KR20220020476A - Composition comprising steppogenin for prevention or treatment of thrombotic disorders - Google Patents

Composition comprising steppogenin for prevention or treatment of thrombotic disorders Download PDF

Info

Publication number
KR20220020476A
KR20220020476A KR1020200100743A KR20200100743A KR20220020476A KR 20220020476 A KR20220020476 A KR 20220020476A KR 1020200100743 A KR1020200100743 A KR 1020200100743A KR 20200100743 A KR20200100743 A KR 20200100743A KR 20220020476 A KR20220020476 A KR 20220020476A
Authority
KR
South Korea
Prior art keywords
steppogenin
platelets
prevention
effect
platelet
Prior art date
Application number
KR1020200100743A
Other languages
Korean (ko)
Inventor
권혁우
신정해
Original Assignee
극동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동대학교 산학협력단 filed Critical 극동대학교 산학협력단
Priority to KR1020200100743A priority Critical patent/KR20220020476A/en
Publication of KR20220020476A publication Critical patent/KR20220020476A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/60Moraceae (Mulberry family), e.g. breadfruit or fig
    • A61K36/605Morus (mulberry)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/326Foods, ingredients or supplements having a functional effect on health having effect on cardiovascular health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Diabetes (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composition for prevention or treatment of thrombotic diseases containing steppogenin as an active component, and health functional food for prevention or alleviation of thrombotic diseases. More specifically, the present invention is to provide a composition for preventing or treating thrombotic diseases, and health functional food for prevention or alleviation of thrombotic diseases, by revealing an antiplatelet effect on steppogenin, which is a tree root extract of Cudrania tricuspidata.

Description

스테포제닌(Steppogenin)을 유효성분으로 하는 혈전성질환의 예방 또는 치료용 조성물과 예방 또는 개선용 건강기능식품{ Composition comprising steppogenin for prevention or treatment of thrombotic disorders}Composition comprising steppogenin for prevention or treatment of thrombotic disorders, and a composition comprising steppogenin for prevention or treatment of thrombotic disorders

본 발명은 스테포제닌(Steppogenin)을 유효성분으로 하는 혈전성질환의 예방 또는 치료용 조성물과 예방 또는 개선용 건강기능식품에 관한 것이다. 보다 상세하게로는 꾸지뽕 나무(Cudrania tricuspidata)의 나무뿌리 추출물인 스테포제닌(Steppogenin)에 대한 항 혈소판 효과를 밝혀냄으로써, 이를 혈전성질환의 예방 또는 치료용 조성물 및 예방 또는 개선용 건강기능식품으로 제공할 수 있도록 하기 위한 것이다. The present invention relates to a composition for the prevention or treatment of thrombotic diseases containing Steppogenin as an active ingredient, and to a health functional food for prevention or improvement. In more detail, by revealing the anti-platelet effect on Steppogenin, a tree root extract of Cudrania tricuspidata, it is used as a composition for preventing or treating thrombotic diseases and as a health functional food for prevention or improvement. in order to be able to provide it.

순환기 계통의 혈관질환 발생과 진행에 있어서는 혈전이 중심적인 역할을 하기 때문에 혈전의 생성을 예방하고 생성된 혈전을 효과적으로 제거하는 것이 혈관질환 치료에서 중요하다. 혈전은 정상적인 지혈과정에 대하여 병적으로 대응하는 개념으로서, 혈소판의 응집 및 혈장의 응고 과정이 과도하게 활성화되었을 때 발생할 수 있다. 혈전성 질환의 예방과 치료 약물들은 혈전 용해제, 항응고제 및 항 혈소판제 등이 있다. 혈액 응고계를 차단하여 혈전 형성을 억제하는 헤파린, 쿠마린 등의 항응고제들이나 혈전의 주요 구성성분인 피브린을 분해하여 이미 형성된 혈전을 용해시키는 혈전용해제들은 혈전성 질환의 응급처치 목적으로 사용되고 있으나, 혈관 손상 부위에서의 출혈 또는 전신성 출혈 등의 부작용으로 인하여 장기 치료에는 적합하지 못하다.Since thrombus plays a central role in the occurrence and progression of vascular disease in the circulatory system, it is important to prevent the formation of thrombus and effectively remove the thrombus in the treatment of vascular disease. Thrombosis is a pathologically corresponding concept to the normal hemostasis process, and may occur when platelet aggregation and plasma coagulation processes are excessively activated. Drugs for the prevention and treatment of thrombotic diseases include thrombolytic agents, anticoagulants and antiplatelet agents. Anticoagulants such as heparin and coumarin, which block the blood coagulation system to inhibit the formation of blood clots, and thrombolytic agents that dissolve fibrin, a major component of blood clots, to dissolve already formed clots are used for emergency treatment of thrombotic diseases, but vascular damage It is not suitable for long-term treatment due to side effects such as local bleeding or systemic bleeding.

한편, 뽕나무과에 속하며, 굿가시나무 라고도 불리는 꾸지뽕 나무(Cudrania tricuspidata)는 국내에 자생하는 식물로서 충청도, 전라도, 경상도 지역에 많이 분포하고 있으며, 한국뿐만 아니라 일본, 중국 등 동아시아 지역에 분포하고 있다. 꾸지뽕 나무의 추출물은 중국, 한국, 일본의 동아시아 전역에서 민족 의학에 사용되어 왔는데, 한의학에서 꾸지뽕 나무는 습진, 유행성 이하선염, 결핵, 타박상, 불면증, 급성 관절염 치료에 사용되었다. 동의보감에는 자양, 강장 효능과 음위, 신체허약증, 불면증 등에 좋고, 줄기와 뿌리는 여성 질환에 좋다는 기록이 있으며, 식용, 약용, 누에의 사료, 조경용 등으로 널리 활용되고 있다. 우리나라 민간에서도 꾸지뽕 나무를 물로 달여 섭취하면 간암 치료에 효과적이라고 알려져 있다. 꾸지뽕 나무에는 가시가 있으며, 잎은 긴 타원형의 모양을 하고 길이 6~10 cm, 너비 3~6 cm이고, 표면에 잔털이 있고 뒷면에는 섬모가 있다. 열매는 둥근 모양으로 익은 과실은 완숙 시 붉은 색을 띄며 열매를 따면 하얗고 진한 액체가 나오는데 이로 인해 병충해를 받지 않는 것으로 알려져 있다. 또한 신장기능과 장 대사를 원활하게 해주어 변비를 개선시켜 준다고 알려져 있다. 본 발명에서는 꾸지뽕 나무의 추출물인 스테포제닌에 대한 항 혈소판 효과를 밝혀내어 이를 혈전성질환의 예방 또는 치료용 조성물 등으로 사용하고자 한다.On the other hand, Cudrania tricuspidata, which belongs to the Morus family and is also called Gutthorn, is a native plant in Korea and is widely distributed in Chungcheong-do, Jeolla-do, and Gyeongsang-do. The extract of Cudrania biloba has been used in folk medicine throughout East Asia in China, Korea, and Japan, where it has been used to treat eczema, mumps, tuberculosis, bruises, insomnia, and acute arthritis. In Donguibogam, there are records that it is good for nourishment and tonicity and yin, physical weakness, insomnia, etc., and its stems and roots are good for female diseases. In Korean folklore, it is known that Cuji mulberry tree decoction with water is effective in treating liver cancer. Cudrania has thorns, and leaves are long oval-shaped, 6-10 cm long and 3-6 cm wide, with fine hairs on the surface and cilia on the back. The fruits are round, and the ripe fruits are red when fully ripened. When the fruits are picked, a white, thick liquid is released, which is known to be free from pests and diseases. It is also known to improve kidney function and intestinal metabolism, thereby improving constipation. In the present invention, it is intended to find out the anti-platelet effect on Stepogenin, an extract of Cudrania biloba, and use it as a composition for preventing or treating thrombotic diseases.

한국 등록특허 제10-2020709호(2019.9.10.)Korean Patent Registration No. 10-2020709 (2019.9.10.) 한국 등록특허 제10-1672138호(2016.11.03.)Korean Patent Registration No. 10-1672138 (2016.11.03.)

Nishikawa, M., Tanaka, T. and Hidaka, H. (1980) Ca2+ -calmodulin- dependent phosphorylation and platelet secretion. Nature 287: 863-865. Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321. Phillips, D. R., Nannizzi-Alaimo, L. and Prasad, K. S. (2001) Beta3 tyrosine phosphorylation in alphaIIb beta3 (platelet membrane GPIIb-IIIa) outside-in integrin signaling. Thromb. Haemost. 86: 246-258. Estevez, B., Shen, B. and Du, X. (2015) Targeting integrin and integrin signaling in treating thrombosis. Arterioscler. Thromb. Vasc. Biol. 35: 24-29. McNicol, A. and Shibou, T. S. (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26. Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M. and Samuelsson, B. (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261: 558-56 Patrignani, P., Sciulli, M. G., Manarini, S., Santini, G., Cerletti, C. and Evangelista, V. (1999) COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J. Physiol. Pharmacol. 50: 661-667. Hantgan, R. R., Taylor, R. G. and Lewis, J. C. (1985) Platelets interact with fibrin only after activation. Blood 65: 1299-1311. Schwarz, U., R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62: 1153-1161. Chin, H. S. and Nam, K. W. (2010) Inhibitory Effects of Steppogenin and Oxyresveratrol from Moms alba L. against Yeast a-Glucosidase. Yakhak Hoeji 54: 398-402. Kim, D. C., Quang, T. H., Oh, H. and Kim, Y. C. (2017) Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules 22: 2130; doi:10.3390/molecules22122130. Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450. Xin, L. T., Yue, S. J., Fan, Y. C., Wu, J. S., Yan, D., Guan, H. S. and Wang, C. Y. (2017) Cudrania tricuspidata: an updated review on ethnomedicine, phytochemistry and pharmacology. RSC advances 7: 31807-31832. Ro, J. Y. and Cho, H. J. (2019) Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets. J. Korea. Acad. Industr. Coop. Soc. 20: 298-305. Varga-Szabo, D., Braun, A. and Nieswandt, B. (2009). Calcium signaling in platelets. J. Thromb. Haemost. 7: 1057- 1066. Kwon, H. W. (2018) Inhibitory effects of PD98059, SB203580, and SP600125 on α-and δ-granule release and intracellular Ca2+levels in human platelets. Biomed. Sci. Lett. 24: 253-262.

Figure pat00001
Kramer, R. M., Roberts, E. F., Um, S. L., Brsch-Haubold, A. G., Watson, S. P., Fisher, M. J. and Jakubowski, J. A. (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271: 27723-27729. McNicol, A. and Shibou, T. S. (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26. Ruggeri, Z. M. and Mendolicchio, G. L. (2007) Adhesion mechanisms in platelet function. Circ. Res. 100: 1673-1685.
Figure pat00002
Laurent, V., Loisel, T. P., Harbeck, B., Wehman, A., Grbe, L., Jockusch, B. M. and Carlier, M. F. (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell. Biol. 144: 1245-1258. Sudo, T. and Ito, H., Kimura, Y. (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14: 381-390. Kuo, J. F., Andersson, R. G., Wise, B. C., Mackerlova, L., Salomonsson, I. and Brackett, N. L. (1980) Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc. Natl. Acad. Sci. USA. 77: 7039-7043. Nishikawa, M., Tanaka, T. and Hidaka, H. (1980) Ca2+ -calmodulin-dependent phosphorylation and platelet secretion. Nature 287: 863-865. Berridge, MJ and Irvine, RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321. Phillips, DR, Nannizzi-Alaimo, L. and Prasad, KS (2001) Beta3 tyrosine phosphorylation in alphaIIb beta3 (platelet membrane GPIIb-IIIa) outside-in integrin signaling. Thromb. Haemost. 86: 246-258. Estevez, B., Shen, B. and Du, X. (2015) Targeting integrin and integrin signaling in treating thrombosis. Arterioscler. Thromb. Vasc. Biol. 35: 24-29. McNicol, A. and Shibou, TS (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26. Needleman, P., Moncada, S., Bunting, S., Vane, JR, Hamberg, M. and Samuelsson, B. (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261: 558-56 Patrignani, P., Sciulli, MG, Manarini, S., Santini, G., Cerletti, C. and Evangelista, V. (1999) COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J. Physiol. Pharmacol. 50: 661-667. Hantgan, RR, Taylor, RG and Lewis, JC (1985) Platelets interact with fibrin only after activation. Blood 65: 1299-1311. Schwarz, U., R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62: 1153-1161. Chin, HS and Nam, KW (2010) Inhibitory Effects of Steppogenin and Oxyresveratrol from Moms alba L. against Yeast a-Glucosidase. Yakhak Hoeji 54: 398-402. Kim, DC, Quang, TH, Oh, H. and Kim, YC (2017) Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules 22: 2130; doi:10.3390/molecules22122130. Grynkiewicz, G., Poenie, M. and Tsien, RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450. Xin, LT, Yue, SJ, Fan, YC, Wu, JS, Yan, D., Guan, HS and Wang, CY (2017) Cudrania tricuspidata: an updated review on ethnomedicine, phytochemistry and pharmacology. RSC advances 7: 31807-31832. Ro, JY and Cho, HJ (2019) Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets. J. Korea. Acad. Industry. Coop. Soc. 20: 298-305. Varga-Szabo, D., Braun, A. and Nieswandt, B. (2009). Calcium signaling in platelets. J. Thromb. Haemost. 7: 1057-1066. Kwon, HW (2018) Inhibitory effects of PD98059, SB203580, and SP600125 on α-and δ-granule release and intracellular Ca2+levels in human platelets. Biomed. Sci. Lett. 24: 253-262.
Figure pat00001
Kramer, RM, Roberts, EF, Um, SL, Brsch-Haubold, AG, Watson, SP, Fisher, MJ and Jakubowski, JA (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271: 27723-27729. McNicol, A. and Shibou, TS (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26. Ruggeri, ZM and Mendolicchio, GL (2007) Adhesion mechanisms in platelet function. Circ. Res. 100: 1673-1685.
Figure pat00002
Laurent, V., Loisel, TP, Harbeck, B., Wehman, A., Grbe, L., Jockusch, BM and Carlier, MF (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell. Biol. 144: 1245-1258. Sudo, T. and Ito, H., Kimura, Y. (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14: 381-390. Kuo, JF, Andersson, RG, Wise, BC, Mackerlova, L., Salomonsson, I. and Brackett, NL (1980) Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipids, calmodulin, and trifluoperazine. Proc. Natl. Acad. Sci. USA. 77: 7039-7043.

본 발명은 꾸지뽕 나무(Cudrania tricuspidata)의 추출물인 스테포제닌(Steppogenin)의 항 혈전성 효과를 밝혀냄으로써, 스테포제닌이 혈전성질환의 예방, 치료 또는 개선에 사용되도록 하는 것을 목적으로 한다. An object of the present invention is to reveal the antithrombotic effect of steppogenin, an extract of Cudrania tricuspidata, so that steppogenin is used for the prevention, treatment or improvement of thrombotic diseases.

본 발명의 목적은 꾸지뽕 나무 추출물인 스테포제닌을 유효성분으로 함유하는 혈전성질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.It is an object of the present invention to provide a pharmaceutical composition for the prevention or treatment of thrombotic diseases containing Stepogenin, which is an extract of Cuji mulberry tree, as an active ingredient.

본 발명의 또 다른 목적은 꾸지뽕 나무 추출물인 스테포제닌을 유효성분으로 함유하는 혈전성질환의 예방 또는 개선용 건강기능식품을 제공하는 것이다.Another object of the present invention is to provide a health functional food for the prevention or improvement of thrombotic diseases containing Stepogenin, which is an extract of Cuji mulberry tree, as an active ingredient.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.

상술한 목적을 달성하기 위하여 창안된 본 발명은, 스테포제닌(Steppogenin)을 유효성분으로 함유하는 혈전성질환의 예방 또는 치료용 조성물로 하는 것이 바람직하다. 또한 상기 스테포제닌 꾸지뽕 나무 추출물인 것을 특징으로 하는 것이 더욱 바람직하다. 그리고 상기 꾸지뽕 나무 추출물의 농도는 500 μg/mL인 것을 특징으로 하는 것도 바람직하다. 또한 상기 꾸지뽕 나무 추출물은 꾸지뽕 나무뿌리 추출물인 것을 특징으로 하는 것이 가장 바람직하다.The present invention, devised to achieve the above object, is preferably a composition for preventing or treating thrombotic diseases containing Steppogenin as an active ingredient. In addition, the stepogenin is It is more preferable that it is characterized in that it is a Cuji mulberry tree extract. And the concentration of the kkujippong tree extract is also preferably characterized in that 500 μg / mL. In addition, the Cujippong tree extract is most preferably characterized in that the Cujippong tree root extract.

또한 본 발명은 스테포제닌(Steppogenin)을 유효성분으로 함유하는 혈전성질환의 예방 또는 개선용 건강기능식품으로 하는 것도 바람직하며, 여기서 상기 스테포제닌은 꾸지뽕 나무 또는 꾸지뽕 나무뿌리 추출물인 것을 특징으로 하는 것이 더욱 바람직하다.In addition, the present invention is also preferably as a health functional food for the prevention or improvement of thrombotic diseases containing steppogenin as an active ingredient, wherein the steppogenin is It is more preferable that it is characterized in that it is a cucurbita tree or cucurbita root extract.

본 발명에 따른 꾸지뽕 나무뿌리 추출물인 스테포제닌은 혈소판 활성화 및 혈전 형성을 효과적으로 억제할 수 있어 혈전 및 혈소판 응집으로 인한 다양한 혈전성 질환을 예방 및 치료하는데 유용하게 사용될 수 있는 효과가 있다.Stepogenin, which is an extract of Cuji mulberry tree root according to the present invention, can effectively inhibit platelet activation and thrombus formation, so it has an effect that can be usefully used to prevent and treat various thrombotic diseases caused by thrombosis and platelet aggregation.

도 1은 스테포제닌의 화학구조를 도시한 것이다.
도 2는 혈소판 응집 및 세포 독성에 대한 스테포제닌의 효과를 나타낸 그래프이다.
도 3은 스테포제닌이 [Ca2 +]i 동원, IP3RI 및 ERK 인산화에 미치는 영향을 나타낸 그래프이다.
도 4는 TXA2 생성 및 cPLA2 인산화에 대한 스테포제닌의 효과를 나타낸 그래프이다.
도 5는 fibronectin 점착 및 VASP 인산화에 대한 steppogenin의 효과를 나타낸 그래프이다.
도 6은 cyclic nucleotides에 대한 스테포제닌의 효과를 도시한 것이다.
Figure 1 shows the chemical structure of stepogenin.
2 is a graph showing the effect of stepogenin on platelet aggregation and cytotoxicity.
Figure 3 is a graph showing the effect of stepogenin on [Ca 2 + ] i mobilization, IP 3 RI and ERK phosphorylation.
4 is a graph showing the effect of stepogenin on TXA 2 production and cPLA 2 phosphorylation.
5 is a graph showing the effect of steppogenin on fibronectin adhesion and VASP phosphorylation.
Figure 6 shows the effect of stepogenin on cyclic nucleotides.

이하에서 상술한 목적과 특징이 분명해지도록 본 발명을 상세하게 설명할 것이며, 이에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한 본 발명을 설명함에 있어서 본 발명과 관련한 공지기술 중 이미 그 기술 분야에 익히 알려져 있는 것으로서, 그 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. Hereinafter, the present invention will be described in detail so that the above-described objects and features become clear, and accordingly, those of ordinary skill in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In addition, in the description of the present invention, if it is determined that the detailed description of the known technology may unnecessarily obscure the gist of the present invention as it is already well known in the technical field among the known technologies related to the present invention, the detailed description thereof is omitted. to be omitted.

아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀두고자 한다. 실시 예들에 대한 설명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 실시 예들을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. In addition, the terms used in the present invention have been selected as widely used general terms as possible, but in certain cases, there are also terms arbitrarily selected by the applicant, and in this case, the meaning is described in detail in the description of the corresponding invention, so it is a simple term It is intended to clarify that the present invention should be understood as the meaning of the term, not the name. Terms used in the description of the embodiments are only used to describe specific embodiments, and are not intended to limit the embodiments. The singular expression includes the plural expression unless the context clearly dictates otherwise.

실시 예들은 여러 가지 형태로 변경을 가할 수 있고 다양한 부가적 실시 예들을 가질 수 있는데, 여기에서는 특정한 실시 예들이 도면에 표시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 실시 예들을 특정한 형태에 한정하려는 것이 아니며, 실시 예들의 사상 및 기술 범위에 포함되는 모든 변경이나 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다. Embodiments may be modified in various forms and may have various additional embodiments, wherein specific embodiments are shown in the drawings and related detailed descriptions are given. However, this is not intended to limit the embodiments to specific forms, and should be understood to include all changes or equivalents or substitutes included in the spirit and scope of the embodiments.

이하에서 본 발명을 설명한다. 혈소판은 혈관손상의 지혈을 위한 필수적인 세포인 것과 동시에 심혈관질환의 위험성을 갖고 있는 환자에서는 위험요소로서 작용할 수 있는 세포로 잘 알려져 있다. 혈관의 손상부위에 노출된 collagen은 순환 혈소판을 활성화시키고, 활성화된 혈소판 막의 phosphatidylinositol 4,5-bisphosphate는 inositol-1,4,5-triphosphate(IP3)와 diacylglycerol로 가수분해 된다. 생성된 IP3는 혈소판의 세포질 내부의 endoplasmic reticulum 표면에 존재하는 수용체(IP3 receptor type I)에 결합하여 저장된 Ca2 +을 세포질로 방출한다. 혈소판 내 증가된 Ca2 +은 inside-out signaling pathway를 통해 혈소판의 shape change와 granule release를 일으키고, 혈소판 막의 glycoprotein IIb/IIIa(αIIb/β3)를 활성화시켜 outside-in signaling pathway를 일으켜 혈소판의 활성을 유도한다. Inside-out signaling pathway가 시작되면, 혈소판 세포질에 존재하는 효소인 cytosolic phospholipase A2는 Ca2 +의 존재 하에 활성화되어 혈소판 막으로 이동하게 되고, phospholipids의 지방산을 가수분해하여, arachidonic acid를 세포질내로 유리시킨다. 이 후 arachidonic acid는 효소의 작용에 의해 thromboxane A2로 합성되어 혈소판 외부로 방출된다. 다양한 작용을 통해 활성화된 혈소판은 혈전마개를 생성하여 지혈작용을 완성한다.Hereinafter, the present invention will be described. It is well known that platelets are essential cells for hemostasis of blood vessel damage and can act as risk factors in patients at risk for cardiovascular disease. Collagen exposed to damaged blood vessels activates circulating platelets, and phosphatidylinositol 4,5-bisphosphate in the activated platelet membrane is hydrolyzed into inositol-1,4,5-triphosphate (IP 3 ) and diacylglycerol. The generated IP 3 binds to a receptor (IP3 receptor type I) present on the endoplasmic reticulum surface inside the cytoplasm of platelets and releases stored Ca 2+ into the cytoplasm. Increased Ca 2+ in platelets causes platelet shape change and granule release through the inside-out signaling pathway, and activates the platelet membrane glycoprotein IIb/IIIa (αIIb/β3) to trigger the outside-in signaling pathway to activate platelets. induce When the inside-out signaling pathway starts, cytosolic phospholipase A 2 , an enzyme present in the platelet cytoplasm, is activated in the presence of Ca 2+ and moves to the platelet membrane, hydrolyzes fatty acids in phospholipids, and liberates arachidonic acid into the cytoplasm make it After that, arachidonic acid is synthesized as thromboxane A 2 by the action of an enzyme and released to the outside of platelets. Platelets activated through various actions create a thrombus and complete the hemostasis.

인체 내에서 발생하는 혈소판의 억제작용분자로 잘 알려진 것은 cyclic adenosine monophosphate(cAMP)와 cyclic guanosine monophosphate(cGMP)이다. 정상적인 혈액순환 과정에서 혈관 내피세포는 nitric oxide 및 prostaglandin I2 를 방출하여 혈소판내부의 cAMP 및 cGMP의 농도를 증가시킨다. 증가한 cAMP는 protein kinase A(PKA)의 활성화를 유도하는 반면, cGMP의 증가는 protein kinase G(PKG)의 활성화를 유도한다. PKA와 PKG의 substrate는 inositol 1,4,5-triphosphate receptor type I(IP3RI)와 vasodilator-stimulated phosphoprotein(VASP)으로, 두 가지 모두 인산화 되면 혈소판의 활성작용을 억제하는 억제분자로서 작용한다.Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are well known as platelet inhibitory molecules generated in the human body. During normal blood circulation, vascular endothelial cells release nitric oxide and prostaglandin I 2 to increase the concentration of cAMP and cGMP inside platelets. Increased cAMP induces activation of protein kinase A (PKA), whereas an increase in cGMP induces activation of protein kinase G (PKG). The substrates of PKA and PKG are inositol 1,4,5-triphosphate receptor type I (IP 3 RI) and vasodilator-stimulated phosphoprotein (VASP), both of which act as inhibitory molecules that inhibit platelet activation when phosphorylated.

Cudrania tricuspidata에서 발견되는 steppogenin은 antineuroinflammatory, anti-tyrosinase, 그리고 anti-α-glucosidase의 작용을 하는 것으로 보고되었다. 하지만 인체 혈소판 응집에 대한 steppogenin의 기능과 역할은 현재까지 알려진 바가 없다. 따라서 본 발명의 발명자는 발명의 수행과정에서 steppogenin의 항 혈소판 효과를 명확하게 밝히기 위하여 collagen 유도 인체 혈소판을 사용하여 다양한 억제효과와 기전을 확인하였다. 이하에서는 실시예와 실험을 통하여 본 발명을 보다 상세하게 설명한다. Steppogenin found in Cudrania tricuspidata has been reported to have antineuroinflammatory, anti-tyrosinase, and anti-α-glucosidase actions. However, the function and role of steppogenin in human platelet aggregation is not known so far. Therefore, the inventor of the present invention confirmed various inhibitory effects and mechanisms using collagen-induced human platelets to clearly reveal the antiplatelet effect of steppogenin in the course of carrying out the invention. Hereinafter, the present invention will be described in more detail through examples and experiments.

1. 재료 및 방법1. Materials and Methods

가. 실험재료go. test material

Steppogenin은 ChemFaces에서 구입하였으며(Wuhan, China), collagen과 thrombin은 Chrono-Log 사(Havertown, PA, USA)에서, Lactate dehydrogenase cytotoxicity assay kit, U46619, cyclic adenosine monophosphate kit와 cyclic guanosine monophosphate kit는 Cayman Chemical 사(Ann Arbor, MI, USA)로부터 구입하였다. 그리고 그 밖의 시약들은 Sigma Aldrich 사(Saint Louis, MO, USA)에서 구입하였고, CytoSelect 48-well cell adhesion assay kit는 Cell Biolabs(San Diego, CA, USA)에서 구입하였다. Western blotting용 antibody들과 lysis buffer는 Cell Signaling(Beverly, MA, USA)에서 구입하였고, Polyvinylidene difluoride(PVDF) membrane와 Enhanced chemiluminesence solution(ECL)는 GE Healthcare (Buckinghamshire, UK)에서 구입하였다.Steppogenin was purchased from ChemFaces (Wuhan, China), collagen and thrombin were from Chrono-Log (Havertown, PA, USA), Lactate dehydrogenase cytotoxicity assay kit, U46619, cyclic adenosine monophosphate kit and cyclic guanosine monophosphate kit were from Cayman Chemical (Ann Arbor, MI, USA). And other reagents were purchased from Sigma Aldrich (Saint Louis, MO, USA), and the CytoSelect 48-well cell adhesion assay kit was purchased from Cell Biolabs (San Diego, CA, USA). Antibodies for Western blotting and lysis buffer were purchased from Cell Signaling (Beverly, MA, USA), and polyvinylidene difluoride (PVDF) membrane and enhanced chemiluminesence solution (ECL) were purchased from GE Healthcare (Buckinghamshire, UK).

나. 사람 세척혈소판me. human lavage platelets

Acid-citrate-dextrose solution(0.8% citric acid, 2.2% sodium citrate, 2.45% glucose)로 항 응고 처리 된 human platelet-rich plasma(PRP)를 한국적십자 혈액원(Suwon, Korea)으로부터 제공받았다. 미량의 적혈구를 제거하기 위해 PRP를 125xg에서 10분간 원심분리 한 후, 1,300xg에서 10분간 원심 분리하여 platelet pellets을 얻었다. 이것을 washing buffer(138 mM NaCl, 2.7 mM KCl, 12 mM NaHCO3, 0.36 mM NaH2PO4, 5.5 mM glucose, and 1 mM EDTA, pH 6.5)로 두 번 세척하고. 세척된 혈소판을 suspension buffer(138 mM NaCl, 2.7 mM KCl, 12 mM NaHCO3, 0.36 mM NaH2PO4, 0.49 mM MgCl2, 5.5 mM glucose, 0.25% gelatin, pH 6.9)로 재구성하여 최종 108/mL 농도가 되게 하였다. 위에 있는 모든 과정은 낮은 온도에서 일어날 수 있는 혈소판 응집을 피하기 위하여 25℃에서 수행하였다. 이 실험은 The Korea National Institute for Bioethics Policy Public Institutional Review Board(Seoul, Korea)의 승인을 받아 수행되었다(P01-201812-31-007).Anticoagulated human platelet-rich plasma (PRP) with acid-citrate-dextrose solution (0.8% citric acid, 2.2% sodium citrate, 2.45% glucose) was provided from the Korean Red Cross Blood Center (Suwon, Korea). To remove trace amounts of red blood cells, PRP was centrifuged at 125xg for 10 minutes, and then centrifuged at 1,300xg for 10 minutes to obtain platelet pellets. Wash it twice with washing buffer (138 mM NaCl, 2.7 mM KCl, 12 mM NaHCO 3 , 0.36 mM NaH 2 PO 4 , 5.5 mM glucose, and 1 mM EDTA, pH 6.5). Washed platelets were reconstituted with suspension buffer (138 mM NaCl, 2.7 mM KCl, 12 mM NaHCO 3 , 0.36 mM NaH 2 PO 4 , 0.49 mM MgCl 2 , 5.5 mM glucose, 0.25% gelatin, pH 6.9) to a final 108/mL concentration was made. All of the above procedures were performed at 25°C to avoid platelet aggregation that may occur at low temperatures. This experiment was performed with the approval of The Korea National Institute for Bioethics Policy Public Institutional Review Board (Seoul, Korea) (P01-201812-31-007).

다. 혈소판응집반응 측정all. Measurement of platelet aggregation

세척 혈소판(2.5x108/mL)에 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 37℃ 에서 3분간 전 처리한 후, 2.5 μg/mL collagen으로 응집을 유도하고 5분간 측정하였다. 응집은 1,000 rpm stirring speed에서 aggregometer로 측정하였고(Chrono-Log, Havertown, PA, USA), 응집능은 빛 투과도의 증가된 정도로 산출하였다. Suspension buffer를 투과도 0%의 기준 값으로 사용하였고, steppogenin은 dimethyl sulfoxide(DMSO)에 녹여 0.1%의 최종농도로 사용하였다.Washed platelets (2.5x10 8 /mL) were pretreated with steppogenin (50, 100, 150, 200 μM) at various concentrations at 37°C for 3 minutes, then aggregation was induced with 2.5 μg/mL collagen and measured for 5 minutes. did Aggregation was measured with an aggregometer at 1,000 rpm stirring speed (Chrono-Log, Havertown, PA, USA), and the aggregation capacity was calculated as an increased degree of light transmittance. Suspension buffer was used as a standard value of transmittance of 0%, and steppogenin was dissolved in dimethyl sulfoxide (DMSO) to a final concentration of 0.1%.

라. 세포독성평가La. Cytotoxicity evaluation

세척 혈소판(2.5x108/mL)에 여러 농도의 steppogenin(50, 100, 150, 200 μM)를 첨가하여 37℃에서 5분간 전 처리한 후, 12,000xg로 15분간 원심 분리하여 세포 debris를 제거한 상층을 lactate dehydrogenase(LDH) cytotoxicity assay kit(Cayman Chemical)로 측정하였다. 0.1% Triton X-100으로 혈소판을 완전히 용해한 값은 양성대조군으로서 100%로 기준을 정하고 steppogenin의 값을 %로 제시하였다.Wash platelets (2.5x108/mL) with steppogenin (50, 100, 150, 200 μM) of various concentrations added and pretreated at 37°C for 5 minutes, then centrifuged at 12,000xg for 15 minutes to remove the cell debris. The lactate dehydrogenase (LDH) cytotoxicity assay kit (Cayman Chemical) was used. The value of completely lysing platelets with 0.1% Triton X-100 was set as 100% as a positive control, and the value of steppogenin was presented as %.

마. 세포 내 Ca2 +동원 측정mind. Measurement of intracellular Ca 2+ mobilization

세척 혈소판(2.5x108/mL)에 5 μM의 Fura 2-AM을 처리하고 37℃에서 60분간 전 처리하였다. 그 후 1,300xg에서 10분간 원심분리 하고 suspending buffer에 다시 부유하여 Ca2 + mobilization 측정용 혈소판을 제조하였다. 세척 혈소판에 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 37℃에서 3분간 전 처리한 후, 2.5 μg/mL collagen으로 응집을 유도하고 5분간 반응시켰다. 형광파장은 excitation 340 nm, emission 510 nm에서 분석되었으며 Grynkiewicz의 방법을 사용하여 spectrofluorometer(Hitachi F-2500, Tokyo, Japan)로 측정하였다.Washed platelets (2.5x108/mL) were treated with 5 μM of Fura 2-AM and pre-treated at 37°C for 60 minutes. Then, centrifuged at 1,300xg for 10 minutes and resuspended in suspending buffer to prepare platelets for Ca 2 + mobilization measurement. Washed platelets were pretreated with steppogenin (50, 100, 150, 200 μM) of various concentrations at 37°C for 3 minutes, then aggregation was induced with 2.5 μg/mL collagen and reacted for 5 minutes. The fluorescence wavelength was analyzed at excitation 340 nm and emission 510 nm, and was measured with a spectrofluorometer (Hitachi F-2500, Tokyo, Japan) using Grynkiewicz's method.

바. Thromboxane A2 측정bar. Thromboxane A2 measurement

세척 혈소판(2.5x108/mL)에 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 37℃에서 3분간 전 처리한 후, 2.5 μg/mL collagen으로 응집을 유도하고 5분간 응집반응을 수행하였다. 그 후 250 μL ice-cold 5 mM EDTA와 0.2 mM indomethacin을 처리하여 TXA2의 합성을 정지하였다. 이 후 TXA2의 안정 대사체인 TXB2를 TXB2 EIA kit(Cayman Chemical)를 사용하여 측정하였다.Washed platelets (2.5x108/mL) were pretreated with steppogenin (50, 100, 150, 200 μM) of various concentrations at 37°C for 3 minutes, then aggregation was induced with 2.5 μg/mL collagen and agglutination reaction for 5 minutes was performed. After that, TXA2 synthesis was stopped by treatment with 250 μL ice-cold 5 mM EDTA and 0.2 mM indomethacin. Thereafter, TXB2, a stable metabolite of TXA2, was measured using the TXB2 EIA kit (Cayman Chemical).

사. Fibronectin Adhesion 측정buy. Fibronectin Adhesion Measurement

Fibronectin이 코팅된 well에 세척 혈소판(2.5x108/mL)과 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 2.5 μg/mL collagen으로 자극한 후 37℃에서 60분간 전 처리한 후 fibronectin adhesion을 측정하였다. 그 후 PBS로 5회 washing하고 stain solution으로 염색한 후 extract solution을 사용하여 추출하였다. 그 후 추출액을 96-well microtiter plate로 옮겨 ELISA reader(TECAN, Salzburg, Austria)를 사용하여 분석하였다.Wash platelets (2.5x108/mL) and various concentrations of steppogenin (50, 100, 150, 200 μM) were added to fibronectin-coated wells, stimulated with 2.5 μg/mL collagen, and pretreated at 37°C for 60 minutes. Fibronectin adhesion was measured. After that, it was washed 5 times with PBS, stained with a stain solution, and extracted using an extract solution. Then, the extract was transferred to a 96-well microtiter plate and analyzed using an ELISA reader (TECAN, Salzburg, Austria).

아. Western Blot을 이용한 인산화 분석Ah. Phosphorylation Analysis Using Western Blot

세척 혈소판(2.5x108/mL)에 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 37℃에서 3분간 전 처리한 후, 2.5 μg/mL collagen으로 응집을 유도하고 5분간 반응시켰다. 그 후 동량의 lysis buffer를 첨가함으로써 반응을 정지시켰다. 혈소판 lysate는 BCA protein assay kit(Pierce Biotechnology, IL, USA)를 사용하여 단백질을 정량하였고 동량의 단백질(15 μg)을 분석에 사용하였다. 전기영동은 8% SDS-PAGE를사용하였고 PVDF membrane에 단백질을 transfer하였으며, transfer한 membrane은 ECL 시약으로 발색하였다.Washed platelets (2.5x108/mL) were pretreated with steppogenin (50, 100, 150, 200 μM) at various concentrations at 37°C for 3 minutes, then aggregation was induced with 2.5 μg/mL collagen and reacted for 5 minutes. . After that, the reaction was stopped by adding the same amount of lysis buffer. For platelet lysate, protein was quantified using BCA protein assay kit (Pierce Biotechnology, IL, USA), and the same amount of protein (15 μg) was used for analysis. For electrophoresis, 8% SDS-PAGE was used, and the protein was transferred to a PVDF membrane, and the transferred membrane was developed with ECL reagent.

자. Cyclicnucleotides 측정ruler. Cyclicnucleotides measurement

세척 혈소판(2.5x108/mL)에 여러 농도의 steppogenin(50, 100, 150, 200 μM)을 첨가하여 37℃에서 3분간 전 처리한 후, 2.5 μg/mL collagen으로 응집을 유도하고 5분간 응집반응을 수행하였다. 그 후 1M HCl을 첨가하여 반응을 정지하고, cAMP 및 cGMP EIA kit를 사용하여 ELISA reader(TECAN, Salzburg, Austria)로 분석하였다.Washed platelets (2.5x108/mL) were pretreated with steppogenin (50, 100, 150, 200 μM) of various concentrations at 37°C for 3 minutes, then aggregation was induced with 2.5 μg/mL collagen and agglutination reaction for 5 minutes was performed. Then, 1M HCl was added to stop the reaction, and an ELISA reader (TECAN, Salzburg, Austria) was analyzed using cAMP and cGMP EIA kit.

차. 통계분석car. statistical analysis

측정된 모든 실험결과들은 mean±SEM로 처리하여 analysis of variance(ANOVA)로 분석하였다. 그룹 간의 평균에 유의적인 차이가 있을 경우, Newman-Keuls method로 비교하여 각 그룹 간에 표기하였다. p<0.05일 때 유의적인 의미가 있는 것으로 판단하였다.All measured experimental results were treated as mean±SEM and analyzed by analysis of variance (ANOVA). If there was a significant difference in the mean between groups, it was compared with the Newman-Keuls method and marked between each group. When p<0.05, it was judged to have a significant meaning.

2. 결과 및 고찰2. Results and Discussion

가. Steppogenin이 혈소판 응집과 세포독성에 미치는 효과go. Effect of Steppogenin on Platelet Aggregation and Cytotoxicity

Cudrania tricuspidata 추출물은 오래전부터 항염, 항산화, 항암등 다양한 생리활성이 보고된 바가 있고, 혈소판에 미치는 효과에 대한 연구 또한 최근에 수행되어 보고된 바 있다. 하지만, 추출물 유래 단일 성분에 대한 규명은 아직 보고되지 않았다. 따라서 본 연구에서는 Cudrania tricuspidata 추출물 유래 성분인 steppogenin(도 1 참조)의 항 혈소판 효과와 그 억제기전을 명확히 규명하고자 하였다. Steppogenin의 혈소판억제 활성을 확인하기 위하여, collagen, thrombin, 그리고 U46619를 agonist로 사용하였다. Cudrania tricuspidata extract has long been reported to have various physiological activities such as anti-inflammatory, antioxidant, and anticancer, and studies on its effect on platelets have also been reported recently. However, the identification of a single component derived from the extract has not yet been reported. Therefore, in this study, the antiplatelet effect of steppogenin (see Fig. 1), a component derived from Cudrania tricuspidata extract, and its inhibitory mechanism were clearly identified. To confirm the platelet inhibitory activity of Steppogenin, collagen, thrombin, and U46619 were used as agonists.

도 2는 혈소판 응집 및 세포 독성에 대한 스테포제닌의 효과를 나타낸 그래프인데, 도 2A는 콜라겐 유발 인간 혈소판 응집에 대한 스테포제닌의 효과이며, 도 2 B는 트롬빈 유도 인간 혈소판 응집에 대한 스테포제닌의 효과를 도시한 것이다 또한 도 2C는 U46619로 유도된 인간 혈소판 응집에 대한 스테포제닌의 효과를 도시한 것이며, 도 2D는 세포 독성에 대한 스테포제닌의 효과를 도시한 것이다. 여기서 혈소판 응집 및 세포 독성은 상술한 재료 및 방법에서 설명된 대로 수행되었으며, 데이터는 평균 ± 표준 편차 (n = 4)로 표시되었다. 도 2에서 보는 바와 같이 세 가지 agonist로 유도한 응집반응은 각각 96.0%, 96.1%, 그리고 91.3%를 각각 나타냈고 steppogenin(50, 100, 150, 200 μM)을 처리한 결과 농도 의존적인 억제양상을 확인하였다(도 2A, 도 2B, 도 2C). steppogenin은 thrombin 유도 혈소판응집반응에서 가장 효과가 낮았고 300 μM의 농도에서 최대 억제율을 나타냈다(도 2B). Steppogenin은 세 가지 agonist 중 collagen 유도 혈소판응집반응에서 가장 억제효율이 뛰어났기 때문에 collagen유도 혈소판응집반응에 대한 효과를 중점으로 실험을 진행하였다. Steppogenin의 세포 독성을 평가하기 위하여 lactate dehydrogenase(LDH) leakage를 수행하였다, 인체 혈소판에 steppogenin(50, 100, 150, 200 μM)을 처리하여 LDH leakage를 분석한 결과 유의성을 나타내지 않았다(도 2D). Cudrania tricuspidata 추출물의 경우 collagen으로 유도한 rat 혈소판 응집반응에서 억제효과를 보였으며, 500 μg/mL의 농도에서 86.5%의 억제율을 나타냈다.2 is a graph showing the effect of Stepogenin on platelet aggregation and cytotoxicity, FIG. 2A is the effect of Stepogenin on collagen-induced human platelet aggregation, and FIG. 2B is Stepogenin on thrombin-induced human platelet aggregation. Figure 2C shows the effect of stepogenin on U46619-induced human platelet aggregation, and Figure 2D shows the effect of stepogenin on cytotoxicity. Here, platelet aggregation and cytotoxicity were performed as described in the materials and methods described above, and data are expressed as mean ± standard deviation (n = 4). As shown in FIG. 2, the aggregation reactions induced by the three agonists were 96.0%, 96.1%, and 91.3%, respectively, respectively, and as a result of treatment with steppogenin (50, 100, 150, 200 μM), a concentration-dependent inhibition pattern was obtained. was confirmed (Fig. 2A, Fig. 2B, Fig. 2C). Steppogenin had the lowest effect on thrombin-induced platelet aggregation and showed the maximum inhibition rate at a concentration of 300 μM (Fig. 2B). Among the three agonists, Steppogenin had the highest inhibitory efficiency in the collagen-induced platelet aggregation reaction, so the experiment was conducted focusing on the effect on the collagen-induced platelet aggregation reaction. Lactate dehydrogenase (LDH) leakage was performed in order to evaluate the cytotoxicity of Steppogenin. Human platelets were treated with steppogenin (50, 100, 150, 200 μM) to analyze LDH leakage. As a result, it did not show significance (Fig. 2D). The Cudrania tricuspidata extract showed an inhibitory effect on the collagen-induced rat platelet aggregation reaction, and showed an inhibitory rate of 86.5% at a concentration of 500 μg/mL.

나. Steppogenin이 세포내 Ca2 +동원과 IP3RI와 ERK의 인산화에 미치는 효과me. Effects of Steppogenin on Intracellular Ca 2+ Mobilization and Phosphorylation of IP 3 RI and ERK

활성화된 혈소판의 세포질에는 Ca2 +의 농도([Ca2 +]i)가 증가하며, [Ca2 +]i는 혈소판 활성에 필수적인 secondary messenger로 작용하기 때문에, steppogenin이 세포내 [Ca2 +]i에 미치는 영향을 확인하였다. 도 3은 스테포제닌이 [Ca2 +]i 동원, IP3RI 및 ERK 인산화에 미치는 영향을 나타낸 그래프인데, 도 3 A는 콜라겐 유도 [Ca2 +]i 동원에 대한 스테포제닌의 효과이며, 도 3 B는 콜라겐 유도 IP3RI(Ser1756) 인산화에 대한 스테포제닌의 효과이며, 도 3 C는 콜라겐 유발 ERK (1/2) 인산화에 대한 스테포제닌의 효과이다. 여기서 [Ca2+]i 동원 및 Weston blot은 상술한 재료 및 방법에서 설명된 대로 수행되었고, 데이터는 평균 ± 표준 편차 (n = 4)로 표시되었다. 도 3에서 보는 바와 같이, Collagen으로 자극한 인체 혈소판은(도 3A) 640.4±11.2 nM로 강하게 증가하였고, steppogenin(50, 100, 150, 200 μM)을 처리한 결과 농도 의존적인 억제양상을 나타냈다. 세포내 Ca2 +의 농도는 endoplasmic reticulum의 membrane에 존재하는 inositol-1,4,5-triphosphate receptor type I(IP3RI)의 인산화에 의해 억제된다. 따라서, steppogenin이 IP3RI의 인산화에 미치는 영향을 확인한 결과, steppogenin은 IP3RI의 Ser1756위치의 인산화를 증가시켰다(도 3B). Mitogen-activated protein kinase중 하나인 ERK는 인체 혈소판에서 세포외부의 Ca2 +을 세포내부로 유입시키는 작용에 관여하는 것으로 알려져 있고, agonist의 자극에 의해서 인산화 되어 혈소판의 활성에 기여한다. Collagen으로 자극한 인체혈소판은 ERK의 인산화를 강하게 유발하였고, steppogenin(50, 100, 150, 200 μM)을 처리한 결과 농도 의존적인 억제양상을 나타냈다(도 3C).In the cytoplasm of activated platelets, the concentration of Ca 2+ ([Ca 2+ ] i ) increases, and [Ca 2+ ] i acts as an essential secondary messenger for platelet activity, so steppogenin acts as an intracellular [Ca 2+ ] The effect on i was confirmed. 3 is a graph showing the effect of stefogenin on [ Ca 2 + ] i mobilization, IP 3 RI and ERK phosphorylation . , FIG. 3B is the effect of stepogenin on collagen-induced IP 3 RI (Ser 1756 ) phosphorylation, and FIG. 3C is the effect of stepogenin on collagen-induced ERK (1/2) phosphorylation. Here, [Ca 2+ ] i mobilization and Weston blots were performed as described in Materials and Methods above, and data are presented as mean ± standard deviation (n = 4). As shown in FIG. 3 , human platelets stimulated with collagen ( FIG. 3A ) were strongly increased to 640.4±11.2 nM, and treatment with steppogenin (50, 100, 150, 200 μM) showed a concentration-dependent inhibition pattern. The concentration of intracellular Ca 2+ is inhibited by phosphorylation of inositol - 1,4,5-triphosphate receptor type I (IP 3 RI) present in the membrane of the endoplasmic reticulum. Therefore, as a result of confirming the effect of steppogenin on phosphorylation of IP 3 RI, steppogenin increased phosphorylation of the Ser 1756 position of IP 3 RI ( FIG. 3B ). ERK, one of the mitogen-activated protein kinases, is known to be involved in the influx of extracellular Ca 2+ into the cell from human platelets, and is phosphorylated by agonist stimulation, thereby contributing to platelet activation. Collagen-stimulated human platelets strongly induced ERK phosphorylation, and as a result of treatment with steppogenin (50, 100, 150, 200 μM), a concentration-dependent inhibition pattern was shown ( FIG. 3C ).

다. Steppogenin이 Thromboxane A2의 방출과 cPLA2의 인산화에 미치는 효과all. Effect of Steppogenin on Release of Thromboxane A 2 and Phosphorylation of cPLA2

혈소판 내부에서 합성되는 TXA2는 혈소판 외부로 방출되어 방출한 혈소판과, 순환하는 혈소판에 agonist로 작용한다. 따라서 collagen으로 자극한 혈소판에 steppogenin(50, 100, 150, 200 μM)을 처리하여 TXA2의 합성에 미치는 영향을 평가하였다. 그 결과 steppogenin은 collagen으로 증가된 TXA2 생성을 농도 의존적으로 억제하였다(도 4A). 도 4는 TXA2 생성 및 cPLA2 인산화에 대한 스테포제닌의 효과를 나타낸 그래프인데, 도 4A는 콜라겐 유도 TXA2 생성에 대한 스테포제닌의 효과이며, 도 4B는 콜라겐 유도 cPLA2(Ser505) 인산화에 대한 스테포제닌의 효과이다. 여기서 TXA2 생성 및 Western blot의 측정은 재료 및 방법에 설명된 대로 수행되었고, 데이터는 평균 ± 표준 편차 (n = 4)로 표시되었다. Steppogenin이 억제하는 TXA2의 합성에 대해 정확한 기전을 확인하기 위하여 cPLA2의 활성을 분석하였다. cPLA2는 세포질에 존재하며 Ca2 +과 결합한 후 세포막으로 이동하여 Ser505 위치가 인산화 되어 효소활성을 갖는다. 그리고 cPLA2는 작용을 통해 생성된 arachidonic acid로부터 TXA2가 합성된다. 따라서, steppogenin이 cPLA2에 미치는 영향을 확인하기 위해서 cPLA2의 인산화를 확인하였다. Collagen으로 자극한 인체혈소판은 cPLA2의 Ser505위치를 인산화 시켰고, steppogenin은 농도 의존적인 억제 양상을 나타냈다(도 4B). 따라서 steppogenin이 억제하는 TXA2의 방출은 cPLA2의 인산화 억제작용을 통한 작용임을 규명하였다.TXA 2 synthesized inside platelets is released to the outside of platelets and acts as an agonist on the released platelets and circulating platelets. Therefore, the effect on the synthesis of TXA2 was evaluated by treating the collagen-stimulated platelets with steppogenin (50, 100, 150, 200 μM). As a result, steppogenin concentration-dependently inhibited TXA 2 production increased by collagen (FIG. 4A). Figure 4 is a graph showing the effect of Stepogenin on TXA 2 production and cPLA 2 phosphorylation, Figure 4A is the effect of Stepogenin on collagen-induced TXA 2 production, Figure 4B is collagen-induced cPLA 2 (Ser 505 ) Effect of Stepogenin on Phosphorylation. Here, measurements of TXA 2 production and Western blot were performed as described in Materials and Methods, and data were expressed as mean ± standard deviation (n = 4). In order to confirm the exact mechanism for the synthesis of TXA 2 inhibited by Steppogenin, the activity of cPLA 2 was analyzed. cPLA 2 exists in the cytoplasm, and after binding with Ca 2+ , moves to the cell membrane, and the Ser 505 position is phosphorylated to have enzymatic activity. And TXA 2 is synthesized from arachidonic acid generated through cPLA 2 action. Therefore, in order to confirm the effect of steppogenin on cPLA 2 , phosphorylation of cPLA 2 was confirmed. Collagen-stimulated human platelets phosphorylated the Ser 505 position of cPLA 2 , and steppogenin showed a concentration-dependent inhibition pattern (FIG. 4B). Therefore, it was confirmed that the release of TXA 2 inhibited by steppogenin is an action through the phosphorylation inhibitory action of cPLA 2 .

라. Steppogenin이 Fibronectin Adhesion과 VASP 인산화에 미치는 효과 La. Effect of Steppogenin on Fibronectin Adhesion and VASP Phosphorylation

혈장 단백질인 fibronectin은 혈소판 막의 integrin인 αIIb/β3와 결합하여 혈소판의 점착작용을 일으킨다. Steppogenin이 αIIb/β3의 활성에 미치는 영향을 평가하기 위하여 fibronectin adhesion을 분석하였다. 도 5는 fibronectin 점착 및 VASP 인산화에 대한 steppogenin의 효과를 나타낸 그래프인데, 도 5A는 콜라겐 유도 fibronectin 점착에 대한 스테포제닌의 효과이며, 도 5B는 콜라겐 유발 VASP (Ser157) 인산화에 대한 스테포제닌의 효과이며, 도 5C는 콜라겐 유발 VASP (Ser239) 인산화에 대한 스테포제닌의 효과이다. 여기서 fibrinogen 결합 및 fibronectin 점착의 측정은 재료 및 방법에 설명된 대로 수행되었고, 데이터는 평균 ± 표준 편차 (n = 4)로 표시되었다. 도 5에서 보는 바와 같이 Collagen의 자극은 αIIb/β3와 fibronectin과의 점착작용을 일으켰다(도 5A), 하지만 steppogenin(50, 100, 150, 200 μM)을 처리한 well에서는 농도 의존적인 억제활성이 나타났다(도 5A). 혈소판의 αIIb/β3를 조절하는 인자로는 vasodilator stimulated phosphoprotein(VASP)가 잘 알려져 있다. VASP는 인체혈소판에서 actin dynamic작용을 돕는 단백질로 αIIb/β3의 활성을 이끄는 작용을 한다. 하지만 VASP는 cyclic nucleotide인 cAMP와 cGMP에 의해서 Ser157과 Ser239가 인산화 되어 αIIb/β3의 활성을 잃게 만든다. 따라서, collagen으로 자극한 인체 혈소판에 steppogenin(50, 100, 150, 200 μM)을 처리하여 VASP의 인산화를 분석한 결과, VASP Ser157와 VASP Ser239에서 인산화의 증가를 확인하였다(도 5B, 도 5C).Plasma protein fibronectin binds to αIIb/β3, an integrin of platelet membrane, and causes platelet adhesion. To evaluate the effect of steppogenin on the activity of αIIb/β3, fibronectin adhesion was analyzed. 5 is a graph showing the effect of steppogenin on fibronectin adhesion and VASP phosphorylation, FIG. 5A is the effect of steppogenin on collagen-induced fibronectin adhesion, and FIG. effect, and FIG. 5C is the effect of Stepogenin on collagen-induced VASP (Ser239) phosphorylation. Here, measurements of fibrinogen binding and fibronectin adhesion were performed as described in Materials and Methods, and data were presented as mean ± standard deviation (n = 4). As shown in FIG. 5, collagen stimulation caused adhesion between αIIb/β3 and fibronectin (FIG. 5A), but concentration-dependent inhibitory activity was shown in wells treated with steppogenin (50, 100, 150, 200 μM). (Fig. 5A). As a factor regulating platelet αIIb/β3, vasodilator stimulated phosphoprotein (VASP) is well known. VASP is a protein that helps actin dynamic action in human platelets, leading to the activity of αIIb/β3. However, in VASP, Ser 157 and Ser 239 are phosphorylated by cAMP and cGMP, which are cyclic nucleotides, and the activity of αIIb/β3 is lost. Therefore, as a result of analyzing the phosphorylation of VASP by treating human platelets stimulated with collagen with steppogenin (50, 100, 150, 200 μM), it was confirmed that phosphorylation was increased in VASP Ser 157 and VASP Ser 239 (Fig. 5B, Fig. 5B, Fig. 5C).

마. Steppogenin이 Cyclic Nucleotides에 미치는 효과mind. Effect of Steppogenin on Cyclic Nucleotides

Cyclic nucleotides인 cAMP와 cGMP는 각각 protein kinase A(PKA)와 protein kinase G(PKG)를 활성화하고, 각각의 substrate를 인산화 시켜 혈소판의 활성을 저해하는 것으로 알려져 있다. 혈소판내 PKA와 PKG의 대표적인 substrate는 IP3RI와 VASP로 잘 알려져 있으며, 혈소판을 resting상태로 유지시켜 혈관을 순환할 수 있도록 작용한다. 이전의 실험에서 steppogenin은 IP3RI와 VASP의 인산화를 증가시켰기 때문에 cAMP와 cGMP의 농도와 관련 있을 것으로 생각하여, steppogenin으로 자극한 혈소판 내부의 cAMP와 cGMP농도를 분석하였다. 그 결과 collagen으로 자극한 인체 혈소판에서 steppogenin은 cyclic nucleotides의 농도를 증가시키는 것을 확인하였다. 도 6은 cyclic nucleotides에 대한 스테포제닌의 효과를 도시한 것인데, 도 6A는 cAMP 생산에 대한 스테포제닌의 효과이며, 도 6B는 cGMP 생산에 대한 스테포제닌의 효과를 표시한 것이다. 여기서 cAMP 및 cGMP의 측정은 재료 및 방법에 설명된 대로 수행되었으며, 데이터는 평균 ± 표준 편차 (n = 4)로 표시되었다. 도 6에서 보는 바와 같이 Steppogenin(50, 100, 150, 200μM)은 농도 의존적으로 cAMP와 cGMP의 농도를 증가시켰다(도 6A, 도 6B) 그리고, steppogenin이 증가시키는 cyclic nucloetides의 농도는 cGMP보다 cAMP에서 좀더 강하게 증가되었다. 이 결과를 통해 steppogenin은 혈소판내부의 cAMP와 cGMP를 증가시켜 항 혈소판작용을 한다는 것을 규명하였다. Cudrania tricuspidata 추출물은 collagen으로 유도한 rat 혈소판 응집반응에서 cGMP의 농도를 증가시켰지만 cAMP의 농도는 증가시키지 못했다. Cudrania tricuspidata 추출물의 결과는 steppogenin이 증가시키는 cAMP와 cGMP의 결과와는 차이를 보이는데, 이는 cyclic nucleotides를 분해하는 phosphodiesterase의 작용 차이로 추측되었다.Cyclic nucleotides, cAMP and cGMP, are known to activate protein kinase A (PKA) and protein kinase G (PKG), respectively, and phosphorylate their respective substrates to inhibit platelet activity. Representative substrates of PKA and PKG in platelets are well known as IP 3 RI and VASP, and they act to circulate blood vessels by maintaining platelets in a resting state. In the previous experiment, steppogenin increased the phosphorylation of IP 3 RI and VASP, so it was thought that it was related to the concentration of cAMP and cGMP, and the concentration of cAMP and cGMP inside the platelets stimulated with steppogenin was analyzed. As a result, it was confirmed that steppogenin increased the concentration of cyclic nucleotides in human platelets stimulated with collagen. Figure 6 shows the effect of stepogenin on cyclic nucleotides, Figure 6A is the effect of stepogenin on cAMP production, Figure 6B shows the effect of stepogenin on cGMP production. Here, measurements of cAMP and cGMP were performed as described in Materials and Methods, and data were presented as mean ± standard deviation (n = 4). As shown in FIG. 6, Steppogenin (50, 100, 150, 200 μM) increased the concentrations of cAMP and cGMP in a concentration-dependent manner ( FIGS. 6A and 6B ), and the concentration of cyclic nucloetides increased by steppogenin was higher in cAMP than in cGMP. increased more strongly. Through these results, it was confirmed that steppogenin has antiplatelet action by increasing cAMP and cGMP inside platelets. Cudrania tricuspidata extract increased the concentration of cGMP in the collagen-induced rat platelet aggregation reaction, but did not increase the concentration of cAMP. The results of Cudrania tricuspidata extract were different from the results of cAMP and cGMP, which steppogenin increased, and it was assumed that this was due to the difference in the action of phosphodiesterase that degrades cyclic nucleotides.

3.결론3. Conclusion

혈소판의 활성화는 inside-out signaling을 이끌고 세포내 Ca2 +분비와 함께 혈소판 αIIb/β3의 활성을 촉진한다. 활성화된 αIIb/β3는 adhesive protein인 fibronectin을 매개로 가교를 형성하여 견고한 지혈 마개를 형성한다. 본 연구에서는, steppogenin이 platelet aggregation에 미치는 영향을 평가하였다. Steppogenin은 collagen이 유도한 platelet aggregation을 강력하게 억제하였고 이 결과들은 이와 관련된 신호전달 분자인 IP3RI와 VASP의 인산화 조절을 통해서 발생한다는 것을 규명하였다. 따라서 steppogenin은 인체혈소판의 활성을 억제하는 물질로서 잠재적 가치가 있다고 여겨진다.Platelet activation leads to inside-out signaling and promotes platelet αIIb/β3 activation along with intracellular Ca 2+ secretion . Activated αIIb/β3 forms a strong hemostatic stopper by forming a cross-link through the adhesive protein fibronectin. In this study, the effect of steppogenin on platelet aggregation was evaluated. Steppogenin strongly inhibited platelet aggregation induced by collagen, and it was confirmed that these results occurred through the regulation of phosphorylation of IP 3 RI and VASP, which are related signaling molecules. Therefore, steppogenin is considered to have potential value as a substance that inhibits human platelet activity.

4.결과요약4. Summary of Results

Cudrania tricuspidata 추출물은 중국, 한국, 일본의 동아시아 전역에서 민족 의학에 사용된다. 한의학에서 꾸지뽕 나무는 습진, 유행성 이하선염, 결핵, 타박상, 불면증, 급성 관절염 치료에 사용되어왔다. 본 발명에서 꾸지뽕 나무뿌리 즉 Cudrania tricuspidata에서 어떤 화합물이 혈소판 응집 억제 효과가 있는지 조사 되었다. 이 발명을 통하여 인간 혈소판 응집에 대한 Cudrania tricuspidata의 steppogenin의 억제 메커니즘을 설명하려고 노력했다. 콜라겐 유도 인간 혈소판 응집 및 [Ca2 +]i 동원은 steppogenin에 의해 용량 의존적으로 억제되었으며, steppogenin에 의한 억제가 세포 외 신호 조절 키나아제 (ERK)와 inositol-1,4,5-triphosphate 수용체 유형 I (IP3RI) 인산화의 하향 조절 때문이라고 결론내렸다. 또한, steppogenin은 αIIb/β3 및 트롬 복산 A2 생성에 대한 콜라겐유도 피브로넥틴 부착을 억제했다. 따라서 본 발명을 통하여 steppogenin은 인간 혈소판 응집 억제 효과를 증명했으며, 이는 혈소판 유발성 심혈관 질환 예방에 사용 가능하다는 것을 말한다. Cudrania tricuspidata extract is used in folk medicine throughout East Asia in China, Korea and Japan. In oriental medicine, mulberry tree has been used to treat eczema, mumps, tuberculosis, bruises, insomnia, and acute arthritis. In the present invention, it was investigated whether any compound has an inhibitory effect on platelet aggregation in Cudrania tricuspidata, that is, Cudrania tricuspidata. Through this invention, we tried to explain the mechanism of inhibition of steppogenin from Cudrania tricuspidata on human platelet aggregation. Collagen-induced human platelet aggregation and [Ca 2+ ] i mobilization were dose-dependently inhibited by steppogenin, and steppogenin-induced inhibition of extracellular signal-regulated kinase (ERK) and inositol-1,4,5-triphosphate receptor type I ( IP 3 RI) was due to downregulation of phosphorylation. In addition, steppogenin inhibited collagen-induced fibronectin adhesion to αIIb/β3 and thromboxane A 2 production. Therefore, through the present invention, steppogenin has demonstrated the inhibitory effect of human platelet aggregation, which means that it can be used to prevent platelet-induced cardiovascular disease.

상술한 여러 가지 예로 본 발명을 설명하였으나, 본 발명은 반드시 이러한 예들에 국한되는 것이 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다. Although the present invention has been described with various examples described above, the present invention is not necessarily limited to these examples, and various modifications may be made within the scope without departing from the technical spirit of the present invention. Therefore, the examples disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these examples. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (6)

스테포제닌(Steppogenin)을 유효성분으로 함유하는 혈전성질환의 예방 또는 치료용 조성물Composition for the prevention or treatment of thrombotic diseases containing Steppogenin as an active ingredient 제1항에 있어서,
상기 스테포제닌은 꾸지뽕 나무 추출물인 것을 특징으로 하는 혈전성질환의 예방 또는 치료용 조성물
According to claim 1,
The Stepogenin is Composition for the prevention or treatment of thrombotic diseases, characterized in that it is an extract of Cuji mulberry tree
제2항에 있어서,
상기 꾸지뽕 나무 추출물의 농도는 500 μg/mL인 것을 특징으로 하는 혈전성질환의 예방 또는 치료용 조성물
3. The method of claim 2,
The composition for the prevention or treatment of thrombotic diseases, characterized in that the concentration of the Cuji mulberry extract is 500 μg/mL
제2항 또는 제3항에 있어서,
상기 꾸지뽕 나무 추출물은 꾸지뽕 나무뿌리 추출물인 것을 특징으로 하는 혈전성질환의 예방 또는 치료용 조성물
4. The method of claim 2 or 3,
The Cuji mulberry tree extract is a composition for the prevention or treatment of thrombotic diseases, characterized in that the Cuji mulberry root extract
스테포제닌(Steppogenin)을 유효성분으로 함유하는 혈전성질환의 예방 또는 개선용 건강기능식품Health functional food for the prevention or improvement of thrombotic diseases containing Steppogenin as an active ingredient 제4항에 있어서,
상기 스테포제닌은 꾸지뽕 나무 또는 꾸지뽕 나무뿌리 추출물인 것을 특징으로 하는 혈전성질환의 예방 또는 개선용 건강기능식품
5. The method of claim 4,
The stepogenin is a health functional food for the prevention or improvement of thrombotic diseases, characterized in that the extract of Cuji mulberry tree or Cuji mulberry root extract
KR1020200100743A 2020-08-11 2020-08-11 Composition comprising steppogenin for prevention or treatment of thrombotic disorders KR20220020476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200100743A KR20220020476A (en) 2020-08-11 2020-08-11 Composition comprising steppogenin for prevention or treatment of thrombotic disorders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200100743A KR20220020476A (en) 2020-08-11 2020-08-11 Composition comprising steppogenin for prevention or treatment of thrombotic disorders

Publications (1)

Publication Number Publication Date
KR20220020476A true KR20220020476A (en) 2022-02-21

Family

ID=80475110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200100743A KR20220020476A (en) 2020-08-11 2020-08-11 Composition comprising steppogenin for prevention or treatment of thrombotic disorders

Country Status (1)

Country Link
KR (1) KR20220020476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220158881A (en) * 2021-05-24 2022-12-02 극동대학교 산학협력단 Composition comprising Euchrestaflavone B for prevention or treatment of thrombotic disorders
KR102563495B1 (en) * 2022-08-19 2023-08-10 경북대학교 산학협력단 A composition for preventing, alleviating, or treating cancer comprising steppogenin as an active ingredient
WO2024039183A1 (en) * 2022-08-19 2024-02-22 경북대학교 산학협력단 Pharmaceutical composition for inhibiting angiogenesis comprising stepogenin as active ingredient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672138B1 (en) 2015-07-29 2016-11-03 원광대학교산학협력단 Composition comprising Cudraflavanone D or Steppogenin isolated from Cudrania tricuspidata as a standard for the preventing and treating of inflammatory diseases
KR102020709B1 (en) 2017-05-25 2019-09-10 건국대학교 산학협력단 A Composition comprising the gintonin for preventing or treating thrombosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672138B1 (en) 2015-07-29 2016-11-03 원광대학교산학협력단 Composition comprising Cudraflavanone D or Steppogenin isolated from Cudrania tricuspidata as a standard for the preventing and treating of inflammatory diseases
KR102020709B1 (en) 2017-05-25 2019-09-10 건국대학교 산학협력단 A Composition comprising the gintonin for preventing or treating thrombosis

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321.
Chin, H. S. and Nam, K. W. (2010) Inhibitory Effects of Steppogenin and Oxyresveratrol from Moms alba L. against Yeast a-Glucosidase. Yakhak Hoeji 54: 398-402.
Estevez, B., Shen, B. and Du, X. (2015) Targeting integrin and integrin signaling in treating thrombosis. Arterioscler. Thromb. Vasc. Biol. 35: 24-29.
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450.
Hantgan, R. R., Taylor, R. G. and Lewis, J. C. (1985) Platelets interact with fibrin only after activation. Blood 65: 1299-1311.
Kim, D. C., Quang, T. H., Oh, H. and Kim, Y. C. (2017) Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules 22: 2130; doi:10.3390/molecules22122130.
Kramer, R. M., Roberts, E. F., Um, S. L., Brsch-Haubold, A. G., Watson, S. P., Fisher, M. J. and Jakubowski, J. A. (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271: 27723-27729.
Kuo, J. F., Andersson, R. G., Wise, B. C., Mackerlova, L., Salomonsson, I. and Brackett, N. L. (1980) Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc. Natl. Acad. Sci. USA. 77: 7039-7043.
Kwon, H. W. (2018) Inhibitory effects of PD98059, SB203580, and SP600125 on α-and δ-granule release and intracellular Ca2+levels in human platelets. Biomed. Sci. Lett. 24: 253-262.
Laurent, V., Loisel, T. P., Harbeck, B., Wehman, A., Grbe, L., Jockusch, B. M. and Carlier, M. F. (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell. Biol. 144: 1245-1258.
McNicol, A. and Shibou, T. S. (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26.
Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M. and Samuelsson, B. (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261: 558-56
Nishikawa, M., Tanaka, T. and Hidaka, H. (1980) Ca2+ -calmodulin- dependent phosphorylation and platelet secretion. Nature 287: 863-865.
Patrignani, P., Sciulli, M. G., Manarini, S., Santini, G., Cerletti, C. and Evangelista, V. (1999) COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J. Physiol. Pharmacol. 50: 661-667.
Phillips, D. R., Nannizzi-Alaimo, L. and Prasad, K. S. (2001) Beta3 tyrosine phosphorylation in alphaIIb beta3 (platelet membrane GPIIb-IIIa) outside-in integrin signaling. Thromb. Haemost. 86: 246-258.
Ro, J. Y. and Cho, H. J. (2019) Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets. J. Korea. Acad. Industr. Coop. Soc. 20: 298-305.
Ruggeri, Z. M. and Mendolicchio, G. L. (2007) Adhesion mechanisms in platelet function. Circ. Res. 100: 1673-1685.
Schwarz, U., R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62: 1153-1161.
Sudo, T. and Ito, H., Kimura, Y. (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14: 381-390.
Varga-Szabo, D., Braun, A. and Nieswandt, B. (2009). Calcium signaling in platelets. J. Thromb. Haemost. 7: 1057- 1066.
Xin, L. T., Yue, S. J., Fan, Y. C., Wu, J. S., Yan, D., Guan, H. S. and Wang, C. Y. (2017) Cudrania tricuspidata: an updated review on ethnomedicine, phytochemistry and pharmacology. RSC advances 7: 31807-31832.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220158881A (en) * 2021-05-24 2022-12-02 극동대학교 산학협력단 Composition comprising Euchrestaflavone B for prevention or treatment of thrombotic disorders
KR102563495B1 (en) * 2022-08-19 2023-08-10 경북대학교 산학협력단 A composition for preventing, alleviating, or treating cancer comprising steppogenin as an active ingredient
WO2024039164A1 (en) * 2022-08-19 2024-02-22 경북대학교 산학협력단 Composition for preventing, ameliorating, or treating cancer comprising steppogenin as active ingredient
WO2024039183A1 (en) * 2022-08-19 2024-02-22 경북대학교 산학협력단 Pharmaceutical composition for inhibiting angiogenesis comprising stepogenin as active ingredient

Similar Documents

Publication Publication Date Title
KR20220020476A (en) Composition comprising steppogenin for prevention or treatment of thrombotic disorders
Choi et al. Comparative effect of quercetin and quercetin‐3‐O‐β‐d‐glucoside on fibrin polymers, blood clots, and in rodent models
Felixsson et al. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5‐HT2A receptors: an in vitro study
Patel et al. Inhibition of RhoA/Rho kinase by ibuprofen exerts cardioprotective effect on isoproterenol induced myocardial infarction in rats
Wang et al. Effect of allopurinol on myocardial energy metabolism in chronic heart failure rats after myocardial infarct
Kim et al. Schisandra chinensis and Morus alba synergistically inhibit in vivo thrombus formation and platelet aggregation by impairing the glycoprotein VI pathway
Nam et al. Morin hydrate inhibits platelet activation and clot retraction by regulating integrin αIIbβ3, TXA2, and cAMP levels
KR101962008B1 (en) Composition comprising compound isolated from Tenebrio molitor larva for antithrombosis
Kim et al. Novel factor Xa inhibitor, maslinic acid, with antiplatelet aggregation activity
KR102619806B1 (en) Composition comprising Euchrestaflavone B for prevention or treatment of thrombosis
KR101758718B1 (en) Composition comprising compound isolated from Protaetia brevitarsis seulensis larva for antithrombosis
KR20190042999A (en) Composition for Prophylaxis and Treatment of Osteoporosis Comprising Abeliophyllum Distichum Extract
Shin et al. Inhibitory actions of steppogenin on platelet activity through regulation of glycoprotein IIb/IIIa and Ca 2+ mobilization
KR101693725B1 (en) Composition for inhibiting angiogenesis comprising Broussonetia kazinoki extract
Pan et al. Hydroxyls on the B ring and gallic acyl are essential for catechins to restrain ADP-induced thrombosis
KR101811588B1 (en) Composition comprising compound isolated from Oxya chinensis sinuosa for antithrombosis
KR100464876B1 (en) A composition for preventing formation of thrombosis containing Cordycepin isolated from Cordyceps genus
KR101828294B1 (en) Composition comprising compound isolated from Protaetia brevitarsis seulensis larva for antithrombosis
KR102529768B1 (en) A pharmaceutical composition for preventing or treating thrombosis comprising euchrestaflavonone a
Cho et al. Spinach saponin-enriched fraction inhibits platelet aggregation in cAMP-and cGMP-dependent manner by decreasing TXA 2 production and blood coagulation
KR20170058345A (en) Hydrogen peroxide sensitive bronated polymeric micelle targeting thrombus and compositions for prevention or treatment of thrombosis comprising the same
KR102020709B1 (en) A Composition comprising the gintonin for preventing or treating thrombosis
KR20160045665A (en) Anti-thrombus composition containing ginseng fruit extracts
Shin et al. Antiplatelet effect of cudraxanthone L isolated from Cudrania tricuspidata via inhibition of phosphoproteins
Ohkura Potential applications of Chinese herbal medicines with hemostatic properties

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application