KR20220011520A - Apparatus and method for detecting location of user using the same - Google Patents
Apparatus and method for detecting location of user using the same Download PDFInfo
- Publication number
- KR20220011520A KR20220011520A KR1020200090551A KR20200090551A KR20220011520A KR 20220011520 A KR20220011520 A KR 20220011520A KR 1020200090551 A KR1020200090551 A KR 1020200090551A KR 20200090551 A KR20200090551 A KR 20200090551A KR 20220011520 A KR20220011520 A KR 20220011520A
- Authority
- KR
- South Korea
- Prior art keywords
- data
- machine learning
- user
- location
- learning model
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S2205/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S2205/01—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
- G01S2205/02—Indoor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Description
본 발명은 GPS 센서에 기반한 사용자 위치 탐지 장치 및 방법에 관한 것으로, 사용자의 위치가 실내(Indoor)인지 혹은 실외(Outdoor)인지의 여부를 판단하는 위치 탐지 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for detecting a user's location based on a GPS sensor, and to a location detecting apparatus and method for determining whether a user's location is indoors or outdoors.
오늘날 제공되는 위치 기반 서비스의 위치 정보는 대부분 글로벌 항법 위성 시스템(Global Positioning System, 이하 GPS) 정보에 기반하고 있다. Most location information of location-based services provided today is based on global positioning system (GPS) information.
GPS 정보는 지구 주변을 돌고 있는 32개 중 31개의 GPS 위성으로부터 송신되는 신호를 지구상에 위치한 GPS 수신기가 획득하는 정보로, GPS 위성을 추적하기 위한 거리 변화율을 측정한 정보이다.GPS information is information obtained by a GPS receiver located on the earth from signals transmitted from 31 GPS satellites out of 32 orbiting the earth, and is information obtained by measuring the distance change rate for tracking GPS satellites.
종래에는 모바일 기기 등에 포함된 GPS 센서를 이용하여 GPS 신호를 수신함으로써, 사용자의 실시간 정보에 기반한 긴급 구조 서비스, 지도 검색 서비스 등 실외 환경 정보를 적용한 다양한 애플리케이션 서비스가 제공되고 있다.Conventionally, by receiving a GPS signal using a GPS sensor included in a mobile device, etc., various application services to which outdoor environment information is applied, such as an emergency rescue service and a map search service based on real-time information of a user, have been provided.
또한, 이동 통신을 비롯한 ICT 기술의 확산으로 인해, 실외(Outdoor) 공간에서 이루어지던 다양한 활동들이 실내(Indoor) 환경에서도 이루어지고 있어, 최근에는 모바일 기기를 통해 사용자의 실내 또는 실외 위치 여부를 판정하는 I/O(Indoor/Outdoor) 탐지 기술이 주목받고 있다. In addition, due to the spread of ICT technology including mobile communication, various activities that used to be performed in the outdoor space are also being performed in the indoor environment. I/O (Indoor/Outdoor) detection technology is attracting attention.
I/O(Indoor/Outdoor) 탐지 기술은 사용자의 위치 기반 서비스뿐 만 아니라, 실외 환경에서 잘 동작하는 GPS 기능을 해제하여 에너지를 절약하거나 Wi-Fi로 통신 모드를 전환하고, 모바일 장치의 볼륨을 조정하거나, 화면의 밝기를 조정하는 등 최적화된 모바일 네트워크 리소스 환경을 제공하기 위한 서비스에도 적용이 가능한 장점이 있다. I/O (Indoor/Outdoor) detection technology saves energy by disabling the GPS function that works well in outdoor environments as well as the user's location-based service, or by switching the communication mode to Wi-Fi, and adjusting the volume of the mobile device. There is an advantage that it can be applied to services for providing an optimized mobile network resource environment, such as adjusting or adjusting the brightness of the screen.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 고정확, 고정밀 및 고신뢰성의 사용자의 위치를 탐지하기 위한 모델 학습 방법을 제공하는 데 있다.An object of the present invention for solving the above problems is to provide a model learning method for detecting a user's location with high accuracy, high precision and high reliability.
또한, 상기와 같은 문제점을 해결하기 위한 본 발명의 다른 목적은 고정확, 고정밀 및 고신뢰성의 사용자의 위치를 탐지하기 위한 모델 학습 장치를 제공하는 데 있다.In addition, another object of the present invention for solving the above problems is to provide a model learning apparatus for detecting a user's location with high accuracy, high precision and high reliability.
또한, 상기와 같은 문제점을 해결하기 위한 본 발명의 또다른 목적은 고정확, 고정밀 및 고신뢰성의 사용자 위치 탐지 장치를 제공하는 데 있다.In addition, another object of the present invention for solving the above problems is to provide a high-accuracy, high-precision and high-reliability user location detection device.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 사용자의 위치를 탐지하기 위한 모델 학습 방법은, 적어도 하나의 GPS 신호 데이터를 수집하는 단계, 상기 GPS 신호 데이터 중 특정 강도의 GPS 신호 크기를 갖는 적어도 하나의 입력 데이터를 추출하는 단계, 상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하는 단계 및 상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하는 단계를 포함한다.A model learning method for detecting a user's location according to an embodiment of the present invention for achieving the above object includes the steps of collecting at least one GPS signal data, and having a GPS signal size of a specific strength among the GPS signal data. extracting at least one input data, generating a machine learning model for determining whether a user's location is indoors or outdoors by using learning data among the input data, and among the input data and verifying the machine learning model using validation data.
여기서, 상기 초기 GPS 신호 데이터는 GPS 센서에 의해 수집될 수 있다.Here, the initial GPS signal data may be collected by a GPS sensor.
또한, 상기 기계학습 모델은 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성할 수 있다.In addition, the machine learning model may be generated using a logistic regression model.
상기 입력 데이터는 특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고, 상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응될 수 있다.The input data may be composed of a data set composed of a specific number of data, and the specific number may correspond to the number of received signals of GPS satellites receivable at a specific point.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 사용자의 위치를 탐지하기 위한 모델 학습 장치는, 메모리(memory) 및 상기 메모리에 저장된 적어도 하나의 명령을 실행하는 프로세서(processor)를 포함하되, 상기 적어도 하나의 명령은, 적어도 하나의 GPS 신호 데이터를 수집하도록 하는 명령, 상기 GPS 신호 데이터 중 특정 강도의 GPS 신호 크기를 갖는 적어도 하나의 입력 데이터를 추출하도록 하는 명령, 상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하도록 하는 명령, 및 상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하도록 하는 명령을 포함한다.A model learning apparatus for detecting a user's location according to another embodiment of the present invention for achieving the above object includes a memory (memory) and a processor (processor) for executing at least one instruction stored in the memory, The at least one command includes: a command to collect at least one GPS signal data; command to generate a machine learning model for determining whether the user's location is indoor or outdoor using the include
여기서, 상기 초기 GPS 신호 데이터는 GPS 센서에 의해 수집될 수 있다.Here, the initial GPS signal data may be collected by a GPS sensor.
또한, 상기 기계학습 모델은 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성할 수 있다.In addition, the machine learning model may be generated using a logistic regression model.
상기 입력 데이터는, 특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고, 상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응될 수 있다.The input data may be composed of a data set composed of a specific number of data, and the specific number may correspond to the number of received signals of GPS satellites that can be received at a specific point.
상기 목적을 달성하기 위한 본 발명의 또다른 실시예에 따른 사용자 위치 탐지 장치는, 메모리(memory) 및 상기 메모리에 저장된 적어도 하나의 명령을 실행하는 프로세서(processor)를 포함하되, 상기 적어도 하나의 명령은, 사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하는 기계학습 모델을 학습하도록 하는 명령 및 GPS 센서로부터 수집한 사용자 위치 데이터를 상기 기계학습 모델에 적용하여 사용자의 위치를 판단하도록 하는 명령을 포함하고, 상기 기계학습 모델을 학습하도록 하는 명령은, 적어도 하나의 초기 GPS 신호 데이터를 수집하도록 하는 명령, 상기 초기 GPS 신호 데이터를 특정 강도의 GPS 신호 세기를 기준으로 분류하여 적어도 하나의 입력 데이터를 추출하도록 하는 명령, 상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하도록 하는 명령 및 상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하도록 하는 명령을 포함한다. A user location detection device according to another embodiment of the present invention for achieving the above object, a memory (memory) and and a processor for executing at least one command stored in the memory, wherein the at least one command learns a machine learning model for determining whether a user's location is indoors or outdoors and a command to apply the user location data collected from the GPS sensor to the machine learning model to determine the user's location, wherein the command to learn the machine learning model includes at least one initial GPS signal data A command to collect the initial GPS signal data, a command to extract at least one input data by classifying the initial GPS signal data based on the GPS signal strength of a specific strength, a command to extract at least one input data from among the input data, and a command for generating a machine learning model for determining whether it is outdoor or not, and a command for verifying the machine learning model using verification data among the input data.
이때, 상기 사용자 위치 데이터는 상기 GPS 센서로부터 실시간으로 측정되는 GPS 신호 데이터일 수 있다.In this case, the user location data may be GPS signal data measured in real time from the GPS sensor.
또한, 상기 기계학습 모델은, 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성할 수 있다.In addition, the machine learning model may be generated using a logistic regression model.
상기 입력 데이터는, 특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고, 상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응될 수 있다.The input data may be composed of a data set composed of a specific number of data, and the specific number may correspond to the number of received signals of GPS satellites that can be received at a specific point.
본 발명의 실시예 및 실험예에 따른 사용자 위치 탐지 장치 및 방법은 중복되는 특정 강도의 신호 값을 갖는 초기 GPS 신호 데이터를 분류하여 사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하는 기계학습 모델의 입력 데이터로 사용하여 고정밀한 기계학습 모델을 제공함으로써, 사용자의 고정확한 위치 탐지가 가능한 고신뢰성의 사용자 위치 탐지 장치 및 방법을 제공할 수 있다.The apparatus and method for detecting a user's location according to an embodiment and an experimental example of the present invention classify initial GPS signal data having overlapping signal values of specific strength to determine whether the user's location is indoors or outdoors By providing a high-precision machine learning model by using it as input data of the machine learning model, it is possible to provide a high-reliability user location detection device and method capable of high-accuracy location detection of the user.
도 1은 본 발명의 실시예에 따른 사용자 위치 탐지 장치를 설명하기 위한 이미지이다.
도 2는 본 발명의 실시예에 따른 사용자 위치 탐지 장치의 블록 구성도이다.
도 3은 본 발명의 실시예에 따른 사용자 위치 탐지 장치를 이용한 사용자 위치 탐지 방법의 순서도이다.
도 4는 본 발명의 실시예에 따른 위치 탐지 방법 중 입력 데이터를 추출하는 단계를 설명하기 위한 순서도이다.1 is an image for explaining an apparatus for detecting a user's location according to an embodiment of the present invention.
2 is a block diagram of an apparatus for detecting a user's location according to an embodiment of the present invention.
3 is a flowchart of a method for detecting a user's location using the apparatus for detecting a user's location according to an embodiment of the present invention.
4 is a flowchart illustrating a step of extracting input data in a location detection method according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The term “and/or” includes a combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When an element is referred to as being “connected” or “connected” to another element, it is understood that it may be directly connected or connected to the other element, but other elements may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. In describing the present invention, in order to facilitate the overall understanding, the same reference numerals are used for the same components in the drawings, and duplicate descriptions of the same components are omitted.
도 1은 본 발명의 실시예에 따른 사용자 위치 탐지 장치를 설명하기 위한 이미지이다. 1 is an image for explaining an apparatus for detecting a user's location according to an embodiment of the present invention.
도 1을 참조하면, 사용자 위치 탐색 장치(1000)는 GPS 신호에 기반하여 사용자의 위치를 판단하기 위한 기계학습 모델을 생성할 수 있다. 이에 따라, 사용자 위치 탐지 장치(1000)는 생성 및 학습된 상기 기계학습 모델을 이용하여, 사용자의 위치가 실내인지 또는 실외인지의 여부를 판단할 수 있다.Referring to FIG. 1 , the user
예를 들어, 사용자 위치 탐지 장치(1000)는 GPS 센서를 포함하는 마이크로 컨트롤러 유닛(Micro Controller Unit) 또는 휴대용 단말(Potable Device) 등으로 제공될 수 있다. 실시예에 따르면, 사용자 위치 탐지 장치(1000)는, 사용자의 위치가 실내인지 또는 실외인지를 판단하는, 어플리케이션 서비스를 제공하는 스마트 폰(Smart phone) 형태로 제공될 수 있다.For example, the user
사용자 위치 탐색 장치(1000)에 대해서는 하기 도 2를 참조하여 구성별로 보다 자세히 설명하겠다.The user
도 2는 본 발명의 실시예에 따른 사용자 위치 탐지 장치의 블록 구성도이다.2 is a block diagram of an apparatus for detecting a user's location according to an embodiment of the present invention.
도 2를 참조하면, 사용자 위치 탐색 장치(1000)는 적어도 하나의 명령을 저장하는 메모리(100) 및 상기 메모리의 적어도 하나의 명령을 실행하는 프로세서(200)를 포함할 수 있다.Referring to FIG. 2 , the user
그리고, 사용자 위치 탐색 장치(1000)는 적어도 하나의 GPS 위성으로부터 GPS 신호를 수신하기 위한 GPS 센서(300), 상기 프로세서(200)를 통해 실행되는 네트워크와 연결되어 통신을 수행하는 송수신 장치(400), 입력 인터페이스 장치(500), 출력 인터페이스 장치(600) 및 저장 장치(700) 등을 더 포함할 수 있다. 여기서, 사용자 위치 탐색 장치(1000)에 포함된 각각의 구성 요소들(100, 200, 300, 400, 500, 600, 700)은 버스(bus, 800)에 의해 연결되어 서로 통신을 수행할 수 있다. In addition, the user
사용자 위치 탐색 장치(1000) 내 메모리(100) 및 저장 장치(600)는 각각 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다.The
예를 들어, 메모리(100)는 읽기 전용 메모리(read only memory, ROM) 및 랜덤 액세스 메모리(random access memory, RAM) 중에서 적어도 하나로 구성될 수 있다.For example, the
메모리(100)는 사용자의 위치가 실내인지 또는 실외인지를 판단하는 기계학습 모델을 실행하기 위한 적어도 하나의 프로그램 명령(program command)을 포함할 수 있다. 여기서, 기계학습 모델은 사전 훈련된 학습 모델일 수 있다. 기계학습 모델에 대해서는 하기에서 보다 자세히 설명하겠다.The
프로세서(200)는 메모리(100)에 저장된 상기 적어도 하나의 프로그램 명령을 실행할 수 있다.The
보다 구체적으로 설명하면, 상기 적어도 하나의 프로그램 명령은, 사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하는 기계학습 모델을 학습하도록 하는 명령 및 GPS 센서로부터 수집한 사용자 위치 데이터를 상기 기계학습 모델에 적용하여 사용자의 위치를 판단하도록 하는 명령을 포함할 수 있다.More specifically, the at least one program command includes a command for learning a machine learning model for determining whether a user's location is Indoor or Outdoor, and user location data collected from a GPS sensor. It may include a command to be applied to the machine learning model to determine the location of the user.
프로세서(200)는 메모리(100) 및 저장 장치(600) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 실시예에 따르면, 프로세서(200)는 메모리(100) 내 적어도 하나의 명령을 수행할 수 있다.The
상기 적어도 하나의 프로그램 명령을 수행하는 프로세서(200)의 동작은 후술될 본 발명의 실시예에 따른 사용자 위치 탐지 장치를 이용한 사용자의 위치 탐지 방법의 설명 시 보다 자세히 설명하겠다.An operation of the
도 3은 본 발명의 실시예에 따른 사용자 위치 탐지 장치를 이용한 사용자 위치 탐지 방법의 순서도이다.3 is a flowchart of a method for detecting a user's location using the apparatus for detecting a user's location according to an embodiment of the present invention.
도 3을 참조하면, 사용자 위치 탐지 장치(1000) 내 프로세서(200)는 GPS 센서(300)를 실행하여 적어도 하나의 GPS 신호 데이터를 수집할 수 있다(S1000).Referring to FIG. 3 , the
이후, 프로세서(200)는 사전 학습된 기계학습 모델에 수집된 적어도 하나의 GPS 신호 데이터를 입력하여, 사용자의 위치가 실내인지 또는 실외인지의 여부를 판단할 수 있다(S5000). 다시 말하면, 기계학습 모델은 GPS 센서(300)로부터 수신된 GPS 신호 데이터를 입력하면, 사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하여 출력할 수 있다.Thereafter, the
실시예에 따르면, 프로세서(200)는 기계학습 모델을 생성하여 사전에 학습시킬 수 있다. 다시 말해, 기계학습 모델의 학습은 프로세서(200)에 의해 사용자 위치 탐지 장치의 초기 실행 시 한 번 수행될 수 있다. According to an embodiment, the
이때, 프로세서(200)는 기계학습 모델의 훈련을 위해, 적어도 하나의 GPS 신호 데이터 중 입력 데이터를 추출하여 훈련 데이터로 이용할 수 있다.In this case, the
하기 도 4에서는 기계학습 모델의 훈련을 위한 입력 데이터를 추출하는 방법에 대해 보다 구체적으로 설명하겠다.In FIG. 4 below, a method of extracting input data for training a machine learning model will be described in more detail.
도 4는 본 발명의 실시예에 따른 기계학습 모델의 훈련을 위한 입력 데이터를 추출하는 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of extracting input data for training a machine learning model according to an embodiment of the present invention.
도 4를 참조하면, 프로세서(200)는 제1 인자(i) 및 제2 인자(j)를 초기화 할 수 있다(S1310). 다시 말하면, 프로세서(200)는 제1 인자(i) 및 제2 인자(j)에 0값을 적용할 수 있다. Referring to FIG. 4 , the
이때, 제1 인자(i)는 입력 데이터의 데이터 셋(data set)의 개수를 확인하기 위한 카운팅 정보이며, 제2 인자(j)는 데이터 셋(data set)을 구성하는 GPS 신호 데이터의 개수를 확인하기 위한 카운팅 정보일 수 있다.In this case, the first factor (i) is counting information for confirming the number of data sets of input data, and the second factor (j) is the number of GPS signal data constituting the data set. It may be counting information for confirmation.
프로세서(200)는 적어도 하나의 GPS 신호 데이터를 대상으로 특정 강도의 신호 크기를 갖는 데이터(Xij)를 갖는 데이터가 있는지의 여부를 확인할 수 있다(S1330). 여기서, 특정 강도의 신호 크기는 지구 궤도(Earth’s orbit)에 위치한 GPS 위성의 수신 신호 정보를 사전 설정될 수 있다.The
일 실시예에 따라 특정 강도의 신호 크기(Xij)를 갖는 GPS 신호 데이터가 없을 경우, 프로세서(200)는 상기 특정 강도의 신호 크기를 0으로 적용할 수 있다(S1331). According to an embodiment, when there is no GPS signal data having the signal strength X ij of the specific strength, the
다른 실시예에 따라 특정 강도의 신호 크기(Xij)를 갖는 GPS 신호 데이터가 있을 경우, 프로세서(200)는 제2 인자(j) 값을 확인할 수 있다. According to another embodiment, when there is GPS signal data having a signal magnitude (X ij ) of a specific strength, the
앞서 설명한 바와 같이, 제2 인자(j)는 데이터 셋(data set)에 포함된 GPS 신호 데이터의 개수일 수 있다.As described above, the second factor j may be the number of GPS signal data included in a data set.
프로세서(200)는 제2 인자(j) 값과 사전 설정된 한계값을 비교하여, 제2 인자(j)가 한계값 미만일 경우 해당 GPS 신호 데이터를 데이터 셋(data set)에 포함시킬 수 있다(S1350). The
실시예에 따르면, 사전 설정된 한계값은 사용자가 어느 한 지점에 위치할 경우 수신할 수 있는 GPS 신호의 개수 정보로 설정할 수 있다. 예를 들어, 한계값은 9로 설정될 수 있다.According to an embodiment, the preset limit value may be set as information on the number of GPS signals that can be received when the user is located at a certain point. For example, the limit value may be set to 9.
일 실시예에 따라 제2 인자(j) 값이 사전 설정된 한계값(도 4의 9) 대비 미만일 경우, 프로세서(200)는 제2 인자(j) 값을 카운팅할 수 있다. According to an embodiment, when the value of the second factor j is less than a
다시 말하면, 프로세서(200)는 특정 강도의 신호 크기를 갖는 GPS 신호 데이터의 개수가 9개 미만일 경우, 제2 인자(j) 값을 1만큼 증가(j←j+1)시킬 수 있다(S1351). In other words, when the number of GPS signal data having a signal strength of a specific strength is less than 9, the
이후, 프로세서(200)는 다시 S1350 단계로 돌아가, 특정 강도의 신호 크기를 갖는 적어도 하나의 GPS 신호 데이터를 수집할 수 있다.Thereafter, the
한편, 다른 실시예에 따라, 제2 인자(j) 값이 사전 설정된 한계값 대비 이상일 경우, 프로세서(200)는 특정 강도의 신호 크기(Xij) 정보를 입력 데이터에 저장하지 않고, 저장되어 있는 입력 데이터들을 크기별로 정렬할 수 있다(S1355). 예를 들어, 프로세서(200)는 입력 데이터들을 내림차순으로 정렬할 수 있다.On the other hand, according to another embodiment, when the value of the second factor j is greater than or equal to the preset threshold value, the processor 200 does not store the signal magnitude (X ij ) information of a specific strength in the input data, and the stored The input data may be sorted by size (S1355). For example, the
이후, 프로세서(200)는 제1 인자(i) 값을 카운팅(i←i+1)하고, 제2 인자(j)를 초기화(j←0)할 수 있다(S1370). Thereafter, the
프로세서(200)는 제1 인자(i)의 값을 확인할 수 있다. 다시 말하면, 프로세서(200)는 입력 데이터의 데이터 셋(data set)의 개수를 확인할 수 있다. The
이때, 상기 데이터 셋(data set)의 개수가 사전 설정된 값(도 4의 1000) 대비 미만일 경우(S1390), S1330 단계로 돌아가 일련의 단계를 반복적으로 수행할 수 있다.At this time, when the number of the data sets is less than the preset value (1000 in FIG. 4 ) ( S1390 ), the process returns to step S1330 to repeatedly perform a series of steps.
본 발명의 실시예에 따른 사용자 위치 탐지 방법은 중복되는 특정 강도의 신호 값을 갖는 GPS 신호 데이터를 분류하여 기계학습 모델의 입력 데이터로 적용함으로써, 실내(Indoor) 또는 실외(Outdoor)로의 사용자의 위치 파악에 있어서, 노이즈(noise) 데이터가 감소되어 고정밀한 위치 탐지가 가능한 고신뢰성의 사용자 위치 탐지 방법을 제공할 수 있다.The user location detection method according to an embodiment of the present invention classifies GPS signal data having overlapping signal values of a specific intensity and applies it as input data of a machine learning model, whereby the user's location indoors or outdoors In the identification, it is possible to provide a highly reliable user location detection method capable of high-precision location detection by reducing noise data.
다시 도 3을 참조하면, 프로세서(200)는 추출된 적어도 하나의 입력 데이터를 바탕으로 기계학습 모델을 생성할 수 있다(S1500).Referring back to FIG. 3 , the
보다 구체적으로 설명하면, 프로세서(200)는 추출된 적어도 하나의 입력 데이터 중 일부를 학습 데이터로 분류하여, 기계학습을 통해 학습 모델을 생성할 수 있다. More specifically, the
실시예에 따르면, 프로세서(200)는 로지스틱 회귀분석(Logistic regression) 모델에 특정 강도의 신호 값을 갖는 초기 GPS 신호 데이터인 입력 데이터를 입력하여, 사용자의 위치가 실내(Indoor)인지 또는 실외인지(Outdoor)의 여부를 판단하는 기계학습 모델을 생성할 수 있다. According to the embodiment, the
이후, 프로세서(200)는 추출된 적어도 하나의 입력 데이터를 바탕으로, 생성된 기계학습 모델을 검증할 수 있다(S1700).Thereafter, the
보다 구체적으로 설명하면, 프로세서(200)는 추출된 적어도 하나의 입력 데이터 중 일부 분류된 검증 데이터를 기계학습 모델에 입력하여, 기계학습 모델을 검증할 수 있다. More specifically, the
프로세서(200)는 학습된 기계학습 모델에 GPS 센서로부터 실시간으로 수집한 사용자 위치 데이터를 입력값으로 적용할 수 있다(S3000). The
이에 따라, 프로세서(200)는 사용자의 위치를 판단할 수 있다(S5000). Accordingly, the
다시 말하면, 프로세서(200)는 검증된 기계학습 모델에 GPS 센서로부터 수집되어 csv 파일로 저장된 사용자 위치 데이터를 입력값으로 적용하여, 사용자의 위치가 실내(Indoor)인지 또는 실외인지(Outdoor)를 실시간으로 판단할 수 있다.In other words, the
하기에서는 본 발명의 실험예에 따른 사용자의 위치 탐지 방법을 설명하겠다.Hereinafter, a method for detecting a user's location according to an experimental example of the present invention will be described.
본 발명의 실험예에 따른 사용자의 위치 탐지 방법User's location detection method according to an experimental example of the present invention
GPS 센서를 이용하여 2019.05.02부터 2019.05.23까지 3주간 초기 GPS 신호 데이터들을 수집하였다. 이때, 초기 GPS 신호 데이터는 각각 10㎢ 내에 위치한 서로 다른 장소에서 수집하였다. 서로 다른 장소는 실내(Indoor) 장소인 건물, 레스토랑 및 지하철과 실외(Outdoor) 장소인 언덕, 공원 등지에서 수집하였다.Initial GPS signal data were collected for 3 weeks from 2019.05.02 to 2019.05.23 using the GPS sensor. At this time, the initial GPS signal data were collected at different places located within 10 km2, respectively. Different locations were collected from indoor locations such as buildings, restaurants and subways, and outdoor locations such as hills and parks.
사용자 위치 탐지 장치의 프로세서의 명령에 따라, 수집된 초기 GPS 신호 데이터들의 전처리를 진행하여 하기 [표 1]에서와 같이 특정 형식의 입력 데이터의 데이터 셋(data set)을 획득하였다.According to the command of the processor of the user location detection device, pre-processing of the collected initial GPS signal data was performed to obtain a data set of input data in a specific format as shown in [Table 1] below.
이후, 로지스틱 회귀분석 모델을 이용하여 학습 모델을 생성 및 훈련하였다.Then, a learning model was created and trained using a logistic regression model.
이때, 학습 데이터로는 실내(indoor) 및 실외(outdoor)에서 측정된 초기 GPS 신호 데이터를 기초로 하는 876개의 입력 데이터를 사용하였고, 검증 데이터로는 학습 데이터와 동일하게 실내(indoor) 및 실외(outdoor)에서 측정된 초기 GPS 신호 데이터를 기초로 하는 150개의 입력 데이터를 사용하였다.At this time, as the learning data, 876 input data based on the initial GPS signal data measured indoors and outdoors were used, and as the verification data, indoor and outdoor (indoor and outdoor) 150 input data based on initial GPS signal data measured in outdoor) were used.
본 발명의 실험예에 따른 사용자의 위치 탐색 결과, 사용자 위치 탐색의 정확도가 향상됨을 확인하였다. As a result of the user's location search according to the experimental example of the present invention, it was confirmed that the accuracy of the user location search was improved.
이상, 본 발명의 실시예 및 실험예에 따른 사용자 위치 탐지 장치 및 방법을 설명하였다.In the above, an apparatus and method for detecting a user's location according to an embodiment and an experimental example of the present invention have been described.
본 발명의 실시예 및 실험예에 따른 사용자 위치 탐지 장치 및 방법은 중복되는 특정 강도의 신호 값을 갖는 초기 GPS 신호 데이터를 분류하여 사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하는 기계학습 모델의 입력 데이터로 사용하여 고정밀한 기계학습 모델을 제공함으로써, 사용자의 고정확한 위치 탐지가 가능한 고신뢰성의 사용자 위치 탐지 장치 및 방법을 제공할 수 있다.The apparatus and method for detecting a user's location according to an embodiment and an experimental example of the present invention classify initial GPS signal data having overlapping signal values of specific strength to determine whether the user's location is indoors or outdoors By providing a high-precision machine learning model by using it as input data of the machine learning model, it is possible to provide a high-reliability user location detection device and method capable of high-accuracy location detection of the user.
본 발명의 실시예들에 따른 방법의 동작은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 프로그램 또는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산 방식으로 컴퓨터로 읽을 수 있는 프로그램 또는 코드가 저장되고 실행될 수 있다.The operation of the method according to the embodiments of the present invention can be implemented as a computer-readable program or code on a computer-readable recording medium. The computer-readable recording medium includes all types of recording devices in which data that can be read by a computer system is stored. In addition, the computer-readable recording medium may be distributed in a network-connected computer system to store and execute computer-readable programs or codes in a distributed manner.
또한, 컴퓨터가 읽을 수 있는 기록매체는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다. 프로그램 명령은 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함할 수 있다.In addition, the computer-readable recording medium may include a hardware device specially configured to store and execute program instructions, such as ROM, RAM, and flash memory. The program instructions may include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
본 발명의 일부 측면들은 장치의 문맥에서 설명되었으나, 그것은 상응하는 방법에 따른 설명 또한 나타낼 수 있고, 여기서 블록 또는 장치는 방법 단계 또는 방법 단계의 특징에 상응한다. 유사하게, 방법의 문맥에서 설명된 측면들은 또한 상응하는 블록 또는 아이템 또는 상응하는 장치의 특징으로 나타낼 수 있다. 방법 단계들의 몇몇 또는 전부는 예를 들어, 마이크로프로세서, 프로그램 가능한 컴퓨터 또는 전자 회로와 같은 하드웨어 장치에 의해(또는 이용하여) 수행될 수 있다. 몇몇의 실시예에서, 가장 중요한 방법 단계들의 하나 이상은 이와 같은 장치에 의해 수행될 수 있다. Although some aspects of the invention have been described in the context of an apparatus, it may also represent a description according to a corresponding method, wherein a block or apparatus corresponds to a method step or feature of a method step. Similarly, aspects described in the context of a method may also represent a corresponding block or item or a corresponding device feature. Some or all of the method steps may be performed by (or using) a hardware device such as, for example, a microprocessor, programmable computer or electronic circuit. In some embodiments, one or more of the most important method steps may be performed by such an apparatus.
실시예들에서, 프로그램 가능한 로직 장치(예를 들어, 필드 프로그머블 게이트 어레이)가 여기서 설명된 방법들의 기능의 일부 또는 전부를 수행하기 위해 사용될 수 있다. 실시예들에서, 필드 프로그머블 게이트 어레이는 여기서 설명된 방법들 중 하나를 수행하기 위한 마이크로프로세서와 함께 작동할 수 있다. 일반적으로, 방법들은 어떤 하드웨어 장치에 의해 수행되는 것이 바람직하다.In embodiments, a programmable logic device (eg, a field programmable gate array) may be used to perform some or all of the functionality of the methods described herein. In embodiments, the field programmable gate array may operate in conjunction with a microprocessor to perform one of the methods described herein. In general, the methods are preferably performed by some hardware device.
이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to the preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.
1000: 사용자 위치 탐지 장치
100: 메모리
200: 프로세서
300: GPS 센서
400: 송수신 장치
500: 입력 인터페이스 장치
600: 출력 인터페이스 장치
700: 저장 장치
800: 버스(BUS)1000: user location detection device 100: memory
200: processor 300: GPS sensor
400: transceiver device 500: input interface device
600: output interface device 700: storage device
800: Bus (BUS)
Claims (12)
상기 GPS 신호 데이터 중 특정 강도의 GPS 신호 크기를 갖는 적어도 하나의 입력 데이터를 추출하는 단계;
상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하는 단계; 및
상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하는 단계를 포함하는, 모델 학습 방법.collecting at least one GPS signal data;
extracting at least one input data having a GPS signal magnitude of a specific strength from among the GPS signal data;
generating a machine learning model for determining whether a user's location is indoors or outdoors by using learning data among the input data; and
and verifying the machine learning model by using verification data among the input data.
상기 GPS 신호 데이터는 GPS 센서에 의해 수집되는, 모델 학습 방법.According to claim 1,
wherein the GPS signal data is collected by a GPS sensor.
상기 기계학습 모델은 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성하는, 모델 학습 방법.According to claim 1,
The machine learning model is generated using a logistic regression (Logistic regression) model, model learning method.
상기 입력 데이터는,
특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고,
상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응되는, 모델 학습 방법.According to claim 1,
The input data is
Consists of a data set consisting of a specific number of data,
The specific number corresponds to the number of received signals of GPS satellites that can be received at a specific point, the model learning method.
상기 메모리에 저장된 적어도 하나의 명령을 실행하는 프로세서(processor)를 포함하되,
상기 적어도 하나의 명령은,
적어도 하나의 GPS 신호 데이터를 수집하도록 하는 명령,
상기 GPS 신호 데이터 중 특정 강도의 GPS 신호 크기를 갖는 적어도 하나의 입력 데이터를 추출하도록 하는 명령,
상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하도록 하는 명령, 및
상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하도록 하는 명령을 포함하는, 모델 학습 장치.memory; and
Comprising a processor (processor) for executing at least one instruction stored in the memory,
The at least one command is
instructions to collect at least one GPS signal data;
a command to extract at least one input data having a GPS signal magnitude of a specific strength from among the GPS signal data;
a command to generate a machine learning model for determining whether a user's location is indoors or outdoors using learning data among the input data; and
and a command to verify the machine learning model by using verification data among the input data.
상기 GPS 신호 데이터는 GPS 센서에 의해 수집되는, 모델 학습 장치.6. The method of claim 5,
wherein the GPS signal data is collected by a GPS sensor.
상기 기계학습 모델은 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성하는, 모델 학습 장치.6. The method of claim 5,
The machine learning model is generated using a logistic regression (Logistic regression) model, model learning apparatus.
상기 입력 데이터는,
특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고,
상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응되는, 모델 학습 장치.6. The method of claim 5,
The input data is
Consists of a data set consisting of a specific number of data,
The specific number corresponds to the number of received signals of GPS satellites that can be received at a specific point, the model learning apparatus.
상기 메모리에 저장된 적어도 하나의 명령을 실행하는 프로세서(processor)를 포함하되,
상기 적어도 하나의 명령은,
사용자의 위치가 실내(Indoor)인지 또는 실외(Outdoor)인지를 판단하는 기계학습 모델을 학습하도록 하는 명령 및
GPS 센서로부터 수집한 사용자 위치 데이터를 상기 기계학습 모델에 적용하여 사용자의 위치를 판단하도록 하는 명령을 포함하고,
상기 기계학습 모델을 학습하도록 하는 명령은,
상기 적어도 하나의 명령은,
적어도 하나의 GPS 신호 데이터를 수집하도록 하는 명령,
상기 GPS 신호 데이터 중 특정 강도의 GPS 신호 크기를 갖는 적어도 하나의 입력 데이터를 추출하도록 하는 명령,
상기 입력 데이터 중 학습 데이터를 이용하여 사용자의 위치가 실내(Indoor)인지 실외(Outdoor)인지 여부를 판단하기 위한 기계학습 모델을 생성하도록 하는 명령, 및
상기 입력 데이터 중 검증 데이터를 이용하여 상기 기계학습 모델을 검증하도록 하는 명령을 포함하는, 사용자 위치 탐지 장치.memory; and
Comprising a processor (processor) for executing at least one instruction stored in the memory,
The at least one command is
a command to train a machine learning model to determine whether a user's location is indoor or outdoor; and
Comprising a command to determine the location of the user by applying the user location data collected from the GPS sensor to the machine learning model,
The command to learn the machine learning model is,
The at least one command is
instructions to collect at least one GPS signal data;
a command to extract at least one input data having a GPS signal magnitude of a specific strength from among the GPS signal data;
a command to generate a machine learning model for determining whether a user's location is indoors or outdoors using learning data among the input data; and
and a command to verify the machine learning model using verification data among the input data.
상기 GPS 신호 데이터는 GPS 센서에 의해 수집되는, 모델 학습 방법.10. The method of claim 9,
wherein the GPS signal data is collected by a GPS sensor.
상기 기계학습 모델은 로지스틱 회귀분석(Logistic regression) 모델을 이용하여 생성하는, 모델 학습 방법.10. The method of claim 9,
The machine learning model is generated using a logistic regression (Logistic regression) model, model learning method.
상기 입력 데이터는,
특정 개수의 데이터들로 구성된 데이터 셋(data set)으로 구성되고,
상기 특정 개수는 특정 지점에서 수신 가능한 GPS 위성의 수신 신호의 개수에 대응되는, 모델 학습 방법.10. The method of claim 9,
The input data is
Consists of a data set consisting of a specific number of data,
The specific number corresponds to the number of received signals of GPS satellites that can be received at a specific point, the model learning method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200090551A KR102474627B1 (en) | 2020-07-21 | 2020-07-21 | Apparatus and method for detecting location of user using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200090551A KR102474627B1 (en) | 2020-07-21 | 2020-07-21 | Apparatus and method for detecting location of user using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220011520A true KR20220011520A (en) | 2022-01-28 |
KR102474627B1 KR102474627B1 (en) | 2022-12-05 |
Family
ID=80051328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200090551A KR102474627B1 (en) | 2020-07-21 | 2020-07-21 | Apparatus and method for detecting location of user using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102474627B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090069800A (en) * | 2007-12-26 | 2009-07-01 | 강릉원주대학교산학협력단 | Method and system for estimating the location using a received signal strength indication |
JP2016133431A (en) * | 2015-01-20 | 2016-07-25 | 株式会社Nttドコモ | Indoor/outdoor determination device, indoor/outdoor determination method, and radio communication terminal |
KR20200017611A (en) * | 2018-08-08 | 2020-02-19 | (주)휴빌론 | Method and apparatus for positioning by using Deep learning |
KR20200024556A (en) * | 2018-08-28 | 2020-03-09 | (주)제이엠피시스템 | Indoor positioning method and system using machine learning |
-
2020
- 2020-07-21 KR KR1020200090551A patent/KR102474627B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090069800A (en) * | 2007-12-26 | 2009-07-01 | 강릉원주대학교산학협력단 | Method and system for estimating the location using a received signal strength indication |
JP2016133431A (en) * | 2015-01-20 | 2016-07-25 | 株式会社Nttドコモ | Indoor/outdoor determination device, indoor/outdoor determination method, and radio communication terminal |
KR20200017611A (en) * | 2018-08-08 | 2020-02-19 | (주)휴빌론 | Method and apparatus for positioning by using Deep learning |
KR20200024556A (en) * | 2018-08-28 | 2020-03-09 | (주)제이엠피시스템 | Indoor positioning method and system using machine learning |
Also Published As
Publication number | Publication date |
---|---|
KR102474627B1 (en) | 2022-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200250461A1 (en) | Target detection method, apparatus, and system | |
CN107066478B (en) | False address information identification method and device | |
CN100433050C (en) | Mobile communication system, mobile terminal device, fixed station device, character recognition device and method, and program | |
CN112561948B (en) | Space-time trajectory-based accompanying trajectory recognition method, device and storage medium | |
KR102244678B1 (en) | Method and apparatus for providing education service using satellite imagery based on Artificial Intelligence | |
CN111664848B (en) | Multi-mode indoor positioning navigation method and system | |
CN112181835B (en) | Automatic test method, device, computer equipment and storage medium | |
CN109886775A (en) | House advantage and disadvantage appraisal procedure, device, equipment and computer readable storage medium | |
CN109657539A (en) | Face value evaluation method and device, readable storage medium and electronic equipment | |
CN103476113B (en) | System is set up based on MNL probability identification indoor locating system and method, location model | |
CN113627229A (en) | Object detection method, system, device and computer storage medium | |
CN111563448A (en) | Method and device for detecting illegal building, electronic equipment and storage medium | |
WO2023029397A1 (en) | Training data acquisition method, abnormal behavior recognition network training method and apparatus, computer device, storage medium, computer program and computer program product | |
WO2018232607A1 (en) | System and method for positioning a gateway of an architecture | |
CN111522937B (en) | Speaking recommendation method and device and electronic equipment | |
KR102474627B1 (en) | Apparatus and method for detecting location of user using the same | |
CN111126422A (en) | Industry model establishing method, industry determining method, industry model establishing device, industry determining equipment and industry determining medium | |
CN110320544A (en) | Method, apparatus, equipment and the storage medium of identification terminal equipment position | |
CN110390015B (en) | Data information processing method, device and system | |
CN114120287B (en) | Data processing method, device, computer equipment and storage medium | |
CN116052250A (en) | Training method, device, equipment and storage medium of detection model | |
CN114943260A (en) | Method, device, equipment and storage medium for identifying traffic scene | |
CN112907145B (en) | Model interpretation method and electronic equipment | |
CN111954154B (en) | Positioning method and device, computer readable storage medium and electronic device | |
CN112017634B (en) | Data processing method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |