KR20220019513A - Power supply apparatus for spent fuel cooling device of decommision nuclear power plant - Google Patents

Power supply apparatus for spent fuel cooling device of decommision nuclear power plant Download PDF

Info

Publication number
KR20220019513A
KR20220019513A KR1020200100004A KR20200100004A KR20220019513A KR 20220019513 A KR20220019513 A KR 20220019513A KR 1020200100004 A KR1020200100004 A KR 1020200100004A KR 20200100004 A KR20200100004 A KR 20200100004A KR 20220019513 A KR20220019513 A KR 20220019513A
Authority
KR
South Korea
Prior art keywords
spent fuel
storage tank
cooling
facility
power supply
Prior art date
Application number
KR1020200100004A
Other languages
Korean (ko)
Inventor
조훤기
이제호
장훈철
현용민
박정우
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020200100004A priority Critical patent/KR20220019513A/en
Publication of KR20220019513A publication Critical patent/KR20220019513A/en
Priority to KR1020230053616A priority patent/KR20230062501A/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • G21C15/187Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps using energy from the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/04Means for controlling flow of coolant over objects being handled; Means for controlling flow of coolant through channel being serviced, e.g. for preventing "blow-out"
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/003Nuclear facilities decommissioning arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • G21F5/012Fuel element racks in the containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/143Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a power supply apparatus for a spent fuel cooling facility of a decommission nuclear power plant. The power supply apparatus for the spent fuel cooling facility of the decommission nuclear power plant comprises: a spent fuel pool where a storage space, in which cooling water is filled, is formed therein after removing internal facilities and structures of a reactor containment building of the decommission nuclear power plant; a storage rack installed inside the spent fuel pool and in which spent fuel is stored; a cooling pipe installed in the spent fuel pool so that cooling water can move; a cooling facility connected to the cooling pipe and installed outside the spent fuel pool; and a power supply unit supplying power to the cooling facility.

Description

해체 원전의 사용후 연료 냉각 설비 전원 공급장치{POWER SUPPLY APPARATUS FOR SPENT FUEL COOLING DEVICE OF DECOMMISION NUCLEAR POWER PLANT}POWER SUPPLY APPARATUS FOR SPENT FUEL COOLING DEVICE OF DECOMMISION NUCLEAR POWER PLANT

본 발명은 비상시 사용후 연료 저장조의 냉각수의 냉각이 가능한 해체 원전의 사용후 연료 냉각 설비 전원 공급장치에 관한 것이다.The present invention relates to a power supply device for a spent fuel cooling facility of a decommissioned nuclear power plant capable of cooling the cooling water of a spent fuel storage tank in an emergency.

일반적으로 원자력 발전용으로 사용된 후의 핵 연료(이하, "사용후 연료"라 칭함)는 특수 설계된 저장 용기에 수납된 상태에서 저장 장소에 보관된다.In general, nuclear fuel after being used for nuclear power generation (hereinafter, referred to as "spent fuel") is stored in a storage place in a state stored in a specially designed storage container.

사용후 연료의 저장 방법은 크게 습식 저장 방법과 건식 저장 방법으로 구분된다. 1980년대 중반까지는 적용 경험이 풍부한 습식 저장 방법이 주로 이용되어 왔으나, 용량 확장과 장기 관리 측면에서 유리한 건식 저장 방법이 채택되었으며, 많은 나라에서 건식 저장 방법을 적용한 건식 저장 시설이 이용되고 있다.A method of storing spent fuel is largely divided into a wet storage method and a dry storage method. Until the mid-1980s, a wet storage method with extensive application experience was mainly used, but a dry storage method advantageous in terms of capacity expansion and long-term management was adopted, and dry storage facilities applying the dry storage method are used in many countries.

한편, 해체가 결정된 원전의 사용후 연료는 사용후 연료 저장조에 이송되어 저장 및 보관된다. On the other hand, the spent fuel of the nuclear power plant that has been decided to be decommissioned is transferred to the spent fuel storage tank and stored and stored.

그러나, 사용후 연료는 해체가 결정된 원자로 건물의 외부에서 사용후 연료의 저장을 위한 연료 저장조를 별도로 설치해야하는 바, 사용후 연료 저장을 위한 추가 공간의 확보가 필요한 문제점이 있다. However, there is a problem in that it is necessary to separately install a fuel storage tank for storage of the spent fuel outside the nuclear reactor building, which has been decommissioned, for the spent fuel, and thus it is necessary to secure an additional space for storing the spent fuel.

또한, 사용후 연료를 저장한 저장조의 내부에 충진된 냉각수의 온도가 비정상적으로 상승되는 경우, 일정 온도 미만으로 냉각하는 것이 필요하지만, 냉각수의 적절한 온도 관리가 불가능하여 냉각수의 원활한 냉각이 이루어지지 않는 문제점이 있다. In addition, when the temperature of the coolant filled in the storage tank storing the spent fuel is abnormally increased, it is necessary to cool it below a certain temperature. There is a problem.

따라서, 냉각수의 온도를 일정온도 미만으로 냉각하고자 냉각 설비를 설치한다. 그러나, 정전 등의 사고로 냉각 설비에 전원이 공급되지 않아 냉각 설비를 구동하지 못하는 경우, 냉각수를 적절한 온도로 냉각하지 못하여 안전사고가 발생될 수 있는 문제점이 있다. Accordingly, a cooling facility is installed in order to cool the temperature of the cooling water below a certain temperature. However, when power is not supplied to the cooling facility due to an accident such as a power outage and the cooling facility cannot be driven, the cooling water cannot be cooled to an appropriate temperature, thereby causing a safety accident.

본 발명의 일 실시예는, 정전 등의 비상시에도 냉각 설비에 원활한 전원 공급이 가능하여 냉각수의 온도를 적절하게 냉각 가능한 해체 원전의 사용후 연료 냉각 설비 전원 공급장치를 제공하고자 한다.An embodiment of the present invention is to provide a power supply device for a fuel cooling facility after use of a decommissioned nuclear power plant capable of properly cooling the temperature of cooling water by smoothly supplying power to the cooling facility even in an emergency such as a power outage.

본 발명의 일 실시예는, 해체 원전의 원자로 격납 건물의 내부 설비와 구조물을 제거하고 내부에 저장 공간이 형성되며 저장 공간에는 냉각수가 충진되는 사용후 연료 저장조와, 사용후 연료 저장조의 내부에 설치되어 사용후 연료가 저장되는 저장랙과, 사용후 연료 저장조에 냉각수가 이동 가능하게 설치되는 냉각 배관과, 냉각 배관에 연결되어 사용후 연료 저장조의 외부에 설치되는 냉각 설비와, 냉각 설비에 전원을 공급하는 전원 공급부를 포함한다.An embodiment of the present invention removes the internal facilities and structures of a nuclear reactor containment building of a decommissioned nuclear power plant, a storage space is formed therein, and a spent fuel storage tank filled with cooling water in the storage space and installed inside the spent fuel storage tank A storage rack where the spent fuel is stored, a cooling pipe for movably installed cooling water in the spent fuel storage tank, a cooling facility connected to the cooling pipe and installed outside the spent fuel storage tank, and power to the cooling facility Includes a power supply that supplies.

전원 공급부는, 사용후 연료 저장조의 외부에 설치되어 냉각 설비에 전원을 공급하는 태양광 발전 설비를 포함할 수 있다.The power supply unit may include a solar power generation facility installed outside the spent fuel storage tank to supply power to the cooling facility.

전원 공급부는, 사용후 연료 저장조의 외부에 설치되어 냉각 설비에 전원을 공급하는 풍력 발전 설비를 포함할 수 있다.The power supply unit may include a wind power generation facility installed outside the spent fuel storage tank to supply power to the cooling facility.

사용후 연료 저장조의 외부에 설치되며, 냉각 설비가 내부에 설치되는 보조 저장조를 더 포함할 수 있다.It is installed outside the spent fuel storage tank, the cooling equipment may further include an auxiliary storage tank installed therein.

풍력 발전 설비와 태양광 발전 설비의 각각에 연결되어 냉각 설비에 공급되는 전원을 저장하는 배터리부재를 더 포함할 수 있다.It may further include a battery member connected to each of the wind power generation facility and the solar power generation facility to store power supplied to the cooling facility.

배터리부재는, 사용후 연료 저장조의 내부에 설치되는 제1 배터리와, 보조 저장조의 내부에 설치되는 제2 배터리를 포함할 수 있다.The battery member may include a first battery installed in the spent fuel storage tank and a second battery installed in the auxiliary storage tank.

제1 배터리는 상기 사용후 연료 저장조의 내부에 설치되어, 태양광 발전 설비와 상기 냉각 설비와의 사이에 전원선으로 연결될 수 있다.The first battery may be installed in the spent fuel storage tank and connected between the solar power generation facility and the cooling facility by a power line.

제2 배터리는 보조 저장조의 내부에 설치되어, 풍력 발전 설비와 냉각 설비와의 사이에 전원선으로 연결될 수 있다.The second battery may be installed inside the auxiliary storage tank and connected between the wind power generation facility and the cooling facility by a power line.

본 발명의 일 실시예에 따르면, 외부 전원 공급이 없는 상태에서 태양광 발전 설비와 풍력 발전 설비를 이용하여 냉각 설비에 전원을 공급하여, 외부 전원 공급이 없는 비상시에도 냉각 설비를 안정적으로 구동한 바, 유지 보수 비용의 절감과 냉각수의 온도 상승에 사고 발생을 효과적으로 방지할 수 있다. According to an embodiment of the present invention, power is supplied to the cooling facility by using a solar power generation facility and a wind power generation facility in a state where there is no external power supply, and the cooling facility is stably driven even in an emergency without an external power supply. , it can reduce maintenance costs and effectively prevent accidents caused by the temperature rise of the coolant.

도 1은 본 발명의 일 실시예에 따른 해체 원전의 사용후 연료 냉각 설비 전원 공급장치를 개략적으로 도시한 요부 도면이다.
도 2는 본 발명의 일 실시예에 따른 원자로 격납 건물의 내부 설비와 구조물을 제거하고, 내부에 보강 구조가 시공된 상태를 개략적으로 도시한 단면도이다.
도 3은 도 2의 보강 구조에 저장랙이 설치된 상태를 개략적으로 도시한 단면도이다.
도 4는 도 3의 저장랙이 설치된 상태에서 냉각수가 충진된 상태를 개략적으로 도시한 단면도이다.
1 is a schematic diagram of a main part of a power supply device for a spent fuel cooling facility of a decommissioned nuclear power plant according to an embodiment of the present invention.
2 is a cross-sectional view schematically illustrating a state in which the internal facilities and structures of the nuclear reactor containment building according to an embodiment of the present invention are removed, and a reinforcing structure is constructed therein.
3 is a cross-sectional view schematically illustrating a state in which the storage rack is installed in the reinforcement structure of FIG.
4 is a cross-sectional view schematically illustrating a state in which the cooling water is filled in the state in which the storage rack of FIG. 3 is installed.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and the same reference numerals are given to the same or similar components throughout the specification.

도 1은 본 발명의 일 실시예에 따른 해체 원전의 사용후 연료 냉각 설비 전원 공급장치를 개략적으로 도시한 요부 도면이다. 1 is a view schematically illustrating a main part of a power supply device for a spent fuel cooling facility of a decommissioned nuclear power plant according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 해체 원전의 사용후 연료 냉각 설비 전원 공급장치(200)는, 해체 원전의 원자로 격납 건물의 내부 설비와 구조물을 제거하고 내부에 저장 공간(20)이 형성되며 저장 공간(20)에는 냉각수가 충진되는 사용후 연료 저장조(100)와, 사용후 연료 저장조(100)의 내부에 설치되어 사용후 연료가 저장되는 저장랙(40)과, 사용후 연료 저장조(100)에 냉각수가 이동 가능하게 설치되는 냉각 배관(60)과, 냉각 배관(60)에 연결되어 사용후 연료 저장조의 외부에 설치되는 냉각 설비(70)와, 냉각 설비(70)에 전원을 공급하는 전원 공급부(110)를 포함한다.As shown in Figure 1, the spent fuel cooling facility power supply device 200 of the decommissioned nuclear power plant according to an embodiment of the present invention removes the internal facilities and structures of the nuclear reactor containment building of the decommissioned nuclear power plant, and a storage space therein A spent fuel storage tank 100 is formed and the storage space 20 is filled with cooling water, and a storage rack 40 installed inside the spent fuel storage tank 100 to store the spent fuel; A cooling pipe 60 in which cooling water is movably installed in the spent fuel storage tank 100, a cooling facility 70 connected to the cooling pipe 60 and installed outside the spent fuel storage tank, and a cooling facility 70 ) includes a power supply unit 110 for supplying power to the.

사용후 연료 저장조(100)는, 해체가 결정된 원전에서 원자로 격납 건물의 내부에 설치된 원자로 관련 내부 설비와 내부 설비와 관련된 기타 구조물 등을 제거한 상태로 마련될 수 있다.The spent fuel storage tank 100 may be provided in a state in which the nuclear reactor-related internal facilities and other structures related to the internal facilities installed inside the nuclear reactor containment building in the nuclear power plant to be dismantled are removed.

즉, 사용후 연료 저장조(100)는 원자로 격납 건물의 건물 바디(10)를 제외한 내부 설비와 구조물을 제거하여, 원자로 격납 건물의 내부를 저장 공간(20)이 형성된 빈 공간 형태로 마련되도록 설치될 수 있다.That is, the spent fuel storage tank 100 removes the internal facilities and structures except for the building body 10 of the nuclear reactor containment building, so that the interior of the nuclear reactor containment building is provided in the form of an empty space in which the storage space 20 is formed. can

저장 공간(20)은 건물 바디(10)의 내부에 원형의 공간으로 형성되는 것을 예시적으로 설명한다. 그러나 저장 공간(20)은 원형으로 반드시 한정되는 것은 아니고, 사용후 연료의 저장 형태에 따라 다각형 등의 저장 공간(20)으로 적절하게 변경 적용되는 것도 가능하다. 물론 저장 공간(20)은 원형과 다각형의 조합된 형태로 적용되는 것도 가능하다.The storage space 20 is exemplarily described as being formed as a circular space inside the building body 10 . However, the storage space 20 is not necessarily limited to a circular shape, and may be appropriately changed and applied to the storage space 20 such as a polygon according to the storage shape of the spent fuel. Of course, the storage space 20 may be applied in a combined form of a circle and a polygon.

도 2는 본 발명의 일 실시예에 따른 원자로 격납 건물의 내부 설비와 구조물을 제거하고, 내부에 보강 구조가 시공된 상태를 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically illustrating a state in which the internal facilities and structures of the nuclear reactor containment building according to an embodiment of the present invention are removed, and a reinforcing structure is constructed therein.

도 2에 도시된 바와 같이, 보강 구조(30)는, 사용후 연료 저장조(100)의 저장 공간(20)의 저면에 시공되며 저장랙(40)이 안착되는 저면 보강부(31)와, 저면 보강부(31)의 상측에 설치되며 저장랙(40)의 측면을 지지하는 측면 보강부(33)를 포함할 수 있다.As shown in FIG. 2 , the reinforcement structure 30 is constructed on the bottom surface of the storage space 20 of the spent fuel storage tank 100 , and the bottom reinforcement part 31 on which the storage rack 40 is seated, the bottom surface It is installed on the upper side of the reinforcement part 31 and may include a side reinforcement part 33 for supporting the side of the storage rack 40 .

저면 보강부(31)는, 사용후 연료 저장조(100)의 저면에 시공되는 보강 콘크리트가 시공되는 것을 예시적으로 설명한다. 그러나, 저면 보강부(31)는 보강 콘크리트로 반드시 한정되는 것은 아니고, 벽돌 등의 내화물 등의 소정의 보강 구조가 적용되는 것으로 적절하게 변경 적용되는 것도 가능하다.The bottom reinforcement part 31 exemplarily describes that the reinforced concrete to be constructed on the bottom surface of the spent fuel storage tank 100 is constructed. However, the bottom reinforcement part 31 is not necessarily limited to reinforced concrete, and it is also possible to appropriately change and apply a predetermined reinforcement structure such as a refractory material such as bricks.

이러한 저면 보강부(31)가 시공된 위치의 측면에서 저장 공간(20)의 내부에는 측면 보강부(33)가 시공될 수 있다.The side reinforcement part 33 may be constructed inside the storage space 20 from the side of the position where the bottom reinforcement part 31 is constructed.

측면 보강부(33)는 저장 공간(20)의 하부에서 저면 보강부(31)가 시공된 위치의 근접 위치에서 저장 공간(20)의 내벽면의 둘레를 따라 라운드 형상으로 시공될 수 있다.The side reinforcement part 33 may be constructed in a round shape along the circumference of the inner wall surface of the storage space 20 at a position close to the position where the bottom reinforcement part 31 is constructed in the lower part of the storage space 20 .

측면 보강부(33)는 사용후 연료 저장조(100)의 측면 둘레를 따라 저장 공간(20)의 내벽면을 따라 시공되는 것으로, 보강 콘크리트로 시공될 수 있다. 즉, 측면 보강부(33)는 저면 보강부(31)의 재질과 동일 또는 유사 재질로 형성되는 것으로, 벽돌 등의 내화물 등의 소정의 보강 구조가 적용되는 것으로 적절하게 변경 적용되는 것도 가능하다.The side reinforcement 33 is constructed along the inner wall surface of the storage space 20 along the periphery of the side of the spent fuel storage tank 100 , and may be constructed of reinforced concrete. That is, the side reinforcement part 33 is formed of the same or similar material as that of the bottom reinforcement part 31, and a predetermined reinforcement structure such as a refractory material such as a brick is applied, and may be appropriately changed and applied.

이러한 측면 보강부(33)는, 저장랙(40)에 위치된 저장 공간(20)의 측면의 구조 보장을 하는 바, 저장랙(40)에 사용후 연료가 저장되어 보관되는 상태에서 보다 안정적인 사용후 연료 저장이 가능하도록 할 수 있다.The side reinforcement part 33 ensures the structure of the side of the storage space 20 located in the storage rack 40 , and more stable use in a state where the fuel is stored and stored after use in the storage rack 40 . It is possible to enable fuel storage afterward.

도 3은 도 2의 보강 구조에 저장랙이 설치된 상태를 개략적으로 도시한 단면도이다.3 is a cross-sectional view schematically illustrating a state in which the storage rack is installed in the reinforcement structure of FIG.

도 3에 도시된 바와 같이, 저장랙(40)은, 저면이 저면 보강부(31)에 의해 지지되고, 측면이 측면 보강부(33)에 지지된 상태로 저장 공간(20)에 설치될 수 있다. As shown in FIG. 3 , the storage rack 40 may be installed in the storage space 20 with the bottom surface supported by the bottom reinforcement part 31 and the side surface supported by the side reinforcement part 33 . there is.

즉, 해체 원전의 원자로 격납 건물의 내부에 설치된 내부 설비 및 관련 구조물을 제거한 사용후 연료 저장조(100)의 저장 공간(20)의 저면에 저장랙(40)을 설치하여 사용후 연료를 저장할 수 있다. 이에 따라, 사용후 연료의 저장을 별도의 구조물을 이용하지 않고, 기설치된 원자로 격납 건물을 사용후 연료 저장을 위한 수단으로 활용하는 것이 가능하여, 사용후 연료의 저장을 위한 공간을 용이하게 확보하는 것이 가능하다.That is, by installing the storage rack 40 on the bottom of the storage space 20 of the spent fuel storage tank 100 after removing the internal facilities and related structures installed inside the nuclear reactor containment building of the decommissioned nuclear power plant, the spent fuel can be stored. . Accordingly, it is possible to utilize the pre-installed nuclear reactor containment building as a means for storing the spent fuel without using a separate structure to store the spent fuel, so that it is possible to easily secure a space for the storage of the spent fuel. it is possible

이러한 저장랙(40)은 보강 구조(30)의 상측에 설치된 상태로 길이 방향을 따라 복수개의 수납 공간(41)이 형성되도록 설치될 수 있다.The storage rack 40 may be installed so that a plurality of storage spaces 41 are formed along the longitudinal direction in a state of being installed on the upper side of the reinforcing structure 30 .

저장랙(40)은 상부가 개구된 상태로 사용후 연료가 수납 공간(41)의 내부에 삽입되도록 설치되는 것을 예시적으로 설명하지만, 이에 반드시 한정되는 것은 아니고 사용후 연료가 수납 공간(41)의 내부에 수납된 상태에서 개구부를 개폐하는 개폐부(미도시)가 설치되도록 적절하게 변경 적용되는 것도 가능하다. 저장랙(40)에는 저장랙(40)의 상측으로 돌출되는 격벽(42)이 설치되는 것도 가능하다. 따라서, 사용후 연료가 저장랙(40)에 분할 수납된 상태로 보다 안정적으로 수납되는 것이 가능하다. The storage rack 40 exemplarily describes that the storage rack 40 is installed so that the spent fuel is inserted into the storage space 41 with the top open, but is not necessarily limited thereto, and the spent fuel is stored in the storage space 41 . It is also possible to appropriately change and apply so that an opening/closing part (not shown) for opening and closing the opening in a state accommodated in the inside of the hood is installed. It is also possible that the storage rack 40 is provided with a partition wall 42 protruding upward of the storage rack 40 . Therefore, it is possible to receive the spent fuel more stably in a state divided and stored in the storage rack 40 .

도 4는 도 3의 저장랙이 설치된 상태에서 냉각수가 충진된 상태를 개략적으로 도시한 단면도이다.4 is a cross-sectional view schematically illustrating a state in which the cooling water is filled in the state in which the storage rack of FIG. 3 is installed.

도 4에 도시된 바와 같이, 사용후 연료 저장조(100)의 저장 공간(20)에는 냉각수(50)가 충진될 수 있다.As shown in FIG. 4 , the cooling water 50 may be filled in the storage space 20 of the spent fuel storage tank 100 .

따라서, 냉각수(50)는 사용후 연료의 안정적인 저장 상태를 유지하도록 저장 공간(20)의 내부에 충진될 수 있다.Accordingly, the coolant 50 may be filled in the storage space 20 to maintain a stable storage state of the spent fuel.

한편, 사용후 연료 저장조(100)에는 냉각수가 이동 가능하게 설치되는 냉각 배관(60)이 설치될 수 있다. On the other hand, the spent fuel storage tank 100 may be provided with a cooling pipe 60 in which cooling water is movably installed.

냉각 배관(60)은 일측은 저장랙(40)이 설치된 위치에서 사용후 연료 저장조의 측면에 연결되는 것으로, 일단은 저장랙(40)이 설치된 위치에서 저장 공간(20)에 연통되며 타단은 사용후 연료 저장조(100)의 외부로 긴 길이로 연장될 수 있다.One side of the cooling pipe 60 is connected to the side of the spent fuel storage tank at the location where the storage rack 40 is installed, and one end communicates with the storage space 20 at the location where the storage rack 40 is installed, and the other end is used Afterwards, it may extend to the outside of the fuel storage tank 100 to a long length.

냉각 배관(60)은 사용후 연료 저장조(100)의 외부에 설치된 냉각 설비(70)에 연결될 수 있다. 따라서, 사용후 연료 저장조(100)의 내부에 충진된 냉각수(50)는, 냉각 배관(60)을 따라 이동되어 냉각 설비(70)와의 사이에서 순환될 수 있다. 이에 따라 냉각수(50)는 사용후 연료 저장조(100)의 외부에서 냉각 설비(70)에서 적절한 온도로 냉각되어 사용후 연료 저장조(100)의 내부에 저장될 수 있다.The cooling pipe 60 may be connected to a cooling facility 70 installed outside the spent fuel storage tank 100 . Accordingly, the cooling water 50 filled in the spent fuel storage tank 100 may be moved along the cooling pipe 60 and circulated between it and the cooling facility 70 . Accordingly, the cooling water 50 may be cooled to an appropriate temperature in the cooling facility 70 outside the spent fuel storage tank 100 and stored inside the spent fuel storage tank 100 .

냉각 설비(70)는 사용후 연료 저장조(100)의 외부에 설치되는 것으로, 본 실시예에서 사용후 연료 저장조(100)의 측면에 설치되는 보조 저장조(80)의 내부에 설치될 수 있다. The cooling facility 70 is installed outside the spent fuel storage tank 100 , and may be installed inside the auxiliary storage tank 80 installed on the side of the spent fuel storage tank 100 in this embodiment.

보조 저장조(80)는 사용후 연료 저장조(100)의 측면에 인접된 상태로 설치되는 것으로 사용후 연료 저장조(100)의 크기와 유사하거나 작은 크기로 설치되는 것으로, 내부에는 냉각 설비(70)가 설치될 수 있다.The auxiliary storage tank 80 is installed in a state adjacent to the side of the spent fuel storage tank 100 and is installed in a size similar to or smaller than the size of the spent fuel storage tank 100, and a cooling facility 70 is provided therein. can be installed.

따라서, 냉각 배관(60)은 사용후 연료 저장조(100)에서 보조 저장조(80) 각각의 벽면을 통과하여, 냉각수(50)가 사용후 연료 저장조(100)와 냉각 설비(70)의 사이에서 순환되도록 설치될 수 있다. Accordingly, the cooling pipe 60 passes through each wall surface of the auxiliary storage tank 80 in the spent fuel storage tank 100 , and the cooling water 50 circulates between the spent fuel storage tank 100 and the cooling facility 70 . can be installed as much as possible.

이러한 냉각 설비(70)는, 전원 공급부(110)를 통해 구동 전원을 공급받을 수 있다.The cooling equipment 70 may receive driving power through the power supply 110 .

전원 공급부(110)는, 사용후 연료 저장조(100)의 외부에 설치되어 냉각 설비(70)에 전원을 공급하는 태양광 발전 설비(111)를 포함할 수 있다.The power supply unit 110 may include a solar power generation facility 111 installed outside the spent fuel storage tank 100 to supply power to the cooling facility 70 .

태양광 발전 설비(111)는 사용후 연료 저장조(100)의 외부와 보조 저장조(80)의 외부에 각각 설치되어, 발전 전력을 냉각 설비(70)에 공급할 수 있다.The photovoltaic power generation facility 111 may be installed outside the spent fuel storage tank 100 and outside the auxiliary storage tank 80 , respectively, to supply generated power to the cooling facility 70 .

태양광 발전 설비(111)는 사용후 연료 저장조(100)의 상부와 측면 등에 복수개로 설치될 수 있다. A plurality of photovoltaic power generation facilities 111 may be installed on the top and side of the spent fuel storage tank 100 .

물론, 태양광 발전 설비(111)는 보조 저장조(80)의 상부에도 설치될 수 있다. 이러한 태양광 발전 설비(111)는, 사용후 연료 저장조(100)의 상측과 측면 및 보조 저장조(80)의 상측의 각각에 설치되는 것도 가능하다. 즉, 태양광 발전 설비(111)는 태양광을 수광하기 적절한 위치에 다수개로 설치될 수 있다.Of course, the solar power generation facility 111 may also be installed in the upper portion of the auxiliary storage tank (80). Such a solar power generation facility 111, it is also possible to be installed in each of the upper side and side of the spent fuel storage tank 100, and the upper side of the auxiliary storage tank (80). That is, a plurality of photovoltaic power generation facilities 111 may be installed at an appropriate location to receive sunlight.

한편, 전원 공급부(110)는 풍력 발전 설비(113)를 더욱 포함할 수 있다.Meanwhile, the power supply 110 may further include a wind power generation facility 113 .

풍력 발전 설비(113)는 보조 저장조(80)의 상측에 설치되어 풍력에 의해 발전된 전력을 냉각 설비(70)에 공급할 수 있다. 물론 풍력 발전 설비(113)는 보조 저장조(80)의 상부에 한정하여 설치되는 것은 아니고 풍력이 용이하게 전달되는 적절한 위치에 변경 설치되는 것도 가능하다. The wind power generation facility 113 may be installed on the upper side of the auxiliary storage tank 80 to supply power generated by wind power to the cooling facility 70 . Of course, the wind power generation facility 113 is not limited to the upper portion of the auxiliary storage tank 80, and it is also possible to change the installation to an appropriate location where the wind power is easily transmitted.

전술한 바와 같이, 본 실시예의 전원 공급부(110)는, 태양광 발전 설비(111)와, 풍력 발전 설비(113)를 포함하는 것으로, 각각에서 발전된 전력은 배터리부재(120)에서 저장될 수 있다.As described above, the power supply unit 110 of this embodiment includes a solar power generation facility 111 and a wind power generation facility 113 , and power generated in each may be stored in the battery member 120 . .

배터리부재(120)는 태양광 발전 설비(111)와 풍력 발전 설비(113)의 각각에 전원선(122)으로 연결된 상태로 설치되는 것으로, 태양광 발전 설비(111)와 풍력 발전 설비(113)에서 발전된 전력을 공급받도록 설치될 수 있다. The battery member 120 is installed in a state connected to each of the solar power generation facility 111 and the wind power generation facility 113 by a power line 122 , and the solar power generation facility 111 and the wind power generation facility 113 . It may be installed to receive power generated from

이러한 배터리부재(120)는 태양광 발전 설비(111)와 풍력 발전 설비(113)에서 발전된 전력을 공급받아 축전하는 것으로, 사용후 연료 저장조(100)와 보조 저장조(80)에 다수개로 설치될 수 있다. 즉 배터리부재(120)는 태양광 발전 설비(111)와 풍력 발전 설비(113)에서 발전된 전력을 공급받아 축전하고, 필요시 냉각 설비(70)에 전원을 공급하도록 설치될 수 있다.The battery member 120 receives power generated from the solar power generation facility 111 and the wind power generation facility 113 and stores electricity, and may be installed in plurality in the spent fuel storage tank 100 and the auxiliary storage tank 80 . there is. That is, the battery member 120 may be installed to receive and store power generated from the solar power generation facility 111 and the wind power generation facility 113 , and to supply power to the cooling facility 70 when necessary.

보다 구체적으로 설명하면, 배터리부재(120)는, 사용후 연료 저장조(100)의 내부에 설치되는 제1 배터리(121)와, 보조 저장조(80)의 내부에 설치되는 제2 배터리(123)를 포함할 수 있다.More specifically, the battery member 120 includes the first battery 121 installed in the spent fuel storage tank 100 and the second battery 123 installed in the auxiliary storage tank 80 . may include

제1 배터리(121)는 사용후 연료 저장조(100)의 내부 벽면에 설치되는 것으로, 태양광 발전 설비(111)와 냉각 설비(70)에 함께 전원선으로 연결될 수 있다.The first battery 121 is installed on the inner wall of the spent fuel storage tank 100 , and may be connected to the photovoltaic power generation facility 111 and the cooling facility 70 together with a power line.

따라서 태양광 발전 설비(111)에서 발전된 전력은 사용후 연료 저장조(100)의 내부에서 제1 배터리(121)에 저장된 상태에서 냉각 설비(70)의 구동 필요시에 전원을 공급하도록 설치될 수 있다.Therefore, the power generated by the photovoltaic power generation facility 111 may be installed to supply power when the cooling facility 70 needs to be driven in the state stored in the first battery 121 inside the spent fuel storage tank 100 . .

제1 배터리(121)는 충방전이 용이한 이차 전지로 적용되는 것으로 사용후 연료 저장조(100)의 내벽면에 2개로 설치되는 것을 예시적으로 설명한다. 물론, 제1 배터리(121)는 사용후 연료 저장조(100)의 내벽면 위치에 2개로 설치되는 것으로 반드시 한정되는 것은 아니고, 태양광 발전 설비(111)의 설치 개수와 냉각 설비(70)에 공급되는 공급 전력의 가변에 따라 적절한 개수로 변경 설치되는 것도 가능하다.The first battery 121 is applied as a secondary battery that can be easily charged and discharged, and it will be exemplarily described that two first batteries 121 are installed on the inner wall surface of the fuel storage tank 100 after use. Of course, the first battery 121 is not necessarily limited to being installed in two on the inner wall of the spent fuel storage tank 100 , and the number of solar power generation facilities 111 installed and the cooling facilities 70 are supplied. It is also possible to change and install an appropriate number according to the variation of the supplied power.

제2 배터리(123)는 보조 저장조(80)의 내부 벽면에 설치되는 것으로, 풍력 발전 설비(113)와 냉각 설비(70)에 함께 전원선으로 연결될 수 있다.The second battery 123 is installed on the inner wall of the auxiliary storage tank 80 , and may be connected to the wind power generation facility 113 and the cooling facility 70 together with a power line.

따라서 풍력 발전 설비(113)에서 발전된 전력은 보조 저장조(80)의 내부에서 제2 배터리(123)에 저장된 상태에서 냉각 설비(70)의 구동 필요시에 전원을 공급하도록 설치될 수 있다.Therefore, the power generated by the wind power generation facility 113 may be installed to supply power when the cooling facility 70 needs to be driven in the state stored in the second battery 123 inside the auxiliary storage tank 80 .

따라서 풍력 발전 설비(113)에서 발전된 전력은 보조 저장조(80)의 내부에서 제2 배터리(123)에 저장된 상태에서 냉각 설비(70)의 구동 필요시에 전원을 공급하도록 설치될 수 있다.Therefore, the power generated by the wind power generation facility 113 may be installed to supply power when the cooling facility 70 needs to be driven in the state stored in the second battery 123 inside the auxiliary storage tank 80 .

제2 배터리(123)는 충방전이 용이한 이차 전지로 적용되는 것으로 보조 저장조(80)의 내벽면에 1개로 설치되는 것을 예시적으로 설명한다. 물론, 제1 배터리(121)는 사용후 연료 저장조(100)의 내벽면 위치에 1개로 설치되는 것으로 반드시 한정되는 것은 아니고, 태양광 발전 설비(111)의 설치 개수와 냉각 설비(70)에 공급되는 공급 전력의 가변에 따라 적절한 개수로 변경 설치되는 것도 가능하다. 제2 배터리(123)는 풍력 발전의 용량에 따라 적절한 개수로 변경되는 것도 가능하다.The second battery 123 is applied as a rechargeable battery that is easy to charge and discharge, and it will be exemplarily described that one second battery 123 is installed on the inner wall surface of the auxiliary storage tank 80 . Of course, the first battery 121 is not necessarily limited to being installed in one position on the inner wall of the spent fuel storage tank 100 , and the number of solar power generation facilities 111 installed and the cooling facilities 70 are supplied. It is also possible to change and install an appropriate number according to the variation of the supplied power. The second battery 123 may be changed to an appropriate number according to the capacity of the wind power generation.

전술한 바와 같이, 본 실시예의 해체 원전의 사용후 연료 냉각 설비 전원 공급장치(200)는, 외부 전원 공급이 없는 상태에서 태양광 발전 설비(111)와 풍력 발전 설비(113)를 구동하여 발전하고, 발전된 전력을 배터리부재(120)에 축전한 상태에서 냉각 설비(70)에 공급할 수 있다. As described above, the after-use fuel cooling facility power supply device 200 of the dismantled nuclear power plant of this embodiment generates power by driving the solar power generation facility 111 and the wind power generation facility 113 in the absence of external power supply. , it is possible to supply the generated power to the cooling facility 70 in a state in which the battery member 120 is stored.

이에 따라 외부 전원 공급이 없는 비상시에도 냉각 설비(70)를 안정적으로 구동하여, 사용후 연료 저장조(100)의 내부에 충진된 냉각수를 효과적으로 냉각하는 것이 가능하여 냉각 설비(70)의 유지 보수 비용의 절감과 냉각수의 온도 상승에 사고 발생을 효과적으로 방지할 수 있다. Accordingly, by stably driving the cooling facility 70 even in an emergency without external power supply, it is possible to effectively cool the cooling water filled in the spent fuel storage tank 100 , thereby reducing the maintenance cost of the cooling facility 70 . It is possible to effectively prevent accidents due to savings and temperature rise of the cooling water.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and it is possible to carry out various modifications within the scope of the claims, the detailed description of the invention, and the accompanying drawings, and this also It is natural to fall within the scope of

10...건물 바디 20...저장 공간
30...보강 구조 31...저면 보강부
33...측면 보강부 40...저장랙
41...수납공간 50...냉각수
60...냉각 배관 70...냉각 설비
80...보조 저장조 100..사용후 연료 저장조
110..전원 공급부 111..태양광 발전 설비
113..풍력 발전 설비 120..배터리부재
121..제1 배터리 123..제2 배터리
10...Building body 20...Storage space
30...Reinforcement structure 31...Reinforcement at the bottom
33...Side reinforcement 40...Storage rack
41...Storage 50...Coolant
60...cooling piping 70...cooling equipment
80...Auxiliary Reservoir 100. Spent Fuel Reservoir
110..Power supply 111..Solar power generation equipment
113..Wind power plant 120..Battery absence
121..First Battery 123..Secondary Battery

Claims (8)

해체 원전의 원자로 격납 건물의 내부 설비와 구조물을 제거하고 내부에 저장 공간이 형성되며, 상기 저장 공간에는 냉각수가 충진되는 사용후 연료 저장조;
상기 사용후 연료 저장조의 내부에 설치되어 사용후 연료가 저장되는 저장랙;
상기 사용후 연료 저장조에 상기 냉각수가 이동 가능하게 설치되는 냉각 배관;
상기 냉각 배관에 연결되어 상기 사용후 연료 저장조의 외부에 설치되는 냉각 설비; 및
상기 냉각 설비에 전원을 공급하는 전원 공급부;
를 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
a spent fuel storage tank having a storage space formed therein after removing the internal facilities and structures of the nuclear reactor containment building of the decommissioned nuclear power plant, the storage space being filled with cooling water;
a storage rack installed inside the spent fuel storage tank to store the spent fuel;
a cooling pipe in which the cooling water is movably installed in the spent fuel storage tank;
a cooling facility connected to the cooling pipe and installed outside the spent fuel storage tank; and
a power supply unit for supplying power to the cooling equipment;
Containing, the spent fuel cooling facility power supply of the decommissioned nuclear power plant.
제1항에 있어서,
상기 전원 공급부는,
상기 사용후 연료 저장조의 외부에 설치되어 상기 냉각 설비에 전원을 공급하는 태양광 발전 설비를 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
According to claim 1,
The power supply unit,
A spent fuel cooling facility power supply device for a decommissioned nuclear power plant, including a photovoltaic power generation facility installed outside the spent fuel storage tank to supply power to the cooling facility.
제2항에 있어서,
상기 전원 공급부는,
상기 사용후 연료 저장조의 외부에 설치되어 상기 냉각 설비에 전원을 공급하는 풍력 발전 설비를 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
3. The method of claim 2,
The power supply unit,
A spent fuel cooling facility power supply device for a decommissioned nuclear power plant, including a wind power generation facility installed outside the spent fuel storage tank to supply power to the cooling facility.
제3항에 있어서,
상기 사용후 연료 저장조의 외부에 설치되며, 상기 냉각 설비가 내부에 설치되는 보조 저장조를 더 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
4. The method of claim 3,
The spent fuel cooling facility power supply device of a decommissioned nuclear power plant, which is installed outside the spent fuel storage tank and further includes an auxiliary storage tank in which the cooling facility is installed.
제4항에 있어서,
상기 풍력 발전 설비와 상기 태양광 발전 설비의 각각에 연결되어 상기 냉각 설비에 공급되는 전원을 저장하는 배터리부재를 더 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
5. The method of claim 4,
Further comprising a battery member connected to each of the wind power generation facility and the solar power generation facility to store power supplied to the cooling facility, the spent fuel cooling facility power supply device of the decommissioned nuclear power plant.
제5항에 있어서,
상기 배터리부재는,
상기 사용후 연료 저장조의 내부에 설치되는 제1 배터리; 및
상기 보조 저장조의 내부에 설치되는 제2 배터리;
를 포함하는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
6. The method of claim 5,
The battery member,
a first battery installed inside the spent fuel storage tank; and
a second battery installed inside the auxiliary storage tank;
Containing, the spent fuel cooling facility power supply of the decommissioned nuclear power plant.
제6항에 있어서,
상기 제1 배터리는 상기 사용후 연료 저장조의 내부에 설치되어, 상기 태양광 발전 설비와 상기 냉각 설비와의 사이에 전원선으로 연결되는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
7. The method of claim 6,
The first battery is installed inside the spent fuel storage tank and is connected with a power line between the photovoltaic power generation facility and the cooling facility, the spent fuel cooling facility power supply of a decommissioned nuclear power plant.
제6항에 있어서,
상기 제2 배터리는 상기 보조 저장조의 내부에 설치되어, 상기 풍력 발전 설비와 상기 냉각 설비와의 사이에 전원선으로 연결되는, 해체 원전의 사용후 연료 냉각 설비 전원 공급장치.
7. The method of claim 6,
The second battery is installed inside the auxiliary storage tank, and is connected to a power line between the wind power generation facility and the cooling facility, the spent fuel cooling facility power supply of the decommissioned nuclear power plant.
KR1020200100004A 2020-08-10 2020-08-10 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant KR20220019513A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200100004A KR20220019513A (en) 2020-08-10 2020-08-10 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant
KR1020230053616A KR20230062501A (en) 2020-08-10 2023-04-24 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200100004A KR20220019513A (en) 2020-08-10 2020-08-10 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230053616A Division KR20230062501A (en) 2020-08-10 2023-04-24 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant

Publications (1)

Publication Number Publication Date
KR20220019513A true KR20220019513A (en) 2022-02-17

Family

ID=80493378

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200100004A KR20220019513A (en) 2020-08-10 2020-08-10 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant
KR1020230053616A KR20230062501A (en) 2020-08-10 2023-04-24 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230053616A KR20230062501A (en) 2020-08-10 2023-04-24 Power supply apparatus for spent fuel cooling device of decommision nuclear power plant

Country Status (1)

Country Link
KR (2) KR20220019513A (en)

Also Published As

Publication number Publication date
KR20230062501A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
KR101665059B1 (en) The in-vessel and ex-vessel melt cooling system and method having the core catcher
KR101242746B1 (en) Integrated passive safety system outside containment for nuclear power plants
US9478318B2 (en) Water-spray residual heat removal system for nuclear power plant
KR20140123089A (en) Integral molten salt reactor
CN104937670A (en) Alternate passive spent fuel pool cooling systems and methods
TWI616894B (en) Demolition method of nuclear power plant
US7684535B2 (en) Reactor containment vessel
KR101233314B1 (en) Passive multiple cooling device for the molten corium of a reactor vessel
KR20220019513A (en) Power supply apparatus for spent fuel cooling device of decommision nuclear power plant
KR102547982B1 (en) Cooling facility for spent fuel pool building storing spent fuel using decommision nuclear power plant and method for cooling water for spent fuel pool building uising it
US10062461B2 (en) Spent fuel transfer device for transferring spent fuel between storage pools
KR102343893B1 (en) Emergency cooling facility for spent fuel pool building storing spent fuel using decommision nuclear power plant and method for emergency cooling water for spent fuel pool building uising it
KR102267104B1 (en) Cooling system for external wall of reactor vessel and cooling method of external wall of reactor vessel using the same
JP2011052970A (en) Reactor water cooling method and nuclear power plant
KR102308167B1 (en) Method for storing spent fuel for decontamination nuclear power plant
KR20220019512A (en) Spent fuel dry pool of decommision nuclear power plant
US3293137A (en) Power generation from nuclear reactor plant
KR102334919B1 (en) A portable ION exchange resign filling device for power plant system
KR20130083187A (en) System of flooding for external reactor vessel
EP2973596B1 (en) In-containment spent fuel storage to limit spent fuel pool water makeup
KR101460496B1 (en) Refrigerant Charging Apparatus for Blast Resistance
JPS5815476Y2 (en) Emergency water supply structure for blast furnace cooling water
KR20220145155A (en) Small modular nuclear power plant
CZ35844U1 (en) Multifunctional mobile autonomous hybrid energy container for air / water-to-water heat pumps with progressive energy management
KR20220153377A (en) Small modular nuclear power plant

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination