 대한 역 RST을 기반으로 수정된 변환 계수들을 도출하는 역 RST부와, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역 1차변환부를 포함할 수 있다. 역 1차변환은 레지듀얼에 적용되었던 1차 변환의 역변환을 의미한다. 본 문서에서 변환을 기반으로 변환 계수를 도출하는 것은 해당 변환을 적용하여 변환 계수를 도출하는 것을 의미할 수 있다.
상술된 비분리 변환, LFNST에 대하여 구체적으로 살펴 보면 다음과 같다. LFNST는 인코딩 장치에에 의한 순방향(forward) 변환과 디코딩 장치에 의한 역방향(inverse) 변환을 포함할 수 있다.
인코딩 장치는 순방향 1차 변환(primary (core) transform)을 적용한 후 도출된 결과(또는 결과의 일부)를 입력으로 하여, 순방향 2차 변환(secondary transform)을 적용한다.
Figure pct00020
상기 수학식 12에서, x와 y는 각각 2차 변환의 입력과 출력이고, G는 2차 변환을 나타내는 행렬로써 변환 기저 벡터(transform basis vector)들은 열 벡터들로 구성된다. 역방향 LFNST의 경우, 변환 행렬 G의 차원(dimension)을 [ row수 x column수 ]로 표기했을 때, 순방향 LFNST의 경우 행렬 G의 트랜스포스를 취한 것이 GT의 차원이 된다.
역방향 LFNST의 경우 행렬 G의 차원은 [ 48 x 16 ], [ 48 x 8 ], [ 16 x 16 ], [16 x 8 ]이 되며, [48 x 8] 행렬과 [16 x 8 ] 행렬은 각각 [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬의 왼쪽부터 8개의 변환 기저 벡터들을 샘플링한 부분 행렬이다.
반면, 순방향 LFNST의 경우 행렬 GT의 차원은 [ 16 x 48 ], [ 8 x 48 ], [ 16 x 16 ], [ 8 x 16 ]이 되며, [ 8 x 48] 행렬과 [ 8 x 16 ] 행렬은 각각 [16 x 48 ] 행렬과 [ 16 x 16 ] 행렬의 위쪽부터 8개의 변환 기저 벡터들을 샘플링한 부분 행렬이다.
따라서, 순방향 LFNST의 경우 입력 x로는 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터가 가능하며 출력 y로는 [ 16 x 1 ] 벡터 또는 [ 8 x 1 ] 벡터가 가능하다. 비디오 코딩 및 디코딩에서 순방향 1차 변환의 출력은 이차원(2D) 데이터이므로 입력 x로서 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터를 구성하기 위하여 순방향 변환의 출력인 2D 데이터를 적절히 배열하여 1차원 벡터를 구성해야 한다.
도 9는 일 예에 따라 순방향 1차 변환의 출력 데이터를 1차원 벡터로 배열하는 순서를 도시한 도면이다. 도 9의 (a) 및 (b)의 왼쪽 도면은 [ 48 x 1 ] 벡터를 만들기 위한 순서를 나타내고, 도 9의 (a) 및 (b)의 오른쪽 도면은 [ 16 x 1 ] 벡터를 만들기 위한 순서를 나타낸다. LFNST의 경우 도 9의 (a) 및 (b)와 같은 순서로 2D 데이터를 순차적으로 배열하여 일차원 벡터 x를 얻을 수 있다.
이러한 순방향 1차 변환의 출력 데이터의 배열 방향은 현재 블록의 인트라 예측 모드에 따라 결정될 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드가 대각선 방향을 기준으로 수평 방향이면 순방향 1차 변환의 출력 데이터들은 도 9의 (a)의 순서로 배열 될 수 있고, 현재 블록의 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향이면 순방향 1차 변환의 출력 데이터들은 도 9의 (b)의 순서로 배열 될 수 있다.
일 예에 따라, 도 9의 (a) 및 (b)의 배열 순서(ordering)와 다른 배열 순서를 적용할 수 있으며, 도 9의 (a) 및 (b)의 배열 순서를 적용하였을 때와 동일한 결과(y 벡터)를 도출하려면 행렬 G의 열 벡터들을 해당 배열 순서에 맞춰서 재배열하면 된다. 즉, x 벡터를 구성하는 각 요소에 대해 항상 동일한 변환 기저 벡터와 곱해지도록 G의 열 벡터들을 재배치할 수 있다.
수학식 12를 통해 도출되는 출력 y는 일차원 벡터이므로, 만약 순방향 2차 변환의 결과를 입력으로 하여 처리하는 구성, 예를 들어 양자화 또는 레지듀얼 코딩을 수행하는 구성들이 입력 데이터로 2차원 데이터가 필요하면 수학식 12의 출력 y 벡터는 다시 2D 데이터로 적절히 배치되어야 한다.
도 10은 일 예에 따라 순방향 2차 변환의 출력 데이터를 2차원 벡터로 배열하는 순서를 도시한 도면이다.
LFNST의 경우 정해진 스캔 순서에 따라 2D 블록에 배치될 수 있다. 도 10의 (a)는 출력 y가 [ 16 x 1 ] 벡터일 경우 2차원 블록의 16개의 위치에 대각 스캔(diagonal scan) 순서에 따라 출력 값이 배치되는 것을 나타낸다. 도 10의 (b)는 출력 y가 [ 8 x 1 ] 벡터일 경우 2차원 블록의 8개의 위치에 대각 스캔 순서에 따라 출력 값이 배치되고 나머지 8개의 위치에는 0으로 채워지는 것을 나타낸다. 도 10의 (b)의 X 는 0으로 채워진 것을 나타낸다.
다른 예에 따라, 양자화 또는 레지듀얼 코딩을 수행하는 구성에 의하여 출력 벡터 y가 처리되는 순서는 기설정된 순서에 따라 수행될 수 있기 때문에 도 10과 같이 출력 벡터 y가 2D 블록에 배치되지 않을 수 있다. 다만, 레지듀얼 코딩의 경우 CG(Coefficient Group)과 같은 2D 블록(예를 들어, 4x4) 단위로 데이터 코딩이 수행될 수 있고, 이 경우 도 10의 대각 스캔 순서와 같이 특정 순서에 따라 데이터가 배열될 수 있다.
한편, 디코딩 장치는 역방향 변환을 위하여 역양자화 과정 등을 통해 출력된 2차원 데이터를 기설정된 스캔 순서에 따라 나열하여 1차원 입력 벡터인 y를 구성할 수 있다. 입력 벡터 y는 하기 수학식에 의해 입력 벡터 x로 출력될 수 있다.
Figure pct00021
역방향 LFNST의 경우 [ 16 x 1 ] 벡터 또는 [ 8 x 1 ] 벡터인 입력 벡터 y에 G 행렬을 곱함으로써, 출력 벡터 x를 도출할 수 있다. 역방향 LFNST의 경우 출력 벡터 x는 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터일 수 있다.
출력 벡터 x는 도 9에 도시된 순서에 따라 2차원 블록에 배치되어 2차원 데이터로 배열되고, 이러한 2차원 데이터는 역방향 1차 변환의 입력 데이터(또는 입력 데이터의 일부)가 된다.
따라서, 역방향 2차 변환은 전체적으로 순방향 2차 변환 과정과 반대이며, 역변환의 경우, 순방향에서와 달리 역방향 2차 변환을 먼저 적용한 후 역방향 1차 변환을 적용하게 된다.
역방향 LFNST에서는 변환 행렬 G로서 [ 48 x 16 ] 행렬 8개와 [ 16 x 16 ] 행렬 8개 중 하나가 선택될 수 있다. [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬 중 어떤 행렬을 적용할지 여부는 블록의 크기와 모양에 따라 결정된다.
또한 8개의 행렬은 상술된 표 3과 같이 4개의 변환 세트로부터 도출될 수 있고, 각 변환 세트는 2개의 행렬로 구성될 수 있다. 4개의 변환 세트 중에서 어떤 변환 세트를 사용할지는 인트라 예측 모드에 따라 결정되며, 보다 구체적으로 광각 인트라 예측 모드(Wide Angle Intra Prediction, WAIP)까지 고려하여 확장된 인트라 예측 모드 값을 기반으로 변환 세트가 결정된다. 선택된 변환 세트를 구성하는 2개의 행렬 중에서 어떤 행렬을 선택할지는 인덱스 시그널링(index signaling)을 통해 도출된다. 보다 구체적으로, 전송되는 인덱스 값으로는 0, 1, 2가 가능하며, 0은 LFNST를 적용하지 않는 것을 지시하고, 1과 2는 인트라 예측 모드 값을 기반으로 선택된 변환 세트를 구성하는 2개의 변환 행렬 중 어느 하나를 지시할 수 있다.
한편, 상술된 표 3은 LFNST에서 WAIP에 의해 확장된 인트라 예측 모드 값에 기초하여 변환 세트가 어떻게 선택되는지를 나타내고 있다. 도 5에서 같이, 14 ~ 33까지의 모드와 35 ~ 80까지의 모드는 모드 34를 중심으로 예측 방향 관점에서 서로 대칭이다. 예를 들어 모드 14과 모드 54는 모드 34에 해당하는 방향을 중심으로 대칭이다. 따라서, 서로 대칭되는 방향에 위치하는 모드끼리는 같은 변환 세트를 적용하게 되며, 표 3에서도 이러한 대칭성이 반영되어 있다.
다만, 모드 54에 대한 순방향 LFNST 입력 데이터는 모드 14에 대한 순방향 LFNST 입력 데이터와 대칭을 이루는 것을 가정한다. 예를 들어, 모드 14와 모드 54에 대해서는 각기 도 9의 (a)와 도 9의 (b)에 도시된 배열 순서를 따라 2 차원 데이터를 1 차원 데이터로 재배열하게 되며, 도 9의 (a)와 도 9의 (b)에 나타난 순서의 패턴은 모드 34가 가리키는 방향(대각선 방항)을 중심으로 대칭인 것을 알 수 있다.
한편, 상술된 바와 같이, [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬 중 어떤 변환 행렬을 LFNST에 적용할지여부는 변환 대상 블록의 크기와 모양에 의해 결정된다.
도 11은 LFNST가 적용되는 블록 모양을 도시한 도면이다. 도 11의 (a)는 4 x 4 블록을, (b)는 4 x 8 및 8 x 4 블록을, (c)는 N이 16이상인 4 x N 또는 N x 4 블록을, (d)는 8 x 8 블록을, (e)는 M ≥8, N ≥8 이고, N 〉8 또는 M 〉8인 M x N 블록을 나타내고 있다.
도 11에서 굵은 테두리를 가진 블록들이 LFNST가 적용되는 영역을 가리킨다. 도 11의 (a) 및 (b)의 블록에 대해서는 좌상단(top-left) 4x4 영역에 대해 LFNST가 적용되며, 도 11의 (c)의 블록에 대해서는 연속되어 배치된 2개의 좌상단 4x4 영역에 대해 각각 LFNST가 적용된다. 도 11의 (a), (b), (c)에서는 4x4 영역 단위로 LFNST가 적용되므로 이러한 LFNST를 이하 “4x4 LFNST”로 명명하기로 하며, 해당 변환 행렬로는 수학식 12 및 수학식 13의 G에 대한 행렬 차원을 기준 [ 16 x 16 ] 또는 [ 16 x 8 ] 행렬이 적용될 수 있다.
보다 구체적으로, 도 11의 (a)의 4x4 블록(4x4 TU 또는 4x4 CU)에 대해서는 [ 16 x 8 ] 행렬이 적용되고, 도 11의 (b) 및 (c)에서의 블록에 대해서는 [ 16 x 16 ] 행렬이 적용된다. 이는 최악의 경우(worst case)에 대한 계산 복잡도를 샘플 당 8 곱셈(8 multiplications per sample)로 맞추기 위해서이다.
도 11의 (d) 및 (e)에 대해서는 좌상단 8x8 영역에 대해 LFNST가 적용되며, 이러한 LFNST를 이하 “8x8 LFNST”로 명명하기로 한다. 해당 변환 행렬로는 [ 48 x 16 ] 또는 [ 48 x 8 ] 행렬이 적용될 수 있다. 순방향 LFNST의 경우 입력 데이터로 [ 48 x 1 ] 벡터(수학식 12의 x 벡터)가 입력되므로, 좌상단 8x8 영역의 모든 샘플값들이 순방향 LFNST의 입력값으로 사용되지 않는다. 즉, 도 9의 (a)의 왼편 순서 또는 도 9의 (b)의 왼편 순서에서 볼 수 있듯이, 우하단(bottom-right)의 4x4 블록은 그대로 두고 나머지 3개의 4x4 블록들에 속한 샘플들에 기초하여[ 48 x 1 ] 벡터를 구성할 수 있다.
도 11의 (d)에서의 8x8 블록(8x8 TU 또는 8x8 CU)에 [ 48 x 8 ] 행렬이 적용되고, 도 11의 (e)에서의 8x8 블록에 [ 48 x 16 ] 행렬이 적용될 수 있다. 이 역시 최악의 경우(worst case)에 대한 계산 복잡도를 샘플 당 8 곱셈(8 multiplications per sample)로 맞추기 위함이다.
블록 모양에 따라 이에 대응하는 순방향 LFNST(4x4 LFNST 또는 8x8 LFNST)가 적용되면 8개 또는 16개의 출력 데이터(수학식 12에서의 y 벡터, [ 8 x 1 ] 또는 [ 16 x 1 ] 벡터)가 생성되며, 순방향 LFNST에서는 행렬 GT의 특성상 출력 데이터의 수가 입력 데이터의 수보다 같거나 적게 된다.
도 12는 일 예에 따라 순방향 LFNST의 출력 데이터의 배열 도시한 도면으로, 블록 모양에 따라 순방향 LFNST의 출력 데이터가 배치되는 블록을 나타내고 있다.
도 12에 도시된 블록의 좌상단에 음영으로 처리된 영역이 순방향 LFNST의 출력 데이터가 위치하는 영역에 해당하며, 0으로 표기된 위치는 0 값으로 채워지는 샘플들을 나타내며, 나머지 영역은 순방향 LFNST에 의해 변경되지 않는 영역을 나타낸다. LFNST에 의해 변경되지 않는 영역에는 순방향 1차 변환의 출력 데이터가 변경되지 않고 그대로 존재한다.
상술된 바와 같이, 블록 모양에 따라 적용되는 변환 행렬의 차원이 달라지므로 출력 데이터의 수도 달라진다. 도 12와 같이, 순방향 LFNST의 출력 데이터가 좌상단 4x4 블록을 다 채우지 못할 수도 있다. 도 12의 (a) 및 (d)의 경우 굵은 선으로 표시된 블록 또는 블록 내부의 일부 영역에는 각각 [ 16 x 8 ] 행렬과 [ 48 x 8 ] 행렬이 적용되어 순방향 LFNST의 출력으로 [ 8 x 1 ] 벡터가 생성된다. 즉, 도 10의 (b)에 도시된 스캔 순서에 따라 8개의 출력 데이터만 도 12의 (a) 및 (d)와 같이 채워지고, 나머지 8개의 위치에 대해서는 0이 채워질 수 있다. 도 11의 (d)의 LFNST 적용 블록의 경우, 도 12의 (d)와 같이 좌상단 4x4 블록에 인접한 우상단 및 좌하단 두 개의 4x4 블록도 0 값으로 채워진다.
상기와 같이, 기본적으로 LFNST 인덱스를 시그널링하여 LFNST 적용 여부 및 적용할 변환 행렬을 지정하게 된다. 도 12에 도시된 바와 같이, LFNST가 적용될 경우 순방향 LFNST의 출력 데이터 수가 입력 데이터 수보다 같거나 적을 수 있기 때문에 0 값으로 채워지는 영역이 다음과 같이 발생한다.
1) 도 12의 (a)와 같이 좌상단 4x4 블록 내에 스캔 순서상 8번째 이후의 위치들, 즉 9번째부터 16번째까지 샘플
2) 도 12의 (d) 및 (e)와 같이, [ 16 x 48 ] 행렬 또는 [ 8 x 48 ] 행렬이 적용되어 좌상단 4x4 블록에 인접한 두 개의 4x4 블록들 또는 스캔 순서상 두 번째와 세 번째 4x4 블록들
따라서, 상기 1)과 2)의 영역을 체크하여 0이 아닌(non-zero) 데이터가 존재하게 되면 LFNST가 적용되지 않은 것이 확실하므로, 해당 LFNST 인덱스의 시그널링을 생략할 수 있게 된다.
일 예에 따라, 예컨대 VVC 표준에 채택된 LFNST의 경우 LFNST 인덱스의 시그널링은 레지듀얼 코딩 이후에 수행되므로, 인코딩 장치는 레지듀얼 코딩을 통해 TU 또는 CU 블록 내부의 모든 위치에 대한 0이 아닌 데이터(유효 계수)의 존재 여부를 알 수 있게 된다. 따라서, 인코딩 장치는 0이 아닌 데이터 존재 여부를 통해 LFNST 인덱스에 대한 시그널링을 수행할지 여부를 판단할 수 있고, 디코딩 장치는 LFNST 인덱스의 파싱 여부를 판단할 수 있다. 만약 상기 1)과 2)에서 지정된 영역에 0이 아닌 데이터가 존재하지 않는 경우 LFNST 인덱스의 시그널링을 수행하게 된다.
LFNST 인덱스에 대한 이진화 방법으로 트런케이티드 유너리 코드(runcated unary code)를 적용하므로 LFNST 인덱스는 최대 2개의 빈으로 구성되며, 가능한 LFNST 인덱스 값인 0, 1, 2에 대한 이진화 코드(binary code)로는 각기 0, 10, 11이 할당된다. 현재 VVC에 채택된 LFNST의 경우 첫 번째 빈에 대해서는 컨텍스트 기반 CABAC 코딩이 적용되며(regular coding), 두 번째 빈에 대해서는 바이 패스 코딩(bypass coding)이 적용된다. 첫 번째 빈에 대한 총 컨텍스트 수는 2개이며, 수평 방향과 수직 방향에 대한 1차 변환 페어(primary transform pair)로서 (DCT-2, DCT-2)가 적용되고, 루마 성분과 크로마 성분이 듀얼 트리 타입으로 코딩되는 경우 하나의 컨텍스트가 할당되고, 나머지 경우들에 대하여 다른 하나의 컨텍스트가 적용된다. 이와 같은 LFNST 인덱스의 코딩을 표로 나타내면 다음과 같다.
Figure pct00022
한편, 채택된 LFNST에 대해서, 다음과 같은 단순화 방법들이 적용될 수 있다.
(i) 일 예에 따라, 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정할 수 있다.
도 11의 (c)의 경우, 좌상단에 인접한 2개의 4x4 영역에 각각 4x4 LFNST가 적용될 수 있고, 이 때 최대 32개의 LFNST 출력 데이터가 생성될 수 있다. 만약 순방향 LFNST에 대한 출력 데이터 수를 최대 16로 한정하면, 4xN/Nx4 (N≥16) 블록(TU 또는 CU)에 대해서도 좌상단에 존재하는 1개의 4x4 영역에 대해서만 4x4 LFNST를 적용하고, 도 11의 모든 블록들에 대해 LFNST를 한 번만 적용할 수 있다. 이를 통해 영상 코딩에 대한 구현이 단순해질 수 있다.
도 13은 일 예에 따라 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정한 것을 나타낸다. 도 13과 같이 N이 16이상인 4 x N 또는 N x 4 블록에서 최좌상단 4x4 영역에 대해 LFNST가 적용되면, 순방향 LFNST의 출력 데이터는 16개가 된다.
(ii) 일 예에 따라, LFNST가 적용되지 않는 영역에 대하여 추가적으로 제로 아웃(zero-out)을 적용할 수 있다. 본 문서에서 제로 아웃은 특정 영역에 속한 모든 위치들의 값을 0 값으로 채우는 것을 의미할 수 있다. 즉, LFNST로 인해 변경되지 않고 순방향 1차 변환의 결과를 유지하고 있는 영역에 대해서도 제로 아웃을 적용할 수 있다. 상술하였듯이 LFNST는 4x4 LFNST와 8x8 LFNST로 구분되므로, 다음과 같이 두 종류((ii)-(A) 및 (ii)-(B))로 제로 아웃을 구분할 수 있다.
(ii)-(A) 4x4 LFNST가 적용될 때 4x4 LFNST가 적용되지 않는 영역을 제로 아웃할 수 있다. 도 14는 일 예에 따라 4x4 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 14와 같이, 4x4 LFNST가 적용되는 블록에 대하여, 즉 도 12의 (a), (b) 및 (c)의 블록에 대하여 LFNST가 적용되지 않는 영역까지 모두 0으로 채워질 수 있다.
한편, 도 14의 (d)는 도 13과 같이 순방향 LFNST의 출력 데이터 개수의 최대값을 16으로 한정한 경우, 4x4 LFNST가 적용되지 않은 나머지 블록에 대하여 제로 아웃을 수행한 것을 나타낸다.
(ii)-(B) 8x8 LFNST가 적용될 때, 8x8 LFNST가 적용되지 않는 영역을 제로 아웃할 수 있다. 도 15는 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 15와 같이, 8x8 LFNST가 적용되는 블록에 대하여, 즉 도 12의 (d) 및 (e)의 블록에 대하여 LFNST가 적용되지 않는 영역까지 모두 0으로 채워질 수 있다.
(iii) 상기 (ii)에서 제시한 제로 아웃으로 인해 LFNST가 적용될 때 0으로 채워지는 영역이 달라질 수 있다. 따라서, 상기 (ii)에서 제안된 제로 아웃에 따라 0이 아닌 데이터가 존재하는지 여부를 도 12의 LFNST의 경우보다 넓은 영역에 대해 체크할 수 있다.
예를 들어, (ii)-(B)를 적용하는 경우, 도 12의 (d) 및 (e)에서 0 값으로 채워지는 영역에 추가하여 도 15에서 추가적으로 0으로 채워진 영역까지 0이 아닌 데이터가 존재하는지 여부를 체크한 후, 0이 아닌 데이터가 존재하지 않는 경우에만 LFNST 인덱스에 대한 시그널링을 수행할 수 있다.
물론, 상기 (ii)에서 제안된 제로 아웃을 적용하더라도 기존 LFNST 인덱스 시그널링과 동일하게 0이 아닌 데이터가 존재하는지 여부를 체크할 수 있다. 즉, 도 12에 0으로 채워진 블록에 대하여 0이 아닌 데이터가 존재하는지 여부를 체크하고 LFNST 인덱스 시그널링을 적용할 수 있다. 이러한 경우 인코딩 장치에만 제로 아웃을 수행하고 디코딩 장치에서는 해당 제로 아웃을 가정하지 않고, 즉 도 12에서 명시적으로 0으로 표기된 영역에 대해서만 0이 아닌 데이터가 존재하는지 여부만 체크하고 LFNST 인덱스 파싱을 수행할 수 있다.
또는 다른 예에 따라, 도 16과 같이 제로 아웃을 수행할 수도 있다. 도 16은 다른 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 14 및 도 15와 같이, LFNST가 적용되는 영역 이외의 영역에 대해서 모두 제로 아웃을 적용할 수도 있고, 도 16과 같이 부분적인 영역에 대해서만 제로 아웃을 적용하는 것도 가능하다. 도 16의 좌상단 8x8 영역 이외의 영역에 대해서만 제로 아웃을 적용하고, 좌상단 8x8 영역 내부의 우하단 4x4 블록에 대해서는 제로 아웃을 적용하지 않을 수 있다.
상기 LFNST에 대한 단순화 방법들((i), (ii)-(A), (ii)-(B), (iii))의 조합을 적용한 다양한 실시예들이 도출될 수 있다. 물론, 상기 단순화 방법들에 대한 조합은 아래 실시예에 한정되지 않으며, 임의의 조합을 LFNST에 적용할 수 있다.
실시예
- 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정 →(i)
- 4x4 LFNST가 적용될 때 4x4 LFNST가 적용되지 않는 영역을 모두 제로 아웃→ (ii)-(A)
- 8x8 LFNST가 적용될 때 8x8 LFNST가 적용되지 않는 영역을 모두 제로 아웃→ (ii)-(B)
- 기존 0 값으로 채워지는 영역과 추가적인 제로 아웃((ii)-(A), (ii)-(B))으로 인하여 0으로 채워지는 영역에 대해서도 0이 아닌 데이터가 존재하는지 여부를 체크한 후, 0이 아닌 데이터가 존재하지 않는 경우에만 LFNST 인덱싱 시그널링→ (iii)
상기 실시예의 경우, LFNST가 적용될 때 0이 아닌 출력 데이터가 존재할 수 있는 영역이 좌상단 4x4 영역 내부로 제한된다. 보다 상세하게 도 14의 (a)와 도 15의 (a)의 경우 스캔 순서상 8번째 위치가 0이 아닌 데이터가 존재할 수 있는 가장 마지막 위치가 되며, 도 14의 (b) 및 (d)와 도 15의 (b)의 경우 스캔 순서상 16번째 위치(즉, 좌상단 4x4 블록의 우하단 가장 자리 위치)가 0이 아닌 데이터가 존재할 수 있는 가장 마지막 위치가 된다.
따라서, LFNST가 적용되었을 때 레지듀얼 코딩 과정이 허용되지 않는 위치(가장 마지막 위치를 넘어 선 위치에서)에서 0이 아닌 데이터가 존재하는지 여부를 체크한 후 LFNST 인덱스 시그널링 여부가 결정될 수 있다.
(ii)에서 제안된 제로 아웃 방식의 경우 1차 변환과 LFNST를 모두 적용했을 때 최종적으로 발생하게 되는 데이터의 수를 줄이기 때문에 전체 변환 과정을 수행할 때 요구되는 계산량을 줄일 수 있다. 즉, LFNST가 적용되는 경우, LFNST가 적용되지 않는 영역에 존재하는 순방향 1차 변환 출력 데이터에 대해서도 제로 아웃을 적용하기 때문에, 순방향 1차 변환을 수행할 때부터 제로 아웃이 되는 영역에 대한 데이터를 생성할 필요가 없다. 따라서, 해당 데이터 생성에 요구되는 연산량을 절약할 수 있다. (ii)에서 제안된 제로 아웃 방식의 추가적인 효과를 정리해 보면 다음과 같다.
첫 번째, 상기된 바와 같이 전체 변환 과정의 수행에 필요한 계산량이 저감된다.
특히 (ii)-(B)를 적용하는 경우 최악의 경우에 대한 계산량이 감소하여 변환 과정을 경량화할 수 있다. 부연하자면, 일반적으로 큰 사이즈의 1차 변환 수행에 많은 양의 연산이 요구되는데, (ii)-(B)를 적용하게 되면 순방향 LFNST 수행 결과로 도출되는 데이터의 수를 16개 이하로 줄일 수 있으며, 전체 블록 (TU 또는 CU) 크기가 커질수록 변환 연산량 저감 효과는 더욱 증가된다.
두 번째, 변환 과정 전체에 필요한 연산량이 감소하여 변환 수행에 필요한 전력 소비를 줄일 수 있다.
세 번째, 변환 과정에 수반되는 지연 시간(latency)을 감소시킨다.
LFNST와 같은 2차 변환은 기존 1차 변환에 계산량을 추가하게 되므로 변환 수행에 수반되는 전체 지연 시간을 증가시킨다. 특히 인트라 예측의 경우, 예측 과정에서 이웃 블록의 복원 데이터가 사용되므로, 인코딩 시 2차 변환으로 인한 지연 시간 증가가 복원(reconstruction)까지의 지연 시간 증가로 이어지게 되어, 인트라 예측 인코딩의 전체적인 지연 시간 증가로 이어질 수 있다.
하지만, (ii)에서 제시한 제로 아웃을 적용하게 되면 LFNST 적용 시 1차 변환 수행의 지연 시간을 대폭 줄일 수 있기 때문에, 변환 수행 전체에 대한 지연 시간은 그대로 유지되거나 오히려 줄어들게 되어 인코딩 장치를 보다 간단하게 구현할 수 있다.
이하는 상기 실시예가 반영된 영상 디코딩 과정을 표로 나타낸 것이다.
Figure pct00023
표 5는 변환 블록의 크기에 대한 신택스 정보인 sps_log2_max_luma_transform_size_minus5가 시퀀스 파라미터 세트 신택스를 통하여 시그널링되는 것을 나타내고 있다. 시멘틱스에 따르면, sps_log2_max_luma_transform_size_minus5는 최대 변환 크기에 밑이 2인 로그를 취한 값에서 5를 뺀 값을 나타낸다.
변환이 수행될 수 있는 변환 블록의 최소 사이즈(MinTbSizeY)는 4로 설정(MinTbSizeY = 1 << MinTbLog2SizeY)되고, 변환이 수행될 수 있는 변환 블록의 최대 사이즈는 sps_log2_max_luma_transform_size_minus5 에서 5를 더한 값의 2의 거듭제곱승(MaxTbLog2SizeY = sps_log2_max_luma_transform_size_minus5 + 5, MaxTbSizeY = 1 << MaxTbLog2SizeY)으로 도출될 수 있다.
sps_log2_max_luma_transform_size_minus5는 1비트로 구성되어 0 또는 1의 값을 가지기 때문에 상기 표 5의 sps_log2_max_luma_transform_size_minus5에 기초하여 최대 변환 블록의 폭 및 높이는 32 또는 64로 설정될 수 있다.
한편, 다른 실시예에 따르면, 최대 변환 블록의 크기에 대한 플래그 정보 sps_max_luma_transform_size_64_flag가 시그널링될 수 있다. sps_max_luma_transform_size_64_flag가 1이면 변환 블록의 최대 크기는 64가 되고, sps_max_luma_transform_size_64_flag가 0이면 변환 블록의 최대 크기는 32가 된다.
Figure pct00024
표 6은 코딩 유닛 레벨에서 시그널링 되는 lfnst_idx[ x0 ][ y0 ] 신텍스 요소를 나타내고 있다. lfnst_idx[ x0 ][ y0 ] 은 변환 세트에 포함되어 있는 두 개의 변환 커널 매트릭스 중에서 어느 하나를 지시할 수 있으며, lfnst_idx가 0이면 비분리 2차 변환, 즉 LFNST가 적용되지 않는 것을 나타낼 수 있다. lfnst_idx[ x0 ][ y0 ]가 존재하지 않으면 0 값으로 간주하게 된다.
lfnst_idx가 디코딩 장치에서 파싱되기 위해서는 많은 조건을 만족해야 한다. 우선, 최초의 변수 LfnstDcOnly와 변수 LfnstZeroOutSigCoeffFlag는 1로 설정된다. 이후 변환 트리에 대한 신택스(transform_tree( x0, y0, cbWidth, cbHeight, treeType ))의 파싱 이후 1로 설정된 변수 LfnstDcOnly가 0으로 변경되고, 변수 LfnstZeroOutSigCoeffFlag 값이 1로 유지되면, lfnst_idx가 파싱될 수 있다[ if( LfnstDcOnly = = 0 && LfnstZeroOutSigCoeffFlag = = 1 )]. 변수 LfnstDcOnly와 변수 LfnstZeroOutSigCoeffFlag는 레지듀얼 코딩 신택스 정보(Residual coding syntax)를 통하여 도출될 수 있다.
한편, lfnst_idx[ x0 ][ y0 ]가 코딩될 수 있는 최대 코딩 블록 크기는 최대 변환 사이즈로 한정된다(Max( cbWidth, cbHeight ) <= MaxTbSizeY).
또한, 코딩 블록의 폭(cbWidth)과 코딩 블록의 높이(cbHeight)가 각기 루마 성분에 대한 코딩 블록의 폭과 코딩 블록의 높이를 가리키므로 크로마 성분의 경우는 이미지 컬러 포맷(예를 들어, 4:2:0)에 따라 보다 작은 크기에 블록에 대해 각각 LFNST가 적용될 수 있다.
구체적으로 설명하면, 표 6에 나타난 바와 같이, 대상 블록의 트리 타입이 듀얼 트리 크로마이면, 루마 코딩 블록의 크기에 크로마 포맷에 대한 변수를 나타내는 SubWidthC와 SubHeight만큼 나누어진 크기의 크로마 블록에 대하여 LFNST가 적용될 수 있다[lfnstWidth = ( treeType == DUAL_TREE_CHROMA ) ? cbWidth / SubWidthC : cbWidth, lfnstHeight = ( treeType == DUAL_TREE_CHROMA ) ? cbHeight / SubHeightC : cbHeight].
만약, 컬러 포맷이 4:2:0이면, SubWidthC와 SubHeight는 2가 되므로, 루마 블록의 폭 및 높이를 2로 나눈 폭 및 높이를 갖는 크로마 블록에 대하여 LFNST가 적용될 수 있다. 따라서, 루마 블록의 크기가 64x64 블록보다 같거나 작을 때 LFNST가 적용될 수 있으므로, 컬러 포맷이 4:2:0인 경우 크로마 블록의 크기가 32x32 블록보다 같거나 작을 때 LFNST가 적용될 수 있다.
한편, 본 문서에서, 블록 A의 가로 길이와 세로 길이가 각기 Wa, Ha이고 블록 B의 가로 길이와 세로 길이가 각기 Wb, Hb일 때, 블록 A가 블록 B보다 작다는 의미는, Wa가 Wb보다 같거나 작고 Ha가 Hb보다 같거나 작으면서, Wa와 Wb가 같지 않거나 Ha와 Hb가 같지 않은 경우를 나타낸다. 또한, 블록 A가 블록 B보다 작거나 같다는 의미는, Wa가 Wb보다 같거나 작고 Ha가 Hb보다 같거나 작은 것을 가리킨다.
정리하면, 대상 블록의 크기가 기설정된 최대 크기보다 같거나 작은 경우 LFNST가 적용될 수 있으며, 이러한 최대 크기는 루마 블록의 크기에 적용될 수 있으며, 이에 대응하여 LFNST가 적용될 수 있는 크로마 블록의 최대 크기가 도출될 수 있다.
Figure pct00025
표 7은 변환 블록에 대하여 변환 스킵 여부를 지시하는 transform_skip_flag 및 1차 변환을 위한 변환 커널 인덱스 정보인 tu_mts_idx[ x0 ][ y0 ]를 나타내고 있다.
표 7과 같이, tu_mts_idx[ x0 ][ y0 ]가 시그널링되기 위해서는, 현재 블록의 예측 모드가 인터 모드 이거나 MTS가 인터 예측에 의해 생성된 레지듀얼 데이터에 적용될 수 있는지 여부를 명시적으로 지시하는 플래그 정보 sps_explicit_mts_inter_enabled_flag가 1인 경우[(CuPredMode[ x0 ][ y0 ] = = MODE_INTER && sps_explicit_mts_inter_enabled_flag )] 또는 현재 블록의 예측 모드가 인트라 모드 이거나 MTS가 인트라 예측에 의해 생성된 레지듀얼 데이터에 적용될 수 있는지 여부를 명시적으로 지시하는 플래그 정보 sps_explicit_mts_intra_enabled_flag가 1인 경우[(CuPredMode[ x0 ][ y0 ] = = MODE_INTRA && sps_explicit_mts_intra_enabled_flag )]일 수 있다.
추가적으로, transform_skip_flag가 0이 아닌 조건을 만족할 때, tu_mts_idx[ x0 ][ y0 ]가 파싱될 수 있다.
한편, 다른 예에 따라, 상기 tu_mts_idx[ x0 ][ y0 ]는 변환 유닛 레벨이 아닌 표 6의 코딩 유닛 레벨에서 시그널링 될 수도 있다.
Figure pct00026
Figure pct00027
표 8은 레지듀얼 코딩 신택스를 나타내며, 표 6의 변수 LfnstDcOnly 및 변수 LfnstZeroOutSigCoeffFlag가 도출되는 과정이 나타나 있다.
변환 블록의 크기를 기반으로 서브 블록에 대한 높이 및 폭을 지시하는 변수 log2SbW 및 변수 log2SbH가 도출될 수 있고, 서브 블록 내 존재할 수 있는 계수의 수를 나타내는 numSbCoeff는 변수 log2SbW 및 변수 log2SbH를 기반으로 설정될 수 있다[numSbCoeff = 1 << ( log2SbW + log2SbH )].
서브 블록 내에서 마지막 유효 계수의 위치를 나타내는 변수 lastScanPos는 처음에는 numSbCoeff로 설정되고, 마지막 0이 아닌 계수가 존재하는 서브 블록을 지시하는 변수 lastSubBlock는 처음에는“( 1 << ( log2TbWidth + log2TbHeight - ( log2SbW + log2SbH ) ) ) - 1”으로 설정된다.
lastSubBlock에 대응하는 서브 블록 내에서 대각 방향으로 스캔되면서[lastScanPos- -], 해당 위치에 0이 아닌 마지막 유효 계수가 존재하는지 여부가 체크된다.
lastSubBlock이 가리키는 서브 블록 내에서 변수 lastScanPos가 0이 될 때까지도 유효 계수가 발견되지 않으면, 변수 lastScanPos는 다시 numSbCoeff로 설정되고, 변수 lastSubBlock 역시 스캔 방향으로 다음에 위치하는 서브 블록으로 변경된다[lastSubBlock- -].
즉, 스캔 방향에 따라 변수 lastScanPos 및 변수 lastSubBlock가 업데이트되면서 마지막 0이 아닌 계수가 존재하는 위치가 파악된다.
변수 LfnstDcOnly는 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하는지 여부를 나타내며, 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하면 0이 되고, 하나의 코딩 유닛 내의 모든 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하지 않으면 1이 된다. 본 문서에서 DC 성분은 2D 성분에 대한 위치 기준으로 (0, 0) 또는 좌상단 위치를 가리킨다.
하나의 코딩 유닛 내에서는 여러 개의 변환 블록이 존재할 수 있다. 예를 들어, 크로마 성분의 경우 Cb와 Cr에 대한 변환 블록이 존재하고, 싱글 트리 타입의 경우 루마, Cb 및 Cr에 대한 변환 블록이 존재할 수 있다. 일 예에 따라, 현재의 코딩 블록을 구성하는 변환 블록들 중 하나의 변환 블록에서라도 DC 성분 위치 이외에 0이 아닌 계수가 발견되면 변수 LnfstDcOnly 값은 0으로 설정될 수 있다.
한편, 만약 변환 블록에 0이 아닌 계수가 존재하지 않으면 해당 변환 블록에 대해서는 레지듀얼 코딩이 수행되지 않기 때문에, 해당 변환 블록에 의해 변수 LfnstDcOnly 값이 변경되지 않는다. 따라서, 변환 블록의 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하지 않는다면, 변수 LfnstDcOnly 값이 변경되지 않고 이전 값을 유지한다. 예를 들어, 코딩 유닛이 싱글 트리 타입으로 코딩되고 루마 변환 블록으로 인해 변수 LfnstDcOnly 값이 0으로 변경되었다면, Cb/Cr 변환 블록에서 DC 성분에만 0이 아닌 계수가 존재하거나 Cb/Cr 변환 블록에 0이 아닌 계수가 존재하지 않는다고 할지라도, 변수 LfnstDcOnly는 0 값으로 그대로 유지된다. 변수 LfnstDcOnly 값은 처음에 1로 초기화되고 현재 코딩 유닛 내에 어떤 성분도 변수 LfnstDcOnly 값을 0으로 갱신하지 못하면 그대로 1 값을 유지하게 되며, 해당 코딩 유닛을 구성하는 변환 블록들 중 하나라도 변수 LfnstDcOnly 값을 0으로 갱신하게 되면 최종적으로 0으로 유지된다.
표 8에 나타난 바와 같이, 마지막 0이 아닌 계수가 존재하는 서브 블록의 인덱스가 0이고[lastSubBlock = = 0], 해당 서브 블록에서 마지막 0이 아닌 계수의 위치가 0보다 크면[lastScanPos > 0], 변수 LfnstDcOnly는 0으로 도출될 수 있다. 변환 블록의 폭 및 높이가 4 이상이고[log2TbWidth >= 2 && log2TbHeight >= 2], 변환 스킵이 적용되지 않는 경우[!transform_skip_flag[ x0 ][ y0 ]]에만 변수 LfnstDcOnly는 0으로 도출될 수 있다.
LFNST가 적용되었다는 것을 가정했을 때 제로 아웃이 제대로 수행되었는지를 나타낼 수 있는 변수 LfnstZeroOutSigCoeffFlag는 마지막 0이 아닌 계수가 존재하는 서브 블록의 인덱스가 0보다 크고 변환 블록의 폭 및 높이가 모두 4 이상이거나 [( lastSubBlock > 0 && log2TbWidth >= 2 && log2TbHeight >= 2 )], 0이 아닌 마지막 계수가 존재하는 서브 블록 내부에서의 0인 아닌 계수의 마지막 위치가 7보다 크고, 변환 블록의 크기가 4x4 또는 8x8인 경우[( lastScanPos > 7 && ( log2TbWidth == 2 | | log2TbHeight == 3 ) && log2TbWidth == log2TbHeight )], 0으로 설정된다.
즉, 변수 LfnstZeroOutSigCoeffFlag에 대한 첫 번째 조건은 변환 블록에서 LFNST이 적용될 수 있는 좌상단 영역 이외의 영역에서 0이 아닌 계수가 도출되는 조건(즉, 좌상단 서브 블록(4x4) 이외의 서브 블록 내 유효 계수가 도출되는 경우)으로, 첫 번째 조건을 만족하면 LFNST의 제로 아웃에 대한 플래그 변수 lfnstZeroOutSigCoeffFlag는 0으로 설정된다. 첫 번째 조건을 만족하는 것은 LFNST가 적용되었다는 것을 가정했을 때의 제로 아웃이 수행되지 않는 것을 나타낸다.
변수 LfnstZeroOutSigCoeffFlag에 대한 두 번째 조건은, 4x4 블록 및 8x8 블록에 LFNST가 적용되면 0이 아닌 계수가 존재할 수 있는 마지막 위치는 도 12의 (a) 및 (d)와 같이 8번째 위치이므로, 0부터 시작하였을 때 7번째 위치를 벗어나서 0이 아닌 계수가 존재하면, 플래그 변수 lfnstZeroOutSigCoeffFlag는 0으로 설정된다. 두 번째 조건을 만족하는 것 역시 LFNST가 적용되었다는 것을 가정했을 때의 제로 아웃이 수행되지 않는 것을 나타낸다.
이와 같이, 플래그 변수 lfnstZeroOutSigCoeffFlag가 0으로 설정되면, 표 6과 같이 코딩 유닛 레벨에서 시그널링되는 lfnst_idx는 시그널링 되지 않는다. 즉, 디코딩 장치는 플래그 변수 lfnstZeroOutSigCoeffFlag가 0으로 설정되면, lfnst_idx를 파싱하지 않는다.
정리하면, 코딩 유닛 레벨에서 변수 LfnstDcOnly 및 변수 LfnstZeroOutSigCoeffFlag는 각각 1로 설정되고, 이후 레지듀얼 코딩 레벨에서 표 8과 같은 과정을 통하여 새롭게 도출된다. 레지듀얼 코딩 레벨에서 도출된 변수 LfnstDcOnly가 0이고, 변수 LfnstZeroOutSigCoeffFlag가 1인 경우에만[if( LfnstDcOnly = = 0 && LfnstZeroOutSigCoeffFlag = = 1 )], lfnst_idx가 시그널링될 수 있다.
Figure pct00028
표 9는 크로마 블록에 CCLM이 적용되는 경우, 인트라 예측 모드를 도출하는 과정을 나타낸 것으로, 현재 블록에 CCLM이 적용되는지 여부를 지시하는 플래그 정보 sps_cclm_enabled_flag를 기반으로 크로마 블록에 대한 인트라 예측 모드(IntraPredModeC[ xCb ][ yCb ])를 표[Table 8. 5 및 Table 8. 6]로 나타내고 있다.
Table 8. 5는 sps_cclm_enabled_flag 값이 0인 경우로써, 크로마 블록에 CCLM이 적용되지 않을 때, 크로마 예측 모드 인덱스 정보(intra_chroma_pred_mode[ xCb ][ yCb ]) 0, 1, 2, 3, 4에 따른 크로마 블록에 대한 인트라 예측 모드를 나타내고 있다.
Table 8. 6은 sps_cclm_enabled_flag 값이 1인 경우로써, 크로마 블록에 CCLM이 적용될 때, 크로마 예측 모드 인덱스 정보(intra_chroma_pred_mode[ xCb ][ yCb ]) 0 내지 7에 따른 크로마 블록에 대한 인트라 예측 모드를 나타내고 있다. 크로마 예측 모드 인덱스가 4, 5 및 6일 때, 크로마 블록에 대한 인트라 예측 모드는 81, 82, 83으로 도출된다.
Table 8. 5에서 크로마 예측 모드 인덱스가 4인 경우 및 Table 8. 6에서 크로마 예측 모드 인덱스 cIdx가 7인 경우는 크로마 블록에 DM이 적용되는 것을 나타낸다.
Figure pct00029
Figure pct00030
Figure pct00031
Figure pct00032
표 10 및 표 11은 표 5에서 도출된 변환 블록의 크기를 대한 변수 MaxTbSizeY를 기반으로 인트라 예측 및 인터 예측 과정이 수행되는 것을 나타낸다.
변환 블록의 최대 폭(maxTbWidth) 및 최대 높이(maxTbHeight)는 루마 또는 크로마에 대한 컬러 인덱스에 따라 변수 MaxTbSizeY 또는 컬러 포맷을 반영한 MaxTbSizeY / SubWidthC 중 어느 하나의 값으로 도출된다[maxTbWidth = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubWidthC, maxTbHeight = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubHeightC].
이렇게 도출된 변수 maxTbWidth 및 변수 maxTbHeight에 기초하여 인터 예측 및 인트라 예측에 대한 변환 블록의 높이 및 폭이 설정되고[newTbW = ( nTbW > maxTbWidth ) ? ( nTbW / 2 ) : nTbW, newTbH = ( nTbH > maxTbHeight ) ? ( nTbH / 2 ) : nTbH], 설정된 값에 기초하여 후속적인 예측 과정이 수행될 수 있다.
Figure pct00033
Figure pct00034
Figure pct00035
표 12는 디코딩 장치에서 수행되는 전반적인 변환 과정을 나타낸 것이다.
표 12를 참조하면, LFNST가 적용되기 위하여 행렬 연산이 수행되는 0이 아닌 변수의 크기 또는 개수를 나타내는 변수 nonZeroSize는 8 또는 16으로 설정된다. 변환 블록의 폭 및 높이가 4 또는 8이면, 즉, 도 12와 같이 4 x 4 블록 및 8 x 8 블록의 순방향 LFNST의 출력 데이터 또는 역방향 LFNST의 입력 데이터의 길이는 8이 된다. 그 외의 모든 블록에 대해서는 순방향 LFNST의 출력 데이터 또는 역방향 LFNST의 입력 데이터의 길이는 16이 된다[nonZeroSize = ( ( nTbW = = 4 && nTbH = = 4 ) | | ( nTbW = = 8 && nTbH = = 8 ) ) ? 8 : 16]. 즉, 순방향 LFNST가 적용될 때, 출력되는 데이터의 최대 개수는 16개로 한정된다.
이러한 역방향 LFNST의 입력 데이터는 대각 방향 스캔에 따라 2차원 배열될 수 있다[xC = DiagScanOrder[ 2 ][ 2 ][ x ][ 0 ], yC = DiagScanOrder[ 2 ][ 2 ][ x ][ 1 ]]. 상기 설명된 부분이 상기 LFNST 단순화 방법의 (i)에 대한 디코딩 과정을 나타내고 있다.
이와 같이 변환 블록에 대한 역방향 LFNST의 입력 데이터의 개수가 최대 16으로 한정되므로, 도 13과 같이, N이 16이상인 4 x N 또는 N x 4 블록에서 최좌상단 4x4 영역에 대해 LFNST가 적용될 수 있고, 결과적으로 도 14의 (d)와 같이, 4x4 LFNST가 적용되지 않은 나머지 블록에 대하여 제로 아웃이 수행될 수 있다.
한편, 인트라 예측 모드가 81 보다 크거나 같은 경우, 즉, 크로마 블록의 인트라 예측 시 CCLM가 적용되는 경우, 변환 세트를 도출하기 위한 인트라 예측 모드(predModeIntra)는 대응되는 루마 블록의 인트라 모드(IntraPredModeY[ xTbY + nTbW / 2 ][ yTbY + nTbH / 2 ])로 설정될 수 있다.
한편, 묵시적으로 MTS가 수행되는지 여부를 나타내는 변수 implicitMtsEnabled는 시퀀스 파라미터 레벨에서 시그널링 되는 플래그 정보 sps_mts_enabled_flag가 1이고, sps_explicit_mts_intra_enabled_flag 가 0이고, 현재 블록에 인트라 예측 모드가 적용되고, lfnst_idx 가 0이고, intra_mip_flag가 1인 조건을 만족할 때, 1로 설정될 수 있다.
또한, 역 1차 변환에 입력되는 0이 아닌 변환 계수가 존재할 수 있는 좌상단 블록의 폭 및 높이를 나타내는 변수 nonZeroW 및 nonZeroH는 lfnst 인덱스가 0이 아닌 때, 변환 블록의 폭 또는 너비가 4이면 4로, 나머지 경우 8로 도출된다[nonZeroW = ( nTbW == 4 | | nTbH == 4 ) ? 4 : 8, nonZeroH = ( nTbW == 4 | | nTbH == 4 ) ? 4 : 8]. 즉, 변환 블록에서 lfnst가 적용되는 4x4 영역 및 8x8 영역 이외의 영역은 0으로 채워지는 제로 아웃이 수행됨을 의미한다. 해당 부분은 상기 LFNST 단순화 방법의 (ii)에 대한 디코딩 과정을 나타내고 있다.
Figure pct00036
표 13은 LFNST를 위한 변환 세트 및 변환 커널 매트릭스를 도출하기 위한 입력 값 및 인트라 예측 모드를 기반으로 도출되는 LFNST 변환 세트를 나타내고 있다.
표 13에 나타난 바와 같이, 변환 커널 매트릭스(lowFreqTransMatrix)는 변환 커널 매트릭스를 도출하기 위하여 변환 출력 크기를 나타내는 변수 nTrS, LFNST 변환 세트의 선택을 위한 인트라 예측 모드 정보(predModeIntra) 및 코딩 유닛에서 시그널링 되는 LFNST 인덱스를 입력 값으로 하여 도출될 수 있다.
LFNST 변환 세트는 0, 1, 2, 3 과 같이 4개이고, 인트라 예측 모드의 대칭성을 기반으로 서로 대칭되는 방향에 위치하는 모드끼리는 같은 변환 세트가 적용될 수 있다. 인트라 예측 모드가 비방향성인 플래너 모드 또는 DC 모드(0 <= predModeIntra <= 1)면 변환 세트는 0이고, 광각 인트라 예측 모드인 경우(predModeIntra < 0, 56 <= predModeIntra <= 80) 변환 세트는 1이다.
한편, 상기와 같이, 크로마 블록에 CCLM가 적용되면, 변환 세트를 도출하기 위한 크로마 블록의 인트라 예측 모드(predModeIntra)는 CCLM를 지시하는 81~83 또는 플래너 모드가 아닌 대응되는 루마 블록의 인트라 모드(IntraPredModeY[ xTbY + nTbW / 2 ][ yTbY + nTbH / 2 ])로 설정될 수 있다.
따라서, 표 13의 변환 세트 선택을 위한 인트라 예측 모드(predModeIntra)에는 CCLM가 적용되는 81~83이 생략되어 있다.
한편, 아래 표 14는 상기에 설명된 tu_mts_idx 신택스 요소의 빈 인덱스에 할당되는 ctxInc을 나타낸다(Assignment of ctxInc to syntax elements with context coded bins).
Figure pct00037
표 14와 같이, tu_mts_idx 의 첫 번째 빈(binIdx=0)의 ctxInc는 0이고, 두 번째 빈(binIdx=1)의 ctxInc는 1이고, 세 번째 빈(binIdx=2)의 ctxInc는 2, 네 번째 빈(binIdx=3)의 ctxInc는 3이다.
종래의 경우 소정의 조건에 따라 복수의 ctxInc 중 어느 하나의 ctxInc가 선택되어 첫 번째 빈에 할당되었으나, 상기와 같이 특정 조건에 따르지 않고 고정된 하나의 ctxInc을 첫 번째 빈에 할당함으로써, 코딩이 효율을 높일 수 있다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 17은 본 문서의 일 실시예에 따른 비디오 디코딩 장치의 동작을 도시하는 흐름도이다.
도 17에 개시된 각 단계는 도 3에 개시된 디코딩 장치(300)에 의하여 수행될 수 있다. 보다 구체적으로, S1710 및 S1720은 도 3에 개시된 엔트로피 디코딩부(310)에 의하여 수행될 수 있고, S1730 내지 S1760은 도 3에 개시된 역변환부(322)에 의하여 수행될 수 있고, S1770은 도 3에 개시된 가산부(340)에 의하여 수행될 수 있다. 더불어, S1710 내지 S1770에 따른 동작들은, 도 4 내지 도 16에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 3 내지 도 16에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 디코딩 장치(300)는, 비트스트림으로부터 인트라 예측 모드 정보 및 LFNST 인덱스를 획득할 수 있다(S1710).
인트라 예측 모드 정보는 현재 블록의 주변 블록(예컨대, 좌측 및/또는 상측 주변 블록)의 인트라 예측 모드 및 추가적인 후보 모드들을 기반으로 도출된 MPM(most probable mode) 리스트 내 mpm 후보들 중 하나를 지시하는 mpm 인덱스 또는 상기 mpm 후보들에 포함되지 않은 나머지 인트라 예측 모드들 중 하나를 지시하는 리메이닝 인트라 예측 모드 정보를 포함할 수 있다.
또한, 인트라 모드 정보는 현재 블록에 CCLM이 적용되는지 여부를 지시하는 플래그 정보 sps_cclm_enabled_flag 및 크로마 성분에 대한 인트라 예측 모드에 대한 정보 intra_chroma_pred_mode를 포함할 수 있다.
추가적으로, 디코딩 장치(300)는 비트스트림으로부터 현재 블록에 대한 양자화된 변환 계수들에 관한 정보를 디코딩할 수 있고, 현재 블록에 대한 양자화된 변환 계수들에 관한 정보를 기반으로 현재 블록에 대한 양자화된 변환 계수들을 도출할 수 있다. 현재 블록에 대한 양자화된 변환 계수들에 관한 정보는 SPS(Sequence Parameter Set) 또는 슬라이스 헤더(slice header)에 포함될 수 있고, 간소화 변환(RST)이 적용되는지 여부에 대한 정보, 간소화 변환을 적용하는 최소 변환 사이즈에 대한 정보, 간소화 변환을 적용하는 최대 변환 사이즈에 대한 정보, 간소화 역변환 사이즈, 변환 세트(LFNST 세트)에 포함된 변환 커널 매트릭스(LFNST 매트릭스) 중 어느 하나를 지시하는 변환 인덱스(LFNST 인덱스)에 대한 정보 중 적어도 하나를 포함할 수 있다.
한편, 현재 블록에 대한 분할 트리 구조가 듀얼 트리 타입이면, 루마 블록 및 크로마 블록 각각에 대하여 LFNST 인덱스가 수신될 수 있다.
LFNST 인덱스 정보는 신택스 정보로 수신되고, 신택스 정보는 0과 1을 포함하는 이진화된 빈 스트링으로 수신된다.
본 실시예에 따른 LFNST 인덱스의 신택스 요소는 역 LFNST 또는 역 비분리 변환이 적용되는지 여부 및 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시할 수 있으며, 변환 세트가 두 개의 변환 커널 매트릭스을 포함하는 경우, 변환 인덱스의 신택스 요소의 값은 3가지일 수 있다.
즉, 일 실시예에 따라, LFNST 인덱스에 대한 신택스 요소 값은 대상 블록에 역 LFNST가 적용되지 않는 경우를 지시하는 0, 변환 커널 매트릭스 중 첫 번째 변환 커널 매트릭스를 지시하는 1, 변환 커널 매트릭스 중 두 번째 변환 커널 매트릭스를 지시하는 2 를 포함할 수 있다.
또한, 디코딩 장치(300)는 역 1차 변환의 변환 커널을 지시하는 MTS 인덱스 정보를 더 수신할 수 있다.
디코딩 장치는 인트라 예측 모드 정보를 기반으로 현재 크로마 블록의 인트라 예측 모드를 CCLM 모드로 도출할 수 있다(S1720).
디코딩 장치는 현재 크로마 인트라 예측 모드의 인트라 예측 모드를 도출할 수 있다. 예를 들어, 디코딩 장치는 비트스트림을 통하여 현재 크로마 블록의 인트라 예측 모드에 대한 정보를 수신할 수 있고, 인트라 예측 모드에 대한 정보를 기반으로 CCLM 모드를 상기 현재 크로마 블록의 인트라 예측 모드로 도출할 수 있다.
CCLM 모드는 좌상측 기반 CCLM 모드, 상측 기반 CCLM 모드 또는 좌상측 및 상측 기반 CCLM 모드를 포함할 수 있고, 상기 세 가지 CCLM 모드는 표 9의 Table 8. 6의 인트라 예측 모드 81 내지 83으로 도출될 수 있다.
디코딩 장치는 크로마 블록의 역 LFNST를 위하여 크로마 블록의 CCLM 모드를 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경할 수 있다(S1730).
디코딩 장치는 표 12에 나타난 바와 같이[When predModeIntra is greater than or equal to 81, the chroma intra prediction mode derivation process as specified in clause 8.4.4 is invoked with a luma location ( xTbY, yTbY ), nTbW, nTbH as inputs, and predModeIntra is set equal to IntraPredModeY[ xTbY + nTbW / 2 ][ yTbY + nTbH / 2 ].], 크로마 블록에 대한 CCLM 모드를 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드(IntraPredModeY)로 변경할 수 있다.
여기서, ( xTbY, yTbY )가 현재 변환 블록에 대한 루마 샘플 기준에서의 좌상단 위치이고 nTbW와 nTbH가 각기 현재 변환 블록에 대한 루마 샘플 기준에서의 너비와 높이일 때, ( xTbY + nTbW / 2, yTbY + nTbH / 2 )는 루마 샘플 기준에서의 현재 변환 블록의 중간 위치를 나타내며, IntraPredModeY[ xTbY + nTbW / 2 ][ yTbY + nTbH / 2 ]는 해당 위치에 대한 루마 블록에서의 인트라 예측 모드를 가리키게 된다. 여기서 루마 샘플 기준에서의 위치는 영상 포맷을 기준으로 산정되는데, 예를 들어 4:2:0 포맷이고 현재 변환 블록이 크로마에 대한 변환 블록일 경우 xTbY, yTbY, nTbW, nTbH는 각기 현재 변환 블록에 대한 해당 값의 2배의 값을 나타낼 수 있다.
즉, 디코딩 장치는 크로마 블록에 대한 인트라 예측 모드를 플래너 모드와 같은 특정 모드가 아닌, 크로마 블록과 루마 블록의 연관성을 반영하기 위하여 루마 블록의 인트라 예측 모드로 변경하여 LFNST를 수행할 수 있다.
디코딩 장치는 루마 블록의 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하고(S1740), LFNST 세트 및 LFNST 인덱스를 기반으로 복수의 LFNST 매트릭스 중 어느 하나를 선택할 수 있다(S1750).
표 13과 같이, 인트라 예측 모드에 따라 LFNST 변환 세트가 도출되며, 인트라 예측 모드에서 CCLM 모드를 나타내는 81 내지 83은 생략되어 있는데 CCLM 모드일 경우 대응되는 루마 블록에 대한 인트라 모드 값을 값을 가지고 LFNST 변환 세트를 도출하기 때문이다.
일 예에 따라, 표 13과 같이, 현재 블록의 인트라 예측 모드에 따라 4개의 LFNST 세트 중 어느 하나가 결정될 수 있고, 이 때, 현재 크로마 블록에 적용될 LFNST 세트도 결정될 수 있다.
그런 후, 역양자화된 변환 계수들에 LFNST 매트릭스를 적용하여 역 RST, 예를 들어 역 LFNST를 수행함으로써 현재 크로마 블록에 대한 수정된 변환 계수들을 도출할 수 있다(S1760).
상술된 바와 같이, 변환의 대상이 되는 변환 블록의 인트라 예측 모드에 따라 복수의 변환 세트가 결정될 수 있고, 역 LFNST는 LFNST 인덱스에 의하여 지시되는 변환 세트에 포함되어 있는 변환 커널 매트릭스, 즉 LFNST 행렬 중 어느 하나에 기초하여 수행될 수 있다. 역 LFNST에 적용되는 행렬은 역 LFNST 행렬 또는 LFNST 행렬로 명명될 수 있으며, 이러한 행렬은 순방향 LFNST에 사용되는 행렬과 트랜스포스 관계에 있으면 그 명칭은 무엇이든 무관하다.
역 LFNST 매트릭스는 열의 개수가 행의 개수보다 적은 비정방형 매트릭스일 수 있다.
한편, 수정된 변환 계수들은 현재 블록의 크기에 기반하여 소정 개수로 도출될 수 있다. 예를 들어, 현재 블록의 높이 및 폭이 8 이상이면, 도 9의 왼쪽과 같은 48개의 수정된 변환 계수들이 도출되고, 현재 블록의 폭 및 높이가 8 이상이 아니면, 즉 현재 블록의 폭 및 높이가 4 이상이면서 상기 현재 블록의 폭 또는 높이가 8 미만이면, 도 9의 오른쪽과 같은 16개의 수정된 변환 계수들이 도출될 수 있다.
도 9와 같이, 48개의 수정된 변환 계수들은 현재 블록 좌상단 8x8 영역 중 좌상단, 우상단 및 좌하단의 4x4 영역에 배열될 수 있고, 16개의 수정된 변환 계수들은 상기 현재 블록 좌상단 4x4 영역에 배열될 수 있다.
48개의 수정된 변환 계수들 및 16개의 수정된 변환 계수들은 현재 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 배열될 수 있다. 예를 들어, 인트라 예측 모드가 대각선 방향(도 9에서 34번 모드)을 기준으로 수평 방향(도 9에서 2번 내지 34번 모드)이면, 수정된 변환 계수들은 도 9의 (a)와 같이 수평 방향, 즉 행 우선 방향순으로 배열될 수 있고, 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향(도 9에서 35번 내지 66번 모드)이면, 수정된 변환 계수들은 도 9의 (b)와 같이 수평 방향, 즉 열 우선 방향순으로 배열될 수 있다.
일 실시예에서, S1760은 변환 인덱스를 디코딩하는 단계, 변환 인덱스, 즉 , LFNST 인덱스를 기반으로 역 RST를 적용할 조건에 해당하는지 여부를 판단하는 단계, 변환 커널 매트릭스를 선택하는 단계 및 역 LFNST를 적용할 조건에 해당하는 경우, 선택된 변환 커널 매트릭스 및/또는 간소화 팩터를 기반으로 변환 계수들에 대하여 역 LFNST를 적용하는 단계를 포함할 수 있다. 이때, 간소화 역변환 매트릭스의 사이즈는 간소화 팩터를 기반으로 결정될 수 있다.
S1760을 참조하면, 대상 블록에 대한 변환 계수들에 대한 역 LFNST를 기반으로 대상 블록에 대한 레지듀얼 샘플들이 도출되는 것을 확인할 수 있다. 역변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 역변환 매트릭스의 사이즈는 NxN인데 역 LFNST 매트릭스의 사이즈는 NxR로 감소하므로, 통상의 변환을 수행할 때와 비교하면 역 LFNST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 역변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 역 LFNST를 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(NxR)시킬 수 있다. 더불어, 역 LFNST를 적용할 시 R개의 변환 계수들만을 디코딩하면 되므로, 통상의 역변환이 적용될 때 N개의 변환 계수들을 디코딩해야 하는 것과 비교할 때 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 디코딩 효율이 증가할 수 있다. 정리하면, S1760에 따르면 역 LFNST를 통해 디코딩 장치(300)의 (역)변환 효율 및 디코딩 효율이 증가할 수 있다.
일 실시예에 따른 디코딩 장치(300)는, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1770).
한편, LFNST가 적용되지 않는 경우 역변환 절차에서 MTS 기반 1차 역변환 절차만이 적용될 수 있다. 즉, 디코딩 장치는 상술한 실시예와 같이 현재 블록에 대한 LFNST 적용 여부를 판단하고, LFNST가 적용되지 않는 경우, 1차 역변환을 통하여 변환 계수들로부터 레지듀얼 샘플들을 도출할 수 있다.
디코딩 장치는 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 유효 계수가 존재하면, LFNST가 적용되지 않는 것으로 판단하고, 1차 역변환을 통하여 변환 계수들로부터 레지듀얼 샘플들을 도출할 수 있다.
1차 역변환 절차는 역 1차 변환 절차 또는 역 MTS 변환 절차라고 불릴 수 있다. 이러한 MTS 기반 1차 역변환 절차도 경우에 따라 생략될 수 있다.
또한, 역 1차변환은 간소화 역변환이 적용될 수도 있고, 통상적인 분리 변환이 사용될 수도 있다.
일 실시예에 따른 디코딩 장치(300)는, 대상 블록에 대한 레지듀얼 샘플들 및 현재 블록에 대한 예측 샘플들을 기반으로 복원 샘플들을 생성할 수 있다. 현재 블록은 현재 루마 블록 또는 현재 크로마 블록일 수 있다.
한편, 디코딩 장치는 레지듀얼 정보를 포함하는 비트스트림을 수신하여, 비트스트림으로부터 현재 블록, 즉 변환 대상이 되는 변환 블록에 대한 레지듀얼 정보, 예컨대 양자화된 변환 계수들을 도출할 수 있다.
디코딩 장치(300)는, 현재 블록에 대한 양자화된 변환 계수들에 대하여 역양자화를 수행하여 변환 계수들을 도출할 수 있다.
도출된 변환 계수들은 현재 블록에 2차원 배열될 수 있고, 디코딩 장치는 이러한 레지듀얼 코딩을 통하여 현재 블록에서 0이 아닌 데이터, 즉 0이 아닌 유효 계수에 대한 정보를 도출할 수 있다. 즉, 디코딩 장치는 현재 블록에서 0이 아닌 유효 계수의 마지막 위치 정보를 파악할 수 있다.
레지듀얼 정보를 기반으로 도출된 변환 계수는 상기와 같이 역양자화된 변환 계수일 수 있고, 양자화된 변환 계수일 수도 있다. 즉, 변환 계수는 양자화와 여부와 무관하게 현재 블록에서 0이 아닌 데이터인지 여부를 체크할 수 있는 데이터이면 된다.
디코딩 장치는 코딩 블록을 구성하는 변환 블록들 중 적어도 하나의 변환 블록의 DC 영역(DC 성분의 위치)을 제외한 영역에 유효 계수가 존재하는지 여부를 나타내는 제1 변수를 도출할 수 있다.
제1 변수는 레지듀얼 코딩 과정에서 도출될 수 있는 변수 LfnstDcOnly일 수 있다. 제1 변수는 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, 0으로 도출될 수 있고, 제1 변수가 0이면, LFNST 인덱스가 파싱될 수 있다.
제1 변수는 최초에는 1로 설정될 수 있고, DC 영역을 제외한 영역에 유효 계수가 존재하는지 여부에 따라 1이 유지될 수도 있고, 0으로 변경될 수 있다.
일 예에 따라, 변환 블록의 크기를 기반으로 서브 블록에 대한 높이 및 폭을 지시하는 변수 log2SbW 및 변수 log2SbH가 도출될 수 있고, 서브 블록 내 존재할 수 있는 계수의 수를 나타내는 numSbCoeff는 변수 log2SbW 및 변수 log2SbH를 기반으로 설정될 수 있다[numSbCoeff = 1 << ( log2SbW + log2SbH )].
서브 블록 내에서 마지막 유효 계수의 위치를 나타내는 변수 lastScanPos는 처음에는 numSbCoeff로 설정되고, 마지막 0이 아닌 계수가 존재하는 서브 블록을 지시하는 변수 lastSubBlock는 처음에는“( 1 << ( log2TbWidth + log2TbHeight - ( log2SbW + log2SbH ) ) ) - 1”으로 설정된다.
lastSubBlock에 대응하는 서브 블록 내에서 대각 방향으로 스캔되면서[lastScanPos- -], 해당 위치에 0이 아닌 마지막 유효 계수가 존재하는지 여부가 체크된다.
lastSubBlock이 가리키는 서브 블록 내에서 변수 lastScanPos가 0이 될 때까지도 유효 계수가 발견되지 않으면, 변수 lastScanPos는 다시 numSbCoeff로 설정되고, 변수 lastSubBlock 역시 스캔 방향으로 다음에 위치하는 서브 블록으로 변경된다[lastSubBlock- -].
즉, 스캔 방향에 따라 변수 lastScanPos 및 변수 lastSubBlock가 업데이트되면서 0이 아닌 계수가 존재하는 위치가 파악된다.
변수 LfnstDcOnly는 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하는지 여부를 나타내며, 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하면 0이 되고, 하나의 코딩 유닛 내의 모든 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하지 않으면 1이 된다.
표 8에 나타난 바와 같이, 마지막 0이 아닌 계수가 존재하는 서브 블록의 인덱스가 0이고[lastSubBlock = = 0], 해당 서브 블록에서 마지막 0이 아닌 계수의 위치가 0보다 크면[lastScanPos > 0], 변수 LfnstDcOnly는 0으로 도출될 수 있다. 변환 블록의 폭 및 높이가 4 이상이고[log2TbWidth >= 2 && log2TbHeight >= 2], 변환 스킵이 적용되지 않는 경우[!transform_skip_flag[ x0 ][ y0 ]]에만 변수 LfnstDcOnly는 0으로 도출될 수 있다.
일 예에 따라, 디코딩 장치는 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 유효 계수가 존재하는지 여부를 나타내는 제2 변수를 도출할 수 있다.
제2 변수는 LFNST 적용 시 제로 아웃이 수행된 것을 나타낼 수 있는 변수 LfnstZeroOutSigCoeffFlag 일 수 있다. 제2 변수는 최초에 1로 설정되고, 제2 영역에 유효 계수가 존재하면, 상기 제2 변수는 0으로 변경될 수 있다.
변수 LfnstZeroOutSigCoeffFlag는 마지막 0이 아닌 계수가 존재하는 서브 블록의 인덱스가 0보다 크고 변환 블록의 폭 및 높이가 모두 4보다 크거나[( lastSubBlock > 0 && log2TbWidth >= 2 && log2TbHeight >= 2 )], 0이 아닌 마지막 계수가 존재하는 서브 블록 내부에서의 0인 아닌 계수의 마지막 위치가 7보다 크고, 변환 블록의 크기가 4x4 또는 8x8인 경우[( lastScanPos > 7 && ( log2TbWidth == 2 | | log2TbHeight == 3 ) && log2TbWidth == log2TbHeight )], 0으로 도출될 수 있다.
즉, 변환 블록에서 LFNST 변환 계수가 존재할 수 있는 좌상단 영역 이외의 영역에서 0이 아닌 계수가 도출되거나, 4x4 블록 및 8x8 블록에 대해 스캔 순서상 8번째 위치를 벗어나서 0이 아닌 계수가 존재하면 변수 LfnstZeroOutSigCoeffFlag는 0으로 설정된다.
제1 영역은 현재 블록의 크기를 기반으로 도출될 수 있다.
예를 들어, 현재 블록의 크기가 4x4 또는 8x8이면, 제1 영역은 현재 블록의 좌상단으로부터 스캔 방향으로 8번째 샘플 위치까지일 수 있다.
현재 블록의 크기가 4x4 또는 8x8이면 순방향 LFNST를 통하여 8개의 데이터가 출력되므로, 디코딩 장치로 수신되는 8개의 변환 계수는 도 14의 (a) 및 도 15의 (a)와 같이, 현재 블록의 좌상단으로부터 스캔 방향으로 8번째 샘플 위치까지 배열될 수 있다.
또한, 현재 블록의 크기가 4x4 또는 8x8이 아닌 나머지 경우에는 제1 영역은 현재 블록의 좌상단의 4x4 영역일 수 있다. 현재 블록의 크기가 4x4 또는 8x8이 아니면 순방향 LFNST를 통하여 16개의 데이터가 출력되므로, 디코딩 장치로 수신되는 16개의 변환 계수는 도 14의 (b) 내지 (d), 및 도 15의 (b)와 같이, 현재 블록의 좌상단 4x4 영역에 배열될 수 있다.
한편, 제1 영역에 배열될 수 있는 변환 계수는 도 10과 같이 대각 스캔 방향에 따라 배열될 수 있다.
또한, 일 예에 따라, LFNST가 적용되는 존재할 수 있는 변환 계수의 최대 개수는 16일 수 있다.
디코딩 장치는 제1 변수가 DC 영역을 제외한 영역에 유효 계수가 존재하는 것을 나타내고, 제2 변수가 상기 제2 영역에 유효 계수가 존재하지 않는 것을 나타내면, 디코딩 장치는 비트스트림으로부터 LFNST 인덱스를 파싱할 수 있다.
즉, 1로 설정되었던 제1 변수가 0으로 변경되고, 제2 변수가 1로 유지되면 LFNST 인덱스가 파싱될 수 있다. 다시 말해, DC 영역을 포함하는 서브 블록, 즉 좌상단 4x4 블록에 DC 영역 이외에 유효 계수가 존재하고, 현재 블록의 제2 영역까지 유효 계수를 체크하여 유효 계수가 존재하지 않으면, LFNST를 위한 LFNST 인덱스가 파싱될 수 있다.
정리하면, 코딩 유닛 레벨에서 제1 변수 LfnstDcOnly 및 제2 변수 LfnstZeroOutSigCoeffFlag는 각각 1로 설정되고, 이후 레지듀얼 코딩 레벨에서 표 8과 같은 과정을 통하여 새롭게 도출된다. 레지듀얼 코딩 레벨에서 도출된 변수 LfnstDcOnly가 0이고, 변수 LfnstZeroOutSigCoeffFlag가 1인 경우에만[if( LfnstDcOnly = = 0 && LfnstZeroOutSigCoeffFlag = = 1 )], 코딩 유닛 레벨에서 lfnst_idx가 시그널링될 수 있다.
상술된 바와 같이, 인코딩 장치에 의하여 순방향 LFNST가 수행되면, LFNST 변환 계수가 존재할 수 있는 영역을 제외한 현재 블록의 나머지 영역은 0으로 처리되는 제로 아웃이 수행될 수 있다.
따라서, 제2 영역에 유효 계수가 존재한다면 LFNST는 적용되지 않은 것이 확실하므로, LFNST 인덱스는 시그널링 되지 않고 디코딩 장치는 LFNST 인덱스를 파싱하지 않는다.
LFNST 인덱스가 파싱되면, 디코딩 장치는 제1 영역의 변환 계수들에 LFNST 행렬을 적용하여 수정된 변환 계수들을 도출할 수 있다.
디코딩 장치(300)의 역변환부(332)는 현재 블록에 적용되는 인트라 예측 모드에 따른 매핑 관계에 기반하여 변환 세트를 결정하고, 변환 세트 및 LFNST 인덱스에 대한 신택스 요소의 값에 기초하여 역 LFNST, 즉 역 비분리 변환을 수행할 수 있다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 18은 본 문서의 일 실시예에 따른 비디오 인코딩 장치의 동작을 도시하는 흐름도이다.
도 18에 개시된 각 단계는 도 2에 개시된 인코딩 장치(200)에 의하여 수행될 수 있다. 보다 구체적으로, S1810 및 S1820은 도 2에 개시된 예측부(220)에 의하여 수행될 수 있고, S1830은 도 2에 개시된 감산부(231)에 의하여 수행될 수 있고, S1840 내지 S1860은 도 2에 개시된 변환부(232)에 의하여 수행될 수 있고, S1870은 도 2에 개시된 양자화부(233) 및 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 더불어, S1810 내지 S1870에 따른 동작들은, 도 4 내지 도 16에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 2 및 도 4 내지 도 16에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 인코딩 장치(200)는, 크로마 블록에 대한 인트라 예측 모드를 CCLM 모드로 도출할 수 있다(S1810).
예를 들어, 인코딩 장치는 RD 코스트(Rate-distortion cost)(또는 RDO)를 기반으로 상기 현재 크로마 블록의 인트라 예측 모드를 결정할 수 있다. 여기서, 상기 RD 코스트는 SAD(Sum of Absolute Difference)를 기반으로 도출될 수 있다. 인코딩 장치는 RD 코스트를 기반으로 상기 CCLM 모드를 상기 현재 크로마 블록의 인트라 예측 모드로 결정할 수 있다.
CCLM 모드는 좌상측 기반 CCLM 모드, 상측 기반 CCLM 모드 또는 좌상측 및 상측 기반 CCLM 모드를 포함할 수 있고, 상기 세 가지 CCLM 모드는 표 9의 Table 8. 6의 인트라 예측 모드 81 내지 83으로 도출될 수 있다.
또한, 인코딩 장치는 상기 현재 크로마 블록의 인트라 예측 모드에 대한 정보를 인코딩할 수 있고, 비트스트림을 통하여 상기 인트라 예측 모드에 대한 정보는 시그널링될 수 있다. 상기 현재 크로마 블록의 예측 관련 정보는 상기 인트라 예측 모드에 대한 정보를 포함할 수 있다.
인코딩 장치는 CCLM 모드에 기초하여 크로마 블록에 대한 예측 샘플들을 도출할 수 있다(S1820).
일 실시예에 따른 인코딩 장치(200)는, 예측 샘플들에 기초하여 크로마 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1830).
일 실시예에 따른 인코딩 장치(200)는, 레지듀얼 샘플에 대한 1차 변환을 기반으로 크로마 블록에 대한 변환 계수들을 도출할 수 있다.
1차 변환은 복수의 변환 커널들을 통하여 수행될 수 있고, 이 경우, 인트라 예측 모드를 기반으로 변환 커널이 선택될 수 있다.
인코딩 장치는 크로마 블록의 LFNST를 위하여 크로마 블록의 CCLM 모드를 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경할 수 있다(S1840).
인코딩 장치는 표 12에 나타난 바와 같이[- When predModeIntra is greater than or equal to 81, the chroma intra prediction mode derivation process as specified in clause 8.4.4 is invoked with a luma location ( xTbY, yTbY ), nTbW, nTbH as inputs, and predModeIntra is set equal to IntraPredModeY[ xTbY + nTbW / 2 ][ yTbY + nTbH / 2 ].], 크로마 블록에 대한 CCLM 모드를 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드(IntraPredModeY)로 변경할 수 있다.
즉, 인코딩 장치는 크로마 블록에 대한 인트라 예측 모드를 플래너 모드와 같은 특정 모드가 아닌, 크로마 블록과 루마 블록의 연관성을 반영하기 위하여 루마 블록의 인트라 예측 모드로 변경하여 LFNST를 수행할 수 있다.
인코딩 장치는 루마 블록의 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하고(S1850), 레지듀얼 샘플들, LFNST 세트 및 LFNST 매트릭스를 기반으로 크로마 블록에 대한 수정된 변환 계수들을 도출할 수 있다(S1860).
인코딩 장치(200)는 현재 블록에 적용되는 인트라 예측 모드에 따른 매핑 관계에 기반하여 변환 세트를 결정하고, 변환 세트에 포함되어 있는 두 개 중 어느 하나의 LFNST 행렬을 기반으로 LFNST, 즉 비분리 변환을 수행할 수 있다.
상술된 바와 같이, 변환의 대상이 되는 변환 블록의 인트라 예측 모드에 따라 복수의 변환 세트가 결정될 수 있다. LFNST에 적용되는 행렬은 역방향 LFNST에 사용되는 행렬과 트랜스포스 관계에 있다.
일 예시에서, LFNST 행렬은 행의 개수가 열의 개수보다 적은 비정방형 매트릭스일 수 있다.
S1860을 참조하면, 레지듀얼 샘플들에 대한 LFNST 를 기반으로 대상 블록에 대한 변환 계수들이 도출되는 것을 확인할 수 있다. 변환 커널 매트릭스의 사이즈 관점에서 검토하면, 통상의 변환 커널 매트릭스의 사이즈는 NxN인데 간소화 변환 매트릭스의 사이즈는 RxN으로 감소하므로, 통상의 변환을 수행할 때와 비교하면 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 변환 커널 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 변환 커널 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(RxN)시킬 수 있다. 더불어, RST가 적용되면 R개의 변환 계수들만이 도출되므로, 통상의 변환이 적용될 때 N개의 변환 계수들이 도출되는 것과 비교할 때 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 인코딩 장치(200)가 디코딩 장치(300)로 전송하는 데이터의 양이 감소할 수 있다. 정리하면, S1860에 따르면 LFNST를 통해 인코딩 장치(200)의 변환 효율 및 코딩 효율이 증가할 수 있다.
일 실시예에 따른 인코딩 장치(200)는, 현재 크로마 블록에 대한 수정된 변환 계수들을 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하고, 양자화된 변환 계수들에 관한 정보, 인트라 예측 모드 정보 및 LFNST 매트릭스를 지시하는 LFNST 인덱스를 포함하는 영상 정보를 인코딩 후 출력할 수 있다(S1870).
즉, 인코딩 장치는 양자화된 변환 계수들에 대한 정보를 포함하는 레지듀얼 정보를 생성할 수 있다. 레지듀얼 정보는 상술한 변환 관련 정보/신택스 요소를 포함할 수 있다. 인코딩 장치는 레지듀얼 정보를 포함하는 영상/비디오 정보를 인코딩하여 비트스트림 형태로 출력할 수 있다.
보다 구체적으로, 인코딩 장치(200)는 양자화된 변환 계수들에 관한 정보를 생성하고, 생성된 양자화된 변환 계수들에 관한 정보를 인코딩할 수 있다.
일 예시에서, 양자화된 변환 계수들에 관한 정보는, LFNST가 적용되는지 여부에 대한 정보, 간소화 팩터에 관한 정보, LFNST를 적용하는 최소 변환 사이즈에 대한 정보 및 LFNST를 적용하는 최대 변환 사이즈에 대한 정보 중 적어도 하나를 포함할 수 있다.
인코딩 장치는 인트라 모드 정보로 현재 블록에 CCLM이 적용되는지 여부를 지시하는 플래그 정보 sps_cclm_enabled_flag 및 크로마 성분에 대한 인트라 예측 모드에 대한 정보 intra_chroma_pred_mode를 인코딩할 수 있다.
CCLM 모드에 대한 정보인 intra_chroma_pred_mode는 좌상측 기반 CCLM 모드, 상측 기반 CCLM 모드 또는 좌상측 및 상측 기반 CCLM 모드를 지시하기 위하여 표 9의 Table 8. 6의 인트라 예측 모드 81 내지 83으로 인코딩 될 수 있다.
한편, 인코딩 장치(200)는 현재 블록에 대한 변환 계수들에 대하여 2차 변환, 또는 비분리 변환, 구체적으로 LFNST를 수행할지 여부를 결정할 수 있다. 현재 블록은 현재 루마 블록 또는 현재 크로마 블록일 수 있다.
LFNST를 수행하는 것으로 결정되면, 인코딩 장치(200)는 현재 블록의 좌상단 제1 영역의 변환 계수들 및 소정의 LFNST 행렬을 기반으로 현재 블록에 대한 수정된 변환 계수들을 도출할 수 있다.
제1 영역은 현재 블록의 크기에 기반하여 도출될 수 있다. 예를 들어, 현재 블록의 높이 및 폭이 8 이상이면, 제1 영역은 도 9의 왼쪽과 같이 현재 블록 좌상단 8x8 영역 중 좌상단, 우상단 및 좌하단의 4x4 영역이고, 현재 블록의 높이 및 폭이 8 이상이 아닌 나머지 경우이면, 제1 영역은 도 9의 오른쪽과 같이 현재 블록 좌상단 4x4 영역일 수 있다.
이러한 제1 영역의 변환 계수들은 LFNST 행렬과의 곱셈 연산을 위하여 현재 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 읽어서 1차원 배열될 수 있다.
제 1 영역의 48개의 수정된 변환 계수들 또는 16개의 수정된 변환 계수들은 현재 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 읽혀서 1차원으로 배열될 수 있다. 예를 들어, 인트라 예측 모드가 대각선 방향(도 9에서 34번 모드)을 기준으로 수평 방향(도 9에서 2번 내지 34번 모드)이면, 변환 계수들은 도 9의 (a)와 같이 수평 방향, 즉 행 우선 방향순으로 배열될 수 있고, 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향(도 9에서 35번 내지 66번 모드)이면, 변환 계수들은 도 9의 (b)와 같이 수평 방향, 즉 열 우선 방향순으로 배열될 수 있다.
일 예시에서, LFNST는 간소화 변환 매트릭스 또는 변환 커널 매트릭스를 기반으로 수행될 수 있고, 간소화 변환 매트릭스는 행의 개수가 열의 개수보다 적은 비정방형 매트릭스일 수 있다.
일 실시예에서, S1860은 LFNST를 적용할 조건에 해당하는지 여부를 판단하는 단계, 상기 판단을 기반으로 LFNST 인덱스를 생성 및 인코딩하는 단계, 변환 커널 매트릭스를 선택하는 단계 및 LFNST를 적용할 조건에 해당하는 경우, 선택된 변환 커널 매트릭스 및/또는 간소화 팩터를 기반으로 레지듀얼 샘플들에 대하여 LFNST를 적용하는 단계를 포함할 수 있다. 이때, 간소화 변환 커널 매트릭스의 사이즈는 간소화 팩터를 기반으로 결정될 수 있다.
한편, 일 예에 따라, 인코딩 장치는 수정된 변환 계수들이 존재하지 않는 현재 블록의 제2 영역을 제로 아웃할 수 있다.
도 14 및 도 15와 같이, 수정된 변환 계수들이 존재하지 않은 현재 블록의 나머지 영역은 모두 0으로 처리될 수 있다. 이러한 제로 아웃으로 인하여 전체 변환 과정의 수행에 필요한 계산량이 감소되고, 변환 과정 전체에 필요한 연산량이 감소하여 변환 수행에 필요한 전력 소비를 줄일 수 있다. 또한, 변환 과정에 수반되는 지연 시간(latency)을 감소되어 영상 코딩 효율이 증가될 수 있다.
한편, LFNST가 적용되지 않는 경우 변환 절차에서 상기와 같이 MTS 기반 1차 변환 절차만이 적용될 수 있다. 즉, 인코딩 장치는 상술한 실시예와 같이 현재 블록에 대한 LFNST 적용 여부를 판단하고, LFNST가 적용되지 않는 경우, 1차 변환을 통하여 레지듀얼 샘플들로부터 변환 계수들을 도출할 수 있다.
이러한 1차 변환 절차는 1차 변환 절차 또는 MTS 변환 절차라고 불릴 수 있다. 이러한 MTS 기반 1차 변환 절차도 경우에 따라 생략될 수 있다.
일 예에 따른 인코딩 장치는 현재 블록의 DC 영역을 제외한 영역에 유효 계수가 존재하고, 상술된 제로 아웃이 수행되면 LFNST 행렬을 지시하는 LFNST 인덱스가 시그널링되도록 영상 정보를 구성할 수 있다.
표 6 및 표 8에 나타나 있는 영상 정보가 디코딩 장치에서 파싱될 수 있도록 인코딩 장치는 영상 정보를 구성할 수 있다.
일 예에 따라, 인코딩 장치는 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, DC 영역을 제외한 영역에 상기 유효 계수가 존재하는 것으로 판단하고, LFNST 인덱스가 시그널링되도록 영상 정보를 구성할 수 있다.
또한, 일 예에 따라 인코딩 장치는 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0보다 크고, 현재 블록의 폭 및 높이가 4 이상이면, LFNST가 적용되지 않은 것이 확실한 것으로 판단하고, LFNST 인덱스가 시그널링되지 않도록 영상 정보를 구성할 수 있다.
또한, 일 예에 따라 인코딩 장치는 현재 블록의 크기가 4x4 또는 8x8이고, 마지막 유효 계수의 위치가 8 이상이면, LFNST가 적용되지 않은 것이 확실한 것으로 판단하고, LFNST 인덱스가 시그널링되지 않도록 영상 정보를 구성할 수 있다.
즉, 인코딩 장치는 디코딩 장치에서 변수 LfnstDcOnly와 변수 LfnstZeroOutSigCoeffFlag가 도출된 후 도출된 변수값에 따라 LFNST 인덱스가 시그널링될 수 있도록 영상 정보를 구성할 수 있다.
또한, 인코딩 장치(200)는 최대 변환 적용 블록의 크기에 대한 정보, 예컨대 sps_log2_max_luma_transform_size_minus5와 같은 변환 블록 크기에 대한 신택스 정보 또는 sps_max_luma_transform_size_64_flag와 같은 플래그 정보를 시퀀스 파라미터 세트 레벨에서 인코딩할 수 있다.
본 문서에서 양자화/역양자화 및/또는 변환/역변환 중 적어도 하나는 생략될 수 있다. 상기 양자화/역양자화가 생략되는 경우, 상기 양자화된 변환 계수는 변환 계수라고 불릴 수 있다. 상기 변환/역변환이 생략되는 경우, 상기 변환 계수는 계수 또는 레지듀얼 계수 라고 불릴 수도 있고, 또는 표현의 통일성을 위하여 변환 계수라고 여전히 불릴 수도 있다.
또한, 본 문서에서 양자화된 변환 계수 및 변환 계수는 각각 변환 계수 및 스케일링된(scaled) 변환 계수라고 지칭될 수 있다. 이 경우 레지듀얼 정보는 변환 계수(들)에 관한 정보를 포함할 수 있고, 상기 변환 계수(들)에 관한 정보는 레지듀얼 코딩 신택스를 통하여 시그널링될 수 있다. 상기 레지듀얼 정보(또는 상기 변환 계수(들)에 관한 정보)를 기반으로 변환 계수들이 도출될 수 있고, 상기 변환 계수들에 대한 역변환(스케일링)을 통하여 스케일링된 변환 계수들이 도출될 수 있다. 상기 스케일링된 변환 계수들에 대한 역변환(변환)을 기반으로 레지듀얼 샘플들이 도출될 수 있다. 이는 본 문서의 다른 부분에서도 마찬가지로 적용/표현될 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 문서가 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서가 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다. 또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독 가능한 캐리어 상에 저장될 수 있다.
도 19는 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
또한, 본 문서가 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다. 상기 비트스트림은 본 문서가 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (15)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림으로부터 인트라 예측 모드 정보 및 LFNST 인덱스를 획득하는 단계와;
    상기 인트라 예측 모드 정보를 기반으로 크로마 블록의 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와;
    상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와;
    상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와;
    상기 LFNST 세트 및 상기 LFNST 인덱스를 기반으로 상기 LFNST 매트릭스들 중 하나를 선택하는 단계와;
    상기 선택된 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 변환 계수들을 도출하는 단계와;
    상기 변환 계수들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법.
  2. 제1항에 있어서,
    현재 블록에 대한 분할 트리 구조가 듀얼 트리 타입이면, 상기 루마 블록 및 상기 크로마 블록 각각에 대하여 상기 LFNST 인덱스가 수신되는 것을 특징으로 하는 영상 디코딩 방법.
  3. 제2항에 있어서,
    비트스트림으로부터 레지듀얼 정보를 획득하는 단계와;
    상기 레지듀얼 정보를 기반으로 현재 블록에 대한 변환 계수들을 도출하는 단계;
    상기 현재 블록의 DC 영역을 제외한 영역에 유효 계수가 존재하는지 여부를 나타내는 제1 변수를 도출하는 단계와;
    상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 유효 계수가 존재하는지 여부를 나타내는 제2 변수를 도출하는 단계를 더 포함하고,
    상기 제1 변수가 상기 DC 영역을 제외한 영역에 상기 유효 계수가 존재하는 것을 나타내고, 상기 제2 변수가 상기 제2 영역에 상기 유효 계수가 존재하지 않는 것을 나타내면, 상기 LFNST 인덱스를 파싱하는 것을 특징으로 하는 영상 디코딩 방법.
  4. 제3항에 있어서,
    상기 제1 영역의 변환 계수들에 상기 LFNST 인덱스를 기반으로 도출된 LFNST 행렬을 적용하여 상기 변환 계수들이 도출되는 것을 특징으로 하는 영상 디코딩 방법.
  5. 제3항에 있어서,
    상기 제1 변수는 상기 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 상기 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, 0으로 도출되고,
    상기 제1 변수가 0이면, 상기 LFNST 인덱스가 파싱되는 것을 특징으로 하는 영상 디코딩 방법.
  6. 제5항에 있어서,
    상기 제1 변수는 최초에 1로 설정되고,
    상기 DC 영역을 제외한 영역에 상기 유효 계수가 존재하면, 상기 제1 변수는 0으로 변경되는 것을 특징으로 하는 영상 디코딩 방법.
  7. 제3항에 있어서,
    상기 제2 변수는 상기 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0보다 크고, 상기 현재 블록의 폭 및 높이가 4 이상이면, 0으로 도출되고,
    상기 제2 변수는 상기 현재 블록의 크기가 4x4 또는 8x8이고, 상기 마지막 유효 계수의 위치가 8 이상이면, 0으로 도출되고,
    상기 제2 변수가 0이면, 상기 LFNST 인덱스는 파싱되지 않는 것을 특징으로 하는 영상 디코딩 방법.
  8. 제7항에 있어서,
    상기 제2 변수는 최초에 1로 설정되고,
    상기 제2 영역에 상기 유효 계수가 존재하면, 상기 제2 변수는 0으로 변경되는 것을 특징으로 하는 영상 디코딩 방법.
  9. 영상 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    크로마 블록에 대한 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와;
    상기 CCLM 모드에 기초하여 상기 크로마 블록에 대한 예측 샘플들을 도출하는 단계와;
    상기 예측 샘플에 기초하여 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계;
    상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와;
    상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와;
    상기 레지듀얼 샘플들, 상기 LFNST 세트 및 상기 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 수정된 변환 계수들을 도출하는 단계와;
    상기 인트라 예측 모드 및 상기 LFNST 매트릭스를 지시하는 LFNST 인덱스를 포함하는 영상 정보를 인코딩하는 단계를 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  10. 제9항에 있어서,
    현재 블록에 대한 분할 트리 구조가 듀얼 트리 타입이면, 상기 루마 블록 및 상기 크로마 블록 각각에 대하여 상기 LFNST 인덱스가 인코딩되는 것을 특징으로 하는 영상 인코딩 방법.
  11. 제10항에 있어서,
    상기 레지듀얼 샘플들에 대한 1차 변환을 기반으로 상기 현재 블록에 대한 변환 계수들을 도출하는 단계와;
    상기 현재 블록의 좌상단 제1 영역의 변환 계수들 및 상기 LFNST 매트릭스를 기반으로 상기 수정된 변환 계수들을 도출하는 단계와;
    상기 수정된 변환 계수들이 존재하지 않는 상기 현재 블록의 제2 영역을 제로 아웃하는 단계와;
    상기 현재 블록의 DC 영역을 제외한 영역에 유효 계수가 존재하고, 상기 제로 아웃이 수행되면 상기 LFNST 매트릭스를 지시하는 LFNST 인덱스가 시그널링되도록 영상 정보를 구성하는 단계를 더 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  12. 제11항에 있어서,
    상기 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 상기 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, 상기 DC 영역을 제외한 영역에 상기 유효 계수가 존재하는 것으로 판단되고,
    상기 영상 정보는 상기 LFNST 인덱스가 시그널링되도록 구성되는 것을 특징으로 하는 영상 인코딩 방법.
  13. 제11항에 있어서,
    상기 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0보다 크고, 상기 현재 블록의 폭 및 높이가 4 이상이면, 상기 제로 아웃이 수행되지 않은 것으로 판단되고,
    상기 현재 블록의 크기가 4x4 또는 8x8이고, 상기 마지막 유효 계수의 위치가 8 이상이면, 상기 제로 아웃이 수행되지 않은 것으로 판단되고,
    상기 영상 정보는 상기 LFNST 인덱스가 시그널링되지 않도록 구성되는 것을 특징으로 하는 영상 인코딩 방법.
  14. 제11항에 있어서,
    상기 제1 영역은 상기 현재 블록의 크기에 기반하여 도출되고,
    상기 현재 블록의 높이 및 폭이 8 이상이면, 상기 제1 영역은 상기 현재 블록 좌상단 8x8 영역 중 좌상단, 우상단 및 좌하단의 4x4 영역이고,
    상기 현재 블록의 폭 및 높이가 4 이상이면서 상기 현재 블록의 폭 또는 높이가 8 미만이면, 상기 제1 영역은 상기 현재 블록 좌상단 4x4 영역인 것을 특징으로 하는 영상 인코딩 방법.
  15. 영상 디코딩 방법을 수행하도록 야기하는 지시 정보가 저장된 컴퓨터 판독 가능한 디지털 저장 매체로서, 상기 영상 디코딩 방법은,
    비트스트림으로부터 인트라 예측 모드 정보 및 LFNST 인덱스를 획득하는 단계와;
    상기 인트라 예측 모드 정보를 기반으로 크로마 블록의 인트라 예측 모드를 CCLM(cross-component linear model) 모드로 도출하는 단계와;
    상기 크로마 블록의 상기 인트라 예측 모드를 상기 CCLM 모드에서 상기 크로마 블록에 대응하는 루마 블록의 인트라 예측 모드로 변경하는 단계와;
    상기 루마 블록의 상기 인트라 예측 모드를 기반으로 LFNST 매트릭스들을 포함하는 LFNST 세트를 결정하는 단계와;
    상기 LFNST 세트 및 상기 LFNST 인덱스를 기반으로 상기 LFNST 매트릭스들 중 하나를 선택하는 단계와;
    상기 선택된 LFNST 매트릭스를 기반으로 상기 크로마 블록에 대한 변환 계수들을 도출하는 단계와;
    상기 변환 계수들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계를 포함하는 것을 특징으로 하는 디지털 저장 매체.
KR1020227001032A 2019-07-12 2020-07-10 변환에 기반한 영상 코딩 방법 및 그 장치 KR20220024499A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962873824P 2019-07-12 2019-07-12
US62/873,824 2019-07-12
US201962873898P 2019-07-13 2019-07-13
US62/873,898 2019-07-13
PCT/KR2020/009138 WO2021010687A1 (ko) 2019-07-12 2020-07-10 변환에 기반한 영상 코딩 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR20220024499A true KR20220024499A (ko) 2022-03-03

Family

ID=74211000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227001032A KR20220024499A (ko) 2019-07-12 2020-07-10 변환에 기반한 영상 코딩 방법 및 그 장치

Country Status (4)

Country Link
US (1) US11973951B2 (ko)
KR (1) KR20220024499A (ko)
CN (1) CN114342409A (ko)
WO (1) WO2021010687A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003441A1 (en) * 2022-06-29 2024-01-04 Nokia Technologies Oy An apparatus, a method and a computer program for video coding and decoding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615108B2 (en) * 2009-06-29 2017-04-04 Thomson Licensing Methods and apparatus for adaptive probability update for non-coded syntax
US9641846B2 (en) * 2010-10-22 2017-05-02 Qualcomm Incorporated Adaptive scanning of transform coefficients for video coding
US10812790B2 (en) * 2016-04-19 2020-10-20 Sony Corporation Data processing apparatus and data processing method
US11943476B2 (en) * 2019-04-16 2024-03-26 Hfi Innovation Inc. Methods and apparatuses for coding video data with adaptive secondary transform signaling
US11032572B2 (en) * 2019-05-17 2021-06-08 Qualcomm Incorporated Low-frequency non-separable transform signaling based on zero-out patterns for video coding
US11218728B2 (en) * 2019-06-04 2022-01-04 Tencent America LLC Method and apparatus for video coding
US11695960B2 (en) * 2019-06-14 2023-07-04 Qualcomm Incorporated Transform and last significant coefficient position signaling for low-frequency non-separable transform in video coding

Also Published As

Publication number Publication date
CN114342409A (zh) 2022-04-12
WO2021010687A1 (ko) 2021-01-21
US20220132134A1 (en) 2022-04-28
US11973951B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
US11516484B2 (en) Transform-based image coding method, and apparatus therefor
KR20210158400A (ko) 영상 코딩에서 변환 커널 세트를 나타내는 정보의 시그널링
US11457227B2 (en) Transform-based image coding method and apparatus therefor
KR20220058582A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220070245A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220057613A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
US11563979B2 (en) Image coding method on basis of transform, and apparatus therefor
KR20220047628A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220127937A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220066351A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210133300A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220050183A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR102482781B1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220024499A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220061182A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220097513A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220024500A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220058584A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220058583A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220066350A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220045041A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220042209A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220070503A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
US11570476B2 (en) Transform-based video coding method, and device therefor
JP7418561B2 (ja) 変換に基づく映像コーディング方法及びその装置