KR20220021915A - Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function - Google Patents

Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function Download PDF

Info

Publication number
KR20220021915A
KR20220021915A KR1020200102845A KR20200102845A KR20220021915A KR 20220021915 A KR20220021915 A KR 20220021915A KR 1020200102845 A KR1020200102845 A KR 1020200102845A KR 20200102845 A KR20200102845 A KR 20200102845A KR 20220021915 A KR20220021915 A KR 20220021915A
Authority
KR
South Korea
Prior art keywords
calcium
phosphate
complex
hydroxide
virus
Prior art date
Application number
KR1020200102845A
Other languages
Korean (ko)
Other versions
KR102605808B1 (en
Inventor
김희래
Original Assignee
주식회사 아이디어앤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이디어앤 filed Critical 주식회사 아이디어앤
Priority to KR1020200102845A priority Critical patent/KR102605808B1/en
Publication of KR20220021915A publication Critical patent/KR20220021915A/en
Application granted granted Critical
Publication of KR102605808B1 publication Critical patent/KR102605808B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a method for manufacturing a complex having virus adsorption and apoptosis functions, and more particularly, to a method for manufacturing a composite material of hydroxyapatite having virus adsorption characteristics and copper or platinum having virus killing characteristics. In order to solve the above problems in a virus blocking composite material according to the present invention, the method comprises the following steps: (1) mixing a calcium salt-containing material, a phosphate-containing material, and a metal salt; (2) adding an aqueous solution strongly alkaline in slightly acid to the mixture; (3) reacting the mixture in the step (2) by ball milling; and (4) drying and pulverizing the reactant in the step (3).

Description

바이러스 흡착-차단 및 사멸-불활성화 기능의 복합소재 제조방법 { Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function }Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function }

21세기 들어오면서 2002년 사스(SARS, 중증급성호흡기), 2009년 신종인플루엔자(신종플루), 2015년 메르스(MERS, 중동호흡기증후군), 2019년 코로나19 (COVID-19, 코로나바이러스감염증 -19)와 같은 인체 전염성이 높고 사망 위험이 높은 신종 바이러스의 출현이 빈번해지고 있으며, 그 출현 주기가 짧아지고 있다. 그리고 세계화에 따라 국가간 이동/도시화 및 국가 간 이동이 용이하여 그 확산 속도가 빠르고 사회적, 경제적 피해가 급증하고 있으며 신종 바이러스들의 변이가 빠르게 일어나고 있다. 또한 신종 바이러스 출현에 따라 백신 및 치료제의 개발에 소요되는 시간이 길어질 수 있는 문제가 있다. 따라서 바이러스를 효과적으로 차단할 수 있는 개인 및 생활 방역 제품에 적용할 소재가 필요하다. Entering the 21st century, SARS in 2002, swine flu in 2009, MERS in 2015, Middle East Respiratory Syndrome in 2015, COVID-19 in 2019 (COVID-19, coronavirus infection-19). ), a new virus that is highly contagious to humans and has a high risk of death is becoming more frequent, and its appearance cycle is getting shorter. And with globalization, movement between countries/urbanization and movement between countries is easy, so the rate of spread is fast, social and economic damage is rapidly increasing, and mutations of new viruses are occurring rapidly. In addition, there is a problem in that the time required for the development of vaccines and therapeutics may increase according to the emergence of new viruses. Therefore, there is a need for materials that can be applied to personal and daily quarantine products that can effectively block the virus.

수산화아파타이트는 인체의 치아나 뼈를 구성하는 무기질 성분으로서, 생체 세라믹 소재로 생체 대체 재료 등 의료용 소재로 주로 사용되고 있으며, 양이온 및 음이온 교환 특성을 모두 가지고 있기 때문에 고순도 바이오 의약품 정제를 위한 고성능 흡착 소재로 사용되고 있다. 따라서 RNA, Viruses, Membrane Proteins, Vaccines, Polyclonal & Monoclonal Antibodies, DNA, Antibody Fragment 등의 흡착 및 분리에 사용되고 있다. Hydroxapatite is an inorganic component constituting the teeth and bones of the human body. It is mainly used as a bioceramic material and as a biomaterial substitute for medical use. Because it has both cation and anion exchange properties, it is a high-performance adsorption material for purification of high-purity biopharmaceuticals. is being used Therefore, it is used for adsorption and separation of RNA, Viruses, Membrane Proteins, Vaccines, Polyclonal & Monoclonal Antibodies, DNA, Antibody Fragment, etc.

그리고, 금속성 이온은 일반적으로 살균 특성을 보이며, 직접 접촉을 통하여 미량의 금속 이온이 미생물의 대사 작용을 교란해 죽이는 미량 동작용을 가지고 있다. 이 중 구리는 구리 이온이 바이러스 외부 세포를 뚫고 침투하여 세포막을 파괴시키고, 세포 손상을 가속화시켜 바이러스 내부의 DNA를 손상시켜 사멸시키는 작용을 한다. 또한 바이러스 파괴 효과가 매우 탁월하고 이론적으로는 모든 종류의 바이러스에 효과가 있을 수 있다고 보고되고 있다. 그리고, 백금도 세균 바이러스와 접촉하여 단백질이나 DNA를 파괴하는 것으로 알려져 있다. In addition, metallic ions generally exhibit sterilization properties, and have a trace action in which a trace amount of metal ions disrupt the metabolism of microorganisms and kill them through direct contact. Among them, copper ions penetrate and penetrate the external cells of the virus, destroying the cell membrane, and accelerating cell damage to damage and kill the DNA inside the virus. In addition, it is reported that the virus-destroying effect is very excellent, and theoretically, it can be effective against all kinds of viruses. In addition, platinum is also known to destroy proteins or DNA in contact with bacterial viruses.

따라서, 다양한 바이러스에 대한 높은 흡착 특성을 보이는 수산화아파타이트와 바이러스 사멸화 특성이 있는 구리나 백금의 복합화를 통하여 바이러스의 흡착-차단 및 사멸-불활성화 특성의 복합 소재의 발명에 이르게 되었다. Therefore, through the complexation of hydroxyapatite, which exhibits high adsorption properties for various viruses, and copper or platinum, which has virus apoptosis properties, it led to the invention of a composite material with virus adsorption-blocking and apoptosis-inactivation properties.

바이러스 사멸 효과가 있는 구리나 백금은 바이러스와의 접촉이 되어야만 바이러스에 대한 사멸 작용을 기대할 수 있어 바이러스와 접촉이 이루어지지 않는다면 바이러스의 사멸 기능은 거의 기대할 수 없는 문제점이 있다. 따라서 바이러스 사멸-불활성화에 효과가 있는 구리나 백금 이온이 직접적으로 작용할 수 있도록 하는 것이 필요하다. Copper or platinum, which has a virus-killing effect, can only expect a virus-killing action when it comes into contact with a virus. Therefore, it is necessary to allow the direct action of copper or platinum ions, which are effective for virus killing-inactivation.

따라서, 본 발명은 바이러스 흡착-차단 및 사멸-불활성화 기능의 복합체 제조방법에 관한 것으로서, DNA, RNA, 단백질, 항체, 바이러스 등에 대한 흡착 특성이 있는 수산화아파타이트에 바이러스 사멸화 특성이 있는 구리나 백금 이온을 결합시킨 바이러스 흡착-차단 및 사멸-불활성화가 가능한 복합 소재를 제조하는 방법에 관한 것이다. Accordingly, the present invention relates to a method for preparing a complex having virus adsorption-blocking and apoptosis-inactivation functions, wherein hydroxyapatite having adsorption characteristics for DNA, RNA, protein, antibody, virus, etc., copper or platinum with virus killing characteristics It relates to a method for manufacturing a composite material capable of adsorption-blocking and killing-inactivation of ions bound to a virus.

수산화아파타이트와 금속이온의 복합체는 국내특허등록 10-1764596, 국내특허출원 10-2017 -0049388와 같이 은을 이용한 항균성을 부여하는 경우와, 국내특허등록 10-2051622와 같이 견운모, 실리타졸 등의 무기질에 은,구리,아연 등과 복합화한 무기항균제를 제조하는 방법들이 있다. 하지만 상기 방법들은 여러 반응을 거치거나 600~1300도의 고온에서 소결처리 과정을 거쳐는 등 공정이 복잡하고 높은 제조 비용이 소요될 수 있다는 단점이 있다. The complex of hydroxide apatite and metal ion provides antibacterial properties using silver as in domestic patent registration 10-1764596 and domestic patent application 10-2017 -0049388, and inorganic substances such as sericite and silitazole as in domestic patent registration 10-2051622 There are methods for manufacturing inorganic antibacterial agents complexed with silver, copper, zinc, and the like. However, the above methods have disadvantages in that the process is complicated and high manufacturing cost may be required, such as undergoing various reactions or sintering at a high temperature of 600 to 1300 degrees.

따라서, 본 발명에서는 다양한 바이러스의 흡착-차단 및 사멸-불활성화를 위한 수산화아파타이트와 구리나 백금 복합 소재를 다양한 위생/방역 제품에 응용될 수 있도록 단순화된 공정 및 저비용의 경제적인 방법으로 제조하는 것이다. Therefore, in the present invention, hydroxide apatite and copper or platinum composite materials for adsorption-blocking and death-inactivation of various viruses are manufactured in a simplified process and low-cost economical method so that they can be applied to various hygiene/prevention products. .

상기 과제를 해결하기 위하여 많은 예의 검토를 거쳐 본 발명에 이르럿다. In order to solve the above problems, the present invention has been reached through many intensive studies.

본 발명에 따른 바이러스 차단 복합소재에 있어 상기 과제를 해결하기 위하여 (1) 칼슘염 함유 물질 및 인산염 함유 물질 및 금속염을 혼합하는 단계; (2) 상기 (1)혼합물에 약산성에서 강알칼리성의 수용액을 첨가하는 단계; (3) 상기 (2)혼합물을 Ball Mill 시켜 반응시키는 단계; (4) 상기(3) 반응물을 건조 및 분쇄하는 단계로 구성되고 상기 과정들로 바이러스 흡착-차단 및 사멸-불활성화 복합 소재를 제조한는 것을 특징으로 한다. In order to solve the above problems in the virus blocking composite material according to the present invention, (1) mixing a calcium salt-containing material, a phosphate-containing material, and a metal salt; (2) adding a weakly acidic to strongly alkaline aqueous solution to the (1) mixture; (3) reacting the (2) mixture by ball milling; (4) It consists of the steps of drying and pulverizing the reactant (3) above, and the virus adsorption-blocking and death-inactivation composite material is prepared through the above processes.

본 발명의 (1) 단계는 칼슘염 함유 물질 및 인산염 함유 물질 및 금속염 물질로 구성된 혼합물을 제조하는 것이다. 상기 혼합물을 제조하는 방법으로 칼슘염 및 인산염의 몰비, 즉 Ca/P 몰 비는 1.0 ~ 2.0으로 하며 가장 바람직한 Ca/P 몰비는 1.6 ~ 1.8이고, 금속염은 칼슘염 및 인산염 함유 물질 총합의 0.1 ~ 20% 중량비로 첨가하고 가장 바람직한 함유량은 0.5 ~ 5% 중량비이다. Step (1) of the present invention is to prepare a mixture composed of a calcium salt-containing material and a phosphate-containing material and a metal salt material. In the method for preparing the mixture, the molar ratio of calcium salt and phosphate, that is, the Ca/P molar ratio is 1.0 to 2.0, and the most preferable Ca/P molar ratio is 1.6 to 1.8, and the metal salt is 0.1 to 0.1 of the total of the calcium salt and the phosphate-containing material. It is added in a weight ratio of 20%, and the most preferable content is 0.5 to 5% by weight.

(1)단계의 칼슘염 공급원으로는 수산화칼슘, 탄산칼슘, 염화칼슘, 질산칼슘, 산화칼슘, 황산칼슘, 규산칼슘, 글루콘산칼슘, 비산칼슘, 아세트산칼슘, 브로화칼슘, 글리세른인산칼슘, 젖산칼슘, 구연산칼슘, 피로피온산칼슘, 아스코트빈산칼슘 및 그들의 무수화물 및 수화물, 사칼슘인산염, 인산삼칼슘, 인산팔칼슘, 이수화인산디칼슘, 인산이칼슘, 피로인산칼슘, 이수화칼슘피로인산, 인산이수소칼슘, 메타인산칼슘으로 구성된 군에서 선택하여 사용한다. 인산염의 공급원으로는 오르토인산, 오산화인, 제일인산암모늄, 제이인산암모늄, 메타인산, 피로인산, 제이인산나트륨, 삼인산, 사인산, 제이인산칼륨, 제이인산마그네슘, 제삼인삼칼륨, 제삼인산나트륨, 제일인산나트륨, 제일인산칼륨, 염화포스포릴, 폴리메타인산, 제삼인산마그네슘, 사칼슘인산염, 인산삼칼슘, 인산팔칼슘, 이수화인산디칼슘, 인산이칼슘, 피로인산칼슘, 이수화칼슘피로인산, 인산이수소칼슘, 메타인산칼슘으로 구성하는 군에서 선택하여 사용하면 된다. 금속염의 공급원으로는 염화제일구리, 염화제이구리, 요오드화제일구리, 질산구리, 피로인산구리, 황산구리 등의 구리화합물 또는 염화백금산, 산화백금, 이산화백금, 염화제이백금, 염화제일백금, 백금염화수소산염, 수산화백금, 질산백금 등 백금화합물을 구성하는 군에서 선택하여 사용하면 된다. Calcium salt sources in step (1) include calcium hydroxide, calcium carbonate, calcium chloride, calcium nitrate, calcium oxide, calcium sulfate, calcium silicate, calcium gluconate, calcium arsenate, calcium acetate, calcium bromide, glycerin calcium phosphate, calcium lactate. , calcium citrate, calcium pyropionate, calcium ascorbate and their anhydrides and hydrates, tetracalcium phosphate, tricalcium phosphate, octacalcium phosphate, dicalcium dihydrate, dicalcium phosphate, calcium pyrophosphate, calcium dihydrate pyrophosphate, It is used by selecting from the group consisting of calcium dihydrogen phosphate and calcium metaphosphate. Sources of phosphate include orthophosphoric acid, phosphorus pentoxide, monobasic ammonium phosphate, diammonium phosphate, metaphosphoric acid, pyrophosphate, dibasic sodium phosphate, triphosphate, phosphoric acid, dipotassium phosphate, dibasic magnesium phosphate, tripotassium phosphate, trisodium phosphate, Sodium phosphate monobasic, potassium phosphate monobasic, phosphoryl chloride, polymetaphosphate, magnesium triphosphate, tetracalcium phosphate, tricalcium phosphate, octacalcium phosphate, dicalcium phosphate dihydrate, dicalcium phosphate, calcium pyrophosphate, calcium dihydrate pyrophosphate, You can use it by selecting it from the group consisting of calcium dihydrogen phosphate and calcium metaphosphate. Sources of metal salts include copper compounds such as cuprous chloride, cupric chloride, cuprous iodide, copper nitrate, copper pyrophosphate, and copper sulfate, or chloroplatinic acid, platinum oxide, platinum dioxide, platinum chloride, cuprous chloride, and platinum hydrochloride. , platinum hydroxide, platinum nitrate, etc., can be used by selecting from the group constituting platinum compounds.

(2) 단계는 상기 (1) 단계에서 제조된 칼슘염, 인산염, 금속염 물질 혼합물에 수용액을 첨가하고 그 수용액을 약산성에서 강알칼리성으로 조절하는 단계로, 본 단계에서 수용액의 pH를 조절하기 위한 방법으로 무기염류를 직접 첨가하거나 무기염류를 혼합한 알칼리 수용액을 이용하여 pH를 조절하면 된다. 이 때의 약산성 및 강알칼리성이 되는 수용액의 pH는 pH 6.0 ~ pH 14.0으로 본 발명에 따르면 pH 7.0 ~ pH 10.0이 가장 적당하다. pH가 너무 낮으면 반응성이 낮아져 칼슘염과 인산염의 반응으로 인한 수산화아파타이트의 생성이 늦어질수 있고, pH가 너무 높으면 반응 후 복합 소재의 pH가 너무 높아질수 있다. pH가 높을경우 인체와 비접촉 제품에 적용할 경우 큰 문제는 없지만, 인체 접촉 제품에 적용할 경우 알레르기 반응을 야기할 수 있다. Step (2) is a step of adding an aqueous solution to the mixture of calcium salt, phosphate, and metal salt materials prepared in step (1) and adjusting the aqueous solution from weak acidity to strong alkalinity. A method for adjusting the pH of the aqueous solution in this step To adjust the pH, either directly add inorganic salts or use an aqueous alkali solution mixed with inorganic salts. At this time, the pH of the aqueous solution becoming weakly acidic and strongly alkaline is pH 6.0 to pH 14.0, and according to the present invention, pH 7.0 to pH 10.0 is most suitable. If the pH is too low, the reactivity may be lowered, and the formation of hydroxyapatite due to the reaction of calcium salt and phosphate may be delayed. If the pH is too high, the pH of the composite material may become too high after the reaction. If the pH is high, there is no problem when applied to non-contact products with the human body, but it may cause allergic reactions when applied to products that come into contact with the human body.

염기성 공급원으로는 수산화나트륨, 수산화칼륨, 암모니아, 수산화리듐, 수산화칼슘, 수산화 마그네슘 등 알칼리성 화합물로 구성된 군에서 선택하면 된다. The basic source may be selected from the group consisting of alkaline compounds such as sodium hydroxide, potassium hydroxide, ammonia, lithium hydroxide, calcium hydroxide, and magnesium hydroxide.

(3) 단계는 상기 (1) 단계 및 (2) 단계의 과정의 혼합물을 Ball Mill 시켜 반응시키는 단계로, 본 단계에서 습식 반응 및 볼밀에 의하여 혼합물들이 반응하여 수산화아파타이트로의 빠른 변환이 일어나게 되고, 첨가한 금속염 물질인 구리 또는 백금이 보다 용이하게 수산화아파타이트 결정 구조내로 치환이 이루어지게 된다. Ball Mill은 100Rpm ~ 400Rpm의 속도로 하며 가장 바람직한 속도는 200Rpm ~ 300RpM이다. (2)단계에서 적절한 pH로 조절된 수용액과 혼합물이 첨가된 수용액은 Ball Mill 온도를 10℃ ~ 110℃로 하고 1시간 ~ 240시간 동안 반응시킨다. 가장 바람직한 것은 25℃ ~ 80℃로 하고 24시간 ~ 72시간으로 Ball Mill 반응시키는 것이다. Ball Mill시켜 반응시킬 경우 속도 및 온도가 높을 수록 빠른 시간내에 반응 및 치환이 일어나게 된다. 반응 온도는 실온으로 하는것도 무방하나, 실온으로 할 경우 반응 시간이 늘어날 수 있다. Step (3) is a step of reacting the mixture of steps (1) and (2) by ball milling. , the added metal salt material, copper or platinum, is more easily substituted into the hydroxide apatite crystal structure. The ball mill operates at a speed of 100Rpm ~ 400Rpm, and the most desirable speed is 200Rpm ~ 300RpM. The aqueous solution adjusted to the appropriate pH in step (2) and the aqueous solution to which the mixture is added are reacted for 1 hour to 240 hours at a ball mill temperature of 10°C to 110°C. The most preferable is to perform the ball mill reaction at 25°C to 80°C and 24 hours to 72 hours. When the reaction is performed by ball milling, the higher the speed and temperature, the faster the reaction and substitution occurs. The reaction temperature may be set to room temperature, but if it is set to room temperature, the reaction time may increase.

(4) 단계는 상기 (3)단계의 과정을 거친 복합체를 건조 및 분쇄하는 단계로, 본 단계에서는 합성된 복합체를 원심분리기나 필터를 통하여서 여과하면 된다. 여과시 입자 크기에 따라 필터 페이퍼의 기공 사이즈를 선택하여 사용하면 되고 원심분리기는 1,000RPM ~ 10,000RPM의 속도로, 가장 바람직하게는 3,000RPM ~ 5,000RPM의 속도로 여과하면 된다. 여과된 복합체는 100℃ ~ 500℃의 온도로 건조하고, 가장 바람직하게는 150℃ ~ 200℃로 건조를 한다. 건조된 복합체는 분쇄기를 이용하여 분쇄를 한다. 분쇄는 조분쇄기를 통하여 1mm 이하로 조쇄하고 미분쇄기를 통하여 50um 이하로 분쇄하여 복합체 미분말을 제조하면 된다. Step (4) is a step of drying and pulverizing the complex that has undergone the process of step (3). In this step, the synthesized complex may be filtered through a centrifuge or filter. During filtration, the pore size of the filter paper can be selected and used according to the particle size, and the centrifuge is used for filtering at a speed of 1,000 RPM to 10,000 RPM, most preferably 3,000 RPM to 5,000 RPM. The filtered composite is dried at a temperature of 100 ° C. to 500 ° C., and most preferably dried at 150 ° C. to 200 ° C. The dried composite is pulverized using a pulverizer. Pulverization is performed by crushing to 1 mm or less through a coarse grinder and pulverizing to 50 μm or less through a fine grinder to prepare a fine composite powder.

또한, 섬유 등 고분자나 금속, 세라믹 등에 표면 처리하거나 복합 매트릭스를 제조할 원료로서 사용할 경우 상기 (4)단계의 과정을 생략하고 (3) 단계까지의 과정만으로 제조된 복합체를 응용하는 것도 가능하다. In addition, when surface treatment of polymers such as fibers, metals, ceramics, etc. or used as a raw material for manufacturing a composite matrix, it is also possible to omit the process of step (4) and apply the composite prepared only by the process up to step (3).

따라서, 본 발명으로 제조한 구리/백금이 함유된 수산화아파타이트 즉, 바이러스 흡착-차단 및 사멸-불활성화 복합체를 이용하여 마스크, 공기청정기 등의 필터, 생활 방역 용품 또는 바이러스 차단을 위한 의료용 및 군사용 제품에 응용할 수 있다. Therefore, using the copper/platinum-containing hydroxide apatite prepared by the present invention, that is, a virus adsorption-blocking and killing-inactivation complex, filters such as masks, air purifiers, daily quarantine products, or medical and military products for virus blocking can be applied to

본 발명은 다음과 같은 효과가 있다. The present invention has the following effects.

최근 전세계적으로 전염성을 보인 신종인플루엔자(신종플루)와 같은 인플루엔자 바이러스와 중증급성호흡기증후군(사스, SARS-CoV)), 중동호흡기증후군(메르스, MERS-CoV), 코로나바이러스감염증-19(코로나19, COVID-19)와 같은 코로나바이러스를 효과적으로 차단시키는 것이 중요하다. 특히 과거 사스, 메르스의 경우에는 증상이 없으면 전파력이 없었으나 코로나19는 무증상에서도 전파력이 매우 높다는 위험성이 있고 바이러스의 다양한 변이가 일어나고 있다. 따라서 신종 바이러스 출현과 같은 다양한 바이러스 및 변종 바이러스를 원천적으로 차단 가능한 제품에 적용 가능한 소재의 개발 및 제조가 필요하다. Influenza viruses such as swine flu (swine flu) that have recently been contagious worldwide, severe acute respiratory syndrome (SARS, SARS-CoV), Middle East respiratory syndrome (MERS, MERS-CoV), and coronavirus infection-19 (coronavirus) 19, it is important to effectively block coronaviruses such as COVID-19. In particular, in the case of SARS and MERS in the past, there was no transmission without symptoms, but there is a risk that COVID-19 is highly contagious even when asymptomatic, and various mutations of the virus are occurring. Therefore, it is necessary to develop and manufacture materials that can be applied to products that can fundamentally block various viruses and mutated viruses such as the emergence of new viruses.

수산화아파타이트는 바이러스나 바이러스의 근간이 되는 DNA나 RNA에 대하여 매우 강한 흡착 특성이 있고, 구리나 백금은 바이러스를 사멸화시킨다. 따라서 수산화아파타이트에 구리나 백금 이온을 담지시켜 바이러스를 흡착-차단하고 사멸-불활성화시켜 다양한 바이러스를 원천적으로 차단하는 것이 가능하다. Hydroxapatite has very strong adsorption properties for viruses or DNA or RNA, which is the basis of viruses, and copper or platinum kills viruses. Therefore, it is possible to fundamentally block various viruses by adsorbing-blocking and killing-inactivating viruses by supporting copper or platinum ions on hydroxyapatite.

본 발명을 통해 다양한 바이러스를 원천적으로 차단하고 사멸화되는 복합 소재를 제조할 수 있어 마스크, 필터 등 위생/방역 관련 제품에 적용이 가능해 백신 및 치료제 등의 개발 기간 동안 효과적인 생활 방역이 가능하다. Through the present invention, it is possible to manufacture a composite material that blocks various viruses at the source and kills them, so it can be applied to hygiene/prevention-related products such as masks and filters, so that effective life prevention is possible during the development period of vaccines and therapeutics.

도 1은, 실시예 1에 의해 제조된 수산화아파타이트의 X-선 회절 분석 결과를 나타내었다.
도 2는, 실시예 1에 의해 제조된 수산화아파타이트-백금이온 복합체 입자의 주사전자현미경 사진을 나타내었다.
도 3은, 실시예 2에 의해 제조된 수산화아파타이트-구리이온 복합체 입자의 주사전자현미경 사진을 나타내었다.
FIG. 1 shows the results of X-ray diffraction analysis of hydroxyapatite prepared in Example 1. FIG.
FIG. 2 shows a scanning electron microscope photograph of the hydroxide apatite-platinum ion composite particles prepared in Example 1. FIG.
3 shows a scanning electron microscope photograph of the hydroxide apatite-copper ion composite particles prepared in Example 2.

수산화칼슘 74.09g 및 85% 인산 115.3 ml (Ca/P 몰비 1.67) 그리고 염화제이백금 0.2g을 정량한 후에 혼합한다. 상기 혼합 용액을 혼합하면서 3M 수산화나트륨 수용액을 첨가하면서 pH 10으로 조절한다. 조절한 혼합 수용액을 1L Ball Mill Port에 첨가하고 1mm 및 3mm 크기의 지르코니아 볼을 각각 1kg 씩 넣고 Ball Mill의 온도가 60℃가 되도록 한 다음에 250RPM의 속도로 48시간 동안 Ball Mill 하였다. Ball Mill 반응 후에 여과 및 세척하고 150℃에서 15시간 동안 건조하였다. 건조한 복합체를 조분쇄 및 미분쇄하여 복합체 미분말을 얻었다. 74.09 g of calcium hydroxide and 115.3 ml of 85% phosphoric acid (Ca/P molar ratio 1.67) and 0.2 g of ferric chloride are weighed and mixed. While mixing the mixed solution, the pH is adjusted to 10 while adding 3M aqueous sodium hydroxide solution. The adjusted mixed aqueous solution was added to the 1L Ball Mill Port, 1kg of 1mm and 3mm zirconia balls were put in each, and the temperature of the ball mill was set to 60℃, and then ball milled at a speed of 250RPM for 48 hours. After the ball mill reaction, it was filtered and washed, and dried at 150° C. for 15 hours. The dry complex was coarsely pulverized and pulverized to obtain a fine complex powder.

제이인산칼슘 378.17g 및 수산화칼슘 111.15g (Ca/P 몰비 1.67) 그리고 염화구리 30g을 정량하고 혼합한다. 상기 혼합물에 증류수 500ml를 첨가하고 2L Ball Mill Port에 첨가하고 1mm, 3mm 및 5mm 크기의 알루미나 볼을 각각 0.9kg 씩 넣고 실온에서 280RPM의 속도로 Ball Mill을 48시간 동안 하였다. Ball Mill 반응 후에 여과 및 세척하고 120℃에서 24시간 동안 건조하였다. 건조한 복합체를 분쇄하여 복합체 미분말을 얻었다. 378.17 g of dibasic calcium phosphate and 111.15 g of calcium hydroxide (Ca/P molar ratio 1.67) and 30 g of copper chloride are weighed and mixed. 500ml of distilled water was added to the mixture, added to a 2L Ball Mill Port, and 0.9 kg of alumina balls of 1mm, 3mm and 5mm sizes were added, respectively, and the ball mill was performed at room temperature at a speed of 280RPM for 48 hours. After the ball mill reaction, it was filtered and washed, and dried at 120° C. for 24 hours. The dry composite was pulverized to obtain a fine composite powder.

질산칼슘 236.15g 및 인산암모늄 73.37g (Ca/P 몰비 1.8) 그리고 염화구리 10g을 정량한 후에 혼합하고 2L Ball Mill Port에 넣는다. 증류수 1,000ml에 수산화나트륨 40g을 첨가한 알칼리 수용액 1,000ml을 2L Ball Mill Port에 넣은 후에 3mm 및 5mm 크기의 알루미나 볼을 각각 1.3 kg씩 넣고 200RPM의 속도로 12시간 동안 Ball Mill 하였다. Ball Mill 반응 후에 여과하고 150℃에서 10시간동안 건조한 다음 분쇄기를 이용하여 50um 이하의 미분말을 얻었다. 236.15 g of calcium nitrate, 73.37 g of ammonium phosphate (Ca/P molar ratio 1.8) and 10 g of copper chloride are weighed, mixed, and put into a 2L Ball Mill Port. After putting 1,000 ml of an aqueous alkali solution containing 40 g of sodium hydroxide in 1,000 ml of distilled water into a 2L ball mill port, 1.3 kg of 3mm and 5mm size alumina balls were put into each, and the ball milled at a speed of 200RPM for 12 hours. After the ball mill reaction, it was filtered, dried at 150° C. for 10 hours, and then fine powder of 50 μm or less was obtained using a grinder.

제이인산칼슘 344.18g 및 탄산칼슘 100.09g (Ca/P 몰비 1.67) 그리고 염화구리 20g을 정량하고 혼합한다. 상기 혼합물에 증류수 1,000ml를 첨가하고 교반하면서 1M 수산화나트륨 수용액을 첨가하면서 pH 10으로 조절한다. 상기 혼합 수용액을 2L Ball Mill Port에 첨가하고 1mm 알루미나 볼 1.3kg 및 3mm 알루미나볼 1kg를 넣고 실온에서 250RPM의 속도로 Ball Mill을 72시간 동안 하였다. Ball Mill 반응 후에 여과 및 세척하고 120℃에서 24시간 동안 건조하였다. 건조한 복합체를 분쇄하여 복합체 미분말을 얻었다. 344.18 g of dibasic calcium phosphate and 100.09 g of calcium carbonate (Ca/P molar ratio 1.67) and 20 g of copper chloride are weighed and mixed. 1,000 ml of distilled water is added to the mixture, and the pH is adjusted to 10 while adding 1M aqueous sodium hydroxide solution while stirring. The mixed aqueous solution was added to a 2L Ball Mill Port, and 1.3 kg of 1 mm alumina balls and 1 kg of 3 mm alumina balls were put, and the ball mill was performed at room temperature at a speed of 250 RPM for 72 hours. After the ball mill reaction, it was filtered and washed, and dried at 120° C. for 24 hours. The dry composite was pulverized to obtain a fine composite powder.

Claims (10)

(1) 칼슘염 함유 물질 및 인산염 함유 물질 및 금속염을 혼합하는 단계
(2) 상기 혼합물에 수용액을 첨가하고 약산성에서 강알칼리성의 수용액이 되도록 조절하는 단계
(3) 상기 혼합물을 Ball Mill 시켜 반응시키는 단계
(4) 여과, 세척, 건조 및 분쇄하는 단계를 포함하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
(1) mixing the calcium salt-containing material and the phosphate-containing material and the metal salt
(2) adding an aqueous solution to the mixture and adjusting it to be an aqueous solution of weak acidity to strong alkalinity
(3) reacting the mixture by ball milling
(4) A method for producing a complex of virus adsorption and apoptosis functions comprising the steps of filtration, washing, drying and pulverization
제 1항에 있어서,
상기 (1) 단계에서 칼슘염 및 인산염의 농도비, 즉 Ca/P의 몰 비가 1.0 ~ 2.0인 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
In the step (1), the concentration ratio of calcium salt and phosphate, that is, the molar ratio of Ca/P, is 1.0 to 2.0.
제 1항에 있어서,
상기 (1) 단계에서 칼슘염 원료로서 수산화칼슘, 탄산칼슘, 염화칼슘, 질산칼슘, 산화칼슘, 황산칼슘, 규산칼슘, 글루콘산칼슘, 비산칼슘, 아세트산칼슘, 브로화칼슘, 글리세른인산칼슘, 젖산칼슘, 구연산칼슘, 피로피온산칼슘, 아스코트빈산칼슘 및 그들의 무수화물 및 수화물, 사칼슘인산염, 인산삼칼슘, 인산팔칼슘, 이수화인산디칼슘, 인산이칼슘, 피로인산칼슘, 이수화칼슘피로인산, 인산이수소칼슘, 메타인산칼슘 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
Calcium hydroxide, calcium carbonate, calcium chloride, calcium nitrate, calcium oxide, calcium sulfate, calcium silicate, calcium gluconate, calcium arsenate, calcium acetate, calcium bromide, glycerin calcium phosphate, calcium lactate as the calcium salt raw material in step (1) , calcium citrate, calcium pyropionate, calcium ascorbate and their anhydrides and hydrates, tetracalcium phosphate, tricalcium phosphate, octacalcium phosphate, dicalcium dihydrate, dicalcium phosphate, calcium pyrophosphate, calcium dihydrate pyrophosphate, Method for manufacturing a complex with virus adsorption and apoptosis function, characterized in that calcium dihydrogen phosphate and calcium metaphosphate
제 1항에 있어서,
상기 (1) 단계에서 인산염 원료로서 오르토인산, 오산화인, 제일인산암모늄, 제이인산암모늄, 메타인산, 피로인산, 제이인산나트륨, 삼인산, 사인산, 제이인산칼륨, 제이인산마그네슘, 제삼인삼칼륨, 제삼인산나트륨, 제일인산나트륨, 제일인산칼륨, 염화포스포릴, 폴리메타인산, 제삼인산마그네슘, 사칼슘인산염, 인산삼칼슘, 인산팔칼슘, 이수화인산디칼슘, 인산이칼슘, 피로인산칼슘, 이수화칼슘피로인산, 인산이수소칼슘, 메타인산칼슘인 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
Orthophosphoric acid, phosphorus pentoxide, monobasic ammonium phosphate, diammonium phosphate, metaphosphoric acid, pyrophosphate, dibasic sodium phosphate, triphosphate, phosphoric acid, potassium diphosphate, dimagnesium phosphate, tripotassium triphosphate, Sodium triphosphate, sodium phosphate monobasic, potassium monophosphate, phosphoryl chloride, polymetaphosphate, magnesium triphosphate, tetracalcium phosphate, tricalcium phosphate, octacalcium phosphate, dicalcium phosphate dihydrate, dicalcium phosphate, calcium pyrophosphate, dihydrate Method for manufacturing a complex with virus adsorption and apoptosis function, characterized in that it is calcium pyrophosphate, calcium dihydrogen phosphate, and calcium metaphosphate
제 1항에 있어서,
상기 (1) 단계에서 금속염 원료로서 구리 화합물, 백금 화합물을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
A method for producing a complex having a virus adsorption and apoptosis function, characterized by a copper compound and a platinum compound as a metal salt raw material in the step (1)
제 1항에 있어서,
상기 (1) 단계에서 금속염의 함유량은 칼슘염 및 인산염의 총중량의 0.1 ~ 30%인 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
In the step (1), the content of the metal salt is 0.1 to 30% of the total weight of the calcium salt and the phosphate.
제 1항에 있어서,
상기 (2) 단계에서 약산성 또는 강알칼리성의 수용액의 pH가 pH 6.0 ~ pH 14.0인 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
In the step (2), the pH of the weakly acidic or strongly alkaline aqueous solution is in the range of pH 6.0 to pH 14.0
제 1항에 있어서,
상기 (2) 단계에서 알칼리성 공급원으로서 수산화나트륨, 수산화칼륨, 암모니아, 수산화리튬, 수산화칼슘, 수산화마그네슘인 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
In the step (2), as an alkaline source, sodium hydroxide, potassium hydroxide, ammonia, lithium hydroxide, calcium hydroxide, and magnesium hydroxide are used.
제 1항에 있어서,
상기 (3) 단계에서 Ball Mill 온도를 10℃ ~ 110℃로 하여 반응시키는 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
A method for producing a complex with virus adsorption and apoptosis function, characterized in that the reaction is carried out at a ball mill temperature of 10°C to 110°C in step (3)
제 1항에 있어서,
상기 (3) 단계에서 Ball Mill 시간을 1시간 ~ 240시간 동안 반응시키는 것을 특징으로 하는 바이러스 흡착 및 사멸화 기능의 복합체 제조방법
The method of claim 1,
A method for producing a complex having a virus adsorption and apoptosis function, characterized in that the ball mill is reacted for 1 hour to 240 hours in step (3)
KR1020200102845A 2020-08-15 2020-08-15 Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function KR102605808B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200102845A KR102605808B1 (en) 2020-08-15 2020-08-15 Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200102845A KR102605808B1 (en) 2020-08-15 2020-08-15 Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function

Publications (2)

Publication Number Publication Date
KR20220021915A true KR20220021915A (en) 2022-02-22
KR102605808B1 KR102605808B1 (en) 2023-11-23

Family

ID=80494507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200102845A KR102605808B1 (en) 2020-08-15 2020-08-15 Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function

Country Status (1)

Country Link
KR (1) KR102605808B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051382A (en) * 2002-12-12 2004-06-18 성윤모 Synthesis of Hydroxyapatite Composite Nanopowder Using Co-precipitation
KR20040101618A (en) * 2003-05-26 2004-12-03 요업기술원 Preparation of Silver doped Hydroxyapatite with enduring antimicrobial effect and whiteness
KR20050021856A (en) * 2003-08-28 2005-03-07 재단법인서울대학교산학협력재단 Methods for the manufacturing of apatite powders
KR20050050024A (en) * 2003-11-22 2005-05-27 주식회사 티앤라이프시스템 Method for producing inorganic antibacterial materials
JP2008069048A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Hydroxyapatite particle, hydroxyapatite particle dispersion, and method for producing hydroxyapatite film from either of them
JP2012095969A (en) * 2010-11-05 2012-05-24 Hitachi Chemical Co Ltd Compound base material and manufacturing method of the same
KR20120103321A (en) * 2011-03-10 2012-09-19 한국화학연구원 Manufacturing method of inorganic antibiotics
KR20140089951A (en) * 2013-01-08 2014-07-16 (주)경동하이테크 Method for manufacturing multi-functional ceramic power and multi-functional ceramic power manufactured by the method
WO2020157268A1 (en) * 2019-02-01 2020-08-06 Omya International Ag Production of surface-reacted calcium salts by grinding induced conversion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051382A (en) * 2002-12-12 2004-06-18 성윤모 Synthesis of Hydroxyapatite Composite Nanopowder Using Co-precipitation
KR20040101618A (en) * 2003-05-26 2004-12-03 요업기술원 Preparation of Silver doped Hydroxyapatite with enduring antimicrobial effect and whiteness
KR20050021856A (en) * 2003-08-28 2005-03-07 재단법인서울대학교산학협력재단 Methods for the manufacturing of apatite powders
KR20050050024A (en) * 2003-11-22 2005-05-27 주식회사 티앤라이프시스템 Method for producing inorganic antibacterial materials
JP2008069048A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Hydroxyapatite particle, hydroxyapatite particle dispersion, and method for producing hydroxyapatite film from either of them
JP2012095969A (en) * 2010-11-05 2012-05-24 Hitachi Chemical Co Ltd Compound base material and manufacturing method of the same
KR20120103321A (en) * 2011-03-10 2012-09-19 한국화학연구원 Manufacturing method of inorganic antibiotics
KR20140089951A (en) * 2013-01-08 2014-07-16 (주)경동하이테크 Method for manufacturing multi-functional ceramic power and multi-functional ceramic power manufactured by the method
WO2020157268A1 (en) * 2019-02-01 2020-08-06 Omya International Ag Production of surface-reacted calcium salts by grinding induced conversion

Also Published As

Publication number Publication date
KR102605808B1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
Vieira et al. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate
Khan et al. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species
Barbanente et al. Selenium-doped hydroxyapatite nanoparticles for potential application in bone tumor therapy
KR20070017241A (en) Metal compounds, mixed or sulphated, as phosphate binders
US20100329971A1 (en) Novel hydroxy radical generation method, and anti-viral material utilizing hydroxyl radical generated by the method
Pajor et al. Selenium-doped hydroxyapatite nanocrystals–synthesis, physicochemical properties and biological significance
Farag et al. The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic
Chu et al. A multifunctional carbon dot-based nanoplatform for bioimaging and quaternary ammonium salt/photothermal synergistic antibacterial therapy
Karunakaran et al. CTAB enabled microwave-hydrothermal assisted mesoporous Zn-doped hydroxyapatite nanorods synthesis using bio-waste Nodipecten nodosus scallop for biomedical implant applications
ES2705166T3 (en) Method to remove heavy metals from silicate sources during the manufacture of a silicate
CN101785860B (en) Tegafur/layered duplex metal hydroxide nanometer hybrid and preparation method thereof
KR102605808B1 (en) Composite Materials Manufacturing Method for Viruses Adsorption - Blocking and Apoptosis-Inactivation Function
JP5822296B2 (en) Silver ion antibacterial liquid production method, silver ion antibacterial liquid produced by the method, or silver ion antibacterial powder production method, silver ion antibacterial powder produced by the method
Awais et al. A review on the recent advancements on Therapeutic effects of ions in the physiological environments
JP2018118896A (en) Method for preparing tetracalcium phosphate
KR102101215B1 (en) Deodorant composition for spraying and method for producing the same
CN103301151A (en) Silver-iodide-doped bioactive glass as well as preparation method and application of silver-iodide-doped bioactive glass
JP6820537B2 (en) Hydroxyapatite derivative particle group
Dorileo et al. Analysis of Metal Contents in Portland Type V and MTA‐Based Cements
Nisa et al. Fabrication and characterization of HA-oyster shell based on biopolymer-propolis as an agent of dental enamel remineralization material
Trandafir et al. Effects of sodium and potassium ions on a novel SeO2–B2O3–SiO2–P2O5–CaO bioactive system
Biazar et al. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic biomaterial
Le Ho et al. Physicochemical properties, acute and subchronic toxicity of nano-hydroxyapatite obtained from Lates calcarifer fish bone
KR102135463B1 (en) Alternate Material for Antibiotics Comprising Active Natural Mineral
Degli Esposti et al. Composite materials of amorphous calcium phosphate and bioactive glass nanoparticles for preventive dentistry

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant