KR20220015008A - Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same - Google Patents

Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same Download PDF

Info

Publication number
KR20220015008A
KR20220015008A KR1020200094981A KR20200094981A KR20220015008A KR 20220015008 A KR20220015008 A KR 20220015008A KR 1020200094981 A KR1020200094981 A KR 1020200094981A KR 20200094981 A KR20200094981 A KR 20200094981A KR 20220015008 A KR20220015008 A KR 20220015008A
Authority
KR
South Korea
Prior art keywords
solid
battery
state
state battery
cell
Prior art date
Application number
KR1020200094981A
Other languages
Korean (ko)
Inventor
박준호
김병곤
박금재
박준우
유지현
이상민
이원재
이유진
이철호
하윤철
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020200094981A priority Critical patent/KR20220015008A/en
Publication of KR20220015008A publication Critical patent/KR20220015008A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is an all-solid-state secondary battery having improved interfacial properties by uniform pressurization. The present invention provides the all-solid-state secondary battery including: an all-solid-state battery cell in which a positive electrode, a negative electrode and a solid electrolyte are stacked; a rigid case surrounding the all-solid-state battery cell; and an elastic buffer layer interposed between the all-solid-state battery cell and the rigid case.

Description

전고체 전지용 균일 가압 케이스 및 이를 포함하는 전고체 이차전지{Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same}Uniform pressure case for all-solid-state battery and all-solid-state secondary battery comprising same

본 발명의 전고체 전지에 관한 것으로 보다 상세하게는 전고체 전지에 균일한 압력을 가할 수 있는 케이스를 구비하는 전고체 이차전지에 관한 것이다.The present invention relates to an all-solid-state battery, and more particularly, to an all-solid-state secondary battery having a case capable of applying uniform pressure to the all-solid-state battery.

기존의 액체전해액을 사용한 리튬이차전지는 외부 균일 가압의 필요성이 적었다. 따라서 전고체 이차전지의 케이스로는 무게를 최소화하고 가공이 쉬운 방향으로 설계가 되어 금속캔(알루미늄)이나 난연소재의 플라스틱 소재가 많이 사용되어 왔다. 그러나, 도 1과 같은 종래의 케이스는 내부 전극재료의 양압을 쉽게 견디기 어렵고 방열특성이 좋지 않아 열적 안전성의 개선이 필요하다. Lithium secondary batteries using conventional liquid electrolytes have little need for external uniform pressurization. Therefore, as the case of all-solid-state secondary batteries, metal cans (aluminum) or flame-retardant plastic materials have been widely used as they are designed to minimize weight and facilitate processing. However, the conventional case as shown in FIG. 1 is difficult to withstand the positive pressure of the internal electrode material and has poor heat dissipation characteristics, so improvement of thermal stability is required.

특히, 전고체전지는 고체전해질을 사용하기 때문에 밀접한 고체전해질멤브레인과 양극전극과의 계면형성이 매우 중요하며, 종래에는 도 2와 같은 펠렛타입의 토크셀을 주로 사용하고 있다. 이는 직경 2센치 이하의 실험단계의 테스트용 셀롯서 사용되고 있다. In particular, since the all-solid-state battery uses a solid electrolyte, it is very important to form a close interface between the solid electrolyte membrane and the positive electrode, and conventionally, a pellet-type torque cell as shown in FIG. 2 is mainly used. It is being used as a test cellot in the experimental stage with a diameter of less than 2 cm.

그러나, 자동차용 전지나 ESS전지에 전고체전지를 적용하기 위해서는 전극의 대면적화 및 적층은 필수 이며, 대면적의 전극을 적층하여 밀접한 계면형성으로 우수한 성능특성을 얻기에는 가압 특성과 열적 특성의 개선이 필요하다.However, in order to apply all-solid-state batteries to automobile batteries or ESS batteries, large-area electrode stacking and stacking are essential. necessary.

(1) Journal of Power Sources, Volume 248, 15 February 2014, Pages 943-950(1) Journal of Power Sources, Volume 248, 15 February 2014, Pages 943-950

상기 종래 기술의 문제점을 해결하기 위하여 본 발명은, 밀접한 계면 형성이 가능하여 우수한 성능을 갖는 전고체 이차전지를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to provide an all-solid-state secondary battery having excellent performance by forming a close interface.

또한, 본 발명은 펠렛 가압 형태의 전고체전지가 아닌, 대면적 또는 다적층된 전고체전 외부에서 균일한 가압을 인가 해줄 수 있는 케이스를 제공하여, 분리막과 전극 간 계면에서의 높은 저항을 최소화하는 전고체 이차전지를 제공하는 것을 목적으로 한다. In addition, the present invention provides a case that can apply uniform pressure from the outside of a large-area or multi-stacked all-solid-state battery, rather than a pellet-pressurized all-solid-state battery, thereby minimizing the high resistance at the interface between the separator and the electrode. An object of the present invention is to provide an all-solid-state secondary battery.

상기 기술적 과제를 달성하기 위하여 본 발명은, 양극, 음극 및 고체전해질이 적층된 전고체 전지 셀; 상기 전고체 전지셀을 둘러싸는 강성 케이스; 및 상기 전고체 전지 셀과 상기 강성 케이스 사이에 개재되는 탄성 버퍼층을 포함하는 전고체 이차전지를 제공한다. In order to achieve the above technical object, the present invention provides an all-solid-state battery cell in which a positive electrode, a negative electrode and a solid electrolyte are stacked; a rigid case surrounding the all-solid-state battery cell; and an elastic buffer layer interposed between the all-solid-state battery cell and the rigid case.

본 발명에 따르면, 밀접한 계면 형성이 가능하여 우수한 성능을 갖는 전고체 전지를 제공할 수 있다. 또한, 펠렛 가압 형태의 전고체전지가 아니라 대면적 또는 다적층된 전고체전 외부에서 균일한 가압을 인가 해줄 수 있는 케이스를 제공함으로써 분리막과 전극 간 계면에서의 높은 저항을 최소화하는 전고체 이차전지를 제공할 수 있게 된다. According to the present invention, it is possible to provide an all-solid-state battery having excellent performance by forming a close interface. In addition, an all-solid-state secondary battery that minimizes the high resistance at the interface between the separator and the electrode by providing a case that can apply uniform pressure outside of a large-area or multi-stacked all-solid-state battery rather than a pellet-pressurized all-solid-state battery be able to provide

도 1은 종래의 이차전지 구조를 나타낸 모식도이다.
도 2는 종래의 펠릿 타입 토크셀의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일실시예에 따른 전고체 이차전지의 가압 구조를 나타낸 모식도이다.
도 4는 본 발명의 다른 실시예에 따른 전고체 이차전지의 가압 구조를 나타낸 모식도이다.
도 5는 본 발명의 일실시예에 따라 제조된 전고체 이차전지의 전기화학적 특성을 측정한 결과를 나타낸 그래프이다.
도 6은 본 발명의 비교예에 따라 제조된 전고체 이차전지의 전기화학적 특성을 측정한 결과를 나타낸 그래프이다.
1 is a schematic diagram showing the structure of a conventional secondary battery.
2 is a cross-sectional view showing the structure of a conventional pellet-type torque cell.
3 is a schematic diagram showing a pressurization structure of an all-solid-state secondary battery according to an embodiment of the present invention.
4 is a schematic diagram showing a pressurization structure of an all-solid-state secondary battery according to another embodiment of the present invention.
5 is a graph showing the results of measuring the electrochemical properties of the all-solid-state secondary battery manufactured according to an embodiment of the present invention.
6 is a graph showing the results of measuring the electrochemical properties of the all-solid-state secondary battery prepared according to the comparative example of the present invention.

이하 도면을 참조하여 본 발명을 상술한다. The present invention will be described in detail below with reference to the drawings.

전고체 이차전지는 전해질과 전극간의 계면, 분리막과 전극간의 계면에서 발생하는 전기화학적 반응 저항을 최소화하기 위하여 전고체전지의 외부에서 압축응력을 가하거나 유지한 상태의 조건이 필요하다. 특히, 사이클이 진행됨에 되면서, 충방전에 따라 전고체전지의 부피팽창 및 축소 현상이 발생하며, 그에 따른 압력을 능동적으로 조절할 수 있는 외부 가압 케이스가 필요하다. All-solid-state secondary batteries require a condition in which compressive stress is applied or maintained from the outside of the all-solid-state battery in order to minimize the electrochemical reaction resistance that occurs at the interface between the electrolyte and the electrode and at the interface between the separator and the electrode. In particular, as the cycle progresses, the volume expansion and contraction of the all-solid-state battery occurs according to charging and discharging, and an external pressurizing case capable of actively controlling the corresponding pressure is required.

따라서 본 발명에서는, 전고체전지의 외부에서 균일한 가압을 인가 해줄 수 있는 케이스를 제안하여, 분리막과 전극 간 계면에서의 높은 저항을 최소화할 수 있는 방법을 제시하고자 한다. Therefore, in the present invention, a case capable of applying a uniform pressure from the outside of the all-solid-state battery is proposed, and a method for minimizing the high resistance at the interface between the separator and the electrode is to be presented.

더불어, 케이스의 소재로서는 내열 특성을 부여하여, 전지가 고온에 노출 또는 셀 자체적 발열에 의해 전지의 열적 안전성 특성을 향상시키기 위해 케이스는 내부 발열을 잘 배출할 수 있는 방열 소재를 사용 할 수 있다.In addition, in order to improve the thermal safety characteristics of the battery by exposing the battery to high temperatures or by self-heating of the battery by giving heat resistance characteristics as a material of the case, the case can use a heat dissipation material capable of discharging internal heat well.

기존의 계면 저항 저감 기술은 액체전해질을 적용한 반고상(semi-solid) 형테의 하이브리드 전해질 매트릭스를 적용하여 근본적인 열안전성 확보가 어려우며 , 활물질과 고체전해질 계면에서의 원치 않는 부반응에 기인한 저항 상승을 억제하기 위하여 활물질 표면위에 인공 SEI 층(Artificial SEI layer) 을 인위적으로 코팅하는 방법등이 제시되나 이는 상대적으로 낮은 이온전도도를 갖는 중간층(interlayer)에 기인하여 활물질 자체의 이온전도도 등을 저하시켜 완전한 해결책이 될 수 없다. Existing interfacial resistance reduction technology is difficult to secure fundamental thermal stability by applying a semi-solid hybrid electrolyte matrix to which a liquid electrolyte is applied. In order to do this, a method of artificially coating an artificial SEI layer on the surface of the active material is proposed. can't be

도 3은 본 발명의 일실시예에 따른 전고체 이차전지의 가압 구조를 나타낸 모식도이다.3 is a schematic diagram showing a pressurization structure of an all-solid-state secondary battery according to an embodiment of the present invention.

도 3을 참조하면, 가압 지그는 상하 두 개의 플레이트 및 상기 플레이트를 지지하는 샤프트를 포함한다. 상기 지그의 플레이트 사이에는 전고체 전지 셀과 탄성 버퍼층이 삽입되어 있다. 탄성 버퍼층은 복수의 시트로 이루어질 수 있으며, 각 시트는 바람직하게는 탄성체이다. Referring to FIG. 3 , the pressing jig includes two upper and lower plates and a shaft supporting the plate. An all-solid-state battery cell and an elastic buffer layer are inserted between the plates of the jig. The elastic buffer layer may consist of a plurality of sheets, each sheet preferably being an elastic body.

도 4는 본 발명의 다른 실시예에 따른 전고체 이차전지의 가압 구조를 나타낸 모식도이다. 4 is a schematic diagram showing a pressurization structure of an all-solid-state secondary battery according to another embodiment of the present invention.

전고체 전지 셀의 둘레를 강성 케이스(지그)가 둘러싸고 있다. 상기 강성 케이스 내부에는 전고체 전지 셀 적층체가 위치한다. 상기 전고체 전지 셀 적층체는 양극, 음극 및 고체 전해질이 적층된 구조체일 수 있다. 상기 전고체 전지 셀 적층체와 상기 강성 지그 사이의 공간에 탄성 버퍼층이 배치된다. 상기 탄성 버퍼층은 고무와 같은 탄성체가 사용될 수 있다. A rigid case (jig) surrounds the perimeter of the all-solid-state battery cell. An all-solid-state battery cell stack is positioned inside the rigid case. The all-solid-state battery cell stack may be a structure in which a positive electrode, a negative electrode, and a solid electrolyte are stacked. An elastic buffer layer is disposed in a space between the all-solid-state battery cell stack and the rigid jig. The elastic buffer layer may be an elastic material such as rubber.

상기 탄성 버퍼층과 강성 지그는 상기 전고체 전지 셀에 일정한 압력을 가할 수 있다. 상기 강성 지그는 탄성 버퍼층의 가압력 범위 내에서 탄성 변형되는 강성 재질로 형성될 수 있다.The elastic buffer layer and the rigid jig may apply a constant pressure to the all-solid-state battery cell. The rigid jig may be formed of a rigid material that is elastically deformed within a pressing force range of the elastic buffer layer.

이와 같이, 제조된 파우치 셀의 양쪽에 기계적인 완충을 해줄 수 있는 버퍼 시트를 위치시키고 그 외부에 방열기능 및 내압기능이 있는 금속판으로 케이스를 씌워 전극간 계면을 밀접하게 형성시켜 저항을 낮춰 셀 성능을 향상 시킬 수 있다. In this way, a buffer sheet that can provide mechanical buffering is placed on both sides of the manufactured pouch cell, and the case is covered with a metal plate having a heat dissipation function and a pressure resistance function on the outside to form an interface between the electrodes closely, thereby lowering the resistance and cell performance. can improve

<실시예><Example>

용매에 분산된 고체전해질 슬러리를 도포하여, 전고체전지 분리막을 제조하였다. A solid electrolyte slurry dispersed in a solvent was applied to prepare an all-solid-state battery separator.

고체전해질 복합 분리막은 고체전해질 (황화물계 전해질 및 산화물계 전해질)과 바인더(PEO, PEP-NMB, NBR 등)으로 구성된 폴리머 복합막 혹은 그린시트로 구성되며, 중간 지지층으로서 리튬이온전지등에서 검토되고 있는 부직포 분리막 등이 적용될 수 있다. The solid electrolyte composite separator is composed of a polymer composite membrane or green sheet composed of a solid electrolyte (sulfide-based electrolyte and oxide-based electrolyte) and a binder (PEO, PEP-NMB, NBR, etc.) Non-woven membranes and the like may be applied.

전고체전지 양극층은 양극 활물질, 바인더, 도전제분말을 NMP(N-Methyl-2-pyrrolidone) 용매에 첨가하여 교반시켜서 슬러리를 제작하며, 이를 알루미늄 집전체에 도포하여 제조하였다. The all-solid-state battery positive electrode layer was prepared by adding positive electrode active material, binder, and conductive powder to NMP (N-Methyl-2-pyrrolidone) solvent and stirring to prepare a slurry, which was then applied to an aluminum current collector.

전고체전지 음극층은 리튬메탈, 메탈 및 탄소 복합, 흑연을 바인더와 적정비율 용매에 분산시켜 집전체에 도포하여 제조하였다. The all-solid-state battery anode layer was prepared by dispersing lithium metal, a metal and carbon composite, and graphite in a binder and a solvent at an appropriate ratio, and applying it to the current collector.

전고체 전지 셀 제조방법은 양극층, 고체전해질 분리막층, 음극층을 순서대로 적층하거나 또는 양극층슬러리, 고체전해질층 슬러리, 음극층슬러리를 순서대로 코팅 및 건조하여 제조하였다. The all-solid-state battery cell manufacturing method was prepared by sequentially stacking a positive electrode layer, a solid electrolyte separator layer, and a negative electrode layer, or coating and drying a positive electrode layer slurry, a solid electrolyte layer slurry, and a negative electrode layer slurry in order.

나란히 적층된 양극층, 고체전해질 분리막층, 음극층을 파우치에 진공 밀봉한 후, 1축, 2축 또는 등방가압하여 전극 물질간 또는 밀접한 계면 형성을 시켜준다.After vacuum sealing the stacked anode layer, solid electrolyte separator layer, and cathode layer in a pouch, uniaxial, biaxial, or isotropic pressure is applied to form a close interface or between electrode materials.

균일 가압케이스는 한장 또는 그 이상의 완충시트를 셀의 면방향으로 양 옆에 위치시키며, 완충시트의 크기는 셀보다 동등 이상으로 크다. 균일 가압케이스는 완충시트보다 면적이 더 넓으며, 완충시트 바깥에 위치한다. 셀에 면방향을 압력을 가하므로 내압 성능의 재료를 사용해야 하며, 열적안정성을 향상시키기 위해 방열기능의 재료를 사용한다. The uniform pressurization case places one or more buffer sheets on both sides in the direction of the cell, and the size of the buffer sheet is equal to or larger than the cell. The uniform pressurization case has a larger area than the buffer sheet and is located outside the buffer sheet. Because pressure is applied to the cell in the plane direction, a material with pressure-resistant performance must be used, and a material with a heat dissipation function is used to improve thermal stability.

균일 가압케이스의 형태는 두개의 판형대가 볼트와 너트로 조여지는 형태(도 3)여도 되며, 케이스 형태(도 4)여도 무방하나, 본 실시예에서는 도 3의 구조를 채용하였다. 셀 규격은 아래 표 1과 같다.The shape of the uniform pressurization case may be a form in which two plate-shaped bars are tightened with bolts and nuts (FIG. 3) or a case type (FIG. 4), but the structure of FIG. 3 is adopted in this embodiment. The cell specifications are shown in Table 1 below.

부품part 규격standard 무게weight 비고note 양극anode 25*25 mm2 25*25 mm 2 0.6680 g0.6680 g 6.0 mA/cm2 6.0 mA/cm 2 양극 foilanode foil 25*25 mm2 25*25 mm 2 0.0223 g0.0223 g -- 분리막/C-MSeparator/C-M 30*30 mm2 30*30 mm 2 0.3157 g0.3157 g both sidedboth sides 음극 foilcathode foil 30*30 mm2 30*30 mm 2 0.085 g0.085 g 파우치pouch -- 0.7072 g0.7072 g 기타 부품other parts -- 0.1360 g0.1360 g 전극/분리막Electrode/Separator 30*30 mm2 30*30 mm 2 1.091 g1.091 g 본 전지 측정기준This Battery Dimensions 전지battery 32*32 mm2 32*32 mm 2 1.9342 g1.9342 g

제조된 셀의 셀 전기화학적 특성을 측정하여 도 5에 나타내었다. 셀의 전극 전류 밀도는 5.0~6.0 mA/cm2였다. The cell electrochemical properties of the prepared cell were measured and shown in FIG. 5 . The electrode current density of the cell was 5.0-6.0 mA/cm2.

<비교예><Comparative example>

비교를 위하여, 비가압 상태인 점을 제외하고는 실시예와 마찬가지 조건의 셀을 제조하였다. 셀 규격은 아래 표 2와 같고, 제조된 셀의 전기화학적 특성 측정 결과를 도 6에 나타내었다. For comparison, a cell under the same conditions as in Example was prepared except that it was in a non-pressurized state. The cell specifications are shown in Table 2 below, and the measurement results of the electrochemical properties of the prepared cells are shown in FIG. 6 .

부품part 규격standard 무게weight 비고note 양극anode 25*25 mm2 25*25 mm 2 0.6680 g0.6680 g 6.0 mA/cm2 6.0 mA/cm 2 양극 foilanode foil 25*25 mm2 25*25 mm 2 0.0223 g0.0223 g -- 분리막/C-MSeparator/C-M 30*30 mm2 30*30 mm 2 0.3157 g0.3157 g both sidedboth sides 음극 foilcathode foil 30*30 mm2 30*30 mm 2 0.085 g0.085 g 파우치pouch -- 0.7072 g0.7072 g 기타 부품other parts -- 0.1360 g0.1360 g 전극/분리막Electrode/Separator 30*30 mm2 30*30 mm 2 1.091 g1.091 g 본 전지 측정기준This Battery Dimensions 전지battery 32*32 mm2 32*32 mm 2 1.9342 g1.9342 g

실시예 및 비교예의 단위 중량당 에너지를 계산하여 표 3에 나타내었다.The energy per unit weight of Examples and Comparative Examples was calculated and shown in Table 3.

구분division 활물질
(%)
active material
(%)
방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량
(mAh)
Volume
(mAh)
전압
(V)
Voltage
(V)
에너지
(Wh)
energy
(Wh)
Wh/Kg
(전극+분리막)
Wh/Kg
(electrode + separator)
비교에in comparison 7070 5050 23.423.4 3.683.68 0.0850.085 7878 실시예Example 7070 141.6~
149.9
141.6~
149.9
66.2~70.166.2~70.1 3.68~3.693.68~3.69 0.25~0.260.25 to 0.26 223.3~237.0223.3~237.0

Claims (1)

양극, 음극 및 고체전해질이 적층된 전고체 전지 셀;
상기 전고체 전지셀을 둘러싸는 강성 케이스; 및
상기 전고체 전지 셀과 상기 강성 케이스 사이에 개재되는 탄성 버퍼층을 포함하는 전고체 이차전지.
an all-solid-state battery cell in which a positive electrode, a negative electrode, and a solid electrolyte are stacked;
a rigid case surrounding the all-solid-state battery cell; and
An all-solid-state secondary battery comprising an elastic buffer layer interposed between the all-solid-state battery cell and the rigid case.
KR1020200094981A 2020-07-30 2020-07-30 Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same KR20220015008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200094981A KR20220015008A (en) 2020-07-30 2020-07-30 Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200094981A KR20220015008A (en) 2020-07-30 2020-07-30 Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same

Publications (1)

Publication Number Publication Date
KR20220015008A true KR20220015008A (en) 2022-02-08

Family

ID=80251914

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200094981A KR20220015008A (en) 2020-07-30 2020-07-30 Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same

Country Status (1)

Country Link
KR (1) KR20220015008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490082B1 (en) 2022-08-02 2023-01-18 부산대학교 산학협력단 All-solid-state battery assembly with internal pressure control
WO2023153582A1 (en) * 2022-02-10 2023-08-17 삼성에스디아이 주식회사 All-solid-state battery elastic sheet composition, all-solid-state battery elastic sheet manufactured therefrom, and all-solid-state battery comprising same
WO2024101870A1 (en) * 2022-11-09 2024-05-16 (주)미래컴퍼니 Apparatus for manufacturing all solid battery
WO2024117600A1 (en) * 2022-11-28 2024-06-06 (주)미래컴퍼니 Apparatus for manufacturing all solid battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(1) Journal of Power Sources, Volume 248, 15 February 2014, Pages 943-950

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153582A1 (en) * 2022-02-10 2023-08-17 삼성에스디아이 주식회사 All-solid-state battery elastic sheet composition, all-solid-state battery elastic sheet manufactured therefrom, and all-solid-state battery comprising same
KR102490082B1 (en) 2022-08-02 2023-01-18 부산대학교 산학협력단 All-solid-state battery assembly with internal pressure control
WO2024101870A1 (en) * 2022-11-09 2024-05-16 (주)미래컴퍼니 Apparatus for manufacturing all solid battery
WO2024117600A1 (en) * 2022-11-28 2024-06-06 (주)미래컴퍼니 Apparatus for manufacturing all solid battery

Similar Documents

Publication Publication Date Title
KR20220015008A (en) Case Capable Of Uniform Pressure For Solid State Battery And Battery Comprising The Same
CN108780856B (en) Battery pack
US9099694B2 (en) Method of manufacturing electrode body
US7438989B2 (en) Flat cell, battery, combined battery, and vehicle
EP1744393B1 (en) Improvements in or relating to batteries
US6558438B1 (en) Method for producing a pressurized package for a film packed battery
KR102491457B1 (en) battery pack and vehicle
US5882721A (en) Process of manufacturing porous separator for electrochemical power supply
US6636417B2 (en) Electric double layer capacitor and battery
WO2012014780A1 (en) Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
US20160268638A1 (en) Method of manufacturing all-solid battery through wet-dry mixing process
KR20040098546A (en) Electrochemical Cell Stack
US9190221B2 (en) Aqueous-based electric double-layer capacitor
CN111640582B (en) High-voltage electrochemical capacitor, preparation method and energy storage module thereof
CN113036148A (en) Energy storage system based on conductivity-controllable polymer current collector and preparation process thereof
CN112005420A (en) Solid-state battery
US9330855B2 (en) Aqueous-based electric double-layer capacitor
CN111799508B (en) All-solid-state polymer electrolyte diaphragm, preparation method and all-solid-state lithium ion battery
CN112490496A (en) Composite solid electrolyte, preparation method thereof and lithium storage battery
JPS61148770A (en) Fuel cell lamination body
KR20080082240A (en) Battery pack having polymer electrolyte
EP4142004A1 (en) Battery and battery manufacturing method
CN115172649A (en) Negative plate, battery and method for preparing battery
CN114865231A (en) Battery with a battery cell
CN220367968U (en) Energy storage device