KR20220023067A - Method for manufacturing a substrate for a lead acid battery with increased surface area - Google Patents

Method for manufacturing a substrate for a lead acid battery with increased surface area Download PDF

Info

Publication number
KR20220023067A
KR20220023067A KR1020200104539A KR20200104539A KR20220023067A KR 20220023067 A KR20220023067 A KR 20220023067A KR 1020200104539 A KR1020200104539 A KR 1020200104539A KR 20200104539 A KR20200104539 A KR 20200104539A KR 20220023067 A KR20220023067 A KR 20220023067A
Authority
KR
South Korea
Prior art keywords
grid
lead
active material
acid battery
substrate
Prior art date
Application number
KR1020200104539A
Other languages
Korean (ko)
Other versions
KR102424556B1 (en
Inventor
최석모
이응래
유범근
Original Assignee
한국앤컴퍼니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국앤컴퍼니 주식회사 filed Critical 한국앤컴퍼니 주식회사
Priority to KR1020200104539A priority Critical patent/KR102424556B1/en
Publication of KR20220023067A publication Critical patent/KR20220023067A/en
Application granted granted Critical
Publication of KR102424556B1 publication Critical patent/KR102424556B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • H01M4/23Drying or preserving electrodes after forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing a substrate for a lead-acid battery with an increased surface area, and more specifically, to a method for manufacturing a substrate for a lead-acid battery with an increased surface area capable of increasing a bonding area between a grid and an active material and a thickness of a corrosion layer after formation by applying a sulfate-treated grid in the lead-acid battery to improve bonding strength between the grid and the active material; and improving durability by delaying easy separation of the active material depending on grid growth in a charging/discharging condition including overcharge through the improved bonding strength. The present invention improves the bonding strength between the grid and the active material by increasing the bonding area between the grid and the active material and the thickness of the corrosion layer after the formation. The present invention improves the durability by delaying the easy separation of the active material depending on the grid growth in the charging/discharging condition including the overcharge through the improved bonding strength. The method for manufacturing a substrate comprises: a touched area increasing step; and a bonding strength improving step.

Description

표면적이 증가된 납축전지용 기판 제조 방법{Method for manufacturing a substrate for a lead acid battery with increased surface area}Method for manufacturing a substrate for a lead acid battery with increased surface area

본 발명은 표면적이 증가된 납축전지용 기판 제조 방법에 관한 것으로서, 더욱 상세하게는 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력을 통해 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시키는 표면적이 증가된 납축전지용 기판 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a substrate for a lead-acid battery having an increased surface area, and more particularly, by applying a grid treated with sulfuric acid in a lead-acid battery, the bonding area between the grid and the active material and the thickness of the corrosion layer after formation are increased to form a grid and A method for manufacturing a substrate for a lead-acid battery with increased surface area that improves the bonding strength of the active material and improves durability by delaying the easy separation of the active material according to grid growth under charge/discharge conditions including overcharge through improved bonding strength will be.

기본적으로 납축전지 격리판은 전자적으로는 부도체이며 이온적으로는 도체이다.Basically, lead-acid battery separators are electronically insulators and ionically conductive.

즉, 납축전지에 구성되는 격리판은 반대 극성의 전극들 간의 직접적인 전자적 접촉을 방지하는 반면에 상기 전극들 간의 이온 전류를 가능하게 한다.That is, the separator comprised in the lead acid battery prevents direct electronic contact between electrodes of opposite polarity while enabling ionic current between the electrodes.

이러한 두 가지 기능을 만족하기 위해서는, 격리판은 일반적으로 덴드라이트(dendrites) 또는 판(plate) 입자(particles)에 의한 전자적 단락을 방지하기 위하여 가능한 한 작은 공극(pores)을 가지며, 내부의 전지 저항을 최소화하기 위해 가능한 한 높은 공극률(porosity)을 가지는 다공성 (porous) 부도체이다.In order to satisfy these two functions, the separator generally has as small as possible pores to prevent electronic short circuit by dendrites or plate particles, and the internal cell resistance It is a porous insulator with as high a porosity as possible in order to minimize the

납축전지에서 격리판은 또한, 적절한 전극 간격을 결정하며, 그것에 의해 셀 반응에 참가하는 전해질의 양을 규정한다.In lead acid batteries, the separator also determines the proper electrode spacing, thereby dictating the amount of electrolyte that participates in the cell reaction.

격리판은 전지의 사용기한 내내 안정하여야 한다.(대한민국공개특허공보 10-2001-0042790 참조)The separator should be stable throughout the life of the battery (refer to Korean Patent Application Laid-Open No. 10-2001-0042790).

잘 알려진 바와 같이, 자동차 등에 사용되는 납축전지는 충전과 방전이 가능한 2차 전지로 이는 전해액으로서 묽은 황산(H2SO4)을 사용하고 전극의 활물질로서 양(+)극에 이산화연(PbO2)을 도포하고, 음(-)극에 해면상(海綿狀) 납(Pb)을 도포하여 외부 회로에 연결하면 전기가 흐르면서 방전(초기의 양극과 음극의 활물질 조성이 황산납(PbSO4)으로 변하는 과정)과 외부에서 전류를 흘려주면 충전(황산납이 방전 전의 초기 양극 활물질과 음극 활물질로 변하는 과정)이 되는 원리를 이용한 것이다.As is well known, lead-acid batteries used in automobiles are secondary batteries that can be charged and discharged. They use diluted sulfuric acid (H2SO4) as an electrolyte and apply lead dioxide (PbO2) to the positive (+) electrode as an active material for the electrode. , When spongy lead (Pb) is applied to the negative (-) electrode and connected to an external circuit, electricity flows and discharge (the process of changing the composition of the active material of the initial positive and negative electrodes to lead sulfate (PbSO4)) and external It uses the principle of charging (the process of changing lead sulfate into an initial positive electrode active material and a negative electrode active material before discharging) when an electric current flows.

한편, 스마트폰 등의 모바일 기기, 전기자동차 등의 수요가 급증함에 따라 에너지원으로서 이차전지(secondarybattery) 및 납축전지의 수요는 점점 확대되고 있다. On the other hand, as the demand for mobile devices such as smartphones and electric vehicles is rapidly increasing, the demand for secondary batteries and lead-acid batteries as energy sources is gradually expanding.

최근들어, 전지의 수요는 전자산업, 자동차 산업 및 에너지저장 산업 등 다양한 산업분야로 더욱 확대되고 있는 추세이며, 나아가, 기존의 이차전지보다 고에너지밀도, 고전력밀도 및 우수한 전지의 안정성 등과 같은 높은 성능이 요구되고 있다.In recent years, the demand for batteries has been expanding to various industrial fields such as the electronics industry, automobile industry, and energy storage industry. this is being requested

그리고, 납 축전지에서 전극은 전기 에너지를 저장하고 있는 Active Material과 전기 에너지를 이동시켜주는 Current Collector(Grid)로 이루어져 있다. And, in a lead-acid battery, the electrode consists of an active material that stores electrical energy and a current collector (Grid) that moves electrical energy.

Current Collector와 Grid는 Corrosion Layer라는 ~ 2um 정도의 부식층에 의하여 물리 화학적으로 연결되어 있는데. 이 부식층은 고온의 과 충전 상태에서 Grid가 부식되면서 성장함에 따라 Grid와 쉽게 분리된다.Current Collector and Grid are physically and chemically connected by a corrosion layer of ~2um called Corrosion Layer. This corrosion layer is easily separated from the grid as it grows as the grid corrodes in a high-temperature overcharged state.

이것은 갑작스런 수분소비량 증가와 함께 배터리 성능 저하를 유발하여 배터리 수명 종지의 원인이 된다.This causes a sudden increase in water consumption and deterioration of battery performance, which leads to the end of battery life.

따라서, 고온 충 방전 사이클 환경에서의 Grid 성장에 의한 Grid - Active Material 분리를 지연시켜 내구성을 향상시키는 제조 공법이 필요하게 되었으며, 이와 같은 시대 흐름에 맞추어 본 발명은 부식된 Grid 표면에 의한 Grid, Active Material의 접촉면적 증가 및 이에 따른 Corrosion Layer 두께 증가 및 Grid -Active Material의 접촉면적을 증가시키기 위한 표면적이 증가된 납축전지용 기판 제조 방법을 제안하게 된 것이다.Therefore, there is a need for a manufacturing method to improve durability by delaying the grid-active material separation due to grid growth in a high-temperature charge/discharge cycle environment. This is to propose a method for manufacturing a substrate for lead-acid batteries with an increased surface area to increase the contact area of the material and increase the thickness of the corrosion layer and increase the contact area of the grid-active material.

대한민국공개특허번호 제10-2020-0040961호Republic of Korea Patent Publication No. 10-2020-0040961

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention has been devised to solve the above problems of the prior art,

본 발명의 목적은 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력을 통해 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시키고자 한다.The purpose of the present invention is to improve the bonding force between the grid and the active material by increasing the bonding area between the grid and the active material and the thickness of the corrosion layer after formation by applying the sulfuric acid-treated grid in the lead-acid battery, and including overcharging through the improved bonding strength It is intended to improve the durability by delaying the easy separation of the active material according to the grid growth under the charging and discharging conditions.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 표면적이 증가된 납축전지용 기판 제조 방법은,In order to achieve the object to be solved by the present invention, a method for manufacturing a substrate for a lead-acid battery having an increased surface area according to an embodiment of the present invention,

Strip Punching 공정 이후에 펀칭된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 Strip 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 설페이션(sulfation)시켜 Strip 표면에 미세 크랙(200)을 형성시켜 그리드 표면적을 증가시켜 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적을 증가시키는 접촉면적증가단계(S100);와After the strip punching process, sulfuric acid spray is primarily sprayed on the punched strip surface to sulfate a part of the thin oxidation protective layer 100 protecting the strip surface to form microcracks 200 on the strip surface. A contact area increasing step (S100) of increasing the contact area between the active material and the grid by increasing the grid surface area by forming it (S100); and

2차적으로 화성 후, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시켜 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시키는 결합력향상단계(S200);를 포함함으로써, 본 발명의 과제를 해결하게 된다.Secondary after formation, increasing the thickness of the corrosion layer (300, Corrosion Layer) between the grid and the active material to improve the bonding strength between the grid and the active material (S200) By including; to solve the problem of the present invention.

본 발명인 표면적이 증가된 납축전지용 기판 제조 방법을 통해, 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력을 통해 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시킬 수 있는 효과를 제공하게 된다.Through the method of manufacturing a substrate for a lead-acid battery with increased surface area, the present invention increases the bonding area between the grid and the active material and the thickness of the corrosion layer after formation by applying a grid treated with sulfuric acid in the lead-acid battery, thereby improving the bonding force between the grid and the active material In addition, through improved bonding strength, it provides the effect of improving durability by delaying the easy separation of the active material according to the grid growth under charge/discharge conditions including overcharge.

도 1은 본 발명의 일실시예에 따른 표면적이 증가된 납축전지용 기판 제조 방법의 공정도이다.
도 2는 본 발명의 표면적이 증가된 납축전지용 기판 제조 방법의 황산 스프레이 공정을 나타낸 예시도이다.
1 is a process diagram of a method for manufacturing a substrate for a lead-acid battery having an increased surface area according to an embodiment of the present invention.
2 is an exemplary view showing a sulfuric acid spray process of the method for manufacturing a substrate for a lead-acid battery having an increased surface area according to the present invention.

본 발명의 일실시예에 따른 표면적이 증가된 납축전지용 기판 제조 방법은,A method for manufacturing a substrate for a lead-acid battery having an increased surface area according to an embodiment of the present invention,

납축전지의 Punched Grid 제조 공정에서, In the Punched Grid manufacturing process of lead-acid batteries,

Strip Punching 공정 이후에 펀칭된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 Strip 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 설페이션(sulfation)시켜 Strip 표면에 미세 크랙(200)을 형성시켜 그리드 표면적을 증가시켜 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적을 증가시키는 접촉면적증가단계(S100);와After the strip punching process, sulfuric acid spray is primarily sprayed on the punched strip surface to sulfate a part of the thin oxidation protective layer 100 protecting the strip surface to form microcracks 200 on the strip surface. A contact area increasing step (S100) of increasing the contact area between the active material and the grid by increasing the grid surface area by forming it (S100); and

2차적으로 화성 후, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시켜 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시키는 결합력향상단계(S200);를 포함하는 것을 특징으로 한다.Secondary after formation, increasing the thickness of the corrosion layer (300, Corrosion Layer) between the grid and the active material to improve the bonding strength between the grid and the active material (S200) It is characterized in that it contains;

이때, 상기 접촉면적증가단계(S100)와 결합력향상단계(S200)를 통해, 그리드 성장에 의한 그리드와 활물질 간의 분리를 지연시키는 것을 특징으로 한다.At this time, through the step of increasing the contact area ( S100 ) and the step of improving the bonding force ( S200 ), it is characterized in that the separation between the grid and the active material by grid growth is delayed.

이때, 표면적이 증가된 납축전지용 기판 제조 방법에 의해,At this time, by the method of manufacturing a substrate for a lead-acid battery having an increased surface area,

제조된 기판을 적용한 납축전지의 수명은 1,920 사이클에서 2,440 사이클로 27%의 수명 향상을 제공할 수 있는 것을 특징으로 한다.The life of the lead-acid battery to which the manufactured substrate is applied is characterized in that it can provide a 27% lifespan improvement from 1,920 cycles to 2,440 cycles.

또한, 본 발명의 상기 제조 방법에 의해,In addition, by the manufacturing method of the present invention,

제조된 표면적이 증가된 납축전지용 기판을 포함하고 있는 납축전지를 제공할 수 있게 됨으로써, 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력을 통해 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시킬 수 있는 효과를 제공하게 된다.By being able to provide a lead-acid battery containing a substrate for a lead-acid battery with an increased surface area, by applying a grid treated with sulfuric acid in the lead-acid battery, the bonding area between the grid and the active material and the thickness of the corrosion layer after formation are increased. It improves the bonding strength between the grid and the active material, and through the improved bonding strength, it delays the easy separation of the active material according to the grid growth under charge/discharge conditions including overcharge, thereby providing the effect of improving durability.

이하, 본 발명에 의한 표면적이 증가된 납축전지용 기판 제조 방법의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through an embodiment of the method for manufacturing a substrate for a lead-acid battery having an increased surface area according to the present invention.

도 1은 본 발명의 일실시예에 따른 표면적이 증가된 납축전지용 기판 제조 방법의 공정도이다.1 is a process diagram of a method for manufacturing a substrate for a lead-acid battery having an increased surface area according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명인 표면적이 증가된 납축전지용 기판 제조 방법은, As shown in Figure 1, the present invention is a method for manufacturing a substrate for a lead-acid battery with increased surface area,

납축전지의 Punched Grid 제조 공정에서, In the Punched Grid manufacturing process of lead-acid batteries,

Strip Punching 공정 이후에 펀칭된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 Strip 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 설페이션(sulfation)시켜 Strip 표면에 미세 크랙(200)을 형성시켜 그리드 표면적을 증가시켜 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적을 증가시키는 접촉면적증가단계(S100);와After the strip punching process, sulfuric acid spray is primarily sprayed on the punched strip surface to sulfate a part of the thin oxidation protective layer 100 protecting the strip surface to form microcracks 200 on the strip surface. A contact area increasing step (S100) of increasing the contact area between the active material and the grid by increasing the grid surface area by forming it (S100); and

2차적으로 화성 후, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시켜 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시키는 결합력향상단계(S200);를 포함하는 것을 특징으로 한다.Secondary after formation, increasing the thickness of the corrosion layer (300, Corrosion Layer) between the grid and the active material to improve the bonding strength between the grid and the active material (S200) It is characterized in that it contains;

본 발명은 상기와 같은 제조 과정을 거치게 되고, 이를 통해 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시킬 수 있는 효과를 제공하게 된다.The present invention undergoes the manufacturing process as described above, and through this, by applying the grid with sulfuric acid treatment in the lead-acid battery, the bonding area between the grid and the active material and the thickness of the corrosion layer after formation are increased to improve the bonding force between the grid and the active material. possible effects will be provided.

궁극적으로 납 축전지 기초 성능과 충전 효율을 향상시킬 수 있는 효과를 제공하게 된다.Ultimately, it will provide the effect of improving the basic performance of the lead-acid battery and the charging efficiency.

또한, 납축전지의 고장 원인은 사용 중에 부하의 종류와 관리하는 방법에 따라 좌우된다. In addition, the cause of failure of lead-acid batteries depends on the type of load during use and the management method.

주된 고장 요인은 활물질 설페이션화, 극판 활물질 탈락, 양극 격자부식, 격리판 파손, 복합적인 요인 등이 있다. The main failure factors include sulfated active material, dislodged electrode plate active material, positive electrode grid corrosion, separator breakage, and complex factors.

특히, 자동차에 장착된 제품의 경우, 고온의 과 충전 상태에서 Grid가 부식되면서 성장함에 따라 Grid와 쉽게 분리된다. In particular, in the case of a product mounted on a car, it is easily separated from the grid as the grid corrodes and grows in a high-temperature overcharged state.

이것은 갑작스런 수분소비량 증가와 함께 배터리 성능 저하를 유발하여 배터리 수명 종지의 원인이 되므로 이를 개선하는 기술이 필요한 실정이다.This causes a sudden increase in water consumption and deterioration of battery performance, which leads to the end of battery life. Therefore, a technology for improving this is required.

상기와 같은 기능을 제공하기 위하여, 본 발명의 접촉면적증가단계(S100)는 납축전지의 Punched Grid 제조 공정에서, In order to provide the above function, the step of increasing the contact area (S100) of the present invention is in the Punched Grid manufacturing process of the lead acid battery,

Strip Punching 공정 이후에 펀칭된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 Strip 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 설페이션(sulfation)시켜 Strip 표면에 미세 크랙(200)을 형성시켜 그리드 표면적을 증가시켜 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적을 증가시키는 과정이다.After the strip punching process, sulfuric acid spray is primarily sprayed on the punched strip surface to sulfate a part of the thin oxidation protective layer 100 protecting the strip surface to form microcracks 200 on the strip surface. It is a process of increasing the contact area between the active material and the grid by forming it to increase the grid surface area.

도 2를 참조하여 설명하자면, 도 2의 ①의 Strip Punching 공정 이후에 Punching된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 ②와 같이 금속 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 Sulfation시켜 ③과 ④와 같이 Strip 표면에 미세한 Crack(200)을 만들어 주어 Grid 표면적을 증가시키게 되는 것이다.To explain with reference to FIG. 2, after the strip punching process of ① of FIG. 2, sulfuric acid spray is primarily sprayed on the punched strip surface to protect the metal surface as in ②. Sulfation increases the grid surface area by making fine cracks (200) on the strip surface as in ③ and ④.

따라서, 그리드 표면적이 증가되었기 때문에 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적이 증가되는 것이다.Accordingly, since the grid surface area is increased, the contact area between the active material and the grid is increased.

이후, 결합력향상단계(S200)는 2차적으로 화성 후, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시켜 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시키는 과정이다.After that, the bonding strength improvement step (S200) is secondarily formed after formation, and the thickness of the corrosion layer 300 between the grid and the active material is increased to increase the bonding strength between the grid and the active material. is a process to improve

즉, 화성 공정을 거쳐, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시키게 되고, 이는 곧 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시킬 수가 있게 되는 것이다.That is, through the chemical conversion process, the thickness of the corrosion layer 300 between the grid and the active material is increased, which can improve the bonding force between the grid and the active material. there will be

따라서, 상기 접촉면적증가단계(S100)와 결합력향상단계(S200)를 통해, 그리드 성장에 의한 그리드와 활물질 간의 분리를 지연시키는 것을 특징으로 한다.Accordingly, through the step of increasing the contact area (S100) and the step of improving the bonding force (S200), it is characterized in that the separation between the grid and the active material by grid growth is delayed.

즉, 납 축전지에서 황산 처리된 Grid를 적용함으로써 Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가 시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력은 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시키게 되는 것이다.That is, by applying the sulfuric acid-treated grid in the lead-acid battery, the bonding area between the grid and the active material and the thickness of the corrosion layer after formation are increased to improve the bonding force between the grid and the active material, and the improved bonding strength can be achieved under the charging and discharging conditions including overcharging. As the grid grows, it delays the easy separation of the active material, thereby improving durability.

위에서 상술한 바와 같이 본 발명의 효과를 파악하기 위해 본 발명의 표면적이 증가된 납축전지용 기판 제조 방법을 이용하여 제조된 납축전지용 기판을 사용하여 제품으로 만들어 초기성능 시험과 수명시험을 진행하여 다음과 같은 결과를 얻었다. As described above, in order to grasp the effect of the present invention, an initial performance test and a life test were performed by making a product using a substrate for a lead acid battery manufactured using the method for manufacturing a substrate for a lead acid battery with an increased surface area of the present invention. The following results were obtained.

다음의 표에서 보는 종래품은 본 발명의 출원인 회사에서 만들고 있는 종래 기술을 적용하여 생산된 기판을 사용하여 만든 제품(BX80)이며, 실시예 1과 실시예 2는 본 발명의 제조 방법을 이용하여 생산된 기판을 사용하여 만든 제품의 실험 결과이다. The conventional product shown in the table below is a product (BX80) made using a substrate produced by applying the prior art made by the company that is the applicant of the present invention, and Examples 1 and 2 are produced using the manufacturing method of the present invention. This is the experimental result of the product made using the used substrate.

동일 규격의 제품이라 하더라도 예컨대, 격리판의 밀도 등이 각 제품마다 동일할 수 없어 각 제품이 동일한 작용과 효과를 낼 수 없으므로 본 발명의 위 바람직한 실시예에 의하여 제조된 제품 2개를 선정하고 이를 각 실시예 1 및 실시예 2라 정의하여 아래와 같이 시험하고 그 결과를 아래의 표 1 및 표 2로 작성하였다.Even for products of the same standard, for example, since the density of the separator cannot be the same for each product, each product cannot produce the same action and effect. Each Example 1 and Example 2 were defined and tested as follows, and the results were prepared in Tables 1 and 2 below.

구분division 요구기준requirements 종래제품Conventional product 실시예1Example 1 실시예2Example 2 RCRC 130분130 minutes 133분133 minutes 137분137 minutes 135분135 minutes 102%102% 105.6%105.6% 103.8%103.8% CCACCA 7.2V
630A
7.2V
630A
7.23V7.23V 7.95V7.95V 7.6V7.6V
633A633A 689A689A 680A680A 100.9%100.9% 109.2%109.2% 108.2%108.2% C20C20 75AH75AH 75.52AH75.52AH 77.9AH77.9AH 76.21AH76.21AH 100.7%100.7% 103.8%103.8% 101.6%101.6%

1) 보유용량 (RC : Reserve Capacity)1) Reserved Capacity (RC: Reserve Capacity)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 105V 도달 시까지의 방전가능지속시간을 측정하는 것으로, 예를 들면 이는 차량에 있어서 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다.Retention capacity RC measures the possible discharge time until the discharge end voltage of 105V is reached with a discharge current of 25A at 25°C after being left for at least 1 hour after the completion of a full charge. It is a measure of how long a minimum function can be exerted to operate a load, etc.

시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 기판을 사용하여 극판을 제조하였을 경우, 보유용량(RC)은 135 ~ 137분으로, 대체로 기존의 기판보다는 좀 더 나아진 보유용량을 제공할 수 있었다.As a result of the test, as shown in Table 1, when the electrode plate was manufactured using the substrate according to the present invention, the holding capacity (RC) was 135 to 137 minutes, which in general can provide a better holding capacity than the conventional substrate. there was.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Cold Cranking Ampere (CCA)

일반적으로 축전지의 급속방전 특성은 -10℃이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. In general, the rapid discharge characteristic of a storage battery deteriorates rapidly at -10°C or less. The low-temperature starting current (CCA) is a high-rate discharge test to evaluate the vehicle starting ability at low temperature. Measure the voltage during discharge.

이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. In this test, a voltage of 7.2V or more is required for 30 seconds, and the higher the voltage, the better the performance.

본 발명에서는 (30초 전압/6 - 0.2)×630의 보정식을 사용하여 CCA를 계산하였다.In the present invention, the CCA was calculated using a correction equation of (30 sec voltage/6 - 0.2)×630.

시험결과, 표 1에서 보는 바와 같이, 30초 전압은 기존 기판의 경우 7.23V, 환산 CCA는 633A였으나, 본 발명의 기판을 사용하였을 경우 7.6V이상, 환산 CCA는 680A 이상으로 기존대비 약 7% ~ 8%의 효과를 보였다.As a result of the test, as shown in Table 1, the voltage for 30 seconds was 7.23V and converted CCA was 633A for the conventional substrate, but when the substrate of the present invention was used, the voltage for 30 seconds was 7.6V or more and the converted CCA was 680A or more, about 7% It showed an effect of ~8%.

3) 20시간율 용량(AH)3) 20 hour rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. This is to investigate the low-rate discharge characteristics, and the discharge capacity (AH) is measured until the voltage reaches 10.5V by continuously discharging at 3.75A, which is a relatively small current for the storage battery capacity.

시험 결과, 76.21AH ~ 77.9AH로 기존의 기판을 사용한 제품과 거의 동일한 시험 결과를 보였으나, 기존 기판보다 용량이 1 ~ 3% 증가하였다.As a result of the test, 76.21AH ~ 77.9AH showed almost the same test result as the product using the existing substrate, but the capacity was increased by 1-3% compared to the existing substrate.

4) 수명시험4) Life test

수명시험은 만충전 상태에서 25A로 4분간 방전시킨 후, 10분 14.8V 최대 25A로 충전하는 과정을 1주 480회 반복하고, 그 후 56시간 정치 후, 630A로 고율방전하여 30초 전압을 측정함으로써 수명을 판정한다. In the life test, after discharging at 25A for 4 minutes in a fully charged state, the process of charging at 14.8V maximum 25A for 10 minutes is repeated 480 times a week, and then, after 56 hours of standing, high-rate discharge at 630A to measure the voltage for 30 seconds to determine the lifespan.

이 시험에서 30초 전압이 7.2V이상이면 다시 1주 반복하고, 7.2V 미만이면 수명종지로 판정한다.In this test, if the voltage for 30 seconds is more than 7.2V, repeat 1 week again, and if it is less than 7.2V, it is judged as the end of life.

수명시험결과, 본 발명의 기판은 표 2에서 보는 바와 같이 충방전 2,440(Cycles)에 수명 종지되어, 기존 기판에 비하여 27%의 수명연장 효과를 보였다.As a result of the life test, as shown in Table 2, the lifespan of the substrate of the present invention was terminated at 2,440 (Cycles) charge/discharge, showing a 27% lifespan extension effect compared to the existing substrate.

총방전횟수Total number of discharges 30초 전압[V]30 second voltage [V] 비고note 종래품1Conventional product 1 실시예1Example 1 실시예2Example 2 480480 9.219.21 9.359.35 9.309.30 960960 8.818.81 9.059.05 9.039.03 14401440 8.198.19 8.538.53 8.758.75 19201920 7.687.68 8.258.25 8.178.17 24402440 6.886.88 7.587.58 7.337.33 29202920 5.155.15 5.085.08 수명판정Lifespan determination 19201920 24402440 24402440 27% 상승27% increase

결국, 상기 시험을 통해, 부식된 Grid 표면에 의한 Grid와 Active Material의 접촉면적 증가 및 Corrosion Layer 두께 증가를 제공할 수 있으며, 이로 인해 고온 충 방전 사이클 환경에서의 Grid 성장에 의한 Grid - Active Material 분리를 지연시켜 내구성을 향상시킬 수 있는 것이다.In the end, through the above test, it is possible to provide an increase in the contact area between the grid and the active material and an increase in the thickness of the corrosion layer due to the corroded grid surface, resulting in grid-active material separation due to grid growth in a high-temperature charge/discharge cycle environment. It is possible to improve durability by delaying the

즉, 그리드와 활물질의 접촉 면적을 증가시켜 늘어난 반응 면적으로 인하여 납축전지의 시동 능력을 향상시킬 수 있는 효과와 제품의 성능 향상 및 수명 연장에 상당한 효과를 획득할 수 있음을 알 수 있었다.In other words, it was found that by increasing the contact area between the grid and the active material, the effect of improving the starting ability of the lead-acid battery due to the increased reaction area and the effect of improving the product's performance and extending the lifespan could be obtained.

상기와 같은 제조 방법을 통해, 납 축전지에서 황산 처리된 Grid를 적용함으로써, Grid와 Active Material간의 Bonding Area 및 화성 후 Corrosion Layer 두께를 증가시켜 Grid와 Active Material의 결합력을 향상시키고, 향상된 결합력을 통해 과 충전이 포함된 충 방전 조건에서 Grid 성장에 따라 Active Material이 쉽게 분리되는 것을 지연시켜 내구성을 향상시킬 수 있는 효과를 제공하게 된다.Through the manufacturing method as described above, by applying the sulfuric acid-treated grid in the lead-acid battery, the bonding area between the grid and the active material and the thickness of the corrosion layer after formation are increased to improve the bonding force between the grid and the active material, and through the improved bonding strength, It provides the effect of improving durability by delaying the easy separation of the active material according to grid growth under charge-discharge conditions including charging.

상기와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those skilled in the art to which the present invention of the above contents pertain will be able to understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential characteristics of the present invention. Therefore, it should be understood that the embodiments described above are illustrative in all aspects and not restrictive.

S100 : 접촉면적증가단계
S200 : 결합력향상단계
S100: contact area increase step
S200: bonding strength improvement step

Claims (4)

표면적이 증가된 납축전지용 기판 제조 방법에 있어서,
납축전지의 Punched Grid 제조 공정에서,
Strip Punching 공정 이후에 펀칭된 Strip 표면에 1차적으로 황산 스프레이를 분사하여 Strip 표면을 보호하고 있는 얇은 산화 보호층(100)의 일부를 설페이션(sulfation)시켜 Strip 표면에 미세 크랙(200)을 형성시켜 그리드 표면적을 증가시켜 활물질(Active Material)과 그리드(Grid) 간의 접촉 면적을 증가시키는 접촉면적증가단계(S100);와
2차적으로 화성 후, 그리드(Grid)와 활물질(Active Material) 사이의 부식층(300, Corrosion Layer) 두께를 증가시켜 그리드(Grid)와 활물질(Active Material) 간의 결합력을 향상시키는 결합력향상단계(S200);를 포함하는 것을 특징으로 하는 표면적이 증가된 납축전지용 기판 제조 방법.
In the method for manufacturing a substrate for a lead-acid battery having an increased surface area,
In the Punched Grid manufacturing process of lead-acid batteries,
After the strip punching process, sulfuric acid spray is primarily sprayed on the punched strip surface to sulphate a part of the thin oxidation protective layer 100 protecting the strip surface to form microcracks 200 on the strip surface. A contact area increasing step (S100) of increasing the contact area between the active material and the grid by forming the grid surface area (S100); and
Secondary after formation, the bonding strength improvement step (S200) of increasing the thickness of the corrosion layer (300, Corrosion Layer) between the grid and the active material to improve the bonding strength between the grid and the active material (S200) A method of manufacturing a substrate for a lead-acid battery having an increased surface area, comprising:
제 1항에 있어서,
상기 접촉면적증가단계(S100)와 결합력향상단계(S200)를 통해, 그리드 성장에 의한 그리드와 활물질 간의 분리를 지연시키는 것을 특징으로 하는 표면적이 증가된 납축전지용 기판 제조 방법.
The method of claim 1,
Through the step of increasing the contact area (S100) and the step of improving the bonding strength (S200), a method for manufacturing a substrate for a lead-acid battery with an increased surface area, characterized in that the separation between the grid and the active material by grid growth is delayed.
제 1항에 있어서,
표면적이 증가된 납축전지용 기판 제조 방법에 의해,
제조된 기판을 적용한 납축전지의 수명은 1,920 사이클에서 2,440 사이클로 27%의 수명 향상을 제공할 수 있는 것을 특징으로 하는 표면적이 증가된 납축전지용 기판 제조 방법.
The method of claim 1,
By a method for manufacturing a substrate for a lead-acid battery having an increased surface area,
A method for manufacturing a substrate for a lead-acid battery with an increased surface area, characterized in that the lifespan of the lead-acid battery to which the manufactured substrate is applied can provide a 27% lifespan improvement from 1,920 cycles to 2,440 cycles.
제 1항의 제조 방법에 의해,
제조된 표면적이 증가된 납축전지용 기판을 포함하고 있는 납축전지.
By the manufacturing method of claim 1,
A lead-acid battery comprising a substrate for a lead-acid battery with an increased surface area.
KR1020200104539A 2020-08-20 2020-08-20 Method for manufacturing a substrate for a lead acid battery with increased surface area KR102424556B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200104539A KR102424556B1 (en) 2020-08-20 2020-08-20 Method for manufacturing a substrate for a lead acid battery with increased surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200104539A KR102424556B1 (en) 2020-08-20 2020-08-20 Method for manufacturing a substrate for a lead acid battery with increased surface area

Publications (2)

Publication Number Publication Date
KR20220023067A true KR20220023067A (en) 2022-03-02
KR102424556B1 KR102424556B1 (en) 2022-07-25

Family

ID=80815289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200104539A KR102424556B1 (en) 2020-08-20 2020-08-20 Method for manufacturing a substrate for a lead acid battery with increased surface area

Country Status (1)

Country Link
KR (1) KR102424556B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120123366A (en) * 2009-12-24 2012-11-08 아크액티브 리미티드 Improvements in lead-acid battery construction
JP2017517131A (en) * 2014-05-30 2017-06-22 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Lead acid battery and method for manufacturing such a battery
KR20200040961A (en) 2018-10-10 2020-04-21 주식회사 한국아트라스비엑스 Manufacturing method of ceramic coated separator using spin coating
KR20200046404A (en) * 2018-10-24 2020-05-07 주식회사 한국아트라스비엑스 Manufacturing method of lead accumulator grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120123366A (en) * 2009-12-24 2012-11-08 아크액티브 리미티드 Improvements in lead-acid battery construction
JP2017517131A (en) * 2014-05-30 2017-06-22 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Lead acid battery and method for manufacturing such a battery
KR20200040961A (en) 2018-10-10 2020-04-21 주식회사 한국아트라스비엑스 Manufacturing method of ceramic coated separator using spin coating
KR20200046404A (en) * 2018-10-24 2020-05-07 주식회사 한국아트라스비엑스 Manufacturing method of lead accumulator grid

Also Published As

Publication number Publication date
KR102424556B1 (en) 2022-07-25

Similar Documents

Publication Publication Date Title
KR102158241B1 (en) Electrolytic Copper Foil, Current Collector Comprising The Same, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
CA2677940C (en) Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
EP1665446B1 (en) High performance energy storage devices
Czerwiński et al. Positive plate for carbon lead-acid battery
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
JP2004523191A (en) Charger for rechargeable nickel-zinc batteries
KR20190048552A (en) Manufacturing method of anode plate of lead acid battery using spray coating of Graphene aqueous solution
KR102424556B1 (en) Method for manufacturing a substrate for a lead acid battery with increased surface area
CN112242572A (en) Voltage boosting method for cathode and shell of lithium ion battery with square aluminum shell
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
KR102204985B1 (en) Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery
JPS5894770A (en) Leakage-less closed type lead battery
JPS62103976A (en) Cathode plate for enclosed lead storage battery
KR102305183B1 (en) Method for patterning the surface of polar plates for lead acid batteries
KR20220148048A (en) VRLA battery manufacturing method with metal coating applied to prevent liquid depletion
Dietz et al. Premature capacity loss in lead/acid batteries with antimony-free grids during cycling under constant-voltage-charging conditions 1. Characterization and causes of the phenomenon
JPH01302661A (en) Lead acid battery and its manufacture
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
JP3577709B2 (en) Sealed lead-acid battery
KR20240042999A (en) Electrode plate manufacturing method of lead-acid battery containing carbon foam
KR20230039345A (en) Surface modification method of lead-acid battery electrode plate using nitrogen plasma and heat treatment
CN116315196A (en) Method for manufacturing battery
JP2002260671A (en) Lead-acid battery
KR20240042996A (en) VRLA battery manufacturing method including aluminum silicate separator
KR100333838B1 (en) Alkali-zinc secondary battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant