KR20220018016A - J How to make genetically modified poultry resistant to avian avian leukemia virus - Google Patents

J How to make genetically modified poultry resistant to avian avian leukemia virus Download PDF

Info

Publication number
KR20220018016A
KR20220018016A KR1020227000427A KR20227000427A KR20220018016A KR 20220018016 A KR20220018016 A KR 20220018016A KR 1020227000427 A KR1020227000427 A KR 1020227000427A KR 20227000427 A KR20227000427 A KR 20227000427A KR 20220018016 A KR20220018016 A KR 20220018016A
Authority
KR
South Korea
Prior art keywords
avian
poultry
alv
virus
deletion
Prior art date
Application number
KR1020227000427A
Other languages
Korean (ko)
Inventor
이르지 헤이나르
파벨 트레필
안나 코슬로바
이트카 무즈크소바
이르지 플라히
이르지 칼리나
마르케타 레이니쇼바
다나 쿠체로바
Original Assignee
우스타프 몰레쿨라르니 게네티키 아베 체에르, 베.베.이.
바이오팜, 에이.에스.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우스타프 몰레쿨라르니 게네티키 아베 체에르, 베.베.이., 바이오팜, 에이.에스. filed Critical 우스타프 몰레쿨라르니 게네티키 아베 체에르, 베.베.이.
Publication of KR20220018016A publication Critical patent/KR20220018016A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/465Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from birds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/30Bird
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Fodder In General (AREA)

Abstract

본 발명은 J 아군 조류 백혈병 바이러스에 대한 저항성을 가진 유전자 변형된 가금류를 만드는 방법에 관한 것인바, 이는 이 가금류가 CRISPR/Cas9-매개 상동 재조합을 이용하여 chNHE1 유전자 내에 도입된 W38 결실을 보유하거나, 임의선택적으로 CRISPR/Cas9 및 특이적 sgRNA를 이용하여 도입된 W38 결실을 보유하여, J 아군 조류 백혈병 바이러스(ALV)에 저항성을 가진 토종 닭(Gallus gallus domesticus; domestic chicken) 또는 토종 칠면조(Meleagris gallopavo domesticus; domestic turkey)가 산출된다는 사실을 특징으로 한다.The present invention relates to a method for generating a genetically modified poultry having resistance to subgroup J avian leukemia virus, wherein the poultry possesses a W38 deletion introduced in the chNHE1 gene using CRISPR/Cas9-mediated homologous recombination, A native chicken (Gallus gallus domesticus; domestic chicken) or native turkey (Meleagris gallopavo domesticus) that possesses the W38 deletion optionally introduced using CRISPR/Cas9 and specific sgRNA and is resistant to J subgroup avian leukemia virus (ALV) ; is characterized by the fact that domestic turkey) is produced.

Description

J 아군 조류 백혈병 바이러스에 대한 저항성을 가진 유전자 변형된 가금류를 만드는 방법J How to make genetically modified poultry resistant to avian avian leukemia virus

본 발명은 J 아군 ALV 바이러스(subgroup J avian leukosis virus)에 의하여 유도되는 가금류 중증 질환 - 조류 백혈병에 대한 가금류의 유전공학적이고, 영구적이며 유전적으로 결정되는 저항성에 관한 것이다.The present invention relates to the genetically engineered, permanent and genetically determined resistance of poultry to avian leukemia - a severe poultry disease induced by subgroup J avian leukosis virus.

조류 백혈병은 조류 백혈병 바이러스들에 기인한 가금류의 조혈계 종양 질환이다. 조류 백혈병의 병인은 레트로바이러스 과의 조류 백혈병 바이러스들(ALV)과 연관되는바, 가장 흔히는 A 아군 및 B 아군의 조류 백혈병 바이러스와, 더 최근에는 J 아군의 조류 백혈병 바이러스와, 가장 최근에는 K 아군의 조류 백혈병 바이러스와 연관된다. 외인성 ALV의 감염은 가금류 개체군에서 매우 빈번하게 접하게 되나(Jurajda,V., 2002), 임상 질환의 발병률은 전반적으로, 예컨대, 마렉병(Mark disease)의 경우에서보다 현저히 낮다(감염된 동물들의 1 내지 5%). 백혈병의 형태들 중에서, 상대적으로 가장 빈번한 것이 림프성 백혈병(lymphoid leukosis; LL)이고, 골석화증, 육종(sarcomas) 및 관련 종양들을 포함한 ALV의 다른 병리학적 증상들이 현장에서 산발적으로, 또는 심지어 드물게 발견된다. 1990년 체코 공화국을 포함한 전세계 많은 국가의 육용종 및 육계(meat-type breeds and broilers)에서 발생하기 시작했던 J 아군 ALV에 의해 유도된 골수세포증은 예외이다. J형 ALV의 경제적 충격은 죽음에 의한 직접적 손실로 반영되었을 뿐만 아니라 가금류 생산량(체중 증가량 감소 및 산란 감소)에 대한 부정적 효과로도 대부분 반영되었다. 게다가, 림프성 백혈병에 대한 잠재적 감염의 면역억제 효과는 다른 감염 경로를 악화시켰다.Avian leukemia is a hematopoietic tumor disease of poultry caused by avian leukemia viruses. The etiology of avian leukemia is associated with avian leukemia viruses (ALVs) of the retroviral family, most commonly with avian leukemia viruses of subgroups A and B, more recently with avian leukemia viruses of subgroup J, and most recently with avian leukemia viruses of subgroup K Associated with a friendly avian leukemia virus. Infection of exogenous ALV is very frequently encountered in poultry populations (Jurajda, V., 2002), but the incidence of clinical disease is generally significantly lower than that of, for example, Mark disease (1 to 1 in infected animals). 5%). Among the forms of leukemia, the relatively most frequent is lymphoid leukosis (LL), and other pathological symptoms of ALV, including osteopetrosis, sarcomas and related tumors, are sporadic or even rare in the field. is found The exception is myelocytosis induced by J subgroup ALV, which began to occur in 1990 in meat-type breeds and broilers in many countries around the world, including the Czech Republic. The economic impact of type J ALV was reflected not only as a direct loss due to death, but also as a negative effect on poultry production (reduced weight gain and decreased egg laying). Moreover, the immunosuppressive effect of potential infection on lymphocytic leukemia exacerbated other infection pathways.

가금류를 감염시킬 때, ALV-J 바이러스는 chNHE1 수용체를 통하여 세포들로 들어간다. 그 후 그 레트로바이러스는 역전사에 의하여 전사되고, 프로바이러스로서 그 숙주 세포의 핵 DNA에 결합된다. 그 프로바이러스 DNA는 바이러스 RNA로 전사되는바, 이는 세포질에서 번역되어 새로 형성된 입자들로 둘러싸인다. 그 가금류가 저항성을 가지거나 제한 요인들에 의해 보호되지 않는다면, 감염된 세포들로부터의 그 입자들의 방출은 개체의 신체 내 수용 세포들로의 감염 확산으로 이어진다.When infecting poultry, the ALV-J virus enters cells through the chNHE1 receptor. The retrovirus is then transcribed by reverse transcription and bound to the nuclear DNA of the host cell as a provirus. The proviral DNA is transcribed into viral RNA, which is translated in the cytoplasm and surrounded by newly formed particles. If the poultry is resistant or not protected by limiting factors, the release of the particles from infected cells leads to the spread of the infection to recipient cells in the individual's body.

레트로바이러스의 생활환에서 그 바이러스에 대한 민감성(sensitivity) 또는 저항성은 표적 세포의 표면 상에 적절한 수용체 분자의 존재에 의해 결정된다. chNHE1 수용체는 동종삼량체로 나타나는 이온 교환 기능을 가진 세포 당단백질이다. 그것의 두드러진 제1 세포외 루프(extracellular loop)는 ALV-J와의 상호작용에 중요한 아미노산 잔기들을 포함한다. 이 당단백질이 결여된 닭 세포들은 ALV-J 감염에 대한 수용성이 없다. 이와 유사하게, 아미노산 W38의 결실은 다른 모든 ALV 아군에 대해서는 아니지만 ALV-J에 대한 저항성으로 귀결된다. W38의 결실 또는 치환은 꿩들과 대부분의 순계목 조류의 NHE1에서 발견되어 왔으며, 따라서 민감성 종들은 토종 닭, 4개의 엽조 종들(four wild fowl species), 칠면조, 및 칼리페플라(Calipepla) 속, 콜리누스(Colinus) 속 및 오레오르틱스(Oreortyx) 속의 몇몇 신대륙메추라기과(New World quails)의 종들만을 포함한다(Plachy J, Reinisova M, Kucerova D, Senigl F, Stepanets V, Hron T, Trejbalova K, Elleder D, Hejnar J.: Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. Journal of Virology 91(3): e02002-16, 2017). 우리의 연구에 따르면, 토종 암탉의 품종들 및 원시(primitive) 토종 닭 가축들 모두 W38 결실을 가진 대립 유전자들을 포함하지 않는다. 결과적으로, 저항성을 가진 동물들을 선택적으로 육종하는 데 이용될 유전적 다양성의 자연적 원천이 없다(Reinisova M, Plachy J, Kucerova D, Senigl F, Vinkler M, Hejnar J.: Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PloS One 11 (3):e0150589). 선진 가금류 산업이 있는 국가들에서는 이 질환으로 고통 받는 동물들의 체계적이고 장기적인 선택이 그 질환의 근절을 위해 이용된다(예컨대, 미국에서 ALV-J의 마지막 집중 감염은 2007년에 사라졌다(Malhotra S, Justice J 4th, Lee N, Li Y, Zavala G, Ruano M, Morgan R, Beemon K: Complete genome sequence of an American avian leukosis virus subgroup J isolate that causes hemangiomas and myeloid leukosis. Genome Announcements 3(2): pii: e01586-14, 2015)). 그러나, 이는 육종 과정에서 상당히 힘들고 비용이 많이 드는 동물들에 대한 스크리닝을 요하는바, 전염병의 전면적 통제 하에 있는 공장식 축산에서만 이용될 수 있다. 시장에서 모든 연령대의 가금류가 일반적으로 판매되고 있으며, 소규모 가족 농장에서 통제 없이 비육이 행해지고 있는 중국에서, 그리고 사실상 아시아와 아프리카 전체에서, 최근 몇 년 동안 시작된 근절 프로그램에도 불구하고 오늘날 이 질환을 제거하기란 비현실적이다.In the life cycle of a retrovirus, the sensitivity or resistance to the virus is determined by the presence of an appropriate receptor molecule on the surface of the target cell. The chNHE1 receptor is a cellular glycoprotein with ion exchange functions that appears as a homotrimer. Its first prominent extracellular loop contains amino acid residues important for interaction with ALV-J. Chicken cells lacking this glycoprotein are not receptive to ALV-J infection. Similarly, deletion of amino acid W38 results in resistance to ALV-J but not for all other ALV subgroups. Deletions or substitutions of W38 have been found in NHE1 of pheasants and most coleoptera, and thus susceptible species are native chickens, four wild fowl species, turkeys, and the genus Calipepla, Cole. Includes only species of several New World quails of the genus Colinus and Oreortyx (Placy J, Reinisova M, Kucerova D, Senigl F, Stepanets V, Hron T, Trejbalova K, Elleder) D, Hejnar J.: Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. Journal of Virology 91(3): e02002-16, 2017). According to our study, both native hen breeds and primitive native chicken livestock do not contain alleles with a W38 deletion. Consequently, there is no natural source of genetic diversity to be used to selectively breed resistant animals (Reinisova M, Plachy J, Kucerova D, Senigl F, Vinkler M, Hejnar J.: Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PloS One 11 (3):e0150589). In countries with advanced poultry industries, systematic and long-term selection of animals suffering from the disease is used to eradicate the disease (eg, in the United States, the last intensive infection of ALV-J disappeared in 2007 (Malhotra S, Justice J 4th, Lee N, Li Y, Zavala G, Ruano M, Morgan R, Beemon K: Complete genome sequence of an American avian leukosis virus subgroup J isolate that causes hemangiomas and myeloid leukosis. Genome Announcements 3(2): pii: e01586-14, 2015)). However, this requires screening of animals that are quite laborious and costly in the breeding process and can only be used in factory farms under full control of the epidemic. In China, where poultry of all ages is commonly sold on the market, where uncontrolled fattening is practiced on small family farms, and virtually throughout Asia and Africa, despite eradication programs launched in recent years, it is difficult to eliminate the disease today. is unrealistic.

위에서 언급된 문제들은 본 발명에 따른 J 아군 조류 백혈병 바이러스에 대한 저항성을 가진 유전자 변형된 가금류를 만드는 방법에 의하여 제거되는바, 이는 이 가금류가 CRISPR/Cas9-매개 상동 재조합을 이용하여 chNHE1 유전자 내에 도입된 W38 결실을 보유하거나, 임의선택적으로 CRISPR/Cas9 및 특이적 sgRNA를 이용하여 도입된 W38 결실을 보유하여, J 아군 조류 백혈병 바이러스(ALV)에 저항성을 가진 토종 닭(Gallus gallus domesticus; domestic chicken) 또는 토종 칠면조(Meleagris gallopavo domesticus; domestic turkey)가 산출된다는 사실에 기초한 것이다.The above-mentioned problems are eliminated by the method for generating a genetically modified poultry with resistance to subgroup J avian leukemia virus according to the present invention, which is introduced into the chNHE1 gene using CRISPR/Cas9-mediated homologous recombination. Domestic chickens (Gallus gallus domesticus; domestic chicken) that possess a W38 deletion that has been modified or have a W38 deletion optionally introduced using CRISPR/Cas9 and specific sgRNA, and are resistant to J subgroup avian leukemia virus (ALV) Or it is based on the fact that the native turkey (Meleagris gallopavo domesticus; domestic turkey) is produced.

본 발명자들은 유전자 변형된 가금류 개체들을 생성하였는바, 여기에서는 원시 생식 세포들(primordial germ cells; PGC)의 유전자 편집을 이용하여, chNHE1 이온 교환 유전자 내 위치 38의 트립토판 코돈(W38)이 결실되었다. chNHE1은 ALV-J 수용체로서 기능하고 W38은 이온 교환 기능에는 그렇지 않지만 그 수용체에는 매우 중요한 아미노산이기 때문에, 이는 ALV-J에 대한 전면적인 저항성의 유도로 귀결된다. 본 발명은 2건의 이미 허여된 체코 특허 제307102호 및 제307285호에 기초한 것이다.We generated genetically modified poultry individuals, in which, using gene editing of primordial germ cells (PGC), the tryptophan codon (W38) at position 38 in the chNHE1 ion exchange gene was deleted. Since chNHE1 functions as an ALV-J receptor and W38 is a very important amino acid for its receptor, but not for its ion exchange function, this results in the induction of global resistance to ALV-J. The present invention is based on two previously issued Czech Patents 307102 and 307285.

체코 특허 제307102호에 따르면, 우리는 생체외에서 배양되어 유전자 조작된 후 방사선 멸균된 수탉(cockerel; 수평아리)의 고환에 이식된 가금류 배아 세포들인, '원시 생식 세포들'(PGC)을 이용하여 형질전환 개체들(transgenic individuals)이 구성될 수 있음을 알았다. 도입된 세포들은 정자형성능을 회복시키는바, 이는 상기 이식된 PGC와 동일한 유전자 변형을 보유한 자손으로 귀결될 수 있다. 체코 특허 제307285호에 따르면, 우리는 chNHE1 수용체 내 아미노산 W38의 결실이 닭의 섬유아세포의 생체외 모델에서 조류 백혈병에 대한 전면적인 저항성을 유도한다는 점을 알았다.According to Czech Patent No. 307102, we transfected using 'primordial germ cells' (PGCs), poultry embryonic cells cultured ex vivo, genetically engineered and then implanted into radio-sterilized cockerel testes. It has been found that transgenic individuals can be constituted. The introduced cells restore spermatogenesis, which may result in progeny bearing the same genetic modification as the transplanted PGC. According to Czech Patent No. 307285, we found that deletion of amino acid W38 in the chNHE1 receptor induces global resistance to avian leukemia in an ex vivo model of chicken fibroblasts.

사실상 본 발명의 방법은 이 위에서 언급된 2건의 체코 특허들의 결과를 조합하여 W38 결실을 보유한 토종 닭의 유전자 변형된 계보(line)를 만드는 것에 해당한다. 백혈병 바이러스들의 이들 개체들의 세포들에 대한 침입(entry)을 방지함으로써, 영구적인 저항성이 유도된다. 이 보호는 이들 닭들에게서 유전적으로 결정되고, 따라서 다음 세대들로 전달 가능하다. 육종 프로그램에 이들 저항성이 변형된 개체들을 포함시키는 것은 상기 속성을 모든 개체들에 옮길 수 있는바, 이에 따라 종계군(breeding flock)의 품질이 현저히 증가되며, 최종적으로는 가금류 고기 또는 알의 생산에 있어 현저한 경제성으로 귀결된다. 이 신규한 방법은 가금류의 보건에 대한 전세계적인 영향력을 가질 수 있으며, 구체적으로는 (가금류로 총칭되는) 토종 닭 및 토종 칠면조에 관한 것이다.In fact, the method of the present invention corresponds to combining the results of these two above-mentioned Czech patents to create a genetically modified line of native chickens bearing the W38 deletion. By preventing the entry of leukemia viruses into the cells of these individuals, permanent resistance is induced. This protection is genetically determined in these chickens and is therefore transferable to the next generation. Incorporating these resistance-altered individuals into a breeding program transfers this attribute to all individuals, which significantly increases the quality of the breeding flock and ultimately results in poultry meat or egg production. resulting in remarkable economic feasibility. This novel method could have a global impact on poultry health, specifically to native chickens (collectively poultry) and native turkeys.

J 아군 조류 백혈병에 관한 본 발명의 방법은 본 발명자들에 의해 만들어진 ALV-J 감염에 대한 영구적인 저항성을 가진 유전자 변형된 개체들의 모델에 적용된다. 따라서 그것은 중국 및 동남아에서뿐만 아니라 세계의 다른 곳들에서도 이 질환을 근절하는 경로에 해당하는데, 그 이유는 유럽과 미국을 포함하여 현재는 이 질환이 발견되지 않는 지역들에 새롭고 근절하기 더 어려운 중국 ALV-J 계통들이 재도입될 위험이 있기 때문이다.The method of the present invention for J subgroup avian leukemia is applied to a model of genetically modified individuals with permanent resistance to ALV-J infection made by the present inventors. Thus, it is a pathway to eradicating the disease not only in China and Southeast Asia, but also elsewhere in the world, because the new and more difficult-to-eradicate Chinese ALV- There is a risk of reintroduction of the J strains.

이미 언급된 바와 같이, 체코 특허 제307285호는 특히 토종 닭의 ALV-J 감염에 대한 민감성 및 저항성에 적용된다. 그것은 위치 38의 트립토판이 결실된 돌연변이 단백질 chNHE1을 암호화하는 분리된 DNA 분자 또는 그것의 분절에 대한 청구항을 구성하며, 추가적으로 위치 38의 트립토판이 글리신 또는 글루탐산으로 치환된 돌연변이 chNHE1을 암호화하는 분리된 DNA 분자 또는 그것의 분절에 대한 청구항도 구성한다. 이 특허에는 돌연변이 W38를 포함하는 토종 닭의 NHE1 서열이 ALV-J 감염에 대한 전면적 저항성을 부여한다는 세포 기반의 실험적 검증 결과가 설명된다! 이 특허에서 발명자들은 chNHE1 수용체 내 트립토판이 글리신으로 치환되는 때, 이 치환이 닭의 섬유아세포의 생체외 모델에서 조류 백혈병에 대한 전면적인 저항성을 유발한다는 점을 밝혀내었다. 이 사실은 CRISPR/Cas9 게놈 편집을 이용하여 이 결실 또는 치환이 그 게놈에 도입된 형질전환된 가금류를 만듦으로써만 오로지 확정/기각(confirmed/rejected)될 수 있다. 이 목적으로, 본 발명자들은 체코 특허 제307102호에 따라 형질전환된 동물들의 준비에 대하여 신규 창작된 모델을 이용하였는바, 그 특허는 공여자 원시 생식 닭 세포들의 이식 후 멸균된 수용자 수탉의 고환에서 발달된 수정 능력을 가진 조류 정자를 생산하여 약 50%의 고효율의 완벽하게 실현 가능하고 실용적인 형질전환된 개체들의 생산을 가능하게 하는 방법에 직접적으로 관련된 것이다.As already mentioned, Czech Patent No. 307285 applies in particular to the susceptibility and resistance of native chickens to ALV-J infection. It constitutes a claim for an isolated DNA molecule or a fragment thereof encoding a mutant protein chNHE1 in which the tryptophan at position 38 is deleted, and additionally an isolated DNA molecule encoding a mutant chNHE1 in which the tryptophan at position 38 is substituted with a glycine or glutamic acid or a claim for a segment thereof. The patent describes a cell-based experimental validation that the NHE1 sequence of native chickens containing the mutation W38 confers total resistance to ALV-J infection! In this patent, the inventors show that when tryptophan in the chNHE1 receptor is substituted with glycine, this substitution induces global resistance to avian leukemia in an ex vivo model of chicken fibroblasts. This fact can only be confirmed/rejected by using CRISPR/Cas9 genome editing to create transformed poultry in which this deletion or substitution has been introduced into its genome. For this purpose, the present inventors used a novel model for the preparation of transgenic animals according to Czech Patent No. 307102, which developed in the testes of sterile recipient roosters after transplantation of donor primordial reproductive chicken cells. It is directly related to the production of avian sperm with high fertilization capacity, thus enabling the production of fully feasible and viable transfected individuals with high efficiencies of about 50%.

첨부된 도면들 중, 도 1에는 닭 NHE1 유전자 내 W38 결실로 귀결되는 상동 재조합의 다이어그램(diagram)이 도시된다. 상단은, chNHE1 유전자의 인트론- 엑손 구조. 엑손 1은 W38(노란색)에 대한 TGG 트리플릿이 표시된 gRNA 표적 서열(중앙)을 Cas9 절단(가위)을 위한 제한 부위(restriction site)로서 포함한다. 빨간색으로 표시된 뉴클레오티드들의 동의 돌연변이는 Bsal 엔도뉴클레아제를 위한 인식 부위(recognition site)를 생성하는바, 이는 그 후 변형된 대립 유전자의 검출을 위한 역할을 수행한다. 하단은, 닭 및 칠면조의 상동 재조합을 위한 주형으로서 이용될 단일 가닥으로 된 올리고뉴클레오티드들(ssODN)의 서열들.
도 2에는 야생형 chNHE1 대립 유전자의 서열(A)과 W38에 대한 코돈의 결실 후의 서열(B)을 비교한 것이 도시된다. 화살표로 표시된 W38에 바로 인접한 것들만 도시되었다. 그 서열은 전사된 뉴클레오티드 서열과 아미노산 서열 둘 모두가 있는 크로마토그램으로서 표현된다.
도 3에는 W38 -/- (좌측 상단) 유전형, W38 +/- (우측 상단) 유전형 및 W38 +/+ (좌측 하단) 유전형의 배아들로부터의 섬유아세포의 감염 후, 유세포분석에 의해 측정된 GFP 양성(GFP positivity)이 도시된다. x축은, GFP 형광 강도(GFP fluorescence intensity), y축은, 세포의 계수(cell counts). GFP-양성 세포들의 백분율은 히스토그램들의 우측 하단 구석에 보여진다. 우측 하단은, 검사된 모든 배아들 중 GFP-양성 세포들의 백분율을 요약한 그래프(각각의 유전형에 대하여 4개).
도 4에는 보고 벡터(reporter vector) RCASBP(J)GFP에 감염된 후, W38 -/-, +/-, 및 +/+ 유전형들(x축 상에 표시됨)의 닭들에 있어서 바이러스 혈증의 정량화 결과가 도시된다. 바이러스 혈증은 정량적(quantitative) RT PCR 후에 (비특이적 RCAS-A 바이러스에 감염된) 음성 대조군들의 상대 단위(배수; fold)로 (y축 상에) 평가되었다.
Of the accompanying drawings, FIG. 1 shows a diagram of homologous recombination resulting in a W38 deletion in the chicken NHE1 gene. Top is the intron-exon structure of the chNHE1 gene. Exon 1 contains a gRNA target sequence (center) marked with a TGG triplet for W38 (yellow) as a restriction site for Cas9 cleavage (scissors). Synonymous mutation of nucleotides marked in red creates a recognition site for Bsal endonuclease, which then serves for detection of the altered allele. Bottom, sequences of single-stranded oligonucleotides (ssODN) to be used as templates for homologous recombination in chicken and turkey.
FIG. 2 shows a comparison of the sequence (A) of the wild-type chNHE1 allele with the sequence after deletion of the codon for W38 (B). Only those immediately adjacent to W38 indicated by arrows are shown. The sequence is represented as a chromatogram with both a transcribed nucleotide sequence and an amino acid sequence.
3 shows GFP measured by flow cytometry following infection of fibroblasts from embryos of W38 −/- (top left) genotype, W38 +/- (top right) genotype and W38 +/+ (bottom left) genotype. GFP positivity is shown. The x-axis is GFP fluorescence intensity, and the y-axis is cell counts. The percentage of GFP-positive cells is shown in the lower right corner of the histograms. Bottom right, a graph summarizing the percentage of GFP-positive cells among all embryos tested (four for each genotype).
4 shows the quantification results of viremia in chickens of W38 -/-, +/-, and +/+ genotypes (indicated on the x-axis) after infection with the reporter vector RCASBP(J)GFP. is shown Viremia was assessed (on the y-axis) in relative units (fold; fold) of negative controls (infected with non-specific RCAS-A virus) after quantitative RT PCR.

본 발명의 방법은 체코 프라하의 체코 분자 유전학회 연구소, v.v.i.(the Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Prague, CZ)와 체코 포호리-차타운의 바이오팜 에이.에스.(BIOPHARM a.s., Pohofi-Chotoun, CZ)의 연구소의 발명자들에 의해 잘 검증되었다. 본 발명의 실시 예들의 다음 예시들은 설명을 위한 것일 뿐이며, 어떤 식으로든 본 발명을 한정하는 것이 아니다.The method of the present invention was conducted by the Institute of Molecular Genetics of the Czech Academy of Sciences, vvi, Prague, CZ, Prague, Czech Republic, and BIOPHARM, Pohori-Chatown, Czech Republic. as, Pohofi-Chotoun, CZ). The following examples of embodiments of the present invention are for illustrative purposes only, and do not limit the present invention in any way.

예시들examples

예시 1Example 1

변형된 수용체 유전자 chNHE1를 가진 토종 닭 계보의 준비Preparation of native chicken lineages with modified receptor gene chNHE1

가금류의 유전자 변형된 계보들의 준비는 24 내지 96 시간의 나이를 가진 닭 배아들로부터의 원시 생식 세포들의 파생(derivation)에 기초한다. 이 세포들은 수집된 미발달 혈액(embryonic blood)의 시료들로부터, 또는 상기 배아의 두부(head part)로부터 배양되고 생체외에서 확장(expand)되었다. 상기 W38 결실은, 상기 chNHE1 유전자 내 W38 영역에 대해 특이적인 gRNA를 가진 CRISPR/Cas9 및 그 W38 영역을 포함하는 상동 재조합을 위한 주형을 이용하여 PGC 유전자 내로 도입되었다(도 1). 적절한 gRNA를 가진 CRISPR/Cas9를 암호화하는 구조 및 상동 재조합을 위한 상기 주형이 Amaxa 시스템 내에서 전기천공에 의하여 PCG 안으로 도입되었다. 전기천공 후, CRISPR/Cas9와 연관된 GFP 형광에 양성인 세포들이 유세포분석기 내에서 개별 세포들의 정렬(sort)에 의하여 선택되었다. 분자적으로 확인된 W38 결실을 가지고서 잘 자란 확장된 클론은 그 후 체코 특허 제307102호에 따라, 멸균된 수용자 수탉들에게 동소 이식되었다(orthotopically transplanted). 5 개월 후, 정자형성이 회복된 것이 관찰되었고 상기 수용자 수탉들의 정액(ejaculate)은, 처음에는 난관팽대부 내로(intramagnally), 그 후 질내로 하는 암탉들의 인공 수정에 이용되었다. 그 자식은 오로지 상기 W38 결실에 대해 이형접합성(heterozygous)인 개체들로 구성되었다. 성적 성숙에 도달한 후 그 이형접합성 동물들은 교배되었고, G2에서 모든 유전형들, 즉, W38 +/+, W38 +/- 및 W38 -/-이 예상된 비율로 분리되었다. 그러한 예상된 비율과의 일치는, 상기 W38 결실이 그것의 보유체(carrier)에게 있어 그 품종 내에서 그 효용성을 감소시킬 현저한 부담에 해당하지 않는다는 점을 시사한다. 상기 W38 결실은 분자 유전학적 방법들, 즉, DNA 분리, 중합효소 연쇄 반응(polymerase chain reaction; PCR)에 의한 chNHE1의 특정 분절의 증폭 및 그 PCR 생성물의 서열분석(sequencing)을 이용한 모든 레벨{PGC 클론들, 수용자 수탉의 정액, G1 및 G2 개체들의 혈액 또는 깃털 펄프(feather pulp)}에서 검증되었다. 예시적 DNA 서열들이 도 2에 도시된다.Preparation of poultry genetically modified lineages is based on the derivation of primordial germ cells from chicken embryos with an age of 24-96 hours. These cells were cultured and expanded ex vivo from samples of collected embryonic blood, or from the head part of the embryo. The W38 deletion was introduced into the PGC gene using a template for homologous recombination comprising CRISPR/Cas9 having a gRNA specific for the W38 region in the chNHE1 gene and the W38 region ( FIG. 1 ). The construct encoding CRISPR/Cas9 with the appropriate gRNA and the template for homologous recombination were introduced into the PCG by electroporation in the Amaxa system. After electroporation, cells positive for GFP fluorescence associated with CRISPR/Cas9 were selected by sorting of individual cells in a flow cytometer. A well-grown expanded clone with a molecularly identified W38 deletion was then orthotopically transplanted into sterile recipient roosters according to Czech Patent No. 307102. After 5 months, spermatogenesis was observed to be restored and the ejaculate of the recipient cocks was used for artificial insemination of hens, first intramagnally and then vaginal. The offspring consisted exclusively of individuals heterozygous for the W38 deletion. After reaching sexual maturity the heterozygous animals were bred, and in G2 all genotypes, ie, W38 +/+, W38 +/- and W38 +/- and W38 −/-, were segregated in the expected proportions. Consistency with such expected proportions suggests that the W38 deletion does not pose a significant burden on its carrier to reduce its utility within the cultivar. The W38 deletion was performed at all levels using molecular genetic methods, ie, DNA isolation, amplification of a specific fragment of chNHE1 by polymerase chain reaction (PCR), and sequencing of the PCR product {PGC clones, semen of recipient roosters, blood or feather pulp of G1 and G2 individuals}. Exemplary DNA sequences are shown in FIG. 2 .

예시 2Example 2

ALV-J에 대한 W38 결실 보유체들의 저항성의 입증Demonstration of resistance of W38 deletion carriers to ALV-J

W38 -/- 개체들의 저항성은, 바이러스학 연구 분야에서 일상적이며 ALV-J에 대해 특별히 확립되어 온 3 가지 독립적인 방법들에 의하여 입증되었다.Resistance of W38 −/- individuals was demonstrated by three independent methods routine in the field of virology research and which have been established specifically for ALV-J.

A. 배아 섬유아세포들의 A. Embryonic fibroblasts 생체외ex vivo 감염 infection

G2 개체들의 배아들이 발달 10일(day 10 of development)까지 배양(incubate)된 후, 배아 섬유아세포들의 배양물이 준비되었다. W38 유전형은 DNA 분리, PCR 및 서열분석에 의하여 검증되었다. 배아 섬유아세포들의 배양물은 ALV-J 수용체 특이성을 가진, 특히, 보고 벡터 RCASBP(J)GFP를 가진 바이러스에 감염되었는바, 용이한 바이러스 검출을 위해 그 보고 벡터에는 녹색 형광 단백질(green fluorescent protein; GFP)을 위한 보고 유전자(reporter gene)가 형질도입(transduce)된다. GFP의 정량적 평가는 유세포분석을 이용하여 이루어졌다. W38+/+ 유전형 및 W38+/- 유전형을 가진 배아 섬유아세포들은 약 90 % 세포들에서 동일한 GFP 양성을 보였는바, 이는 거의 완전한 바이러스 확산을 나타낸다. 대조적으로, W38-/- 유전형을 가진 배아 섬유아세포들은 0.05 % 미만의 세포들에서 GFP 양성을 드러냈는바, 이는 자가형광에 의해 주어지는 자연 배경(natural background)에 해당한다(도 3). 상기 W38-/- 유전형이 배아 섬유아세포들의 레벨에서 ALV-J 감염에 대한 완벽한 저항성을 가진다는 결론을 내릴 수 있다.After the embryos of G2 individuals were incubated until day 10 of development, a culture of embryonic fibroblasts was prepared. The W38 genotype was verified by DNA isolation, PCR and sequencing. Cultures of embryonic fibroblasts were infected with a virus having ALV-J receptor specificity, in particular, the reporter vector RCASBP(J)GFP. For easy virus detection, the reporter vector contained green fluorescent protein; A reporter gene for GFP) is transduced. Quantitative evaluation of GFP was made using flow cytometry. Embryonic fibroblasts with the W38+/+ genotype and W38+/- genotype showed the same GFP positivity in about 90% of the cells, indicating almost complete virus spread. In contrast, embryonic fibroblasts with the W38-/- genotype revealed GFP positivity in less than 0.05% of cells, which corresponds to the natural background given by autofluorescence ( FIG. 3 ). It can be concluded that the W38-/- genotype has complete resistance to ALV-J infection at the level of embryonic fibroblasts.

B. 닭들의 B. Chickens 생체내in vivo 감염 infection

W38 +/+, W38 +/- 및 W38 -/- 유전형의 닭들은 며칠 내지 2 개월의 나이 때 보고 벡터 RCASBP(J)GFP에 감염되었는바, 이는 ALV-J 수용체 특이성을 유지하면서도, 예컨대, HPRS103과 같은 원형(prototype) 계통의 ALV-J보다 더 공격적이다. ALV-J 감염의 정상적 경과(normal course)는 일시적 바이러스 혈증(transient viremia)으로 나타나는바, 이는 감염된 개체의 나이에 따라 며칠 후에 발생하고, 전형적으로 10일 이내에 절정에 이르며, 그 절정 후 1 내지 2 주 동안 지속된다. 그 바이러스의 생체내 존재는 역전사효소 정량적 중합효소 연쇄 반응(reverse transcriptase quantitative polymerase chain reaction; RT-qPCR)을 이용한 바이러스 게놈 RNA(viral genomic RNA)의 정량적 검출에 의한 분자적 방식(molecularly)과, 복제능이 도입된 바이러스(replication-competent introduced virus)가 결함 있는 바이러스(defective virus)를 보완하되 그 결함 있는 바이러스는 그 후 병소를 형성하는 형질전환된 세포들(focus-forming transformed cells)의 개수에 기초하여 2차적으로 정량되는, 상보성 검정(complementation assay)에 의한 생물학적 방식(biologically)의 두 방식 모두로 이번에 검증되었다. 두 번째 검출의 방법은 RNA뿐만 아니라 생물학적으로 활성인 바이러스의 존재를 검증한다. 두 경우 모두, 테스트된 물질은 2 개의 시점인, 감염 후 1 주 및 감염 후 2 주에 수집된 감염된 동물들의 혈청에 해당하였다. RT-qPCR을 이용하여 상기 W38-/- 유전형의 모든 닭들(총 5 마리 닭들)은 두 시점 모두에서 음성으로 테스트되었다. 상기 W38 +/+ 유전형 및 W38 +/- 유전형(총 10 마리 닭들)은 하나의 예외가 있으나 나중의 시점에서는 양성이었고; 첫 번째 수집 시점에서는 3 마리 닭들이 음성이었는바, 이는 첫 주 동안 바이러스 혈증의 느린 발생 및 두 번째 주 동안 바이러스 혈증의 증가를 의미한다. 여기에서 유일한 음성 사례는, 예컨대, 결함 있는 접종으로 인한 비성공적 감염(감염 실패)을 의미할 수 있다. 이들 결과는 도 4로 요약된다. 상기 상보성 검정에서 첫 번째 수집 시점에서 산발적 양성 사례가 W38 +/+ 유전형 및 W38 +/- 유전형에서만 발견되었다. 두 번째 시점에서 이들 유전형을 가진 동물들의 시료는 하나의 예외(이전 실험에서와 동일한 개체)가 있으나 양성이었는 반면, W38 -/- 유전형 전부가 음성인 채로 남았다(표 1). 요약하자면, 우리는 어린(juvenile) 개체들의 순환하는 혈액에 ALV-J가 접종되는 때에 결실 W38이 그 바이러스에 대한 완벽한 저항성을 유도한다고 결론 내릴 수 있다. 이런 유형의 감염은 가정 사육의 조건에서의 감염을 가장 잘 시뮬레이션(simulate)한다.Chickens of the W38 +/+, W38 +/- and W38 +/- and W38 −/- genotypes were infected with the reported vector RCASBP(J)GFP at the age of several days to 2 months, which retains ALV-J receptor specificity, eg, HPRS103 It is more aggressive than the ALV-J of the same prototype strain. The normal course of ALV-J infection manifests itself as transient viremia, which occurs after a few days depending on the age of the infected individual, and typically peaks within 10 days, after which it peaks 1 to 2 Lasts for a week. The in vivo presence of the virus is determined by the quantitative detection of viral genomic RNA (viral genomic RNA) using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), molecularly, and replication. A replication-competent introduced virus complements the defective virus, which is then based on the number of focus-forming transformed cells that form the lesion. Secondary quantification was validated at this time in both methods, biologically by a complementation assay. The second method of detection verifies the presence of a biologically active virus as well as RNA. In both cases, the substances tested corresponded to the sera of infected animals collected at two time points, 1 week post-infection and 2 weeks post-infection. All chickens of the W38-/- genotype (a total of 5 chickens) were tested negative at both time points using RT-qPCR. The W38 +/+ genotype and W38 +/- genotype (10 chickens total) were positive at later time points with one exception; Three chickens were negative at the first collection time point, indicating a slow development of viremia during the first week and an increase in viremia during the second week. The only negative case here may refer to an unsuccessful infection (failure of infection), for example due to a defective inoculation. These results are summarized in FIG. 4 . In this complementarity assay, sporadic positive cases at the first collection point were found only for the W38 +/+ genotype and the W38 +/- genotype. At the second time point, samples of animals with these genotypes were positive with one exception (the same individual as in the previous experiment), whereas all W38 −/- genotypes remained negative (Table 1). In summary, we can conclude that deletion W38 induces complete resistance to the virus when ALV-J is inoculated into the circulating blood of juvenile individuals. This type of infection best simulates infection under domestic conditions.

Figure pct00001
Figure pct00001

표 1에는 보고 벡터 RCASBP(J)GFP에 감염된 후 W38 -/- 유전형, +/- 유전형 및 +/+ 유전형(대조군 야생형 유전형) 닭들에서의 바이러스 혈증의 검증 결과(verification)가 보여진다. 바이러스 혈증은 감염 후 6일 및 감염 후 13일의 두 혈청 시료들에서의 보완된 결함 있는 바이러스 16Q의 역가 및 종말 희석(a titre of complemented defective virus 16Q and terminal dilution in two serum samples, 6 and 13 days post infection)으로서 결정되었다.Table 1 shows the validation of viremia in W38 −/- genotype, +/- genotype and +/+ genotype (control wild-type genotype) chickens after infection with the report vector RCASBP(J)GFP. Viremia was characterized by a titre of complemented defective virus 16Q and terminal dilution in two serum samples, 6 and 13 days after infection. post infection).

C. ALV-J-위형(pseudotyped) 바이러스에 의한 종양 유도C. Tumor induction by ALV-J-pseudotyped virus

ALV-J 감염 후 고형 종양의 형성을 시뮬레이션하기 위하여, 우리는 메추라기 세포주 16Q에 존재하고 -src 종양 형성 유전자(oncogene)를 포함하는 형질전환 바이러스를 ALV-J 수용체 특이성을 가진 바이러스에 의하여, 즉, 상기 RCASBP(J)GFP 벡터에 의하여 위형화(pseudotype)하였다. 이것은 ALV-J 바이러스 당단백질로 둘러싸인 종양 형성 유전자 v-src를 가진 급성 형질전환을 일으키는 바이러스로 귀결되는바, 우리의 경우, 이는 날개 웹(wing web)에서의 접종 부위에 빠르게 성장하는 육종(sarcomas)을 유도하는 유도능을 가진다. 우리는 10 일 내지 2 개월의 나이를 가진 닭들에 접종하였고, 육종의 발병 및 성장이 한 달 동안 모니터링되었다. 유전형 W38 +/+ 및 유전형 W38 +/- 유전형의 모든 닭들에는 점진적으로 성장하는 육종이 생겨난 반면, 유전형 W38의 닭들에는 어떠한 사례에서도 어느 종양도 생겨나지 않았다. W38 +/+ 유전형의 동물들에서의 종양은 W38 +/- 유전형의 닭들에서의 종양보다 빠르게 성장하였는바, 이는 W38 결실을 보유한 대립 유전자의 약한 음성적 우성 효과(mild negatively dominant effect)를 보여준다. 이는 아마도 chNHE1 삼량체화(trimerization)와 연관되어 있을 것이다. 이 실험이 동형접합성 W38 결실의 경우 ALV-J에 대한 (완벽한) 전면적인 저항성을 입증한 것으로 결론 내릴 수 있다.To simulate the formation of solid tumors after ALV-J infection, we tested a transgenic virus present in quail cell line 16Q and containing the -src oncogene by a virus with ALV-J receptor specificity, i.e., It was pseudotyped by the RCASBP(J)GFP vector. This results in an acutely transforming virus with the oncogene v-src surrounded by the ALV-J virus glycoprotein, which in our case is a rapidly growing sarcomas at the site of inoculation in the wing web. ) has the ability to induce We inoculated chickens between 10 days and 2 months of age, and the onset and growth of sarcomas was monitored for one month. All chickens of genotype W38 +/+ and genotype W38 +/- genotypes developed progressively growing sarcomas, whereas chickens of genotype W38 developed no tumors in any case. Tumors in animals of the W38 +/- genotype grew faster than those in chickens of the W38 +/- genotype, indicating a mild negatively dominant effect of the allele carrying the W38 deletion. This is probably related to chNHE1 trimerization. It can be concluded that this experiment demonstrated (complete) total resistance to ALV-J in the case of a homozygous W38 deletion.

위에서 언급된 예시들(최근에 Koslova A, Trefil P, Mucksova J, Reinisova M, Plachy J, Kalina J, Kucerova D, Geryk J, Krchlikova V, Lejckova B, Hejnar J: Precise CRISPR/Cas9 Editing of the NHE1 Gene Renders Chickens Resistant to the J Subgroup of Avian Leukosis Virus. Proc Natl Acad Sci U S A. 117::2108-2112, 2020로 빠짐 없이 공개됨)은, 본 발명의 방법을 이용하여 만들어진, 상기 chNHE1 유전자 내에 동종접합성 결실 W38을 보유한 토종 닭의 새로운 계보(new line)가 정상적인 성장 속성, 생식 속성, 및 유용한 속성들을 보존하고 어떠한 뚜렷한 부작용도 없어 훌륭한 경제적 효과를 가져다주는 동시에 병원성 바이러스 ALV-J에 대해 완벽한 저항성이 있음을 확정적으로(conclusively) 문서화한다.Examples mentioned above (recently Koslova A, Trefil P, Mucksova J, Reinisova M, Plachy J, Kalina J, Kucerova D, Geryk J, Krchlikova V, Lejckova B, Hejnar J: Precise CRISPR/Cas9 Editing of the NHE1 Gene Renders Chickens Resistant to the J Subgroup of Avian Leukosis Virus. Proc Natl Acad Sci US A. 117::2108-2112, published in full as 2020) is a homozygous deletion in the chNHE1 gene, made using the method of the present invention. A new line of native chickens harboring W38 preserves normal growth properties, reproductive properties, and useful properties and exhibits excellent economic effects without any apparent adverse effects while being completely resistant to the pathogenic virus ALV-J. Document it conclusively.

J 아군 조류 백혈병 바이러스에 대한 저항성을 가지는 유전자 변형된 가금류를 생산하는 신규한 본 방법은 J형의 조류 백혈병 ALV의 근절에 대한 신규한 독창적 해법을 제공하며, ALV-J 감염에 대한 영구적인 저항성을 가진 유전자 변형된 개체들의 새롭게 만들어진 모델을 제시한다. 따라서 그 방법은 중국 및 동남아와 같은 가금류 축산 강국들에서뿐만 아니라 세계의 다른 곳들에서도 이 질환을 근절하는 완전히 혁명적인 방법에 해당하는데, 그 이유는 이 질환이 그 병인이 이미 근절된 지역들에 재도입될 잠재적 위험을 내포하고 있기 때문이다.This novel method of producing genetically modified poultry with resistance to sub-J avian leukemia virus provides a novel and novel solution for eradication of type J avian leukemia ALV, resulting in permanent resistance to ALV-J infection. We present a newly created model of genetically modified individuals with The method therefore represents a completely revolutionary method of eradicating the disease not only in poultry husbandry powers such as China and Southeast Asia, but also elsewhere in the world, since the disease is re-introduced in regions where its etiology has already been eradicated. This is because there is a potential risk of becoming

참고문헌들:References:

JURAJDA, Vladimir. Nemoci drubeze a ptactva - virove infection. 1. vyd. Brno: Edicni stfedisko VFU. Brno, 2002. 184 s. ISBN 80-7305-436-1.JURAJDA, Vladimir. Nemoci drubeze a ptactva - virove infection. 1. vyd. Brno: Edicni stfedisko VFU. Brno, 2002. 184 s. ISBN 80-7305-436-1.

Malhotra S, Justice J 4th, Lee N, Li Y, Zavala G, Ruano M, Morgan R, Beemon K: Complete genome sequence of an american avian leukosis virus subgroup j isolate that causes hemangiomas and myeloid leukosis. Genome Announcements 3(2): pii: e01586-14, 2015Malhotra S, Justice J 4th, Lee N, Li Y, Zavala G, Ruano M, Morgan R, Beemon K: Complete genome sequence of an american avian leukosis virus subgroup j isolate that causes hemangiomas and myeloid leukosis. Genome Announcements 3(2): pii: e01586-14, 2015

Plachy J, Reinisova M, Kucerova D, Senigl F, Stepanets V, Hron T, Trejbalova K, Elleder D, Hejnar J.: Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. Journal of Virology 91(3): e02002-16, 2017Plachy J, Reinisova M, Kucerova D, Senigl F, Stepanets V, Hron T, Trejbalova K, Elleder D, Hejnar J.: Identification of New World quails susceptible to infection with avian leukosis virus subgroup J. Journal of Virology 91(3) : e02002-16, 2017

Reinisova M, Plachy J, Kucerova D, Senigl F, Vinkler M, Hejnar J.: Genetic Diversity of NHE1 , Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PloS One 11(3):e0150589), 2016Reinisova M, Plachy J, Kucerova D, Senigl F, Vinkler M, Hejnar J.: Genetic Diversity of NHE1 , Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PloS One 11(3):e0150589), 2016

Koslova A, Trefil P, Mucksova J, Reinisova M, Plachy J, Kalina J, Kucerova D, Geryk J, Krchlikova V, Lejckova B, Hejnar J: Precise CRISPR/Cas9 Editing of the NHE1 Gene Renders Chickens Resistant to the J Subgroup of Avian Leukosis Virus. Proc Natl Acad Sci U S A. 117::2108-2112, 2020Koslova A, Trefil P, Mucksova J, Reinisova M, Plachy J, Kalina J, Kucerova D, Geryk J, Krchlikova V, Lejckova B, Hejnar J: Precise CRISPR/Cas9 Editing of the NHE1 Gene Renders Chickens Resistant to the J Subgroup of Avian Leukosis Virus. Proc Natl Acad Sci U S A. 117::2108-2112, 2020

체코 특허 제307102호Czech Patent No. 307102

체코 특허 제307285호Czech Patent No. 307285

Claims (1)

J 아군(subgroup) 조류 백혈병 바이러스에 대한 저항성을 가진 유전자 변형된 가금류를 만드는 방법으로서,
이 가금류가 CRISPR/Cas9-매개 상동 재조합을 이용하여 chNHE1 유전자 내에 도입된 W38 결실을 보유하거나, 임의선택적으로 CRISPR/Cas9 및 특이적 sgRNA를 이용하여 도입된 W38 결실을 보유하여, J 아군 조류 백혈병 바이러스(ALV)에 대한 저항성을 가진 토종 닭(Gallus gallus domesticus; domestic chicken) 또는 토종 칠면조(Meleagris gallopavo domesticus; domestic turkey)가 산출된다는 사실을 특징으로 하는, 방법.
A method for making a genetically modified poultry resistant to J subgroup avian leukemia virus, the method comprising:
This poultry harbors a W38 deletion introduced in the chNHE1 gene using CRISPR/Cas9-mediated homologous recombination, or optionally a W38 deletion introduced using CRISPR/Cas9 and specific sgRNA, resulting in a J subgroup avian leukemia virus. A method, characterized by the fact that domestic chickens (Gallus gallus domesticus; domestic chicken) or native turkeys (Meleagris gallopavo domesticus; domestic turkey) with resistance to (ALV) are produced.
KR1020227000427A 2019-06-19 2020-06-18 J How to make genetically modified poultry resistant to avian avian leukemia virus KR20220018016A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZ2019-392A CZ2019392A3 (en) 2019-06-19 2019-06-19 Method of preparation modified poultry resistant to avian leukosis virus subgroup J
CZPV2019-392 2019-06-19
PCT/CZ2020/000030 WO2020253894A1 (en) 2019-06-19 2020-06-18 Method of preparing genetically modified poultry resistent to subgroup j avian leukosis virus

Publications (1)

Publication Number Publication Date
KR20220018016A true KR20220018016A (en) 2022-02-14

Family

ID=72660639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227000427A KR20220018016A (en) 2019-06-19 2020-06-18 J How to make genetically modified poultry resistant to avian avian leukemia virus

Country Status (6)

Country Link
EP (1) EP4075964A1 (en)
KR (1) KR20220018016A (en)
CN (1) CN115003155A (en)
AU (1) AU2020297483A1 (en)
CZ (1) CZ2019392A3 (en)
WO (1) WO2020253894A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410808B (en) * 2022-03-30 2022-07-01 华南农业大学 Genetic resistance molecular marker for avian A, K subgroup avian leukosis and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935675B (en) * 2010-01-14 2012-06-06 山东农业大学 Construction and application of cell membrane expression ALV-env fluorescin eukaryotic transgenic expression plasmid
CN102851355B (en) * 2012-03-20 2014-12-10 华南农业大学 Typing method of resistance for resisting subgroup A avian leukosis virus by quality chicken
CN102876675A (en) * 2012-06-20 2013-01-16 韩健宝 Peptide nucleic acid for subgroup J avian leukosis viruses and application of peptide nucleic acid
CZ307285B6 (en) * 2013-01-28 2018-05-16 Ústav molekulární genetiky AV ČR, v.v.i. Polymorphisms in the strain of NHE1 of the domestic fowl associated with resistance or decreased sensitivity to ALV-J
CN104152445A (en) * 2014-07-30 2014-11-19 华南农业大学 Chicken B,D,E-subgroup avian leukaemia genetic resistance related mononucleotide polymorphism molecular marker and application thereof
CZ307102B6 (en) * 2016-06-10 2018-01-10 Biopharm, Výzkumný Ústav Biofarmacie A Veterinárních Léčiv, A.S. A method of production of sperm and transgenic birds

Also Published As

Publication number Publication date
EP4075964A1 (en) 2022-10-26
CZ308509B6 (en) 2020-10-07
AU2020297483A1 (en) 2021-12-23
CN115003155A (en) 2022-09-02
WO2020253894A1 (en) 2020-12-24
CZ2019392A3 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
Koslová et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus
Rubin Genetic control of cellular susceptibility to pseudotypes of Rous sarcoma virus
Bacon et al. A review of the development of chicken lines to resolve genes determining resistance to diseases
Hellmich et al. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line
HUE029073T2 (en) Chimaeric protein
JP6644276B2 (en) Method of genetically modifying poultry primordial germ cells, method of producing genetically modified poultry primordial germ cells, method of producing genetically modified poultry, and poultry egg
Schat et al. Resistance to Marek’s disease in chickens with recombinant haplotypes of the major histocompatibility (B) complex
WO2020109780A2 (en) Polypeptide and uses thereof
CN104195116B (en) A kind of recombinant Newcastle disease virus and its construction method for expressing goose parvovirus VP3 genes
Hocking Biology of breeding poultry
EP0424044A1 (en) Transgenic fowl expressing bovine growth hormone
AU2014276631A1 (en) Avian cells for improved virus production
Bitgood The genetic map of the chicken and availability of genetically diverse stocks
KR20220018016A (en) J How to make genetically modified poultry resistant to avian avian leukemia virus
US20230313319A1 (en) Molecular marker for genetic resistance of chicken to infection by subgroups a and k avian leukosis virus and use thereof
Doran et al. Genome editing in poultry-opportunities and impacts
JPH03210186A (en) Vector for producing transformation poultry
Freeman et al. Transgenic poultry: theory and practice
Bacon et al. Methods for evaluating and developing commercial chicken strains free of endogenous subgroup E avian leukosis virus
Khare et al. MHC-B haplotypes impact susceptibility and resistance to RSV-A infection
CN109414494A (en) The method for generating virus
CN106337049A (en) Breeding method of anti-influenza transgenic animals expressing double genes
AU2020101720A4 (en) An application of an exogenous RIG-I gene in preparation of chicken anti-Newcastle disease virus products
CN111454908A (en) Tpl2 defective MDCK cell strain and construction method and application thereof
CN111418551B (en) Method for breeding high-quality white feather chicken with meat and eggs