KR20220005591A - 크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 - Google Patents

크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 Download PDF

Info

Publication number
KR20220005591A
KR20220005591A KR1020217042476A KR20217042476A KR20220005591A KR 20220005591 A KR20220005591 A KR 20220005591A KR 1020217042476 A KR1020217042476 A KR 1020217042476A KR 20217042476 A KR20217042476 A KR 20217042476A KR 20220005591 A KR20220005591 A KR 20220005591A
Authority
KR
South Korea
Prior art keywords
block
transform
current
prediction
current block
Prior art date
Application number
KR1020217042476A
Other languages
English (en)
Inventor
이령
남정학
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20220005591A publication Critical patent/KR20220005591A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Abstract

영상 부호화/복호화 방법 및 장치가 제공된다. 본 개시에 따른 영상 복호화 장치에 의해 수행되는 영상 복호화 방법은 상기 영상을 분할하여 현재 블록을 획득하는 단계; 상기 현재 블록의 예측 모드를 결정하는 단계; 상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성하는 단계; 상기 현재 블록의 잔차 블록을 생성하는 단계; 및 상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원하는 단계를 포함할 수 있다.

Description

크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
본 개시는 영상 부호화/복호화 방법 및 장치에 관한 것으로서, 보다 상세하게는, 크로마 블록에 이용되는 변환 블록의 최대 크기를 설정하여 영상을 부호화/복호화하는 방법, 장치 및 본 개시의 영상 부호화 방법/장치에 의해 생성된 비트스트림을 전송하는 방법에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하게 된다. 전송되는 정보량 또는 비트량의 증가는 전송 비용과 저장 비용의 증가를 초래한다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위한 고효율의 영상 압축 기술이 요구된다.
본 개시는 부호화/복호화 효율이 향상된 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 개시는 크로마 블록에 대한 변환 블록의 최대 크기를 설정함으로써 부/복호화시 파이프라인 처리 효율을 도모하는 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 전송하는 방법을 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 복호화 장치에 의해 수신되고 복호화되어 영상의 복원에 이용되는 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 영상 복호화 장치에 의해 수행되는 영상 복호화 방법은, 상기 영상을 분할하여 현재 블록을 획득하는 단계; 상기 현재 블록의 예측 모드를 결정하는 단계; 상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성하는 단계; 상기 현재 블록의 잔차 블록을 생성하는 단계; 및 상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원하는 단계를 포함할 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 생성되며, 상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정될 수 있다.
또한, 본 개시의 일 양상에 따른 영상 복호화 장치는 메모리 및 적어도 하나의 프로세서를 포함하며, 상기 적어도 하나의 프로세서는 상기 영상을 분할하여 현재 블록을 획득하고, 상기 현재 블록의 예측 모드를 결정하고, 상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성하고, 상기 현재 블록의 잔차 블록을 생성하며, 상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원할 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 생성되며, 상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정될 수 있다.
또한, 본 개시의 일 양상에 따른 영상 부호화 장치에 의하여 수행되는 영상 부호화 방법은 상기 영상을 분할하여 현재 블록을 결정하는 단계; 상기 현재 블록의 인트라 예측 블록을 생성하는 단계; 상기 인트라 예측 블록에 기반하여 상기 현재 블록의 잔차 블록을 생성하는 단계; 및 상기 현재 블록의 인트라 예측 모드 정보를 부호화 하는 단계를 포함할 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 부호화되며, 상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정될 수 있다.
또한, 본 개시의 또 다른 양상에 따른 전송 방법은, 본 개시의 영상 부호화 장치 또는 영상 부호화 방법에 의해 생성된 비트스트림을 전송할 수 있다.
또한, 본 개시의 또 다른 양상에 따른 컴퓨터 판독 가능한 기록 매체는, 본 개시의 영상 부호화 방법 또는 영상 부호화 장치에 의해 생성된 비트스트림을 저장할 수 있다.
본 개시에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 개시의 상세한 설명의 예시적인 양상일 뿐이며, 본 개시의 범위를 제한하는 것은 아니다.
본 개시에 따르면, 부호화/복호화 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 개시에 따르면, 크로마 블록에 대한 변환 블록의 최대 크기를 설정함으로써 부/복호화시 파이프라인 처리를 효율화할 수 있는 영상 부호화/복호화하는 방법 및 장치가 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 전송하는 방법이 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체가 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 복호화 장치에 의해 수신되고 복호화되어 영상의 복원에 이용되는 비트스트림을 저장한 기록 매체가 제공될 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시에 따른 실시예가 적용될 수 있는 비디오 코딩 시스템을 개략적으로 도시한 도면이다.
도 2는 본 개시에 따른 실시예가 적용될 수 있는 영상 부호화 장치를 개략적으로 도시한 도면이다.
도 3은 본 개시에 따른 실시예가 적용될 수 있는 영상 복호화 장치를 개략적으로 도시한 도면이다.
도 4는 일 실시예에 따른 영상의 분할 구조를 나타내는 도면이다.
도 5는 멀티타입 트리 구조에 따른 블록의 분할 타입의 일 실시 예를 도시한 도면이다.
도 6은 본 개시에 따른 멀티타입 트리를 수반하는 쿼드트리(quadtree with nested multi-type tree) 구조에서의 블록 분할 정보의 시그널링 메커니즘을 예시한 도면이다.
도 7은 CTU가 다중 CU들로 분할되는 일 실시 예를 도시하는 도면이다.
도 8은 리던던트 분할 패턴의 일 실시 예를 도시하는 도면이다.
도 9는 일 실시예에 따른 인터 예측 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 10은 일 실시예에 따른 인터 예측부(180)의 구성을 예시적으로 도시한 도면이다.
도 11은 일 실시예에 따른 인터 예측 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 12는 일 실시예에 따른 인터 예측부(260)의 구성을 예시적으로 도시한 도면이다.
도 13은 일 실시예에 따른 공간적 머지 후보로 이용될 수 있는 주변 블록들을 예시한 도면이다.
도 14는 일 실시예에 따른 머지 후보 리스트 구성 방법을 개략적으로 나타낸 도면이다.
도 15는 일 실시예에 따른 움직임 벡터 예측자 후보 리스트 구성 방법을 개략적으로 나타낸 도면이다.
도 16은 일 실시예에 따른 영상 부호화 장치로부터 영상 복호화 장치로 MVD를 전송하기 위한 신택스 구조를 도시한 도면이다.
도 17은 일 실시예에 따른 IBC 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 18은 일 실시예에 따른 IBC 기반 비디오/영상 인코딩 방법을 수행하는 예측부의 구성을 예시적으로 도시한 도면이다.
도 19는 일 실시예에 따른 IBC 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 20은 일 실시예에 따른 IBC 기반 비디오/영상 디코딩 방법을 수행하는 예측부의 구성을 예시적으로 도시한 도면이다.
도 21은 일 실시 예에 따른 크로마 포멧 시그널링을 위한 신택스를 도시하는 도면이다.
도 22는 일 실시 예에 따른 크로마 포멧 분류 표를 도시하는 도면이다.
도 23은 가상 파이프라인 처리를 위한 CU의 분할 제한 사례를 설명하는 도면이다.
도 24 내지 도 26은 일 실시 예에 따른 CU와 TU의 분할 사례를 도시하는 도면이다.
도 27 및 도 28은 일 실시 예에 따른 최대 변환 크기가 적용된 인트라 예측 및 인터 예측을 나타내는 순서도이다.
도 29는 일 실시 예에 따른 부호화 장치가 영상을 부호화하는 방법을 설명하는 순서도이다.
도 30은 일 실시 예에 따른 복호화 장치가 영상을 복호화하는 방법을 설명하는 순서도이다.
도 31은 본 개시의 실시예가 적용될 수 있는 컨텐츠 스트리밍 시스템을 예시한 도면이다.
이하에서는 첨부한 도면을 참고로 하여 본 개시의 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 개시의 실시예를 설명함에 있어서 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 대한 상세한 설명은 생략한다. 그리고, 도면에서 본 개시에 대한 설명과 관계없는 부분은 생략하였으며, 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계뿐만 아니라, 그 중간에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 어떤 구성요소가 다른 구성요소를 "포함한다" 또는 "가진다"고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 배제하는 것이 아니라 또 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 개시에 있어서, 제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되며, 특별히 언급되지 않는 한 구성요소들간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제1 구성요소는 다른 실시예에서 제2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제2 구성요소를 다른 실시예에서 제1 구성요소라고 칭할 수도 있다.
본 개시에 있어서, 서로 구별되는 구성요소들은 각각의 특징을 명확하게 설명하기 위함이며, 구성요소들이 반드시 분리되는 것을 의미하지는 않는다. 즉, 복수의 구성요소가 통합되어 하나의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있고, 하나의 구성요소가 분산되어 복수의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있다. 따라서, 별도로 언급하지 않더라도 이와 같이 통합된 또는 분산된 실시예도 본 개시의 범위에 포함된다.
본 개시에 있어서, 다양한 실시예에서 설명하는 구성요소들이 반드시 필수적인 구성요소들을 의미하는 것은 아니며, 일부는 선택적인 구성요소일 수 있다. 따라서, 일 실시예에서 설명하는 구성요소들의 부분집합으로 구성되는 실시예도 본 개시의 범위에 포함된다. 또한, 다양한 실시예에서 설명하는 구성요소들에 추가적으로 다른 구성요소를 포함하는 실시예도 본 개시의 범위에 포함된다.
본 개시는 영상의 부호화 및 복호화에 관한 것으로서, 본 개시에서 사용되는 용어는, 본 개시에서 새롭게 정의되지 않는 한 본 개시가 속한 기술 분야에서 통용되는 통상의 의미를 가질 수 있다.
본 개시에서 "픽처(picture)"는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)은 픽처의 일부를 구성하는 부호화 단위로서, 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 또한, 슬라이스/타일은 하나 이상의 CTU(coding tree unit)를 포함할 수 있다.
본 개시에서 "픽셀(pixel)" 또는 "펠(pel)"은 하나의 픽처(또는 영상)를 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 "샘플(sample)"이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
본 개시에서 "유닛(unit)"은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 유닛은 경우에 따라서 "샘플 어레이", "블록(block)" 또는 "영역(area)" 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
본 개시에서 "현재 블록"은 "현재 코딩 블록", "현재 코딩 유닛", "부호화 대상 블록", "복호화 대상 블록" 또는 "처리 대상 블록" 중 하나를 의미할 수 있다. 예측이 수행되는 경우, "현재 블록"은 "현재 예측 블록" 또는 "예측 대상 블록"을 의미할 수 있다. 변환(역변환)/양자화(역양자화)가 수행되는 경우, "현재 블록"은 "현재 변환 블록" 또는 "변환 대상 블록"을 의미할 수 있다. 필터링이 수행되는 경우, "현재 블록"은 "필터링 대상 블록"을 의미할 수 있다.
또한, 본 개시에서 "현재 블록"은 크로마 블록이라는 명시적인 기재가 없는 한 "현재 블록의 루마 블록"을 의미할 수 있다. "현재 블록의 크로마 블록"은 명시적으로 "크로마 블록" 또는 "현재 크로마 블록"과 같이 크로마 블록이라는 명시적인 기재를 포함하여 표현될 수 있다.
본 개시에서 "/"와 ","는 "및/또는"으로 해석될 수 있다. 예를 들어, "A/B"와 "A, B"는 "A 및/또는 B"로 해석될 수 있다. 또한, "A/B/C"와 "A, B, C"는 "A, B 및/또는 C 중 적어도 하나"를 의미할 수 있다.
본 개시에서 "또는"은 "및/또는"으로 해석될 수 있다. 예를 들어, "A 또는 B"는, 1) "A" 만을 의미하거나 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 또는, 본 개시에서 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다.
비디오 코딩 시스템 개요
도 1은 본 개시에 따른 비디오 코딩 시스템을 도시한다.
일 실시예에 따른 비디오 코딩 시스템은 부호화 장치(10) 및 복호화 장치(20)를 포함할 수 있다. 부호화 장치(10)는 부호화된 비디오(video) 및/또는 영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 복호화 장치(20)로 전달할 수 있다.
일 실시예예 따른 부호화 장치(10)는 비디오 소스 생성부(11), 부호화부(12), 전송부(13)를 포함할 수 있다. 일 실시예에 따른 복호화 장치(20)는 수신부(21), 복호화부(22) 및 렌더링부(23)를 포함할 수 있다. 상기 부호화부(12)는 비디오/영상 부호화부라고 불릴 수 있고, 상기 복호화부(22)는 비디오/영상 복호화부라고 불릴 수 있다. 전송부(13)는 부호화부(12)에 포함될 수 있다. 수신부(21)는 복호화부(22)에 포함될 수 있다. 렌더링부(23)는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스 생성부(11)는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스 생성부(11)는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
부호화부(12)는 입력 비디오/영상을 부호화할 수 있다. 부호화부(12)는 압축 및 부호화 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 부호화부(12)는 부호화된 데이터(부호화된 비디오/영상 정보)를 비트스트림(bitstream) 형태로 출력할 수 있다.
전송부(13)는 비트스트림 형태로 출력된 부호화된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 복호화 장치(20)의 수신부(21)로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부(13)는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부(21)는 상기 저장매체 또는 네트워크로부터 상기 비트스트림을 추출/수신하여 복호화부(22)로 전달할 수 있다.
복호화부(22)는 부호화부(12)의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 복호화할 수 있다.
렌더링부(23)는 복호화된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
영상 부호화 장치 개요
도 2는 본 개시에 따른 실시예가 적용될 수 있는 영상 부호화 장치를 개략적으로 도시한 도면이다.
도 2에 도시된 바와 같이, 영상 부호화 장치(100)는 영상 분할부(110), 감산부(115), 변환부(120), 양자화부(130), 역양자화부(140), 역변환부(150), 가산부(155), 필터링부(160), 메모리(170), 인터 예측부(180), 인트라 예측부(185) 및 엔트로피 인코딩부(190)를 포함할 수 있다. 인터 예측부(180) 및 인트라 예측부(185)는 합쳐서 "예측부"라고 지칭될 수 있다. 변환부(120), 양자화부(130), 역양자화부(140), 역변환부(150)는 레지듀얼(residual) 처리부에 포함될 수 있다. 레지듀얼 처리부는 감산부(115)를 더 포함할 수도 있다.
영상 부호화 장치(100)를 구성하는 복수의 구성부들의 전부 또는 적어도 일부는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어, 인코더 또는 프로세서)로 구현될 수 있다. 또한 메모리(170)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구현될 수 있다.
영상 분할부(110)는 영상 부호화 장치(100)에 입력된 입력 영상(또는, 픽쳐, 프레임)을 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)을 QT/BT/TT (Quad-tree/binary-tree/ternary-tree) 구조에 따라 재귀적으로(recursively) 분할함으로써 획득될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 코딩 유닛의 분할을 위해, 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 트리 구조가 나중에 적용될 수 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 개시에 따른 코딩 절차가 수행될 수 있다. 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 최대 코딩 유닛을 분할하여 획득한 하위 뎁스의 코딩 유닛이 최종 코닛 유닛으로 사용될 수도 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환 및/또는 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 코딩 절차의 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)일 수 있다. 상기 예측 유닛 및 상기 변환 유닛은 각각 상기 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
예측부(인터 예측부(180) 또는 인트라 예측부(185))는 처리 대상 블록(현재 블록)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 현재 블록의 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(185)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 인트라 예측 모드 및/또는 인트라 예측 기법에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라, 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(185)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(180)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기반하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 서로 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있다. 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수 있다. 예를 들어, 인터 예측부(180)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(180)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference) 및 움직임 벡터 예측자에 대한 지시자(indicator)를 부호화함으로써 현재 블록의 움직임 벡터를 시그널링할 수 있다. 움직임 벡터 차분은 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 차이를 의미할 수 있다.
예측부는 후술하는 다양한 예측 방법 및/또는 예측 기법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 현재 블록의 예측을 위해 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 현재 블록의 예측을 위해 인트라 예측과 인터 예측을 동시에 적용하는 예측 방법은 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 현재 블록의 예측을 위해 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 현재 블록으로부터 소정의 거리만큼 떨어진 위치의 현재 픽처 내 기복원된 참조 블록을 이용하여 현재 블록을 예측하는 방법이다. IBC가 적용되는 경우, 현재 픽처 내 참조 블록의 위치는 상기 소정의 거리에 해당하는 벡터(블록 벡터)로서 부호화될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나, 현재 픽처 내에서 참조 블록을 도출하는 점에서, 인터 예측과 유사하게 수행될 수 있다. 즉 IBC는 본 개시에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다.
예측부를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 감산부(115)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)로부터 예측부에서 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있다. 생성된 레지듀얼 신호는 변환부(120)로 전송될 수 있다.
변환부(120)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)을 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)을 이용하여 예측 신호를 생성하고 그에 기반하여 획득되는 변환을 의미한다. 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(130)는 변환 계수들을 양자화하여 엔트로피 인코딩부(190)로 전송할 수 있다. 엔트로피 인코딩부(190)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(130)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다.
엔트로피 인코딩부(190)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(190)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)를 더 포함할 수 있다. 본 개시에서 언급된 시그널링 정보, 전송되는 정보 및/또는 신택스 요소들은 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다.
상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(190)로부터 출력된 신호를 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 영상 부호화 장치(100)의 내/외부 엘리먼트로서 구비될 수 있고, 또는 전송부는 엔트로피 인코딩부(190)의 구성요소로서 구비될 수도 있다.
양자화부(130)로부터 출력된 양자화된 변환 계수들은 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(140) 및 역변환부(150)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다.
가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(180) 또는 인트라 예측부(185)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(155)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
필터링부(160)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(160)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(170), 구체적으로 메모리(170)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(160)는 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 필터링에 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(170)에 전송된 수정된 복원 픽처는 인터 예측부(180)에서 참조 픽처로 사용될 수 있다. 영상 부호화 장치(100)는 이를 통하여 인터 예측이 적용되는 경우, 영상 부호화 장치(100)와 영상 복호화 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(170) 내 DPB는 인터 예측부(180)에서의 참조 픽처로 사용하기 위해 수정된 복원 픽처를 저장할 수 있다. 메모리(170)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(180)에 전달될 수 있다. 메모리(170)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(185)에 전달할 수 있다.
영상 복호화 장치 개요
도 3은 본 개시에 따른 실시예가 적용될 수 있는 영상 복호화 장치를 개략적으로 도시한 도면이다.
도 3에 도시된 바와 같이, 영상 복호화 장치(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 메모리(250), 인터 예측부(260) 및 인트라 예측부(265)를 포함하여 구성될 수 있다. 인터 예측부(260) 및 인트라 예측부(265)를 합쳐서 "예측부"라고 지칭될 수 있다. 역양자화부(220), 역변환부(230)는 레지듀얼 처리부에 포함될 수 있다.
영상 복호화 장치(200)를 구성하는 복수의 구성부들의 전부 또는 적어도 일부는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 또는 프로세서)로 구현될 수 있다. 또한 메모리(170)는 DPB를 포함할 수 있고, 디지털 저장 매체에 의하여 구현될 수 있다.
비디오/영상 정보를 포함하는 비트스트림을 수신한 영상 복호화 장치(200)는 도 2의 영상 부호화 장치(100)에서 수행된 프로세스에 대응하는 프로세스를 수행하여 영상을 복원할 수 있다. 예를 들어, 영상 복호화 장치(200)는 영상 부호화 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있다. 코딩 유닛은 코딩 트리 유닛이거나 또는 최대 코딩 유닛을 분할하여 획득될 수 있다. 그리고, 영상 복호화 장치(200)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치(미도시)를 통해 재생될 수 있다.
영상 복호화 장치(200)는 도 2의 영상 부호화 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있다. 수신된 신호는 엔트로피 디코딩부(210)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(210)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(예컨대, 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)를 더 포함할 수 있다. 영상 복호화 장치는 영상을 디코딩하기 위해 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 추가적으로 이용할 수 있다. 본 개시에서 언급된 시그널링 정보, 수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩됨으로써 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 블록 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)을 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(260) 및 인트라 예측부(265))로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 역양자화부(220)로 입력될 수 있다. 또한, 엔트로피 디코딩부(210)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(240)로 제공될 수 있다. 한편, 영상 부호화 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 영상 복호화 장치(200)의 내/외부 엘리먼트로서 추가적으로 구비될 수 있고, 또는 수신부는 엔트로피 디코딩부(210)의 구성요소로서 구비될 수도 있다.
한편, 본 개시에 따른 영상 복호화 장치는 비디오/영상/픽처 복호화 장치라고 불릴 수 있다. 상기 영상 복호화 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및/또는 샘플 디코더(비디오/영상/픽처 샘플 디코더)를 포함할 수도 있다. 상기 정보 디코더는 엔트로피 디코딩부(210)를 포함할 수 있고, 상기 샘플 디코더는 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 메모리(250), 인터 예측부(260) 및 인트라 예측부(265) 중 적어도 하나를 포함할 수 있다.
역양자화부(220)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(220)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 영상 부호화 장치에서 수행된 계수 스캔 순서에 기반하여 수행될 수 있다. 역양자화부(220)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)을 획득할 수 있다.
역변환부(230)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득할 수 있다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(210)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드(예측 기법)를 결정할 수 있다.
예측부가 후술하는 다양한 예측 방법(기법)을 기반으로 예측 신호를 생성할 수 있음은 영상 부호화 장치(100)의 예측부에 대한 설명에서 언급된 바와 동일하다.
인트라 예측부(265)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 인트라 예측부(185)에 대한 설명은 인트라 예측부(265)에 대해서도 동일하게 적용될 수 있다.
인터 예측부(260)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기반하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(260)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드(기법)를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드(기법)를 지시하는 정보를 포함할 수 있다.
가산부(235)는 획득된 레지듀얼 신호를 예측부(인터 예측부(260) 및/또는 인트라 예측부(265) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(155)에 대한 설명은 가산부(235)에 대해서도 동일하게 적용될 수 있다. 가산부(235)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
필터링부(240)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(240)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(250), 구체적으로 메모리(250)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(250)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(260)에서 참조 픽쳐로 사용될 수 있다. 메모리(250)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(250)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(265)에 전달할 수 있다.
본 명세서에서, 영상 부호화 장치(100)의 필터링부(160), 인터 예측부(180) 및 인트라 예측부(185)에서 설명된 실시예들은 각각 영상 복호화 장치(200)의 필터링부(240), 인터 예측부(260) 및 인트라 예측부(265)에도 동일 또는 대응되도록 적용될 수 있다.
영상 분할 개요
본 개시에 따른 비디오/영상 코딩 방법은 다음과 같은 영상의 분할 구조에 기반하여 수행될 수 있다. 구체적으로 후술하는 예측, 레지듀얼 처리((역)변환, (역)양자화 등), 신택스 요소 코딩, 필터링 등의 절차는 상기 영상의 분할 구조에 기반하여 도출된 CTU, CU(및/또는 TU, PU)에 기반하여 수행될 수 있다. 영상은 블록 단위로 분할될 수 있으며, 블록 분할 절차는 상술한 부호화 장치의 영상 분할부(110)에서 수행될 수 있다. 분할 관련 정보는 엔트로피 인코딩부(190)에서 부호화되어 비트스트림 형태로 복호화 장치로 전달될 수 있다. 복호화 장치의 엔트로피 디코딩부(210)는 상기 비트스트림으로부터 획득한 상기 분할 관련 정보를 기반으로 현재 픽처의 블록 분할 구조를 도출하고, 이를 기반으로 영상 디코딩을 위한 일련의 절차(ex. 예측, 레지듀얼 처리, 블록/픽처 복원, 인루프 필터링 등)를 수행할 수 있다.
픽처들은 코딩 트리 유닛들 (coding tree units, CTUs)의 시퀀스로 분할될 수 있다. 도 4는 픽처가 CTU들로 분할되는 예를 나타낸다. CTU는 코딩 트리 블록(CTB)에 대응될 수 있다. 혹은 CTU는 루마 샘플들의 코딩 트리 블록과, 대응하는 크로마 샘플들의 두개의 코딩 트리 블록들을 포함할 수 있다. 예를 들어, 세가지 샘플 어레이를 포함하는 픽처에 대하여, CTU는 루마 샘플들의 NxN 블록과 크로마 샘플들의 두개의 대응 블록들을 포함할 수 있다.
CTU의 분할 개요
전술한 바와 같이, 코딩 유닛은 코딩 트리 유닛(CTU) 또는 최대 코딩 유닛(LCU)을 QT/BT/TT (Quad-tree/binary-tree/ternary-tree) 구조에 따라 재귀적으로 분할함으로써 획득될 수 있다. 예컨대, CTU는 먼저 쿼드트리 구조로 분할될 수 있다. 이후 쿼드트리 구조의 리프 노드들은 멀티타입 트리 구조에 의하여 더 분할될 수 있다.
쿼드트리에 따른 분할은 현재 CU(또는 CTU)를 4등분하는 분할을 의미한다. 쿼드트리에 따른 분할에 의해, 현재 CU는 동일한 너비와 동일한 높이를 갖는 4개의 CU로 분할될 수 있다. 현재 CU가 더 이상 쿼드트리 구조로 분할되지 않는 경우, 현재 CU는 쿼드트리 구조의 리프 노드에 해당한다. 쿼드트리 구조의 리프 노드에 해당하는 CU는 더 이상 분할되지 않고 전술한 최종 코딩 유닛으로 사용될 수 있다. 또는, 쿼드트리 구조의 리프 노드에 해당하는 CU는 멀티타입 트리 구조에 의하여 더 분할될 수 있다.
도 5는 멀티타입 트리 구조에 따른 블록의 분할 타입을 도시한 도면이다. 멀티타입 트리 구조에 따른 분할은 바이너리 트리 구조에 따른 2개의 분할과 터너리 트리 구조에 따른 2개의 분할을 포함할 수 있다.
바이너리 트리 구조에 따른 2개의 분할은 수직 바이너리 분할(vertical binary splitting, SPLIT_BT_VER)과 수평 바이너리 분할(hotizontal binary splitting, SPLIT_BT_HOR)을 포함할 수 있다. 수직 바이너리 분할(SPLIT_BT_VER)은 현재 CU를 수직 방향으로 2등분하는 분할을 의미한다. 도 4에 도시된 바와 같이, 수직 바이너리 분할에 의해 현재 CU의 높이와 동일한 높이를 갖고 현재 CU의 너비의 절반의 너비를 갖는 2개의 CU가 생성될 수 있다. 수평 바이너리 분할(SPLIT_BT_HOR)은 현재 CU를 수평 방향으로 2등분하는 분할을 의미한다. 도 5에 도시된 바와 같이, 수평 바이너리 분할에 의해 현재 CU의 높이의 절반의 높이를 갖고 현재 CU의 너비와 동일한 너비를 갖는 2개의 CU가 생성될 수 있다.
터너리 트리 구조에 따른 2개의 분할은 수직 터너리 분할(vertical ternary splitting, SPLIT_TT_VER)과 수평 터너리 분할(hotizontal ternary splitting, SPLIT_TT_HOR)을 포함할 수 있다. 수직 터너리 분할(SPLIT_TT_VER)은 현재 CU를 수직 방향으로 1:2:1의 비율로 분할한다. 도 5에 도시된 바와 같이, 수직 터너리 분할에 의해 현재 CU의 높이와 동일한 높이를 갖고 현재 CU의 너비의 1/4의 너비를 갖는 2개의 CU와 현재 CU의 높이와 동일한 높이를 갖고 현재 CU의 너비의 절반의 너비를 갖는 CU가 생성될 수 있다. 수평 터너리 분할(SPLIT_TT_HOR)은 현재 CU를 수평 방향으로 1:2:1의 비율로 분할한다. 도 4에 도시된 바와 같이, 수평 터너리 분할에 의해 현재 CU의 높이의 1/4의 높이를 갖고 현재 CU의 너비와 동일한 너비를 갖는 2개의 CU와 현재 CU의 높이의 절반의 높이를 갖고 현재 CU의 너비와 동일한 너비를 갖는 1개의 CU가 생성될 수 있다.
도 6은 본 개시에 따른 멀티타입 트리를 수반하는 쿼드트리(quadtree with nested multi-type tree) 구조에서의 블록 분할 정보의 시그널링 메커니즘을 예시한 도면이다.
여기서, CTU는 쿼드트리의 루트(root) 노드로 취급되며, CTU는 쿼드트리 구조로 처음으로 분할된다. 현재 CU(CTU 또는 쿼드트리의 노드(QT_node))에 대해 쿼드트리 분할을 수행할 지 여부를 지시하는 정보(예컨대, qt_split_flag)가 시그널링될 수 있다. 예를 들어, qt_split_flag가 제1 값(예컨대, "1")이면, 현재 CU는 쿼드트리 분할될 수 있다. 또한, qt_split_flag가 제2 값(예컨대, "0")이면, 현재 CU는 쿼드트리 분할되지 않고, 쿼드트리의 리프 노드(QT_leaf_node)가 된다. 각 쿼드트리의 리프 노드는 이후 멀티타입 트리 구조로 더 분할될 수 있다. 즉, 쿼드트리의 리프 노드는 멀티타입 트리의 노드(MTT_node)가 될 수 있다. 멀티타입 트리 구조에서, 현재 노드가 추가적으로 분할되는지를 지시하기 위하여 제1 플래그(a first flag, ex. mtt_split_cu_flag)가 시그널링될 수 있다. 만약 해당 노드가 추가적으로 분할되는 경우(예컨대, 제1 플래그가 1인 경우), 분할 방향(splitting direction)을 지시하기 위하여 제2 플래그(a second flag, e.g. mtt_split_cu_verticla_flag)가 시그널링될 수 있다. 예컨대, 제2 플래그가 1인 경우, 분할 방향은 수직 방향이고, 제2 플래그가 0인 경우, 분할 방향은 수평 방향일 수 있다. 그 후 분할 타입이 바이너리 분할 타입인지 터너리 분할 타입인지 여부를 지시하기 위하여 제3 플래그(a third flag, ex. mtt_split_cu_binary_flag)가 시그널링될 수 있다. 예를 들어, 제3 플래그가 1인 경우, 분할 타입은 바이너리 분할 타입이고, 제3 플래그가 0인 경우, 분할 타입은 터너리 분할 타입일 수 있다. 바이너리 분할 또는 터너리 분할에 의해 획득된 멀티타입 트리의 노드는 멀티타입 트리 구조로 더 파티셔닝될 수 있다. 그러나, 멀티타입 트리의 노드는 쿼드트리 구조로 파티셔닝될 수는 없다. 상기 제1 플래그가 0인 경우, 멀티타입 트리의 해당 노드는 더 이상 분할되지 않고, 멀티타입 트리의 리프 노드(MTT_leaf_node)가 된다. 멀티타입 트리의 리프 노드에 해당하는 CU는 전술한 최종 코딩 유닛으로 사용될 수 있다.
전술한 mtt_split_cu_vertical_flag 및 mtt_split_cu_binary_flag를 기반으로, CU의 멀티타입 트리 분할 모드(multi-type tree splitting mode, MttSplitMode)가 표 1과 같이 도출될 수 있다. 이하의 설명에서, 멀티트리 분할 모드는 멀티트리 분할 타입 또는 분할 타입으로 줄여서 지칭될 수 있다.
MttSplitMode mtt_split_cu_vertical_flag mtt_split_cu_binary_flag
SPLIT_TT_HOR 0 0
SPLIT_BT_HOR 0 1
SPLIT_TT_VER 1 0
SPLIT_BT_VER 1 1
도 7은 CTU가 쿼드트리의 적용 이후 멀티타입트리가 적용됨으로써 CTU가 다중 CU들로 분할될 예를 도시한다. 도 7에서 굵은 블록 엣지(bold block edge)(710)은 쿼드트리 분할을 나타내고, 나머지 엣지들(720)은 멀티타입 트리 분할을 나타낸다.CU는 코딩 블록(CB)에 대응될 수 있다. 일 실시 예에서, CU는 루마 샘플들의 코딩 블록과, 루마 샘플들에 대응하는 크로마 샘플들의 두개의 코딩 블록들을 포함할 수 있다. 크로마 성분(샘플) CB 또는 TB 사이즈는 픽처/영상의 컬러 포멧(크로마 포멧, ex. 4:4:4, 4:2:2, 4:2:0 등)에 따른 성분비에 따라 루마 성분(샘플) CB 또는 TB 사이즈를 기반으로 도출될 수 있다. 컬러 포멧이 4:4:4인 경우, 크로마 성분 CB/TB 사이즈는 루마 성분 CB/TB 사이즈와 동일하게 설정될 수 있다. 컬러 포멧이 4:2:2인 경우, 크로마 성분 CB/TB의 너비는 루마 성분 CB/TB 너비의 절반으로, 크로마 성분 CB/TB의 높이는 루마 성분 CB/TB 높이로 설정될 수 있다. 컬러 포멧이 4:2:0인 경우, 크로마 성분 CB/TB의 너비는 루마 성분 CB/TB 너비의 절반으로, 크로마 성분 CB/TB의 높이는 루마 성분 CB/TB 높이의 절반으로 설정될 수 있다.
일 실시 예에서, 루마 샘플 단위를 기준으로 CTU의 크기가 128일때, CU의 사이즈는 CTU와 같은 크기인 128 x 128에서 4 x 4 까지의 크기를 가질 수 있다. 일 실시 예에서, 4:2:0 컬러 포멧(or 크로마 포멧)인 경우, 크로마 CB 사이즈는 64x64에서 2x2 까지의 크기를 가질 수 있다
한편, 일 실시 예에서, CU 사이즈와 TU 사이즈가 같을 수 있다. 또는, CU 영역 내에 복수의 TU가 존재할 수도 있다. TU 사이즈라 함은 일반적으로 루마 성분(샘플) TB(Transform Block) 사이즈를 나타낼 수 있다.
상기 TU 사이즈는 미리 설정된 값인 최대 허용 TB 사이즈(maxTbSize)를 기반으로 도출될 수 있다. 예를 들어, 상기 CU 사이즈가 상기 maxTbSize보다 큰 경우, 상기 CU로부터 상기 maxTbSize를 가진 복수의 TU(TB)들이 도출되고, 상기 TU(TB) 단위로 변환/역변환이 수행될 수 있다. 예를 들어, 최대 허용 루마 TB 사이즈는 64x64이고, 최대 허용 크로마 TB 사이즈는 32x32일 수 있다. 만약 상기 트리 구조에 따라 분할된 CB의 너비 또는 높이가 최대 변환 너비 또는 높이보다 큰 경우, 해당 CB는 자동적으로(또는 묵시적으로) 수평 및 수직 방향의 TB 사이즈 제한을 만족할 때까지 분할될 수 있다.
또한, 예를 들어 인트라 예측이 적용되는 경우, 인트라 예측 모드/타입은 상기 CU(or CB) 단위로 도출되고, 주변 참조 샘플 도출 및 예측 샘플 생성 절차는 TU(or TB) 단위로 수행될 수 있다. 이 경우 하나의 CU(or CB) 영역 내에 하나 또는 복수의 TU(or TB)들이 존재할 수 있으며, 이 경우 상기 복수의 TU(or TB)들은 동일한 인트라 예측 모드/타입을 공유할 수 있다.
한편, 멀티타입 트리를 수반한 쿼드트리 코딩 트리 스킴을 위하여, 다음 파라미터들이 SPS 신택스 요소로 부호화 장치에서 복호화 장치로 시그널링 될 수 있다. 예를들어, 쿼드트리 트리의 루트 노드의 크기를 나타내는 파라미터인 CTU size, 쿼드트리 리프 노드의 최소 가용 크기를 나타내는 파라미터인 MinQTSize, 바이너리 트리 루트 노드의 최대 가용 크기를 나타내는 파라미터인 MaxBTSize, 터너리 트리 루트 노드의 최대 가용 크기를 나타내는 파라미터인 MaxTTSize, 쿼드트리 리프 노드로부터 분할되는 멀티타입 트리의 최대 가용 계층 깊이(maximum allowed hierarchy depth)를 나타내는 파라미터인 MaxMttDepth, 바이너리 트리의 최소 가용 리프 노드 사이즈를 나타내는 파라미터인 MinBtSize, 터너리 트리의 최소 가용 리프 노드 사이즈를 나타내는 파라미터인 MinTtSize 중 적어도 하나가 시그널링될 수 있다.
4:2:0 크로마 포멧을 이용하는 일 실시 예에서, CTU 사이즈는 128x128 루마 블록 및 루마 블록에 대응하는 두개의 64x64 크로마 블록으로 설정될 수 있다. 이 경우, MinQTSize는 16x16으로 설정되고, MaxBtSize는 128x128로 설정되고, MaxTtSzie는 64x64로 설정되고, MinBtSize 및 MinTtSize는 4x4로, 그리고 MaxMttDepth는 4로 설정될 수 있다. 쿼트트리 파티셔닝은 CTU에 적용되어 쿼드트리 리프 노드들을 생성할 수 있다. 쿼드트리 리프 노드는 리프 QT 노드라고 불릴 수 있다. 쿼드트리 리프 노드들은 16x16 사이즈 (e.g. the MinQTSize)로부터 128x128 사이즈(e.g. the CTU size)를 가질 수 있다. 만약 리프 QT 노드가 128x128인 경우, 추가적으로 바이너리 트리/터너리 트리로 분할되지 않을 수 있다. 이는 이 경우 분할되더라도 MaxBtsize 및 MaxTtszie (i.e. 64x64)를 초과하기 때문이다. 이 외의 경우, 리프 QT 노드는 멀티타입 트리로 추가적으로 분할될 수 있다. 그러므로, 리프 QT 노드는 멀티타입 트리에 대한 루트 노드(root node)이고, 리프 QT 노드는 멀티타입 트리 뎁스(mttDepth) 0 값을 가질 수 있다. 만약, 멀티타입 트리 뎁스가 MaxMttdepth (ex. 4)에 도달한 경우, 더 이상 추가 분할은 고려되지 않을 수 있다. 만약, 멀티타입 트리 노드의 너비가 MinBtSize와 같고, 2xMinTtSize보다 작거나 같을 때, 더 이상 추가적인 수평 분할은 고려되지 않을 수 있다. 만약, 멀티타입 트리 노드의 높이가 MinBtSize와 같고, 2xMinTtSize보다 작거나 같을 때, 더 이상 추가적인 수직 분할은 고려되지 않을 수 있다. 이와 같이 분할이 고려되지 않는 경우, 부호화 장치는 분할 정보의 시그널링을 생략할 수 있다. 이러한 경우 복호화 장치는 소정의 값으로 분할 정보를 유도할 수 있다.
한편, 하나의 CTU는 루마 샘플들의 코딩 블록(이하, "루마 블록"이라 함)과 이에 대응하는 크로마 샘플들의 두개의 코딩 블록(이하, "크로마 블록"이라 함)들을 포함할 수 있다. 전술한 코딩 트리 스킴은 현재 CU의 루마 블록 및 크로마 블록에 대해 동일하게 적용될 수도 있고, 개별적(separate)으로 적용될 수도 있다. 구체적으로, 하나의 CTU 내 루마 블록 및 크로마 블록이 동일 블록 트리 구조로 분할될 수 있으며, 이 경우의 트리 구조는 싱글 트리(SINGLE_TREE)라고 나타낼 수 있다. 또는, 하나의 CTU 내 루마 블록 및 크로마 블록은 개별적 블록 트리 구조로 분할될 수 있으며, 이 경우의 트리 구조는 듀얼 트리(DUAL_TREE)라고 나타낼 수 있다. 즉, CTU가 듀얼 트리로 분할되는 경우, 루마 블록에 대한 블록 트리 구조와 크로마 블록에 대한 블록 트리 구조가 별개로 존재할 수 있다. 이 때, 루마 블록에 대한 블록 트리 구조는 듀얼 트리 루마(DUAL_TREE_LUMA)라고 불릴 수 있고, 크로마 블록에 대한 블록 트리 구조는 듀얼 트리 크로마(DUAL_TREE_CHROMA)라고 불릴 수 있다. P 및 B 슬라이스/타일 그룹들에 대하여, 하나의 CTU 내 루마 블록 및 크로마 블록들은 동일한 코딩 트리 구조를 갖도록 제한될 수 있다. 그러나, I 슬라이스/타일 그룹들에 대하여, 루마 블록 및 크로마 블록들은 서로 개별적 블록 트리 구조를 가질 수 있다. 만약 개별적 블록 트리 구조가 적용되는 경우, 루마 CTB(Coding Tree Block)는 특정 코딩 트리 구조를 기반으로 CU들로 분할되고, 크로마 CTB는 다른 코딩 트리 구조를 기반으로 크로마 CU들로 분할될 수 있다. 즉, 개별적 블록 트리 구조가 적용되는 I 슬라이스/타일 그룹 내 CU는 루마 성분의 코딩 블록 또는 두 크로마 성분들의 코딩 블록들로 구성되고, P 또는 B 슬라이스/타일 그룹의 CU는 세가지 컬러 성분(루마 성분 및 두개의 크로마 성분)의 블록들로 구성될 수 있음을 의미할 수 있다.
상기에서 멀티타입 트리를 수반한 쿼드트리 코딩 트리 구조에 대하여 설명하였으나, CU가 분할되는 구조는 이에 한정되지 않는다. 예를 들어, BT 구조 및 TT 구조는 다수 분할 트리 (Multiple Partitioning Tree, MPT) 구조에 포함되는 개념으로 해석될 수 있고, CU는 QT 구조 및 MPT 구조를 통해 분할된다고 해석할 수 있다. QT 구조 및 MPT 구조를 통해 CU가 분할되는 일 예에서, QT 구조의 리프 노드가 몇 개의 블록으로 분할되는지에 관한 정보를 포함하는 신택스 요소(예를 들어, MPT_split_type) 및 QT 구조의 리프 노드가 수직과 수평 중 어느 방향으로 분할되는지에 관한 정보를 포함하는 신택스 요소(예를 들어, MPT_split_mode)가 시그널링됨으로써 분할 구조가 결정될 수 있다.
또 다른 예에서, CU는 QT 구조, BT 구조 또는 TT 구조와 다른 방법으로 분할될 수 있다. 즉, QT 구조에 따라 하위 뎁스의 CU가 상위 뎁스의 CU의 1/4 크기로 분할되거나, BT 구조에 따라 하위 뎁스의 CU가 상위 뎁스의 CU의 1/2 크기로 분할되거나, TT 구조에 따라 하위 뎁스의 CU가 상위 뎁스의 CU의 1/4 또는 1/2 크기로 분할되는 것과 달리, 하위 뎁스의 CU는 경우에 따라 상위 뎁스의 CU의 1/5, 1/3, 3/8, 3/5, 2/3 또는 5/8 크기로 분할될 수 있으며, CU가 분할되는 방법은 이에 한정되지 않는다.
이와 같이, 상기 멀티타입 트리를 수반한 쿼드트리 코딩 블록 구조는 매우 유연한 블록 분할 구조를 제공할 수 있다. 한편, 멀티타입 트리에 지원되는 분할 타입들 때문에, 경우에 따라서 다른 분할 패턴들이 잠재적으로 동일한 코딩 블록 구조 결과를 도출할 수 있다. 부호화 장치와 복호화 장치는 이러한 리던던트(redundant)한 분할 패턴들의 발생을 제한함으로써 분할 정보의 데이터량을 줄일 수 있다.
예를 들어, 도 8은 바이너리 트리 분할 및 터너리 트리 분할에서 발생할 수 있는 리던던트 분할 패턴들을 예시적으로 나타낸다. 도 8에 도시된 바와 같이, 2단계 레벨의 한 방향에 대한 연속적인 바이너리 분할 810과 820은, 터너리 분할 이후 센터 파티션에 대한 바이너리 분할과 동일한 코딩 블록 구조를 갖는다. 이러한 경우, 터너리 트리 분할의 센터 블록(830, 840)에 대한 바이너리 트리 분할은 금지될 수 있다. 이러한 금지는 모든 픽처들의 CU들에 대하여 적용될 수 있다. 이러한 특정 분할이 금지되는 경우, 대응하는 신택스 요소들의 시그널링은 이러한 금지되는 경우를 반영하여 수정될 수 있고, 이를 통하여 분할을 위하여 시그널링되는 비트수를 줄일 수 있다. 예를 들어, 도 8에 도시된 예와 같이, CU의 센터 블록에 대한 바이너리 트리 분할이 금지되는 경우, 분할이 바이너리 분할인지 테너리 분할인지 여부를 가리키는 mtt_split_cu_binary_flag 신택스 요소는 시그널링되지 않고, 그 값은 0으로 복호화 장치에 의하여 유도될 수 있다.
인터 예측의 개요
이하, 본 개시에 따른 인터 예측에 대해 설명한다.
본 개시에 따른 영상 부호화 장치/영상 복호화 장치의 예측부는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(e.g. 샘플값들, 또는 움직임 정보 등)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다. 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 블록 또는 예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 상기 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU), 콜블록(colBlock) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic), 콜픽처(colPicture) 등의 이름으로 불릴 수 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다.
인터 예측은 다양한 예측 모드를 기반으로 수행될 수 있다. 예를 들어 스킵 모드와 머지 모드의 경우, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 동일할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 본 개시에서 MVP 모드는 AMVP(Advanced Motion Vector Prediction)와 동일한 의미로 사용될 수 있다.
상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 불릴 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 불릴 수 있다. L0 움직임 벡터에 기반한 예측은 L0 예측이라고 불릴 수 있고, L1 움직임 벡터에 기반한 예측을 L1 예측이라고 불릴 수 있고, 상기 L0 움직임 벡터 및 상기 L1 움직임 벡터 둘 다에 기반한 예측을 쌍(Bi) 예측이라고 불릴 수 있다. 여기서 L0 움직임 벡터는 참조 픽처 리스트 L0 (L0)에 연관된 움직임 벡터를 나타낼 수 있고, L1 움직임 벡터는 참조 픽처 리스트 L1 (L1)에 연관된 움직임 벡터를 나타낼 수 있다. 참조 픽처 리스트 L0는 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 포함할 수 있고, 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 포함할 수 있다. 상기 이전 픽처들은 순방향 (참조) 픽처라고 불릴 수 있고, 상기 이후 픽처들은 역방향 (참조) 픽처라고 불릴 수 있다. 상기 참조 픽처 리스트 L0은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트 L0 내에서 상기 이전 픽처들이 먼저 인덱싱되고 상기 이후 픽처들은 그 다음에 인덱싱될 수 있다. 상기 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트 L1 내에서 상기 이후 픽처들이 먼저 인덱싱되고 상기 이전 픽처들은 그 다음에 인덱싱 될 수 있다. 여기서 출력 순서는 POC(picture order count) 순서(order)에 대응될 수 있다.
도 9는 인터 예측 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 10은 본 개시에 따른 인터 예측부(180)의 구성을 예시적으로 도시한 도면이다.
도 9의 인코딩 방법은 도 2의 영상 부호화 장치에 의해 수행될 수 있다. 구체적으로, 단계 S610은 인터 예측부(180)에 의하여 수행될 수 있고, 단계 S620은 레지듀얼 처리부에 의하여 수행될 수 있다. 구체적으로 단계 S620은 감산부(115)에 의하여 수행될 수 있다. 단계 S630은 엔트로피 인코딩부(190)에 의하여 수행될 수 있다. 단계 S630의 예측 정보는 인터 예측부(180)에 의하여 도출되고, 단계 S630의 레지듀얼 정보는 레지듀얼 처리부에 의하여 도출될 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다. 전술한 바와 같이 상기 레지듀얼 샘플들은 영상 부호화 장치의 변환부(120)를 통하여 변환 계수들로 도출되고, 상기 변환 계수들은 양자화부(130)를 통하여 양자화된 변환 계수들로 도출될 수 있다. 상기 양자화된 변환 계수들에 관한 정보가 레지듀얼 코딩 절차를 통하여 엔트로피 인코딩부(190)에서 인코딩될 수 있다.
영상 부호화 장치는 현재 블록에 대한 인터 예측을 수행할 수 있다(S610). 영상 부호화 장치는 현재 블록의 인터 예측 모드 및 움직임 정보를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서 인터 예측 모드 결정, 움직임 정보 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 도 10에 도시된 바와 같이, 영상 부호화 장치의 인터 예측부(180)는 예측 모드 결정부(181), 움직임 정보 도출부(182), 예측 샘플 도출부(183)를 포함할 수 있다. 예측 모드 결정부(181)에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부(182)에서 상기 현재 블록의 움직임 정보를 도출하고, 예측 샘플 도출부(183)에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 영상 부호화 장치의 인터 예측부(180)는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 상기 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 상기 참조 블록과 상기 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다. 영상 부호화 장치는 다양한 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 영상 부호화 장치는 상기 다양한 예측 모드들에 대한 율-왜곡 비용(Rate-Distortion (RD) cost)을 비교하고 상기 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다. 그러나, 영상 부호화 장치가 현재 블록에 대한 예측 모드를 결정하는 방법은 상기 예로 한정되지 않으며, 다양한 방법들이 이용될 수 있다.
예를 들어, 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 머지 후보들을 유도하고, 유도된 머지 후보들을 이용하여 머지 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 영상 복호화 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다.
다른 예로, 상기 현재 블록에 MVP 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 mvp (motion vector predictor) 후보들을 유도하고, 유도된 mvp 후보들을 이용하여 mvp 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 mvp 후보 리스트에 포함된 mvp 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 이 경우, 예를 들어, 전술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 mvp 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 mvp 후보가 상기 선택된 mvp 후보가 될 수 있다. 상기 현재 블록의 움직임 벡터에서 상기 mvp를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 선택된 mvp 후보를 가리키는 인덱스 정보 및 상기 MVD에 관한 정보가 영상 복호화 장치로 시그널링될 수 있다. 또한, MVP 모드가 적용되는 경우, 상기 참조 픽처 인덱스의 값은 참조 픽처 인덱스 정보로 구성되어 별도로 상기 영상 복호화 장치로 시그널링될 수 있다.
영상 부호화 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S620). 영상 부호화 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다. 예컨대, 상기 레지듀얼 샘플은 원본 샘플로부터 대응하는 예측 샘플을 감산함으로써 도출될 수 있다.
영상 부호화 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩할 수 있다(S630). 영상 부호화 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 정보에 관한 정보를 포함할 수 있다. 상기 예측 모드 정보 중 skip flag는 현재 블록에 대해 스킵 모드가 적용되는지 여부를 나타내는 정보이며, merge flag는 현재 블록에 대해 머지 모드가 적용되는지 여부를 나타내는 정보이다. 또는 예측 모드 정보는 mode index와 같이, 복수의 예측 모드들 중 하나를 지시하는 정보일 수도 있다. 상기 skip flag와 merge flag가 각각 0일 경우, 현재 블록에 대해 MVP 모드가 적용되는 것으로 결정될 수 있다. 상기 움직임 정보에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 상기 후보 선택 정보 중 merge index는 현재 블록에 대해 머지 모드가 적용되는 경우에 시그널링될 수 있으며, 머지 후보 리스트에 포함된 머지 후보들 중 하나를 선택하기 위한 정보일 수 있다. 상기 후보 선택 정보 중 mvp flag 또는 mvp index는 현재 블록에 대해 MVP 모드가 적용되는 경우에 시그널링될 수 있으며, mvp 후보 리스트에 포함된 mvp 후보들 중 하나를 선택하기 위한 정보일 수 있다. 또한 상기 움직임 정보에 관한 정보는 상술한 MVD에 관한 정보 및/또는 참조 픽처 인덱스 정보를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 L0 예측, L1 예측, 또는 쌍(Bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 영상 복호화 장치로 전달될 수 있고, 또는 네트워크를 통하여 영상 복호화 장치로 전달될 수도 있다.
한편, 전술한 바와 같이 영상 부호화 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록을 포함하는 픽처)를 생성할 수 있다. 이는 영상 복호화 장치에서 수행되는 것과 동일한 예측 결과를 영상 부호화 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 영상 부호화 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)를 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 11은 인터 예측 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 12는 본 개시에 따른 인터 예측부(260)의 구성을 예시적으로 도시한 도면이다.
영상 복호화 장치는 상기 영상 부호화 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 영상 복호화 장치는 수신된 예측 정보를 기반으로 현재 블록에 대한 예측을 수행하고 예측 샘플들을 도출할 수 있다.
도 11의 디코딩 방법은 도 3의 영상 복호화 장치에 의해 수행될 수 있다. 딘계 S810 내지 S830은 인터 예측부(260)에 의하여 수행될 수 있고, 단계 S810의 예측 정보 및 단계 S840의 레지듀얼 정보는 엔트로피 디코딩부(210)에 의하여 비트스트림으로부터 획득될 수 있다. 영상 복호화 장치의 레지듀얼 처리부는 상기 레지듀얼 정보를 기반으로 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S840). 구체적으로 상기 레지듀얼 처리부의 역양자화부(220)는 상기 레지듀얼 정보를 기반으로 도출된 양자화된 변환 계수들을 기반으로, 역양자화를 수행하여 변환 계수들을 도출하고, 상기 레지듀얼 처리부의 역변환부(230)는 상기 변환 계수들에 대한 역변환을 수행하여 상기 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다. 단계 S850은 가산부(235) 또는 복원부에 의하여 수행될 수 있다.
구체적으로 영상 복호화 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S810). 영상 복호화 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 인터 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 skip flag를 기반으로 상기 현재 블록에 상기 스킵 모드가 적용되는지 여부를 결정할 수 있다. 또한, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되는지 또는 MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 인터 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 인터 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 MVP 모드를 포함할 수 있고, 또는 후술하는 다양한 인터 예측 모드들을 포함할 수 있다.
영상 복호화 장치는 상기 결정된 인터 예측 모드를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있다(S820). 예를 들어, 영상 복호화 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 전술한 후보 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다. 예컨대, 상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 이용될 수 있다.
다른 예로, 영상 복호화 장치는 상기 현재 블록에 MVP 모드가 적용되는 경우, mvp 후보 리스트를 구성하고, 상기 mvp 후보 리스트에 포함된 mvp 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 상기 선택은 전술한 후보 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 mvp와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 또한, 상기 참조 픽처 인덱스 정보를 기반으로 상기 현재 블록의 참조 픽처 인덱스를 도출할 수 있다. 상기 현재 블록에 관한 참조 픽처 리스트 내에서 상기 참조 픽처 인덱스가 가리키는 픽처가 상기 현재 블록의 인터 예측을 위하여 참조되는 참조 픽처로 도출될 수 있다.
영상 복호화 장치는 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S830). 이 경우 상기 현재 블록의 참조 픽처 인덱스를 기반으로 상기 참조 픽처를 도출하고, 상기 현재 블록의 움직임 벡터가 상기 참조 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 도 12에 도시된 바와 같이, 영상 복호화 장치의 인터 예측부(260)는 예측 모드 결정부(261), 움직임 정보 도출부(262), 예측 샘플 도출부(263)를 포함할 수 있다. 영상 복호화 장치의 인터 예측부(260)는 예측 모드 결정부(261)에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부(262)에서 수신된 움직임 정보에 관한 정보를 기반으로 상기 현재 블록의 움직임 정보(움직임 벡터 및/또는 참조 픽처 인덱스 등)를 도출하고, 예측 샘플 도출부(263)에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
영상 복호화 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성할 수 있다(S840). 영상 복호화 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다(S850). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 전술한 바와 같다.
전술한 바와 같이 인터 예측 절차는 인터 예측 모드 결정 단계, 결정된 예측 모드에 따른 움직임 정보 도출 단계, 도출된 움직임 정보에 기반한 예측 수행(예측 샘플 생성) 단계를 포함할 수 있다. 상기 인터 예측 절차는 전술한 바와 같이 영상 부호화 장치 및 영상 복호화 장치에서 수행될 수 있다.
이하에서, 예측 모드에 따른 움직임 정보 도출 단계에 대해 보다 상세히 설명한다.
전술한 바와 같이, 인터 예측은 현재 블록의 움직임 정보를 이용하여 수행될 수 있다. 영상 부호화 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 영상 부호화 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 현재 블록과 참조 블록 간 SAD(sum of absolute differences)를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 영상 복호화 장치로 시그널링될 수 있다.
현재 블록에 대해 머지 모드(merge mode)가 적용되는 경우, 현재 블록의 움직임 정보가 직접적으로 전송되지 않고, 주변 블록의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보를 유도하게 된다. 따라서, 머지 모드를 이용하였음을 알려주는 플래그 정보 및 어떤 주변 블록을 머지 후보로서 이용하였는지를 알려주는 후보 선택 정보(예컨대, 머지 인덱스)를 전송함으로써 현재 예측 블록의 움직임 정보를 지시할 수 있다. 본 개시에서 현재 블록은 예측 수행의 단위이므로, 현재 블록은 현재 예측 블록과 같은 의미로 사용되고, 주변 블록은 주변 예측 블록과 같은 의미로 사용될 수 있다.
영상 부호화 장치는 머지 모드를 수행하기 위해서 현재 블록의 움직임 정보를 유도하기 위해 이용되는 머지 후보 블록(merge candidate block)을 서치할 수 있다. 예를 들어, 상기 머지 후보 블록은 최대 5개까지 이용될 수 있으나, 이에 한정되지 않는다. 상기 머지 후보 블록의 최대 개수는 슬라이스 헤더 또는 타일 그룹 헤더에서 전송될 수 있으나, 이에 한정되지 않는다. 상기 머지 후보 블록들을 찾은 후, 영상 부호화 장치는 머지 후보 리스트를 생성할 수 있고, 이들 중 RD cost가 가장 작은 머지 후보 블록을 최종 머지 후보 블록으로 선택할 수 있다.
본 개시는 상기 머지 후보 리스트를 구성하는 머지 후보 블록에 대한 다양한 실시예를 제공한다. 상기 머지 후보 리스트는 예를 들어 5개의 머지 후보 블록을 이용할 수 있다. 예를 들어, 4개의 공간적 머지 후보(spatial merge candidate)와 1개의 시간적 머지 후보(temporal merge candidate)를 이용할 수 있다.
도 13은 공간적 머지 후보로 이용될 수 있는 주변 블록들을 예시한 도면이다.
도 14는 본 개시의 일 예에 따른 머지 후보 리스트 구성 방법을 개략적으로 나타낸 도면이다.
영상 부호화 장치/영상 복호화 장치는 현재 블록의 공간적 주변 블록들을 탐색하여 도출된 공간적 머지 후보들을 머지 후보 리스트에 삽입할 수 있다(S1110). 예를 들어, 상기 공간적 주변 블록들은 도 13에 도시된 바와 같이, 상기 현재 블록의 좌하측 코너 주변 블록(A0), 좌측 주변 블록(A1), 우상측 코너 주변 블록(B0), 상측 주변 블록(B1), 좌상측 코너 주변 블록(B2)들을 포함할 수 있다. 다만, 이는 예시로서 전술한 공간적 주변 블록들 이외에도 우측 주변 블록, 하측 주변 블록, 우하측 주변 블록 등 추가적인 주변 블록들이 더 상기 공간적 주변 블록들로 사용될 수 있다. 영상 부호화 장치/영상 복호화 장치는 상기 공간적 주변 블록들을 우선순위에 기반하여 탐색함으로써 가용한 블록들을 검출하고, 검출된 블록들의 움직임 정보를 상기 공간적 머지 후보들로 도출할 수 있다. 예를 들어, 영상 부호화 장치/영상 복호화 장치는 도 13에 도시된 5개의 블록들을 A1, B1, B0, A0, B2의 순서대로 탐색하고 가용한 후보들을 순차적으로 인덱싱함으로써 머지 후보 리스트를 구성할 수 있다.
영상 부호화 장치/영상 복호화 장치는 상기 현재 블록의 시간적 주변 블록을 탐색하여 도출된 시간적 머지 후보를 상기 머지 후보 리스트에 삽입할 수 있다(S1120). 상기 시간적 주변 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 픽처인 참조 픽처 상에 위치할 수 있다. 상기 시간적 주변 블록이 위치하는 참조 픽처는 collocated 픽처 또는 col 픽처라고 불릴 수 있다. 상기 시간적 주변 블록은 상기 col 픽처 상에서의 상기 현재 블록에 대한 동일 위치 블록(co-located block)의 우하측 코너 주변 블록 및 우하측 센터 블록의 순서로 탐색될 수 있다. 한편, 메모리 부하를 줄이기 위해 motion data compression이 적용되는 경우, 상기 col 픽처에 대해 일정 저장 단위마다 특정 움직임 정보를 대표 움직임 정보로 저장할 수 있다. 이 경우 상기 일정 저장 단위 내의 모든 블록에 대한 움직임 정보를 저장할 필요가 없으며 이를 통하여 motion data compression 효과를 얻을 수 있다. 이 경우, 일정 저장 단위는 예를 들어 16x16 샘플 단위, 또는 8x8 샘플 단위 등으로 미리 정해질 수도 있고, 또는 영상 부호화 장치에서 영상 복호화 장치로 상기 일정 저장 단위에 대한 사이즈 정보가 시그널링될 수도 있다. 상기 motion data compression이 적용되는 경우 상기 시간적 주변 블록의 움직임 정보는 상기 시간적 주변 블록이 위치하는 상기 일정 저장 단위의 대표 움직임 정보로 대체될 수 있다. 즉, 이 경우 구현 측면에서 보면, 상기 시간적 주변 블록의 좌표에 위치하는 예측 블록이 아닌, 상기 시간적 주변 블록의 좌표(좌상단 샘플 포지션)를 기반으로 일정 값만큼 산술적 오른쪽 쉬프트 후 산술적 왼쪽 쉬프트 한 위치를 커버하는 예측 블록의 움직임 정보를 기반으로 상기 시간적 머지 후보가 도출될 수 있다. 예를 들어, 상기 일정 저장 단위가 2nx2n 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>n)<<n), (yTnb>>n)<<n))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다. 구체적으로 예를 들어, 상기 일정 저장 단위가 16x16 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>4)<<4), (yTnb>>4)<<4))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다. 또는 예를 들어, 상기 일정 저장 단위가 8x8 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>3)<<3), (yTnb>>3)<<3))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다.
다시 도 14를 참조하면, 영상 부호화 장치/영상 복호화 장치는 현재 머지 후보들의 개수가 최대 머지 후보들의 개수보다 작은지 여부를 확인할 수 있다(S1130). 상기 최대 머지 후보들의 개수는 미리 정의되거나 영상 부호화 장치에서 영상 복호화 장치로 시그널링될 수 있다. 예를 들어, 영상 부호화 장치는 상기 최대 머지 후보들의 개수에 관한 정보를 생성하고, 인코딩하여 비트스트림 형태로 상기 영상 복호화 장치로 전달할 수 있다. 상기 최대 머지 후보들의 개수가 다 채워지면 이후의 후보 추가 과정(S1140)은 진행하지 않을 수 있다.
단계 S1130의 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작은 경우, 영상 부호화 장치/영상 복호화 장치는 소정의 방식에 따라 추가 머지 후보를 유도한 후 상기 머지 후보 리스트에 삽입할 수 있다(S1140).
단계 S1130의 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작지 않은 경우, 영상 부호화 장치/영상 복호화 장치는 상기 머지 후보 리스트의 구성을 종료할 수 있다. 이 경우 영상 부호화 장치는 RD cost 기반으로 상기 머지 후보 리스트를 구성하는 머지 후보들 중 최적의 머지 후보를 선택할 수 있으며, 상기 선택된 머지 후보를 가리키는 후보 선택 정보(ex. merge index)를 영상 복호화 장치로 시그널링할 수 있다. 영상 복호화 장치는 상기 머지 후보 리스트 및 상기 후보 선택 정보를 기반으로 상기 최적의 머지 후보를 선택할 수 있다.
상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 사용될 수 있으며, 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록의 예측 샘플들을 도출할 수 있음은 전술한 바와 같다. 영상 부호화 장치는 상기 예측 샘플들을 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출할 수 있으며, 상기 레지듀얼 샘플들에 관한 레지듀얼 정보를 영상 복호화 장치로 시그널링할 수 있다. 영상 복호화 장치는 상기 레지듀얼 정보를 기반으로 도출된 레지듀얼 샘플들 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 전술한 바와 같다.
현재 블록에 대해 스킵 모드(skip mode)가 적용되는 경우, 앞에서 머지 모드가 적용되는 경우와 동일한 방법으로 상기 현재 블록의 움직임 정보를 도출할 수 있다. 다만, 스킵 모드가 적용되는 경우 해당 블록에 대한 레지듀얼 신호가 생략되며 따라서 예측 샘플들이 바로 복원 샘플들로 이용될 수 있다.
현재 블록에 대해 MVP 모드가 적용되는 경우, 복원된 공간적 주변 블록(예를 들어, 도 13에 도시된 주변 블록)의 움직임 벡터 및/또는 시간적 주변 블록(또는 Col 블록)에 대응하는 움직임 벡터를 이용하여, 움직임 벡터 예측자(motion vector predictor, mvp) 후보 리스트가 생성될 수 있다. 즉, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록에 대응하는 움직임 벡터가 현재 블록의 움직임 벡터 예측자 후보로 사용될 수 있다. 쌍예측이 적용되는 경우, L0 움직임 정보 도출을 위한 mvp 후보 리스트와 L1 움직임 정보 도출을 위한 mvp 후보 리스트가 개별적으로 생성되어 이용될 수 있다. 현재 블록에 대한 예측 정보(또는 예측에 관한 정보)는 상기 mvp 후보 리스트에 포함된 움직임 벡터 예측자 후보들 중에서 선택된 최적의 움직임 벡터 예측자 후보를 지시하는 후보 선택 정보(ex. MVP 플래그 또는 MVP 인덱스)를 포함할 수 있다. 이 때, 예측부는 상기 후보 선택 정보를 이용하여, mvp 후보 리스트에 포함된 움직임 벡터 예측자 후보들 중에서, 현재 블록의 움직임 벡터 예측자를 선택할 수 있다. 영상 부호화 장치의 예측부는 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 움직임 벡터 차분(MVD)을 구할 수 있고, 이를 인코딩하여 비트스트림 형태로 출력할 수 있다. 즉, MVD는 현재 블록의 움직임 벡터에서 상기 움직임 벡터 예측자를 뺀 값으로 구해질 수 있다. 영상 복호화 장치의 예측부는 상기 예측에 관한 정보에 포함된 움직임 벡터 차분을 획득하고, 상기 움직임 벡터 차분과 상기 움직임 벡터 예측자의 가산을 통해 현재 블록의 상기 움직임 벡터를 도출할 수 있다. 영상 복호화 장치의 예측부는 참조 픽처를 지시하는 참조 픽처 인덱스 등을 상기 예측에 관한 정보로부터 획득 또는 유도할 수 있다.
도 15는 본 개시의 일 예에 따른 움직임 벡터 예측자 후보 리스트 구성 방법을 개략적으로 나타낸 도면이다.
먼저, 현재 블록의 공간적 후보 블록을 탐색하여 가용한 후보 블록을 mvp 후보 리스트에 삽입할 수 있다(S1210). 이후, mvp 후보 리스트에 포함된 mvp 후보가 2개 미만인지 여부가 판단되고(S1220), 2개인 경우, mvp 후보 리스트의 구성을 완료할 수 있다.
단계 S1220에서, 가용한 공간적 후보 블록이 2개 미만인 경우, 현재 블록의 시간적 후보 블록을 탐색하여 가용한 후보 블록을 mvp 후보 리스트에 삽입할 수 있다(S1230). 시간적 후보 블록이 가용하지 않은 경우, 제로 움직임 벡터를 mvp 후보 리스트에 삽입(S1240)함으로써, mvp 후보 리스트의 구성을 완료할 수 있다.
한편, MVP 모드가 적용되는 경우, 참조 픽처 인덱스가 명시적으로 시그널링될 수 있다. 이경우 L0 예측을 위한 참조 픽처 인덱스(refidxL0)와 L1 예측을 위한 참조 픽처 인덱스(refidxL1)가 구분되어 시그널링될 수 있다. 예를 들어, MVP 모드가 적용되고 쌍예측(BI prediction)이 적용되는 경우, 상기 refidxL0에 관한 정보 및 refidxL1에 관한 정보가 둘 다 시그널링될 수 있다.
전술한 바와 같이, MVP 모드가 적용되는 경우, 영상 부호화 장치에서 도출된 MVD에 관한 정보가 영상 복호화 장치로 시그널링될 수 있다. MVD에 관한 정보는 예를 들어 MVD 절대값 및 부호에 대한 x, y 성분을 나타내는 정보를 포함할 수 있다. 이 경우, MVD 절대값이 0보다 큰지, 및 1보다 큰지 여부, MVD 나머지를 나타내는 정보가 단계적으로 시그널링될 수 있다. 예를 들어, MVD 절대값이 1보다 큰지 여부를 나타내는 정보는 MVD 절대값이 0보다 큰지 여부를 나타내는 flag 정보의 값이 1인 경우에 한하여 시그널링될 수 있다.
도 16은 본 개시의 일 예에 따라 영상 부호화 장치로부터 영상 복호화 장치로 MVD를 전송하기 위한 신택스 구조를 도시한 도면이다.
도 16에서, abs_mvd_greater0_flag[0]은 MVD의 x성분의 절대값이 0보다 큰지 여부를 나타내고, abs_mvd_greater0_flag[1]은 MVD의 y성분의 절대값이 0보다 큰지 여부를 나타낸다. 유사하게, abs_mvd_greater1_flag[0]은 MVD의 x성분의 절대값이 1보다 큰지 여부를 나타내고, abs_mvd_greater1_flag[1]은 MVD의 y성분의 절대값이 1보다 큰지 여부를 나타낸다. 도 16에 도시된 바와 같이, abs_mvd_greater1_flag는 abs_mvd_greater0_flag이 1일 때에만 전송될 수 있다. 도 16에서, abs_mvd_minus2는 MVD의 절대값에서 2를 뺀 값을 나타내고, mvd_sign_flag는 MVD의 부호가 플러스인지 마이너스인지 여부를 나타낸다. 도 16에 도시된 신택스 구조를 이용하여 MVD는 아래의 수학식과 같이 도출될 수 있다.
[수학식 1]
MVD[compIdx] = abs_mvd_greater0_flag[compIdx] *(abs_mvd_minus2[compIdx] + 2) *(1 - 2 * mvd_sign_flag[compIdx])
한편, L0 예측을 위한 MVD (MVDL0)와 L1 예측을 위한 MVD(MVDL1)이 구분되어 시그널링될 수도 있으며, 상기 MVD에 관한 정보는 MVDL0에 관한 정보 및/또는 MVDL1에 관한 정보를 포함할 수 있다. 예를 들어 현재 블록에 MVP 모드가 적용되고 BI 예측이 적용되는 경우, 상기 MVDL0에 관한 정보 및 MVDL1에 관한 정보가 둘 다 시그널링될 수 있다.
IBC(Intra Block Copy) 예측의 개요
이하, 본 개시에 따른 IBC 예측에 대해 설명한다.
IBC 예측은 영상 부호화 장치/영상 복호화 장치의 예측부에서 수행될 수 있다. IBC 예측은 간단히 IBC라고 불릴 수 있다. 상기 IBC는 예를 들어 SCC (screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. 상기 IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 개시에서 설명된 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 예를 들어, IBC에서는 전술한 움직임 정보(움직임 벡터) 도출 방법들 중 적어도 하나를 이용할 수 있다. 상기 인터 예측 기법들 중 적어도 하나는 상기 IBC 예측을 고려하여 일부 수정되어 이용될 수도 있다. 상기 IBC는 현재 픽처를 참조할 수 있으며, 따라서 CPR (current picture referencing)이라고 불릴 수도 있다.
IBC를 위하여, 영상 부호화 장치는 블록 매칭 (BM)을 수행하여 현재 블록(ex. CU)에 대한 최적의 블록 벡터(또는 움직임 벡터)를 도출할 수 있다. 상기 도출된 블록 벡터(또는 움직임 벡터)는 전술한 인터 예측에서의 움직임 정보(움직임 벡터)의 시그널링과 유사한 방법을 이용하여 비트스트림을 통하여 영상 복호화 장치로 시그널링될 수 있다. 영상 복호화 장치는 상기 시그널링된 블록 벡터(움직임 벡터)를 통하여 현재 픽처 내에서 상기 현재 블록에 대한 참조 블록을 도출할 수 있으며, 이를 통하여 상기 현재 블록에 대한 예측 신호(예측된 블록 or 예측 샘플들)를 도출할 수 있다. 여기서 상기 블록 벡터(또는 움직임 벡터)는 현재 블록으로부터 현재 픽처 내 이미 복원된 영역에 위치하는 참조 블록까지의 변위(displacement)를 나타낼 수 있다. 따라서, 상기 블록 벡터(또는 움직임 벡터)는 변위 벡터라고 불릴 수도 있다. 이하, IBC에서 상기 움직임 벡터는 상기 블록 벡터 또는 상기 변위 벡터에 대응될 수 있다. 현재 블록의 움직임 벡터는 루마 성분에 대한 움직임 벡터(루마 움직임 벡터) 또는 크로마 성분에 대한 움직임 벡터(크로마 움직임 벡터)를 포함할 수 있다. 예를 들어, IBC 코딩된 CU에 대한 루마 움직임 벡터는 정수 샘플 단위(즉, integer precision)일 수 있다. 크로마 움직임 벡터 또한 정수 샘플 단위로 클리핑될(clipped) 수 있다. 전술한 바와 같이 IBC는 인터 예측 기법들 중 적어도 하나를 이용할 수 있으며, 예를 들어, 루마 움직임 벡터는 전술한 머지 모드 또는 MVP 모드를 이용하여 부호화/복호화될 수 있다.
루마 IBC 블록에 대해 머지 모드가 적용되는 경우, 루마 IBC 블록에 대한 머지 후보 리스트는 도 14를 참조하여 설명한 인터 모드에서의 머지 후보 리스트와 유사하게 구성될 수 있다. 다만, 루마 IBC 블록의 경우, 머지 후보로서 시간적 주변 블록은 이용되지 않을 수 있다.
루마 IBC 블록에 대해 MVP 모드가 적용되는 경우, 루마 IBC 블록에 대한 mvp 후보 리스트는 도 15를 참조하여 설명한 인터 모드에서의 mvp 후보 리스트와 유사하게 구성될 수 있다. 다만, 루마 IBC 블록의 경우, mvp 후보로서 시간적 후보 블록은 이용되지 않을 수 있다.
IBC는 현재 픽처 내 이미 복원된 영역으로부터 참조 블록을 도출한다. 이 때, 메모리 소비와 영상 복호화 장치의 복잡도를 감소하기 위해, 현재 픽처 내 이미 복원된 영역 중 기정의된 영역(predefined area)만이 참조될 수 있다. 상기 기정의된 영역은 현재 블록이 포함된 현재 CTU를 포함할 수 있다. 이와 같이, 참조 가능한 복원 영역을 기정의된 영역으로 제한함으로써, IBC 모드는 로컬 온-칩 메모리(local on-chip memory)를 사용하여 하드웨어적으로 구현될 수 있다.
IBC를 수행하는 영상 부호화 장치는 상기 기정의된 영역을 탐색하여 가장 작은 RD cost를 갖는 참조 블록을 결정하고, 참조 블록과 현재 블록의 위치에 기반하여 움직임 벡터(블록 벡터)를 도출할 수 있다.
현재 블록에 대해 IBC를 적용할 지 여부는 CU 레벨에서, IBC 수행 정보로서 시그널링될 수 있다. 현재 블록의 움직임 벡터의 시그널링 방법(IBC MVP 모드 또는 IBC 스킵/머지 모드)에 관한 정보가 시그널링될 수 있다. IBC 수행 정보는 현재 블록의 예측 모드를 결정하는데 이용될 수 있다. 따라서, IBC 수행 정보는 현재 블록의 예측 모드에 관한 정보에 포함될 수 있다.
IBC 스킵/머지 모드의 경우, 머지 후보 인덱스가 시그널링되어 머지 후보 리스트에 포함된 블록 벡터들 중 현재 루마 블록의 예측에 사용될 블록 벡터를 지시하기 위해 사용될 수 있다. 이 때, 머지 후보 리스트는 IBC로 부호화된 주변 블록들을 포함할 수 있다. 머지 후보 리스트는 공간적 머지 후보를 포함할 수 있으며, 시간적 머지 후보는 포함하지 않도록 구성될 수 있다. 또한, 머지 후보 리스트는 추가적으로 HMVP(Histrory-based motion vector predictor) 후보 및/또는 페어와이즈(pairwise) 후보를 포함할 수 있다.
IBC MVP 모드의 경우, 블록 벡터 차분값이 전술한 인터 모드의 움직임 벡터 차분값과 동일한 방법으로 부호화될 수 있다. 블록 벡터 예측 방법은 인터 모드의 MVP 모드와 유사하게 2개의 후보들을 예측자로서 포함하는 mvp 후보 리스트를 구성하여 이용할 수 있다. 상기 2개의 후보들 중 하나는 좌측 주변 블록으로부터 유도되고, 나머지 하나는 상측 주변 블록으로부터 유도될 수 있다. 이 때, 좌측 또는 상측 주변 블록이 IBC로 부호화된 경우에만 해당 주변 블록으로부터 후보를 유도할 수 있다. 만약 좌측 또는 상측 주변 블록이 가용하지 않은 경우, 예컨대, IBC로 부호화되지 않은 경우, 디폴트 블록 벡터가 예측자로서 mvp 후보 리스트에 포함될 수 있다. 또한, 2개의 블록 벡터 예측자들 중 하나를 지시하기 위한 정보(예컨대, 플래그)가 후보 선택 정보로서 시그널링되고 이용되는 것은 인터 모드의 MVP 모드와 유사하다. 상기 mvp 후보 리스트는 디폴트 블록 벡터로서 HMVP 후보 및/또는 제로 움직임 벡터를 포함할 수 있다.
상기 HMVP 후보는 히스토리 기반 MVP 후보라고 지칭될 수 있으며, 현재 블록의 부호화/복호화 이전에 사용된 MVP 후보, 머지 후보 또는 블록 벡터 후보는 HMVP 후보로서 HMVP 리스트에 저장될 수 있다. 이 후, 현재 블록의 머지 후보 리스트 또는 mvp 후보 리스트가 최대 개수의 후보를 포함하지 못하는 경우, HMVP 리스트에 저장된 후보가 HMVP 후보로서 현재 블록의 머지 후보 리스트 또는 mvp 후보 리스트에 추가될 수 있다.
상기 페어와이즈(pairwise) 후보는 현재 블록의 머지 후보 리스트에 이미 포함된 후보들 중 미리 정해진 순서에 따라 2개의 후보를 선택하고, 선택된 2개의 후보를 평균함으로써 유도되는 후보를 의미한다.
도 17은 IBC 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 18은 본 개시에 따른 IBC 기반 비디오/영상 인코딩 방법을 수행하는 예측부의 구성을 예시적으로 도시한 도면이다.
도 17의 인코딩 방법은 도 2의 영상 부호화 장치에 의해 수행될 수 있다. 구체적으로, 단계 S1410은 예측부에 의하여 수행될 수 있고, 단계 S1420은 레지듀얼 처리부에 의하여 수행될 수 있다. 구체적으로 단계 S1420은 감산부(115)에 의하여 수행될 수 있다. 단계 S1430은 엔트로피 인코딩부(190)에 의하여 수행될 수 있다. 단계 S1430의 예측 정보는 예측부에 의하여 도출되고, 단계 S1430의 레지듀얼 정보는 레지듀얼 처리부에 의하여 도출될 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다. 전술한 바와 같이 상기 레지듀얼 샘플들은 영상 부호화 장치의 변환부(120)를 통하여 변환 계수들로 도출되고, 상기 변환 계수들은 양자화부(130)를 통하여 양자화된 변환 계수들로 도출될 수 있다. 상기 양자화된 변환 계수들에 관한 정보가 레지듀얼 코딩 절차를 통하여 엔트로피 인코딩부(190)에서 인코딩될 수 있다.
영상 부호화 장치는 현재 블록에 대한 IBC 예측(IBC 기반 예측)을 수행할 수 있다(S1410). 영상 부호화 장치는 현재 블록의 예측 모드 및 움직임 벡터(블록 벡터)를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 상기 예측 모드는 전술한 인터 예측 모드들 중 적어도 하나를 포함할 수 있다. 여기서 예측 모드 결정, 움직임 벡터 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 도 18에 도시된 바와 같이, IBC 기반 비디오/영상 인코딩 방법을 수행하는 영상 부호화 장치의 예측부는 예측 모드 결정부, 움직임 벡터 도출부, 예측 샘플 도출부를 포함할 수 있다. 예측 모드 결정부에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 벡터 도출부에서 상기 현재 블록의 움직임 벡터를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 영상 부호화 장치의 예측부는 현재 픽처의 복원된 영역(또는 복원된 영역 중 일정 영역(서치 영역)) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 영상 부호화 장치는 상기 참조 블록과 상기 현재 블록의 변위 차이를 기반으로 움직임 벡터를 도출할 수 있다. 영상 부호화 장치는 다양한 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 영상 부호화 장치는 상기 다양한 예측 모드들에 대한 율-왜곡 비용(RD cost)을 비교하고 상기 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다. 그러나, 영상 부호화 장치가 현재 블록에 대한 예측 모드를 결정하는 방법은 상기 예로 한정되지 않으며, 다양한 방법들이 이용될 수 있다.
예를 들어, 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 머지 후보들을 유도하고, 유도된 머지 후보들을 이용하여 머지 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 상기 현재 블록과 중 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 영상 복호화 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 벡터를 이용하여 상기 현재 블록의 움직임 벡터가 도출할 수 있다.
다른 예로, 상기 현재 블록에 MVP 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 mvp (motion vector predictor) 후보들을 유도하고, 유도된 mvp 후보들을 이용하여 mvp 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 mvp 후보 리스트에 포함된 mvp 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 이 경우, 예를 들어, 전술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 mvp 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 mvp 후보가 상기 선택된 mvp 후보가 될 수 있다. 상기 현재 블록의 움직임 벡터에서 상기 mvp를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 선택된 mvp 후보를 가리키는 인덱스 정보 및 상기 MVD에 관한 정보가 영상 복호화 장치로 시그널링될 수 있다.
영상 부호화 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S1420). 영상 부호화 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다. 예컨대, 상기 레지듀얼 샘플은 원본 샘플로부터 대응하는 예측 샘플을 감산함으로써 도출될 수 있다.
영상 부호화 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩할 수 있다(S1430). 영상 부호화 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 벡터에 관한 정보를 포함할 수 있다. 상기 예측 모드 정보 중 skip flag는 현재 블록에 대해 스킵 모드가 적용되는지 여부를 나타내는 정보이며, merge flag는 현재 블록에 대해 머지 모드가 적용되는지 여부를 나타내는 정보이다. 또는 예측 모드 정보는 mode index와 같이, 복수의 예측 모드들 중 하나를 지시하는 정보일 수도 있다. 상기 skip flag와 merge flag가 각각 0일 경우, 현재 블록에 대해 MVP 모드가 적용되는 것으로 결정될 수 있다. 상기 움직임 벡터에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 상기 후보 선택 정보 중 merge index는 현재 블록에 대해 머지 모드가 적용되는 경우에 시그널링될 수 있으며, 머지 후보 리스트에 포함된 머지 후보들 중 하나를 선택하기 위한 정보일 수 있다. 상기 후보 선택 정보 중 mvp flag 또는 mvp index는 현재 블록에 대해 MVP 모드가 적용되는 경우에 시그널링될 수 있으며, mvp 후보 리스트에 포함된 mvp 후보들 중 하나를 선택하기 위한 정보일 수 있다. 또한 상기 움직임 벡터에 관한 정보는 상술한 MVD에 관한 정보를 포함할 수 있다. 또한 상기 움직임 벡터에 관한 정보는 L0 예측, L1 예측, 또는 쌍(bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 영상 복호화 장치로 전달될 수 있고, 또는 네트워크를 통하여 영상 복호화 장치로 전달될 수도 있다.
한편, 전술한 바와 같이 영상 부호화 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록을 포함하는 픽처)를 생성할 수 있다. 이는 영상 복호화 장치에서 수행되는 것과 동일한 예측 결과를 영상 부호화 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 영상 부호화 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)을 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 19는 IBC 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 20은 본 개시에 따른 IBC 기반 비디오/영상 디코딩 방법을 수행하는 예측부의 구성을 예시적으로 도시한 도면이다.
영상 복호화 장치는 상기 영상 부호화 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 영상 복호화 장치는 수신된 예측 정보를 기반으로 현재 블록에 대한 IBC 예측을 수행하고 예측 샘플들을 도출할 수 있다.
도 19의 디코딩 방법은 도 3의 영상 복호화 장치에 의해 수행될 수 있다. 딘계 S1610 내지 S1630은 예측부에 의하여 수행될 수 있고, 단계 S1610의 예측 정보 및 단계 S1640의 레지듀얼 정보는 엔트로피 디코딩부(210)에 의하여 비트스트림으로부터 획득될 수 있다. 영상 복호화 장치의 레지듀얼 처리부는 상기 레지듀얼 정보를 기반으로 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1640). 구체적으로 상기 레지듀얼 처리부의 역양자화부(220)는 상기 레지듀얼 정보를 기반으로 도출된 양자화된 변환 계수들을 기반으로, 역양자화를 수행하여 변환 계수들을 도출하고, 상기 레지듀얼 처리부의 역변환부(230)는 상기 변환 계수들에 대한 역변환을 수행하여 상기 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다. 단계 S1650은 가산부(235) 또는 복원부에 의하여 수행될 수 있다.
구체적으로 영상 복호화 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S1610). 영상 복호화 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 skip flag를 기반으로 상기 현재 블록에 상기 스킵 모드가 적용되지 여부를 결정할 수 있다. 또한, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되지 또는 MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 MVP 모드를 포함할 수 있고, 또는 전술한 다양한 인터 예측 모드들을 포함할 수 있다.
영상 복호화 장치는 상기 결정된 예측 모드를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다(S1620). 예를 들어, 영상 복호화 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 전술한 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 전술한 후보 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 벡터를 이용하여 상기 현재 블록의 움직임 벡터가 도출할 수 있다. 예컨대, 상기 선택된 머지 후보의 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있다.
다른 예로, 영상 복호화 장치는 상기 현재 블록에 MVP 모드가 적용되는 경우, mvp 후보 리스트를 구성하고, 상기 mvp 후보 리스트에 포함된 mvp 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 상기 선택은 전술한 후보 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 mvp와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다.
영상 복호화 장치는 상기 현재 블록의 움직임 벡터를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S1630). 상기 현재 블록의 움직임 벡터가 상기 현재 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 도 20에 도시된 바와 같이, IBC 기반 비디오/영상 디코딩 방법을 수행하는 영상 복호화 장치의 예측부는 예측 모드 결정부, 움직임 벡터 도출부, 예측 샘플 도출부를 포함할 수 있다. 영상 복호화 장치의 예측부는 예측 모드 결정부에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 벡터 도출부에서 수신된 움직임 벡터에 관한 정보를 기반으로 상기 현재 블록의 움직임 벡터를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
영상 복호화 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성할 수 있다(S1640). 영상 복호화 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다. (S1650). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 전술한 바와 같다.
전술한 바와 같이, 하나의 유닛(ex. 코딩 유닛(CU))은 루마 블록(루마 CB(coding block))과 크로마 블록(크로마 CB)을 포함할 수 있다. 이 때, 루마 블록과 이에 대응하는 크로마 블록은 동일한 움직임 정보(ex. 움직임 벡터)를 가질 수도 있고, 또는 상이한 움직임 정보를 가질 수도 있다. 일 예로, 크로마 블록의 움직임 정보는 루마 블록의 움직임 정보를 기반으로 도출됨으로써 루마 블록과 대응하는 크로마 블록이 동일한 움직임 정보를 가질 수 있다.
크로마 포멧 개요
이하에서는 크로마 포맷에 대해 서술한다. 영상은 루마 성분(e.g. Y) 어레이와 두개의 크로마 성분(e.g. Cb, Cr) 어레이를 포함하는 부호화 데이터로 부호화될 수 있다. 예를들어, 부호화된 영상의 하나의 픽셀은 루마 샘플과 크로마 샘플을 포함할 수 있다. 루마 샘플과 크로마 샘플의 구성 포멧을 나타내기 위하여 크로마 포멧이 사용될 수 있으며, 크로마 포멧은 컬러 포멧이라고 불릴 수도 있다.
일 실시 예에서, 영상은 모노크롬(monochrome), 4:2:0, 4:2:2, 4:4:4 등 다양한 크로마 포맷으로 부호화될 수 있다. 모노크롬 샘플링에서는 하나의 샘플 어레이가 존재할 수 있으며, 상기 샘플 어레이는 루마 어레이일 수 있다. 4:2:0 샘플링에서는 하나의 루마 샘플 어레이와 두개의 크로마 샘플 어레이가 존재할 수 있으며, 두 개의 크로마 어레이들 각각은 높이가 루마 어레이의 절반이고, 폭도 루마 어레이의 절반일 수 있다. 4:2:2 샘플링에서는 하나의 루마 샘플 어레이와 두개의 크로마 샘플 어레이가 존재할 수 있으며, 두 개의 크로마 어레이들 각각은 루마 어레이와 높이가 동일하고, 폭은 루마 어레이의 절반일 수 있다. 4:4:4 샘플링에서는 하나의 루마 샘플 어레이와 두개의 크로마 샘플 어레이가 존재할 수 있으며, 두 개의 크로마 어레이들 각각은 루마 어레이와 높이와 폭이 동일할 수 있다.
예를들어, 4:2:0 샘플링의 경우 크로마 샘플의 위치는 대응되는 루마 샘플의 하단에 위치할 수 있다. 4:2:2 샘플링의 경우 크로마 샘플은 대응되는 루마 샘플의 위치에 중첩되어 위치될 수 있다. 4:4:4 샘플링의 경우 루마 샘플과 크로마 샘플은 모두 중첩된 위치에 위치될 수 있다.
부호화 장치와 복호화 장치에서 사용되는 크로마 포멧은 미리 정해질 수도 있다. 또는, 부호화 장치와 복호화 장치에서 적응적으로 사용되기 위하여, 부호화 장치에서 복호화 장치로 크로마 포멧이 시그널링될 수도 있다. 일 실시 예에서, 크로마 포멧은 chroma_format_idc 및 separate_colour_plane_flag 중 적어도 하나에 기반하여 시그널링될 수 있다. chroma_format_idc 및 separate_colour_plane_flag 중 적어도 하나는 DPS, VPS, SPS 또는 PPS등 상위 레벨 신택스를 통하여 시그널링될 수 있다. 예를들어, chroma_format_idc 및 separate_colour_plane_flag는 도 21과 같은 SPS 신택스에 포함될 수 있다.
한편, 도 22는 chroma_format_idc 및 separate_colour_plane_flag의 시그널링을 활용한 크로마 포맷 분류의 일 실시 예를 나타낸다. chroma_format_idc는 부호화 영상에 적용된 크로마 포멧을 나타내는 정보일 수 있다. separate_colour_plane_flag는 특정 크로마 포멧에 있어서 색상 어레이가 분리되어 처리되는지 여부를 나타낼 수 있다. 예를들어, chroma_format_idc의 제1값(e.g. 0)은 모노크롬 샘플링을 나타낼 수 있다. chroma_format_idc의 제2값(e.g. 1)은 4:2:0 샘플링을 나타낼 수 있다. chroma_format_idc의 제3값(e.g. 2)은 4:2:2 샘플링을 나타낼 수 있다. chroma_format_idc의 제4값(e.g. 3)은 4:4:4 샘플링을 나타낼 수 있다.
4:4:4 샘플링에서는, separate_colour_plane_flag의 값에 기반하여 다음 내용이 적용될 수 있다. 만약 separate_colour_plane_flag의 값이 제1값(e.g. 0)인 경우, 두 개의 크로마 어레이들 각각은 루마 어레이와 동일한 높이 및 동일한 폭을 가질 수 있다. 이러한 경우, 크로마 샘플 어레이의 타입을 나타내는 ChromaArrayType의 값은 chroma_format_idc와 동일하게 설정될 수 있다. 만약 separate_colour_plane_flag의 값이 제2값(e.g. 1)인 경우, 루마, Cb 및 Cr 샘플 어레이는 분리되어(separately) 처리됨으로써 각각 모노크롬 샘플링된 픽쳐들과 같이 처리될 수 있다. 이때, ChromaArrayType은 0으로 설정될 수 있다.
크로마 블록에 대한 인트라 예측
현재 블록에 인트라 예측이 수행되는 경우, 현재 블록의 루마 성분 블록(루마 블록)에 대한 예측 및 크로마 성분 블록(크로마 블록)에 대한 예측이 수행될 수 있으며, 이 경우 크로마 블록에 대한 인트라 예측 모드는 루마 블록에 대한 인트라 예측 모드와 개별적으로 설정될 수 있다.
예를 들어, 크로마 블록에 대한 인트라 예측 모드는 인트라 크로마 예측 모드 정보를 기반으로 지시될 수 있으며, 상기 인트라 크로마 예측 모드 정보는 intra_chroma_pred_mode 신택스 요소의 형태로 시그널링될 수 있다. 일 예로, 상기 인트라 크로마 예측 모드 정보는 플래너(Planar) 모드, DC 모드, 수직(vertical) 모드, 수평(horizontal) 모드, DM(Derived Mode), CCLM(Cross-component linear model) 모드들 중 하나를 가리킬 수 있다. 여기서, 상기 플래너 모드는 0번 인트라 예측 모드, 상기 DC 모드는 1번 인트라 예측 모드, 상기 수직 모드는 26번 인트라 예측 모드, 상기 수평 모드는 10번 인트라 예측 모드를 나타낼 수 있다. DM은 direct mode라고 불릴 수도 있다. CCLM은 LM(linear model)이라고 불릴 수 있다.
한편, DM과 CCLM은 루마 블록의 정보를 이용하여 크로마 블록을 예측하는 종속적인 인트라 예측 모드이다. 상기 DM은 상기 루마 성분에 대한 인트라 예측 모드와 동일한 인트라 예측 모드가 상기 크로마 성분에 대한 인트라 예측 모드로 적용되는 모드를 나타낼 수 있다. 또한, 상기 CCLM은 크로마 블록에 대한 예측블록을 생성하는 과정에서 루마 블록의 복원된 샘플들을 서브샘플링한 후, 서브샘플링된 샘플들에 CCLM 파라미터인 α 및 β를 적용하여 도출된 샘플들을 상기 크로마 블록의 예측 샘플들로 사용하는 인트라 예측 모드를 나타낼 수 있다.
[수학식 2]
Figure pct00001
여기서, predc(i,j) 는 현재 CU 내 상기 현재 크로마 블록의 (i,j) 좌표의 예측 샘플을 나타낼 수 있다. recL'(i,j)는 상기 CU 내 상기 현재 루마 블록의 (i,j) 좌표의 복원 샘플을 나타낼 수 있다. 예를들어, 상기 recL'(i,j)는 상기 현재 루마 블록의 다운 샘플링(down-sampled)된 복원 샘플을 나타낼 수 있다. 선형 모델 계수 α와 β는 시그널링될 수도 있지만, 주변 샘플로부터 유도될 수도 있다.
가상 파이프라인 데이터 유닛
픽처 내에 파이프라인 처리를 위하여 가상 파이프라인 데이터 유닛들(Virtual pipeline data units, VPDUs)이 정의될 수 있다. 상기 VPDU들은 하나의 픽처 내에서 비-중첩 유닛들(non-overlapping units)로 정의될 수 있다. 하드웨어 복호화 장치에서, 다중 파이프라인 스테이지들에 의하여 연속적인(successive) VPDU들이 동시에 처리될 수 있다. 대부분의 파이프라인 스테이지들(most pipeline stages)에서 VPDU 크기는 버퍼 사이즈에 대략적으로 비례할 수 있다(roughly proportional). 따라서, VPDU 사이즈를 작게 유지하는 것은 하드웨어 관점에서 버퍼 사이즈를 고려할 때 중요하다. 대부분의 하드웨어 복호화 장치에서, 상기 VPDU 사이즈는 최대 TB (transform block) 사이즈와 같게 설정될 수 있다. 예를 들어, VPDU 사이즈는 64x64 (64x64 루마 샘플들) 사이즈일 수 있다. 또는, VVC에서 상술한 터너리 트리(TT) 및/또는 바이너리 트리(BT) 파티션을 고려하여 상기 VPDU 사이즈가 변경(증가 또는 감소)될 수 있다.
한편, VPDU 사이즈를 64x64 루마 샘플들 사이즈로 유지하기 위하여는, 도 23에 도시된 바와 같은 CU의 분할은 제한될 수 있다. 보다 상세히, 다음과 같은 제한들(restrictions) 중 적어도 하나가 적용될 수 있다.
제한 1 : 너비 또는 높이가 128이거나, 너비 및 높이가 128인 CU에 터너리 트리 분할(TT)이 허용되지 않음.
제한 2 : 128xN(여기서, N은 64 이하이고 0 보다 큰 정수)인 CU에 수평 바이너리 트리 분할(BT)이 허용되지 않음(e.g. 너비가 128이고 높이가 128보다 작은 CU에 대하여는 수평 바이너리 트리 분할이 허용되지 않음).
제한 3 : Nx128(여기서, N은 64 이하이고 0 보다 큰 정수)인 CU에 수직 바이너리 트리 분할(BT)이 허용되지 않음(e.g. 높이가 128이고 너비가 128보다 작은 CU에 대하여는 수직 바이너리 트리 분할이 허용되지 않음).
파이프라인 처리를 위한 크로마 블록의 최대 크기 제한 문제
파티셔닝 구조와 변환 프로세스 등에 관하여 앞서 설명한 바와 같이, CU는 복수의 TU를 생성하기 위하여 분할될 수 있다. CU의 크기가 최대 TU크기보다 클 경우, CU는 복수의 TU들로 분할될 수 있다. 이에 따라, 각각의 TU에 대하여 변환 및/또는 역변환이 수행될 수 있다. 일반적으로, 루마 블록을 위한 최대 TU 크기는 부호화 장치 및/또는 복호화 장치가 수행할 수 있는 최대 가용 변환 크기로 설정될 수 있다. 일 실시 예에 따른 CU와 TU의 분할 예시가 도 24 내지 도 26에 도시되어 있다.
도 24는 루마 CU와 크로마 CU가 일 실시 예에 따라 분할하여 생성된 TU의 예시를 도시한다. 일 실시 예에서, 루마 CU의 최대 크기는 64x64일 수 있고, 최대 가용 변환 크기는 32x32일 수 있으며, 비-정방(non-square) TU는 허용되지 않을 수 있다. 이에 따라, 루마 성분 변환 블록의 최대 크기는 32x32일 수 있다. 이러한 일 실시 예에서, 최대 TU 크기는 아래의 수학식과 같이 설정될 수 있다.
[수학식 3]
maxTbSize = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / max (SubWidthC, SubHeightC)
상기 수학식에서, maxTbSize는 변환 블록(TB, Tranform block)의 최대 크기이며, cIdx는 해당 블록의 컬러 컴포넌트일 수 있다. cIdx 0은 루마 성분, 1은 Cb 크로마 성분, 2는 Cr 크로마 성분을 나타낼 수 있다. MaxTbSizeY는 루마 성분 변환 블록의 최대 크기이며, SubWidthC는 루마 블록의 너비 대비 크로마 블록의 너비 비율이며, SubHeightC는 루마 블록의 높이 대비 크로마 블록의 높이 비율이며, max(A, B)는 A 및 B 중 보다 큰 값을 결과 값으로 반환하는 함수를 나타낸다.
상기 수학식에 따라, 상기 실시 예에서, 루마 블록의 경우 루마 성분 변환 블록의 최대 크기로 변환 블록의 최대 크기가 설정될 수 있다. 여기서, 루마 성분 변환 블록의 최대 크기는 부호화시 설정되는 값으로, 비트스트림을 통해 부호화 장치에서 복호화 장치로 시그널될 수 있다.
또한, 상기 실시 예에서, 크로마 블록의 변환 블록의 최대 크기는 루마 성분 변환 블록의 최대 크기를 SubWidthC 및 SubHeightC 중 큰 값으로 나눈 값으로 설정될 수 있다. 여기서, SubWidthC 및 SubHeightC는 도 23에 도시된 바와 같이 비트스트림을 통해 부호화 장치에서 복호화 장치로 시그널링 되는 chroma_format_idc와 separate_colour_plane_flag에 기반하여 결정될 수 있다.
상기 수학식에 따라, 상기 실시예의 경우 변환 블록의 최대 크기는 변환 블록이 가질 수 있는 최소 넓이 및 최소 높이 중 어느 하나로 결정될 수 있다. 이에 따라, 상기 실시에서의 루마 블록 및 크로마 블록의 TU 분할은 도 24와 같이 수행될 수 있다. 예를 들어, 도 24에서 도시된 바와 같이 4:2:2 포멧을 가지는 크로마 블록의 경우 변환 블록의 최대 크기가 16으로 결정됨에 따라, 루마 CU의 변환 블록으로의 분할 형태와는 다른 형태로 크로마 CU가 다수의 변환블록으로 분할될 수 있다.
도 25는 루마 CU와 크로마 CU가 다른 일 실시 예에 따라 분할하여 생성된 TU의 예시를 도시한다. 일 실시 예에서, 루마 CU의 최대 크기는 128x128일 수 있고, 최대 가용 변환 크기는 64x64일 수 있으며, 비-정방(non-square) TU는 허용되지 않을 수 있다. 이에 따라, 루마 성분 변환 블록의 최대 크기는 64x64일 수 있다. 이러한 일 실시 예에서, 변환 블록의 최대 크기는 아래의 수학식과 같이 설정될 수 있다. 하기 수학식에서 min(A, B)는 A 및 B중 작은 값을 반환하는 함수일 수 있다.
[수학식 4]
maxTbSize = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / min (SubWidthC, SubHeightC)
한편, 상기 수학식에 따라, 변환 블록의 최대 크기로 해당 블록의 너비 및 높이 중 큰 값이 적용됨에 따라 루마 CU와 크로마 CU는 도 25의 예와 같이 복수의 TU로 분할될 수 있다.
도 24 및 도 25의 예에서, 4:2:2 포멧을 가지는 크로마 CU는 TU로 분할됨에 있어서, 대응하는 루마 CU의 TU 분할 형태와 다른 형태로 분할되게 된다. 그러나, 앞서 설명한 크로마 블록의 예측을 위한 DM모드나 CCLM 모드와 같이 루마 블록을 참조하여 크로마 블록의 부호화/복호화를 수행하는 경우, 크로마 블록에 대응되는 루마 블록의 부호화(또는 복호화) 직후에 해당되는 크로마 블록의 부호화(또는 복호화)를 처리하는 것이 파이프라인 처리에서 딜레이를 줄이고 메모리를 절약하기 위하여 효율적이다.
그러나, 도 24의 예의 경우, 하나의 루마 변환 블록(2411)의 부호화 처리 이후 두개의 크로마 변환 블록(2421 및 2423)의 부호화가 수행되어야 하며, 이는 다른 컬러 포멧(4:4:4 또는 4:2:0)과의 관계에 있어서 별도의 처리를 요한다. 또한, 도 25의 예의 경우, 두개의 루마 변환 블록(2511, 2512)의 부호화 처리 이후 하나의 크로마 변환 블록(2521)의 부호화가 수행되어야 한다. 이와 같이, 상술한 TU 분할 방법은 4:2:2 포멧을 활용하는 경우, 루마블록과 그에 대응되는 크로마 블록이 매칭되지 않는 점에서 파이프라인 처리를 수행함에 별도의 프로세스를 추가하거나, 또는 파이프라인 처리를 수행할 수 없게 되는 점에서 문제가 발생하게 된다.
파이프라인 처리를 위한 크로마 변환 블록의 최대 크기 제한
이하, 앞서 설명된 VPDU를 수행하기 위한 조건이 달성될 수 있도록, 크로마 CU를 위한 최대 변환 블록의 크기를 설정하는 방법을 설명한다.
도 26은 루마 CU와 크로마 CU가 또 다른 일 실시 예에 따라 분할하여 생성된 TU의 예시를 도시한다. 일 실시 예에서, 루마 CU의 최대 크기는 128x128일 수 있고, 최대 가용 변환 크기는 64x64일 수 있으며, 비-정방(non-square) TU의 분할이 허용될 수 있다. 이에 따라, 루마 성분 변환 블록의 최대 크기는 64x64일 수 있다.
도 26과 같이 비-정방 TU의 분할을 위해 변환 블록의 최대 크기는 너비와 높이에 대하여 각각 정의될 수 있다. 예를들어, 변환 블록의 최대 너비(maxTbWidth)와 변환 블록의 최대 높이(maxTbHeight)를 아래의 수학식과 같이 정의함으로써, 변환 블록의 최대 크기가 정의될 수 있다.
[수학식 5]
maxTbWidth = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubWidthC
[수학식 6]
maxTbHeight = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubHeightC
상기의 실시예와 같이, 변환 블록의 최대 크기를 너비와 높이로 정의함으로써, 도 26의 예와 같이, 4:2:2 포멧을 가지는 크로마 CU의 경우에도, 대응되는 루마 CU의 TU 분할 형태와 같이, 크로마 CU를 TU로 분할할 수 있다. 이에 따라, 루마 CU의 TU에 대응되도록 크로마 CU의 TU가 분할됨으로써, 루마 블록의 부호화(또는 복호화) 직후에 그에 대응되는 크로마 블록의 부호화(또는 복호화)를 처리할 수 있게 되고, 이로써 파이프라인 처리에서 딜레이를 줄일 수 있게 된다.
인트라 예측 모드에서의 크로마 변환 블록의 최대 크기 제한
이하, 전술한 크로마 파이프라인 처리를 위한 크로마 변환 블록의 최대 크기 제한이 적용된 인트라 예측 모드의 수행을 설명한다. 부호화 장치와 복호화 장치는 이하의 기재에 따라, 크로마 변환 블록의 최대 크기를 제한하여 인트라 예측을 수행할 수 있으며, 서로의 동작은 대응되는 점에서, 이하 복호화 장치의 동작을 설명한다.
일 실시 예에 따른 복호화 장치는 인트라 예측을 수행하여, 복원 픽쳐(a reconstructed picture)를 생성할 수 있다. 복원 픽처에는 인루프 필터링이 수행될 수 있다. 일 실시 예에 따른 복호화 장치는 인트라 예측을 수행하기 위하여 아래의 정보를 비트스트림으로부터 직접 획득하거나, 비트스트림으로부터 획득된 다른 정보로부터 유도할 수 있다.
- 현재 픽쳐의 좌상단 샘플의 위치로부터 상대적으로 현재 변환 블록의 좌상단 샘플의 위치를 나타내는 샘플 위치(xTb0, yTb0)
- 현재 변환 블록의 너비를 나타내는 파라미터 nTbW
- 현재 변환 블록의 높이를 나타내는 파라미터 nTbH
- 현재 CU의 인트라 예측 모드를 나타내는 파라미터 predModeIntra
- 현재 CU의 컬러 컴포넌트를 나타내는 파라미터 cIdx
복호화 장치는 입력 받은 상기 정보로부터, 변환 블록의 최대 너비 maxTbWidth 및 변환 블록의 최대 높이 maxTbHeight를 아래와 같이 유도할 수 있다.
[수학식 7]
maxTbWidth = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubWidthC
[수학식 8]
maxTbHeight = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubHeightC
나아가, 복호화 장치는 현재 변환 블록의 좌상단 샘플 위치 ( xTbY, yTbY )를 현재 CU가 루마 성분인지 또는 크로마 성분인지에 기반하여 아래와 같이 유도할 수 있다.
[수학식 9]
( xTbY, yTbY ) = ( cIdx = = 0 ) ? ( xTb0, yTb0 ) : ( xTb0 * SubWidthC, yTb0 * SubHeightC )
이하, 복호화 장치는 아래의 절차를 수행하여 인트라 예측을 수행할 수 있다. 먼저, 복호화 장치는 현재 변환 블록의 분할 여부를 판단할 수 있다(S2710). 예를들어, 복호화 장치는 현재 변환 블록의 너비 및 높이가 최대 변환 블록의 너비 및 높이보다 큰지 여부에 기반하여 현재 변환 블록의 분할 여부를 판단할 수 있다. 더하여, 복호화 장치는 현재 CU에 ISP(Intra Sub-partiton)가 적용되는지 여부를 더 고려하여 분할 여부를 판단할 수도 있다. 예를들어, 복호화 장치는 nTbW가 maxTbWidth보다 크거나 nTbH가 maxTbHeight보다 큰 경우, 현재 변환 블록을 분할하여 인트라 예측을 수행할 것을 결정할 수 있다. 또한, 복호화 장치는 이와 같은 경우에도 현재 CU에 ISP가 적용되지 않는 경우(e.g. IntraSubpartitonSplitType의 값이 NO_ISP_SPLIT임, 즉 현재 CU에 ISP가 적용되지 않음)에 한하여, 현재 변환 블록을 분할하여 인트라 예측을 수행할 것을 결정할 수도 있다.
현재 변환 블록을 하위 변환 블록으로 분할하는 경우, 복호화 장치는 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH를 아래의 수학식과 같이 유도할 수 있다(S2720).
[수학식 10]
newTbW = ( nTbW > maxTbWidth ) ? ( nTbW / 2 ) : nTbW
[수학식 11]
newTbH = ( nTbH > maxTbHeight) ? ( nTbH / 2 ) : nTbH
도 26을 참조하여 설명한다. 일 실시 예에서, 현재 변환 블록의 너비 nTbW는 크로마 CU의 너비일 수 있으며, 현재 변환 블록의 높이 nTbH는 크로마 CU의 높이일 수 있다. 이와 같은 실시 예에서, 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH는 크로마 CU를 분할하는 변환 블록 2621의 너비와 높이로 결정될 수 있다. 즉, 이와 같은 실시 예에서, 현재 변환 블록은 4:2:2 포멧의 크로마 CU의 너비와 높이를 가지는 변환 블록일 수 있으며, 하위 변환 블록은 이를 비-정방 4분할하는 제 1 하위 변환 블록(2621), 내지 제 4 하위 블록(2624) 일 수 있다.
다음으로, 복호화 장치는 현재 변환 블록을 분할하는 하위 변환 블록을 이용하여 인트라 예측을 수행할 수 있다(S2730). 먼저, 복호화 장치는 제 1 하위 변환 블록에 대하여 인트라 예측을 수행할 수 있다. 도 26을 참조하면, 제 1 하위 변환 블록(2621)은 샘플 위치(xTb0, yTb0), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 복호화 장치는 현재 CU의 인트라 예측 모드 predModeIntra 및 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 제 1 하위 변환 블록(2621)의 인트라 예측을 수행할 수 있다. 이에 따라 제 1 하위 변환 블록(2621)에 대한 복원 픽쳐(a modified reconstructed picture)가 생성될 수 있다.
예를들어, 복호화 장치는 인트라 샘플 예측 프로세스를 수행하여, (newTbW)x(newTbH) 크기의 예측 샘플 행렬 predSamples을 생성할 수 있다. 예를들어, 복호화 장치는 샘플 위치 (xTb0, yTb0), 인트라 예측 모드 predModeIntra, 변환 블록 너비(nTbW) newTbW, 변환 블록 높이(nTbH) newTbH, 코딩 블록 너비(nCbW) nTbW 및 코딩 블록 높이(nCbH) nTbH 및 파라미터 cIdx의 값을 이용하여 인트라 샘플 예측 프로세스를 수행할 수 있다.
또한, 복호화 장치는 스케일링 및 변환 프로세스를 수행하여 (newTbW)x(newTbH) 크기의 잔차 샘플 행렬 resSamples을 생성할 수 있다. 예를들어, 복호화 장치는 샘플 위치 (xTb0, yTb0), 파라미터 cIdx의 값, 변환 블록 너비(nTbW) newTbW, 변환 블록 높이(nTbH) newTbH에 기반하여, 스케일링 및 변환 프로세스를 수행할 수 있다.
또한, 복호화 장치는 컬러 컴포넌트에 대한 픽쳐 복원 프로세스를 수행하여, 복원 픽쳐를 생성할 수 있다. 예를들어, 복호화 장치는 변환 블록 위치를 (xTb0, yTb0)로 설정하고, 변환 블록 너비(nTbW)를 newTbW로 설정하고, 변환 블록 높이(nTbH)를 newTbH로 설정하며, 파라미터 cIdx의 값을 이용하고, (newTbW)x(newTbH) 크기의 예측 샘플 행렬 predSamples, (newTbW)x(newTbH) 크기의 잔차 샘플 행렬 resSamples을 이용함으로써 컬러 컴포넌트에 대한 픽쳐 복원 프로세스를 수행할 수 있다.
다음으로, nTbW가 maxTbWidth보다 큰 경우, 복호화 장치는 제 2 하위 변환 블록에 대하여 인트라 예측을 수행할 수 있다. 제 2 하위 변환 블록(2622)은 샘플 위치(xTb0 + newTbW, yTb0), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 복호화 장치는 현재 CU의 인트라 예측 모드 predModeIntra 및 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 제 2 하위 변환 블록(2622)의 인트라 예측을 수행할 수 있다. 제 2 하위 변환 블록(2622)의 인트라 예측은 그에 대한 샘플 위치에 대하여 제 1 하위 변환 블록(2621)의 인트라 예측과 유사하게 수행될 수 있다. 이에 따라 제 2 하위 변환 블록(2622)에 대한 복원 픽쳐(a modified reconstructed picture)가 생성될 수 있다.
다음으로, nTbH가 maxTbHeight보다 큰 경우, 복호화 장치는 제 3 하위 변환 블록에 대하여 인트라 예측을 수행할 수 있다. 제 3 하위 변환 블록(2623)은 샘플 위치(xTb0, yTb0 + newTbH), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 앞서와 마찬가지로, 복호화 장치는 현재 CU의 인트라 예측 모드 predModeIntra 및 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 인트라 예측을 수행할 수 있다.
다음으로, nTbW가 maxTbWidth보다 크고 nTbH가 maxTbHeight보다 큰 경우, 복호화 장치는 제 4 하위 변환 블록에 대하여 인트라 예측을 수행할 수 있다. 제 4 하위 변환 블록(2624)은 샘플 위치(xTb0 + newTbW, yTb0 + newTbH), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 앞서와 마찬가지로, 복호화 장치는 현재 CU의 인트라 예측 모드 predModeIntra 및 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 인트라 예측을 수행할 수 있다.
한편, 복호화 장치는 현재 변환 블록의 분할이 수행되지 않는 경우, 아래와 같이 인트라 예측을 수행할 수 있다. 예를들어, nTbW가 maxTbWidth보다 작고 nTbH가 maxTbHeight 작은 경우 또는 현재 CU에 ISP가 적용되는 경우(e.g. IntraSubpartitonSplitType의 값이 NO_ISP_SPLIT이 아님), 현재 변환 블록이 분할되지 않을 수 있다.
먼저, 복호화 장치는 파라미터 nW, nH, numPartsX 및 numPartsY를 아래의 수식과 같이 유도할 수 있다.
[수학식 12]
nW = IntraSubPartitionsSplitType = = ISP_VER_SPLIT ? nTbW / NumIntraSubPartitions : nTbW
nH = IntraSubPartitionsSplitType = = ISP_HOR_SPLIT ? nTbH / NumIntraSubPartitions : nTbH
numPartsX = IntraSubPartitionsSplitType = = ISP_VER_SPLIT ? NumIntraSubPartitions : 1
numPartsY = IntraSubPartitionsSplitType = = ISP_HOR_SPLIT ? NumIntraSubPartitions : 1
상기 수학식에서, IntraSubPartitionsSplitType은 현재 CU의 ISP 분할타입을 나타내며, ISP_VER_SPLIT는 수직 ISP 분할, ISP_HOR_SPLIT는 수평 ISP 분할을 나타낸다. NumIntraSubPartitions은 ISP 서브 파티션의 개수를 나타낸다.
다음으로, 복호화 장치는 인트라 샘플 예측 프로세스를 수행하여, (nTbW)x(nTbH) 크기의 예측 샘플 행렬 predSamples을 생성할 수 있다. 예를들어, 복호화 장치는 샘플 위치 ( xTb0 + nW * xPartIdx, yTb0 + nH * yPartIdx ), 인트라 예측 모드 predModeIntra, 변환 블록 너비(nTbW) nW, 변환 블록 높이(nTbH) nH, 코딩 블록 너비(nCbW) nTbW 및 코딩 블록 높이(nCbH) nTbH 및 파라미터 cIdx의 값을 이용하여 인트라 샘플 예측 프로세스를 수행할 수 있다. 여기서, 파티션 인덱스 xPartIdx의 값은 0에서 numPartX-1까지의 값을 가질 수 있으며, yPartIdx는 0에서 numPartsY-1의 값을 가질 수 있다.
다음으로, 복호화 장치는 스케일링 및 변환 프로세스를 수행하여 (nTbW)x(nTbH) 크기의 잔차 샘플 행렬 resSamples을 생성할 수 있다. 예를들어, 복호화 장치는 샘플 위치 ( xTbY + nW * xPartIdx, yTbY + nH * yPartIdx ), 파라미터 cIdx의 값, 변환 블록 너비(nTbW) nW, 변환 블록 높이(nTbH) nH에 기반하여, 스케일링 및 변환 프로세스를 수행할 수 있다.
다음으로, 복호화 장치는 컬러 컴포넌트에 대한 픽쳐 복원 프로세스를 수행하여, 복원 픽쳐를 생성할 수 있다. 예를들어, 복호화 장치는 변환 블록 위치를 ( xTb0 + nW * xPartIdx, yTb0 + nH * yPartIdx)로 설정하고, 변환 블록 너비(nTbW)를 nW로 설정하고, 변환 블록 높이(nTbH)를 nH로 설정하며, 기 설정된 cIdx의 값을 이용하고, (nTbW)x(nTbH) 크기의 예측 샘플 행렬 predSamples, (nTbW)x(nTbH) 크기의 잔차 샘플 행렬 resSamples을 이용함으로써 컬러 컴포넌트에 대한 픽쳐 복원 프로세스를 수행할 수 있다.
인터 예측 모드 및 IBC 예측 모드에서의 크로마 변환 블록의 최대 크기 제한
이하, 전술한 크로마 파이프라인 처리를 위한 크로마 변환 블록의 최대 크기 제한이 적용된 인터 예측 모드 및 IBC 예측 모드의 수행을 설명한다. 부호화 장치와 복호화 장치는 이하의 기재에 따라, 크로마 변환 블록의 최대 크기를 제한하여 인터 예측 및 IBC 예측을 수행할 수 있으며, 서로의 동작은 대응될 수 있다. 또한, 이하의 인터 예측에 대한 설명은 IBC 예측 모드에 그대로 적용될 수 있다. 이에 따라, 이하 일 실시 예에 따른 복호화 장치의 인터 예측 동작을 설명한다.
일 실시 예에 따른 복호화 장치는 인터 예측을 수행하여, (cbWidth)x(cbHeight) 크기의 루마 예측 블록 predSamplesL과 (cbWidth / SubWidthC)x(cbHeight / SubHeightC) 크기의 크로마 예측 블록 predSamplesCb 및 predSamplesCr을 생성할 수 있다. 여기서 cbWidth는 현재 CU의 너비이고, cbHeight는 현재 CU의 높이일 수 있다.
그리고, 복호화 장치는 (cbWidth)x(cbHeight) 크기의 루마 잔차 블록 resSamplesL과 (cbWidth / SubWidthC)x(cbHeight / SubHeightC) 크기의 크로마 잔차 블록 resSamplesCr 및 resSamplesCb를 생성할 수 있다. 마지막으로, 복호화 장치는 상기 예측 블록과 잔차 블록을 이용하여 복원 블록을 생성할 수 있다.
이하, 일 실시 예에 따른 복호화 장치가 인터 예측 모드로 부호화된 CU의 잔차 블록을 생성하기 위하여 크로마 변환 블록의 최대 크기를 제한하는 방법을 설명한다. 복호화 장치는 본 단계에서 생성된 잔차 블록을 이용하여 복원 블록을 생성할 수 있다.
일 실시 예에 따른 복호화 장치는 인터 예측 모드로 부호화된 CU의 (nTbW)x(nTbH) 크기의 잔차 블록을 생성하기 위하여 아래의 정보를 비트스트림으로부터 직접 획득하거나, 비트스트림으로부터 획득된 다른 정보로부터 유도할 수 있다. 여기서, nTbW 및 nTbH는 현재 CU의 너비 cbWidth와 현재 CU의 높이 cbHeight로 설정되어 있을 수 있다.
- 현재 픽쳐의 좌상단 샘플의 위치로부터 상대적으로 현재 변환 블록의 좌상단 샘플의 위치를 나타내는 샘플 위치(xTb0, yTb0)
- 현재 변환 블록의 너비를 나타내는 파라미터 nTbW
- 현재 변환 블록의 높이를 나타내는 파라미터 nTbH
- 현재 CU의 컬러 컴포넌트를 나타내는 파라미터 cIdx
복호화 장치는 입력 받은 상기 정보로부터, 변환 블록의 최대 너비 maxTbWidth 및 변환 블록의 최대 높이 maxTbHeight를 아래와 같이 유도할 수 있다.
[수학식 13]
maxTbWidth = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubWidthC
[수학식 14]
maxTbHeight = ( cIdx = = 0 ) ? MaxTbSizeY : MaxTbSizeY / SubHeightC
나아가, 복호화 장치는 현재 변환 블록의 좌상단 샘플 위치 ( xTbY, yTbY )를 현재 CU가 루마 성분인지 또는 크로마 성분인지에 기반하여 아래와 같이 유도할 수 있다.
[수학식 15]
( xTbY, yTbY ) = ( cIdx = = 0 ) ? ( xTb0, yTb0 ) : ( xTb0 * SubWidthC, yTb0 * SubHeightC )
상기 수학식과 같이, 현재 변환 블록이 크로마 블록인 경우, 현재 변환 블록의 크로마 포멧에 따라 결정되는 크로마 블록의 크기를 반영하기 위하여, 크로마 포멧에 기반하여 변환 블록의 최대 너비 및 높이와, 현재 변환 블록의 좌상단 샘플 위치가 결정될 수 있다.
이하, 복호화 장치는 아래의 절차를 수행하여 잔차 블록을 생성할 수 있다. 먼저, 복호화 장치는 현재 변환 블록의 분할 여부를 판단할 수 있다(S2810). 예를들어, 복호화 장치는 현재 변환 블록의 너비 및 높이가 최대 변환 블록의 너비 및 높이보다 큰지 여부에 기반하여 현재 변환 블록의 분할 여부를 판단할 수 있다. 예를들어, 복호화 장치는 nTbW가 maxTbWidth보다 크거나 nTbH가 maxTbHeight보다 큰 경우, 현재 변환 블록을 분할하여 하위 변환 블록을 생성할 것을 결정할 수 있다.
현재 변환 블록을 하위 변환 블록으로 분할하는 경우, 앞서 인트라 예측의 예에서와 같이, 복호화 장치는 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH를 아래의 수학식과 같이 유도할 수 있다(S2820).
[수학식 16]
newTbW = ( nTbW > maxTbWidth ) ? ( nTbW / 2 ) : nTbW
[수학식 17]
newTbH = ( nTbH > maxTbHeight) ? ( nTbH / 2 ) : nTbH
다음으로, 복호화 장치는 현재 변환 블록을 분할하는 하위 변환 블록을 이용하여 잔차 블록을 생성할 수 있다(S2830). 일 실시 예에서, 도 26에 도시된 바와 같이, 현재 변환 블록은 4:2:2 포멧의 크로마 CU의 너비와 높이를 가지는 변환 블록일 수 있으며, 하위 변환 블록은 이를 비-정방 4분할하는 제 1 하위 변환 블록(2621), 내지 제 4 하위 블록(2624) 일 수 있다.
먼저, 복호화 장치는 제 1 하위 변환 블록에 대하여 잔차 블록을 생성할 수 있다. 도 26을 참조하면, 제 1 하위 변환 블록(2621)은 샘플 위치(xTb0, yTb0), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 복호화 장치는 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 제 1 하위 변환 블록(2621)의 잔차 블록을 생성할 수 있다. 복호화 장치는 이에 기반하여 복원 픽쳐(a modified reconstructed picture)를 생성할 수 있다. 이후 복원 픽쳐에 대하여 인루프 필터링이 수행될 수 있다.
다음으로, nTbW가 maxTbWidth보다 큰 경우, 복호화 장치는 제 2 하위 변환 블록에 대하여 잔차 블록을 생성할 수 있다. 제 2 하위 변환 블록(2622)은 샘플 위치(xTb0 + newTbW, yTb0), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 복호화 장치는 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 제 2 하위 변환 블록(2622)의 잔차 블록을 생성할 수 있다. 복호화 장치는 이에 기반하여 복원 픽쳐(a modified reconstructed picture)를 생성할 수 있다. 이후 복원 픽쳐에 대하여 인루프 필터링이 수행될 수 있다.
다음으로, nTbH가 maxTbHeight보다 큰 경우, 복호화 장치는 제 3 하위 변환 블록에 대하여 잔차 블록을 생성할 수 있다. 제 3 하위 변환 블록(2623)은 샘플 위치(xTb0, yTb0 + newTbH), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 앞서와 마찬가지로, 복호화 장치는 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 잔차 블록을 생성할 수 있다.
다음으로, nTbW가 maxTbWidth보다 크고 nTbH가 maxTbHeight보다 큰 경우, 복호화 장치는 제 4 하위 변환 블록에 대하여 잔차 블록을 생성할 수 있다. 제 4 하위 변환 블록(2624)은 샘플 위치(xTb0 + newTbW, yTb0 + newTbH), 하위 변환 블록의 너비 newTbW 및 하위 변환 블록의 높이 newTbH로 특정될 수 있다. 앞서와 마찬가지로, 복호화 장치는 현재 CU의 컬러 컴포넌트 cIdx를 이용하여 잔차 블록을 생성할 수 있다.
한편, 복호화 장치는 현재 변환 블록의 분할이 수행되지 않는 경우, 아래와 같이 인터 예측을 수행할 수 있다. 예를들어, nTbW가 maxTbWidth 보다 작고 nTbH가 maxTbHeight 보다 작은 경우, 현재 변환 블록이 분할되지 않을 수 있다. 이러한 경우, 복호화 장치는 샘플 위치(xTbY, xTbY), 현재 CU의 컬러 컴포넌트 cIdx, 변환 블록 너비 nTbW, 및 변환 블록 높이 nTbH를 입력으로 스케일링 및 변환 프로세스를 수행하여, 인터 예측 모드를 위한 잔차 블록을 생성할 수 있다. 복호화 장치는 이에 기반하여 복원 픽쳐(a modified reconstructed picture)를 생성할 수 있다. 이후 복원 픽쳐에 대하여 인루프 필터링이 수행될 수 있다.
부호화 방법
이하 전술한 방법을 이용하여 일 실시 예에 따른 부호화 장치가 부호화를 수행하는 방법을 도 29를 참조하여 설명한다. 일 실시 예에 따른 부호화 장치는 메모리 및 적어도 하나의 프로세서를 포함하며, 상기 적어도 하나의 프로세서는 이하의 부호화 방법을 수행할 수 있다.
먼저, 부호화 장치는 상기 영상을 분할하여 현재 블록을 결정할 수 있다(S2910). 다음으로, 부호화 장치는 상기 현재 블록의 인트라 예측 블록을 생성할 수 있다(S2920). 다음으로, 부호화 장치는 상기 인트라 예측 블록에 기반하여 상기 현재 블록의 잔차 블록을 생성할 수 있다(S2930). 다음으로, 부호화 장치는 상기 현재 블록의 인트라 예측 모드 정보를 부호화 할 수 있다(S2940).
이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 부호화될 수 있으며, 상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정될 수 있다.
상기 컬러 컴포넌트는 루마 컴포넌트 및 크로마 컴포넌트 중 어느 하나일 수 있으며, 상기 현재 블록의 컬러 컴포넌트가 크로마 성분인 경우, 상기 변환 블록의 크기는 컬러 포멧에 기반하여 결정될 수 있다.
상기 변환 블록의 크기 설정에 관하여, 상기 변환 블록의 너비는 변환 블록의 최대 너비에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 변환 블록의 크기 설정에 관하여, 상기 변환 블록의 높이는 변환 블록의 최대 높이에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 변환 블록의 좌상단 샘플의 위치는 상기 현재 블록에 대응되는 루마 블록의 좌상단 샘플의 위치와 컬러 포멧에 기반하여 결정될 수 있다.
보다 상세히, 상기 변환 블록의 좌상단 위치는 변환 블록의 최대 너비와 변환 블록의 최대 높이에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있고, 상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 현재 블록이 크로마 블록인 경우, 상기 변환 블록의 너비가 변환 블록의 최대 너비 보다 크면, 부호화 장치는 상기 현재 블록을 수직 분할하여 복수의 하위 변환 블록을 생성할 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성될 수 있다.
보다 상세히, 상기 복수의 하위 변환 블록은 제 1 하위 변환 블록 및 제 2 하위 변환 블록을 포함할 수 있다. 상기 제 1 하위 변환 블록의 너비는 상기 변환 블록의 최대 너비로 결정되고, 상기 제 2 하위 변환 블록의 좌상단 좌표는 상기 제 1 변환 블록의 좌상단 좌표에서 우측으로 상기 변환 블록의 최대 너비만큼 이격된 값으로 결정될 수 있다.
또한, 상기 현재 블록이 크로마 블록인 경우, 상기 변환 블록의 높이가 변환 블록의 최대 높이 보다 크면, 상기 현재 블록을 수평 분할하여 복수의 하위 변환 블록이 생성될 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성될 수 있다.
보다 상세히, 상기 복수의 하위 변환 블록은 제 3 하위 변환 블록 및 제 4 하위 변환 블록을 포함할 수 있다. 상기 제 3 하위 변환 블록의 높이는 상기 변환 블록의 최대 높이로 결정될 수 있고, 상기 제 4 하위 변환 블록의 좌상단 좌표는 상기 제 1 하위 변환 블록의 좌상단 좌표에서 하측으로 상기 변환 블록의 최대 높이만큼 이격된 값으로 결정될 수 있다.
상기의 설명에 따른 일 구현 예로, 상기 현재 블록의 컬러 포멧이 4:4:4 포멧일 경우 상기 변환 블록의 최대 크기는 64x64이고, 상기 현재 블록의 컬러 포멧이 4:2:2포멧일 경우 상기 변환 블록의 최대 크기는 32x64이고, 상기 현재 블록의 컬러 포멧이 4:2:0포멧일 경우 상기 변환 블록의 최대 크기는 32x32일 수 있다.
복호화 방법
이하 전술한 방법을 이용하여 일 실시 예에 따른 복호화 장치가 복호화를 수행하는 방법을 도 30을 참조하여 설명한다. 일 실시 예에 따른 복호화 장치는 메모리 및 적어도 하나의 프로세서를 포함하며, 상기 적어도 하나의 프로세서는 이하의 복호화 방법을 수행할 수 있다.
먼저, 복호화 장치는 영상을 분할하여 현재 블록을 획득할 수 있다(S3010). 다음으로, 복호화 장치는 상기 현재 블록의 예측 모드를 결정할 수 있다(S3020). 다음으로, 복호화 장치는 상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성할 수 있다(S3030). 다음으로, 복호화 장치는 상기 현재 블록의 잔차 블록을 생성할 수 있다(S3040). 다음으로, 복호화 장치는 상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원할 수 있다(S3050).
이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 생성될 수 있으며, 상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정될 수 있다.
상기 컬러 컴포넌트는 루마 컴포넌트 및 크로마 컴포넌트 중 어느 하나일 수 있으며, 상기 현재 블록의 컬러 컴포넌트가 크로마 성분인 경우, 상기 변환 블록의 크기는 컬러 포멧에 기반하여 결정될 수 있다.
상기 변환 블록의 크기 설정에 관하여, 상기 변환 블록의 너비는 변환 블록의 최대 너비에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 변환 블록의 크기 설정에 관하여, 상기 변환 블록의 높이는 변환 블록의 최대 높이에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 변환 블록의 좌상단 샘플의 위치는 상기 현재 블록에 대응되는 루마 블록의 좌상단 샘플의 위치와 컬러 포멧에 기반하여 결정될 수 있다.
보다 상세히, 상기 변환 블록의 좌상단 위치는 변환 블록의 최대 너비와 변환 블록의 최대 높이에 기반하여 결정될 수 있으며, 상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있고, 상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정될 수 있다.
또한, 상기 현재 블록이 크로마 블록인 경우, 상기 변환 블록의 너비가 변환 블록의 최대 너비 보다 크면, 복호화 장치는 상기 현재 블록을 수직 분할하여 복수의 하위 변환 블록을 생성할 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성될 수 있다.
보다 상세히, 상기 복수의 하위 변환 블록은 제 1 하위 변환 블록 및 제 2 하위 변환 블록을 포함할 수 있다. 상기 제 1 하위 변환 블록의 너비는 상기 변환 블록의 최대 너비로 결정되고, 상기 제 2 하위 변환 블록의 좌상단 좌표는 상기 제 1 변환 블록의 좌상단 좌표에서 우측으로 상기 변환 블록의 최대 너비만큼 이격된 값으로 결정될 수 있다.
또한, 상기 현재 블록이 크로마 블록인 경우, 상기 변환 블록의 높이가 변환 블록의 최대 높이 보다 크면, 상기 현재 블록을 수평 분할하여 복수의 하위 변환 블록이 생성될 수 있다. 이때, 상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성될 수 있다.
보다 상세히, 상기 복수의 하위 변환 블록은 제 3 하위 변환 블록 및 제 4 하위 변환 블록을 포함할 수 있다. 상기 제 3 하위 변환 블록의 높이는 상기 변환 블록의 최대 높이로 결정될 수 있고, 상기 제 4 하위 변환 블록의 좌상단 좌표는 상기 제 1 하위 변환 블록의 좌상단 좌표에서 하측으로 상기 변환 블록의 최대 높이만큼 이격된 값으로 결정될 수 있다.
상기의 설명에 따른 일 구현 예로, 상기 현재 블록의 컬러 포멧이 4:4:4 포멧일 경우 상기 변환 블록의 최대 크기는 64x64이고, 상기 현재 블록의 컬러 포멧이 4:2:2포멧일 경우 상기 변환 블록의 최대 크기는 32x64이고, 상기 현재 블록의 컬러 포멧이 4:2:0포멧일 경우 상기 변환 블록의 최대 크기는 32x32일 수 있다.
응용 실시예
본 개시의 예시적인 방법들은 설명의 명확성을 위해서 동작의 시리즈로 표현되어 있지만, 이는 단계가 수행되는 순서를 제한하기 위한 것은 아니며, 필요한 경우에는 각각의 단계가 동시에 또는 상이한 순서로 수행될 수도 있다. 본 개시에 따른 방법을 구현하기 위해서, 예시하는 단계에 추가적으로 다른 단계를 포함하거나, 일부의 단계를 제외하고 나머지 단계를 포함하거나, 또는 일부의 단계를 제외하고 추가적인 다른 단계를 포함할 수도 있다.
본 개시에 있어서, 소정의 동작(단계)을 수행하는 영상 부호화 장치 또는 영상 복호화 장치는 해당 동작(단계)의 수행 조건이나 상황을 확인하는 동작(단계)을 수행할 수 있다. 예컨대, 소정의 조건이 만족되는 경우 소정의 동작을 수행한다고 기재된 경우, 영상 부호화 장치 또는 영상 복호화 장치는 상기 소정의 조건이 만족되는지 여부를 확인하는 동작을 수행한 후, 상기 소정의 동작을 수행할 수 있다.
본 개시의 다양한 실시예는 모든 가능한 조합을 나열한 것이 아니고 본 개시의 대표적인 양상을 설명하기 위한 것이며, 다양한 실시예에서 설명하는 사항들은 독립적으로 적용되거나 또는 둘 이상의 조합으로 적용될 수도 있다.
또한, 본 개시의 다양한 실시예는 하드웨어, 펌웨어(firmware), 소프트웨어, 또는 그들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 범용 프로세서(general processor), 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
또한, 본 개시의 실시예가 적용된 영상 복호화 장치 및 영상 부호화 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
도 31은 본 개시의 실시예가 적용될 수 있는 컨텐츠 스트리밍 시스템을 예시한 도면이다.
도 31에 도시된 바와 같이, 본 개시의 실시예가 적용된 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 개시의 실시예가 적용된 영상 부호화 방법 및/또는 영상 부호화 장치에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기반하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 할 수 있다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송할 수 있다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 수행할 수 있다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다.
본 개시에 따른 실시예는 영상을 부호화/복호화하는데 이용될 수 있다.

Claims (15)

  1. 영상 복호화 장치에 의해 수행되는 영상 복호화 방법에 있어서,
    상기 영상을 분할하여 현재 블록을 획득하는 단계;
    상기 현재 블록의 예측 모드를 결정하는 단계;
    상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성하는 단계;
    상기 현재 블록의 잔차 블록을 생성하는 단계; 및
    상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원하는 단계를 포함하고,
    상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 생성되며,
    상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정되는 영상 복호화 방법.
  2. 제 1 항에 있어서,
    상기 컬러 컴포넌트는 루마 컴포넌트 및 크로마 컴포넌트 중 어느 하나인 영상 복호화 방법.
  3. 제 1 항에 있어서,
    상기 현재 블록의 컬러 컴포넌트가 크로마 성분인 경우, 상기 변환 블록의 크기는 컬러 포멧에 기반하여 결정되는 영상 복호화 방법.
  4. 제 3 항에 있어서
    상기 변환 블록의 너비는 변환 블록의 최대 너비에 기반하여 결정되며,
    상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정되는 영상 복호화 방법.
  5. 제 3 항에 있어서
    상기 변환 블록의 높이는 변환 블록의 최대 높이에 기반하여 결정되며,
    상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정되는 영상 복호화 방법.
  6. 제 1 항에 있어서,
    상기 변환 블록의 좌상단 샘플의 위치는 상기 현재 블록에 대응되는 루마 블록의 좌상단 샘플의 위치와 컬러 포멧에 기반하여 결정되는 영상 복호화 방법.
  7. 제 1 항에 있어서,
    상기 변환 블록의 좌상단 위치는 변환 블록의 최대 너비와 변환 블록의 최대 높이에 기반하여 결정되며,
    상기 변환 블록의 최대 너비는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정되고,
    상기 변환 블록의 최대 높이는 상기 현재 블록에 대응되는 루마 블록의 변환 블록의 최대 크기와 컬러 포멧에 기반하여 결정되는 영상 복호화 방법.
  8. 제 1 항에 있어서,
    상기 현재 블록은 크로마 블록이고,
    상기 변환 블록의 너비가 변환 블록의 최대 너비 보다 큰 경우, 상기 현재 블록을 수직 분할하여 복수의 하위 변환 블록이 생성되며,
    상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성되는 영상 복호화 방법.
  9. 제 8 항에 있어서,
    상기 복수의 하위 변환 블록은 제 1 하위 변환 블록 및 제 2 하위 변환 블록을 포함하며,
    상기 제 1 하위 변환 블록의 너비는 상기 변환 블록의 최대 너비로 결정되고,
    상기 제 2 하위 변환 블록의 좌상단 좌표는 상기 제 1 변환 블록의 좌상단 좌표에서 우측으로 상기 변환 블록의 최대 너비만큼 이격된 영상 복호화 방법.
  10. 제 1 항에 있어서,
    상기 현재 블록은 크로마 블록이고,
    상기 변환 블록의 높이가 변환 블록의 최대 높이 보다 큰 경우, 상기 현재 블록을 수평 분할하여 복수의 하위 변환 블록이 생성되며,
    상기 인트라 예측 블록과 상기 잔차 블록은 상기 복수의 하위 변환 블록에 기반하여 생성되는 영상 복호화 방법.
  11. 제 10 항에 있어서,
    상기 복수의 하위 변환 블록은 제 3 하위 변환 블록 및 제 4 하위 변환 블록을 포함하며,
    상기 제 3 하위 변환 블록의 높이는 상기 변환 블록의 최대 높이로 결정되고,
    상기 제 4 하위 변환 블록의 좌상단 좌표는 상기 제 1 하위 변환 블록의 좌상단 좌표에서 하측으로 상기 변환 블록의 최대 높이만큼 이격된 영상 복호화 방법.
  12. 제 1 항에 있어서,
    상기 현재 블록의 컬러 포멧이 4:4:4 포멧일 경우 상기 변환 블록의 최대 크기는 64x64이고, 상기 현재 블록의 컬러 포멧이 4:2:2포멧일 경우 상기 변환 블록의 최대 크기는 32x64이고, 상기 현재 블록의 컬러 포멧이 4:2:0포멧일 경우 상기 변환 블록의 최대 크기는 32x32인 영상 복호화 방법.
  13. 메모리 및 적어도 하나의 프로세서를 포함하는 영상 복호화 장치로서,
    상기 적어도 하나의 프로세서는
    상기 영상을 분할하여 현재 블록을 획득하고,
    상기 현재 블록의 예측 모드를 결정하고,
    상기 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 상기 현재 블록에 대한 인트라 예측 블록을 생성하고,
    상기 현재 블록의 잔차 블록을 생성하며,
    상기 예측 블록과 잔차 블록에 기반하여 상기 현재 블록을 복원하고,
    상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 생성되며,
    상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정되는 영상 복호화 장치.
  14. 영상 부호화 장치에 의해 수행되는 영상 부호화 방법에 있어서,
    상기 영상을 분할하여 현재 블록을 결정하는 단계;
    상기 현재 블록의 인트라 예측 블록을 생성하는 단계;
    상기 인트라 예측 블록에 기반하여 상기 현재 블록의 잔차 블록을 생성하는 단계; 및
    상기 현재 블록의 인트라 예측 모드 정보를 부호화 하는 단계를 포함하고,
    상기 인트라 예측 블록과 상기 잔차 블록은 상기 현재 블록의 변환 블록의 크기에 기반하여 부호화되며,
    상기 변환 블록의 크기는 상기 현재 블록의 컬러 컴포넌트에 기반하여 결정되는 영상 부호화 방법.
  15. 제14항의 영상 부호화 방법에 의해 생성된 비트스트림을 전송하는 방법.
KR1020217042476A 2019-06-24 2020-06-24 크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 KR20220005591A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962865949P 2019-06-24 2019-06-24
US62/865,949 2019-06-24
PCT/KR2020/008234 WO2020262963A1 (ko) 2019-06-24 2020-06-24 크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법

Publications (1)

Publication Number Publication Date
KR20220005591A true KR20220005591A (ko) 2022-01-13

Family

ID=74060293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217042476A KR20220005591A (ko) 2019-06-24 2020-06-24 크로마 블록의 최대 변환 크기 설정을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법

Country Status (8)

Country Link
US (3) US11563942B2 (ko)
EP (1) EP3989559A4 (ko)
JP (2) JP7309928B2 (ko)
KR (1) KR20220005591A (ko)
CN (1) CN114270827A (ko)
BR (1) BR112021026544A2 (ko)
MX (1) MX2022000028A (ko)
WO (1) WO2020262963A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3136498A1 (en) * 2019-05-24 2020-12-03 Huawei Technologies Co., Ltd. An encoder, a decoder and corresponding methods for using ibc merge list

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503269B1 (ko) * 2010-04-05 2015-03-17 삼성전자주식회사 영상 부호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치, 및 영상 복호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치
RS61146B1 (sr) 2011-10-24 2020-12-31 Innotive Ltd Postupak i aparat za dekodiranje slike
KR20130049525A (ko) 2011-11-04 2013-05-14 오수미 잔차 블록 복원을 위한 역변환 방법
KR20130049526A (ko) 2011-11-04 2013-05-14 오수미 복원 블록 생성 방법
AU2012232992A1 (en) * 2012-09-28 2014-04-17 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding the transform units of a coding unit
US9667994B2 (en) * 2012-10-01 2017-05-30 Qualcomm Incorporated Intra-coding for 4:2:2 sample format in video coding
US9743091B2 (en) * 2012-12-17 2017-08-22 Lg Electronics Inc. Method for encoding/decoding image, and device using same
KR101596085B1 (ko) * 2012-12-18 2016-02-19 한양대학교 산학협력단 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
US11284103B2 (en) * 2014-01-17 2022-03-22 Microsoft Technology Licensing, Llc Intra block copy prediction with asymmetric partitions and encoder-side search patterns, search ranges and approaches to partitioning
CA3071370A1 (en) * 2017-09-12 2019-03-21 Samsung Electronics Co., Ltd. Method for encoding and decoding motion information and device for encoding and decoding motion information
WO2019103491A1 (ko) 2017-11-22 2019-05-31 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
MX2020014112A (es) * 2018-06-25 2021-06-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo de predicción intra-trama.
SG11202101229VA (en) * 2018-08-24 2021-03-30 Samsung Electronics Co Ltd Video decoding method and apparatus, and video encoding method and apparatus
US20200252608A1 (en) * 2019-02-05 2020-08-06 Qualcomm Incorporated Sub-partition intra prediction
US11159795B2 (en) * 2019-03-04 2021-10-26 Tencent America LLC Max transform size control
KR102648569B1 (ko) * 2019-05-13 2024-03-19 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 변환 스킵 모드의 블록 치수 설정들

Also Published As

Publication number Publication date
MX2022000028A (es) 2022-03-11
JP7309928B2 (ja) 2023-07-18
US11563942B2 (en) 2023-01-24
BR112021026544A2 (pt) 2022-02-15
JP2022540025A (ja) 2022-09-14
EP3989559A4 (en) 2023-07-12
US20230328238A1 (en) 2023-10-12
WO2020262963A1 (ko) 2020-12-30
CN114270827A (zh) 2022-04-01
US20230080094A1 (en) 2023-03-16
JP2023126891A (ja) 2023-09-12
EP3989559A1 (en) 2022-04-27
US11770529B2 (en) 2023-09-26
US20220174278A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US20230353743A1 (en) Method and apparatus for encoding/decoding video using maximum size limitation of chroma transform block, and method for transmitting bitstream
AU2024200705A1 (en) Image encoding/decoding method, apparatus and method for transmitting bitstream using maximum transform size limitation of chroma component coding block
US20230328238A1 (en) Image encoding/decoding method and apparatus using maximum transform size setting for chroma block, and method for transmitting bitstream
KR20210129213A (ko) Smvd(symmetric motion vector difference)를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
US20230082353A1 (en) Image encoding/decoding method and apparatus using ibc, and method for transmitting bitstream
US20220182626A1 (en) Image encoding and decoding method and device for limiting partition condition of chroma block, and method for transmitting bitstream
KR102488925B1 (ko) 크로마 블록의 적응적 크기 제한을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
US11917147B2 (en) Image encoding/decoding method and apparatus for limiting size of chroma block, and method for transmitting bitstream
US20220182623A1 (en) Video encoding/decoding method and device using segmentation limitation for chroma block, and method for transmitting bitstream
US20220166986A1 (en) Image encoding/decoding method and device using ibc prediction, and method for transmitting bitstream
KR20220115971A (ko) 리프 노드의 재설정된 예측 모드 타입에 기반하여 예측을 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
KR20220079974A (ko) Pdpc를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
KR20220031059A (ko) 컬러 포멧에 따라 결정된 예측 모드 타입에 기반하여 분할 모드를 결정하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법