KR20220023219A - 무선 통신 시스템에서 전송 전력 결정 방법 및 장치 - Google Patents

무선 통신 시스템에서 전송 전력 결정 방법 및 장치 Download PDF

Info

Publication number
KR20220023219A
KR20220023219A KR1020200104820A KR20200104820A KR20220023219A KR 20220023219 A KR20220023219 A KR 20220023219A KR 1020200104820 A KR1020200104820 A KR 1020200104820A KR 20200104820 A KR20200104820 A KR 20200104820A KR 20220023219 A KR20220023219 A KR 20220023219A
Authority
KR
South Korea
Prior art keywords
channel
terminal
base station
downlink
information
Prior art date
Application number
KR1020200104820A
Other languages
English (en)
Inventor
오진영
김태형
박진현
장영록
지형주
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200104820A priority Critical patent/KR20220023219A/ko
Priority to US17/406,554 priority patent/US20220060999A1/en
Priority to PCT/KR2021/011015 priority patent/WO2022039515A1/en
Publication of KR20220023219A publication Critical patent/KR20220023219A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명은 비면허대역에서 적용되는 상향링크 신호 및/또는 채널 또는 사이드링크 신호 및/또는 채널 전송을 위한 전송 전력을 결정하는 방법 및 장치를 개시한다.

Description

무선 통신 시스템에서 전송 전력 결정 방법 및 장치 {METHOD AND APPARATUS FOR DETERMINATION OF TRANSMISSION POWER IN WIRELESS COMMUNICATION SYSTEM}
본 개시는 무선 통신 시스템에서의 상향링크 전송 전력 결정 방법 및 장치에 관한 것이다.
4G (4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G (5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (beyond 4G network) 통신 시스템 또는 LTE(long term evolution)/LTE-A(LTE advanced) 시스템 이후 (post LTE)의 시스템이라 불리고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파 (mmWave) 대역 (예를 들어, 60기가 (60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍 (beamforming), 거대(massive) 배열 다중 입출력 (multiple input multiple output: MIMO), 전차원 다중입출력 (full dimensional MIMO: FD-MIMO), 어레이 안테나 (array antenna), 아날로그 빔형성 (analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (device to device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (coordinated multi-points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조 (advanced coding modulation: ACM) 방식인 FQAM (hybrid frequency shift keying (FSK) and quadrature amplitude modulation (QAM)) 및 SWSC (sliding window superposition coding)과, 진보된 접속 기술인 FBMC (filter bank multi carrier), NOMA (non-orthogonal multiple access), 및 SCMA (sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 바와 같은 이동 통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 되고 무선 통신 네트워크가 복잡해지고 다양해짐에 따라 하향링크 및 상향링크를 위한 데이터 채널들을 보다 효율적으로 할당하기 위한 방법의 필요성이 대두하였다.
본 발명은 비면허대역에서 단말이 상향링크 신호 및/또는 채널 또는 사이드링크 신호 및/또는 채널을 전송하기 위한 전송 전력을 결정하는 방법 및 장치를 제공한다.
상기와 같은 문제점을 해결하기 위한 본 발명은 무선 통신 시스템에서 제어 신호 처리 방법에 있어서, 기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계; 상기 수신된 제1 제어 신호를 처리하는 단계; 및 상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 발명에 따르면, 단말은 채널 또는/및 신호를 전송하기 위한 전송 전력을 적절하게 결정해 채널 또는/및 신호를 전송할 수 있다.
도 1은 본 개시의 일 실시예에 따른 무선 통신 시스템을 도시하는 도면이다.
도 2는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 기지국의 구성을 도시하는 도면이다.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말의 구성을 도시하는 도면이다.
도 4는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 통신부의 구성을 도시하는 도면이다.
도 5는 5G 통신 시스템의 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 6은 5G 통신 시스템의 시간-주파수영역의 기본 구조를 도시한 도면이다.
도 7은 5G 통신 시스템의 대역폭파트 및 셀 내 보호구간 설정의 일 예를 도시한 도면이다.
도 8은 5G 통신 시스템의 하향링크 제어채널의 제어자원세트 설정의 일 예를 도시한 도면이다.
도 9는 5G 통신 시스템의 하향링크 제어채널의 구조를 도시한 도면이다.
도 10은 5G 통신 시스템에서 상향링크-하향링크 설정의 일 예를 도시하는 도면이다.
도 11은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 준정적 채널 점유를 위한 채널 접속 절차의 예시를 도시한 도면이다.
도 12는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 동적 채널 점유를 위한 채널 접속 절차의 예시를 도시한 도면이다.
도 13은 본 발명의 실시예를 수행하는 단말의 동작을 도시한 도면이다.
이하, 본 개시의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다.
본 개시를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 기지국(base station: BS)은 단말의 자원 할당을 수행하는 주체로서, gNode B, eNode B, Node B, (또는 xNode B (여기서 x는 g, e를 포함하는 알파벳)), 무선 접속 유닛, 기지국 제어기, 위성 (satellite), 비행체 (airborn), 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말(user equipment: UE)은 MS (Mobile Station), 차량 (Vehicular), 위성 (satellite), 비행체 (airborn), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어 시스템을 포함할 수 있다. 본 개시에서 하향링크(Downlink, DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크(Uplink, UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 추가적으로 단말이 또 다른 단말에게 전송하는 신호의 무선 전송 경로를 의미하는 사이드링크(sidelink, SL)가 존재할 수 있다.
또한, 이하에서 LTE, LTE-A 또는 5G 시스템을 일 예로서 설명할 수도 있지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 예를 들어 5G 이동통신 기술(혹은 new radio, NR) 이후에 개발되는 5G-Advance 또는 NR-Advance 또는 6세대 이동통신 기술(6G)이 이에 포함될 수 있으며, 이하의 5G는 기존의 LTE, LTE-A 및 유사한 다른 서비스를 포함하는 개념일 수도 있다. 또한, 본 개시는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말이 기지국으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분할 수 있다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(enhanced Mobile Broadband, eMBB), 대규모 기계형 통신(massive Machine Type Communication, mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation, URLLC) 등이 있다.
eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 안테나 (Multi Input Multi Output, MIMO) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구한다. 또한 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에, 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
5G 통신시스템에서 사물 인터넷(Internet of Thing, IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구된다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
URLLC는 특정한 목적(mission-critical)으로 사용되는 셀룰라 기반 무선 통신 서비스이다. 예를 들어, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등을 고려할 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연 및 매우 높은 신뢰도를 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초 보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval, TTI)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.
5G의 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 물론 5G는 전술한 세가지 서비스들에 제한되지 않는다.
도 1은 본 개시의 일 실시예에 따른 무선 통신 시스템을 도시하는 도면이다. 도 1은 무선 통신 시스템에서 무선 채널을 이용하는 노드(node)들의 일부로서, 기지국(110), 단말(120), 단말(130)을 예시한다. 도 1은 예시적으로 하나의 기지국만을 도시하나, 기지국(110)과 동일 또는 유사한 다른 기지국이 더 포함될 수 있다.
도 1을 참조하면, 기지국(110)은 단말들(120, 130)에게 무선 접속을 제공하는 네트워크 인프라스트럭쳐(infrastructure)일 수 있다. 기지국(110)은 무선 신호를 송신할 수 있는 도달 거리에 기초하여 소정의 지리적 영역으로 정의되는 커버리지(coverage)를 가진다. 기지국(110)은 '액세스 포인트(access point, AP)', 'eNodeB(eNB)', 'gNodeB(gNB)', '5G 노드(5th generation node)', '무선 포인트(wireless point)', '송수신 포인트(transmission/reception point, TRP)' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.
단말(120) 및 단말(130) 각각은 사용자에 의해 사용될 수 있는 장치로서, 기지국(110)과 무선 채널을 통해 통신을 수행할 수 있다. 경우에 따라, 단말(120) 및 단말(130) 중 적어도 하나는 사용자의 관여 없이 운영될 수 있다. 즉, 단말(120) 및 단말(130) 중 적어도 하나는 기계 타입 통신(machine type communication, MTC)을 수행하는 장치로서, 사용자에 의해 휴대되지 아니할 수 있다. 단말(120) 및 단말(130) 각각은 '이동국(mobile station)', '가입자국(subscriber station)', '원격 단말(remote terminal)', '무선 단말(wireless terminal)', 또는 '사용자 장치(user device)', STA(station)또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.
무선 통신 환경은, 면허 대역에서뿐 아니라 비면허 대역에서의 무선 통신을 포함할 수 있다. 기지국(110), 단말(120), 단말(130)은 비면허 대역(예: 5GHz~7.125GHz 대역, ~71GHz대역)에서 무선 신호를 송신 및 수신할 수 있다. 일 실시예로서, 비면허 대역에서는 셀룰러 통신 시스템과 다른 통신 시스템(일례로 wireless local area network, WLAN)이 공존(coexistence)할 수 있다. 2개 통신 시스템들 간 공정성(fairness) 보장을 위해, 다시 말해 하나의 시스템에 의해서 독점적으로 채널이 사용되는 상황이 발생하지 않도록, 기지국(110), 단말(120), 단말(130)은 비면허 대역을 위한 채널 접속 절차를 수행할 수 있다. 비면허 대역을 위한 채널 접속 절차의 예로서, 기지국(110), 단말(120), 단말(130)은 LBT(listen before talk)를 수행할 수 있다.
기지국(110), 단말(120), 단말(130)은 밀리미터 파(mmWave) 대역(일례로 28GHz, 30GHz, 38GHz, 60GHz)에서 무선 신호를 송신 및 수신할 수 있다. 이 때, 채널 이득의 향상을 위해, 기지국(110), 단말(120), 단말(130)은 빔포밍(beamforming)을 수행할 수 있다. 여기서, 빔포밍은 송신 빔포밍 및/또는 수신 빔포밍을 포함할 수 있다. 즉, 기지국(110), 단말(120), 단말(130)은 송신 신호 또는 수신 신호에 방향성(directivity)을 부여할 수 있다. 이를 위해, 기지국(110) 및 단말들(120, 130)은 빔 탐색(beam search) 또는 빔 관리(beam management) 절차를 통해 서빙(serving) 빔들을 선택할 수 있다. 서빙 빔들이 선택된 후, 이후 통신은 서빙 빔들을 송신한 자원과 QCL(quasi co-located) 관계에 있는 자원을 통해 수행될 수 있다.
기지국(110)은 특정 방향의 빔(112 또는 113)을 선택할 수 있다. 그리고, 기지국(110)은 특정 방향의 빔(112 또는 113)을 이용하여 단말과 통신을 수행할 수 있다. 예를 들어, 기지국(110)은 빔(112)을 이용하여 단말(120)로부터 신호를 수신하거나, 단말(120)에게 신호를 송신할 수 있다. 그리고, 단말(120)은 빔(121)을 이용하여 기지국(110)으로부터 신호를 수신하거나, 기지국(110)에게 신호를 송신할 수 있다. 또한, 기지국(110)은 빔(113)을 이용하여 단말(130)로부터 신호를 수신하거나, 단말(130)에게 신호를 송신할 수 있다. 그리고, 단말(130)은 빔(131)을 이용하여 기지국(110)으로부터 신호를 수신하거나, 기지국(110)에게 신호를 송신할 수 있다.
도 2는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 기지국의 구성을 도시하는 도면이다.
도 2에 예시된 구성은 도 1의 기지국(110)의 구성으로서 이해될 수 있다. 이하 사용되는 '~부', '~기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 2를 참고하면, 기지국은 무선 통신부(210), 백홀 통신부(220), 저장부(230), 제어부(240)를 포함할 수 있다.
무선 통신부(210)(이는 송수신부와 혼용될 수 있다)는 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행할 수 있다. 예를 들어, 무선 통신부(210)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 신호 송신시, 무선 통신부(210)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들(complex symbols)을 생성할 수 있다. 또한, 신호 수신 시, 무선 통신부(210)는 수신된 기저대역 신호의 복조 및 복호화를 통해 송신 비트열을 복원할 수 있다.
또한, 무선 통신부(210)는 기저대역 신호를 RF(radio frequency) 대역 신호로 상향 변환(up-convert)한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환(down-convert)할 수 있다. 이를 위해, 무선 통신부(210)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 또한, 무선 통신부(210)는 다수의 송수신 경로에 대응하는 다수의 RF 체인(chain)들을 포함할 수 있다. 나아가, 무선 통신부(210)는 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)를 포함할 수 있다.
하드웨어의 측면에서, 무선 통신부(210)는 디지털 유닛(digital unit) 및 아날로그 유닛(analog unit)으로 구성될 수 있으며, 아날로그 유닛은 동작 전력, 동작 주파수 등에 따라 다수의 서브 유닛(sub-unit)들로 구성될 수 있다. 디지털 유닛은 적어도 하나의 프로세서(예: DSP(digital signal processor))로 구현될 수 있다.
무선 통신부(210)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 무선 통신부(210)의 전부 또는 일부는 '송신부(transmitter)', '수신부(receiver)' 또는 '송수신부(transceiver)'로 지칭될 수 있다. 또한, 이하 설명에서, 무선 채널을 통해 수행되는 송신 및 수신은 무선 통신부(210)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다. 일 실시예에 따라, 무선 통신부(210)는 적어도 하나의 송수신부(at least one transceiver)를 포함할 수 있다.
백홀 통신부(220)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다. 즉, 백홀 통신부(220)는 기지국에서 다른 노드, 예를 들어, 다른 접속 노드, 다른 기지국, 상위 노드, 코어 네트워크 등으로 송신되는 비트열을 물리적 신호로 변환하고, 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환할 수 있다.
저장부(230)는 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(230)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부(230)는 제어부(240)의 요청에 따라 저장된 데이터를 제공할 수 있다. 일 실시예에 있어서, 저장부(230)는 적어도 하나의 메모리(memory)를 포함할 수 있다.
제어부(240)는 기지국의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(240)는 무선 통신부(210)를 통해 또는 백홀 통신부(220)를 통해 신호를 송신 및 수신할 수 있다. 또한, 제어부(240)는 저장부(230)에 데이터를 기록하고, 읽을 수 있다. 그리고, 제어부(240)는 통신 규격에서 요구하는 프로토콜 스택(protocol stack)의 기능들을 수행할 수 있다. 일 실시예에 있어서, 프로토콜 스텍은 무선 통신부(210)에 포함될 수 있다. 일 실시예에 있어서, 제어부(240)는 적어도 하나의 프로세서(at least one processor)를 포함할 수 있다.
제어부(240)는 기지국이 후술하는 다양한 실시예들 중 적어도 하나에 따른 동작들을 수행하도록 제어할 수 있다. 예를 들어, 제어부(240)는 비면허 대역에 대한 채널 접속 절차를 수행할 수 있다. 예를 들면, 송수신부(일례로 무선 통신부 (210))에서 비면허 대역으로 송신되는 신호들을 수신하고, 제어부(240)는 상술된 수신된 신호의 세기 등을 사전에 정의되거나 대역폭 등을 인자로 하는 함수의 값 결정된 임계 값과 비교하여 비면허 대역의 유휴 상태 여부를 결정할 수 있다. 또한, 예를 들어, 제어부(240)는 송수신부를 통해 단말에게 제어 신호를 송신하거나, 단말로부터 제어 신호를 수신할 수 있다. 또한, 제어부(240)는 송수신부를 통해 단말에게 데이터를 송신하거나, 단말로부터 데이터를 수신할 수 있다. 제어부(240)는, 단말로부터 수신한 제어 신호 또는 데이터 신호에 기반하여, 단말에게 전송된 신호에 대한 전송 결과를 결정할 수 있다. 제어부(240)는 하나 이상의 셀들에 하나 이상의 데이터 채널을 할당하기 위한 하나의 하향링크 제어 정보(DCI)를 구성하고, 상기 DCI를 무선 통신부(210)를 통해 단말에게 전송할 수 있다. 또한 제어부(240)는 상기 DCI의 전송 이전에, 하나의 DCI에 의해 하나 이상의 데이터 채널을 할당하기 위해 필요한 설정 정보를 상위 계층 시그널링을 통해 단말에게 제공할 수 있다. 또한 제어부(240)는 상기 설정 정보 및 상기 DCI에 포함된 정보 필드들에 근거하여 단말로 데이터 채널을 전송하거나 단말로부터 데이터 채널을 수신할 수 있다.
또한, 예를 들어, 제어부(240)는 전송 결과에 기반하여, 다시 말해, 제어 신호 또는 데이터 신호에 대한 단말의 수신 결과에 기반하여, 채널 접속 절차를 위한 경쟁 구간(contention window: CW)의 길이를 유지 또는 변경(이하, 경쟁 구간 조정(contention window adjustment)을 수행할 수 있다. 일 실시예에 따라, 제어부(240)는 경쟁 구간 조정을 위한 전송 결과를 획득하기 위해, 기준 구간을 결정할 수 있다. 제어부(240)는 기준 구간에서 경쟁 구간 조정을 위한 데이터 채널을 결정할 수 있다. 제어부(240)는 기준 구간에서 경쟁 구간 조정을 위한 기준 제어 채널을 결정할 수 있다. 만일, 비면허 대역이 유휴 상태인 것으로 결정되는 경우, 제어부(240)는 채널을 점유할 수 있다.
또한 제어부(240)는 무선 통신부(210)를 통해 단말로부터 상향링크 제어 정보(uplink control information: UCI)를 수신하고, 상술된 상향링크 제어 정보에 포함된 하나 이상의 HARQ-ACK(hybrid automatic repeat request acknowledgement) 정보 및/또는 채널 상태 정보(Channel State Information, CSI)를 통해 하향링크 데이터 채널에 대한 재전송 필요 여부 및/또는 변조 및 코딩 방식 변경 필요 여부를 확인하도록 제어할 수 있다. 또한 제어부(240)는 하향링크 데이터의 초기 또는 재전송을 스케줄링하거나 상향링크 제어 정보 전송을 요청하는 하향링크 제어 정보(downlink control information)을 생성하고, 상술된 하향링크 제어 정보를 무선 통신부(210)를 통해 단말로 전송하도록 제어할 수 있다. 또한 제어부(240)는 상술된 하향링크 제어 정보에 따라 (재)전송된 상향링크 데이터 및/또는 상향링크 제어 정보를 수신하도록 상술된 무선 통신부(210)를 제어할 수 있다.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말의 구성을 도시하는 도면이다.
도 3에 예시된 구성은 도 1의 단말(120 또는 130)의 구성으로서 이해될 수 있다. 이하 사용되는 '~부', '~기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 3을 참고하면, 단말은 무선 통신부(310), 저장부(320), 제어부(330)를 포함할 수 있다.
무선 통신부(310)(이는 송수신부와 혼용될 수 있다)는 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행할 수 있다. 예를 들어, 무선 통신부(310)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 신호 송신시, 무선 통신부(310)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성할 수 있다. 또한, 신호 수신시, 무선 통신부(310)는 수신된 기저대역 신호의 복조 및 복호화를 통해 송신 비트열을 복원할 수 있다. 또한, 무선 통신부(310)는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, 무선 통신부(310)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다.
또한, 무선 통신부(310)는 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 무선 통신부(310)는 다수의 안테나 요소들로 구성된 적어도 하나의 안테나 어레이를 포함할 수 있다. 하드웨어의 측면에서, 무선 통신부(310)는 디지털 유닛 및 아날로그 유닛(예: RFIC(radio frequency integrated circuit))로 구성될 수 있다. 여기서, 디지털 유닛 및 아날로그 유닛은 하나의 패키지로 구현될 수 있다. 또한, 무선 통신부(310)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 무선 통신부(310)는 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)를 포함하여, 빔포밍을 수행할 수 있다.
무선 통신부(310)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 무선 통신부(310)의 전부 또는 일부는 '송신부', '수신부' 또는 '송수신부'로 지칭될 수 있다. 또한, 이하 설명에서 무선 채널을 통해 수행되는 송신 및 수신은 무선 통신부(310)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다. 일 실시예에 따라, 무선 통신부(310)는 적어도 하나의 송수신부(at least one transceiver)를 포함할 수 있다.
저장부(320)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(320)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부(320)는 제어부(330)의 요청에 따라 저장된 데이터를 제공할 수 있다. 일 실시예에 따라, 저장부(320)는 적어도 하나의 메모리(memory)를 포함할 수 있다.
제어부(330)는 단말의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(330)는 무선 통신부(310)를 통해 신호를 송신 및 수신할 수 있다. 또한, 제어부(330)는 저장부(320)에 데이터를 기록하고, 읽는다. 그리고, 제어부(330)는 통신 규격에서 요구하는 프로토콜 스택의 기능들을 수행할 수 있다. 이를 위해, 제어부(330)는 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부일 수 있다. 일 실시예에 따라, 제어부(330)는 적어도 하나의 프로세서(at least one processor)를 포함할 수 있다. 또한, 일 실시예에 따라, 무선 통신부(310)의 일부 및/또는 제어부(330)은 CP(communication processor)라 지칭될 수 있다.
제어부(330)는 단말이 후술하는 다양한 실시예들들 중 적어도 하나에 따른 동작들을 수행하도록 제어할 수 있다. 예를 들어, 제어부(330)는 송수신부(일례로 통신부(310))를 통해, 기지국이 전송하는 하향링크 신호(하향링크 제어 신호 또는 하향링크 데이터)를 수신할 수 있다. 또한, 예를 들어, 제어부(330)는, 하향링크 신호에 대한 전송 결과를 결정할 수 있다. 전송 결과는, 전송된 하향링크 신호에 대한 피드백으로서, ACK(ACKnowledgement), NACK(Negative ACK), DTX(Discontinuous Transmission) 등을 포함할 수 있다. 본 개시에서 전송 결과는, 하향링크 신호의 수신 상태, 수신 결과, 디코딩 결과, HARQ-ACK 정보(HARQ-ACK information) 등 다양한 용어로 지칭될 수 있다. 또한, 예를 들어, 제어부(330)는 송수신부를 통해, 기지국에게 하향링크 신호에 대한 응답 신호로서, 상향링크 신호를 전송할 수 있다. 상향링크 신호는 하향링크 신호에 대한 전송 결과를 명시적으로(explicitly) 또는 묵시적으로(implicitly) 포함할 수 있다. 또한, 예를 들어, 제어부(330)는, 상향링크 제어 정보에, 상술된 HARQ-ACK 정보 및/또는 채널 상태 정보 (CSI) 중 적어도 하나 이상의 정보를 포함하여, 무선 통신부(310)를 통해 기지국에게 상향링크 제어 정보를 전송할 수 있다. 이때, 상향링크 제어 정보는 상향링크 데이터와 함께 상향링크 데이터 채널을 통해 전송되거나, 상향링크 데이터 없이 상향링크 데이터 채널을 통해 기지국에게 전송될 수 있다.
제어부(330)는 비면허 대역에 대한 채널 접속 절차를 수행할 수 있다. 예를 들면, 무선 통신부(310)에서 비면허 대역으로 송신되는 신호들을 수신하고, 제어부(330)는 상술된 수신된 신호의 세기 등을 사전에 정의되거나 대역폭 등을 인자로 하는 함수의 값 결정된 임계 값과 비교하여 상술된 비면허 대역의 유휴상태 여부를 결정할 수 있다. 제어부(330)는, 기지국에게 신호를 전송하기 위해 비면허 대역에 대한 접속 절차를 수행할 수 있다. 또한, 제어부(330)은, 상술된 채널 접속 절차 수행 결과와 기지국으로부터 수신 받은 하향링크 제어 정보 중 적어도 하나 이상을 이용하여 상향링크 제어 정보를 전송할 상향링크 전송 자원을 판단하고, 송수신부를 통해 기지국에게 상향링크 제어 정보를 전송할 수 있다.
제어부(330)는 하나 이상의 셀들에 하나 이상의 데이터 채널을 할당하도록 구성된 하나의 하향링크 제어 정보(DCI)를 수신하는데 필요한 설정 정보를 포함하는 상위 계층 시그널링을 무선 통신부(310)를 통해 기지국으로부터 수신할 수 있다. 제어부(330)는 또한 상기 설정 정보에 근거하여 상기 DCI를 수신하고 상기 DCI에 포함된 필드들을 해석한다. 또한 제어부(330)는 상기 설정 정보 및 상기 DCI에 포함된 정보 필드들에 근거하여 기지국으로 데이터 채널을 전송하거나 기지국으로부터 데이터 채널을 수신할 수 있다.
도 4는 본 개시의 다양한 실시예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시하는 도면이다. 도 4는 도 2의 무선 통신부(210) 또는 도 3의 무선 통신부(310)의 상세한 구성에 대한 예를 도시할 수 있다. 구체적으로, 도 4는 도 2의 무선 통신부(210) 또는 도 3의 무선 통신부(310)의 일부로서, 빔포밍을 수행하기 위한 구성요소들을 예시할 수 있다.
도 4를 참고하면, 무선 통신부(210) 또는 무선 통신부(310)는 부호화 및 변조부(402), 디지털 빔포밍부(404), 다수의 송신 경로들(406-1 내지 406-N) 및 아날로그 빔포밍부(408)를 포함할 수 있다.
부호화 및 변조부(402)는 채널 인코딩을 수행할 수 있다. 채널 인코딩을 위해, LDPC(low density parity check) 코드, 컨볼루션(convoluation) 코드, 폴라(polar) 코드 중 적어도 하나가 사용될 수 있다. 부호화 및 변조부(402)는 부호화된 비트들에 대한 성상도 맵핑(contellation mapping)을 수행함으로써 변조 심볼들을 생성할 수 있다.
디지털 빔포밍부(404)는 디지털 신호(일례로 변조 심볼들)에 대한 빔포밍을 수행할 수 있다. 이를 위해, 디지털 빔포밍부(404)는 변조 심볼들에 빔포밍 가중치들을 곱할 수 있다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용될 수 있으며, '프리코딩 행렬(precoding matrix)', '프리코더(precoder)' 등으로 지칭될 수 있다. 디지털 빔포밍부(404)는 다수의 송신 경로들(406-1 내지 406-N)로 디지털 빔포밍된(즉 프리코딩된) 변조 심볼들을 출력할 수 있다. 이 때, MIMO(multiple input multiple output) 전송 기법에 따라, 변조 심볼들은 다중화되거나, 다수의 송신 경로들(406-1 내지 406-N)로 동일한 변조 심볼들이 제공될 수 있다.
다수의 송신 경로들(406-1 내지 406-N)은 디지털 빔포밍된 디지털 신호들을 아날로그 신호로 변환할 수 있다. 이를 위해, 다수의 송신 경로들(406-1 내지 406-N) 각각은 IFFT(inverse fast fourier transform) 연산부, CP(cyclic prefix) 삽입부, 디지털 아날로그 변환기(DAC), 상향 변환부를 포함할 수 있다. CP 삽입부는 OFDM(orthogonal frequency division multiplexing) 방식을 위한 것으로, 다른 물리 계층 방식(일례로 filter bank multi-carrier, FBMC)이 적용되는 경우 제외될 수 있다. 다수의 송신 경로들(406-1 내지 406-N)은 디지털 빔포밍을 통해 생성된 다수의 스트림(stream)들에 대하여 독립된 신호처리 프로세스를 제공할 수 있다. 구현 방식에 따라, 다수의 송신 경로들(406-1 내지 406-N)의 구성요소들 중 일부는 공용으로 사용될 수 있다.
아날로그 빔포밍부(408)는 다수의 송신 경로들(406-1 내지 406-N)로부터의 아날로그 신호에 대한 빔포밍을 수행하여, 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)로 연결할 수 있다. 이를 위해, 아날로그 빔포밍부(408)는 아날로그 신호들에 빔포밍 가중치들을 곱할 수 있다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용될 수 있다. 다수의 송신 경로들(406-1 내지 406-N) 및 안테나들 간 연결 구조에 따라, 아날로그 빔포밍부(408)는 다양하게 구성될 수 있다. 예를 들어, 다수의 송신 경로들(406-1 내지 406-N) 각각이 하나의 안테나 어레이와 연결될 수 있다. 다른 예로, 다수의 송신 경로들(406-1 내지 406-N)이 하나의 안테나 어레이와 연결될 수 있다. 또 다른 예로, 다수의 송신 경로들(406-1 내지 406-N)은 적응적으로 하나의 안테나 어레이와 연결되거나, 둘 이상의 안테나 어레이들과 연결될 수 있다.
<Frame structure >
이하에서는 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 5는 5G 통신 시스템의 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 5에는 부반송파 간격(subcarrier spacing) 15kHz를 나타내는 μ=0(505)인 경우와 부반송파 간격 30kHz를 나타내는 μ=1(506)인 경우, 프레임(Frame, 500), 서브프레임(Subframe, 501), 슬롯(Slot, 502, 503, 504) 구조의 일 예가 도시되어 있다. 도 5와 같이 5G 시스템의 경우, 1 프레임(500)은 10ms로 정의될 수 있다. 1 서브프레임(501)은 1ms로 정의될 수 있으며, 따라서 1 프레임(500)은 총 10개의 서브프레임(501)으로 구성될 수 있다. 1 서브프레임(501)은 하나 또는 복수 개의 슬롯으로 구성될 수 있다. 1 슬롯은 14개의 OFDM 심볼로 구성 또는 정의될 수 있다. 즉, 1 슬롯 당 심볼 수(
Figure pat00001
)는 14이다. 이때, 1 서브프레임(501)당 슬롯의 개수(
Figure pat00002
)는 부반송파 간격(subcarrier spacing)에 대한 설정을 나타내는 값(numerology) μ(505, 506)에 따라 다를 수 있다. 예를 들어, μ=0인 경우, 1 서브프레임(501)은 하나의 슬롯(502)로 구성될 수 있으며, μ=1인 경우, 1 서브프레임(501)은 두개의 슬롯(503,504)으로 구성될 수 있다.
부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수가 달라질 수 있으므로, 이에 따라 1 프레임 당 슬롯 수(
Figure pat00003
) 역시 달라질 수 있다. 각 부반송파 간격 설정 값 μ 및 μ에 따른
Figure pat00004
Figure pat00005
는 하기의 표 1과 같이 정의될 수 있다. μ=2의 경우, 단말은 기지국으로부터 상위 계층 시그널링을 통해 순환전치(cyclic prefix)에 관한 설정을 추가적으로 받을 수 있다. 표 1은 각 부반송파 간격에 따른 프레임 구조(frame structure)를 도시한 도면이다.
[표 1]
Figure pat00006
본 개시에서 상위 계층 시그널링(higher layer signaling) 또는 상위 신호는 단말 특정 또는 셀 특정 RRC(radio resource control) 시그널링, 또는 PDCP(packet data convergence protocol) 시그널링, 또는 MAC 제어 요소(MAC(media access control) control element, MAC CE) 중 적어도 하나를 의미할 수 있다. 또한, 상위 계층 시그널링 또는 상위 신호에는 복수의 단말들에게 공통으로 전송되는 시스템 정보, 예를 들어 SIB(system information block)이 포함될 수 있으며, PBCH(physical broadcast channel)를 통해 전송되는 정보 중 MIB(master information block)을 제외한 정보 (예를 들어, PBCH payload) 역시 포함될 수 있다. 이때, 상기 MIB도 상술된 상위 계층 시그널링 또는 상위 신호에 포함되는 것으로 표현될 수 있다.
<Carrier bandwidth>
도 6은 5G 통신 시스템의 시간-주파수영역의 기본 구조를 도시한 도면이다. 즉, 도 6은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 도메인의 기본 구조를 도시한 도면이다.
도 6의 가로축은 시간 도메인을, 세로축은 주파수 도메인을 나타낸다. 시간 및 주파수 도메인에서 자원의 기본 단위는 자원 요소(Resource Element, RE)(601)로서 시간 도메인으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(602) 및 주파수 도메인으로 1 부반송파(Subcarrier)(603)로 정의될 수 있다. 주파수 도메인에서
Figure pat00007
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB)(604)을 구성할 수 있다.
각각의 부반송파 간격 설정 값 μ 및 반송파에 대해서,
Figure pat00008
개의 부반송파와
Figure pat00009
개의 OFDM 심볼로 이루어진 하나의 자원 격자 (resource grid)는 상위 계층 시그널링을 통해 지시된 공통자원블록 (Common Resource Block, CRB)
Figure pat00010
에서부터 시작하는 것으로 정의 될 수 있으며, 주어진 안테나 포트, 부반송파 간격 설정 μ, 및 전송 방향 (예를 들어, 하향링크, 상향링크, 사이드링크(sidelink))에 대해 하나의 자원 격자가있을 수 있다.
기지국은 단말에게 상향링크 및 하향링크에 대한 부반송파 간격 설정
Figure pat00011
의 반송파 대역폭
Figure pat00012
및 시작 위치
Figure pat00013
를 상위 계층 시그널링 (예를 들어, 상위 계층 파라미터들 'carrierBandwidth' 및 'offsetToCarrier')을 통해 전달할 수 있다. 이때, 상기 반송파 대역폭
Figure pat00014
는 부반송파 간격 설정
Figure pat00015
에 대해 상위 계층 파라미터 'carrierBandwidth'에 의해 설정되고, 상기 시작 위치
Figure pat00016
는 Point A에 대한, 상기 반송파의 가용 가능한 자원 중 가장 낮은 주파수를 갖는 부반송파의 주파수 오프셋으로서, 'offsetToCarrier'로 설정되며 RB 개수로 표현될 수 있다. 이때,
Figure pat00017
Figure pat00018
가 부반송파 단위의 값인 것도 가능하다. 상기 파라미터들을 수신한 단말은
Figure pat00019
Figure pat00020
를 통해 반송파 대역폭의 시작 위치 및 크기를 알 수 있다.
Figure pat00021
Figure pat00022
를 전송하는 상위 계층 시그널링 정보의 일 예는 다음 표 2(상위 계층 시그널링 정보 엘리먼트 SCS-SpecificCarrier)과 같다.
SCS-SpecificCarrier ::= SEQUENCE {
offsetToCarrier INTEGER (0..2199),
subcarrierSpacing SubcarrierSpacing,
carrierBandwidth INTEGER (1..maxNrofPhysicalResourceBlocks),
...,
[[
txDirectCurrentLocation INTEGER (0..4095) OPTIONAL -- Need S
]]
}
여기서 Point A는 자원 블록 격자 (resource block grid)에 대한 공통 기준점 (common reference point)를 제공하는 값이다. 단말은 PCell 하향링크의 경우, 상위 계층 파라미터인 'offsetToPointA'를 통해 Point A를 획득하고, 이외 모든 다른 경우에는, 상위 계층 파라미터인 'absoluteFrequencyPointA'에 의해 설정되는 무선 주파수 채널 번호 절대값 (Absolute Radio Frequency Channel Number, ARFCN)을 통해 Point A를 획득할 수 있다. 여기서, 'offsetToPointA'는 Point A와, 단말이 초기 셀 선택 과정에서 단말이 선택 또는 사용한 SS/PBCH (Synchronization Signal / Physical Broadcast CHannel)와 중첩되는 RB 중 주파수가 가장 낮은 RB의 가장 낮은 부반송파 간의 주파수 오프셋으로, RB 단위로 표현된다.
공통자원블록(CRB)의 번호 또는 인덱스는 0에서부터 주파수 도메인으로 값이 증가하는 방향으로 1씩 증가된다. 이때, 부반송파 간격
Figure pat00023
에 대해 공통자원블록의 부반송파 인덱스 0의 중심은 Point A와 일치한다. 주파수 도메인 공통자원블록 인덱스(
Figure pat00024
)와 부반송파 간격
Figure pat00025
의 RE는
Figure pat00026
의 관계를 갖는다. 여기서 k는 Point A를 기준으로 상대적으로 정의된 값이다. 즉, k=0은 Point A이다.
부반송파 간격
Figure pat00027
의 물리자원블록(Physical Resource Block, PRB)은 대역폭파트(Bandwidth Part: BWP) 내에서 0부터
Figure pat00028
까지의 번호 혹은 인덱스로 정의된다. 여기서
Figure pat00029
는 대역폭파트의 번호 또는 인덱스이다. 대역폭파트
Figure pat00030
내의 PRB (
Figure pat00031
)와 CRB(
Figure pat00032
) 간의 관계는
Figure pat00033
와 같다. 여기서,
Figure pat00034
는 CRB 0에서부터 대역폭파트
Figure pat00035
가 시작하는 첫 번째 RB까지의 CRB 개수이다.
<BWP>
다음으로 5G 통신 시스템에서 대역폭파트 설정에 대하여 도면을 참조하여 구체적으로 설명하도록 한다.
도 7은 5G 통신 시스템에서 대역폭파트 및 셀 내 보호구간에 대한 설정의 일 예를 도시한 도면이다.
도 7을 참조하면, 반송파 대역폭 또는 단말 대역폭(UE bandwidth)(700) 내에서 복수개의 대역폭파트, 즉, 대역폭파트#1(BWP#1)(710), 대역폭파트#2(BWP#2)(750), 및 대역폭파트#3(BWP#3)(790)이 설정될 수 있다. 대역폭파트#3(790)은 UE 대역폭(700)의 전체를 점유한다. 대역폭파트#1(710)과 대역폭파트#2(750)는 각각 UE 대역폭(700)의 하위 절반과 상위 절반을 점유할 수 있다.
기지국은 단말에게 상향링크 또는 하향링크 내에서 하나 또는 복수 개의 대역폭파트를 설정해줄 수 있으며, 각 대역폭파트에 대하여 하기 상위 계층 파라미터들 중 하나 이상이 설정될 수 있다. 이때, 대역폭파트에 관한 설정은 상향링크와 하향링크에 대해 독립적일 수 있다. 아래 표 3은 각 대역폭 파트에 대한 상위 계층 시그널링 정보 엘리먼트 BWP의 일 예이다.
BWP ::= SEQUENCE {
bwp-Id BWP-Id,
locationAndBandwidth INTEGER (1..65536),
subcarrierSpacing ENUMERATED {n0, n1, n2, n3, n4, n5},
cyclicPrefix ENUMERATED { extended }
}
여기서 'bwp-Id'는 대역폭파트 식별자를 의미하고, 'locationAndBandwidth'는 상기 대역폭파트의 주파수 도메인 위치 및 대역폭을 지시하고 'subcarrierSpacing'은 상기 대역폭파트에서 사용되는 부반송파 간격을 지시하고, 'cyclicPrefix'는 상기 대역폭파트 내에서 확장된 순환 전치(CP)가 사용되는지 혹은 보통(normal) CP가 사용되는지를 지시한다.
상기 파라미터들 외에도 대역폭파트와 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상기 파라미터들은 상위 계층 시그널링, 예를 들면, RRC 시그널링을 통해 기지국이 단말에게 전달될 수 있다. 주어진 시간 내에서, 상기 설정된 하나 또는 복수 개의 대역폭파트들 중에서 적어도 하나의 대역폭파트가 활성화(Activation)될 수 있다. 설정된 대역폭파트에 대한 활성화 지시는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적으로 전달되거나 PDSCH(Physical Downlink Shared Channel) 또는 PUSCH(Physical Uplink Shared Channel)의 스케줄링에 사용되는 DCI(Downlink Control Information)를 통해 동적으로 전달될 수 있다.
일 실시예에 따르면, RRC 연결 전의 단말은 초기 접속(initial access)을 위한 초기 대역폭파트(Initial BWP)를 MIB(Master Information Block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로 설명하면, 단말은 초기 접속 단계에서 MIB를 통해 PDCCH(Physical Downlink Control Channel)가 전송될 수 있는 제어자원세트(Control Resource Set, CORESET)과 탐색 공간(Search Space)에 대한 설정 정보를 수신할 수 있다. 이때, MIB로 설정되는 제어자원세트와 탐색 공간은 각각 식별자(Identity, ID) 0으로 간주될 수 있다. 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 주파수 할당 정보, 시간 할당 정보, 및 뉴머롤로지(Numerology) 중 적어도 하나 이상의 정보를 통지할 수 있다. 여기서 뉴머롤로지는 부반송파 간격, CP 중 적어도 하나를 포함할 수 있다. 여기서 CP는 CP의 길이 또는 CP 길이에 대응되는 정보 (예, normal 또는 extended) 중 적어도 하나를 의미할 수 있다.
또한 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 모니터링 주기 및 시점(occasion)에 대한 설정 정보, 즉 탐색 공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어자원세트#0으로 설정된 주파수 도메인을 초기 접속을 위한 초기 대역폭파트(Initial Bandwidth Part)로 간주할 수 있다. 이때, 초기 대역폭파트의 식별자(ID)는 0으로 간주될 수 있다.
상술된 5G에서 지원하는 대역폭파트에 대한 설정은 다양한 목적으로 사용될 수 있다.
일 실시예에 따르면, 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우, 대역폭파트 설정을 통해 시스템 대역폭에 대한 단말의 데이터 송수신이 지원될 수 있다. 예를 들면, 기지국은 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신하도록 대역폭파트의 주파수 도메인 위치를 단말에게 설정할 수 있다.
일 실시예에 따르면, 서로 다른 뉴머롤로지를 지원하기 위한 목적으로 기지국이 단말에게 복수 개의 대역폭파트를 설정할 수 있다. 예를 들면, 어떤 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 기지국은 두 개의 대역폭 부분을 각각 15kHz와 30kHz의 부반송파 간격으로 설정할 수 있다. 서로 다른 대역폭 부분은 주파수 분할 다중화(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우, 상기 특정 부반송파 간격으로 설정되어 있는 대역폭파트가 활성화 될 수 있다.
일 실시예에 따르면, 단말의 전력 소모 감소를 위한 목적으로 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭파트를 설정할 수 있다. 예를 들면, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하지만, 상기 대역폭으로 항상 데이터를 송수신할 경우 매우 큰 전력 소모가 발생될 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 100MHz의 큰 대역폭으로 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적일 수 있다. 단말의 전력 소모를 줄이기 위한 목적으로, 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭파트, 예를 들면, 20MHz의 대역폭파트를 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭파트에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭파트로 데이터를 송수신할 수 있다.
앞서 설명한 바와 같이, RRC 연결되기(Connected) 전의 단말들은 초기 접속 단계에서 MIB를 통해 초기 대역폭파트에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로, 단말은 PBCH의 MIB로부터 PDCCH를 위한 제어자원세트(CORESET)를 설정 받을 수 있다. MIB로 설정된 제어자원세트의 대역폭은 초기 하향링크 대역폭파트로 간주될 수 있으며, 상기 초기 대역폭파트를 통해 단말은 SIB가 전송되는 PDSCH(Physical Downlink Shared Channel)를 수신할 수 있다. 구체적으로 단말은 MIB로 설정되는 초기 대역폭파트 내의 제어자원세트와 탐색 공간 상에서 PDCCH를 검출하고, 상기 PDCCH에 의해 스케줄된 PDSCH를 통해 초기 접속에 필요한 잔여 시스템 정보(Remaining System Information, RMSI) 또는 SIB1(System Information Block 1)을 수신하고, 상기 SIB1 (또는 RMSI)을 통해 상향링크 초기 대역폭파트에 관한 설정 정보를 획득할 수 있다. 초기 대역폭파트는 SIB를 수신하는 용도 외에도, 다른 시스템 정보(Other System Information, OSI), 페이징(Paging), 랜덤 엑세스(Random Access) 용으로 활용될 수도 있다.
단말에게 하나 이상의 대역폭파트가 설정되었을 경우, 기지국은 단말에게 DCI 내의 대역폭파트 지시자(Bandwidth part indicator) 필드를 이용하여, 대역폭파트에 대한 변경을 지시할 수 있다.
일 예로 도 7에서 단말의 현재 활성화된 대역폭파트가 대역폭파트#1(710)일 경우, 기지국은 단말에게 DCI 내의 대역폭파트 지시자를 이용하여 대역폭파트#2(750)를 지시할 수 있고, 단말은 상기 수신한 DCI 내의 대역폭파트 지시자에 기초하여 지시된 대역폭파트#2(750)로 대역폭파트 변경을 수행할 수 있다.
상술된 바와 같이 DCI 기반 대역폭파트 변경은 PDSCH 또는 PUSCH를 스케줄링하는 DCI에 의해 지시될 수 있기 때문에, 단말은 대역폭파트 변경 요청을 수신하였을 경우, 상기 DCI가 스케줄링하는 PDSCH 또는 PUSCH를 변경된 대역폭파트에서 무리 없이 수신 또는 송신할 수 있어야 한다. 이를 위해, 표준에서는 대역폭파트 변경 시 요구되는 지연 시간(TBWP)에 대한 요구 사항을 규정하였으며, 예를 들어 하기 표 4와 같이 정의될 수 있다.
[표 4]
Figure pat00036
대역폭파트 변경 지연 시간에 대한 요구사항은 단말의 능력(Capability)에 따라 타입 1 또는 타입 2를 지원한다. 단말은 기지국에 지원 가능한 대역폭파트 지연 시간 타입을 보고할 수 있다.
전술한 대역폭파트 변경 지연시간에 대한 요구사항에 따라, 단말이 대역폭파트 변경 지시자를 포함하는 DCI를 슬롯 n에서 수신하였을 경우, 단말은 대역폭파트 변경 지시자가 가리키는 새로운 대역폭파트로의 변경을 슬롯 n+TBWP보다 늦지 않은 시점에서 완료를 할 수 있고, 변경된 새로운 대역폭파트에서 상기 DCI가 스케줄링하는 데이터 채널에 대한 송수신을 수행할 수 있다. 기지국은 새로운 대역폭파트로 데이터 채널을 스케줄링하고자 할 경우, 단말의 대역폭파트 변경 지연시간(TBWP)을 고려하여, 데이터 채널에 대한 시간 도메인 자원 할당을 결정할 수 있다. 즉, 기지국은 새로운 대역폭파트로 데이터 채널을 스케줄링 할 때, 데이터 채널에 대한 시간 도메인 자원 할당을 결정하는 방법에 있어서, 대역폭파트 변경 지연시간 이 후로 상기 데이터 채널을 스케줄링할 수 있다. 이에 따라 단말은 대역폭파트 변경을 지시하는 DCI가, 대역폭파트 변경 지연 시간 (TBWP) 보다 작은 슬롯 오프셋 (K0 또는 K2)을 지시하는 것을 기대하지 않을 수 있다.
만약 단말이 대역폭파트 변경을 지시하는 DCI(예를 들어 DCI 포맷 1_1 또는 0_1)을 수신하였다면, 단말은 상기 DCI를 포함하는 PDCCH를 수신한 슬롯의 세번째 심볼에서부터, 상기 DCI 내의 시간 도메인 자원 할당 필드로 지시된 슬롯 오프셋(K0 또는 K2)으로 지시된 슬롯의 시작 심볼까지에 해당하는 시간 구간 동안 어떠한 송신 또는 수신도 수행하지 않을 수 있다. 예를 들어, 단말이 슬롯 n에서 대역폭파트 변경을 지시하는 DCI를 수신하였고, 상기 DCI로 지시된 슬롯 오프셋이 K라고 한다면, 단말은 슬롯 n의 세번째 심볼에서부터 슬롯 n+K 이전 심볼(즉 슬롯 n+K-1의 마지막 심볼)까지 어떠한 송신 또는 수신도 수행하지 않을 수 있다.
<Intra-cell guard-band>
단말은 하나 이상의 셀 (또는 반송파)에 대해 셀 내 보호구간을 설정 받을 수 있다. 이때, 셀 내 보호구간 설정은 하향링크 보호구간 및 상향링크 보호구간을 각각에 대한 것일 수 있다. 도 7에는 반송파 대역폭 또는 단말 대역폭(UE bandwidth)(700)이 복수개의 셀 내 보호구간, 즉 셀 내 보호구간#1(740), 셀 내 보호구간#2(745), 및 셀 내 보호구간#3(780)으로 설정된 일 예를 보여준다. 보다 구체적으로, 단말은 일 예로 하기와 같이 구성될 수 있는 상위 계층 시그널링인 'IntraCellGuardBand-r16'을 통해 셀 또는 반송파 내에
Figure pat00037
개의 상/하향링크 셀 내 보호구간을 각각 설정 받을 수 있다. 여기서 x=DL 또는 UL이다. 표 5는 셀 내 보호구간을 설정하는 상위 계층 시그널링 정보 엘리먼트 IntraCellGuardBand-r16의 일 예이다.
IntraCellGuardBand-r16 ::= SEQUENCE (SIZE (1..ffsValue)) OF GuardBand-r16
GuardBand-r16 ::= SEQUENCE {
startCRB-r16 INTEGER (0..ffsValue),
nrofCRBs-r16 INTEGER (1..ffsValue)
}
여기서, 'startCRB'는 셀 내 보호구간의 시작 CRB 인덱스
Figure pat00038
이고, 'nrofCRBs'는 셀 내 보호구간의 길이로 CRB 수 (N) 또는 PRB 수(N)로 표현될 수 있다. 이때, 'nrofCRBs'는 셀 내 보호구간의 마지막 CRB 인덱스
Figure pat00039
를 지칭하는 값일 수 있다. 다시 말해, 상기 'GuardBand'는 하나 이상의 (startCRB, nrofCRBs) 값을 포함할 수 있으며, 상기 각 두 개 (every two values)의 값 중 첫 번째 값은 셀 내 보호구간의 가장 낮은 CRB 인덱스
Figure pat00040
이고 두 번째 값은 셀 내 보호구간의 가장 높은 CRB 인덱스
Figure pat00041
를 의미할 수 있다. 이때,
Figure pat00042
으로 판단되는 것도 가능하다. 여기서 상기 CRB 인덱스가 PRB 인덱스로 표현되는 경우도 가능하다. 단말은 'GuardBand'에 포함된 (startCRB, nrofCRBs) 페어의 개수 또는 'GuardBand'의 시퀀스 길이를 이용하여 (예를 들어 시퀀스 길이/2개) 기지국으로부터 설정된 셀 내 보호구간의 수 (
Figure pat00043
개) 또한 판단할 수 있다. 이때, 단말은 'IntraCellGuardBand-r16'을 통해 셀 또는 반송파 내에 상/하향링크 셀 내 보호구간이 존재하지 않는 것, 또는 보호구간이 0인 것으로 설정 받는 것도 가능하다. 예를 들어, 적어도 'startCRB-r16'이 -1과 같은 음수 값을 갖거나, 정수가 아닌 다른 수를 갖는 경우, 단말은 상기 설정을 통해 셀 또는 반송파 내에 상/하향링크 셀 내 보호구간이 존재하지 않는 것으로 판단할 수 있다.
상술한 바와 같이 셀 내 보호구간을 설정 받은 단말은, 반송파 혹은 설정된 대역폭파트에서 셀 내 보호구간을 제외한 자원 영역을
Figure pat00044
개의 RB들을 포함하는 자원집합 (예를들어, RB-set) 또는 자원영역으로 구분할 수 있으며, 자원집합에 포함된 자원을 이용하여 상/하향링크 송수신을 수행할 수 있다. 이때, 각 자원집합의 자원 영역은 다음과 같이 판단될 수 있다.
- 첫 번째 자원집합(자원집합 인덱스 0)의 시작 CRB 인덱스:
Figure pat00045
- 마지막 자원집합(자원집합 인덱스
Figure pat00046
)의 마지막 CRB 인덱스:
Figure pat00047
- 상기 외 자원집합의 시작 CRB 인덱스:
Figure pat00048
- 상기 외 자원집합의 종료 CRB 인덱스:
Figure pat00049
여기서
Figure pat00050
이고,
Figure pat00051
Figure pat00052
는 부반송파 간격 설정
Figure pat00053
에 따라 상기 반송파의 가용한 첫번째 RB 및 대역폭으로서, 상위 계층 시그널링을 통해 설정 받을 수 있다.
도 7에는 반송파 대역폭 또는 단말 대역폭(UE bandwidth)(700)이 3개의 셀 내 보호구간 및 4개의 자원집합
Figure pat00054
, 즉 자원집합#1(720), 자원집합#2(730), 자원집합#3(760), 및 자원집합#4(770)으로 설정된 일 예를 보여준다.
단말은 자원집합에 포함된 자원 및 셀 내 보호구간을 이용하여 상/하향링크 송수신을 수행할 수 있다. 예를 들어, 단말은 기지국으로부터 설정 또는 스케줄링 받은 상/하향링크 송수신 자원이 두 개의 연속적인 자원집합 내에서 할당되는 경우, 상기 자원집합 사이에 포함된 셀 내 보호구간을 이용하여 상/하향링크 송수신을 수행할 수 있다.
만일, 단말이 상위 계층 시그널링인 'intraCellGuardBandx'(여기서 x=DL 또는 UL)을 통해 셀 내 보호구간을 설정 받지 못한 경우, 단말은 기지국과 사전에 정의된 셀 내 보호구간을 이용하여 셀 내 보호구간 및 자원집합 자원 영역을 판단할 수 있다. 이때, 상기 셀 내 보호구간은 부반송파 간격 및 반송파 또는 대역폭파트의 크기에 따라 사전에 정의될 수 있다. 또한, 셀 내 보호구간은 하향링크와 상향링크에 대해 독립적으로 사전에 정의될 수 있으며, 하향링크 및 상향링크 셀 내 보호구간이 같을 수 있다. 여기서 셀 내 보호구간이 사전에 정의되어 있다는 것은 셀 내 보호구간 각각에 대해 셀 내 보호구간의 시작 CRB 인덱스
Figure pat00055
, 셀 내 보호구간의 마지막 CRB 인덱스
Figure pat00056
또는 셀 내 보호구간의 가장 낮은 CRB 인덱스
Figure pat00057
또는 셀 내 보호구간의 가장 높은 CRB 인덱스
Figure pat00058
가 사전에 정의(predefined)되어 있다는 것을 의미할 수 있다.
일 실시예에 따르면, 단말이 특정 셀 또는 반송파 내에서 상/하향링크 보호구간 중 적어도 하나의 보호구간을 설정 받는 예시는 다음과 같다. 비면허 대역을 통해 통신을 수행하는 셀의 경우, 기지국은 비면허 대역의 채널 크기 등에 따라 대역폭 또는 대역폭파트 내에서 하나 이상의 보호구간을 설정할 수 있다. 예를 들어, 5GHz 대역의 비면허 대역은 복수개의 20MHz 크기의 채널로 구성되어 있으며 각 채널 사이에 보호구간이 존재할 수 있다. 따라서, 기지국 및 단말이 20MHz 보다 큰 대역폭 또는 대역폭파트를 통해 통신을 수행하고자 하는 경우, 대역폭 또는 대역폭파트 내에서 하나 이상의 보호구간을 설정할 수 있다.
예를 들어, 채널의 크기가 20MHz인 비면허 대역을 통해 통신을 수행하는 기지국과 단말에서, 단말이 기지국으로부터 설정받은 대역폭파트(710, 750, 790) 중 적어도 하나의 대역폭파트 크기가 20MHz보다 큰 경우, 단말은 하나 이상의 셀 내 보호구간을 설정 받고, 상기 셀 내 보호구간의 설정에 따라 각 대역폭파트가 20MHz 크기를 갖는 복수개의 자원집합으로 구성되도록 설정 받을 수 있다. 예를 들어, 단말은 도 7의 대역폭파트#1(710)에 대해 2개의 자원집합#1(720) 및 자원집합#2(730)과 1개의 셀 내 보호구간#1(740)을 설정 받을 수 있다. 기지국 및 단말은 각 자원집합에 대해 채널 접속 절차 (channel access procedure 또는 Listen-before-talk(LBT))를 수행하고, 채널 접속에 성공한 자원집합을 이용하여 상/하향링크 송수신을 수행할 수 있다. 이때, 두 개의 연속적인 자원집합 (예를 들어, 자원집합#1(720) 및 자원집합#2(730)) 모두에서 채널 접속 절차가 성공한 경우, 상기 자원집합 사이에 포함된 셀 내 보호구간#1(740) 내의 자원도 상/하향링크 송수신에 사용될 수 있다. 만일, 두 개의 연속적인 자원집합 (예를 들어, 자원집합#1(720) 및 자원집합#2(730)) 중 적어도 하나의 자원집합에서 채널 접속 절차가 실패한 경우, 상기 자원집합 사이에 포함된 셀 내 보호구간#1(740)내의 자원은 상/하향링크 송수신에 사용될 수 없다.
<SS/PBCH block>
다음으로 5G에서의 SS/PBCH 블록에 대하여 설명하면 아래와 같다.
SS/PBCH 블록이란 PSS(Primary SS), SSS(Secondary SS), PBCH로 구성된 물리계층 채널 블록을 의미할 수 있다. 구체적으로는 하기와 같다.
- PSS: 하향링크 시간/주파수 동기의 기준이 되는 신호로 셀 ID의 일부 정보를 제공한다.
- SSS: 하향링크 시간/주파수 동기의 기준이 되고, PSS 가 제공하지 않은 나머지 셀 ID 정보를 제공한다. 추가적으로 PBCH의 복조를 위한 기준신호(Reference Signal: RS) 역할을 할 수 있다.
- PBCH: 단말의 데이터 채널 및 제어채널 송수신에 필요한 필수 시스템 정보를 제공한다. 필수 시스템 정보는 제어채널의 무선자원 매핑 정보를 나타내는 탐색 공간 관련 제어정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케줄링 제어정보 등을 포함할 수 있다.
- SS/PBCH 블록: SS/PBCH 블록은 PSS, SSS, PBCH의 조합으로 이뤄진다. SS/PBCH 블록은 5ms 시간 내에서 하나 또는 복수 개가 전송될 수 있고, 전송되는 각각의 SS/PBCH 블록은 인덱스로 구별될 수 있다.
단말은 초기 접속 단계에서 PSS 및 SSS를 검출할 수 있고, PBCH를 디코딩할 수 있다. PBCH로부터 MIB를 획득할 수 있고 이로부터 제어자원세트#0 (제어자원세트 인덱스가 0인 제어자원세트에 해당할 수 있음)을 설정 받을 수 있다. 단말은 선택한 SS/PBCH 블록 (또는 PBCH 디코딩에 성공한 SS/PBCH 블록)과 제어자원세트#0에서 전송되는 DMRS(Demodulation Reference signal)가 QCL(Quasi Co Location)되어 있다고 가정하고 제어자원세트#0에 대한 모니터링을 수행할 수 있다. 단말은 제어자원세트#0에서 전송된 하향링크 제어정보를 통해 시스템 정보를 획득할 수 있다. 단말은 상기 획득한 시스템 정보로부터 초기 접속에 필요한 RACH(Random Access Channel) 관련 설정 정보를 획득할 수 있다. 단말은 선택한 SS/PBCH 블록 인덱스를 고려하여 PRACH(Physical RACH)를 기지국으로 전송할 수 있고, PRACH를 수신한 기지국은 단말이 선택한 SS/PBCH 블록 인덱스를 획득할 수 있다. 기지국은 단말이 각각의 SS/PBCH 블록들 중에서 어떤 블록을 선택하였고 이와 연관되어 있는 제어자원세트#0을 모니터링한다는 것을 알 수 있다.
<DCI>
다음으로 5G 시스템에서의 하향링크 제어 정보(DCI)에 대해 구체적으로 설명하면 아래와 같다.
5G 시스템에서 상향링크 데이터(또는 PUSCH) 또는 하향링크 데이터(또는 PDSCH)에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달된다. 단말은 PUSCH 또는 PDSCH에 대하여 대비책(Fallback)용 DCI 포맷과 비대비책(Non-fallback)용 DCI 포맷 중 적어도 하나를 모니터링(Monitoring) 또는 검출 시도할 수 있다. 대비책 DCI 포맷은 기지국과 단말 사이에서 사전에 정의된 필드들로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드들을 포함할 수 있다.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH를 통해 전송될 수 있다. DCI의 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착되며, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로(by RNTI) 스크램블링(scrambling) 될 수 있다. DCI의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI가 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산 과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 검사하고, CRC 검사인 결과가 맞으면 단말은 상기 DCI가 단말에게 전송된 것임을 알 수 있다.
예를 들면, 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.
DCI 포맷 0_0은 PUSCH를 스케줄링하는 대비책(fallback) DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI, CS-RNTI, MCS-C-RNTI 중 적어도 하나로 스크램블링될 수 있다. C-RNTI, CS(configured scheduling)-RNTI, MCS(modulation coding scheme)-C-RNTI 중 적어도 하나의 RNTI로 스크램들된 CRC를 가지는 DCI 포맷 0_0은 예컨대 하기의 정보들 중 적어도 하나를 포함할 수 있다.
- 제어 정보 포맷 구분자 (Identifier for DCI formats): DCI 포맷을 구분하는 구분자. 예를 들어, 1비트 구분자를 통해 DCI를 수신한 단말에서 상기 구분자 값이 0인 경우 상기 DCI가 UL DCI 포맷 (예를 들어 DCI 포맷 0_1)이고, 1인 경우 상기 DCI가 DL DCI 포맷 (예를 들어 DCI 포맷 1_0)인 것으로 구분할 수 있다.
- 주파수 도메인 자원 할당 (frequency domain resource assignment): 자원 할당 타입 1 방식으로 할당된 주파수 도메인 자원인 RB들을 지시하는
Figure pat00059
비트를 포함함. 여기서 단말이 DCI 포맷 0_0을 공통 탐색 공간에서 모니터링 하는 경우,
Figure pat00060
는 초기 상향링크 대역폭파트의 크기이고, DCI 포맷 0_0을 단말 고유 탐색 공간에서 모니터링 하는 경우,
Figure pat00061
는 현재 활성화되어 있는 상향링크 대역폭파트의 크기이다. 다시 말해, 대비책 DCI 포맷이 전송되는 탐색 공간에 따라 주파수 도메인 자원 할당 필드의 크기를 결정하는 대역폭파트가 다를 수 있다.
일 실시예에서, PUSCH 호핑을 수행하는 경우,
Figure pat00062
비트 중
Figure pat00063
개의 MSB(Most Significant Bit)는 주파수 오프셋을 지시하는데 사용될 수 있다. 여기서,
Figure pat00064
이면, 상위 계층 시그널링에 의해 두개의 오프셋들이 설정되어 있고,
Figure pat00065
이면, 상위 계층 시그널링에 의해 네 개의 오프셋들이 설정되어 있는 것을 의미하며,
Figure pat00066
비트가 하기의 자원 할당 타입 1에 따라 할당된 주파수 도메인 자원 영역을 지시한다.
일 실시예에 따르면, PUSCH 호핑을 수행하지 않는 경우,
Figure pat00067
비트가 자원 할당 타입 1에 따라 할당된 주파수 도메인 자원 영역을 제공한다.
- 시간 도메인 자원 할당(Time domain resource assignment): 4비트로, PUSCH 매핑 타입, PUSCH 전송 슬롯 오프셋, PUSCH 시작 심볼 및 PUSCH 전송 심볼 수가 포함된 시간 도메인 자원 할당 테이블의 row 인덱스를 지시한다. 상기 시간 도메인 자원 할당 테이블은 상위 계층 시그널링에 의해 설정되거나 기지국과 단말 간에 미리 설정될(pre-config) 수 있다.
- 주파수 호핑 플래그: 1비트로, PUSCH 호핑을 수행하거나 (enable), PUSCH 호핑을 수행하지 않음(disable)을를 지시한다.
- 변조 및 코딩 방식(modulation and coding scheme, MCS): 데이터 전송에 사용하는 변조 및 코딩 방식을 지시한다.
- 새로운 데이터 지시자(new data indicator, NDI): HARQ 초기 전송인지 재전송인지를 지시한다.
- 중복 버전(redundancy version, RV): HARQ의 중복 버전(redundancy version) 을 지시한다.
- HARQ 프로세스 번호(HARQ process number): HARQ의 프로세스 번호를 지시한다.
- TPC command: 스케줄된 PUSCH에 대한 송신 전력 제어 명령을 지시한다.
- Padding bit: 다른 DCI 포맷 (예를 들어 DCI 포맷 1_0)과 크기(전체 비트수)를 동일하게 맞추기 위한 필드로서, 필요시 0으로 삽입된다.
- UL/SUL 지시자: 1비트로, 만일 셀이 두개 또는 두개 이상의 UL을 갖고 패딩 비트 추가 이전의 DCI 포맷 0_0의 크기보다 패딩 비트 추가 이전의 DCI 포맷 1_0의 크기가 더 큰 경우 1비트의 UL/SUL 지시자를 갖고, 그렇지 않은 경우 UL/SUL 지시자는 존재하지 않거나 또는 0비트이다. 만일 UL/SUL 지시자가 존재하는 경우, UL/SUL 지시자는 패딩 비트 이후 DCI 포맷 0_0의 마지막 비트에 위치한다.
- ChannelAccess-CPext: 2비트로서, 비면허 대역에서 동작하는 셀에서 채널 접속 타입 (channel access type) 및 CP 확장 (CP extension)을 지시한다. 면허 대역에서 동작하는 셀의 경우 존재하지 않거나 0비트이다.
DCI 포맷 0_0 이외의 DCI 포맷들에 대해서는 3GPP 표준화 문서를 참조한다.
<Time domain resource allocation>
하기에서는 5G 통신 시스템에서 데이터 채널에 대한 시간 도메인 자원 할당이 설명된다.
기지국은 단말에게 하향링크 데이터 채널(PDSCH) 및 상향링크 데이터 채널(PUSCH)에 대한 시간 도메인 자원 할당에 대한 테이블(Table)을 상위 계층 시그널링 (예를 들어 RRC 시그널링)으로 설정하거나, 표 6과 같이 기지국과 단말 간 사전에 정의된 시간 도메인 자원 할당에 대한 테이블을 사용할 수 있다.
예를 들어, 대비책(fallback) DCI의 경우 단말은 6과 같이 사전에 정의되어 있는 테이블을 사용하고, 비대비책(non-fallback) DCI의 경우, 단말은 상위 계층 시그널링을 통해 설정된 테이블을 사용할 수 있다.
[표 6]
Figure pat00068
이때, 상위 계층 시그널링을 통해 설정되는 시간 도메인 자원 할당을 위해, PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있다. 상기 각 테이블에는 예를 들어 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함) 또는 PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치(S) 및 길이(L), PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다.
상위 계층 시그널링이 사용되는 경우, 예를 들어 하기의 표 7 및 표 8의 PDSCH-TimeDomainResourceAllocationList information element 및 PUSCH-TimeDomainResourceAllocation information element와 같은 정보 엘리먼트가 기지국으로부터 단말로 통지될 수 있다.
PDSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k0 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
}
PUSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k2 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
}
여기서 'k0'는 슬롯 단위의 오프셋으로서 PDCCH-to-PDSCH 타이밍을 지시하고, 'k2'는 슬롯 단위의 오프셋으로서 PDCCH-to-PUSCH 타이밍을 지시하고, 'mappingType'은 PDSCH 혹은 PUSCH의 매핑 타입을 지시하고, 'startSymbolAndLength'은 PDSCH 또는 PUSCH의 시작 심볼 및 길이를 지시한다.
기지국은 상기 시간 도메인 자원 할당 테이블의 엔트리 중 하나를 단말에게 L1 시그널링를 통해 통지할 수 있다. 예를 들어 DCI 내의 '시간 도메인 자원 할당' 필드로 지시할 수 있다. 단말은 기지국으로부터 수신한 DCI 내의 필드에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원 할당을 획득할 수 있다.
<Frequency domain resource allocation>
하기에서는 5G 통신 시스템에서 데이터 채널에 대한 주파수 도메인 자원 할당이 설명된다.
하향링크 데이터 채널(PDSCH) 및 상향링크 데이터 채널(PUSCH)에 대한 주파수 도메인 자원 할당을 지시하는 방법으로 두가지 타입, 즉 자원 할당 타입 0 및 자원 할당 타입 1이 지원된다.
자원 할당 타입 0은 연속적인 P개의 RB들로 구성된 RBG(Resource Block Group)의 단위로 자원을 할당하는 방법으로, 비트맵(Bitmap)의 형태로 기지국으로부터 단말로 통지될 수 있다. 이때, RBG는 연속적인 VRB(Virtual RB)들의 세트로 구성될 수 있으며, RBG의 크기 P(Nominal RBG size P)는 상위 계층 파라미터인 rbg-Size'로 설정되는 값과 하기 표 9로 정의되어 있는 대역폭파트의 크기 값에 기반하여 결정될 수 있다.
[표 9]
Figure pat00069
여기서 크기가
Figure pat00070
인 대역폭파트 i의 총 RBG의 수
Figure pat00071
Figure pat00072
이다. 여기서 첫번째 RBG의 크기는
Figure pat00073
이다. 마지막 RBG의 크기
Figure pat00074
는 만약
Figure pat00075
인 경우,
Figure pat00076
이고, 그렇지 않은 경우의
Figure pat00077
Figure pat00078
이다. 상기 외 다른 RBG의 크기는
Figure pat00079
이다.
Figure pat00080
비트 크기의 비트맵의 각 비트들은 각각의 RBG에 대응될 수 있다. RBG들은 대역폭파트의 가장 낮은 주파수 위치에서 시작하여 주파수가 증가하는 순서대로 인덱스가 부여될 수 있다. 대역폭파트 내의
Figure pat00081
개의 RBG들에 대하여, RBG#0에서부터 RBG#(
Figure pat00082
-1)이 RBG 비트맵의 MSB에서부터 LSB로 매핑될 수 있다. 단말은 비트맵 내의 특정 비트 값이 1일 경우, 해당 비트 값에 대응되는 RBG가 할당되었다고 판단할 수 있고, 비트맵 내의 특정 비트 값이 0일 경우, 해당 비트 값에 대응되는 RBG가 할당되지 않았다고 판단할 수 있다.
자원 할당 타입 1은 연속적으로 할당된 VRB들에 대한 시작 위치 및 길이로 자원을 할당하는 방법으로 이 때, 연속적으로 할당된 VRB들에 대하여 인터리빙 또는 비인터리빙이 추가적으로 적용될 수 있다. 자원 할당 타입 1의 자원 할당 필드는 자원 지시자 값 (Resource Indication Value; RIV)으로 구성될 수 있으며, RIV는 VRB의 시작 지점 (
Figure pat00083
)과 연속적으로 할당된 RB의 길이 (
Figure pat00084
)로 구성될 수 있다.
Figure pat00085
는 자원 할당이 시작되는 첫 번째 PRB 인덱스이고,
Figure pat00086
는 할당된 연속적인 PRB 길이 혹은 개수일 수 있다. 보다 구체적으로,
Figure pat00087
크기의 대역폭파트 내의 RIV는 하기와 같이 정의될 수 있다.
Figure pat00088
Figure pat00089
Figure pat00090
이때, 대비책 DCI 포맷 (예를 들어, DCI 포맷 0_0 또는 DCI 포맷 1_0)이 전송되는 탐색 공간에 따라
Figure pat00091
가 다를 수 있다. 예를 들어, 상향링크 전송을 설정 혹은 스케줄링하는 DCI(즉, 상향링크 그랜트(UL grant)) 중 대비책 DCI 포맷인 DCI 포맷 0_0이 공통 탐색 공간(common search space, CSS)에서 전송되는 경우,
Figure pat00092
로는 초기 상향링크 대역폭파트(initial bandwidth part) 크기,
Figure pat00093
또는
Figure pat00094
NBWP,이 사용될 수 있다. 유사하게, 하향링크 수신을 설정 혹은 스케줄링하는 DCI 중 대비책 DCI 포맷인 DCI 포맷 1_0이 공통 탐색 공간(common search space, CSS)에서 전송되는 경우,
Figure pat00095
및 또는
Figure pat00096
는 셀에 제어자원세트#0이 설정되어 있는 경우에는 제어자원세트#0의 크기가 되고, 제어자원세트#0이 설정되어 있지 않은 경우 초기 하향링크 대역폭파트의 크기가 된다.
이때, 대비책 DCI 포맷인 DCI 포맷 0_0 또는 DCI 포맷 1_0이 단말 고유 탐색 공간(UE-specific search space, USS)에서 전송되는 경우, 또는 단말 고유 탐색 공간에서 전송되는 대비책 DCI 포맷의 크기가 초기 상향링크 대역폭파트 또는 초기 하향링크 대역폭파트의 크기를 통해 결정되나, 상기 DCI가
Figure pat00097
크기의 다른 활성화 대역폭파트에 적용되는 경우, RIV는
Figure pat00098
Ninitial,BWP 및
Figure pat00099
에 대응되며, RIV는 다음과 같이 정의된다.
Figure pat00100
Figure pat00101
Figure pat00102
Figure pat00103
이때, 만약
Figure pat00104
이면, K는 집합
Figure pat00105
Figure pat00106
를 만족하는 가장 큰 값이다. 그렇지 않으면 (
Figure pat00107
),
Figure pat00108
는 1이다.
기지국은 단말에게 상위 계층 시그널링을 통해 자원 할당 타입을 설정할 수 있다. 예를 들어, 상위 계층 파라미터 resourceAllocation이 resourceAllocationType0 또는 resourceAllocationType1 또는 dynamicSwitch 중에서 한가지 값으로 설정될 수 있다. 만약 단말이 자원 할당 타입 0과 1을 모두 설정 받았다면 또는 상위 계층 파라미터 resourceAllocation이 dynamicSwitch로 설정되었다면, 스케줄링을 지시하는 DCI 포맷 내 자원 할당 필드의 MSB (Most Significant Bit)가 자원 할당 타입 0 인지 자원 할당 타입 1인지 지시할 수 있고, 지시된 자원 할당 타입에 기반하여 자원 할당 필드의 MSB를 제외한 나머지 비트들을 통해 자원 할당 정보가 지시될 수 있고, 단말은 이에 기반하여 DCI 의 자원 할당 정보를 해석할 수 있다. 만약 단말이 자원 할당 타입 0 또는 자원 할당 타입 1 중에서 하나를 설정 받았다면 또는 상위 계층 파라미터 resourceAllocation가 resourceAllocationType0 또는 resourceAllocationType1 중 한가지 값으로 설정되었다면, 스케줄링을 지시하는 DCI 포맷 내의 자원 할당 필드가 상기 설정된 자원 할당 타입에 기반하여 자원 할당 정보를 지시할 수 있고, 단말은 상기 설정된 자원 할당 타입에 기반하여 DCI 의 자원 할당 정보를 해석할 수 있다.
<CORESET>
하기에서는 5G 통신 시스템에서의 하향링크 제어채널이 도면을 참조하여 보다 구체적으로 설명된다.
도 8은 5G 통신 시스템의 하향링크 제어채널의 제어자원세트 설정의 일 예를 도시한 도면이다. 즉, 도 8은 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어자원세트(Control Resource Set, CORESET)에 대한 일 예를 도시한 도면이다.
도 8을 참조하면, 주파수 도메인으로 단말 대역폭파트(UE bandwidth part)(810) 및 시간 도메인으로 1 슬롯(820) 내에서, 2개의 제어자원세트, 즉 제어자원세트#1(801) 및 제어자원세트#2(802)가 설정되어 있다. 제어자원세트들(801, 802)은 주파수 도메인으로 단말 대역폭파트(810) 내에서 특정 주파수 자원(803) 내에 설정되고, 시간 도메인으로는 하나 또는 복수 개의 OFDM 심볼로 설정될 수 있다. 상기 OFDM 심볼들은 제어자원세트 길이(Control Resource Set Duration)(804)로 정의될 수 있다. 도시된 예를 참조하면, 제어자원세트#1(801)은 2 심볼의 제어자원세트 길이로 설정되어 있고, 제어자원세트#2(802)는 1 심볼의 제어자원세트 길이로 설정되어 있다.
전술한 각 제어자원세트는 기지국이 단말에게 상위 계층 시그널링, 예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링 중 적어도 하나를 통해 설정될 수 있다. 단말에게 제어자원세트를 설정한다는 것은 제어자원세트 식별자(Identity), 제어자원세트의 주파수 위치, 제어자원세트의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예를 들면, 제어자원세트를 설정하는 상위 계층 시그널링 정보 엘리먼트 또는 제어자원세트 설정 정보는 하기 표 10의 ControlResourceSet information element 의 정보들을 포함할 수 있다.
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
frequencyDomainResources BIT STRING (SIZE (45)),
duration INTEGER (1..maxCoReSetDuration),
cce-REG-MappingType CHOICE {
interleaved SEQUENCE {
reg-BundleSize ENUMERATED {n2, n3, n6},
interleaverSize ENUMERATED {n2, n3, n6},
shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL -- Need S
},
nonInterleaved NULL
},
precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},
tci-StatesPDCCH-ToAddList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL, -- Cond NotSIB1-initialBWP
tci-StatesPDCCH-ToReleaseList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL, -- Cond NotSIB1-initialBWP
tci-PresentInDCI ENUMERATED {enabled} OPTIONAL, -- Need S
pdcch-DMRS-ScramblingID INTEGER (0..65535) OPTIONAL, -- Need S
}
여기서 'controlResourceSetId'는 제어자원세트 식별자(Identity)를 지시하고, 'frequencyDomainResources'는 주파수 도메인 자원을 지시하고, 'duration'은 제어자원세트의 시간 구간, 즉 시간 도메인 자원을 지시하고, 'cce-REG-MappingType'는 CCE-to-REG 매핑 방식을 지시하고, 'reg-BundleSize'는 REG 번들 크기를 지시하고, 'interleaverSize'는 인터리버 크기를 지시하고, 'shiftIndex'는 인터리버 쉬프트(Shift)를 지시한다.
또한 tci-StatesPDCCH는 TCI(Transmission Configuration Indication) 상태들(states)의 설정 정보로서, 대응되는 제어자원세트에서 전송되는 DMRS와 QCL(Quasi Co Located) 관계에 있는 하나 또는 복수 개의 SS/PBCH 블록 인덱스 또는 CSI-RS(Channel State Information Reference Signal) 인덱스를 포함할 수 있다.
도 9는 5G 통신 시스템의 하향링크 제어채널의 구조를 도시한 도면이다. 즉, 도 9는 5G 무선 통신 시스템에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 보여주는 도면이다.
도 9를 참조하면, 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위는 REG(Resource Element Group, 903)라 할 수 있으며, REG(903)는 시간 도메인으로 1 OFDM 심볼(901) 및 주파수 도메인으로 1 PRB(902), 즉, 12개 부반송파(Subcarrier)로 정의될 수 있다. 기지국은 적어도 하나의 REG(903)를 연접하여 하향링크 제어채널의 할당 단위를 구성할 수 있다.
5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element)(904)라고 할 경우, 1 CCE(904)는 복수의 REG(903)로 구성될 수 있다. 도시된 REG(903)의 예를 들어 설명하면, REG(903)는 12개의 RE로 구성될 수 있고, 1 CCE(904)가 6개의 REG(903)로 구성된다면 1 CCE(904)는 72개의 RE로 구성될 수 있다. 하향링크 제어자원세트가 설정되는 영역은 복수의 CCE(904)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어자원세트 내의 집성 레벨(Aggregation Level; AL)에 따라 하나 또는 복수의 CCE(904)로 매핑될 수 있다. 제어자원세트 내의 CCE(904)들은 번호로 구분되며 이 때 CCE(904)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.
하향링크 제어채널의 기본 단위, 즉 REG(903)에는 DCI가 매핑되는 RE들의 영역과 상기 DCI를 복조하는데 사용되는 DMRS(905)가 매핑되는 영역이 모두 포함될 수 있다. 1 REG(903) 내에는 적어도 하나(도시된 예의 경우 3개)의 DMRS(905)가 전송될 수 있다. 하향링크 제어 채널을 전송하는데 필요한 CCE의 개수는 집성 레벨(AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대 AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. 단말은 하향링크 제어채널에 대한 존재를 모르는 상태에서 제어자원세트 내에서 신호를 검출해야 하는데, 이러한 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색 공간(search space)이 정의될 수 있다. 탐색 공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이며, 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로 단말은 복수개의 탐색 공간을 가질 수 있다. 탐색 공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색 공간들의 집합으로 정의될 수 있다.
<Search Space>
PDCCH를 위한 탐색 공간은 공통 탐색 공간(Common search space, CSS)과 단말-특정 탐색 공간 ((UE-specific search space, USS)으로 분류될 수 있다. 일정 그룹의 단말들 또는 모든 단말들이 시스템 정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 공통 탐색 공간을 조사할 수 있다. 예를 들어 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH의 스케줄링 할당 정보는 공통 탐색 공간을 조사하여 검출될 수 있다. 공통 탐색 공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신할 수 있도록 기 약속된 CCE의 집합으로써 정의될 수 있다. 단말-특정 PDSCH 또는 PUSCH에 대한 스케줄링 할당 정보는 단말-특정 탐색 공간을 조사함으로써 검출될 수 있다. 단말-특정 탐색 공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다.
5G 무선 통신 시스템에서 PDCCH의 탐색 공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색 공간에 대한 모니터링 주기, 탐색 공간에 대한 슬롯 내 심볼 단위의 모니터링 시점(occasion), 탐색 공간 타입(공통 탐색 공간 또는 단말-특정 탐색 공간), 탐색 공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색 공간을 모니터링 하고자 하는 제어자원세트 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, PDCCH의 탐색 공간에 대한 파라미터들을 설정하는 상위 계층 시그널링 정보 엘리먼트는 하기 표 11과 같은 SearchSpace information element 정보를 포함할 수 있다.
SearchSpace ::= SEQUENCE {
searchSpaceId SearchSpaceId,
controlResourceSetId ControlResourceSetId OPTIONAL, -- Cond SetupOnly
monitoringSlotPeriodicityAndOffset CHOICE {
sl1 NULL,
sl2 INTEGER (0..1),
...
} OPTIONAL, -- Cond Setup
duration INTEGER (2..2559) OPTIONAL, -- Need R
monitoringSymbolsWithinSlot BIT STRING (SIZE (14)) OPTIONAL, -- Cond Setup
nrofCandidates SEQUENCE {
aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
} OPTIONAL, -- Cond Setup
searchSpaceType CHOICE {
common SEQUENCE {
dci-Format0-0-AndFormat1-0 SEQUENCE {
...
},
ue-Specific SEQUENCE {
dci-Formats ENUMERATED {formats0-0-And-1-0, formats0-1-And-1-1},
...
}
} OPTIONAL -- Cond Setup2
}
여기서 'searchSpaceId'는 탐색 공간 식별자를 지시하고, 'controlResourceSetId'는 제어자원세트 식별자를 지시하고, 'monitoringSlotPeriodicityAndOffset'는 모니터링 슬롯 레벨 주기를 지시하고, 'duration'은 모니터링할 시간 구간의 길이를 지시하고, 'monitoringSymbolsWithinSlot'은 슬롯 내 PDCCH 모니터링을 위한 심볼들을 지시하고, 'nrofCandidates'는 집성 레벨 별 PDCCH 후보군의 개수를 지시하고, 'searchSpaceType'은 탐색 공간 타입을 지시하고, 'common'은 공통 탐색 공간을 위한 파라미터들을 포함하고, 'ue-Specific'은 단말-특정 탐색 공간을 위한 파라미터들을 포함한다.
상기 설정 정보에 따라 기지국은 단말에게 하나 또는 복수 개의 탐색 공간 세트를 설정할 수 있다. 일 실시예에 따르면, 기지국은 단말에게 탐색 공간 세트 1과 탐색 공간 세트 2를 설정할 수 있고, 탐색 공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색 공간에서 모니터링 하도록 설정할 수 있고, 탐색 공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색 공간에서 모니터링 하도록 설정할 수 있다.
상기 설정 정보에 따르면, 공통 탐색 공간 또는 단말-특정 탐색 공간에 하나 또는 복수 개의 탐색 공간 세트가 존재할 수 있다. 예를 들어 탐색 공간 세트#1과 탐색 공간 세트#2가 공통 탐색 공간으로 설정될 수 있고, 탐색 공간 세트#3과 탐색 공간 세트#4가 단말-특정 탐색 공간으로 설정될 수 있다.
공통 탐색 공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색 공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 하기의 정의 및 용도를 따를 수 있다.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케줄링 용도
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케줄링 용도
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케줄링 용도
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케줄링 용도
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS(Sounding reference signal)에 대한 전력 조절 명령 지시 용도
전술한 DCI 포맷들은 하기의 표 12와 같은 정의를 따를 수 있다.
[표 12]
Figure pat00109
NR과 같은 5G 통신 시스템에서는 물리적 채널(physical channel)과 물리적 신호(physical signal)는 다음과 같이 구분될 수 있다. 예를 들어, 상/하향링크 물리적 채널은 상위 계층을 통해 전송된 정보를 전달하는 RE의 집합을 의미하며, 대표적으로 PDCCH, PUCCH, PDSCH, PUSCH 등이 해당한다. 상/하향링크 물리적 신호는 상위 계층을 통해 전송된 정보를 전달하지 않고 물리 계층에서 사용되는 신호를 의미하며, 대표적으로 DM-RS, CSI-RS, SRS 등이 해당한다.
본 개시에서는 상기와 같이 물리적 채널과 물리적 신호 간 구분 없이 신호로 설명될 수 있다. 예를 들어, 기지국이 하향링크 신호를 전송한다고 표현하는 것은 기지국이 PDCCH, PDSCH, DM-RS, CSI-RS 등의 하향링크 물리 채널 및 하향링크 물리 신호 중 적어도 하나를 전송한다는 것을 의미할 수 있다. 다시 말해, 본 개시에서의 신호는 상기의 채널과 신호 모두를 포함하는 용어로, 실제 그 구분이 필요한 경우 문맥과 경우에 따라 구분되어질 수 있다.
<Slot Format Indicator (SFI)>
5G 통신 시스템에서는 하향링크 신호 전송 구간과 상향링크 신호 전송 구간이 동적으로 변경될 수 있다. 이를 위해, 기지국은 하나의 슬롯을 구성하는 OFDM 심볼들 각각이 하향링크 심볼인지 또는 상향링크 심볼인지 또는 유연한 (flexible) 심볼인지를 슬롯 포맷 지시자(SFI)를 통해 단말에게 지시할 수 있다. 여기서 유연한 심볼은 하향링크 및 상향링크 심볼 모두가 아니거나, 단말 특정 제어 정보 또는 스케줄링 정보에 의해 하향링크 또는 상향링크 심볼로 변경될 수 있는 심볼을 의미할 수 있다. 이때, 유연한 심볼은 하향링크에서 상향링크로 전환되는 과정에서 필요한 갭 구간(Gap guard)을 포함할 수 있다.
상기 슬롯 포맷 지시자를 수신한 단말은, 하향링크 심볼로 지시된 심볼에서는 기지국으로부터의 하향링크 신호 수신 동작을 수행하고, 상향링크 심볼로 지시된 심볼에서는 기지국으로의 상향링크 신호 송신 동작을 수행할 수 있다. 유연한 심볼로 지시된 심볼에 대해서 단말은 적어도 PDCCH 모니터링 동작을 수행할 수 있으며, 또 다른 지시자, 예를 들어 DCI를 통해 단말은 상기 유연한 심볼에서 기지국으로부터의 하향링크 신호 수신 동작을 수행하거나 (예를 들어 DCI 포맷 1_0 또는 1_1 수신시), 기지국으로의 상향링크 신호 송신 동작을 수행 (예를 들어 DCI 포맷 0_0 또는 0_1 수신시)할 수 있다.
도 10은 5G 시스템에서 상향링크-하향링크 설정(UL/DL configuration)의 일 예를 도시한 도면으로서, 심볼/슬롯의 상향링크-하향링크 설정의 3단계가 도시되었다.
도 10을 참조하면, 첫 번째 단계에서, 준 정적(semi-static)으로 상향링크-하향링크를 설정하기 위한 셀 특정 설정 정보(1010), 예를 들어 SIB와 같은 시스템 정보가 심볼/슬롯의 상향링크-하향링크를 설정한다. 구체적으로, 시스템 정보 내의 셀 특정 상향링크-하향링크 설정 정보(1010)에는 상향링크-하향링크 패턴 정보와 기준 부반송파 간격을 지시하는 정보가 포함될 수 있다. 상기 상향링크-하향링크 패턴 정보는 각 패턴의 전송 주기(transmission periodicity)(1003)와, 각 패턴의 시작점부터 연속적인 하향링크 슬롯 개수(Number of consecutive full DL slots at the beginning of each DL-UL pattern)(1011)와, 그 다음 슬롯의 시작점부터 연속적인 하향링크 심볼 개수(Number of consecutive DL symbols in the beginning of the slot following the last full DL slot)(1012), 각 패턴의 끝에서부터 연속적인 상향링크 슬롯 개수(Number of consecutive full UL slots at the end of each DL-UL pattern)(1013)와, 그 직전 슬롯의 심볼 개수(Number of consecutive UL symbols in the end of the slot preceding the first full UL slot)(1014)가 지시될 수 있다. 이때 단말은 상향링크나 하향링크로 지시되지 않은 슬롯/심볼을 유연한(flexible) 슬롯/심볼로 판단할 수 있다.
두 번째 단계로, 단말 전용의 상위 계층 시그널링(즉 RRC 시그널링)을 통해 전달되는 단말 특정 설정 정보(1020)는, 유연한(flexible) 슬롯 혹은 유연한(flexible) 심볼을 포함하고 있는 슬롯(1021, 1022) 내에서 하향링크 혹은 상향링크로 설정될 심볼들을 지시한다. 일 예로 상기 단말 특정 상향링크-하향링크 설정 정보(1020)는 유연한 심볼을 포함하고 있는 슬롯(1021, 1022)을 지시하는 슬롯 인덱스와, 각 슬롯의 시작부터 연속적인 하향링크 심볼 개수(Number of consecutive DL symbols in the beginning of the slot)(1023, 1025)와, 각 슬롯의 끝에서부터 연속적인 상향링크 심볼 개수(Number of consecutive UL symbols in the end of the slot)(1024, 1026)를 포함하거나, 혹은 각 슬롯에 대해 전체 하향링크를 지시하는 정보 혹은 전체 상향링크를 지시하는 정보를 포함할 수 있다. 이때, 상기 첫 번째 단계의 셀 특정 설정 정보(1010)를 통해 상향링크 또는 하향링크로 설정된 심볼/슬롯은, 단말 고유의 상위 계층 시그널링(1020)을 통하여 하향링크 또는 상향링크로 변경될 수는 없다.
마지막으로, 하향링크 신호 전송 구간과 상향링크 신호 전송 구간을 동적으로 변경하기 위해, 하향링크 제어 채널의 하향링크 제어 정보는, 단말이 상기 하향링크 제어 정보를 검출한 슬롯으로부터 시작하는 복수개의 슬롯들 중 각 슬롯 내에서 각 심볼이 하향링크 심볼인지 또는 상향링크 심볼인지 또는 유연한 심볼인지를 지시하는 슬롯 포맷 지시자(1030)를 포함한다. 이때, 상기 첫 번째 및 두 번째 단계에서 상향링크 또는 하향링크로 설정된 심볼/슬롯에 대해서, 슬롯 포맷 지시자가 하향링크 또는 상향링크 인 것으로 지시할 수 없다. 상기 첫 번째 및 두 번째 단계에서 상향링크 혹은 하향링크로 설정되지 않은 적어도 하나의 심볼을 포함하는 각 슬롯(1031,1032)의 슬롯 포맷이 해당하는 하향링크 제어 정보에 의해 지시될 수 있다.
슬롯 포맷 지시자는 하기의 표 13과 같이 하나의 슬롯 내 14개 심볼에 대한 상향링크-하향링크 구성을 지시할 수 있다. 슬롯 포맷 지시자는 단말 그룹(또는 셀) 공통 제어 채널(common control channel)을 통해 다수의 단말들에게 동시에 전송될 수 있다. 다시 말해, 슬롯 포맷 지시자를 포함하는 하향링크 제어 정보는 단말 고유의 C-RNTI(cell-RNTI)와는 다른 식별자, 예를 들어 SFI-RNTI로 CRC 스크램블링된 PDCCH를 통해 전송될 수 있다. 하향링크 제어 정보는 하나 이상의 슬롯, 즉 N개의 슬롯에 대한 슬롯 포맷 지시자를 포함할 수 있다. 여기서, N의 값은 0보다 큰 정수이거나, 또는 1, 2, 5, 10, 20 등 사전에 정의된 가능한 값들의 집합 중에서, 단말이 기지국으로부터 상위 계층 시그널링을 통해 설정 받은 값일 수 있다. 슬롯 포맷 지시자의 크기는 기지국이 단말에게 상위 계층 시그널링을 통해 설정할 수 있다. 표 13은 SFI의 내용을 기술한 표이다.
[표 13]
Figure pat00110
표 13에서 D는 하향링크 심볼을, U는 상향링크 심볼을, F는 유연한 심볼을 의미한다. 표 13에 따르면, 하나의 슬롯에 대해 지원 가능한 슬롯 포맷의 총 수는 256 개이다. NR 시스템에서 슬롯 포맷 지시를 위해 사용될 수 있는 정보 비트의 최대 크기는 128비트이며, 상위 계층 시그널링, 예를 들어 'dci-PayloadSize'를 통해 기지국이 단말에게 설정할 수 있다.
이때, 비면허 대역에서 동작하는 셀은 하나 이상의 추가적인 슬롯 포맷을 도입하거나, 또는 기존 슬롯 포맷 중 적어도 하나 이상을 수정함으로써, 표 14와 같이 추가적인 슬롯 포맷을 설정 및 지시할 수 있다. 표 14는 하나의 슬롯이 상향링크 심볼과 유연한 심볼(F) 만으로 구성되는 추가적인 슬롯 포맷들의 일 예를 나타낸다.
[표 14]
Figure pat00111
일 실시예에서, 슬롯 포맷 지시를 위해 사용되는 하향링크 제어 정보는 복수 개의 서빙 셀들에 대한 슬롯 포맷(들)을 지시할 수 있으며, 각 서빙 셀에 대한 슬롯 포맷(들)은 서빙 셀 ID(serving cell ID)를 통해 구분될 수 있다. 또한, 각 서빙 셀에 대해 하나 이상의 슬롯에 대한 슬롯 포맷 조합(slot format combination)이 하향링크 제어 정보에 의해 지시될 수 있다. 예를 들어, 하향링크 제어 정보 내의 하나의 슬롯 포맷 지시자 인덱스 필드의 크기가 3비트이고 하나의 서빙 셀에 대한 슬롯 포맷을 지시하는 경우, 3비트의 슬롯 포맷 지시자 인덱스 필드는 총 8개의 슬롯 포맷들(또는 슬롯 포맷 조합) 중 하나를 지시할 수 있으며, 기지국은 상기 슬롯 포맷 지시자 인덱스 필드를 단말 그룹 공통 하향링크 제어 정보(common DCI)를 통해 지시할 수 있다.
일 실시예에서, 하향링크 제어 정보에 포함되는 적어도 하나의 슬롯 포맷 지시자 인덱스 필드는 복수 개의 슬롯에 대한 슬롯 포맷 조합 지시자로 구성될 수 있다. 예를 들어, 표 15는 표 13 및 표 14의 슬롯 포맷으로 구성된 3비트 슬롯 포맷 조합 지시자를 나타낸다. 슬롯 포맷 조합 지시자의 값들 중 {0, 1, 2, 3, 4}는 하나의 슬롯에 대한 슬롯 포맷을 지시한다. 나머지 3개의 값들 {5, 6, 7}은 4 개 슬롯에 대한 슬롯 포맷을 지시하며, 단말은 상기 슬롯 포맷 조합 지시자를 포함하는 하향링크 제어 정보를 검출한 슬롯에서부터 순차적으로 4 개의 슬롯에 상기 지시된 슬롯 포맷을 적용할 수 있다.
[표 15]
Figure pat00112
<비면허 대역>
비면허 대역에서 통신을 수행하는 시스템의 경우, 비면허 대역을 통해 신호를 전송하고자 하는 통신 장치(기지국 또는 단말)는 신호를 전송하기 이전에 통신을 수행하고자 하는 비면허 대역에 대한 채널 접속 절차(Channel access procedure) 또는 LBT(listen-before talk) 또는 채널 센싱 (Channel sensing)을 수행하고, 채널 접속 절차에 따라 비면허 대역이 유휴 상태인 것으로 결정된 경우에, 비면허 대역에 접속하여 신호 전송을 수행할 수 있다. 만일, 수행한 채널 접속 절차에 따라 비면허 대역이 유휴 상태가 아닌 것으로 결정된 경우, 통신 장치는 신호 전송을 수행하지 않을 수 있다. 여기서 채널 접속 절차라 함은, 기지국 또는 단말이 고정된(deterministic) 시간 또는 임의로 결정된 시간 동안 채널을 점유하여 신호를 전송하고자 하는 채널을 통해 수신되는 신호의 세기를 측정하고, 상기 측정된 신호 세기를 사전에 정의된 임계값(threshold)이나, 혹은 채널 대역폭, 전송하고자 하는 신호가 전송되는 신호의 대역폭, 및/또는 전송 전력의 세기 중 적어도 하나 이상의 변수로 값이 결정되는 함수에 의해 계산된 임계값
Figure pat00113
과 비교하는 절차이다.
비면허 대역 채널에 대한 센싱을 통해 측정된 수신 신호의 세기가
Figure pat00114
보다 작은 경우, 기지국 및 단말은 상기 채널이 유휴(idle) 상태인 것으로 판단하거나 상기 채널을 사용 (또는 점유) 가능한 것으로 판단하고, 상기 채널을 점유하여 사용할 수 있다. 만일, 상기 센싱 결과가
Figure pat00115
보다 같거나 큰 경우, 기지국 및 단말은 상기 채널이 바쁜(busy) 상태인 것으로 판단하거나, 상기 채널을 사용 (또는 점유) 불가능한 것으로 판단하여 상기 채널을 사용하지 않을 수 있다. 이때, 기지국 및 단말은 채널이 유휴 상태로 판단될 때까지 센싱을 지속적으로 수행할 수 있다. 다시 말해, 비면허 대역에서 채널 접속 절차는 센싱에 기반하여 채널에서의 전송 수행 가능성을 평가하는 절차를 의미할 수 있다. 센싱의 기본 단위는 센싱 슬롯으로
Figure pat00116
구간이 될 수 있다. 이때, 센싱 슬롯 구간 중 적어도
Figure pat00117
에서 검출된 파워가
Figure pat00118
보다 적은 경우, 상기 센싱 슬롯 구간은 유휴 또는 사용되고 있지 않은 것(idle)으로 간주될 수 있다. 만일, 상기에서 센싱 슬롯 구간 중 적어도
Figure pat00119
에서 검출된 파워가
Figure pat00120
보다 같거나 큰 경우, 상기 센싱 슬롯 구간은 바쁨(busy) 또는 다른 장치에 의해 사용되고 있는 것으로 간주될 수 있다.
비면허 대역에서의 채널 접속 절차는, 통신 장치의 채널 접속 절차 개시 시점이 고정(frame-based equipment, FBE) (혹은 준정적(semi-static))인지, 또는 가변(load-based equipment, LBE) (또는 동적(dynamic))인지에 따라 구분될 수 있다. 채널 접속 절차 개시 시점 이외에, 통신 장치의 송수신 구조(transmit/receive structure)가 하나의 주기를 갖는지 또는 하나의 주기를 갖지 않는지에 따라, 통신 장치는 FBE 장치 또는 LBE 장치로 결정될 수 있다. 여기서, 채널 접속 절차 개시 시점이 고정되었다는 것은, 사전에 정의된 선언(declare) 또는 설정한 주기에 따라 통신 장치의 채널 접속 절차가 주기적으로 개시될 수 있다는 것을 의미할 수 있다. 다른 예로, 채널 접속 절차 개시 시점이 고정되었다는 것은, 통신 장치의 송수신 구조가 하나의 주기를 갖는다는 것을 의미할 수 있다. 여기에서, 채널 접속 절차 개시 시점이 가변이라고 하는 것은, 통신 장치의 채널 접속 절차 개시 시점이 통신 장치가 비면허 대역을 통해 신호를 전송하고자 하는 경우 어느 때라도 전송 가능하다는 것을 의미할 수 있다. 다른 예로, 채널 접속 절차 개시 시점이 가변이라고 하는 것은, 통신 장치의 송수신 구조가 하나의 주기를 갖지 않고 필요에 따라 결정될 수 있음을 의미할 수 있다. 이하 본 개시에서는 채널 접속 절차 또는 채널 센싱이 혼용하여 사용되나, 기지국 또는 단말의 채널 접속 절차 또는 채널 센싱 동작은 동일할 수 있다.
이하 본 개시에서, 하향링크 전송 버스트 (DL transmission burst)는 다음과 같이 정의될 수 있다. 하향링크 전송 버스트는 기지국의 하향링크 전송 간에
Figure pat00121
보다 큰 갭 없이 전송된 하향링크 전송의 집합을 의미할 수 있다. 하향링크 전송 간 갭이
Figure pat00122
보다 큰 경우, 상기 하향링크 전송은 서로 분리된(separate) 하향링크 전송 버스트를 의미할 수 있다. 유사하게, 상향링크 전송 버스트(UL transmission burst)는 다음과 같이 정의될 수 있다. 상향링크 전송 버스트는 단말의 상향링크 전송 간에
Figure pat00123
보다 큰 갭 없이 전송된 상향링크 전송의 집합을 의미할 수 있다. 상향링크 전송 간 갭이
Figure pat00124
보다 큰 경우, 상기 상향링크 전송은 서로 분리된(separate) 상향링크 전송 버스트를 의미할 수 있다.
<준정적 채널 점유를 위한 채널 접속 절차>
이하 통신 장치의 채널 접속 절차 개시 시점이 고정 또는 준정적으로 설정되는 경우에서의 채널 접속 절차가 설명된다.
비면허 대역에서 통신을 수행하는 5G 시스템에서, 규제 및 상기 규제와 같은 수준(by level of regulation)의 방법에 의해 오랜 시간 동안 비면허 대역의 채널을 공유하여 사용하는 또 다른 시스템이 존재하지 않도록 보장할 수 있는 경우, 다음과 같은 준정적(Semi-static) 채널 접속 절차 또는 채널 센싱이 수행(perform)될 수 있다.
준정적 채널 접속 절차를 사용하고자 하는 기지국은, 단말에게 상위 계층 시그널링 (예를 들어 SIB1 및/또는 RRC 시그널링)를 통해 기지국의 채널 접속 절차 방식이 준정적 채널 접속 절차임을 의미하는 설정 정보 및/또는 준정적 채널 접속에 관한 설정 정보를 제공함으로써, 단말이 기지국의 채널 접속 절차 방식이 준정적 채널 접속 방식인지를 알 수 있도록 한다. 여기서, 준정적 채널 접속에 관한 설정 정보의 일 예로는, 기지국이 채널 점유를 개시할 수 있는 주기(
Figure pat00125
)가 있을 수 있다. 예를 들어, 상기 주기의 값은 1ms, 2ms, 2.5ms, 4ms, 5ms, 또는 10ms일 수 있다. 준정적 채널 접속 절차를 사용하는 경우, 기지국은 2개의 연속적인 프레임 중 매
Figure pat00126
, 즉 짝수 번째 인덱스를 갖는 프레임에서부터 시작하여
Figure pat00127
마다 주기적인 채널 점유를 개시하며, 최대
Figure pat00128
동안 채널을 점유할 수 있다. 여기서,
Figure pat00129
일 수 있다.
도 11은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 준정적 채널 점유를 위한 채널 접속 절차의 예시를 도시한 도면이다.
도 11을 참조하면, 준정적 채널 접속 절차를 수행하는 기지국 및 단말에서 주기적인 채널 점유 주기(
Figure pat00130
)(1100), 채널 점유 시간(channel occupancy time: COT)(1105, 1107), 최대 채널 점유 시간(maximum channel occupancy time)(
Figure pat00131
)(1110), 유휴 시간(idle period)(
Figure pat00132
)(1120) 및 채널 평가(Clear Channel Assessment, CCA) 구간 (1160, 1165, 1170)을 도시화한 도면이다.
준정적 채널 접속 절차를 사용하는 기지국 및 단말은, 채널 사용 (또는 채널 점유) 가능여부를 평가하기 위해 채널을 사용 또는 점유(예: 하향링크 전송(1130) 또는 하향링크 전송(1180))하기 직전인, 채널 평가 구간(1160 또는 1165)에서 상기 채널에 대한 센싱을 수행할 수 있다. 이때, 상기 센싱은 적어도 하나의 센싱 슬롯 구간(sensing slot duration)에서 수행되어야 하며, 센싱 슬롯 구간
Figure pat00133
의 일 예는
Figure pat00134
이다.
센싱 방법의 일 예는, 센싱 슬롯 구간에서 검출 혹은 측정된 수신 전력의 크기 또는 세기를 사전에 정의되거나 설정 또는 계산된 임계값
Figure pat00135
과 비교하는 것일 수 있다. 예를 들어, 채널 평가 구간(1160)에서 센싱을 수행한 기지국 및 단말에서 상기 센싱 수행 결과가
Figure pat00136
보다 작은 경우, 기지국 및 단말은 상기 채널이 유휴(idle) 상태인 것으로 판단하거나 상기 채널을 사용 (또는 점유) 가능한 것으로 판단하고, 채널을 점유할 수 있으며, 최대 채널 점유 시간(1110)까지 상기 채널을 사용할 수 있다. 만일, 상기 센싱 수행 결과가
Figure pat00137
보다 같거나 큰 경우, 기지국 및 단말은 상기 채널이 바쁜(busy) 상태인 것으로 판단하거나, 상기 채널을 사용 (또는 점유) 불가능한 것으로 판단하고, 다음 번 채널 점유 개시가 가능한 시간(1180) 또는 다음 번 채널 평가 구간(1165)에서 채널 센싱이 수행되는 시간(1165)까지는 상기 채널을 사용하지 않을 수 있다.
기지국이 준정적 채널 접속 절차를 수행하여 채널 점유를 개시한 경우, 기지국과 단말은 하기와 같이 통신을 수행할 수 있다.
- 센싱 슬롯 구간이 유휴 상태인 것으로 센싱된 직후, 기지국은 곧바로 채널 점유 시간의 시작시점에서 하향링크 전송을 수행하여야 한다. 만일, 센싱 슬롯 구간이 바쁜 상태인 것으로 센싱된 경우, 기지국은 현 채널 점유 시간 동안 어떠한 전송도 수행하지 말아야 한다.
- 기지국이 채널 점유 시간(1105) 내에서 수행하고자 하는 하향링크 전송(1140)과, 그 이전의 하향링크 전송(1130) 및 상향링크 전송(1132) 간의 갭(1150)이
Figure pat00138
보다 큰 경우, 기지국은 적어도 하나의 센싱 슬롯 구간(1145)에 대해 센싱을 수행하고, 센싱 결과에 따라 하향링크 전송(1140)을 수행하거나 하지 못할 수 있다.
- 기지국이 채널 점유 시간(1105) 내에서 수행하고자 하는 하향링크 전송(1140)과 그 이전에 수행된 단말의 상향링크 전송(1132) 간의 갭(1150)이 최대
Figure pat00139
인 경우 (또는
Figure pat00140
와 같거나 작은 경우), 기지국은 채널 센싱 없이(센싱 슬롯 구간(1145) 없이) 하향링크 전송(1140)을 수행할 수 있다.
- 기지국의 채널 점유 시간(1107) 내에서 단말이 상향링크 전송(1190)을 수행하는 경우, 만일 상향링크 전송(1190) 및 하향링크 전송(1180) 간 갭(1185)이 최대
Figure pat00141
인 경우 (또는
Figure pat00142
와 같거나 작은 경우), 단말은 채널 센싱 없이 상향링크 전송(1190)을 수행할 수 있다.
- 기지국의 채널 점유 시간(1107) 내에서 단말이 상향링크 전송을 수행하는 경우에서, 만일 상향링크 전송(1190) 및 하향링크 전송(1180) 간 갭(1185)이
Figure pat00143
보다 큰 경우, 단말은 상향링크 전송(1190) 직전
Figure pat00144
의 구간 내에서 적어도 하나의 센싱 슬롯 구간에서 채널 센싱을 수행하고, 센싱 결과에 따라 상향링크 전송(1190)을 수행하거나 수행하지 않을 수 있다.
- 기지국과 단말은 다음 채널 점유 시간이 시작하기 이전에 적어도
Figure pat00145
구간의 연속적인 심볼들 집합에서 어떠한 전송도 수행하지 말아야 한다.
<동적 채널 점유를 위한 채널 접속 절차>
이하, 통신 장치의 채널 접속 절차 개시 시점이 가변 또는 동적인 경우에서의 채널 접속 절차가 설명된다. 비면허 대역에서 통신을 수행하는 5G 시스템에서, 준정적(Semi-static)의 채널 접속 절차를 사용하지 않거나, 또는 동적인(dynamic) 채널 접속 절차를 수행하는 경우에서 기지국은 다음과 같은 타입의 채널 접속 절차 또는 채널 센싱을 수행할 수 있다.
비면허 대역에서 통신을 수행하는 5G 시스템에서, 준정적(Semi-static)의 채널 접속 절차를 사용하지 않거나, 또는 동적인(dynamic) 채널 접속 절차를 수행하는 경우에서 기지국은 다음과 같은 타입의 채널 접속 절차 또는 채널 센싱을 수행할 수 있다.
- 제 1 타입 하향링크 채널 접속 절차
제 1 타입 하향링크 채널 접속 절차에 따르면, 기지국은 하향링크 전송 이전에, 미리 결정된 시간 또는 이에 대응되는 센싱 슬롯의 수에 해당하는 시간 동안, 채널에 대한 센싱을 수행하고, 상기 채널이 유휴 상태인 경우 상기 하향링크 전송을 수행할 수 있다. 제 1 타입 하향링크 채널 접속 절차를 보다 구체적으로 설명하면 다음과 같다.
제 1 타입 하향링크 채널 접속 절차에서, 비면허 대역의 채널로 전송하고자 하는 신호의 QCI(Quality of service Class Identifier) 또는 5QI(5G QoS Identifier)에 따라 제 1 타입 하향링크 채널 접속 절차를 위한 파라미터들이 결정될 수 있다. 아래의 표 16는 채널 접속 우선순위 클래스와 QCI 또는 5QI의 관계의 일 예를 나타낸 것이다. 예를 들어, QCI 1, 2, 4는 각각 대화형 음성(Conversational Voice), 대화형 비디오(Conversational Video(Live Streaming)), 비-대화형 비디오(Non-Conversational Video(Buffered Streaming))와 같은 서비스에 대한 QCI 값을 의미할 수 있다.
만일 표 16의 QCI 또는 5QI에 매칭되지 않는 서비스에 대한 신호를 비면허 대역에 전송하고자 하는 경우, 송신 장치는 서비스와 표 16의 QCI 또는 5QI에 가장 근접한 QCI를 선택하고 이에 대한 채널 접속 우선 순위 종류를 선택할 수 있다. 또한, 비면허 대역의 채널로 전송하고자 하는 신호가 복수개의 서로 다른 QCI 또는 5QI를 갖는 경우, 채널 접속 우선순위 클래스가 가장 낮은 QCI 또는 5QI를 기준으로 채널 접속 우선순위 클래스가 선택될 수 있다.
[표 16]
Figure pat00146
비면허대역의 채널로 전송하고자 하는 신호의 QCI(Quality of service Class Identifier) 또는 5QI(5G QoS Identifier)에 따라 채널 접속 우선순위 클래스 값(
Figure pat00147
)이 결정되면, 상기 결정된 채널 접속 우선순위 클래스 값에 대응하는 채널 접속 절차 파라미터들을 사용하여 채널 접속 절차가 수행될 수 있다. 예를 들어, 표 16와 같이 채널 접속 우선순위 클래스 값(
Figure pat00148
)에 대응되는 채널 접속 절차 파라미터들인 지연구간(defer duration,
Figure pat00149
)의 길이를 결정하는
Figure pat00150
, 경쟁 구간(contention window: CW) 값 또는 크기의 집합(
Figure pat00151
) 및 경쟁 구간의 최소값 및 최대값(
Figure pat00152
,
Figure pat00153
)을 이용하여 채널 접속 절차가 수행될 수 있다. 이때, 채널 점유 후, 사용 가능한 최대 채널 점유 가능 구간(
Figure pat00154
) 역시 채널 접속 우선순위 클래스 값(
Figure pat00155
)에 따라 결정될 수 있다.
도 12는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 동적 채널 점유를 위한 채널 접속 절차의 예시를 도시한 도면이다. 즉, 기지국의 제 1 타입의 하향링크 채널 접속 절차의 일 례를 도시하였다.
도 12를 참조하면, 비면허 대역으로 하향링크 신호를 전송하고자 하는 기지국은 적어도
Figure pat00156
(1212)만큼의 지연시간 내에서 채널 접속 절차를 수행할 수 있다. 여기서, 지연 구간
Figure pat00157
(1212)는
Figure pat00158
(1210)와
Figure pat00159
(1216)에 의해 순차적으로 구성될 수 있다. 여기서
Figure pat00160
(1210)는
Figure pat00161
이고,
Figure pat00162
(1214,1220)은 센싱 슬롯의 길이를 의미할 수 있다. 이때,
Figure pat00163
(1210)는 하나의 센싱 슬롯(1214)을 포함하여, 상기 센싱 슬롯(1214)은
Figure pat00164
(1210)의 시작 시점에 위치할 수 있다. 기지국이 표 16의 채널 접속 우선 순위 클래스 3 (
Figure pat00165
)으로 채널 접속 절차를 수행하는 경우, 채널 접속 절차를 수행하는데 필요한 지연 구간
Figure pat00166
(1212)는
Figure pat00167
로 결정될 수 있다. 여기서,
Figure pat00168
일 수 있다.
Figure pat00169
(1210)의 처음
Figure pat00170
(1214)이 유휴 상태인 경우,
Figure pat00171
(1210) 중 처음의
Figure pat00172
(1214) 이후 나머지 시간(
Figure pat00173
)에서 기지국은 채널 접속 절차를 수행하지 않을 수 있다. 이때, 기지국이 상기 나머지 시간(
Figure pat00174
)에서 채널 접속 절차를 수행하였다 하더라도 그 채널 접속 절차의 결과는 사용되지 않을 수 있다. 다시 말해,
Figure pat00175
시간은 기지국에서 채널 접속 절차 수행과 무관하게 채널 접속 절차를 지연하는 시간을 의미할 수 있다.
만일,
Figure pat00176
(1212) 내에서 비면허 대역이 유휴 상태인 것으로 결정된 경우, 기지국은 N개의 센싱 슬롯(1222) 이후에 채널 점유를 시작할 수 있다. 여기서
Figure pat00177
은 0과 채널 접속 절차를 개시하는 시점 또는 직전의 경쟁 구간의 값 (
Figure pat00178
)을 이용하여 임의로 선택된 정수값이다. 즉,
Figure pat00179
로 결정된 값일 수 있다. 자세한 경쟁 구간 설정 방법은 하기에서 다시 설명된다. 예를 들어, 표 16의 채널 접속 우선순위 클래스
Figure pat00180
의 경우, 최소 경쟁 구간 값 및 최대 경쟁 구간 값은 각각 15, 63이며, 가능한 경쟁 구간은 {15,31,63}이다. 따라서,
Figure pat00181
의 값은 경쟁 구간 값에 따라 0 내지 15, 0 내지 31, 또는 0 내지 63 중 하나의 구간에서 임의로 선택될 수 있다. 기지국은 매 센싱 슬롯에서 센싱을 수행하고, 센싱 슬롯에서 측정한 수신 신호의 세기가 임계값(
Figure pat00182
) 보다 작은 경우 N=N-1로 갱신할 수 있다. 만일, 센싱 슬롯에서 측정한 수신 신호의 세기가 임계값(
Figure pat00183
) 보다 같거나 큰 경우, 기지국은
Figure pat00184
의 값을 차감하지 않고 유지한 채, 상기 지연시간(
Figure pat00185
)에서의 채널 센싱을 수행할 수 있다. 만약
Figure pat00186
으로 판단된 경우, 기지국은 하향링크 전송을 수행할 수 있다. 이때, 기지국은 채널 접속 절차 클래스 및 표 16에 따라
Figure pat00187
시간 동안 상기 채널을 점유하여 사용할 수 있다.
일 실시예에서, 채널 점유 시간(channel occupancy time) 이후, 경쟁 윈도우 사이즈 조정(1260)이 수행될 수 있다. 경쟁 윈도우 사이즈 조정(1260) 이후, 채널 접속 절차를 수행하는데 필요한 지연 구간
Figure pat00188
(1212)가 다시 존재할 수 있다. 지연 구간
Figure pat00189
(1212) 내에
Figure pat00190
(1210) 시간이 포함될 수 있다. 그리고,
Figure pat00191
구간(1262) 이후 채널 접속 절차가 개시될 수 있다.
상기 제 1 타입의 하향링크 채널 접속 절차는 하기와 같은 단계로 구분될 수 있다. 기지국은 지연시간
Figure pat00192
(1212)의 센싱 슬롯 구간 동안 채널이 유휴 상태인 것으로 센싱하고, 카운터
Figure pat00193
의 값이 0인 경우 하향링크 전송을 수행할 수 있다. 이때, 카운터
Figure pat00194
은 하기 단계에 따라 추가적인 센싱 슬롯 구간(들)에서 수행된 채널 센싱에 따라 조절될 수 있다.
단계 1:
Figure pat00195
으로 설정하고 단계 4로 이동한다. 여기서,
Figure pat00196
은 0과
Figure pat00197
사이에서 임의로 선택된 수이다.
단계 2: 만약
Figure pat00198
이면, 기지국은 카운터
Figure pat00199
을 줄일지를 결정한다. 만약 카운터를 줄이기로 결정한 경우,
Figure pat00200
으로 설정한다.
단계 3: 기지국은 추가적인 센싱 슬롯 구간 동안 채널을 센싱한다. 채널이 유휴 상태인 것으로 판단된 경우, 단계 4로 이동한다. 채널이 유휴 상태가 아닌 경우, 단계 5로 이동한다.
단계 4: 만약
Figure pat00201
이면 하향링크 전송을 개시하고,
Figure pat00202
이 아니면 단계 2로 이동한다.
단계 5: 지연구간
Figure pat00203
내에서 바쁜(busy) 상태의 센싱 슬롯이 검출될 때까지, 또는 지연구간
Figure pat00204
내의 모든 센싱 슬롯이 유휴 상태인 것으로 검출 될 때까지 채널을 센싱한다.
단계 6: 만일, 지연구간
Figure pat00205
내의 모든 센싱 슬롯이 유휴 상태인 것으로 검출 된 경우, 단계 4로 이동한다. 그렇지 않은 경우, 단계 5로 이동한다.
기지국의 경쟁 구간(
Figure pat00206
) 값을 유지 또는 조절하는 절차는 다음과 같다. 이때, 경쟁 구간 조절 절차 (Contention window adjustment procedure)는 기지국이 적어도 채널 접속 우선순위 클래스 p에 대응하는 PDSCH를 포함하는 하향링크 전송을 수행한 경우에 적용되며, 다음과 같은 단계로 구성된다.
단계 1: 모든 채널 접속 우선순위 클래스 p에 대해
Figure pat00207
로 설정한다,
단계 2:
- 만약, 마지막
Figure pat00208
업데이트 이후로 HARQ-ACK 피드백이 존재하는(available) 경우 단계 3으로 이동한다.
- 그렇지 않은 경우에서, 만약 제 1 타입 채널 접속 절차 후 전송한 기지국의 하향링크 전송에 재전송이 포함되어 있지 않거나, 또는 상기 하향링크 전송이 마지막
Figure pat00209
업데이트 이후로 제 1 타입 채널 접속 절차 후 가장 먼저 전송된 하향링크 전송 버스트(DL transmission burst)의 기준 구간 직후부터
Figure pat00210
구간 내에 전송된 경우, 단계 5로 이동한다.
- 상기의 경우 이외의 경우는 단계 4로 이동한다.
단계 3: 기준 구간에서 전송된 PDSCH에 대한 HARQ-ACK 피드백이 존재하는(available) 가장 최근의 하향링크 전송 버스트의 기준 구간에서 전송된 PDSCH에 대한 HARQ-ACK 피드백을 다음과 같이 사용한다.
- 상기 HARQ-ACK 피드백 중, TB(transport block) 단위로 전송된 PDSCH에 대한 HARQ-ACK 피드백 중 적어도 한 개의 HARQ-ACK 피드백이 ACK이거나, 상기 HARQ-ACK 피드백 중, 코드 블록 그룹(Code block group, CBG) 단위로 전송된 PDSCH에 대한 HARQ-ACK 피드백 중 적어도 10%의 HARQ-ACK 피드백이 ACK인 경우, 단계 1로 이동한다.
- 그렇지 않은 경우, 단계 4로 이동한다.
단계 4: 모든 채널 접속 우선순위 클래스 p에 대해
Figure pat00211
를 허용된
Figure pat00212
값 중 현재 값보다 다음으로 큰 값으로 증가시킨다.
- 만약, 현재
Figure pat00213
이면, 다음으로 큰 값으로 허여된
Figure pat00214
Figure pat00215
이다.
- 만일,
Figure pat00216
을 생성하는데
Figure pat00217
을 연속적으로
Figure pat00218
번 사용한 경우, 상기 채널 접속 우선순위 클래스
Figure pat00219
에 대해
Figure pat00220
Figure pat00221
으로 초기화 할 수 있다. 이때,
Figure pat00222
는 {1,2,...,8} 중 각 채널 접속 우선순위 클래스
Figure pat00223
에 대해 기지국이 선택할 수 있다.
단계 5: 모든 채널 접속 우선순위 클래스 p에 대해
Figure pat00224
를 유지하고, 단계 2로 이동한다.
상기에서 구간
Figure pat00225
Figure pat00226
이다. 여기서,
Figure pat00227
는 기준 구간의 시작에서부터의 상/하향링크 전송 버스트 구간으로서,
Figure pat00228
단위의 값이다. 비면허 대역에서 통신을 수행하는 5G 시스템에서, 규제 및 상기 규제와 같은 수준의 방법에 의해 오랜 시간 동안 비면허 대역의 채널을 공유하여 사용하는 또 다른 시스템이 존재하지 않도록 보장하지 못하는 경우,
Figure pat00229
이고, 그렇지 않은 경우
Figure pat00230
이다.
일 실시예에서, 기준 구간(reference duration)은 기지국의 PDSCH 전송을 포함하는 채널 점유 중에서 채널 점유 시작에서부터 첫 번째 슬롯의 마지막까지의 구간으로서 PDSCH에 할당된 시간-주파수 자원영역 모두를 통해 전송된 유니캐스트 PDSCH가 적어도 하나 포함되어 있는 구간 또는, 채널 점유 시작에서부터 하향링크 전송 버스트 종료까지의 구간으로서 PDSCH에 할당된 시간-주파수 자원영역 모두를 통해 전송된 유니캐스트 PDSCH가 적어도 하나 포함되어 있는 구간 중 시간상 먼저 일어난 구간을 의미할 수 있다. 만일, 기지국의 채널 점유에 유니캐스트 PDSCH는 포함되어 있으나, 상기 PDSCH에 할당된 시간-주파수 자원영역 모두를 통해 전송된 유니캐스트 PDSCH는 포함되지 않은 경우, 유니캐스트 PDSCH를 포함하는 첫 번째 하향링크 전송 버스트 구간이 기준 구간이 될 수 있다. 여기서 채널 점유(channel occupancy)는 채널 접속 절차 후 기지국이 수행한 전송(transmission)을 의미할 수 있다.
- 제 2A 타입 하향링크 채널 접속 절차
제 2A 타입 하향링크 채널 접속 절차에 따르면, 기지국은 하향링크 전송 직전에 적어도
Figure pat00231
구간에서 채널에 대한 센싱을 수행하고, 채널이 유휴 상태인 경우 하향링크 전송을 수행할 수 있다. 이때,
Figure pat00232
Figure pat00233
길이로
Figure pat00234
및 하나의 센싱 슬롯 (
Figure pat00235
)이 순차적으로 구성되어 있다. 여기서
Figure pat00236
는 하나의 센싱 슬롯 (
Figure pat00237
)을 포함하며, 센싱 슬롯의 시작 시간은
Figure pat00238
의 시작 시간과 같을 수 있다. 즉,
Figure pat00239
는 센싱 슬롯(
Figure pat00240
)으로 시작할 수 있다. 특정 단말에게 전송하는 하향링크 데이터 채널이 포함되어 있지 않은 하향링크 전송을 기지국이 수행하는 경우, 제 2A타입 하향링크 채널 접속 절차가 수행될 수 있다.
- 제 2B 타입 하향링크 채널 접속 절차
제 2B 타입 하향링크 채널 접속 절차에 따르면, 기지국은 하향링크 전송 직전에 적어도
Figure pat00241
구간 내에서 채널에 대한 센싱을 수행하고, 채널이 유휴 상태인 경우 하향링크 전송을 수행할 수 있다. 여기서
Figure pat00242
는 하나의 센싱 슬롯 (
Figure pat00243
)을 포함하며, 센싱 슬롯은
Figure pat00244
의 마지막
Figure pat00245
에 위치할 수 있다. 즉,
Figure pat00246
는 센싱 슬롯(
Figure pat00247
으로 종료된다. 제 2B 타입 하향링크 채널 접속 절차는 기지국이 전송하고자 하는 상기 하향링크 전송 시작과 단말의 상향링크 전송 종료 간 갭이
Figure pat00248
또는
Figure pat00249
이하인 경우에 적용 가능하다.
- 제 2C 타입 하향링크 채널 접속 절차
제 2C 타입 하향링크 채널 접속 절차는, 기지국이 하향링크 전송 시작과 단말의 상향링크 전송 종료 간 갭이
Figure pat00250
또는
Figure pat00251
이하인 경우에 적용 가능하며, 기지국은 별도의 절차 또는 채널 센싱 없이 하향링크 전송을 수행할 수 있다. 이때, 제 2C 타입 하향링크 채널 접속 절차 후 수행되는 하향링크 전송의 최대 구간은
Figure pat00252
일 수 있다.
여기서 제 2A, 2B, 및 2C타입 하향링크 채널 접속 절차는 제 1 하향링크 채널 접속 절차와 달리, 기지국이 하향링크 전송 전 수행하는 채널 센싱 구간 혹은 시점이 결정적인(deterministic) 것을 특징으로 한다. 이러한 특징을 기준으로 하향링크 채널 접속 절차를 다음과 같이 추가로 구분하는 것도 가능하다.
- 유형 1(Type 1): 가변 시간 동안 채널 접속 절차를 수행 후 하향링크 전송을 수행하는 유형으로 상기 제 1 타입 하향링크 채널 접속 절차에 대응된다.
- 유형 2(Type 2): 고정 시간 동안 채널 접속 절차를 수행 후 하향링크 전송을 수행하는 유형으로 상기 제 2A 타입 및 제 2B 타입 하향링크 채널 접속 절차에 대응된다.
- 유형 3(Type 3): 채널 접속 절차 수행 없이 하향링크 전송을 수행하는 유형으로 상기 제 2C 타입 하향링크 채널 접속 절차에 대응된다.
<에너지 검출 임계값 조절 절차>
채널 접속 절차 또는 채널 센싱을 수행하는 기지국은 에너지 검출 임계값 (energy detection threshold) 또는 센싱 임계값
Figure pat00253
를 다음과 같이 설정할 수 있다. 이때,
Figure pat00254
는 최대 에너지 검출 임계값(maximum energy detection threshold) 또는 센싱 임계값을 나타내는
Figure pat00255
과 같거나 적은 값으로 설정되어야 하며, 단위는 dBm이다.
비면허 대역에서 통신을 수행하는 5G 시스템에서, 규제 및 상기 규제와 같은 수준의 방법에 의해 오랜 시간 동안 비면허 대역의 채널을 공유하여 사용하는 또 다른 시스템이 존재하지 않도록 보장할 수 있는 경우,
Figure pat00256
이다. 여기서,
Figure pat00257
은 지역별 규제에 의해 요구되는 최대 에너지 검출 임계값으로 dBm 단위이다. 만일, 규제에 의해 요구되는 최대 에너지 검출 임계값이 설정 또는 정의되지 않은 경우
Figure pat00258
일 수 있다.
상기의 경우가 아닌 경우, 즉, 비면허 대역에서 통신을 수행하는 5G 시스템에서, 규제 및 상기 규제와 같은 수준의 방법에 의해 오랜 시간 동안 비면허 대역의 채널을 공유하여 사용하는 또 다른 시스템이 존재하지 않도록 보장할 수 있는 경우가 아닌 경우, 최대 에너지 검출 임계값은 하기 수학식 1을 통해 결정될 수 있다.
[수학식 1: ED threshold]
Figure pat00259
상기 수학식 1에서
Figure pat00260
는 PDSCH를 포함하는 전송 시 10dBm이고, Discovery 신호 및 채널 전송시
Figure pat00261
는 5dB이다.
Figure pat00262
는 23dBm이고,
Figure pat00263
는 기지국의 최대 송출 전력 (output power)으로 dBm 단위이다. 기지국은 하향링크 전송이 하나의 채널 또는 복수의 채널을 통해 전송되는 것과 관계없이, 하나의 채널을 통해 전송되는 최대 송신 전력을 사용하여 임계값을 계산할 수 있다. 여기서
Figure pat00264
이고, BW는 하나의 채널에 대한 대역폭으로 MHz 단위이다.
일 실시예로 단말이 상향링크 전송을 위한 채널에 접속하기 위한 에너지 검출 임계값
Figure pat00265
를 결정하는 방법은 다음과 같다.
기지국은 상위 계층 시그널링, 예를 들어, 'maxEnergyDetectionThreshold'를 통해 단말의 최대 에너지 검출 임계값을 설정할 수 있다. 기지국으로부터 'maxEnergyDetectionThreshold'을 제공 혹은 설정 받은 단말은,
Figure pat00266
를 상기 파라미터에 의해 설정된 값으로 설정할 수 있다. 기지국으로부터 'maxEnergyDetectionThreshold'을 제공 혹은 설정 받지 않은 단말은 다음과 같이
Figure pat00267
설정할 수 있다. 만일, 단말이 기지국으로부터 에너지 검출 임계값 오프셋(일례로 상위 계층 시그널링으로 제공되는 energyDetectionThresholdOffset)을 제공 혹은 설정 받지 않은 경우, 단말은
Figure pat00268
Figure pat00269
로 설정할 수 있다. 만일, 단말이 기지국으로부터 에너지 검출 임계값 오프셋을 제공 혹은 설정 받은 경우,
Figure pat00270
을 상기 에너지 검출 임계값 오프셋만큼 조절(adjusting)한 값으로
Figure pat00271
를 설정할 수 있다. 여기서,
Figure pat00272
는 다음과 같이 결정될 수 있다.
비면허 대역에서 통신을 수행하는 5G 시스템에서, 규제 및 상기 규제와 같은 수준의 방법에 의해 오랜 시간 동안 비면허 대역의 채널을 공유하여 사용하는 또 다른 시스템이 존재하지 않도록 보장할 수 있는 경우, 기지국은 단말에게 상위 계층 시그널링, 예를 들어, 'absenceOfAnyOtherTechnology'을 제공할 수 있다. 기지국으로부터 상위 계층 시그널링을 통해 'absenceOfAnyOtherTechnology'를 제공 혹은 설정 받은 단말은,
Figure pat00273
로 설정할 수 있다. 여기서,
Figure pat00274
은 지역별 규제에 의해 요구되는 최대 에너지 검출 임계값으로 dBm 단위이다. 만일, 상기 규제에 의해 요구되는 최대 에너지 검출 임계값이 설정 또는 정의되지 않은 경우
Figure pat00275
이다. 기지국으로부터 상위 계층 시그널링을 통해 상기 'absenceOfAnyOtherTechnology'를 제공 혹은 설정 받지 않은 단말은, 상기 수학식 1을 통해
Figure pat00276
를 결정할 수 있다. 이때,
Figure pat00277
이고,
Figure pat00278
Figure pat00279
이다.
<실시 예>
5GHz 비면허대역에 대한 미국의 최대 전송 출력 및 PSD (Power Spectral Density) 제한 조건의 일 예는 표 17와 같다.
[표 17]
Figure pat00280
5GHz의 경우 상기 표 17와 같이 주파수 대역에 따라 최대 전송 출력 및 PSD 제한 조건이 정의되어 있다. 따라서, 단말은 기지국/단말과 통신을 수행하는 주파수 대역에 정의되어 있는 최대 전송 출력 및 PSD 제한 조건을 판단할 수 있으며, 단말은 상기 판단된 제한 조건을 만족할 수 있도록 상향링크 신호/채널의 전송 전력을 결정하여 상향링크 신호/채널을 전송할 수 있다. 하지만, 6GHz 비면허대역의 경우, 하기 표 18과 같이 비면허대역 주파수의 사용 용도에 따라 최대 전송 출력 및 PSD 제한 조건이 정의되어 있기 때문에, 단말이 기지국/단말과 통신을 수행하는 주파수 대역 정보 만으로 최대 전송 출력 및 PSD 제한 조건을 올바르게 판단할 수 없다.
표 18은 6GHz 비면허대역에 대한 한국, 미국, 및 유럽의 최대 전송 출력 및 PSD 요구 조건의 일 예이다.
[표 18]
Figure pat00281
이를 미국의 경우를 예를 들어 설명하면 다음과 같다. 5925MHz 비면허 대역에서 기지국과 통신을 수행하고자 하는 단말이 기지국에 초기 접속을 시도하는 경우, 동기신호블록을 검출하여 동기 및 시스템 정보 등을 획득한 단말은 랜덤 엑세스 채널을 기지국으로 전송한다. 이때, 랜덤 엑세스 채널의 전송 전력은 수학식 2를 통해 결정될 수 있다.
[수학식 2: PRACH transmission power]
Figure pat00282
여기서
Figure pat00283
는 셀 c의 캐리어 f의 송신 시기 i에서 설정된 최대 송신 전력 (maximum output power) 이다. 이때,
Figure pat00284
는 단말이 설정할 수 있는 송신 전력으로, 기지국이 상위 신호를 통해 단말에게 설정하는 최대 송신 전력 (예를 들어, FrequencyInfoUL IE의 P-Max) 값과 단말의 전력 클래스 (Power Class) 중 작은 값 보다 같거나 작은 값으로 설정될 수 있다. 한편,
Figure pat00285
는 서빙셀 c의 캐리어 f의 상향링크 활성화 대역폭파트 b에 대해 상위 계층 시그널링 (예를 들어, PREABLE_RECEIVED_TARGET_POWER)으로 설정된 PRACH 목표 수신 전력 (PRACH target reception power)이다.
Figure pat00286
는 서빙셀 c의 캐리어 f의 상향링크 활성화 대역폭파트 b에 대한 경로 손실 (pathloss) 값으로, 상기 PRACH 전송과 연계된 (associated with) 하향링크 기준 신호 (reference signal) 및 기준신호의 전력 정보, 상위 계층 필더 구성 정보 등을 이용하여
Figure pat00287
를 결정한다. 이때, 단말은 상위 계층 시그널링을 통해 기준신호의 전력 정보 (예를 들어, referenceSignalPower)를 기지국으로부터 제공받을 수 있다. 만일, 활성화 되어 있는 하향링크 대역폭파트가 초기 하향링크 대역폭파트 (initial DL BWP)이고 동기신호블록과 자원집합세트가 다중화 패턴 2 또는 3을 통해 다중화 되는 것으로 지시받은 단말은, 상기 PRACH 전송과 연계된 (associated with) 동기신호블록을 이용하여
Figure pat00288
를 결정한다. 상위 계층 필터된 RSRP 및 동기신호블록과 자원집합세트의 다중화 패턴 등에 관한 상세 내용은 3GPP 규격 (TS38.215, TS38.331, TS38.213 등)을 참고한다.
따라서, 5925MHz 비면허 대역에서 기지국과 통신을 수행하고자 하는 단말이 기지국으로의 초기 접속을 위해 랜덤 엑세스 채널을 전송하는 경우에서, 상기 기지국/단말의 비면허대역 사용 용도가 실내용도인 경우, 단말은 최대 송신 전력을 24dBm 이하, 랜덤 엑세스 채널의 PSD는 -1dBm/MHz 이하가 되도록 전송 전력을 결정하고, 이에 따라 랜덤 엑세스 채널을 전송하여야 한다. 만일 상기 기지국/단말의 비면허대역 사용 용도가 실외 용도 또는 고정형 실외 용도인 경우 단말은 최대 송신 전력을 30dBm 이하, 랜덤 엑세스 채널의 PSD는 17dBm/MHz 이하가 되도록 전송 전력을 결정하고, 이에 따라 랜덤 엑세스 채널을 전송하여야 한다. 이때, 단말은 상기 기지국의 6GHz 비면허대역 사용 용도를 알 수 없기 때문에, 상기 비면허대역에 정의되어 있는 최대 송신 전력 및 PSD 제한 조건을 올바르게 판단할 수 없거나, 가장 낮은 최대 송신 전력 및 PSD 제한 조건을 가정하여 송신 전력을 결정함으로써, 통신 품질이 저하 될 수 있다. 따라서, 본 발명에서는 단말이 기지국의 비면허대역 사용 용도를 명시적(explicit) 또는 묵시적(implicit)하게 판단하는 방법 및 이에 따른 상향링크 송신 전력을 결정하는 방법을 제안한다. 상기에서는 단말이 PRACH 전송 전력을 결정하는 일례를 기술하였으나, 본 개시의 실시예는 단말이 PUCCH(physical uplink control channel), PUSCH(physical uplink shared channel), SRS(sounding reference signal), S-SS/PSBCH(sidelink-synchronization signal/physical sidelink broadcast channel), PSSCH(physical sidelink shared channel), PSCCH(physical sidelink control channel), PSFCH(physical sidelink feedback channel) 등의 전송 전력 및 기준 신호(reference signal)의 전송 전력을 결정하기 위해 수행될 수 있다.
6GHz 비면허대역의 최대 전송 출력 및 PSD 요구 조건은 5GHz 비면허대역과 다르게 기기의 사용 용도, 예를 들어 실내용도, VLP용도, 실외용도로 사용되는지 여부에 따라 상기 요구 조건이 다르게 결정된다. 따라서, 기지국 또는 AP (이하 기지국)는 사용 용도에 따른 최대 전송 출력 및 PSD 요구 조건을 만족하도록 하향링크 신호 또는/및 채널에 대한 전송 전력을 결정하여 단말 또는 STA (이하 단말)에게 전송하여야 하며, 이는 기지국을 설치할 때 기지국별로 각각 설정될 수 있다. 하지만, 상기 기지국에 접속하여 상향링크 신호/채널을 전송하는 단말의 경우에는 접속하고자 하는 또는 접속된 기지국의 사용 용도를 알 수 없기 때문에, 상향링크 전송 전력을 올바르게 결정할 수 없다. 다시 말해, 단말이 상향링크 신호 또는/및 채널(이하 상향링크 신호/채널)을 전송하기 위하여 상향링크 신호/채널에 대한 전송 전력을 결정하는 경우에, 상기 상향링크 전송시 만족하여야 하는 최대 전송 출력 및 PSD 요구 조건을 알 수 없기 때문에, 올바른 상향링크 전송 전력을 결정할 수 없게 된다. 이러한 문제를 해결하기 위하여 다음과 같은 방법 중 적어도 하나가 필요하다.
방법 1: 기지국이 상위 신호 시그널링을 통해 기지국(또는 주파수)의 용도 또는 이에 대응되는 정보를 단말에게 공지하고, 단말은 상기 정보를 통해 판단된 최대 전력 및/또는 PSD 요구조건에 따라 상향링크 신호/채널의 송신 전력을 결정하는 방법
방법 1은 기지국이 상위 신호 시그널링을 통해 단말에게 기지국(또는 주파수)의 용도 또는 이에 대응되는 정보를 제공하고, 이를 수신한 단말이 상기 정보에 따라 최대 전력 및/또는 PSD 요구조건을 판단하고, 이에 따라 상향링크 신호/채널의 송신 전력을 결정하는 방법이다. 예를 들어, 기지국은 다음 표 19와 같은 상위 신호 정보를 통해 비면허대역의 사용 용도 정보로 실내용도, VLP용도, 실외용도 중 적어도 하나의 정보를 단말에게 제공한다. 여기서 상위 신호 시그널링 ServingCellConfigCommonSIB의 UsageOf6GHz를 통해 상기 정보를 단말에게 제공하는 것은 일 예일 뿐이며 본 발명은 기술된 일례에 국한되지 않는다.
ServingCellConfigCommonSIB::= SEQUENCE {
downlinkConfigCommon DownlinkConfigCommonSIB,
...
UsageOf6GHz ENUMERATED {indoor, VLP, outdoor},
...
},
기지국으로부터 비면허대역의 사용 용도 정보를 제공 받은 단말은, 접속된 기지국 또는 접속하고자하는 셀 또는 기지국의 위치 내지 지역 정보, 통신을 수행하고자 하는 주파수 대역 정보, 기지국의 비면허대역 사용 용도 정보, 표 18 등과 같은 최대 전력 및/또는 PSD 요구 조건 등의 규제 정보 중 적어도 하나 이상을 통해 단말이 상향링크 신호/채널을 전송하는데 사용할 수 있는 최대 송신 전력 및/또는 PSD 요구 조건을 판단한다. 예를 들어, 접속하고자 하는 기지국이 미국에 위치하고 있고, 통신을 수행하고자하는 주파수 대역이 6GHz 비면허대역이고, 기지국으로부터 상위 신호를 통해 제공 받은 기지국의 비면허 대역 사용 용도 정보가 실외 용도 (outdoor)인 경우, 단말은 표 18을 참고하여 단말은 상향링크 신호/채널의 최대 송신 가능 전력이 30dBm 이하이고, 상향링크 신호/채널의 PSD는 17dBm/MHz 이하가 되어야 함을 판단하고, 이에 따라 상향링크 신호/채널의 전송 전력을 결정할 수 있다.
여기서 단말은 주파수 대역 정보를 검출 또는 획득한 셀 또는 기지국의 동기 신호 블록의 주파수 위치를 통해 판단하거나, 기지국으로부터 상위 신호를 통해 제공 받은 주파수 대역 정보를 통해 판단하거나, 동기 신호 블록이 위치할 수 있는 싱크 라스터(sync raster)의 위치 및/또는 검출 또는 획득한 동기 신호 블록 위치 등을 통해 판단할 수 있다. 여기서 단말은 셀 또는 기지국의 위치 내지 지역 정보를 기지국으로부터 상위 신호 (예를 들어, CellAccessRelatedInfo)를 통해 제공 받은 PLMN (Public 식별자 (PLMN-identify), 트래킹 영역 코드 (TrackingAreaCode), 랜 영역 코드 (RAN-AreaCode) 중 적어도 하나의 정보를 이용하여 판단할 수 있다. 예를 들어, 단말은 사전에 정의 되어 있는 또는 프로그래밍 되어 있는 각 PLMN ID 별 위치 정보 등을 통해 상기 기지국의 위치 내지 지역 정보를 판단할 수 있다.
방법 2: 기지국이 상위 신호 시그널링을 통해 단말의 상향링크 송신에 대한 최대 전력 및/또는 PSD 요구조건 중 적어도 하나를 단말에게 공지하고, 단말은 상기 정보를 통해 판단된 최대 전력 및/또는 PSD 요구조건에 따라 상향링크 신호/채널의 송신 전력을 결정하는 방법
방법 2는 기지국이 단말과 통신을 수행하는데 이용하는 비면허대역에 대하여 정의되어 있는 규제 정보 일부 또는 전체, 예를 들어 최대 송신 가능 전력 및 PSD 요구 조건 중 적어도 하나의 정보를 상위 신호를 통해 단말에 제공하고, 이를 수신한 단말은 상기 정보에 따라 상향링크 신호/채널의 송신 전력을 결정하는 방법이다. 예를 들어, 기지국은 다음 표 20과 같은 상위 신호 정보를 통해 단말에게 최대 송신 허용 전력 및 PSD 정보 중 적어도 하나의 정보를 제공할 수 있다. 여기서 상위 신호 시그널링 FrequencyInfoUL-SIB의 p-Max 또는 PSD-Max를 통해 상기 정보를 단말에게 제공하는 것은 일 예일 뿐이며 본 발명은 기술된 일례에 국한되지 않는다.
FrequencyInfoUL-SIB::= SEQUENCE {
frequencyBandList MultiFrequencyBandListNR-SIB
...
p-Max P-Max
p-MaxFor6GHz P-Max2 or INTEGER (1..36) (dBm)
PSD-Max P-Max3 or INTEGER (-8..23) (dBm)
}
이때, 기지국은 6GHz 비면허대역에 대하여 최대 송신 가능한 전력을 별도 IE를 통해 단말에게 전송하거나 (예를 들어, 상기의 p-MaxFor6GHz), 별도 IE 없이 p-Max 값을 이용하여 단말에게 전송할 수 있다. 만일, 기지국으로부터 p-MaxFor6GHz와 같이 6GHz 비면허대역에 대하여 최대 송신 가능한 전력 값을 별도로 제공 받지 않은 단말의 경우, p-Max 값을 상기 비면허대역의 최대 송신 가능 전력인 것으로 판단하고, 상기 정보 및 PSD 정보 (예를 들어 PSD-Max)에 따라 상향링크 신호/채널의 송신 전력을 결정할 수 있다.
예를 들어, 기지국은 단말과 통신하고자하는 비면허대역에 대하여 표 18 등과 같이 정의되어 있는 최대 송신 전력 및/또는 PSD 등의 규제 정보 중 적어도 하나의 정보를 상위 신호를 통해 단말에게 제공한다. 상기 정보의 일 예로는 단말이 상향링크 신호/채널을 전송하는데 사용할 수 있는 최대 송신 전력 또는 PSD 중 적어도 하나일 수 있다. 예를 들어, 접속하고자 하는 기지국이 미국에 위치하고 있고, 통신을 수행하고자하는 주파수 대역이 6GHz 비면허대역이고, 기지국이 상기 비면허대역을 실외 용도 (outdoor)로 사용하고자 하는 경우, 기지국은 상위 신호를 통해 상향링크 신호/채널의 최대 송신 가능 전력이 30dBm 이하이고 (예를 들어, p-Max 또는 p-MaxFor6GHz의 값을 30dBm), 상향링크 신호/채널의 PSD는 17dBm/MHz (예를 들어, PSD-Max의 값을 17dBm)으로 설정하여 단말에게 제공할 수 있다. 상기 정보를 수신한 단말은 기지국으로부터 제공 또는 설정 받은 최대 송신 가능 전력 및 PSD 정보를 이용하여 상향링크 신호/채널의 전송 전력을 결정할 수 있다.
방법 3: 기지국으로부터 상위 신호 시그널링을 통해 제공된 하향링크 및/또는 상향링크 송신 전력 관련 정보를 통해 단말이 상향링크 송신에 대한 최대 전력 및/또는 PSD 요구조건 중 적어도 하나를 판단하고, 이에 따라 상향링크 신호/채널의 송신 전력을 결정하는 방법
방법 3을 보다 구체적으로 설명하면 다음과 같다. 기지국은 단말과 통신하고자하는 비면허대역에 대하여 표 18 등과 같이 정의되어 있는 최대 송신 전력 및/또는 PSD 등의 규제 정보 중 적어도 하나의 값을 동기신호블록의 송신 전력을 제공하는 상위 신호 정보 (예를 들어, ss-PBCH-BlockPower) 또는 상향링크 최대 송신 가능 전력 값을 제공하는 상위 신호 정보 (예를 들어, p-Max) 중 적어도 하나의 값을 이용하여 단말에게 제공 또는 설정 한다. 이러한 일례는 표 21과 같을 수 있다. 상기 정보를 수신한 단말은, 만일 기지국과 통신을 수행하는 비면허대역이 표 18의 주파수 대역인 경우, 제공 내지 설정된 동기신호블록의 송신 전력을 제공하는 상위 신호 정보 (예를 들어, 하기와 같은 ss-PBCH-BlockPower) 또는 상향링크 최대 송신 가능 전력 값을 제공하는 상위 신호 정보 (예를 들어, p-Max) 중 적어도 하나의 값을 이용하여 기지국의 비면허대역 사용 용도를 판단하고, 상기 판단된 사용 용도에 따라 정의되어 있는 최대 송신 전력 및 PSD 등에 따라 상향링크 신호/채널의 전송 전력을 결정할 수 있다.
ServingCellConfigCommonSIB::= SEQUENCE {
downlinkConfigCommon DownlinkConfigCommonSIB
...
ss-PBCH-BlockPower INTEGER (-60..50),
...
}
예를 들어, 기지국으로부터 동기신호블록의 송신 전력을 제공하는 상위 신호 정보의 값이 30dBm이고, 상향링크 최대 송신 가능 전력 값을 제공하는 상위 신호 정보 값이 24dBm인 것으로 제공 내지 설정 받은 단말의 경우, 기지국이 상기 비면허대역을 실내용도로 사용하고 있음을 판단 내지 가정하고, 이에 대응하는 PSD 요구 조건을 판단할 수 있다. 상기 예시의 경우 단말은 PSD 요구 조건이 -1dBm/MHz인 것으로 판단하고 이에 따라 상향링크 신호/채널의 전송 전력을 결정할 수 있다.
또 다른 일 예를 들면, 기지국으로부터 동기신호블록의 송신 전력을 제공하는 상위 신호 정보의 값이 36dBm이고, 상향링크 최대 송신 가능 전력 값을 제공하는 상위 신호 정보 값이 30dBm인 것으로 제공 내지 설정 받은 단말의 경우, 기지국이 상기 비면허대역을 실외용도로 사용하고 있음을 판단 내지 가정하고, 이에 대응하는 PSD 요구 조건을 판단할 수 있다. 상기 예시의 경우 단말은 PSD 요구 조건이 17dBm/MHz인 것으로 판단하고 이에 따라 상향링크 신호/채널의 전송 전력을 결정할 수 있다. 이때, 단말은 기지국의 비면허대역 사용 용도 판단 없이, 상기 상위 신호 정보를 통해 PSD 요구 조건을 직접 판단하는 것도 가능하다.
방법 4: 기지국/단말간 연결 방식에 따라 단말이 송신 가능한 최대 전력 및/또는 PSD 요구조건을 판단하고, 이에 따라 단말이 송신하는 신호/채널의 송신 전력을 결정하는 방법.
방법 4는 단말이 비면허대역에서 사이드링크를 통해 단말간 통신 (또는 기기간 통신)을 수행하는 경우, 단말은 상기 비면허대역을 특정한 용도, 일례로 VLP 용도로 사용하는 것으로 판단하고, 표 18의 VLP 용도에 대응하는 최대 송신 전력 및 PSD 요구 조건에 따라 사이드링크 신호/채널의 전송 전력을 결정하는 방법이다. 단말간 통신을 의미하는 사이드링크 통신을 수행하는 경우, 상기 단말이 기지국과 통신을 수행하는 경우에 대비하여 상대적으로 낮은 전력을 이용하여 통신을 수행할 수 있다. 따라서, 단말은 기지국으로부터 상위 신호를 통해 제공 내지 설정 받거나 단말에 사전에 정의되어 있는 (pre-configuration) 사이드링크 통신 설정에 따라 사이드 링크 통신을 수행하는 경우에서, 만일 상기 사이드링크 통신이 6GHz 비면허대역을 통해 수행되는 경우, 상기 비면허대역을 VLP 용도로 사용하는 것으로 판단할 수 있다. 이후, 단말은 표 18의 VLP 용도에 대응하는 최대 송신 전력 및 PSD 요구 조건을 만족하도록 사이드링크 신호/채널의 전송 전력을 결정할 수 있다.
본 개시의 다양한 방법들에 대해서, 단말은 다음 중 하나 이상의 방법을 통해 주파수 위치 내지 주파수 대역 정보를 판단할 수 있다. 단말은 셀 또는 기지국의 동기 신호 블록을 검출 및 획득하고, 상기 획득한 동기 신호 블록의 주파수 위치를 통해 주파수 대역 정보 (예를 들어, 표 18의 허용 대역 정보 등)를 판단할 수 있다. 또 다른 방법으로, 단말은 기지국으로부터 상위 신호를 통해 제공 받은 주파수 대역 정보를 통해 주파수 위치 내지 주파수 대역 정보를 판단하거나, 동기 신호 블록이 위치할 수 있는 싱크 라스터(sync raster)의 위치 및/또는 검출 또는 획득한 동기 신호 블록 위치 등을 통해 이를 판단할 수 있다.
또한, 본 개시의 다양한 방법들에 대해서, 셀 또는 기지국의 위치 내지 지역 정보는 기지국으로부터 상위 신호 (예를 들어, CellAccessRelatedInfo)를 통해 제공 받은 PLMN (Public 식별자 (PLMN-identity), 트래킹 영역 코드 (TrackingAreaCode), 랜 영역 코드 (RAN-AreaCode) 중 적어도 하나의 정보를 이용하여 판단할 수 있다. 표 22는 PLMN-Identity의 일례를 기술한 것이다. 예를 들어, 단말은 사전에 정의 되어 있는 또는 프로그래밍 되어 있는 각 PLMN ID 별 위치 정보 등을 통해 상기 기지국의 위치 내지 지역 정보를 판단할 수 있다. 여기서 MCC는 모바일 국가 코드 (Mobile Country Code, MCC)로 상기 정보를 통해 단말은 접속 기지국 또는 네트워크가 위치한 국가를 판단할 수 있으며, 상기 판단된 국가 및 표 18에 따라 최대 송신 전력 및 PSD 요구 조건 등을 판단할 수 있다.
PLMN-Identity ::= SEQUENCE {
mcc MCC OPTIONAL, -- Cond MCC
mnc MNC
}
또 다른 예를 들어, 단말은 기지국 또는 네트워크로부터 제공 받은 IMSI(International Mobile Subscriber Identity) 정보를 통해 셀 또는 기지국의 위치 내지 지역 정보를 판단할 수 있다. 예를 들어, 일반적으로 15자리 숫자로 표현되는 IMSI의 첫번째 3개의 비트는 모바일 국가 코드 (Mobile Country Code, MCC)를 의미하므로, 단말은 상기 비트를 통해 접속한 네트워크의 국가를 판단할 수 있으며, 상기 판단된 국가 및 표 18에 따라 최대 송신 전력 및 PSD 요구 조건 등을 판단할 수 있다.
또한, 본 개시의 다양한 방법을 통해 판단된 최대 송신 가능 전력은, p-Max,
Figure pat00289
값 또는
Figure pat00290
의 최대 값 중 적어도 하나로 표현될 수 있다. 이때, 단말은 본 개시의 다양한 방법을 통해 판단된 PSD 조건을 만족하여야 한다. 예를 들어, 미국의 6GHz 비면허대역을 이용하여 통신을 수행하는 단말에서, 상기 비면허대역이 실내용도로 사용되는 것으로 지시 또는 판단된 경우, 단말은 어떠한 1MHz 대역에서의 최대 PSD 또는 최대 평균 전력 밀도 (maximum mean power density in any 1MHz band)가 -1dBm 이하 및 최대 송신 전력이 24dBm 이하가 되도록 상향링크 신호/채널의 송신 전력을 결정하여야 한다. 만일, 상기 비면허대역이 실외용도로 사용되는 것으로 지시 또는 판단된 경우, 단말은 어떠한 1MHz 대역에서의 최대 PSD 또는 최대 평균 전력 밀도가 17dBm 이하 및 최대 송신 전력이 30dBm이 되도록 상향링크 신호/채널의 송신 전력을 결정하여야 한다.
도 13은 본 발명의 실시예를 수행하는 단말의 동작을 도시한 도면이다.
도 13에 따르면, 단말은 비면허대역에서의 상향링크 또는 사이드링크 신호/채널 전송을 위해 적용해야 할 최대 전송 출력(또는 최대 송신 가능 전력과 혼용 가능하다) 및/또는 PSD 정보를 확인한다(1300). 단말은 신호를 전송할 주파수 대역 정보, 접속하고자 하는 셀 또는 기지국의 위치 또는 지역 정보 또는 주파수 대역 또는 기지국의 용도 정보 중 적어도 하나를 기반으로 적용해야 할 최대 전송 출력 및/또는 PSD 정보를 획득하며, 이 때 주파수 대역 정보 및 셀 또는 기지국의 위치 또는 지역 정보는 상기 기술된 방법으로 획득될 수 있다.
일례로 신호를 전송할 주파수 대역이 6GHz인 경우, 최대 전송 출력 및/또는 PSD 정보는 주파수 대역 또는 기지국의 용도에 따라 달라질 수 있으며, 단말은 상기 기술된 방법에 따라 최대 전송 출력 및/또는 PSD 정보를 획득할 수 있다. 방법 1에 따르면 단말은 기지국으로부터 전송되는 기지국 또는 주파수의 용도를 지시하는 정보를 통해 주파수 대역 또는 기지국의 용도를 판단하고 대응되는 최대 전송 출력 및/또는 PSD 정보를 획득할 수 있으며, 방법 2에 따르면 단말은 기지국으로부터 전송되는 최대 송신 가능 전력 또는/및 PSD 요구 조건 중 적어도 하나의 정보를 통해 최대 전송 출력 및/또는 PSD 정보를 획득한다. 방법 3에 따르면 단말은 기지국이 전송한 하향링크 또는 상향링크 전송 전력 관련 정보를 기반으로 최대 전송 출력 및/또는 PSD 정보를 획득하며, 방법 4에 따르면, 단말은 사이드링크를 통해 단말간 통신을 수행할 경우, 주파수 대역의 용도를 특정 용도로 판단하고 최대 전송 출력 및/또는 PSD 정보를 획득할 수 있다.
단말은 상기 획득된 최대 전송 출력 및/또는 PSD 정보를 기반으로 상향링크 또는 사이드링크 신호/채널의 전송 전력을 결정한다(1310). 단말은 획득된 최대 전송 출력 정보를 전송 전력 결정시 이용되는 파라미터인
Figure pat00291
를 확인하기 위해 사용할 수 있다. 일례로 단말은 최대 전송 출력 정보를 p-Max,
Figure pat00292
값 또는
Figure pat00293
의 최대 값 중 적어도 하나로 판단할 수 있다. 또한 단말은 PSD 또는 최대 평균 전력 밀도를 만족하도록 전송전력을 결정한다. 이후 단말은 결정된 상향링크 또는 사이드링크 신호/채널의 전송 전력을 기반으로 상향링크 또는 사이드링크 신호/채널을 전송한다(1320).
상기 기술된 도 13의 모든 단계가 본 발명의 실시를 위해 반드시 실시되어야 하는 것은 아니며, 기술되지 않은 다른 절차가 더해져 실시되는 것도 가능하다. 또한 기술된 순서가 변경되어 실시되는 것도 가능하다.
상기 기술된 본 개시의 실시예들은 서로 대안적인 관계가 아니며, 하나 이상의 방법이 조합되어 사용될 수 있다. 본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체 또는 컴퓨터 프로그램 제품이 제공될 수 있다. 컴퓨터 판독 가능 저장 매체 또는 컴퓨터 프로그램 제품에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 복수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크 상의 별도의 저장 장치가 본 개시의 실시예를 수행하는 장치에 접속할 수도 있다.
본 개시에서, 용어 "컴퓨터 프로그램 제품(computer program product)" 또는 "컴퓨터로 읽을 수 있는 기록매체(computer readable medium)"는 메모리, 하드 디스크 드라이브에 설치된 하드 디스크, 및 신호 등의 매체를 전체적으로 지칭하기 위해 사용된다. 이들 "컴퓨터 프로그램 제품" 또는 "컴퓨터로 읽을 수 있는 기록매체"는 본 개시에 따른 무선 통신 시스템에서 하향링크 제어 채널을 모니터링하는 방법에 제공하는 수단이다.
상술한 본 개시의 구체적인 실시예들에서, 본 개시에 포함되는 구성 요소는 제시된 구체적인 실시예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시예는 필요에 따라 서로 조합되어 운용할 수 있다. 예를 들면, 본 개시의 일 실시예와 다른 일 실시예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한, 본 개시의 실시예들은 다른 통신 시스템에서도 적용 가능하며, 실시예의 기술적 사상에 바탕을 둔 다른 변형예들 또한 실시 가능할 것이다. 예를 들면, 실시예들은 LTE 시스템, 5G 또는 NR 시스템 등에도 적용될 수 있다.

Claims (1)

  1. 무선 통신 시스템에서 제어 신호 처리 방법에 있어서,
    기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계;
    상기 수신된 제1 제어 신호를 처리하는 단계; 및
    상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
KR1020200104820A 2020-08-20 2020-08-20 무선 통신 시스템에서 전송 전력 결정 방법 및 장치 KR20220023219A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200104820A KR20220023219A (ko) 2020-08-20 2020-08-20 무선 통신 시스템에서 전송 전력 결정 방법 및 장치
US17/406,554 US20220060999A1 (en) 2020-08-20 2021-08-19 Method and apparatus for determination of transmission power in wireless communication system
PCT/KR2021/011015 WO2022039515A1 (en) 2020-08-20 2021-08-19 Method and apparatus for determination of transmission power in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200104820A KR20220023219A (ko) 2020-08-20 2020-08-20 무선 통신 시스템에서 전송 전력 결정 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20220023219A true KR20220023219A (ko) 2022-03-02

Family

ID=80271175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200104820A KR20220023219A (ko) 2020-08-20 2020-08-20 무선 통신 시스템에서 전송 전력 결정 방법 및 장치

Country Status (3)

Country Link
US (1) US20220060999A1 (ko)
KR (1) KR20220023219A (ko)
WO (1) WO2022039515A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622355B2 (en) * 2021-03-29 2023-04-04 Cisco Technology, Inc. Wireless fidelity uplink non-orthogonal multiple access
US11716610B2 (en) * 2021-04-14 2023-08-01 Qualcomm Incorporated Wideband uplink control channel capability indication during initial access
US20230336280A1 (en) * 2022-04-15 2023-10-19 Samsung Electronics Co., Ltd. Method and apparatus for contention window adjustment on sidelink
WO2023205598A1 (en) * 2022-04-18 2023-10-26 Intel Corporation Contention window adjustment in a new radio (nr) sidelink system operating in frequency range 1 (fr-1) unlicensed band

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9706498B2 (en) * 2011-06-20 2017-07-11 Lg Electronics Inc. Method for controlling transmission power in a wireless access system and apparatus for same
US10506530B2 (en) * 2018-04-05 2019-12-10 Intel IP Corporation Methods to indicate transmit power envelope restrictions for wireless local area network (WLAN) operation in unlicensed spectrum
WO2020032696A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 상향링크 신호 송수신 방법 및 이를 지원하는 장치
KR20200085481A (ko) * 2019-01-07 2020-07-15 삼성전자주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치

Also Published As

Publication number Publication date
US20220060999A1 (en) 2022-02-24
WO2022039515A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
KR102464908B1 (ko) 무선 통신 시스템에서 단말의 전력 소모 감소를 위한 방법 및 장치
US20230247648A1 (en) Method and device for transmitting and receiving downlink control information on scheduling of data channels in wireless communication system
JP7432597B2 (ja) 無線通信システムにおけるサブバンド基盤のチャンネルアクセス方法及び装置
CN113316951A (zh) 无线通信系统中的执行通信的方法和设备
US11510185B2 (en) Method and apparatus for frequency domain resource allocation in wireless communication system
US11832265B2 (en) Method and apparatus for indicating slot format in wireless communication system
US20220361231A1 (en) Method and apparatus for repeated transmission and reception in wireless communication system
US11876750B2 (en) Method and apparatus for determining channel access procedure in wireless communication system
US20220060999A1 (en) Method and apparatus for determination of transmission power in wireless communication system
KR20210122417A (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
CN113498629A (zh) 用于无线通信系统中的信道接入的设备和方法
US11838918B2 (en) Method and apparatus for determining downlink feedback information in wireless communication system
US20220086911A1 (en) Method and apparatus for semi-static channel occupancy in wireless communication system
KR20210126289A (ko) 무선 통신 시스템에서 하향링크 제어 채널 모니터링 방법 및 장치
KR20210126403A (ko) 무선 통신 시스템에서 상향링크 데이터 채널 송수신 방법 및 장치
KR20220008701A (ko) 무선 통신 시스템에서 주파수 자원 할당 방법 및 장치
CN113767684A (zh) 无线通信系统中频域资源分配的方法和装置
KR20210039874A (ko) 무선 통신 시스템에서 주파수 자원 할당 방법 및 장치
US20230164829A1 (en) Method and device for transmitting uplink data in wireless communication system
KR20220053933A (ko) 무선 통신 시스템에서 하향링크 제어정보 반복 송수신 방법 및 장치
US20220240294A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system
EP4250828A1 (en) Method and device for power control for multi-connectivity in wireless communication system
KR20220104608A (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 장치
KR20210123174A (ko) 무선 통신 시스템에서 주파수 자원 할당 방법 및 장치
KR20230175130A (ko) 비면허 대역에서 사이드링크 통신을 위한 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination