KR20210157688A - Antigen binding fragment platform conjugated with anticancer peptides - Google Patents

Antigen binding fragment platform conjugated with anticancer peptides Download PDF

Info

Publication number
KR20210157688A
KR20210157688A KR1020200075791A KR20200075791A KR20210157688A KR 20210157688 A KR20210157688 A KR 20210157688A KR 1020200075791 A KR1020200075791 A KR 1020200075791A KR 20200075791 A KR20200075791 A KR 20200075791A KR 20210157688 A KR20210157688 A KR 20210157688A
Authority
KR
South Korea
Prior art keywords
antigen
binding fragment
ser
sequence
gly
Prior art date
Application number
KR1020200075791A
Other languages
Korean (ko)
Other versions
KR102457344B1 (en
Inventor
김찬길
김철근
김보람
변규태
원형식
이승현
김경민
Original Assignee
건국대학교 글로컬산학협력단
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 글로컬산학협력단, 한양대학교 산학협력단 filed Critical 건국대학교 글로컬산학협력단
Priority to KR1020200075791A priority Critical patent/KR102457344B1/en
Publication of KR20210157688A publication Critical patent/KR20210157688A/en
Application granted granted Critical
Publication of KR102457344B1 publication Critical patent/KR102457344B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to an antigen-binding fragment platform for cancer treatment combined with anticancer peptides, wherein the platform includes an antigen-binding fragment-anticancer peptide conjugate. The conjugate has excellent tumor cell targeting ability by the antigen-binding fragment, and it is possible to kill tumor cells by anticancer peptides, and thus the platform can be usefully used for cancer treatment.

Description

항암 펩티드와 결합된 항원결합단편 플랫폼{ANTIGEN BINDING FRAGMENT PLATFORM CONJUGATED WITH ANTICANCER PEPTIDES}Antigen-binding fragment platform combined with anticancer peptide {ANTIGEN BINDING FRAGMENT PLATFORM CONJUGATED WITH ANTICANCER PEPTIDES}

본 발명은 항암 펩티드와 결합된 암 치료용 항원결합단편 플랫폼에 관한 것이다.The present invention relates to an antigen-binding fragment platform for cancer treatment combined with an anti-cancer peptide.

암 치료를 위한 화학요법은 종양 세포뿐만 아니라 정상 세포의 증식 억제 및 세포 사멸을 야기하고, 비-종양 특이적(non-tumor specific) 전신 독성과 세포 독성을 유발하며, 약물의 장기 사용으로 인한 내성을 유도할 수 있다. Chemotherapy for cancer treatment causes proliferation inhibition and apoptosis of normal cells as well as tumor cells, causes non-tumor specific systemic toxicity and cytotoxicity, and resistance due to long-term use of drugs can induce

이에 반해 항체 의약품은 종양세포 표면의 특정 항원에 결합하므로 정상세포의 손상 없이 종양세포의 증식을 억제하고 사멸을 유도하는 장점이 있고, 또한 일반 저분자 약물에 비해 반감기가 매우 길기 때문에 투여 횟수를 줄일 수 있다. 따라서 종양세포 특이적이고, 항암 효능이 높으며 부작용이 적어 투여 횟수를 줄일 수 있는 항체 의약품이 차세대 항암제로 자리매김하고 있으며, 개발 가치가 높다.On the other hand, antibody drugs have the advantage of inhibiting the proliferation and inducing death of tumor cells without damaging normal cells because they bind to specific antigens on the surface of tumor cells. have. Therefore, antibody drugs that are specific to tumor cells, have high anticancer efficacy, and have few side effects, which can reduce the number of administrations, are positioning themselves as next-generation anticancer agents and have high development value.

최근에는 온전한 항체에 비해 크기가 작아 조직이나 종양으로의 침투율이 좋은 항체 단편을 많이 이용하고 있다. 항체 단편은 생체 진단용으로 사용될 수 있고, 박테리아의 독소와 접합하여 약물 전달용으로 사용되거나, 세포 독성 T 세포에 결합하는 항체 단편과의 이중특이적 항체로 제조되어 암 치료제로 개발될 수 있다. 실제로 다양한 형태의 항체 단편들이 치료용 개량항체로 개발되어 임상용으로 사용되고 있다(압식시맙(abciximab), 라니비주맙(ranibizumab) 및 서톨리주맙(certolizumab)).Recently, antibody fragments that have a good penetration rate into tissues or tumors have been widely used due to their smaller size compared to intact antibodies. The antibody fragment can be used for biodiagnosis, used for drug delivery by conjugation with a bacterial toxin, or produced as a bispecific antibody with an antibody fragment that binds to cytotoxic T cells and developed as a cancer treatment agent. In fact, various types of antibody fragments have been developed as improved therapeutic antibodies and are being used for clinical use (abciximab, ranibizumab, and certolizumab).

본 발명자들은 항체 단편을 활용한 새로운 암 치료제를 연구하던 중, 항암 펩티드와 항체 단편의 컨쥬게이트가 종양 표적화 능력 및 항암 활성이 우수한 것을 확인하여 본 발명을 완성하였다.The present inventors completed the present invention by confirming that a conjugate of an anticancer peptide and an antibody fragment has excellent tumor targeting ability and anticancer activity while researching a new cancer therapeutic agent using an antibody fragment.

1. 대한민국 등록특허 제10-1232454호1. Republic of Korea Patent No. 10-1232454

본 발명의 목적은 암 치료제로 사용될 수 있는 항암 펩티드와 결합된 암 치료용 항원결합단편 플랫폼을 제공하는 것이다.An object of the present invention is to provide an antigen-binding fragment platform for cancer treatment combined with an anti-cancer peptide that can be used as a cancer treatment agent.

상기 목적을 달성하기 위하여, 본 발명의 일 양상은 (a) 항원결합단편 중쇄; (b) 상기 항원결합단편 중쇄의 C 말단에 연결된 항암 펩티드 모듈; 및 (c) 상기 항원결합단편 중쇄에 결합된 항원결합단편 경쇄;를 포함하는 항원결합단편-항암 펩티드 컨쥬게이트를 제공한다.In order to achieve the above object, one aspect of the present invention is (a) an antigen-binding fragment heavy chain; (b) an anticancer peptide module linked to the C-terminus of the antigen-binding fragment heavy chain; And (c) antigen-binding fragment light chain bound to the antigen-binding fragment heavy chain; provides an antigen-binding fragment-anticancer peptide conjugate comprising a.

본 명세서에 사용된 용어, "항원결합단편(antibody binding fragment, Fab)"은 항원 결합 부위를 포함하는 항체 단편(antigen binding site)을 말하며, 중쇄의 가변영역 한 개와 경쇄의 가변영역 한 개가 합쳐져 이루어진다. 항원결합단편을 이루는 중쇄 및 경쇄를 각각 Fab Fd 및 Fab Lc라고 부른다. 항원결합단편은 항원 결합 능력은 유지하면서 전장(full length) 항체보다 크기가 작아 조직이나 종양으로의 침투가 용이하므로 치료제로 많이 활용되고 있다.As used herein, the term "antibody binding fragment (Fab)" refers to an antibody fragment including an antigen binding site, and consists of one variable region of a heavy chain and one variable region of a light chain. . The heavy and light chains constituting the antigen-binding fragment are called Fab Fd and Fab Lc, respectively. Antigen-binding fragments are widely used as therapeutic agents because they are smaller in size than full-length antibodies while maintaining antigen-binding ability and thus easily penetrate into tissues or tumors.

본 발명의 일 구체예에 따르면, 상기 Fab Fd 및 Fab Lc는 이황화 결합과 같은 공유결합으로 연결되거나, 펩티드 링커 서열에 의한 공유결합으로 연결될 수 있다.According to one embodiment of the present invention, the Fab Fd and Fab Lc may be covalently linked, such as a disulfide bond, or covalently linked by a peptide linker sequence.

본 발명의 일 구체예에 따르면, 상기 항원결합단편 중쇄 및 항원결합단편 경쇄는 세툭시맙 (cetuximab), 파니투무맙 (panitumumab), 베바시주맙 (bevacizumab), 퍼투주맙 (pertuzumab), 트라스투주맙 (trastuzumab), 리툭시맙 (rituximab), 오파투무맙 (ofatumumab), 오비누투주맙 (obinutuzumab), 이필리무맙 (ipilimumab), 라무시루맙 (ramucirumab), 니볼루맙 (nivolumab) 및 펨브롤리주맙(pembrolizumab)으로 이루어진 군에서 선택될 수 있으며, 바람직하게는 세툭시맙을 사용할 수 있다.According to one embodiment of the present invention, the antigen-binding fragment heavy chain and the antigen-binding fragment light chain are cetuximab, panitumumab, bevacizumab, pertuzumab, trastuzumab (trastuzumab), rituximab, ofatumumab, obinutuzumab, ipilimumab, ramucirumab, nivolumab and pembrolizumab ( pembrolizumab) may be selected from the group consisting of, preferably cetuximab may be used.

본 발명의 일 구체예에 따르면, 상기 항원결합단편은 항원결합단편-항암 펩티드 컨쥬게이트에 표적화 능력을 부여하며, 자체의 항암 효과에 의해 종양세포를 사멸시킬 수도 있다. 예를 들어, 세툭시맙의 항원결합단편을 이용하면 상기 컨쥬게이트는 EGFR1이 발현된 종양세포에 결합할 수 있고, 항원결합단편 및 항암 펩티드의 작용으로 종양세포를 사멸시킬 수 있다.According to one embodiment of the present invention, the antigen-binding fragment imparts targeting ability to the antigen-binding fragment-anticancer peptide conjugate, and can also kill tumor cells by its anticancer effect. For example, when the antigen-binding fragment of cetuximab is used, the conjugate can bind to EGFR1-expressing tumor cells, and can kill tumor cells by the action of the antigen-binding fragment and anticancer peptide.

본 발명의 일 구체예에 따르면, 상기 항원결합단편 중쇄 및 항원결합단편 경쇄는 N 말단에 신호 펩티드가 결합된 것일 수 있으며, 신호 펩티드는 항원결합단편 중쇄(Fd)에는 서열번호 7의 서열(H4), 항원결합단편 경쇄(Lc)에는 서열번호 8의 서열(L1)이 사용될 수 있다(도 3의 A 참조). 상기 신호 펩티드(SP 서열)는 합성된 항원결합단편-항암 펩티드 컨쥬게이트의 세포외 분비 효율을 촉진시키는 역할을 하며, 합성된 항원결합단편-항암 펩티드 컨쥬게이트가 소포체를 통과할 때 신호 펩티드 펩티다아제에 의해 정확히 절단될 수 있도록 한다.According to one embodiment of the present invention, the antigen-binding fragment heavy chain and the antigen-binding fragment light chain may have a signal peptide bound to the N-terminus, and the signal peptide has the sequence of SEQ ID NO: 7 to the antigen-binding fragment heavy chain (Fd) (H4). ), the sequence (L1) of SEQ ID NO: 8 may be used for the antigen-binding fragment light chain (Lc) (see FIG. 3A). The signal peptide (SP sequence) serves to promote the extracellular secretion efficiency of the synthesized antigen-binding fragment-anti-cancer peptide conjugate, and when the synthesized antigen-binding fragment-anti-cancer peptide conjugate passes through the endoplasmic reticulum, it acts as a signal peptide peptidase. so that it can be cut accurately.

본 발명의 일 구체예에 따르면, 상기 항암 펩티드 모듈은 프로테아제 절단 서열(FK), 엔도좀 융합 유도 서열(S19) 및 전사 인자 CP2c 결합 서열(ACP)을 포함하며, 종양세포 침투 서열(iRGD)을 추가로 포함할 수 있다(도 3).According to one embodiment of the present invention, the anticancer peptide module includes a protease cleavage sequence (FK), an endosome fusion inducing sequence (S19) and a transcription factor CP2c binding sequence (ACP), and a tumor cell penetration sequence (iRGD) It may further include (FIG. 3).

본 발명의 일 구체예에 따르면, 상기 항암 펩티드 모듈은 서열번호 4로 표시되는 프로테아제 절단 서열, 서열번호 5로 표시되는 엔도좀 융합 유도 서열, 서열번호 3으로 표시되는 전사 인자 CP2c 결합 서열 및 서열번호 6으로 표시되는 종양 침투 서열을 포함할 수 있다.According to one embodiment of the present invention, the anti-cancer peptide module comprises a protease cleavage sequence represented by SEQ ID NO: 4, an endosome fusion inducing sequence represented by SEQ ID NO: 5, a transcription factor CP2c binding sequence represented by SEQ ID NO: 3 and SEQ ID NO: and a tumor penetrating sequence represented by 6.

본 발명에서, 상기 종양세포 침투 서열(iRGD)은 ACP를 세포 내로 유입시키기 위해 도입한 서열이며, 인테그린/뉴로필린 수용체에 특이적으로 결합할 수 있다. 인테그린/뉴로필린 수용체에 결합한 ACP는 sendR에 의해 세포 내로 이동하여 세포사를 유도한다. 상기 iRGD 서열을 포함함으로써 본 발명의 항원결합단편-항암 펩티드 컨쥬게이트는 일차로는 항원결합단편으로 종양세포를 표적하고, 이차로는 iRGD 서열로 종양세포를 표적한다.In the present invention, the tumor cell penetration sequence (iRGD) is a sequence introduced to introduce ACP into a cell, and can specifically bind to an integrin/neurophilin receptor. ACP bound to the integrin/neurophilin receptor moves into the cell by sendR and induces cell death. By including the iRGD sequence, the antigen-binding fragment-anticancer peptide conjugate of the present invention primarily targets tumor cells with the antigen-binding fragment, and secondarily targets tumor cells with the iRGD sequence.

본 발명에서, 상기 프로테아제 절단 서열(FK)은 종양세포에 들어간 항원결합단편-항암 펩티드 컨쥬게이트가 프로테아제에 의해 항원결합단편(Fab)과 전사 인자 CP2c 결합 서열(ACP)로 분리되도록 하기 위해 도입하였다. 유리된 ACP는 종양세포 내로 유입되어 세포사를 유도할 수 있다.In the present invention, the protease cleavage sequence (FK) was introduced so that the antigen-binding fragment-anticancer peptide conjugate that entered tumor cells was separated into an antigen-binding fragment (Fab) and transcription factor CP2c-binding sequence (ACP) by protease. . The free ACP may flow into tumor cells and induce cell death.

본 발명에서, 상기 엔도좀 융합 유도 서열(S19)은 항원결합단편-항암 펩티드 컨쥬게이트가 엔도좀에서 쉽게 탈출하도록 유도하는 역할을 한다. 분리된 항암 펩티드는 암세포의 생장을 억제하고, 세포사를 일으키게 한다.In the present invention, the endosome fusion inducing sequence (S19) serves to induce the antigen-binding fragment-anticancer peptide conjugate to easily escape from the endosome. The isolated anticancer peptide inhibits the growth of cancer cells and causes cell death.

본 발명에서, 상기 전사 인자 CP2c 결합 서열은 암세포에서 많이 발현되는 유전자인 전사 인자 CP2c에 결합하여 암세포의 생장을 억제하고, 세포사를 유도하는 펩티드이다.본 발명의 일 구체예에 따르면, 상기 항암 펩티드 모듈은 서열번호 11로 표시되는 서열에 의해 항원결합단편 중쇄의 C 말단에만 연결될 수 있다.In the present invention, the transcription factor CP2c binding sequence is a peptide that binds to the transcription factor CP2c, which is a gene frequently expressed in cancer cells, to inhibit the growth of cancer cells and induce cell death. According to one embodiment of the present invention, the anticancer peptide The module may be linked only to the C terminus of the heavy chain of the antigen-binding fragment by the sequence shown in SEQ ID NO: 11.

본 발명에서, 생체 내로 주사된 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트는 항원결합단편에 의해 종양세포 표면의 특이적 수용체에 결합하고, 수용체 매개 세포내 유입에 의해 세포 내로 도입된다. 이때 iRGD 서열에 의해 세포내 유입 증진효과가 나타나고, 유입에 따라 엔도좀에 갇힌 항원결합단편-항암 펩티드 컨쥬게이트는 단백질 분해효소인 카텝신(cathepsin) B 효소에 의해 FK 서열이 잘림으로써 항원결합단편과 항암 펩티드 모듈(S19-ACP-iRGD)로 분리된다. 잘린 S19-ACP-iRGD 서열은 S19 서열 때문에 엔도좀을 쉽게 탈출하고, 탈출한 S19-ACP-iRGD 서열은 ACP의 작용으로 암세포를 사멸시킨다.In the present invention, the cetuximab antigen-binding fragment-anticancer peptide conjugate injected in vivo binds to a specific receptor on the surface of a tumor cell by the antigen-binding fragment, and is introduced into the cell by receptor-mediated endocytosis. At this time, the intracellular influx enhancing effect is shown by the iRGD sequence, and the antigen-binding fragment trapped in the endosome-anti-cancer peptide conjugate according to the inflow is the antigen-binding fragment by truncating the FK sequence by the proteolytic enzyme cathepsin B. and anticancer peptide module (S19-ACP-iRGD). The truncated S19-ACP-iRGD sequence easily escapes endosomes because of the S19 sequence, and the escaped S19-ACP-iRGD sequence kills cancer cells by the action of ACP.

본 발명의 일 구체예에 따르면, 상기 항원결합단편-항암 펩티드 컨쥬게이트는 항원결합단편 중쇄-항암 펩티드, 항원결합단편 경쇄를 각각 발현시킨 후 공유결합으로 연결하여 제조할 수 있다. 예를 들어, ExpiCHO-S™ 세포에 항원결합단편 중쇄-항암 펩티드 발현벡터 및 항원결합단편 경쇄 발현 벡터를 형질전환시키면 발현된 항원결합단편 중쇄-항암 펩티드와 항원결합단편 경쇄 사이에 공유결합이 형성되어 컨쥬게이트 형태로 수득할 수 있다.According to one embodiment of the present invention, the antigen-binding fragment-anti-cancer peptide conjugate can be prepared by expressing the antigen-binding fragment heavy chain-anti-cancer peptide and the antigen-binding fragment light chain, respectively, and then covalently linking them. For example, when ExpiCHO-S™ cells are transformed with an antigen-binding fragment heavy chain-anticancer peptide expression vector and antigen-binding fragment light chain expression vector, a covalent bond is formed between the expressed antigen-binding fragment heavy chain-anticancer peptide and the antigen-binding fragment light chain. and can be obtained in the form of a conjugate.

본 발명의 다른 양상은 상기 항원결합단편-항암 펩티드 컨쥬게이트를 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물을 제공한다.Another aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the antigen-binding fragment-anticancer peptide conjugate as an active ingredient.

본 발명자들은 종양이 형성된 마우스에 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트를 주사한 결과, 종양 생장이 현저히 억제되는 것을 확인하였다. The present inventors confirmed that tumor growth was significantly inhibited as a result of injecting cetuximab antigen-binding fragment-anticancer peptide conjugate into tumor-forming mice.

본 발명의 약학적 조성물은 약제의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다.The pharmaceutical composition of the present invention may further include suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceuticals.

본 발명에 따른 약학적 조성물은 통상의 방법에 따라 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 본 발명의 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시 벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.The pharmaceutical composition according to the present invention may be formulated and used in the form of a sterile injection solution according to a conventional method. Carriers, excipients and diluents that may be included in the composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.

제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.In the case of formulation, it is prepared using commonly used diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, and freeze-dried preparations. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.

본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서 '약학적으로 유효한 양'은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명에 따른 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. In the present invention, a 'pharmaceutically effective amount' means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level includes the type, severity, drug activity, and type of the patient's disease; Sensitivity to the drug, administration time, administration route and excretion rate, treatment period, factors including concurrent drugs and other factors well known in the medical field may be determined. The pharmaceutical composition according to the present invention may be administered as an individual therapeutic agent or may be administered in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple. Taking all of the above factors into consideration, it is important to administer an amount capable of obtaining the maximum effect with a minimum amount without side effects, which can be easily determined by those skilled in the art.

본 발명의 일 예에 따른 항원결합단편-항암 펩티드 컨쥬게이트는 항원결합단편에 의해 종양세포 표적화 능력이 우수하고, 항암 펩티드에 의해 종양세포를 사멸시킬 수 있으므로 암 치료 용도로 유용하게 사용될 수 있다.The antigen-binding fragment-anti-cancer peptide conjugate according to an embodiment of the present invention has excellent tumor cell targeting ability by the antigen-binding fragment and can kill tumor cells by the anti-cancer peptide, so it can be usefully used for cancer treatment.

도 1은 본 발명의 일 예에 따른 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 구조를 개략적으로 나타낸다.
도 2는 다양한 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 발현 여부를 확인한 결과를 나타낸다.
도 3은 본 발명의 일 예에 따른 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 구조(A) 및 발현 여부를 확인한 결과(B)를 나타낸다.
도 4는 도 3의 A에 나타낸 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 질량 분석 결과를 나타낸다.
도 5는 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 EGFR1 결합 능력을 ELISA(A) 및 FACS 분석(B)으로 확인한 결과를 나타낸다.
도 6은 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 항암 활성을 세포 실험으로 확인한 결과를 나타낸다.
도 7은 세툭시맙 항원결합단편-항암 펩티드 컨쥬게이트의 항암 활성을 종양이 형성된 마우스에서 확인한 결과를 나타낸다.
1 schematically shows the structure of a cetuximab antigen-binding fragment-anticancer peptide conjugate according to an embodiment of the present invention.
2 shows the results of confirming the expression of various cetuximab antigen-binding fragment-anticancer peptide conjugates.
Figure 3 shows the structure (A) of the cetuximab antigen-binding fragment-anticancer peptide conjugate according to an example of the present invention and the result of checking the expression (B).
FIG. 4 shows the mass spectrometry results of the cetuximab antigen-binding fragment-anticancer peptide conjugate shown in FIG. 3A .
5 shows the results of confirming the EGFR1 binding ability of the cetuximab antigen-binding fragment-anticancer peptide conjugate by ELISA (A) and FACS analysis (B).
6 shows the results of confirming the anticancer activity of the cetuximab antigen-binding fragment-anticancer peptide conjugate through a cell experiment.
7 shows the results of confirming the anticancer activity of the cetuximab antigen-binding fragment-anticancer peptide conjugate in mice with tumors.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.

제조예 1: Cet Fab-ACP 융합 단백질 발현Preparation Example 1: Cet Fab-ACP fusion protein expression

1-1. Cet Fab-ACP 융합 단백질 발현 벡터 제작1-1. Cet Fab-ACP fusion protein expression vector construction

도 1에 도시된 구조를 갖는 벡터를 하기와 같이 제작하였다. 도 1에서 D1은 세툭시맙(cetuximab) Fab(antigen binding fragment, 항원 결합 단편)의 Fd(서열번호 1)에 ACP 모듈을 N 및 C 말단에 융합시킨 것이고, D2는 세툭시맙 Fab의 Lc(서열번호 2)에 ACP 모듈을 N 및 C 말단에 융합시킨 것이다. 세툭시맙의 Fab에서 Fd 및 Lc는 일부 서열을 인간화시켜 사용하였다(서열번호 1 및 2). ACP 모듈은 CB (cathepsin B cleavage site), EED (endosomal escape domain), ACP (CP2c 결합 펩티드; 서열번호 3) 및 TAT(transactivator of transcription) 서열을 포함하고, 신호 서열로 D1의 Fd에는 H4 서열(서열번호 7), D1의 Lc에는 L1 서열(서열번호 8)을 사용하였다.A vector having the structure shown in FIG. 1 was prepared as follows. In Figure 1, D1 is cetuximab (cetuximab) Fab (antigen binding fragment, antigen-binding fragment) Fd (SEQ ID NO: 1) to the ACP module is fused to the N and C terminus, D2 is Lc of cetuximab Fab ( In SEQ ID NO: 2), the ACP module is fused to the N and C terminals. Fd and Lc in the Fab of cetuximab were used by humanizing some sequences (SEQ ID NOs: 1 and 2). The ACP module includes CB (cathepsin B cleavage site), EED (endosomal escape domain), ACP (CP2c binding peptide; SEQ ID NO: 3) and TAT (transactivator of transcription) sequences, and as a signal sequence, Fd of D1 has an H4 sequence ( SEQ ID NO: 7), L1 sequence (SEQ ID NO: 8) was used for Lc of D1.

D1 또는 D2 코딩 서열은 Genewiz에 의뢰하여 pUC57 벡터에 클로닝하였다 (pUC57 D1 및 pUC57 D2). 합성된 D1 또는 D2 코딩 서열을 각각 전방향 및 역방향 프라이머(서열번호 12 내지 15)로 PCR하고, PCR 산물은 pcDNA™ 3.4-TOPO® 벡터(Invitrogen, CA, USA)에 TA 클로닝하였다. Top10 세포와 상기 벡터를 혼합한 후 42℃로 열충격을 가하여 형질전환(transformation)시키고, SOC 배지에서 1시간 동안 배양한 뒤, 암피실린 항생제가 든 고체배지에 도말하여 밤새 키웠다. 다음날 생성된 콜로니 중에서 8개를 선택하여 CMV 전방향 프라미어, pcDNA™ 3.4 역방향 프라미어로 콜로니 PCR을 수행하였다. PCR 산물을 아가로스 젤에 전기영동한 뒤 밴드 크기가 맞는 콜로니를 선별하여, 플라스미드 DNA를 분리하였다. 이후, 플라스미드 DNA를 서열분석(sequencing)하여 클로닝이 제대로 이루어졌는지 확인하였다.The D1 or D2 coding sequence was cloned into the pUC57 vector by request of Genewiz (pUC57 D1 and pUC57 D2). The synthesized D1 or D2 coding sequence was subjected to PCR with forward and reverse primers (SEQ ID NOs: 12 to 15), respectively, and the PCR product was TA cloned into pcDNA™ 3.4-TOPO ® vector (Invitrogen, CA, USA). After mixing Top10 cells and the vector, heat shock was applied at 42° C. to transform them, incubate them in SOC medium for 1 hour, and then spread them on a solid medium containing ampicillin antibiotics and grow overnight. The next day, 8 colonies were selected and colony PCR was performed with CMV forward primer and pcDNA™ 3.4 reverse primer. After electrophoresis of the PCR product on an agarose gel, colonies with the same band size were selected, and plasmid DNA was isolated. Thereafter, the plasmid DNA was sequenced to confirm that the cloning was performed properly.

N 말단 및/또는 C 말단에서 ACP 모듈이 제거된 발현 벡터(ΔB, ΔX)는 다음과 같이 제작하였다.Expression vectors (ΔB, ΔX) in which the ACP module was removed from the N-terminus and/or C-terminus were constructed as follows.

상기에서 제작한 pcDNATM 3.4-TOPO® D1, pcDNATM 3.4-TOPO® 벡터 각각에 BamHI 또는 XhoI을 처리한 후 불활성화시키고, T4 라이게이스(ligase)로 벡터를 다시 라이게이션시켰다. ΔBamHI, ΔXhoI 상태의 pcDNATM 3.4-TOPO® D1, pcDNATM 3.4-TOPO® 벡터 각각을 Top10 세포와 혼합한 후 42℃로 열충격을 가하여 형질전환시키고, SOC 배지에서 1시간 동안 배양한 뒤 암피실린 항생제가 든 고체배지에 도말하여 밤새 키웠다. 다음날 생성된 콜로니 중에서 8개를 선택하여 CMV 전방향 프라미어, pcDNA™ 3.4 역방향 프라미어로 콜로니 PCR을 수행하였다. PCR 산물을 아가로스 젤에 전기영동하고, 밴드 크기가 맞는 콜로니를 선별하여 플라스미드 DNA를 분리하였다. 분리한 플라스미드 DNA에 제한효소를 처리하고, 산물을 전기영동하여 밴드 크기가 맞는 플라스미드를 선별하여 최종적으로 ΔB, ΔX 발현 벡터를 제작하였다. ΔX 발현 벡터에 BamHI을 처리하고, 상기 과정을 반복하여 ΔBX 발현 벡터를 제작하였다.Each of the pcDNA TM 3.4-TOPO ® D1 and pcDNA TM 3.4-TOPO ® vectors prepared above was inactivated after treatment with BamHI or XhoI, and the vector was ligated again with T4 ligase. After mixing each of pcDNA TM 3.4-TOPO ® D1 and pcDNA TM 3.4-TOPO ® vectors in ΔBamHI and ΔXhoI state with Top10 cells, heat shock was applied at 42° C. It was spread on a solid medium and grown overnight. The next day, 8 colonies were selected and colony PCR was performed with CMV forward primer and pcDNA™ 3.4 reverse primer. The PCR product was electrophoresed on an agarose gel, and colonies with matching band sizes were selected to isolate plasmid DNA. The isolated plasmid DNA was treated with a restriction enzyme, and the product was electrophoresed to select a plasmid with the correct band size, and finally ΔB and ΔX expression vectors were prepared. The ΔX expression vector was treated with BamHI, and the above process was repeated to construct a ΔBX expression vector.

이하에서, N 말단에서 ACP 모듈이 제거된 발현 벡터는 D1ΔB 및 D2ΔB로 기재하고, C 말단에서 ACP 모듈이 제거된 발현 벡터는 D1ΔX 및 D2ΔX로 기재한다. N 말단 및 C 말단 모두에서 ACP 모듈이 제거된 발현 벡터는 D1ΔBX 및 D2ΔBX로 기재한다.Hereinafter, expression vectors from which the ACP module has been removed from the N-terminus are referred to as D1ΔB and D2ΔB, and expression vectors from which the ACP module has been removed from the C-terminus are referred to as D1ΔX and D2ΔX. Expression vectors in which the ACP module has been removed at both the N-terminus and C-terminus are described as D1ΔBX and D2ΔBX.

1-2. 재조합 단백질 발현1-2. Recombinant protein expression

125 ㎖ 용량의 비-바플 플라스크(non-baffled flask)에 6ⅹ106 세포/㎖ 농도로 ExpiCHO-S™ 세포(Invitrogen)를 준비하였다. ExpiFectamine™ CHO Reagent(Invitrogen)(3.2 ㎕/medium ㎖)와 D1 및 D2 발현 벡터 모두를 OptiPRO™ SFM (40 ㎕/medium ㎖)에 희석한 뒤 혼합하여 1분 동안 정치시킨 후 상기 플라스크에 골고루 뿌려주었다. ExpiCHO-S™ 세포를 약 20시간 동안 배양한 후 ExpiCHO™ Enhancer를 첨가하여 D1 및 D2를 과발현시키고, ExpiCHO™ Feed를 추가하여 13일 동안 추가로 배양하였다.ExpiCHO-S™ cells (Invitrogen) were prepared at a concentration of 6 ×10 6 cells/mL in a 125 mL non-baffled flask. ExpiFectamine™ CHO Reagent (Invitrogen) (3.2 μl/medium mL) and both D1 and D2 expression vectors were diluted in OptiPRO™ SFM (40 μl/medium mL), mixed and allowed to stand for 1 minute, and then evenly sprayed on the flask. . After culturing ExpiCHO-S™ cells for about 20 hours, ExpiCHO™ Enhancer was added to overexpress D1 and D2, and ExpiCHO™ Feed was added to further culture for 13 days.

배양 후 원심분리하여 상층액만 회수하고, 상층액을 0.3 ㎛ 필터 시린지로 여과한 뒤 KappaSelect 레진 (Capacity: 15 ㎎ Fab/㎖; GE Healthcare)과 혼합하여 4℃에서 2 내지 4시간 동안 레진과 항체의 결합을 유도하였다. PBS(Phosphate buffered saline) pH 7.4 (0.01 M phosphate buffer, 0.0027 M KCl, 0.14 M NaCl)로 KappaSelect를 여러 번 세척하고, 용출 버퍼(0.1 M glycine buffer, pH 2.5 내지 3.0)를 첨가하여 항체를 용출시켰다. 이후 바로 중화 버퍼 (1 M Tris, pH 7.5 내지 8.5)를 첨가하여 용출액의 pH를 pH 7.6으로 맞추었다.After incubation, only the supernatant was recovered by centrifugation, and the supernatant was filtered with a 0.3 μm filter syringe, mixed with KappaSelect resin (Capacity: 15 mg Fab/ml; GE Healthcare), and the resin and antibody at 4°C for 2 to 4 hours. was induced to bind. KappaSelect was washed several times with PBS (Phosphate buffered saline) pH 7.4 (0.01 M phosphate buffer, 0.0027 M KCl, 0.14 M NaCl), and an elution buffer (0.1 M glycine buffer, pH 2.5 to 3.0) was added to elute the antibody. . Thereafter, a neutralization buffer (1 M Tris, pH 7.5 to 8.5) was immediately added to adjust the pH of the eluate to pH 7.6.

D1 및 D2의 4종 컨스트럭트(전장(full length), ΔB, ΔX 및 ΔBX)를 각각 조합한 총 16종의 단백질 조합체를 상기 방법으로 발현시켰다. 이후 12% SDS-PAGE 젤에 각 단백질 조합체를 로딩하여 전기영동을 수행하고, SDS-PAGE 젤을 염색 및 탈색시켜 단백질 밴드를 확인하였다.A total of 16 protein combinations comprising each of the four constructs of D1 and D2 (full length, ΔB, ΔX and ΔBX) were expressed by the above method. Thereafter, each protein combination was loaded on a 12% SDS-PAGE gel to perform electrophoresis, and the protein band was identified by staining and decolorizing the SDS-PAGE gel.

확인 결과, 도 2에 나타낸 바와 같이 16종의 단백질 조합체 중에서 D1ΔB+D2ΔBX 조합(Fd의 C 말단에만 ACP 모듈이 융합된 단백질)만이 발현에 성공하였다. 이 조합을 Cet Fab-ACP 융합단백질로 사용하려 했으나 융합단백질의 일부분만 발현되는 양상을 보였다. MALDI-TOF/TOF를 사용한 분자량 측정 결과, D1ΔBX와 D1ΔB는 약 3988 Da 차이가 나야 하는데, 겨우 368 Da 차이가 났고, D1ΔBX 와 D1ΔB의 아미노산 서열을 비교한 결과, D1ΔB가 D1ΔBX와 겹치는 부분 바로 이후 서열인 CB(GFLG(392 Da))에서 잘려나가는 것으로 확인되었다 (실험 결과는 제시하지 않음). 따라서, 하기 1-3에 개시된 바와 같이 융합 단백질 및 ACP 모듈을 변경하였다.As a result, as shown in FIG. 2 , only the D1ΔB+D2ΔBX combination (a protein in which the ACP module was fused only at the C terminus of Fd) among 16 protein combinations was successful in expression. An attempt was made to use this combination as a Cet Fab-ACP fusion protein, but only a portion of the fusion protein was expressed. As a result of molecular weight measurement using MALDI-TOF/TOF, D1ΔBX and D1ΔB should have a difference of about 3988 Da, which was only 368 Da. It was confirmed to be cleaved from phosphorus CB (GFLG (392 Da)) (experimental results not shown). Therefore, the fusion protein and ACP module were modified as described in 1-3 below.

1-3. 최종 Cet Fab-ACP 융합 단백질 제작1-3. Construction of the final Cet Fab-ACP fusion protein

pcDNATM 3.4에 클로닝된 D1ΔB 벡터에서 제한효소 XhoI 부위에 새로운 ACP 모듈(FK+S19+ACP+iRGD)을 클로닝하였고, 이를 D1'이라 한다(도 3의 A). 상기 새로운 ACP 모듈(FK+S19+ACP+iRGD)은 도 1의 CB 서열 사용이 불가하므로 FK 서열(서열번호 4)로 변경하고, EED는 효과가 더 좋을 것 같은 S19 서열(서열번호 5)로, TAT 서열은 효과가 더 좋을 것 같은 iRGD(서열번호 6)로 전체적으로 변경한 것이다.A new ACP module (FK+S19+ACP+iRGD) was cloned into the restriction enzyme XhoI site in the D1ΔB vector cloned into pcDNA TM 3.4, which is referred to as D1' (FIG. 3A). The new ACP module (FK+S19+ACP+iRGD) is changed to the FK sequence (SEQ ID NO: 4) because the CB sequence of FIG. 1 cannot be used, and the EED is an S19 sequence (SEQ ID NO: 5) that is likely to have a better effect , The TAT sequence was entirely changed to iRGD (SEQ ID NO: 6), which seems to have a better effect.

D1ΔB의 ACP 모듈을 변경한 결과, 도 3의 B에 나타낸 바와 같이 전체 단백질이 모두 발현되는 것을 확인할 수 있었으므로 D1'+D2ΔBX 조합을 최종 Cet Fab-ACP 융합단백질로 선정하였다.As a result of changing the ACP module of D1ΔB, it was confirmed that all proteins were expressed as shown in FIG. 3B, so the D1′+D2ΔBX combination was selected as the final Cet Fab-ACP fusion protein.

도 3의 A에서 FK는 세포내 프로테아제에 의해 절단되어 약물을 방출할 수 있는 링커 서열(https://pubmed.ncbi.nlm.nih.gov/27089329/)이고, S19는 특정 표적세포에 엔도좀을 융합시키는 서열이며, iRGD는 종양 침투 펩티드(tumor-penetrating peptide)이다.In Figure 3A, FK is a linker sequence that can be cleaved by an intracellular protease to release a drug (https://pubmed.ncbi.nlm.nih.gov/27089329/), and S19 is an endosome to a specific target cell. is a sequence that fuses , and iRGD is a tumor-penetrating peptide.

도 4는 생산된 Cet Fab-ACP 융합 단백질(D1'+D2ΔBX)의 질량분석 결과이다.4 is a result of mass spectrometry of the produced Cet Fab-ACP fusion protein (D1'+D2ΔBX).

실험예 1: Cet Fab-ACP 융합 단백질의 EGFR 결합 능력 확인Experimental Example 1: Confirmation of EGFR binding ability of Cet Fab-ACP fusion protein

1-1. Enzyme-linked immunosorbent assay1-1. Enzyme-linked immunosorbent assay

탄산염/중탄산염 버퍼(carbonate/bicarbonate buffer)에 녹인 EGFR1을 이뮤노플레이트(Immunoplate)에 분주하고, 4℃에서 하룻밤 보관하여 플레이트의 각 웰을 코팅하였다. 다음날 버퍼 용액은 제거하고, PBST(0.05% tween20) 100 ㎕로 플레이트를 여러 번 세척하였다. PBS에 녹인 BSA 200 ㎕를 각 웰에 넣고 실온에서 1시간 동안 두어 EGFR1이 결합되지 않은 나머지 부분을 블록킹하였다. 이후 각 웰의 용액을 제거하고, 5 ng/㎖, 2.5 ng/㎖, 1.25 ng/㎖ 및 0.625 ng/㎖로 희석한 Cet Fab-ACP 단백질을 각 웰에 100 ㎕씩 넣어 실온에서 1시간 동안 반응시켰다. 반응이 끝난 후 용액을 제거하고, PBST(0.05% tween20) 100 ㎕로 플레이트를 여러 번 세척하였다. 세척이 끝나면 PBS에 1/1000로 희석한 1차 항체(Anti-Human IgG in goat)를 각 웰에 100 ㎕씩 넣어 실온에서 1시간 동안 반응시켰다. 이후 용액을 제거하고, PBST(0.05% tween20) 100 ㎕로 플레이트를 여러 번 세척한 뒤 1% BSA(in PBS)에 1/3000로 희석한 2차 항체 (Anti-Goat IgG+HRP)를 100 ㎕씩 넣어 실온에서 1시간 동안 반응시켰다. 반응이 끝난 후 용액을 제거하고, PBST(0.05% tween20) 100 ㎕로 플레이트를 여러 번 세척하였다. 플레이트의 각 웰에 TMB 100 ㎕를 넣고, 색이 푸른색으로 변할 때까지 몇 초에서 몇 분 동안 기다렸다. 색이 변하기 시작하면 1M HCl 100 ㎕를 넣어 반응을 중지시키고, 450 ㎚에서 흡광도를 측정하였다.EGFR1 dissolved in carbonate/bicarbonate buffer was aliquoted into an immunoplate, and stored overnight at 4° C. to coat each well of the plate. The next day, the buffer solution was removed and the plate was washed several times with 100 μl of PBST (0.05% tween20). 200 μl of BSA dissolved in PBS was placed in each well and left at room temperature for 1 hour to block the remaining portion to which EGFR1 was not bound. After removing the solution from each well, 100 μl of Cet Fab-ACP protein diluted to 5 ng/ml, 2.5 ng/ml, 1.25 ng/ml and 0.625 ng/ml was added to each well and reacted at room temperature for 1 hour. made it After the reaction was completed, the solution was removed, and the plate was washed several times with 100 μl of PBST (0.05% tween20). After washing, 100 μl of a primary antibody (Anti-Human IgG in goat) diluted 1/1000 in PBS was added to each well and reacted at room temperature for 1 hour. After removing the solution, wash the plate several times with 100 μl of PBST (0.05% tween20), and then 100 μl of secondary antibody (Anti-Goat IgG+HRP) diluted 1/3000 in 1% BSA (in PBS) Each was added and reacted at room temperature for 1 hour. After the reaction was completed, the solution was removed, and the plate was washed several times with 100 μl of PBST (0.05% tween20). Add 100 μl of TMB to each well of the plate and wait for a few seconds to several minutes until the color changes to blue. When the color started to change, 100 μl of 1M HCl was added to stop the reaction, and absorbance was measured at 450 nm.

측정 결과, 도 5의 A에 나타낸 바와 같이 세툭시맙의 Fab에 ACP 모듈을 결합시켜도 세툭시맙의 EGFR1 결합 능력에는 변화가 없는 것을 확인할 수 있었다.As a result of the measurement, as shown in A of FIG. 5 , it was confirmed that there was no change in the EGFR1 binding ability of cetuximab even when the ACP module was bound to the Fab of cetuximab.

1-2. Flow cytometer titration1-2. Flow cytometer titration

EGFR1이 과발현되는 세포주인 A431 세포를 배양하여 4x106개를 FACS 버퍼 (PBS, 2% FBS) 2 ㎖에 현탁시키고, v 모양 바닥 96 웰 플레이트의 각 웰에 50 ㎕씩 분주하였다. 대조군인 세툭시맙, 0 내지 25 nM 범위로 희석한 Cet Fab-ACP 단백질을 플레이트의 세포가 들어있는 각 웰에 50 ㎕씩 분주하고, 세포들과 잘 섞이도록 한 뒤 4℃에서 20분 동안 반응시켰다. 이후 4℃에서 300 g로 원심 분리하여 상층액을 제거하였다. 세포를 PBS 200 ㎕에 다시 현탁시키고, 4℃, 300 g로 원심 분리한 뒤 상층액을 제거하는 세척 과정을 2회 반복하였다. PBS에 1/32로 희석한 항 인간 IgG(Fab 특이적)-FITC 항체(sigma, F5512)를 각 웰에 100 ㎕씩 분주하여 혼합한 후 4℃에서 20분 동안 반응시켰다. 반응 후 4℃에서 300 g로 원심분리하여 상층액을 제거하였다. 세포를 PBS 200 ㎕에 다시 현탁시키고 4℃, 300 g로 원심 분리한 뒤 상층액을 제거하는 세척 과정을 2회 반복하였다. 이후 FACS 버퍼 300 ㎕에 세포를 현탁시키고, Flow Cytometer (BD FACSCalibur)로 FITC 수준을 측정하여 대조군인 세툭시맙과 비교하였다.A431 cells, a cell line overexpressing EGFR1, were cultured and 4x10 6 cells were suspended in 2 ml of FACS buffer (PBS, 2% FBS), and 50 μl was dispensed into each well of a v-shaped bottom 96-well plate. A control group, cetuximab, and Cet Fab-ACP protein diluted to a range of 0 to 25 nM were dispensed in each well of the plate containing 50 μl of cells, mixed well with the cells, and reacted at 4° C. for 20 minutes. made it Thereafter, the supernatant was removed by centrifugation at 300 g at 4°C. The cells were resuspended in 200 μl of PBS, centrifuged at 4° C. at 300 g, and the washing process of removing the supernatant was repeated twice. 100 μl of anti-human IgG (Fab-specific)-FITC antibody (sigma, F5512) diluted 1/32 in PBS was aliquoted into each well and mixed, followed by reaction at 4° C. for 20 minutes. After the reaction, the supernatant was removed by centrifugation at 300 g at 4°C. The cells were resuspended in 200 μl of PBS, centrifuged at 4° C. at 300 g, and the washing process of removing the supernatant was repeated twice. Thereafter, the cells were suspended in 300 μl of FACS buffer, and the FITC level was measured with a Flow Cytometer (BD FACSCalibur) and compared with cetuximab as a control.

그 결과, 도 5의 B에 나타낸 바와 같이 Cet Fab-ACP 단백질은 세툭시맙 및 Cetuximab Fab와 유사한 수준의 EGFR1 결합 능력을 나타내 암 표적성에 큰 변화가 없는 것을 알 수 있었다. 상기 결과는 Cet Fab에 ACP를 융합한 것은 표적 능력에 크게 영향을 주지 않으면서, ACP를 효과적으로 암 세포에 전달할 수 있음을 의미한다.As a result, as shown in FIG. 5B , the Cet Fab-ACP protein exhibited a similar level of EGFR1 binding ability to cetuximab and Cetuximab Fab, indicating that there was no significant change in cancer targeting properties. The above result means that the fusion of ACP to Cet Fab can effectively deliver ACP to cancer cells without significantly affecting the targeting ability.

실험예 2: Cet Fab-ACP 융합 단백질의 항암 효과 확인Experimental Example 2: Confirmation of anticancer effect of Cet Fab-ACP fusion protein

2-1. 세포 실험2-1. cell experiment

Merck 사의 Erbitux를 PierceTM사의 Protein A 아가로스 (Capacity: 15 ㎎ Fab/㎖) 레진과 섞고 4℃에서 2-4시간 동안 방치하여 레진 결합을 유도하였다. 이후 PBS pH 7.4 (0.01 M phosphate buffer, 0.0027 M KCl, 0.14 M NaCl)로 Protein A 아가로스를 여러 번 세척하고, 용출 버퍼(0.1 M glycine buffer, pH 2.5-3.0)로 세툭시맙을 용출시켰다. 용출액에 즉시 중화 버퍼 (1 M Tris, pH 7.5-8.5)를 넣어 pH 7.6을 맞추고, 원심분리 필터로 농도 200 uM이 되도록 농축하였다. Cet Fab 및 Cet Fab-ACP 단백질은 상기 기재한 바와 같이 준비하고, ACP 모듈(FK+S19+ACP+iRGD)은 애니젠(광주)에서 합성하였다.Merck's Erbitux was mixed with Pierce TM 's Protein A agarose (Capacity: 15 mg Fab/ml) resin and left at 4°C for 2-4 hours to induce resin binding. Thereafter, Protein A agarose was washed several times with PBS pH 7.4 (0.01 M phosphate buffer, 0.0027 M KCl, 0.14 M NaCl), and cetuximab was eluted with an elution buffer (0.1 M glycine buffer, pH 2.5-3.0). Neutralization buffer (1 M Tris, pH 7.5-8.5) was immediately added to the eluate to adjust the pH to 7.6, and concentrated to a concentration of 200 uM with a centrifugal filter. Cet Fab and Cet Fab-ACP proteins were prepared as described above, and the ACP module (FK+S19+ACP+iRGD) was synthesized in Anygen (Gwangju).

A431 암세포주를 96 웰 플레이트의 각 웰에 2,500개씩 분주하여 배양하고 (10% FBS, RPMI-1640), 다음날 배지를 제거하여 PBS로 1회 세척하였다. 이후 0% FBS 및 RPMI-1640 배지 90 ㎕로 교환하고, 200 uM로 저장된 각 샘플을 ½씩 순차 희석(serial dilution)하여 세포가 든 웰에 10 ㎕씩 처리하였다. 세포를 5일 동안 37℃ 배양기에서 배양하고, 각 웰에 CCK-8 용액을 10 ㎕씩 처리한 후 5 시간 뒤에 색이 변하면 450 ㎚에서 흡광도를 측정하였다.The A431 cancer cell line was cultured by dispensing 2,500 each into each well of a 96-well plate (10% FBS, RPMI-1640), and the medium was removed the next day and washed once with PBS. Thereafter, 90 μl of 0% FBS and RPMI-1640 medium was exchanged, and each sample stored at 200 uM was serially diluted by ½, and 10 μl of each well containing cells was treated. Cells were cultured in an incubator at 37° C. for 5 days, and when 10 μl of CCK-8 solution was treated in each well, and the color changed after 5 hours, absorbance was measured at 450 nm.

측정 결과, 도 6에 나타낸 바와 같이 세포 실험에서 ACP는 암세포를 효과적으로 사멸시키지만, 세툭시맙(Cetuximab), Cet Fab 및 Cet Fab-ACP 단백질은 세포를 거의 사멸시키지 못하는 것을 알 수 있었다.As a result of the measurement, as shown in FIG. 6 , it was found that ACP effectively kills cancer cells in cell experiments, but cetuximab, Cet Fab and Cet Fab-ACP proteins hardly kill cells.

2-2. 마우스 실험2-2. mouse experiment

오리엔트바이오에서 5-7주령의 암컷 누드 BALB/c 마우스(nu/nu) (18 내지 20g)를 구입하여, 12시간 명암 주기의 무균 사육실에서 사육하였다. 음식과 물은 자유롭게 섭취하도록 하였다. A431 종양세포를 마리당 1x107 세포/마리 농도로 배양한 후 수확하여 매트리겔(Matrigel; Corning) 100 ㎕에 현탁시켰다. 상기 현탁액을 쥐의 왼쪽 옆구리에 피하주사하고, 약 2주일이 지나 종양이 자리를 잡으면 마우스를 무작위로 4개 그룹(n=5/그룹)으로 분리하였다. 종양의 크기가 150 ㎣에 도달하면 각 그룹에 해당하는 시료를 3일 간격으로 3 nmol씩 정맥 주사하였다. 실험 기간 동안 캘리퍼로 종양의 크기를 측정하고, 종양 부피는 다음 식으로 계산하였다: (단축2x장축)/2. 각 실험군에서 종양의 크기가 최소값과 최대값을 가지는 마우스는 제외하고 계산하였다.5-7 week old female nude BALB/c mice (nu/nu) (18 to 20 g) were purchased from Orient Bio, and bred in an aseptic breeding room with a light-dark cycle for 12 hours. Food and water were provided ad libitum. A431 tumor cells were cultured at a concentration of 1x10 7 cells/animal per animal, harvested, and suspended in 100 μl of Matrigel (Corning). The suspension was injected subcutaneously into the left flank of the mice, and when the tumors settled after about 2 weeks, the mice were randomly divided into 4 groups (n=5/group). When the size of the tumor reached 150 mm 3 , the samples corresponding to each group were intravenously injected by 3 nmol every 3 days. During the experiment period, the size of the tumor was measured with a caliper, and the tumor volume was calculated as follows: (short axis 2 x long axis)/2. In each experimental group, the tumor size was calculated except for mice having the minimum and maximum values.

실험 결과, 도 7에 나타낸 바와 같이 대조군(Mock) > ACP 투여군 > Cet Fab-ACP 투여군 > 세툭시맙 투여군 순서로 종양의 크기가 빠르게 성장하였으며, 인 비트로(in vitro) 실험에서는 볼 수 없었던 세툭시맙의 효과가 인 비보(in vivo)에서는 확실하게 드러났다. Cet Fab-ACP 투여군은 세툭시맙 투여군 대비 종양의 크기가 약간 증가하였으나, 인 비트로 실험에서 항암 효과가 우수했던 ACP 투여군보다 종앙 성장 속도가 현저히 감소한 것을 알 수 있었다. 이는 ACP 모듈 그 자체는 인 비보 내에서 종양을 특이적으로 표적하는 능력이 없음을 의미한다. 그러나 Cet Fab을 전달자로 사용한 Cet Fab-ACP 단백질은 Cet Fab에 의해 종양에 표적하여 ACP가 그 효과를 발휘할 수 있음을 알 수 있다.As a result of the experiment, as shown in FIG. 7 , the tumor size grew rapidly in the order of control group (Mock) > ACP administration group > Cet Fab-ACP administration group > cetuximab administration group, and cetuximab, which was not seen in in vitro experiments The effect of Mab was clearly demonstrated in vivo. In the Cet Fab-ACP administration group, the tumor size slightly increased compared to the cetuximab administration group, but it was found that the tumor growth rate was significantly reduced compared to the ACP administration group, which had an excellent anticancer effect in the in vitro experiment. This means that the ACP module itself does not have the ability to specifically target tumors in vivo. However, it can be seen that the Cet Fab-ACP protein using Cet Fab as a messenger targets the tumor by Cet Fab, so that ACP can exert its effect.

<110> Konkuk University Glocal Industry-Academic Collaboration Foundation <120> ANTIGEN BINDING FRAGMENT PLATFORM CONJUGATED WITH ANTICANCER PEPTIDES <130> 2020-I109_P20U10C0983 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211> 224 <212> PRT <213> Artificial Sequence <220> <223> cetuximab Fab(antigen binding fragment) Fd <400> 1 Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Asn Tyr 20 25 30 Gly Val His Trp Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45 Gly Val Ile Trp Ser Gly Gly Asn Thr Asp Tyr Asn Thr Pro Phe Thr 50 55 60 Ser Arg Leu Ser Ile Asn Lys Asp Asn Ser Lys Ser Gln Val Phe Phe 65 70 75 80 Lys Met Asn Ser Leu Gln Ser Asn Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95 Arg Ala Leu Thr Tyr Tyr Asp Tyr Glu Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 <210> 2 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> cetuximab Fab(antigen binding fragment) Lc <400> 2 Asp Ile Gln Met Thr Gln Ser Pro Val Ile Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Ser Ile Gly Thr Asn 20 25 30 Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile 35 40 45 Lys Tyr Ala Ser Glu Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Ser 65 70 75 80 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Asn Asn Asn Trp Pro Thr 85 90 95 Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Ala Glu 210 <210> 3 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> ACP (CP2c binding peptides) <400> 3 Asn Tyr Pro Gln Arg Pro 1 5 <210> 4 <211> 2 <212> PRT <213> Artificial Sequence <220> <223> FK sequence <400> 4 Phe Lys 1 <210> 5 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> S19 sequence <400> 5 Pro Phe Val Ile Gly Ala Gly Val Leu Gly Ala Leu Gly Thr Gly Ile 1 5 10 15 Gly Gly Ile Gly Ser Gly 20 <210> 6 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> iRGD sequence <400> 6 Cys Arg Gly Asp Lys Gly Pro Asp Cys 1 5 <210> 7 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> H4 sequence <400> 7 Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr Gly 1 5 10 15 Ala His Ser <210> 8 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> L1 sequence <400> 8 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys 20 <210> 9 <211> 295 <212> PRT <213> Artificial Sequence <220> <223> SP-cetuximab Fab Fd-(GSS)2-ACP module=D1' <400> 9 Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr Gly 1 5 10 15 Ala His Ser Gly Ser Gly Gln Val Gln Leu Lys Gln Ser Gly Pro Gly 20 25 30 Leu Val Gln Pro Gly Gly Ser Leu Ser Ile Thr Cys Thr Val Ser Gly 35 40 45 Phe Ser Leu Thr Asn Tyr Gly Val His Trp Val Arg Gln Ser Pro Gly 50 55 60 Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Ser Gly Gly Asn Thr Asp 65 70 75 80 Tyr Asn Thr Pro Phe Thr Ser Arg Leu Ser Ile Asn Lys Asp Asn Ser 85 90 95 Lys Ser Gln Val Phe Phe Lys Met Asn Ser Leu Gln Ser Asn Asp Thr 100 105 110 Ala Ile Tyr Tyr Cys Ala Arg Ala Leu Thr Tyr Tyr Asp Tyr Glu Phe 115 120 125 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr 130 135 140 Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser 145 150 155 160 Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 165 170 175 Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His 180 185 190 Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 195 200 205 Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys 210 215 220 Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu 225 230 235 240 Pro Lys Ser Cys Asp Lys Gly Ser Leu Asp Gly Gly Ser Gly Gly Ser 245 250 255 Phe Lys Pro Phe Val Ile Gly Ala Gly Val Leu Gly Ala Leu Gly Thr 260 265 270 Gly Ile Gly Gly Ile Gly Ser Gly Asn Tyr Pro Gln Arg Pro Cys Arg 275 280 285 Gly Asp Lys Gly Pro Asp Cys 290 295 <210> 10 <211> 243 <212> PRT <213> Artificial Sequence <220> <223> SP-cetuximab Fab Lc=D2ΔBX <400> 10 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys Gly Ser Asp Ile Gln Met Thr Gln Ser Pro 20 25 30 Val Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg 35 40 45 Ala Ser Gln Ser Ile Gly Thr Asn Ile His Trp Tyr Gln Gln Arg Thr 50 55 60 Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Ile Ser 65 70 75 80 Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 85 90 95 Leu Ser Ile Asn Ser Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys 100 105 110 Gln Gln Asn Asn Asn Trp Pro Thr Thr Phe Gly Ala Gly Thr Lys Leu 115 120 125 Glu Leu Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro 130 135 140 Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu 145 150 155 160 Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn 165 170 175 Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser 180 185 190 Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala 195 200 205 Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly 210 215 220 Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Ala Glu Cys Gly 225 230 235 240 Ser Leu Glu <210> 11 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> (GSS)2 linker sequence <400> 11 Gly Gly Ser Gly Gly Ser 1 5 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D1 forward primer <400> 12 ggtatggact ggacctggag gatt 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D1 reverse primer <400> 13 tcactcgagt ccctgaggcc ttcg 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D2 forward primer <400> 14 ggtatggaca tgagggtccc tgct 24 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D2 reverse primer <400> 15 tcactcgagt ccttggggcc gtct 24 <110> Konkuk University Glocal Industry-Academic Collaboration Foundation <120> ANTIGEN BINDING FRAGMENT PLATFORM CONJUGATED WITH ANTICANCER PEPTIDES <130> 2020-I109_P20U10C0983 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211> 224 <212> PRT <213> Artificial Sequence <220> <223> cetuximab Fab (antigen binding fragment) Fd <400> 1 Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Asn Tyr 20 25 30 Gly Val His Trp Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45 Gly Val Ile Trp Ser Gly Gly Asn Thr Asp Tyr Asn Thr Pro Phe Thr 50 55 60 Ser Arg Leu Ser Ile Asn Lys Asp Asn Ser Lys Ser Gln Val Phe Phe 65 70 75 80 Lys Met Asn Ser Leu Gln Ser Asn Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95 Arg Ala Leu Thr Tyr Tyr Asp Tyr Glu Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 <210> 2 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> cetuximab Fab (antigen binding fragment) Lc <400> 2 Asp Ile Gln Met Thr Gln Ser Pro Val Ile Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Ser Ile Gly Thr Asn 20 25 30 Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile 35 40 45 Lys Tyr Ala Ser Glu Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Ser 65 70 75 80 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Asn Asn Asn Trp Pro Thr 85 90 95 Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gin Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Ala Glu 210 <210> 3 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> ACP (CP2c binding peptides) <400> 3 Asn Tyr Pro Gln Arg Pro 1 5 <210> 4 <211> 2 <212> PRT <213> Artificial Sequence <220> <223> FK sequence <400> 4 Phe Lys One <210> 5 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> S19 sequence <400> 5 Pro Phe Val Ile Gly Ala Gly Val Leu Gly Ala Leu Gly Thr Gly Ile 1 5 10 15 Gly Gly Ile Gly Ser Gly 20 <210> 6 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> iRGD sequence <400> 6 Cys Arg Gly Asp Lys Gly Pro Asp Cys 1 5 <210> 7 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> H4 sequence <400> 7 Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr Gly 1 5 10 15 Ala His Ser <210> 8 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> L1 sequence <400> 8 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys 20 <210> 9 <211> 295 <212> PRT <213> Artificial Sequence <220> <223> SP-cetuximab Fab Fd-(GSS)2-ACP module=D1' <400> 9 Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr Gly 1 5 10 15 Ala His Ser Gly Ser Gly Gln Val Gln Leu Lys Gln Ser Gly Pro Gly 20 25 30 Leu Val Gln Pro Gly Gly Ser Leu Ser Ile Thr Cys Thr Val Ser Gly 35 40 45 Phe Ser Leu Thr Asn Tyr Gly Val His Trp Val Arg Gln Ser Pro Gly 50 55 60 Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Ser Gly Gly Asn Thr Asp 65 70 75 80 Tyr Asn Thr Pro Phe Thr Ser Arg Leu Ser Ile Asn Lys Asp Asn Ser 85 90 95 Lys Ser Gln Val Phe Phe Lys Met Asn Ser Leu Gln Ser Asn Asp Thr 100 105 110 Ala Ile Tyr Tyr Cys Ala Arg Ala Leu Thr Tyr Tyr Asp Tyr Glu Phe 115 120 125 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr 130 135 140 Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser 145 150 155 160 Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 165 170 175 Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His 180 185 190 Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 195 200 205 Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys 210 215 220 Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu 225 230 235 240 Pro Lys Ser Cys Asp Lys Gly Ser Leu Asp Gly Gly Ser Gly Gly Ser 245 250 255 Phe Lys Pro Phe Val Ile Gly Ala Gly Val Leu Gly Ala Leu Gly Thr 260 265 270 Gly Ile Gly Gly Ile Gly Ser Gly Asn Tyr Pro Gln Arg Pro Cys Arg 275 280 285 Gly Asp Lys Gly Pro Asp Cys 290 295 <210> 10 <211> 243 <212> PRT <213> Artificial Sequence <220> <223> SP-cetuximab Fab Lc=D2ΔBX <400> 10 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys Gly Ser Asp Ile Gln Met Thr Gln Ser Pro 20 25 30 Val Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg 35 40 45 Ala Ser Gln Ser Ile Gly Thr Asn Ile His Trp Tyr Gln Gln Arg Thr 50 55 60 Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Ile Ser 65 70 75 80 Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 85 90 95 Leu Ser Ile Asn Ser Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys 100 105 110 Gln Gln Asn Asn Asn Trp Pro Thr Thr Phe Gly Ala Gly Thr Lys Leu 115 120 125 Glu Leu Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro 130 135 140 Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu 145 150 155 160 Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn 165 170 175 Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser 180 185 190 Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala 195 200 205 Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly 210 215 220 Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Ala Glu Cys Gly 225 230 235 240 Ser Leu Glu <210> 11 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> (GSS)2 linker sequence <400> 11 Gly Gly Ser Gly Gly Ser 1 5 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D1 forward primer <400> 12 ggtatggact ggacctggag gatt 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D1 reverse primer <400> 13 tcactcgagt ccctgaggcc ttcg 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D2 forward primer <400> 14 ggtatggaca tgagggtccc tgct 24 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> D2 reverse primer <400> 15 tcactcgagt ccttggggcc gtct 24

Claims (9)

(a) 항원결합단편 중쇄;
(b) 상기 항원결합단편 중쇄의 C 말단에 연결된 항암 펩티드 모듈; 및
(c) 상기 항원결합단편 중쇄에 결합된 항원결합단편 경쇄;를 포함하고,
상기 항암 펩티드 모듈은 프로테아제 절단 서열, 엑소좀 융합 유도 서열 및 전사 인자 CP2c 결합 서열을 포함하는 것인 항원결합단편-항암 펩티드 컨쥬게이트.
(a) an antigen-binding fragment heavy chain;
(b) an anticancer peptide module linked to the C-terminus of the antigen-binding fragment heavy chain; and
(c) an antigen-binding fragment light chain bound to the antigen-binding fragment heavy chain;
The anticancer peptide module is an antigen-binding fragment comprising a protease cleavage sequence, an exosome fusion inducing sequence and a transcription factor CP2c binding sequence - an anticancer peptide conjugate.
제1항에 있어서, 상기 항원결합단편 중쇄 및 항원결합단편 경쇄는 N 말단에 신호 펩티드가 결합된 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The antigen-binding fragment-anticancer peptide conjugate according to claim 1, wherein the antigen-binding fragment heavy chain and the antigen-binding fragment light chain have a signal peptide bound to the N-terminus.
제1항에 있어서, 상기 항원결합단편 중쇄 및 항원결합단편 경쇄는 세툭시맙, 파니투무맙, 베바시주맙, 퍼투주맙, 트라스투주맙, 리툭시맙, 오파투무맙, 오비누투주맙, 이필리무맙, 라무시루맙, 니볼루맙 및 펨브롤리주맙으로 이루어진 군에서 선택되는 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The method of claim 1, wherein the antigen-binding fragment heavy chain and the antigen-binding fragment light chain are cetuximab, panitumumab, bevacizumab, pertuzumab, trastuzumab, rituximab, ofatumumab, obinutuzumab, ipil An antigen-binding fragment-anticancer peptide conjugate selected from the group consisting of rimumab, ramucirumab, nivolumab and pembrolizumab.
제1항에 있어서, 상기 (c)의 결합은 공유결합인 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The antigen-binding fragment-anticancer peptide conjugate according to claim 1, wherein the binding of (c) is a covalent bond.
제1항에 있어서, 상기 항암 펩티드 모듈은 종양세포 침투 서열을 추가로 포함하는 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The antigen-binding fragment-anticancer peptide conjugate of claim 1, wherein the anticancer peptide module further comprises a tumor cell penetration sequence.
제5항에 있어서, 상기 항암 펩티드 모듈은 서열번호 4로 표시되는 프로테아제 절단 서열, 서열번호 5로 표시되는 엑소좀 융합 유도 서열, 서열번호 3으로 표시되는 전사 인자 CP2c 결합 서열 및 서열번호 6으로 표시되는 종양 침투 서열을 포함하는 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The method according to claim 5, wherein the anticancer peptide module is represented by a protease cleavage sequence represented by SEQ ID NO: 4, an exosome fusion inducing sequence represented by SEQ ID NO: 5, a transcription factor CP2c binding sequence represented by SEQ ID NO: 3, and SEQ ID NO: 6 The antigen-binding fragment comprising a tumor-penetrating sequence to be-anti-cancer peptide conjugate.
제1항에 있어서, 상기 항암 펩티드 모듈은 링커 서열에 의해 항원결합단편 중쇄의 C-말단에 연결된 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The antigen-binding fragment-anti-cancer peptide conjugate according to claim 1, wherein the anti-cancer peptide module is linked to the C-terminus of the antigen-binding fragment heavy chain by a linker sequence.
제7항에 있어서, 상기 링커 서열은 서열번호 11로 표시되는 서열을 포함하는 것인, 항원결합단편-항암 펩티드 컨쥬게이트.
The antigen-binding fragment-anticancer peptide conjugate according to claim 7, wherein the linker sequence comprises the sequence shown in SEQ ID NO: 11.
제1항에 따른 항원결합단편-항암 펩티드 컨쥬게이트를 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating cancer comprising the antigen-binding fragment-anticancer peptide conjugate according to claim 1 as an active ingredient.
KR1020200075791A 2020-06-22 2020-06-22 Antigen binding fragment platform conjugated with anticancer peptides KR102457344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200075791A KR102457344B1 (en) 2020-06-22 2020-06-22 Antigen binding fragment platform conjugated with anticancer peptides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200075791A KR102457344B1 (en) 2020-06-22 2020-06-22 Antigen binding fragment platform conjugated with anticancer peptides

Publications (2)

Publication Number Publication Date
KR20210157688A true KR20210157688A (en) 2021-12-29
KR102457344B1 KR102457344B1 (en) 2022-10-24

Family

ID=79176743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200075791A KR102457344B1 (en) 2020-06-22 2020-06-22 Antigen binding fragment platform conjugated with anticancer peptides

Country Status (1)

Country Link
KR (1) KR102457344B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120344A1 (en) * 2020-12-01 2022-06-09 The Trustees Of Columbia University In The City Of New York Method of sensitizing cancers to immunotherapy using immunomodulatory agents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232454B1 (en) 2010-12-02 2013-02-12 코오롱인더스트리 주식회사 Microbial electrolysis cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material
WO2014058389A1 (en) * 2012-10-12 2014-04-17 Agency For Science, Technology And Research Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics
KR20160117198A (en) * 2015-03-31 2016-10-10 한양대학교 산학협력단 A peptide having anticancer activity, pharmaceutical composition and composition of health functional food for prevention and treatment of cancer comprising an effective amount of the peptide
KR20200116394A (en) * 2019-04-01 2020-10-12 한양대학교 산학협력단 Anticancer peptide for targeting CP2c

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232454B1 (en) 2010-12-02 2013-02-12 코오롱인더스트리 주식회사 Microbial electrolysis cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material
WO2014058389A1 (en) * 2012-10-12 2014-04-17 Agency For Science, Technology And Research Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics
KR20160117198A (en) * 2015-03-31 2016-10-10 한양대학교 산학협력단 A peptide having anticancer activity, pharmaceutical composition and composition of health functional food for prevention and treatment of cancer comprising an effective amount of the peptide
KR20200116394A (en) * 2019-04-01 2020-10-12 한양대학교 산학협력단 Anticancer peptide for targeting CP2c

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120344A1 (en) * 2020-12-01 2022-06-09 The Trustees Of Columbia University In The City Of New York Method of sensitizing cancers to immunotherapy using immunomodulatory agents

Also Published As

Publication number Publication date
KR102457344B1 (en) 2022-10-24

Similar Documents

Publication Publication Date Title
AU2021201003B2 (en) Trispecific binding proteins and methods of use
CN104936986B (en) Bispecific T cell activation antigen binding molecules
AU2014249405B2 (en) Fusion immunomodulatory proteins and methods for making same
KR101658247B1 (en) Antibody targeting through a modular recognition domain
CN107849137A (en) The anti-CEAXCD3 T cell activations antigen binding molecules of bispecific
WO2017036255A1 (en) Molecular constructs for preventing the formation of blood clot and/or treating thrombosis
MX2010008571A (en) Anti-trka antibodies and derivatives thereof.
TWI653244B (en) Use of bi-specific antibodies for modifying pegylated substance
JP6640232B2 (en) Quadruple-specific octameric binders and antibodies to Clostridium difficile against toxin A and toxin B for the treatment of Clostridium difficile infection
JP2014506568A (en) Wnt composition and method of use thereof
TW201742958A (en) High-throughput screening of functional antibody fragments, immunoconjugate comprising the same, and adaptor-drug conjugate for screening
WO2017134592A1 (en) Anti-cd20/immunomodulatory fusion proteins and methods for making same
KR102457344B1 (en) Antigen binding fragment platform conjugated with anticancer peptides
CA3133678C (en) Anti-mesothelin chimeric antigen receptor specifically binding to mesothelin
RU2723940C2 (en) Bispecific antigen-binding polypeptides
JP2007527206A (en) Peptabody for cancer treatment
CN111848805A (en) Bispecific antibodies with dual Her2 sites for tumor immunotherapy
JP2023542283A (en) Anti-PVRIG protein antibodies or antibody fragments and uses thereof
CN114316045A (en) anti-PD-L1 antibodies and uses thereof
WO2015138411A1 (en) Anti-fibulin-3 antibodies and uses thereof
KR102507337B1 (en) Chimeric antibody receptor comprising anti mesothelin scFv and uses thereof
WO2017211278A1 (en) Antibody fusion proteins for drug delivery
CN114539420B (en) Anti-B7-H3 monoclonal antibody, anti-B7-H3 xCD 3 bispecific antibody, preparation method and application thereof
US11952402B2 (en) Fusion protein containing trail and IgG binding domain and the uses thereof
KR20230103244A (en) Double-targeting protein comprising anti-HER2 scFv and peptide for targeting CP2c and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant