KR20220008033A - High quality aggregate production method - Google Patents

High quality aggregate production method Download PDF

Info

Publication number
KR20220008033A
KR20220008033A KR1020200086082A KR20200086082A KR20220008033A KR 20220008033 A KR20220008033 A KR 20220008033A KR 1020200086082 A KR1020200086082 A KR 1020200086082A KR 20200086082 A KR20200086082 A KR 20200086082A KR 20220008033 A KR20220008033 A KR 20220008033A
Authority
KR
South Korea
Prior art keywords
quality
low
aggregate
present
filler
Prior art date
Application number
KR1020200086082A
Other languages
Korean (ko)
Other versions
KR102357274B1 (en
Inventor
허재원
신상엽
정의창
Original Assignee
유건해운(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유건해운(주) filed Critical 유건해운(주)
Priority to KR1020200086082A priority Critical patent/KR102357274B1/en
Publication of KR20220008033A publication Critical patent/KR20220008033A/en
Application granted granted Critical
Publication of KR102357274B1 publication Critical patent/KR102357274B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1088Water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/08Fats; Fatty oils; Ester type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method for producing high-quality aggregate, and more specifically, to a production method which is capable of producing high-quality aggregate in the course of marine transportation only with the existing spraying facilities without additional expensive production facilities. The present invention exhibits the following effects. First, the present invention has characteristics such as improved bonding properties, film-forming properties and strength improvement after a hydration process compared to the existing high-quality aggregate production methods. Second, the present invention can produce high-quality aggregate using only the existing spraying facilities without additional expensive production facilities, thereby reducing initial investment costs caused by the addition of expensive production facilities. Third, since the present invention can be used in the course of marine transportation, thereby having an effect of reducing transportation costs incurred by the movement to a separate treatment place. Fourth, since a filler used in the present invention is made of an eco-friendly material, there is no risk of contamination even when the filler is leaked into the sea during a marine transportation process.

Description

고품질 골재 생산방법 {High quality aggregate production method}{High quality aggregate production method}

본 발명은 고품질 골재 생산방법에 관한 것으로, 보다 상세하게는 고가의 생산설비의 추가 없이 기존의 분사설비만으로 해상 운송과정 중에 고품질 골재를 생산할 수 있는 생산방법에 관한 것이다.The present invention relates to a method for producing high-quality aggregate, and more particularly, to a production method capable of producing high-quality aggregate during sea transportation only with an existing spraying facility without adding expensive production equipment.

최근 바다모래 채취의 대형화, 심굴화로 인한 환경생태계 파괴로 바다모래 채취금지가 사회적인 큰 이슈가 되고 있다.Recently, the ban on sea sand collection has become a big social issue due to the destruction of the environmental ecosystem due to the large-scale and deep-burrowing of sea sand.

특히, 남해 EEZ골재 채취단지 채취중단(2017년 1월)으로 인한 바다모래 공급감소로 EEZ사 의존도가 높은 동남권 지역을 포함한 전국의 골재수급은 치명적인 차질이 생기고 있어 저품질 골재의 성능향상, 인공골재의 활용 등 다양한 대책방안이 요구되지만, 현재로서는 한계점이 존재하는 실정이다.In particular, due to the decrease in the supply of sea sand due to the cessation of extraction of the EEZ aggregate collection complex in Namhae (January 2017), there is a fatal disruption in the supply and demand of aggregate across the country including the southeastern region, which is highly dependent on EEZ companies. Various countermeasures such as utilization are required, but currently there are limitations.

기존의 저품질 골재의 성능향상방법은 크게 두 가지로 물리적 방법과 이화학적 방법이 존재한다.There are two main methods for improving the performance of existing low-quality aggregates: physical methods and physicochemical methods.

이화학적 방법의 경우, 환경 및 경제성의 문제 등으로 인해 현재는 거의 존재하지 않는 상태이며, 크러셔, 볼밀 등 물리적 골재성능 향상방법을 활용하는 국내 업체의 경우 고가의 장비 사용에 따른 초기 투자비와 함께 처리장소로의 이동이 필수적으로 이루어져야 한다.Physicochemical methods are almost non-existent at present due to environmental and economic problems, and domestic companies that use physical aggregate performance improvement methods such as crushers and ball mills are treated with the initial investment cost due to the use of expensive equipment. Moving to the location is essential.

하지만, 골재의 특성상 고비중, 고중량 제품으로 총 비용 중 운송비 비중이 높아 실용화가 어려울 뿐 아니라, 가공과정에서 발생되는 다량의 2차 폐기물은 또 다른 문제점으로 존재하여 실용성이 거의 없다.However, due to the characteristics of aggregate, it is difficult to commercialize due to the high proportion of transportation cost in the total cost as a high specific gravity and heavy weight product.

따라서, 고가의 장비 사용에 따른 초기 투자비 및 운송비를 절감하면서도 고품질 골재를 생산할 수 있는 연구가 이루어져야 할 필요가 있고, 본 출원인은 이러한 연구의 결과로서, 경제적인 부분 및 환경적인 부분을 동시에 개선시킨 고품질 골재 생산방법을 개발하게 된 것이다.Therefore, it is necessary to conduct research that can produce high-quality aggregate while reducing initial investment and transportation costs due to the use of expensive equipment. This led to the development of a method for producing aggregates.

등록특허 제10-0764643호 (2007.10.01)Registered Patent No. 10-0764643 (2007.10.01)

본 발명은 고가의 생산설비의 추가 없이 기존의 분사설비만을 이용하여 고품질 골재를 생산할 수 있는 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method capable of producing high-quality aggregates using only the existing injection equipment without the addition of expensive production equipment.

상기와 같은 목적을 달성하기 위하여, 본 발명에서는 저품질 골재와 충진제를 준비하는 단계(S100); 저품질 골재에 충진제를 소정시간 분사하는 단계(S200); 충진제가 분사된 저품질 골재를 소정시간 양생하는 단계(S300);를 포함하고, 상기 충진제는 물 80~90 중량%, 고로슬래그 3~5 중량%, 규산질 용액 3~5 중량%, 유성 파라핀 왁스 3~5 중량%, 계면활성제 0.1~1 중량% 를 혼합하여 이루어지고, 상기 고로슬래그는 60,000 cm2/g 이상의 비표면적을 가지는 나노슬래그를 이용하고, 상기 S200 단계는 저품질 골재와 충진제를 해상으로 운송하는 과정 중에 이루어지되, 충진제를 3~5시간 분사하여, 나노슬래그가 저품질 골재의 공극에 침투되도록 하고, 상기 S300 단계는 저품질 골재와 충진제를 해상으로 운송하는 과정 중에 이루어지되, 저품질 골재를 5~12시간 양생하여, 저품질 골재의 표면에 규산질 용액 및 유성 파라핀 왁스에 의한 피막이 형성되도록 하는 것을 특징으로 하는 고품질 골재 생산방법을 제시한다.In order to achieve the above object, in the present invention, the step of preparing a low-quality aggregate and filler (S100); Spraying the filler to the low-quality aggregate for a predetermined time (S200); Curing the low-quality aggregate injected with the filler for a predetermined time (S300); the filler is 80 to 90 wt% of water, 3 to 5 wt% of blast furnace slag, 3 to 5 wt% of siliceous solution, oily paraffin wax 3 It is made by mixing ~5% by weight and 0.1 to 1% by weight of a surfactant, the blast furnace slag uses nanoslag having a specific surface area of 60,000 cm 2 /g or more, and the S200 step is to transport low-quality aggregates and fillers by sea In the process of doing this, the filler is sprayed for 3 to 5 hours so that the nanoslag penetrates into the pores of the low-quality aggregate, and the step S300 is made during the process of transporting the low-quality aggregate and the filler by sea, but the low-quality aggregate is We present a high-quality aggregate production method characterized by curing for 12 hours to form a film by siliceous solution and oil-based paraffin wax on the surface of the low-quality aggregate.

본 발명은 다음과 같은 효과를 발휘한다.The present invention exhibits the following effects.

첫째, 기존의 고품질 골재 생산방법에 비하여 개선된 결합성, 조막성 및 수화과정 이후의 강도증진 등의 특성을 가진다.First, compared to the existing high-quality aggregate production method, it has improved bonding properties, film-forming properties, and strength improvement after hydration process.

둘째, 고가의 생산설비의 추가 없이 기존의 분사설비만으로 고품질 골재를 생산할 수 있기 때문에, 고가의 장비 사용에 따른 초기 투자비를 절감할 수 있다.Second, since high-quality aggregate can be produced only with the existing spraying equipment without the addition of expensive production equipment, the initial investment cost due to the use of expensive equipment can be reduced.

셋째, 본 발명은 해상운송 과정 중에 이용될 수 있기 때문에, 별도의 처리장소로의 이동에 따른 운송비 절감의 효과가 있다.Third, since the present invention can be used during the process of sea transportation, there is an effect of reducing transportation costs due to movement to a separate processing place.

넷째, 본 발명에서 이용되는 충진제는 친환경 물질로 이루어지기 때문에, 해상운송 과정 중에 바다로 유출되더라도 오염의 위험성이 없다.Fourth, since the filler used in the present invention is made of an eco-friendly material, there is no risk of contamination even if it is leaked into the sea during the shipping process.

도 1은 본 발명에 따른 품질개선 처리 전 사진촬영한 저품질 골재의 형상이다.
도 2는 본 발명에 따른 품질개선 처리 후 SEM 촬영한 저품질 골재의 구조도이다.
도 3은 본 발명에 따라 형성된 C-S-H겔에 의하여 콘크리트의 천이영역이 감소된 모습을 SEM 촬영한 구조도이다.
도 4는 도 3의 (A)부 확대도이다.
도 5는 도 3의 (B)부 확대도이다.
도 6은 본 발명에 따른 품질개선 처리 후 고품질 골재의 압축강도, 염소이온 침투저항성, 촉진 탄산화 결과에 대한 비교도이다.
도 7은 발명에 따른 품질개선 처리 후 고품질 골재의 알칼리 잠재 반응에 대한 시험 성적결과를 나타내는 도면이다.
1 is a shape of a low-quality aggregate photographed before the quality improvement treatment according to the present invention.
2 is a structural diagram of a low-quality aggregate taken by SEM after the quality improvement treatment according to the present invention.
3 is a structural diagram taken by SEM of a state in which the transition region of concrete is reduced by the CSH gel formed according to the present invention.
4 is an enlarged view of part (A) of FIG. 3 .
5 is an enlarged view of part (B) of FIG. 3 .
6 is a comparative view of the compressive strength, chloride ion penetration resistance, and accelerated carbonation results of high-quality aggregates after quality improvement treatment according to the present invention.
7 is a view showing the test results for the alkali potential reaction of the high-quality aggregate after the quality improvement treatment according to the invention.

이하 첨부된 도면을 바탕으로 본 발명의 바람직한 실시예에 대해 설명한다. 다만 본 발명의 권리범위는 특허청구범위 기재에 의하여 파악되어야 한다. 또한 본 발명의 요지를 모호하게 하는 공지기술의 설명은 생략한다.Hereinafter, a preferred embodiment of the present invention will be described based on the accompanying drawings. However, the scope of the present invention should be understood by the description of the claims. Also, descriptions of known technologies that obscure the gist of the present invention will be omitted.

본 발명은 고품질 골재 생산방법에 관한 것으로, 보다 상세하게는 고가의 생산설비의 추가 없이 기존의 분사설비만으로 해상 운송과정 중에 고품질 골재를 생산할 수 있는 생산방법에 관한 것이다.The present invention relates to a method for producing high-quality aggregate, and more particularly, to a production method capable of producing high-quality aggregate during sea transportation only with an existing spraying facility without adding expensive production equipment.

도 1은 본 발명에 따른 품질개선 처리 전 사진촬영한 저품질 골재의 형상이고, 도 2는 본 발명에 따른 품질개선 처리 후 SEM 촬영한 저품질 골재의 구조도이고, 도 3은 본 발명에 따라 형성된 C-S-H겔에 의하여 콘크리트의 천이영역이 감소된 모습을 SEM 촬영한 구조도이고, 도 4는 도 3의 (A)부 확대도이고, 도 5는 도 3의 (B)부 확대도이고, 도 6은 본 발명에 따른 품질개선 처리 후 고품질 골재의 압축강도, 염소이온 침투저항성, 촉진 탄산화 결과에 대한 비교도이고, 도 7은 발명에 따른 품질개선 처리 후 고품질 골재의 알칼리 잠재 반응에 대한 시험 성적결과를 나타내는 도면이다.1 is a shape of the low-quality aggregate photographed before the quality improvement treatment according to the present invention, FIG. 2 is a structural diagram of the low-quality aggregate photographed by SEM after the quality improvement treatment according to the present invention, and FIG. 3 is a CSH gel formed according to the present invention is a structural diagram taken by SEM of the reduced transition region of concrete, FIG. 4 is an enlarged view of part (A) of FIG. 3 , FIG. 5 is an enlarged view of part (B) of FIG. 3 , and FIG. 6 is an enlarged view of the present invention is a comparative view of the compressive strength, chloride ion penetration resistance, and accelerated carbonation results of high-quality aggregates after quality improvement treatment according to to be.

본 발명에 따른 고품질 골재 생산방법은 저품질 골재와 충진제를 준비하는 단계(S100)와, 저품질 골재에 충진제를 소정시간 분사하는 단계(S200)와, 충진제가 분사된 저품질 골재를 양생하는 단계(S300)를 거쳐서 이루어진다.The high-quality aggregate production method according to the present invention includes the steps of preparing low-quality aggregate and filler (S100), spraying the filler on the low-quality aggregate for a predetermined time (S200), and curing the low-quality aggregate injected with the filler (S300) is done through

S100 단계에 대해 설명한다. S100 단계에서 준비되는 저품질 골재란 도 1에 도시된 바와 같이, 다공질에 시멘트 페이스트 등으로 인해 밀도나 흡수율이 KS 기준에 부합하지 않는 골재를 말하는 것으로서, 쇄석, 쇄사, 인공골재, 순환골재 등을 포함한다.Step S100 will be described. As shown in Fig. 1, the low-quality aggregate prepared in step S100 refers to an aggregate whose density or water absorption does not meet the KS standards due to cement paste in a porous material, and includes crushed stone, crushed sand, artificial aggregate, recycled aggregate, etc. do.

그리고, 고품질 골재는 본 발명에 따른 품질개선 처리 후 밀도나 흡수율이 KS 기준을 충족하는 골재를 말하는 것으로서, 저품질 골재와 마찬가지로 쇄석, 쇄사, 인공골재, 순환골재 등을 포함한다.And, high-quality aggregate refers to an aggregate whose density or absorption rate meets the KS standards after quality improvement treatment according to the present invention, and includes crushed stone, crushed sand, artificial aggregate, recycled aggregate, and the like, like low-quality aggregate.

저품질 골재는 주로 도로 노반재나 매립재로 사용되고, 그 물리적 성질은 <표 1>과 같다.Low-quality aggregate is mainly used as road bed material or landfill material, and its physical properties are shown in <Table 1>.

Figure pat00001
Figure pat00001

<표 1><Table 1>

S100 단계에서 준비되는 충진제는 상기 저품질 골재의 품질을 향상시키기 위하여 저품질 골재에 분사되는 물질로서, 물 80~90 중량%, 고로슬래그 3~5 중량%, 규산질 용액 3~5 중량%, 유성 파라핀 왁스 3~5 중량%, 계면활성제 0.1~1 중량% 를 혼합하여 이루어지는 것을 특징으로 한다.The filler prepared in step S100 is a material sprayed onto the low-quality aggregate to improve the quality of the low-quality aggregate, and includes 80 to 90 wt% of water, 3 to 5 wt% of blast furnace slag, 3 to 5 wt% of siliceous solution, and oil-based paraffin wax. It is characterized in that it is made by mixing 3 to 5% by weight and 0.1 to 1% by weight of a surfactant.

여기서, 고로슬래그는 저품질 골재의 공극에 침투될 수 있도록 60,000 cm2/g 이상의 비표면적을 가지는 나노슬래그를 이용하는 것이 바람직하다.Here, it is preferable to use nanoslag having a specific surface area of 60,000 cm 2 /g or more so that the blast furnace slag can penetrate into the pores of the low-quality aggregate.

저품질 골재의 공극에 물과 함께 침투된 나노슬래그는 추후 콘크리트의 천이영역에서 수화가 촉진되어 수화생성물 C-S-H겔(Cao-SiO2-H2O)를 형성하게 되고, 이러한 C-S-H겔은 콘크리트의 천이영역을 감소시키고 강도를 증진시키는 역할을 한다.Nanoslag penetrated with water into the pores of low-quality aggregate is later promoted to hydration in the transition region of concrete to form a hydration product CSH gel (Cao-SiO 2 -H 2 O), and this CSH gel is in the transition region of concrete reduce and increase strength.

도 3은 본 발명에 따라 형성된 C-S-H겔에 의하여 콘크리트의 천이영역이 감소된 모습을 SEM 촬영한 구조도이다.3 is a structural diagram taken by SEM of a state in which the transition region of concrete is reduced by the C-S-H gel formed according to the present invention.

상기 규산질 용액은 나노슬래그의 침투를 도울 뿐만 아니라, 저품질 골재의 표면에 피막을 형성시킴으로써, 나노슬래그가 저품질 골재 밖으로 빠져나오지 않게 하는 역할을 한다.The siliceous solution not only helps the penetration of the nano-slag, but also serves to prevent the nano-slag from escaping out of the low-quality aggregate by forming a film on the surface of the low-quality aggregate.

상기 규산질 용액은 알칼리 자극제로 시멘트 경화체의 수화반응을 증진할 수 있는 액상의 포타슘 실리케이트가 사용될 수 있다.As the siliceous solution, as an alkali stimulant, liquid potassium silicate capable of enhancing the hydration reaction of the cement hardened body may be used.

상기 포타슘 실리케이트는 nSiO2, K2O, xH2O로 이루어진 무색, 투명한 수용성 무기화합물로 SiO2/K2O의 몰비(Mole Ratio)와 농도에 따라 물성이 변하는 화합물로서 다양한 분야에서 사용되고 있다.The potassium silicate is a colorless, transparent, water-soluble inorganic compound composed of nSiO 2 , K 2 O, and xH 2 O, and is used in various fields as a compound whose physical properties change depending on the molar ratio and concentration of SiO 2 /K 2 O.

본 발명에서는 SiO2의 함유량이 높은 용액으로서, 그 용액의 물성은 <표 2>와 같다.In the present invention, as a solution having a high content of SiO 2 , the physical properties of the solution are as shown in <Table 2>.

Figure pat00002
Figure pat00002

<표 2><Table 2>

상기 유성 파라핀 왁스는 규산질 용액으로 피막이 형성된 저품질 골재의 표면에 2차 피막을 형성시키고, 공기 중에서도 피막형성이 유지되도록 한다.The oil-based paraffin wax forms a secondary film on the surface of the low-quality aggregate on which the film is formed with a siliceous solution, and maintains the film formation in the air.

상기 규산질 용액 및 유성 파라핀 왁스에 의해 형성된 피막은 잠재수경성을 가지고 있으므로, 옥외에서는 피막이 형성된 채로 유지되지만, 콘크리트 내로 혼입되면, pH 11~13의 강알칼리성 수산화칼슘(Ca(OH)2) 환경에서 피막이 용해됨으로써, 나노슬래그가 저품질 골재 밖으로 빠져나올 수 있게 된다.Since the film formed by the siliceous solution and oil-based paraffin wax has latent hydraulic properties, the film remains formed outdoors, but when incorporated into concrete, the film is dissolved in a strongly alkaline calcium hydroxide (Ca(OH) 2 ) environment of pH 11-13 This allows the nanoslag to escape out of the low-quality aggregate.

상기 계면활성제는 파라핀 왁스의 유성 성분이 물과 잘 혼합될 수 있도록 하는 역할을 한다. 이는 공지기술이므로, 상세한 설명은 생략한다.The surfactant serves to allow the oily component of the paraffin wax to be well mixed with water. Since this is a well-known technology, a detailed description thereof will be omitted.

S200 단계에 대해 설명한다. S200 단계는 저품질 골재에 충진제를 소정시간 분사하는 단계로서, 분사량이 약 500g/분 내외인 분사기를 이용하여 분사할 수 있으며, 나노슬래그가 저품질 골재의 공극에 충분히 침투되도록 하기 위하여 3~5시간 분사하는 것이 바람직하다.Step S200 will be described. Step S200 is a step in which the filler is sprayed on the low-quality aggregate for a predetermined time, and it can be sprayed using a sprayer with an injection amount of about 500 g/min. It is preferable to do

S300 단계에 대해 설명한다. S300 단계는 충진제가 분사된 저품질 골재를 소정시간 양생하는 단계로서, 자연 양생하거나, 또는 외기에 직접적인 비나 수분이 침투하지 못하도록 양생포 또는 부직포 등을 덮은 후에 5~12시간 양생하여, 저품질 골재의 표면에 규산질 용액 및 유성 파라핀 왁스에 의한 피막이 형성되도록 하는 것이 바람직하다.Step S300 will be described. Step S300 is a step of curing the low-quality aggregate sprayed with the filler for a predetermined time. It is cured naturally or is cured for 5 to 12 hours after covering the curing cloth or non-woven fabric to prevent direct rain or moisture from penetrating the outside air, and the surface of the low-quality aggregate It is preferable to form a film with a siliceous solution and an oily paraffin wax.

한편, S200 단계에서 충진제가 저품질 골재에 분사되는 3~5시간을 충분히 확보하기 위하여, 상기 S200 단계 내지 S300 단계는 저품질 골재와 충진제를 해상으로 운송하는 과정 중에 이루어지도록 할 수 있다. On the other hand, in order to sufficiently secure 3-5 hours for the filler to be sprayed onto the low-quality aggregate in step S200, steps S200 to S300 may be made during the process of transporting the low-quality aggregate and filler by sea.

본 발명에 따라 저품질 골재에 피막이 형성되는지 여부에 따른 압축강도 시험, 염소이온 침투저항성, 촉진 탄산화, 알칼리 골재 반응, 밀도 흡수율 등은 도 6 내지 도 7에 도시된 바와 같이, 전 조건에서 KS기준 및 OPC를 상회하는 것으로 확인되었다.According to the present invention, the compressive strength test, chloride ion permeation resistance, accelerated carbonation, alkali aggregate reaction, density absorption, etc. according to whether a film is formed on low-quality aggregate according to the present invention, as shown in FIGS. 6 to 7, KS standard and It was found to exceed OPC.

도 6은 본 발명에 따른 품질개선 처리 후 고품질 골재의 압축강도, 염소이온 침투저항성, 촉진 탄산화 결과에 대한 비교도이고, 도 7은 발명에 따른 품질개선 처리 후 고품질 골재의 알칼리 잠재 반응에 대한 시험 성적결과를 나타내는 도면이다.6 is a comparative view of the compressive strength, chloride ion penetration resistance, and accelerated carbonation results of high-quality aggregates after quality improvement treatment according to the present invention, and FIG. 7 is a test for alkali potential reaction of high-quality aggregates after quality improvement treatment according to the present invention It is a drawing showing the results of grades.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited by the above-described embodiments and the accompanying drawings, and it is common in the technical field to which the present invention pertains that various substitutions, modifications and changes are possible without departing from the technical spirit of the present invention. It will be clear to those who have knowledge.

Claims (4)

저품질 골재와 충진제를 준비하는 단계(S100);
저품질 골재에 충진제를 소정시간 분사하는 단계(S200);
충진제가 분사된 저품질 골재를 소정시간 양생하는 단계(S300);를 포함하고,

상기 충진제는
물, 고로슬래그, 규산질 용액, 유성 파라핀 왁스, 계면활성제를 혼합하여 이루어지는 것을 특징으로 하는
고품질 골재 생산방법.
Preparing low-quality aggregates and fillers (S100);
Spraying the filler to the low-quality aggregate for a predetermined time (S200);
Including; curing the low-quality aggregate injected with the filler for a predetermined time (S300);

The filler is
Characterized in that it is made by mixing water, blast furnace slag, siliceous solution, oil-based paraffin wax, and surfactant.
A method for producing high-quality aggregates.
제1항에 있어서,
상기 고로슬래그는
60,000 cm2/g 이상의 비표면적을 가지는 나노슬래그를 이용하는 것을 특징으로 하는
고품질 골재 생산방법.
The method of claim 1,
The blast furnace slag is
60,000 cm 2 /g or more characterized in that using nanoslag having a specific surface area
A method for producing high-quality aggregates.
제2항에 있어서,
상기 S200 단계는
충진제를 3~5시간 분사하여, 나노슬래그가 저품질 골재의 공극에 침투되도록 하고,

상기 S300 단계는
저품질 골재를 5~12시간 양생하여, 저품질 골재의 표면에 규산질 용액 및 유성 파라핀 왁스에 의한 피막이 형성되도록 하는 것을 특징으로 하는
고품질 골재 생산방법.
3. The method of claim 2,
The step S200 is
By spraying the filler for 3 to 5 hours, the nano slag penetrates into the pores of the low-quality aggregate,

The step S300 is
Characterized in that the low-quality aggregate is cured for 5 to 12 hours to form a film by siliceous solution and oil-based paraffin wax on the surface of the low-quality aggregate.
A method for producing high-quality aggregates.
저품질 골재와 충진제를 준비하는 단계(S100);
저품질 골재에 충진제를 소정시간 분사하는 단계(S200);
충진제가 분사된 저품질 골재를 소정시간 양생하는 단계(S300);를 포함하고,

상기 충진제는
물 80~90 중량%, 고로슬래그 3~5 중량%, 규산질 용액 3~5 중량%, 유성 파라핀 왁스 3~5 중량%, 계면활성제 0.1~1 중량% 를 혼합하여 이루어지고,

상기 고로슬래그는
60,000 cm2/g 이상의 비표면적을 가지는 나노슬래그를 이용하고,

상기 S200 단계는
저품질 골재와 충진제를 해상으로 운송하는 과정 중에 이루어지되, 충진제를 3~5시간 분사하여, 나노슬래그가 저품질 골재의 공극에 침투되도록 하고,

상기 S300 단계는
저품질 골재와 충진제를 해상으로 운송하는 과정 중에 이루어지되, 저품질 골재를 5~12시간 양생하여, 저품질 골재의 표면에 규산질 용액 및 유성 파라핀 왁스에 의한 피막이 형성되도록 하는 것을 특징으로 하는
고품질 골재 생산방법.
Preparing low-quality aggregates and fillers (S100);
Spraying the filler to the low-quality aggregate for a predetermined time (S200);
Including; curing the low-quality aggregate injected with the filler for a predetermined time (S300);

The filler is
80 to 90% by weight of water, 3 to 5% by weight of blast furnace slag, 3 to 5% by weight of siliceous solution, 3 to 5% by weight of oily paraffin wax, and 0.1 to 1% by weight of surfactant,

The blast furnace slag is
Using nanoslag having a specific surface area of 60,000 cm 2 /g or more,

The step S200 is
This is done during the process of transporting low-quality aggregates and fillers by sea, but the filler is sprayed for 3-5 hours so that the nanoslag penetrates into the pores of the low-quality aggregate,

The step S300 is
It is made during the process of transporting low-quality aggregates and fillers by sea, and the low-quality aggregates are cured for 5 to 12 hours to form a film by siliceous solution and oil-based paraffin wax on the surface of the low-quality aggregates.
A method for producing high-quality aggregates.
KR1020200086082A 2020-07-13 2020-07-13 High quality aggregate production method KR102357274B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200086082A KR102357274B1 (en) 2020-07-13 2020-07-13 High quality aggregate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200086082A KR102357274B1 (en) 2020-07-13 2020-07-13 High quality aggregate production method

Publications (2)

Publication Number Publication Date
KR20220008033A true KR20220008033A (en) 2022-01-20
KR102357274B1 KR102357274B1 (en) 2022-02-07

Family

ID=80052917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200086082A KR102357274B1 (en) 2020-07-13 2020-07-13 High quality aggregate production method

Country Status (1)

Country Link
KR (1) KR102357274B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119958A (en) * 2022-12-29 2023-05-16 中国长江三峡集团有限公司 Preparation method of concrete and concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990001617A (en) * 1997-06-17 1999-01-15 김영귀 Structure of automobile fuel inlet
KR100764643B1 (en) 2007-01-31 2007-10-08 태성개발(주) The recycling method and its apparatus for constructionwaste matter
KR20120059309A (en) * 2010-11-30 2012-06-08 동명대학교산학협력단 A manufacturing Method of High Performance Recycled Aggregates by Potassium Silicate
KR20120078273A (en) * 2010-12-31 2012-07-10 동명대학교산학협력단 Non sintered cement mortar composition using nanoslag and alkali activator
KR20180110416A (en) * 2017-03-29 2018-10-10 한양대학교 산학협력단 Manufacturing method of alkali actived hardened material using sedimentation sludge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990001617A (en) * 1997-06-17 1999-01-15 김영귀 Structure of automobile fuel inlet
KR100764643B1 (en) 2007-01-31 2007-10-08 태성개발(주) The recycling method and its apparatus for constructionwaste matter
KR20120059309A (en) * 2010-11-30 2012-06-08 동명대학교산학협력단 A manufacturing Method of High Performance Recycled Aggregates by Potassium Silicate
KR20120078273A (en) * 2010-12-31 2012-07-10 동명대학교산학협력단 Non sintered cement mortar composition using nanoslag and alkali activator
KR20180110416A (en) * 2017-03-29 2018-10-10 한양대학교 산학협력단 Manufacturing method of alkali actived hardened material using sedimentation sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119958A (en) * 2022-12-29 2023-05-16 中国长江三峡集团有限公司 Preparation method of concrete and concrete

Also Published As

Publication number Publication date
KR102357274B1 (en) 2022-02-07

Similar Documents

Publication Publication Date Title
CN110436837B (en) Renewable concrete and preparation method thereof
CN110563370B (en) Production process for preparing recycled aggregate from waste concrete
KR101173442B1 (en) Permeable concrete block manufacture method to use eco-friendly recycled aggregate coated
CN110256025A (en) Its regeneration concrete of a kind of preparation process of Aggregate of recycled concrete and application
CN109761575B (en) TRD continuous wall curing agent and using method and application thereof
CN110540389A (en) high-performance recycled concrete and preparation process thereof
KR102043391B1 (en) Imptoved Durability Eco-friendly Concrete Composition for Building to Decrease Fine Dust, Minute Plastic and Greenhouse Gases Using Seaweed and Constructing Methods Using Thereof
KR101256834B1 (en) Geopolymeric concrete and manufacturing method for eco-friendly non-cement of new construction materials using recycled aggregate from waste of constrcution
KR100852393B1 (en) Method for solidifying soils and industrial wastes, and materials solidified by the method
CN114436563B (en) Curing agent for curing phosphogypsum roadbed filler and preparation method and application thereof
KR101598073B1 (en) View Stone Panel using Recycling Material
CN101805161A (en) Baking-free brick cementing agent prepared from drilling solid waste
KR100852391B1 (en) Composition for solidifying soils and industrial wastes
CN111218877A (en) Driving road and construction process thereof
KR102357274B1 (en) High quality aggregate production method
Yang et al. Mechanical properties and mesoscopic damage characteristics of basalt fibre-reinforced seawater sea-sand slag-based geopolymer concrete
CN109020343A (en) The modified water-permeable cement concrete of diatomite-flyash-silicon ash
CN110218073A (en) Dredging silt dehydrating and curing calcium and magnesium based composites and the preparation method and application thereof
WO2019170963A1 (en) Binder composition and hardenable mixture
KR102043397B1 (en) Imptoved Durability Eco-friendly Quick-hardening Concrete Composition for Decreasing Fine Dust, Minute Plastic and Carbon Dioxide Using Seaweed and Constructing Methods Using Thereof
Ahmad et al. Experimental study of cold–Bonded artificial lightweight aggregate concrete
CN110563424A (en) Cement-based marine soft soil curing agent based on industrial waste and composite excitant
CN111606599A (en) Polymer modifier for concrete, preparation method and impervious waterproof concrete
KR102043393B1 (en) Imptoved Durability Eco-friendly Concrete Composition for Decreasing Fine Dust, Minute Plastic and Carbon Dioxide Using Seaweed and Constructing Methods Using Thereof
JPH0860153A (en) Method for grouting

Legal Events

Date Code Title Description
GRNT Written decision to grant