KR20210141167A - 카메라 모듈 - Google Patents

카메라 모듈 Download PDF

Info

Publication number
KR20210141167A
KR20210141167A KR1020200058480A KR20200058480A KR20210141167A KR 20210141167 A KR20210141167 A KR 20210141167A KR 1020200058480 A KR1020200058480 A KR 1020200058480A KR 20200058480 A KR20200058480 A KR 20200058480A KR 20210141167 A KR20210141167 A KR 20210141167A
Authority
KR
South Korea
Prior art keywords
unit
signal
optical
light source
light
Prior art date
Application number
KR1020200058480A
Other languages
English (en)
Inventor
김철
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020200058480A priority Critical patent/KR20210141167A/ko
Publication of KR20210141167A publication Critical patent/KR20210141167A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • H04N5/2253
    • H04N5/2254
    • H04N5/2256
    • H04N5/2257

Abstract

본 발명의 실시예에 따른 이미지 센서; 광원; 상기 광원 상에 배치되는 광학부; 및 상기 광학부를 이동하여 광을 면 광원 패턴 또는 점 광원 패턴으로 변환하는 구동부를 포함하고; 상기 광학부의 이동을 위해 입력된 이동 신호와 상기 이동 신호에 대응하여 감지된 상기 광학부의 위치 신호를 이용하여 상기 광원으로부터 출력된 광신호의 출력을 제어하는 카메라 모듈을 개시한다.

Description

카메라 모듈{CAMERA MODULE}
실시예는 카메라 모듈에 관한 것이다.
3 차원 콘텐츠는 게임, 문화뿐만 아니라 교육, 제조, 자율주행 등 많은 분야에서 적용되고 있으며, 3차원 콘텐츠를 획득하기 위하여 깊이 정보(Depth Map)가 필요하다. 깊이 정보는 공간 상의 거리를 나타내는 정보이며, 2차원 영상의 한 지점에 대하여 다른 지점의 원근 정보를 나타낸다. 깊이 정보를 획득하는 방법으로, IR(Infrared) 구조광을 객체에 투사하는 방식, 스테레오 카메라를 이용하는 방식, TOF(Time of Flight) 방식 등이 이용되고 있다.
이러한 TOF 방식이나 구조광 방식의 경우 적외선 파장 영역의 빛을 이용하고 있는데, 최근에는 적외선 파장 영역의 특징을 이용하여 생체 인증에 이용하고자 하는 시도가 있다. 예를 들어, 손가락 등에 퍼진 정맥의 모양은 태아 때부터 일생 동안 변하지 않고, 사람마다 다르다고 알려져 있다. 이에 따라, 적외선 광원이 탑재된 카메라 장치를 이용하여 정맥 패턴을 식별할 수 있다. 이를 위하여, 손가락을 촬영한 후, 손가락의 색과 형상을 기반으로 배경을 제거하여 각 손가락을 검출할 수 있으며, 검출된 각 손가락의 색 정보로부터 각 손가락의 정맥 패턴을 추출할 수 있다. 즉, 손가락의 평균 색깔, 손가락에 분포된 정맥의 색깔, 및 손가락에 있는 주름의 색깔은 서로 상이할 수 있다. 예를 들어, 손가락에 분포된 정맥의 색깔은 손가락의 평균 색깔에 비하여 적색이 약할 수 있으며, 손가락에 있는 주름의 색깔은 손가락의 평균 색깔에 비하여 어두울 수 있다. 이러한 특징을 이용하여 픽셀 별로 정맥에 근사한 값을 계산할 수 있으며, 계산한 결과를 이용하여 정맥 패턴을 추출할 수 있다. 그리고, 추출된 각 손가락의 정맥 패턴과 미리 등록된 데이터를 대비하여 개인을 식별할 수 있다.
다만, 출력되는 광신호의 패턴을 거리에 따라 변형시키는 경우, 사람의 안구 등을 손상시키는 문제가 존재한다.
실시예는 광신호의 형태를 변형하는 구동부를 포함하는 카메라 장치를 제공하기 위한 것이다.
실시예는 렌즈와 렌즈 모듈의 손상 등의 이상을 용이하게 감지하여 인체 등이 광신호의 에너지에 의해 손상을 입는 것을 방지하는 카메라 모듈을 제공한다.
실시예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 실시예에 따른 카메라 모듈은 이미지 센서; 광원; 상기 광원 상에 배치되는 광학부; 및 상기 광학부를 이동하여 광을 면 광원 패턴 또는 점 광원 패턴으로 변환하는 구동부를 포함하고; 상기 광학부의 이동을 위해 입력된 이동 신호와 상기 이동 신호에 대응하여 감지된 상기 광학부의 위치 신호를 이용하여 상기 광원으로부터 출력된 광신호의 출력을 제어한다.
상기 구동부는, 상기 광학부와 결합하는 렌즈 배럴; 상기 렌즈 배럴과 결합하는 구동 마그넷부; 및 상기 구동 마그넷부와 이격 배치되는 구동 코일부;을 포함할 수 있다.
상기 구동 마그넷부의 위치를 감지하여 상기 위치 신호를 생성하는 위치 센서;를 더 포함하고, 상기 이동 신호는 상기 구동 코일에 인가되는 전류에 대응하는 신호일 수 있다.
상기 광학부는 복수의 렌즈를 포함하고, 상기 복수의 렌즈는 상기 광원으로부터 출력된 광신호의 발산각을 낮추는 콜리메이터 렌즈이고, 상기 광학부의 백포커스는 상기 광원 측에 배치되고, 상기 광학부의 화각(FoI, Field of illumination)은 60도 내지 120일 수 있다.
상기 이동 신호는 객체와의 거리에 따라 미리 설정될 수 있다.
상기 광원에 인가되는 전원을 차단하여 상기 광신호의 출력을 제어하는 제어부;를 포함하고, 상기 제어부는 상기 이동 신호에 대응한 기준 위치 신호와 상기 위치 신호 간의 크기 오차가 제1 임계값보다 큰 경우 상기 광신호의 출력을 차단할 수 있다.
상기 제어부는 상기 기준 위치 신호와 상기 위치 신호 간의 시간 오차가 제2 임계값보다 큰 경우 상기 광신호의 출력을 차단할 수 있다.
상기 제어부는 상기 기준 위치 신호의 포화 시간 이후에 상기 위치 신호의 진동이 존재하는 경우 상기 광신호의 출력을 차단할 수 있다.
상기 위치 신호가 초기화되는 경우 상기 광신호의 출력을 차단할 수 있다.
상기 광학부가 점 광원 패턴을 형성하는 위치에 있는 경우에만 상기 광신호의 출력을 차단할 수 있다.
실시예에 따르면, 객체와의 거리, 해상도 등 다양한 변수에 따라 광 또는 광신호의 광패턴을 변경함으로써 다양한 어플리케이션의 요구에 따라 유연하게 구동될 수 있다.
또한, 실시예에 따르면 렌즈와 렌즈 모듈의 손상 등의 이상을 용이하게 감지하여 인체 등이 광신호의 에너지에 의해 손상을 입는 것을 방지할 수 있다.
실시예에 따르면, 소비 전력을 줄일 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고,
도 2는 도 1에서 AA'로 절단된 단면도이고,
도 3은 실시예에 따른 카메라 모듈의 분해 사시도이고,
도 4는 실시예에 따른 발광부의 하우징을 도시한 도면이고,
도 5는 실시예에 따른 발광부의 제1 광학부 및 제1 렌즈 배럴을 도시한 도면이고,
도 6은 실시예에 따른 발광부의 구동 마그넷부 및 구동 코일부을 도시한 도면이고,
도 7은 실시예에 따른 발광부의 탄성부의 결합을 나타낸 도면이고,
도 8은 실시예에 따른 발광부의 제1 탄성부재를 도시한 도면이고,
도 9는 실시예에 따른 발광부의 제2 탄성부재를 도시한 도면이고,
도 10은 실시예에 따른 발광부의 측면 기판의 일측을 도시한 도면이고,
도 11은 실시예에 따른 발광부의 측면 기판의 타측을 도시한 도면이고,
도 12는 실시예에 따른 카메라 모듈의 베이스를 도시한 도면이고,
도 13은 실시예에 따른 수광부의 제2 광학부 및 제2 렌즈 배럴을 도시한 도면이고,
도 14는 실시예에 따른 카메라 모듈의 커버를 도시한 도면이고,
도 15는 실시예에 따른 발광부에서 제1 광학부 및 제1 렌즈 모듈의 이동을 설명하는 도면이고,
도 16은 제1 광학부 및 제1 렌즈 모듈의 이동에 따른 광신호 형태를 설명하는 도면이고,
도 17은 제1 광학부 및 제1 렌즈 모듈의 이동에 따른 수광부의 이미지의 예를 도시한 도면이고,
도 18은 실시예에 따른 제어부의 제1 동작을 설명하는 도면이고,
도 19는 실시예에 따른 제어부의 제2 동작을 설명하는 도면이고,
도 20은 실시예에 따른 제어부의 제3 동작을 설명하는 도면이고,
도 21는 실시예에 따른 카메라 모듈을 포함하는 광학기기를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 본 실시예에 따른 광학기기를 설명한다.
광학기기는 핸드폰, 휴대폰, 스마트폰(smart phone), 휴대용 스마트 기기, 디지털 카메라, 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 네비게이션 중 어느 하나를 포함할 수 있다. 다만, 광학기기의 종류가 이에 제한되는 것은 아니며 영상 또는 사진을 촬영하기 위한 어떠한 장치도 광학기기에 포함될 수 있다.
광학기기는 본체를 포함할 수 있다. 본체는 바(bar) 형태일 수 있다. 또는, 본체는 2개 이상의 서브 몸체(sub-body)들이 상대 이동 가능하게 결합하는 슬라이드 타입, 폴더 타입, 스윙(swing) 타입, 스위블(swirl) 타입 등 다양한 구조일 수 있다. 본체는 외관을 이루는 케이스(케이싱, 하우징, 커버)를 포함할 수 있다. 예컨대, 본체는 프론트 케이스와 리어 케이스를 포함할 수 있다. 프론트 케이스와 리어 케이스의 사이에 형성된 공간에는 광학기기의 각종 전자 부품이 내장될 수 있다.
광학기기는 디스플레이를 포함할 수 있다. 디스플레이는 광학기기의 본체의 일면에 배치될 수 있다. 디스플레이는 영상을 출력할 수 있다. 디스플레이는 카메라에서 촬영된 영상을 출력할 수 있다.
광학기기는 카메라를 포함할 수 있다. 카메라는 ToF(Time of Flight) 카메라 장치를 포함할 수 있다. ToF 카메라 장치는 광학기기의 본체의 전면에 배치될 수 있다. 이 경우, ToF 카메라 장치는 광학기기의 보안인증을 위한 사용자의 얼굴인식, 홍채인식 등 다양한 방식의 생체인식에 사용될 수 있다.
이하에서는 본 실시예에 따른 ToF 카메라 장치의 구성을 도면을 참조하여 설명한다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고, 도 2는 도 1에서 AA'로 절단된 단면도이고, 도 3은 실시예에 따른 카메라 모듈의 분해 사시도이다.
도 1 내지 도 3을 참조하면, 실시예에 따른 카메라 모듈(10)은 발광부(1), 수광부(2), 커넥트부(3), 메인 기판(4), 연장 기판(5), 연결 기판(6) 및 커넥터(7)를 포함할 수 있다. 그리고 실시예에 따른 카메라 모듈(10)은 제어부(CT)를 포함할 수 있다. 제어부(CT)는 발광부(1), 수광부(2), 커넥트부(3), 메인 기판(4) 중 어느 하나에 위치할 수 있다. 또한, 본 명세서에서 카메라 모듈은 발광부(1) 및 수광부(2) 중 어느 하나만을 갖는 개념일 수 있다. 또는 카메라 모듈은 발광부(1) 및 수광부(2) 중 어느 하나와 전기적으로 연결된 기판(예로, 메인 기판(4))을 포함하는 개념일 수 있다.
먼저, 발광부(1)는 발광모듈, 발광유닛, 발광어셈블리 또는 발광장치일 수 있다. 발광부(1)는 광 또는 광신호를 생성한 후 객체에 조사할 수 있다. 이하에서, 광 또는 광신호를 혼용하여 사용한다. 이때, 발광부(1)는 펄스파(pulse wave)의 형태나 지속파(continuous wave)의 형태로 광신호를 생성하여 출력할 수 있다. 지속파는 사인파(sinusoid wave)나 사각파(squared wave)의 형태일 수 있다.
그리고 광신호를 펄스파나 지속파 형태로 생성함으로써, 예컨대, ToF 카메라 장치는 발광부(1)로부터 출력된 광신호와 광신호가 객체(O)로부터 반사된 후 ToF 카메라 장치의 수광부(2)로 입력된 입력광 사이의 위상 차를 검출할 수 있다. 본 명세서에서, 출력광은 발광부(1)로부터 출력되어 객체(O)에 입사되는 광신호를 의미하고, 입력광 또는 반사광은 발광부(1)로부터 출력되어 객체(O)에 도달하여 객체(O)로부터 반사된 후 ToF 카메라 장치로 입력되는 광신호를 의미할 수 있다. 또한, 객체(O)의 입장에서 출력광은 입사광이 될 수 있고, 입력광은 반사광이 될 수 있다.
발광부(1)는 생성된 광신호를 소정의 노출주기(integration time) 동안 객체(O)에 조사한다. 여기서, 노출주기란 1개의 프레임 주기를 의미한다. 복수의 프레임을 생성하는 경우, 설정된 노출주기가 반복된다. 예를 들어, ToF 카메라 장치가 20 FPS로 객체를 촬영하는 경우, 노출주기는 1/20[sec]가 된다. 그리고 100개의 프레임을 생성하는 경우, 노출주기는 100번 반복될 수 있다.
또한, 발광부(1)는 서로 다른 주파수를 가지는 복수의 광신호를 생성할 수 있다. 발광부(1)는 서로 다른 주파수를 가지는 복수의 광신호를 순차적으로 반복하여 생성할 수 있다. 또는, 발광부(1)는 서로 다른 주파수를 가지는 복수의 광신호를 동시에 생성할 수도 있다.
발광부(1)는 광원(LS)을 포함할 수 있다. 광원(LS)은 빛을 생성할 수 있다. 광원(LS)은 빛을 출력할 수 있다. 광원(LS)은 빛을 조사할 수 있다. 광원(LS)이 생성하는 빛은 파장이 770㎚ 내지 3000㎚인 적외선 일 수 있다. 또는 광원(LS)이 생성하는 빛은 파장이 380㎚ 내지 770㎚인 가시광선 일 수 있다. 광원(LS)은 광을 생성하여 출력하는 다양한 소자를 모두 포함할 수 있다. 예컨대, 광원(LS)은 발광 다이오드(Light Emitting Diode, LED) 수직 공진 표면 발광 레이저 (VCSEL, Vertical Cavity Surface Emitting Laser) 을 포함할 수 있다.
또한, 광원(LS)은 일정한 패턴에 따라 배열된 형태의 복수의 발광 다이오드를 포함할 수 있다. 뿐만 아니라, 광원(LS)은 유기 발광 다이오드(Organic light emitting diode, OLED)나 레이저 다이오드(Laser diode, LD)를 포함할 수 있다.
발광부(1)는 빛을 변조하는 광변조부를 포함할 수 있다. 광원(LS)은 일정 시간 간격으로 점멸(on/off)을 반복하여 펄스파 형태나 지속파 형태의 광신호를 생성할 수 있다. 일정 시간 간격은 광신호의 주파수일 수 있다. 광원(LS)의 점멸은 광변조부에 의해 제어될 수 있다. 광변조부는 광원(LS)의 점멸을 제어하여 광원(LS)이 지속파나 펄스파 형태의 광신호를 생성하도록 제어할 수 있다. 광변조부는 주파수 변조(frequency modulation)나 펄스 변조(pulse modulation) 등을 통해 광원(LS)이 지속파나 펄스파 형태의 광신호를 생성하도록 제어할 수 있다. 광변조부는 제어부 내에 위치할 수 있다. 이에, 후술하는 바와 같이 제어부는 광변조부를 제어하여 광원에 의한 광신호의 출력을 차단(off) 또는 제공(on)할 수 있음을 이해해야 한다.
발광부(1)는 디퓨져(미도시됨)를 포함할 수 있다. 디퓨져(미도시됨)는 디퓨져 렌즈일 수 있다. 디퓨져(미도시됨)는 광원(LS)의 전방에 배치될 수 있다. 광원(LS)으로부터 출사된 광은 디퓨져(미도시됨)를 통과하여 객체(O)에 입사될 수 있다. 디퓨져(미도시됨)는 광원(LS)으로부터 출사되는 광의 경로를 변경할 수 있다. 디퓨져(미도시됨)는 광원(LS)으로부터 출사되는 광을 확산할 수 있다. 디퓨져(미도시됨)는 후술하는 제1 광학부 내에 위치할 수도 있다.
구체적으로, 발광부(1)는 상술한 광원(LS), 하우징(110), 제1 광학부(120), 제1 렌즈 배럴(130), 구동 마그넷부(140)와 구동 코일부(150)를 포함하는 구동부, 탄성부(160), 측면 기판(170), 위치 센서(180)를 포함할 수 있다.
먼저, 하우징(110)은 후술하는 커버(400) 내측에 위치할 수 있다. 하우징(110)은 후술하는 제1 렌즈 배럴(130), 측면 기판(170), 구동 코일부(150), 탄성부(160)와 결합할 수 있다.
하우징(110)은 내부에 개구된 배럴 수용부를 포함할 수 있다. 배럴 수용부에는 상술한 제1 렌즈 배럴(130) 및 구동 코일부(150)가 위칙할 수 있다.
제1 광학부(120)는 하우징(110) 내에 위치할 수 있다. 제1 광학부(120)는 후술하는 제1 렌즈 배럴(130)에 의해 홀딩(holding)되고, 제1 렌즈 배럴(130)을 통해 하우징(110)과 결합할 수 있다.
제1 광학부(120)는 복수 개의 광학 요소 또는 렌즈로 이루어질 수 있다. 예컨대, 제1 광학부(120)는 복수 개의 렌즈로 이루어질 수 있다.
또한, 제1 광학부(120)는 콜리메이터 렌즈(collimator lens)를 포함할 수 있다. 예를 들어, 콜리메이터 렌즈는 복수 개의 렌즈로 구성될 수 있으며, 60도 내지 120도의 화각(FoI)을 가질 수 있다. 이러한 콜리메이터 렌즈는 광원에서 출력되는 광의 발산각을 낮춰줄 수 있다. 광원인 수직 공진 표면 발광 레이저(VCESL)의 각 어퍼처의 레이저 발산각이 20도 내지 25도인 경우 콜리메이터 렌즈를 통과한 광의 발산각이 1도 이하일 수 있다.
그리고 제1 광학부(120)는 광원(LS)으로부터 출력된 광신호를 기 설정된 복제 패턴에 따라 복제할 수 있다. 이에, 제1 광학부(120)는 회절광학소자(diffractive optical element, DOE)나 디퓨져 렌즈(diffuser lens)를 포함할 수 있다. 예컨대, 제1 광학부(120)는 마이크로 스케일(micro scale)이나 나노 스케일(nano scale)의 구조를 갖는 광학부재를 포함할 수 있다.
광원(LS)으로부터 객체를 향해 출사하는 광신호(출력광)가 제1 렌즈 배럴(130)을 통과할 수 있다. 제1 렌즈 배럴(130)의 광축과 광원(LS)의 광축은 얼라인(align)될 수 있다. 또한, 제1 렌즈 배럴(130)은 하우징(110)과 결합될 수 있다. 그리고 제1 렌즈 배럴(130)은 하우징(110)에 고정될 수 있다. 제1 렌즈 배럴(130)은 복수의 광학 요소로 이루어진 제1 광학부(120)를 홀딩(holding)할 수 있다.
제1 렌즈 배럴(130)은 제1 광학부(120)가 안착하는 렌즈 수용부(131)를 포함할 수 있다. 제1 렌즈 배럴(130)은 후술하는 바와 같이 보이스 코일 모터 등에 의하여 상하 등으로 이동될 수 있다. 즉, 제1 렌즈 배럴(130)은 보이스 코일 모터 등으 엑추에이터(actuator)에 의해 광축 방향을 따라 상하 이동할 수 있다. 이로써, 후술하는 바와 같이 광원에서 발생된 광이 제1 렌즈 배럴(130)을 지나면서 면 광원 패턴 또는 점광원 패턴으로 바뀔 수 있다. 그리고 제1 렌즈 배럴(130)은 구동 마그넷부가 안착하는 마그넷 안착홈(132)을 포함할 수 있다.
또한, 렌즈 수용부(131)의 측면에는 제1 광학부(120)와의 결합을 위해 나사산 구조가 형성될 수 있다. 이에, 제1 광학부(120)는 후술하는 구동부에 의해 제1 렌즈 배럴(130)과 함께 하우징(110) 내에서 상하 이동할 수 있다.
또한, 측면 기판(170)은 하우징(110)과 결합할 수 있다. 측면 기판(170)은 하우징(110)의 측면에 위치하는 기판홈(112)에 위치할 수 있다. 또한, 측면 기판(170)은 메인 기판(4)과 전기적으로 연결될 수 있다.
또한, 구동부는 구동 마그넷부(140)와 구동 코일부(150)를 포함할 수 있다.
구동 마그넷부(140)는 복수 개의 마그넷을 포함할 수 있다. 복수 개의 마그넷은 제1 렌즈 배럴(130)의 측면에 위치한 마그넷 안착홈(132)에 위치할 수 있다
구동 마그넷부(140)는 후술하는 구동 코일부(150)와 전자기적 상호작용에 의해 제1 렌즈 배럴(130) 및 제1 광학부(120)를 하우징(110)에 대해 상하 이동할 수 있다. 이에 따라, 하부의 광원(LS)으로부터 제1 광학부(120) 및 제1 렌즈 배럴(130)까지의 이격 거리가 증가 또는 감소될 수 있다. 그리고 상술한 이격 거리에 따라 출력광이 객체에 대해 면광원 또는 점광원의 형태를 가질 수 있다.
구동 코일부(150)는 복수 개의 코일을 포함하며, 하우징(110)의 측면에 위치할 수 있다. 구동 코일부(150)는 구동 마그넷부(140)와 대향하여 위치할 수 있다. 이에, 구동 코일부(150)로 전류가 주입되면 구동 코일부(150)와 구동 마그넷부(140) 간의 전자기적 상호 작용(예컨대, 로렌츠의 힘)으로 제1 렌즈 배럴(130)이 이동할 수 있다.
구동 코일부(150)는 하우징(110)의 측면에 형성된 각 코일 안착부(114)에 위치할 수 있다. 구동 코일부(150)는 측면 기판(170)과 전기적으로 연결될 수 있다. 예컨대, 구동 코일부(150)는 측면 기판(170)과 와이어 등을 통해 전기적으로 연결될 수 있다. 그리고 측면 기판(170)은 상술한 바와 같이 하우징(110)과 결합하므로, 구동 코일부(150)도 하우징(110)의 측면에 형성된 코일 안착부(114) 내에 안착하여 하우징과 결합할 수 있다. 이에 대한 자세한 설명은 후술한다.
탄성부(160)는 하우징(110) 상에 배치될 수 있다. 탄성부(160)는 제1 렌즈 배럴(130) 및 하우징(110)과 결합할 수 있다. 하우징(110)은 메인 기판(4) 또는 후술하는 베이스(200)와 결합되어 고정될 수 있다. 이와 달리, 제1 렌즈 배럴(130)은 상술한 로렌츠의 힘에 의해 하우징(110)에 대해 상하로 이동할 수 있다. 탄성부(160)는 이러한 제1 렌즈 배럴(130) 또는 제1 광학부(120)의 상하 이동에 대해 예압을 제공할 수 있다. 이에 따라, 구동부에 의한 로렌츠의 힘이 발생하지 않는 경우 제1 렌즈 배럴(130)은 하우징(110)에 대해 소정의 위치를 유지할 수 있다. 또한, 구동부에 의한 로렌츠의 힘이 발생하는 경우에도 제1 렌즈 배럴(130)과 하우징(110) 간의 위치 관계를 일정 범위로 유지하므로 카메라 모듈의 신뢰성이 개선될 수 있다.
위치 센서(180)는 측면 기판(170)과 전기적으로 연결될 수 있다. 또한, 위치 센서(180)는 측면 기판(170) 상에 위치할 수 있다. 그리고 위치 센서(180)는 상술한 구동 마그넷부(140)와 소정 거리 이격 배치될 수 있다.
위치 센서(180)는 홀 센서 또는 홀 IC를 포함할 수 있다. 위치 센서(180)는 구동 마그넷부(140)의 자기력을 감지할 수 있다.
실시예에 따른 위치 센서(180)는 구동 마그넷부로부터의 자기장 세기를 감지하여 제1 렌즈 배럴(130) 또는 제1 광학부(120)의 광원(LS)에 대한 위치 정보를 출력할 수 있다. 이에 따라, 제어부는 위치 센서(180)의 위치 정보를 바탕으로 제1 광학부(120) 또는 제1 렌즈 배럴(130)의 결함을 판단하고 판단한 결과에 대응하여 광원(LS)의 출력을 제어(on/off)할 수 있다.
실시예로, 위치 센서(180)는 복수의 위치 센서를 포함할 수 있다. 위치 센서(180)는 2개의 센서를 포함할 수 있다. 위치 센서(180)는 광축 방향으로의 제1 렌즈 배럴(130) 및 제1 광학부(120)의 이동을 감지할 수 있다. 본 명세서에서, Z축 방향은 제3 방향으로 광축 방향 또는 수직 방향이다. 그리고 X축 방향은 Z축 방향에 수직한 방향이며 실시예에서 발광부에서 수광부를 향한 방향으로 제1 방향이다. 그리고 Y축 방향은 X축 방향과 Z축 방향에 수직한 방향이며 제2 방향이다. 이를 기준으로 이하 설명한다.
수광부(2)는 수광모듈, 수광유닛, 수광어셈블리 또는 수광장치일 수 있으며, 카메라 모듈의 일 구성요소일 수 있다. 이러한 수광부(2)는 발광부(1)로부터 출사되어 객체로부터 반사된 광(반사광)을 수신하고, 수신된 광을 전기 신호로 변환할 수 있다.
수광부(2)는 발광부(1)에서 출력된 광신호에 대응하는 입력광을 생성할 수 있다. 수광부(2)는 발광부(1)와 나란히 배치될 수 있다. 수광부(2)는 발광부(1) 옆에 배치될 수 있다. 수광부(2)는 발광부(1)와 같은 방향으로 배치될 수 있다. 이러한 구성에 의하여, 수광부(2)에서는 입력광의 수신 효율이 개선될 수 있다.
수광부(2)는 제2 렌즈 배럴(320), 제2 광학부(310) 및 이미지 센서(IS)를 포함할 수 있다.
제2 렌즈 배럴(320)은 후술하는 베이스(200)와 결합할 수 있다. 제2 렌즈 배럴(320)은 후술하는 베이스와 나사 결합 등으로 결합할 수 있다. 이에, 제2 렌즈 배럴(320)은 측면에 위치한 나사산을 포함할 수 있다. 제2 렌즈 배럴(320)은 제2 광학부(310)와 일체로 이루어질 수도 있다. 다만, 이에 한정되는 것은 아니다.
제2 광학부(310)는 제2 렌즈 배럴(320)과 결합할 수 있다. 제2 광학부(310)는 제2 렌즈 배럴(320)을 통해 베이스(200)와 결합될 수 있다. 제2 광학부(310)는 제2 렌즈 배럴(320)과 다양한 결합 방식을 통해 결합될 수 있다. 제2 광학부(310)는 제2 렌즈 배럴(320)과 상술한 바와 같이 나사 결합을 통해 이루어질 수 있다.
제2 광학부(310)는 복수 개의 렌즈를 포함할 수 있다. 그리고 제2 광학부(310)는 하부의 이미지 센서(IS)와 정렬(align)될 수 있다. 이에, 제2 광학부(310)를 통과한 반사광이 이미지 센서(IS)로 수광될 수 있다.
이미지 센서(IS)는 반사광을 감지할 수 있다. 그리고 이미지 센서(IS)는 반사광을 감지하여 전기적 신호로 출력할 수 있다. 실시예로, 이미지 센서(IS)는 광원(LS)에서 출력하는 광의 파장에 대응하는 파장의 광을 감지할 수 있다. 예컨대, 이미지 센서(IS)는 적외선을 감지할 수 있다. 또는, 이미지 센서(IS)는 가시광선을 감지할 수 있다. 이러한 이미지 센서(IS)는 광을 센싱하는 다양한 이미지 센서를 포함할 수 있다.
실시예로, 이미지 센서(IS)는 제2 렌즈 배럴(320) 및 제2 광학부(310)를 통과한 광을 수신하여 광에 대응하는 전기 신호로 변환하는 픽셀 어레이, 픽셀 어레이에 포함된 복수의 픽셀을 구동하는 구동 회로 및 각 픽셀의 아날로그 픽셀 신호를 리드(read)하는 리드아웃회로를 포함할 수 있다. 리드아웃회로는 아날로그 픽셀 신호를 기준 신호와 비교하여 아날로그-디지털 변환을 통해 디지털 픽셀 신호(또는 영상 신호)를 생성할 수 있다. 여기서, 픽셀 어레이에 포함된 각 픽셀의 디지털 픽셀 신호는 영상 신호를 구성하며, 영상 신호는 프레임 단위로 전송됨에 따라 이미지 프레임으로 정의될 수 있다. 즉, 이미지 센서는 복수의 이미지 프레임을 출력할 수 있다.
나아가, 수광부(2)는 이미지 합성부를 더 포함할 수 있다. 이미지 합성부는 이미지 센서(IS)로부터 영상 신호를 수신하고, 영상 신호를 처리(예컨대, 보간, 프레임 합성 등)하는 이미지 프로세서를 포함할 수 있다. 특히, 이미지 합성부는 복수의 프레임의 영상 신호(저해상도)를 이용하여 하나의 프레임의 영상 신호(고해상도)로 합성할 수 있다. 즉, 이미지 합성부는 이미지 센서(IS)로부터 받은 영상 신호에 포함된 복수의 이미지 프레임을 합성하고, 합성된 결과를 합성 이미지로서 생성할 수 있다. 이미지 합성부에서 생성된 합성 이미지는 이미지 센서(IS)로부터 출력되는 복수의 이미지 프레임보다 높은 해상도를 가질 수 있다. 즉, 이미지 합성부는 슈퍼레졸루션(Super Resolution, SR) 기법을 통해 고해상도의 이미지를 생성할 수 있다. 복수의 이미지 프레임은 필터(F, F')의 이동에 의해 서로 다른 광 경로로 변경되어 생성된 이미지 프레임을 포함할 수 있다. 이러한 이미지 합성부는 수광부(2) 내에 또는 외부에 위치할 수 있다.
필터(F, F')는 베이스(200)에 결합될 수 있다. 필터(F, F')는 제1 렌즈 배럴(130)과 광원(LS) 사이에 또는 제2 렌즈 배럴(320)과 이미지 센서(IS) 사이에 배치될 수 있다. 이에, 필터(F, F')는 객체와 이미지 센서(IS) 사이의 광경로 또는 객체와 광원(LS) 사이의 광경로 상에 배치될 수 있다. 필터(F, F')는 소정 파장 범위를 갖는 광을 필터링할 수 있다.
필터(F, F')는 특정 파장의 광을 통과시킬 수 있다. 즉, 필터(F, F')는 특정 파장 외의 광을 반사 또는 흡수하여 차단할 수 있다. 예컨대, 필터(F, F')는 적외선을 통과시키고 적외선 이외의 파장의 광을 차단시킬 수 있다. 또는, 필터(F, F')는 가시광선을 통과시키고 가시광선 이외의 파장의 광을 차단시킬 수 있다. 필터(F, F')는 적외선 통과 필터(infrared rays band pass filter)일 수 있다. 이로써, 필터(F, F')는 적외선의 광만을 통과할 수 있다. 또는 광학 부재는 렌즈 모듈과 분리된 별도의 초점고정렌즈 또는 초점가변렌즈(ex: 액체렌즈) 일 수 있다.
또한, 필터(F, F')는 이동할 수 있다. 실시예로, 필터(F, F')는 틸팅(tilting)될 수 있다. 필터(F, F')가 틸팅되면, 광경로가 조절될 수 있다. 필터(F, F')가 틸팅되면 이미지 센서(IS)로 입사되는 광의 경로가 변경될 수 있다. 예컨대, 수광부(2)에서 필터(F')는 입사되는 광의 FOV(Field of View) 각도 또는 FOV의 방향 등을 변경시킬 수 있다. 또한, 실시예에서 필터(F, F')는 경사지게 틸팅 됨에 따라 빛이 들어오는 경로를 변경하여 고해상도 ToF(Time of Flight)가 가능하게 할 수 있다.
커버(400)는 브라켓일 수 있다. 커버(400)는 '커버 캔'을 포함할 수 있다. 커버(400)는 발광부(1) 및 수광부(2)를 감싸도록 배치될 수 있다. 커버(400)는 하우징(110) 및 베이스(200)에 결합될 수 있다. 커버(400)는 발광부(1) 및 수광부(2)를 수용할 수 있다. 이에, 커버(400)는 카메라 모듈의 최외측에 위치할 수 있다.
또한, 커버(400)는 비자성체일 수 있다. 또한, 커버(400)는 금속으로 형성될 수 있다. 또한, 커버(400)는 금속의 판재로 형성될 수 있다.
커버(400)는 메인 기판(4)의 그라운드부와 연결될 수 있다. 이를 통해, 커버(400)는 그라운드될 수 있다. 그리고 커버(400)는 전자 방해 잡음(EMI, electromagnetic interference)을 차단할 수 있다. 이때, 커버(400)는 'EMI 쉴드캔'으로 호칭될 수 있다. 커버(400)는 최종적으로 조립되는 부품으로 제품을 외부의 충격에서부터 보호할 수 있다. 커버(400)는 두께가 얇으면서 강도가 높은 재질로 형성될 수 있다.
또한, 실시예에 따른 카메라 모듈(10)에서 메인 기판(4)(PCB, Printed Circuit Board) 상에는 발광부(1)와 수광부(2)가 배치될 수 있다. 메인 기판(4)은 발광부(1) 및 수광부(2)와 전기적으로 연결될 수 있다.
또한, 카메라 모듈(10)에서 커넥트부(3)는 메인 기판(4)과 전기적으로 연결될 수 있다. 커넥트부(3)는 광학기기의 구성과 연결될 수 있다. 커넥트부(3)는 광학기기의 구성과 연결되는 커넥터(7)를 포함할 수 있다. 커넥트부(3)에는 커넥터(7)가 배치되고 연결 기판(6)과 연결되는 연장 기판(5)을 포함할 수 있다. 연장 기판(5)은 PCB일 수 있으나, 이에 한정되는 것은 아니다.
또한, 카메라 모듈에서 연결 기판(6)은 메인 기판(4)과 커넥트부(3)의 연장 기판(5)을 연결할 수 있다. 연결 기판(6)은 연성을 가질 수 있다. 연결 기판(6)은 연성의 인쇄회로기판(FPCB, Flexible PCB)일 수 있다.
또한, 메인 기판(4), 연결 기판(6) 및 연장 기판(5)은 일체로 또는 분리되어 형성될 수 있다.
카메라 모듈은 보강판(8)을 포함할 수 있다. 보강판(8)은 스티프너(stiffener)를 포함할 수 있다. 보강판(8)은 메인 기판(4)의 하면에 배치될 수 있다. 보강판(8)은 서스(SUS)로 형성될 수 있다.
나아가, 수광부(2)는 렌즈 구동 장치를 포함할 수 있다. 즉, 수광부(2)는 보이스 코일 모터(VCM, Voice Coil Motor)를 포함할 수 있다. 또한, 수광부(2)는 렌즈 구동 모터를 포함할 수 있다. 또한, 수광부(2)는 렌즈 구동 액츄에이터를 포함할 수 있다. 이러한 구성에 의하여, 상술한 바와 같이 실시예에 따른 수광부(2)는 필터(F')를 틸트(tilt)시킬 수 있다. 그리고 필터(F')가 틸트됨에 따라, 필터(F, F')를 통과한 입력광의 광경로가 소정의 규칙에 따라 반복하여 이동할 수 있다. 이로써, 수광부(2)는 필터(F')의 틸트에 따라 이미지 센서에서 변환한 복수 개의 이미지 정보를 이용하여 고해상도의 이미지 정보를 출력하고, 출력된 이미지 정보는 외부의 광학기기로 제공될 수 있다.
도 4는 실시예에 따른 발광부의 하우징을 도시한 도면이고, 도 5는 실시예에 따른 발광부의 제1 광학부 및 제1 렌즈 배럴을 도시한 도면이고, 도 6은 실시예에 따른 발광부의 구동 마그넷부 및 구동 코일부을 도시한 도면이고, 도 7은 실시예에 따른 발광부의 탄성부의 결합을 나타낸 도면이고, 도 8은 실시예에 따른 발광부의 제1 탄성부재를 도시한 도면이고, 도 9는 실시예에 따른 발광부의 제2 탄성부재를 도시한 도면이고, 도 10은 실시예에 따른 발광부의 측면 기판의 일측을 도시한 도면이고, 도 11은 실시예에 따른 발광부의 측면 기판의 타측을 도시한 도면이고, 도 12는 실시예에 따른 카메라 모듈의 베이스를 도시한 도면이고, 도 13은 실시예에 따른 수광부의 제2 광학부 및 제2 렌즈 배럴을 도시한 도면이고, 도 14는 실시예에 따른 카메라 모듈의 커버를 도시한 도면이다.
도 4를 참조하면, 실시예에 따른 발광부의 하우징(110)은 하우징 홀(111), 기판홈(112), 센서홀(113) 및 코일 안착부(114)를 포함할 수 있다.
하우징 홀(111)은 하우징(110)의 중앙에 위치할 수 있다. 하우징 홀(111)에는 제1 광학부와 제1 렌즈 배럴 그리고 구동부가 안착할 수 있다.
기판홈(112)은 하우징(110)의 외측면에 위치할 수 있다. 하우징(110)은 평면상 사각형 형상일 수 있다. 다만, 이에 한정되는 것은 아니며 다양한 형상으로 이루어질 수 있다.
또한, 기판홈(112)에는 측면 기판과 결합하기 위한 결합 돌기가 위치할 수 있다. 결합 돌기는 하우징(110)의 측면에서 외측을 향해 연장될 수 있다. 또한, 측면 기판에는 결합 홀이 구비되며, 결합 돌기가 결합 홀로 삽입되어 측면 기판과 하우징(110)이 서로 결합할 수 있다.
센서홀(113)은 기판홈(112)과 제1 방향(X축 방향) 및 제2 방향(Y축 방향)으로 중첩할 수 있다. 센서홀(113)에는 위치 센서가 안착할 수 있다. 이에, 위치 센서는 측면 기판과 전기적으로 용이하게 연결될 수 있다. 또한, 위치 센서는 하우징(110)과의 결합 위치가 고정되어 구동 마그넷부의 위치를 정확하게 측정할 수 있다.
코일 안착부(114)는 하우징(110)의 내측면에 위치할 수 있다. 예를 들어, 코일 안착부(114)는 하우징(110)의 내측면에서 내측으로 연장된 턱으로 이루어질 수 있다. 본 명세서에서, 내측은 하우징에서 제1 광학부를 향한 방향이고, 외측은 내측의 반대 방향으로 제1 광학부에서 하우징을 향한 방향일 수 있다.
코일 안착부(114)에는 구동 코일부가 안착할 수 있다. 구동 코일부는 후술하는 바와 같이 폐루프 형태일 수 있다. 이에, 코일 안착부(114)도 구동 코일부의 형상에 대응하여 폐루프 형상일 수 있다.
도 5를 참조하면, 발광부의 제1 광학부(120)는 제1 렌즈 배럴(130)의 렌즈 수용부(131) 내로 삽입될 수 있다. 상술한 바와 같이 제1 광학부(120)는 복수 매의 렌즈로 이루어질 수 있다. 그리고 제1 광학부(120)는 외측면에 위치한 나사산을 포함할 수 있다. 제1 렌즈 배럴(130)도 내측면에 제1 광학부(120)의 상기 나사산에 대응하는 홈을 가질 수 있다. 이에, 제1 광학부(120)와 제1 렌즈 배럴(130)은 서로 나사 결합할 수 있다.
또한, 제1 렌즈 배럴(130)은 상술한 렌즈 수용부(131)뿐만 아니라, 마그넷 안착홈(132)을 포함할 수 있다. 마그넷 안착홈(132)은 복수 개일 수 있다. 실시예로, 마그넷 안착홈(132)은 4개이며, 제1 렌즈 배럴(130)의 서로 마주보는 제1 외측면(132a)과 제2 외측면(132b) 그리고 서로 마주보며 제1 외측면(132a)과 제2 외측면(132b) 사이에 위치하는 제3 외측면(132c)과 제4 외측면(132d)에 위치할 수 있다.
즉, 마그넷 안착홈(132)은 제1 외측면(132a) 내지 제4 외측면(132d) 각각에 위치하여 후술하는 제1 마그넷 내지 제4 마그넷이 제1 외측면(132a) 내지 제4 외측면(132d)의 마그넷 안착홈(132)에 안착할 수 있다. 마그넷 안착홈(132)에는 접합부재가 도포될 수 잇다. 이에, 제1 마그넷 내지 제4 마그넷과 제1 렌즈 배럴(130) 간의 결합력이 개선될 수 있다.
도 6을 참조하면, 구동부는 구동 마그넷부(140)와 구동 코일부(150)를 포함할 수 있다. 구동 마그넷부(140)는 복수 개의 마그넷을 포함할 수 있다.
실시예로, 구동 마그넷부(140)는 제1 마그넷(141) 내지 제4 마그넷(144)을 포함할 수 있다. 제1 마그넷(141) 및 제2 마그넷(142)은 서로 마주보게 위치할 수 있다. 예컨대, 제1 마그넷(141)과 제2 마그넷(142)은 제2 방향을 기준으로 대칭으로 배치될 수 있다.
제3 마그넷(143)과 제4 마그넷(144)은 서로 마주보게 위치하며, 제1 마그넷(141)과 제2 마그넷(142) 사이에 위치할 수 있다. 예컨대, 제3 마그넷(143)과 제4 마그넷(144)은 제1 방향을 기준으로 대칭으로 배치될 수 있다.
제1 마그넷(141) 내지 제4 마그넷(144)은 상술한 마그넷 안착홈에 위치할 수 있다.
구동 코일부(150)는 상술한 바와 같이 평면 상(XY) 폐루프 형상일 수 있다. 구동 코일부(150)는 코일 안착부에 안착할 수 있다. 그리고 구동 코일부(150)는 구동 마그넷부(140)와 적어도 일부가 제1 방향 또는 제2 방향으로 중첩될 수 있다.
또한, 구동 코일부(150)는 구동 마그넷부(140)를 감싸도록 배치될 수 있다. 즉, 구동 마그넷부(140)는 구동 코일부(150)의 폐루프 상에 위치할 수 있다.
또한, 구동 코일부(150)는 구동 마그넷부(140)와 소정 거리 이격 배치될 수 있다.
또한, 구동 코일부(150)는 일단에 측면 기판과 전기적으로 연결하기 위한 제1 와이어(w1)와 제2 와이어(w2)를 포함할 수 있다. 제1 와이어(w1)와 제2 와이어(w2)는 측면 기판에 대응하는 위치에 배치되어 전기적 저항이 최소화될 수 있다. 이에, 저항에 의한 정확도 감소가 방지되고 전력 효율이 향상될 수 있다.
제1 와이어(w1)와 제2 와이어(w2)는 코일로 이루어진 구동 코일부(150)의 일단과 타단 각가에 연결될 수 있다.
도 7 내지 도 9를 참조하면, 탄성부(160)는 제1 탄성부재(161) 및 제2 탄성부재(162)를 포함할 수 있다. 탄성부(160)는 제1 렌즈 배럴(130)의 상부 또는 하부에 위치하여 하우징(110) 및 제1 렌즈 배럴(130)과 결합할 수 있다. 이에, 구동부에 의해 제1 렌즈 배럴(130)이 상하 이동하더라도 하우징(110)과 결합된 탄성부(160)를 통해 제1 렌즈 배럴(130)의 상하 이동에 예압이 가해질 수 있다. 이에, 구동 코일부에 전류가 인가되지 않는다면, 제1 렌즈 배럴(130)은 하우징(110) 내에서 탄성부(160)의 복원력에 의해 동일한 위치에 존재할 수 있다.
제1 탄성부재(161)는 제1 렌즈 배럴(130)의 상부에 위치할 수 있다. 제2 탄성부재(162)는 제1 렌즈 배럴(130)의 하부에 위치할 수 있다.
제1 탄성부재(161)는 제1 탄성결합부(P1)와 제2 탄성결합부(P2)를 포함할 수 있다. 제1 탄성결합부(P1)는 제2 탄성결합부(P2)보다 외측에 위치할 수 있다. 그리고 제1 탄성결합부(P1)는 하우징(110)의 돌기와 결합할 수 있다. 또한, 제2 탄성결합부(P2)는 제1 렌즈 배럴(130)과 결합할 수 있다. 이 때, 제1 탄성결합부(P1)와 제2 탄성결합부(P2)에는 상술한 결합을 위해 접합 부재가 도포될 수 있다. 예컨대, 접합 부재는 댐퍼액을 포함할 수 있다.
마찬가지로, 제2 탄성부재(162)는 제3 탄성결합부(P3)와 제4 탄성결합부(P4)를 포함할 수 있다. 제3 탄성결합부(P3)는 제4 탄성결합부(P4)보다 외측에 위치할 수 있다.
그리고 제3 탄성결합부(P3)는 하우징(110)의 돌기와 결합할 수 있다. 또한, 제4 탄성결합부(P4)는 제1 렌즈 배럴(130)과 결합할 수 있다. 이 때, 제3 탄성결합부(P3)와 제4 탄성결합부(P4)에도 접합 부재가 도포되어 상술한 결합이 이루어질 수 있다.
또한, 제1 탄성결합부(P1)와 제2 탄성결합부(P2) 사이에는 다양한 굴곡을 갖는 제1 패턴부(PT)가 위치할 수 있다. 즉, 제1 패턴부(PT)를 사이에 두고 제1 탄성결합부(P1)와 제2 탄성결합부(P2)는 서로 결합할 수 있다. 이러한 제1 패턴부(PT)는 제1 방향(X축 방향) 및 제2 방향(Y축 방향)으로 대칭으로 위치할 수 있다.
마찬가지로, 제3 탄성결합부(P3)와 제4 탄성결합부(P4) 사이에는 다양한 굴곡을 갖는 제2 패턴부(PT')가 위치할 수 있다. 즉, 제2 패턴부(PT')를 사이에 두고 제3 탄성결합부(P3)와 제4 탄성결합부(P4)는 서로 결합할 수 있다. 이러한 제2 패턴부(PT')는 제1 방향(X축 방향) 및 제2 방향(Y축 방향)으로 대칭으로 위치할 수 있다.
도 10 내지 도 11을 참조하면, 측면 기판(170)은 일측면과 일측면에 대향하고 하우징과 접하는 타측면을 가질 수 있다.
측면 기판(170)은 일측면 상에 구동 코일부의 제1,2 와이어와 연결되는 제1,2 도전부(EC1, EC2)를 포함할 수 있다. 그리고 측면 기판(170)은 타측면에 결합 홀(170a)을 포함할 수 있다. 결합홀(170a)은 상술한 바와 같이 하우징의 결합 돌기와 결합할 수 있다. 이에, 측면 기판(170)은 하우징의 측면에 결합할 수 있다.
그리고 측면 기판(170)의 타측면 상에는 위치 센서(180)가 위치할 수 있다. 위치 센서(180)는 측면 기판(170)의 타측면 상에 안착하여 센서홀로 삽입될 수 있다.
도 12를 참조하면, 베이스(200)는 메인 기판(4) 상에 위치하며, 메인 기판(4)과 접할 수 있다. 또한, 베이스(200)에는 상술한 제1 렌즈 배럴, 제1 광학부, 제2 렌즈 배럴, 제2 광학부 및 하우징이 안착할 수 있다.
베이스(200)는 이격 배치되는 제1 베이스부(210)와 제2 베이스부(220)를 포함할 수 있다. 제1 베이스부(210)에는 제1 광학부, 제1 렌즈 배럴 및 하우징 등 발광부의 구성요소가 안착할 수 있다. 그리고 제2 베이스부(220)는 제2 광학부 및 제2 렌즈 배럴이 안착할 수 있다.
제1 베이스부(210)와 제2 베이스부(220)는 각각 베이스홀(210a, 220a)을 포함할 수 있다. 이러한 베이스홀(210a, 220a)을 통해 광원으로부터의 광신호가 객체를 향해 출력되고, 객체에서 반사된 광신호(반사광)가 이미지 센서로 제공될 수 있다.
또한, 제1 베이스부(210)와 제2 베이스부(220)에는 상술한 필터가 각각 안착할 수 있다. 나아가, 제1 베이스부(210)와 제2 베이스부(220)는 일체형으로 도시되어 있으나, 분리될 수 있다. 그리고 제2 베이스부(220)는 상술한 바와 같이 틸트될 수 있고, 제2 베이스부(220)에 부착된 필터도 틸트되어 실시예에 따른 카메라 모듈은 상술한 슈퍼 레졸루션 기법을 수행할 수 있다.
도 13을 참조하면, 제2 광학부(310)는 제2 렌즈 배럴(320)과 결합할 수 있다. 제2 광학부(310)는 제2 렌즈 배럴(320)에서 중앙에 위치한 홀에 삽입될 수 있다. 또한, 제2 렌즈 배럴(320)은 외측면에 나사산을 가져 베이스(200)의 제2 베이스부(220)와 나사 결합될 수 있다.
제2 광학부(310)도 복수 매의 렌즈로 이루어질 수 있다.
도 14를 참조하면, 커버(400)는 상술한 내용 이외에 제1 커버부(410)와 제2 커버부(420)를 포함할 수 있다. 제1 커버부(410)는 제1 베이스부 상에 위치하며, 제1 광학부와 중첩되는 제1 커버홀(410a)을 포함할 수 있다. 제1 커버홀(410a)을 통해 제1 광학부를 통과한 광신호(출력광)가 객체로 조사될 수 있다.
제2 커버부(420)는 제2 베이스부 상에 위치하며, 제2 광학부와 중첩되는 제2 커버홀(420a)을 포함할 수 있다. 제2 커버홀(420a)을 통해 제2 광학부를 통과한 광신호(반사광)가 이미지 센서로 조사될 수 있다.
도 15는 실시예에 따른 발광부에서 제1 광학부 및 제1 렌즈 모듈의 이동을 설명하는 도면이고, 도 16은 제1 광학부 및 제1 렌즈 모듈의 이동에 따른 광신호 형태를 설명하는 도면이고, 도 17은 제1 광학부 및 제1 렌즈 모듈의 이동에 따른 수광부의 이미지의 예를 도시한 도면이다.
도 15 내지 도 17을 참조하면, 실시예에 따른 발광부는 제1 광학부 및 제1 렌즈 모듈을 상하 방향으로 이동하여 광신호(출력광)를 면광원 또는 점광원으로 변환할 수 있다.
즉, 출력광은 광원과 제1 렌즈 모듈(또는 제1 광학부) 사이의 간격에 따라 면광원이나 점광원의 형태 또는 패턴으로 출력될 수 있다.
실시예로, 제1 광학부 및 제1 렌즈 모듈은 구동부에 의해 광축 방향(Z축 방향)으로 이동할 수 있다. 그리고 상술한 바와 같이 구동 코일부에 흐르는 전류의 양에 따라 제1 광학부 및 제1 렌즈 모듈가 상부로 이동하는 이동량이 조절될 수 있다.
예를 들어, 실시예에 따른 카메라 모듈에서 제1 광학부 및 제1 렌즈 모듈은 광원으로부터의 거리가 최대(도 15(a) 참조)에서 최소(도 15(b) 참조)를 갖도록 이동할 수 있다.
즉, 제어부는 구동 코일부로 제공되는 전류의 양을 제어하여 제1 렌즈 모듈(또는 제1 광학부)와 광원 사이의 거리를 조절하여, 최종적으로 출력광의 형태(면광원 또는 점광원)를 제어할 수 있다. 예컨대, 제어부는 구동 코일부로 제공되는 전류의 양이 변경되면(예로, 전류값 증가/감소) 엑추에이터에 의한 제1 렌즈 모듈의 이동량이 변경될 수 있다.
실시예로, 광원과 제1 렌즈 모듈(또는 제1 광학부) 사이의 간격이 일정 거리 이상이 되면, 광신호(출력광)는 도 16(a) 및 도 17(a)와 같이 면광원 또는 면광원 패턴으로 출력될 수 있다. 즉, 광원과 제1 렌즈 모듈(또는 제1 광학부) 사이의 거리가 기설정된 거리(또는 일정 거리)와 최대거리 사이라면, 광신호(출력광)는 면광원 또는 면광원 패턴으로 출력될 수 있다. 여기서, 최대거리는 광원과 이동 가능한 제1 렌즈 모듈 사이의 간격이 최대일 때의 거리이며, 엑추에이터의 최대 구동(예로, 전류 최대) 시 제1 렌즈 모듈의 위치와 광원 사이의 거리일 수 있다.
반면, 광원과 제1 렌즈 모듈(또는 제1 광학부) 사이의 간격이 일정 거리 이하가 되면, 광신호는 도 16(b) 및 도 17(b)와 같이 점광원 또는 점광원 패턴으로 출력될 수 있다. 즉, 광원과 제1 렌즈 모듈(또는 제1 광학부) 사이의 거리가 기설정된 거리(또는 일정 거리)와 최소거리 사이라면 광신호는 점광원 또는 점광원 패턴으로 출력될 수 있다. 여기서, 최소거리는 광원과 이동 가능한 제1 렌즈 모듈(또는 제1 광학부) 사이의 간격이 최소일 때의 거리이며, 엑추에이터의 미 구동 시 제1 렌즈 모듈의 위치(초기 위치)와 광원 사이의 거리일 수 있다.
또한, 소정 거리 이하의 범위에서 광원으로부터의 광신호(출력광)는 상술한 바와 같이 점광원으로 출력되고, 객체에 보다 높은 에너지가 가해질 수 있다.
본 발명의 실시예에 따른 카메라 모듈(10)은 출력광의 해상도, 객체와의 거리, 전력 소모 정도 등에 따라 출력광의 광패턴을 면광원에서 점광원으로 변경하거나 점광원의 해상도를 변경할 수 있어, 다양한 어플리케이션의 요구 사항에 유연하게 대처하는 이점을 제공한다.
도 18은 실시예에 따른 제어부의 제1 동작을 설명하는 도면이다.
도 18을 참조하면, 먼저 실시예에 떠른 제어부는 상술한 출력광의 형태(점광원 또는 면광원)을 조절하기 위해 구동부를 제어할 수 있다. 예컨대, 제어부는 광원의 점멸을 제어하여 광원이 지속파나 펄스파 형태의 광신호를 생성하도록 제어할 수 있다.
또한, 제어부는 상술한 바와 같이 주파수 변조(frequency modulation)나 펄스 변조(pulse modulation) 등을 통해 광원이 지속파나 펄스파 형태의 광신호를 생성하도록 제어할 수 있다. 그리고, 제어부는 발광부에 공급되는 전력을 제어할 수 있다.
실시예로, 제어부는 제1 광학부의 이동을 위해 입력된 이동 신호와 상기 이동 신호에 대응하여 감지된 상기 광학부의 위치 신호를 이용하여 상기 광신호의 출력을 제어할 수 있다.
여기서, 이동 신호는 구동 코일에 인가되는 전류에 대응할 수 있으며, 미리 설정된 신호일 수 있다. 그리고 이동 신호는 객체와의 거리에 따라 미리 설정될 수 있다. 그리고 제어부는 카메라 모듈이 상술한 TOF(Time of Flight) 기능을 수행하기 위해 발광부로부터 출력광을 생성하기 전에 수행될 수 있다.
즉, 제어부는 광학기기의 AP(application processor)로부터 TOF 수행을 위한 제어 신호를 수신하기 전에 카메라 모듈의 이상 여부를 미리 점검하기 위해 이하의 기능을 수행할 수 있다.
이를 위해, 제어부는 메모리(미도시됨) 등에 미리 저장된 전류 제어 신호를 코일에 인가할 수 있다.
그리고 제어부는 미리 저장된 전류 제어 신호에 대응하는 이동 신호에 의해 이동한 구동 마그넷부의 위치에 따라 위치 센서에서 생성된 위치 신호를 수신할 수 있다.
이에, 제어부는 위치 센서로부터 수신한 위치 신호와 이동 신호를 이용하여 제1 렌즈 모듈 또는 제1 광학부의 이상을 판단할 수 있다.
즉, 제어부는 이동 신호에 대응하는 기준 위치 신호와 위치 신호를 비교하여 제1 렌즈 모듈 또는 제1 광학부의 이상을 판단할 수 있다. 여기서, 기준 위치 신호는 전류 제어 신호에 따라 구동부 및 제1 렌즈 배럴(또는 제1 광학부)가 정상 이동한 경우에 위치 센서로부터 수신한 위치 정보일 수 있다. 이로써, 기준 위치 신호와 위치 신호는 동일한 단위에 대한 값을 가질 수 있다.
그리고 제어부는 기준 위치 신호와 위치 신호 간의 크기 오차가 제1 임계값보다 큰 경우에 광원에 의한 광신호의 출력을 차단할 수 있다. 예컨대, 제어부는 기준 위치 신호와 위치 신호 간의 크기 오차가 제1 임계값보다 큰 경우에 광원으로 인가되는 전원을 차단할 수 있다.
실시예로, 제어부는 기준 위치 신호와 위치 신호를 비교하여, 소정의 시점(t1)에서 기준 위치 신호의 크기와 위치 신호의 크기의 차이가 제1 임계값보다 작다면 광원으로 인가되는 전원을 유지할 수 있다.
이와 달리, 제어부는 기준 위치 신호와 위치 신호를 비교하여, 소정의 시점(t1)에서 기준 위치 신호의 크기와 위치 신호의 크기의 차이가 제1 임계값보다 작다면 광원으로 인가되는 전원을 차단할 수 있다. 이러한 구성에 의하여, 실시예에 따른 카메라 모듈은 특히 출력광이 점광원인 경우 제1 렌즈 모듈 또는 제1 광학부의 이상(예로, crack)에 의해 객체(예로, 사람) 등에 가해지는 에너지가 증가하여 안구 보호가 어려워지는 문제를 차단할 수 있다.
또한, 제어부는 기준 위치 신호와 위치 신호 간의 시간 오차가 제2 임계값보다 큰 경우 광신호의 출력을 차단할 수 있다. 마찬가지로, 제어부는 기준 위치 신호와 위치 신호 간의 시간 오차가 제2 임계값보다 큰 경우에 광원으로 인가되는 전원을 차단할 수 있다.
제1 광학부에 크랙이 발생한 경우 제1 광학부의 무게 감소로 기준 위치 신호와 위치 신호 사이에 시간 차이가 존재할 수 있다. 특히, 위치 신호가 기준 위치 신호보다 앞설 수 있다(leading). 이 때, 제어부는 기준 위치 신호가 위치 신호보다 앞서는 시간 차이가 제2 임계값보다 큰 경우에 광원으로 인가되는 전원을 차단할 수 있다.
또한, 제1 광학부에 이물 등이 존재하는 경우, 제1 광학부의 무게 증가로 기준 위치 신호와 위치 신호 사이에 시간 차이가 존재할 수 있다. 특히, 위치 신호가 기준 위치 신호보다 지연될 수 있다(lagging). 그리고 제어부는 기준 위치 신호가 위치 신호보다 뒤지는 시간 차이가 제2 임계값보다 큰 경우에 광원으로 인가되는 전원을 차단할 수 있다.
또한, 실시예로, 제어부는 구동부에 의해 제1 광학부(또는 제1 렌즈 모듈)와 광원 간의 거리가 소정 거리 이하일 때 또는 점광원인 경우에만 상기 광신호의 출력을 제어할 수 있다. 예컨대, 제어부는 광원과 백포커스 사이의 거리가 최대일 때(면광원 출력) 광신호의 출력을 유지하나, 광원과 백포커스 사이의 거리가 최소일 때(점광원 출원) 광신호의 출력을 차단할 수 있다. 이에, 인체의 안구 보호가 보다 필요한 경우에 한정적으로 수행하여 효율성을 확보할 수 있다.
변형예로, 카메라 모듈에서 이미지 센서와 광원은 동기화된 신호가 인가되어 구동할 수 있다. 예컨대, 이미지 센서에 인가되는 참조 신호는 광원의 출력 주파수에 대응할 수 있다. 예로, 광원의 주파수와 이미지 센서에 인가되는 참조 신호는 위상이 0도, 90도 180도 270도 상이할 수 있다.
이 때, 변형예에 따른 카메라 모듈에서 상술한 바와 같이 기준 위치 신호와 위치 신호 간의 시간 오차와 제1,2 임계값을 비교하여 이미지 센서에 참조 신호를 인가하지 않거나, 이미지 센서에서 감지한 신호(출력광의 수광에 대응하는 신호)를 출력하지 않도록 제어할 수 있다.
예컨대, 제어부는 기준 위치 신호와 위치 신호 간의 시간 오차가 제2 임ㄱ값보다 큰 경우 이미지 센서로의 참조 신호를 인가하지 않거나 이미지 센서에서 감지한 신호의 출력을 차단하도록 제어할 수 있다.
또한, 이러한 이미지 센서의 출력 제어는 이하의 제2 동작 또는 제3 동작에서 광신호의 출력 차단과 대응하여 수행될 수 있다.
도 19는 실시예에 따른 제어부의 제2 동작을 설명하는 도면이다.
도 19를 참조하면, 실시예에 따른 제어부는 위치 신호가 초기화되는 경우 광신호의 출력을 차단할 수 있다.
실시예에 따른 카메라 모듈에서 제1 광학부(제1 렌즈 배럴)의 이동 거리에 따라 위치 신호 크기는 선형적으로 변할 수 있다. 여기서, 제1 광학부(제1 렌즈 배럴) 이동 거리는 제1 광학부(제1 렌즈 배럴)와 광원 사이의 간격 또는 제1 광학부(제1 렌즈 배럴)가 구동부에 의해 이동한 이동 거리일 수 있다.
제어부는 제1 광학부(제1 렌즈 배럴)가 하우징으로부터 이탈하는 경우를 감지하여 광신호의 출력을 차단할 수 있다.
즉, 위치 신호의 크기는 제1 광학부(제1 렌즈 배럴)가 발광부에서 최대 이동 한 위치에 대응하는 최대값(K1)을 가질 수 있다. 또한, 위치 신호의 크기는 제1 광학부(제1 렌즈 배럴)가 발광부에서 최소 이동한 위치 또는 초기 위치에 대응하는 최소값(K0)을 가질 수 있다. 다시 말해, 위치 신호의 크기는 최소값(K0)에서 최대값(K1)까지 변경될 수 있다.
제어부는 위치 센서로부터 수신한 위치 신호의 크기가 최대값(K1)보다 증가하는 경우 또는 제1 광학부(제1 렌즈 배럴)가 하우징으로부터 이탈한 경우(이탈 O)에 위치 신호가 증가하다가 최대값(K1)보다 커지면 초기값인 최소값(K0)으로 초기화되면 제1 광학부의 이탈(이상)을 판단하여 광신호의 출력을 차단할 수 있다.
다시 말해, 제어부는 위치 신호의 크기가 최대값(K1)에서 최소값(k0)으로 초기화되는 경우 광신호의 출력을 차단할 수 있다.
도 20은 실시예에 따른 제어부의 제3 동작을 설명하는 도면이다.
도 20을 참조하면, 실시예에 따른 제어부는 시간에 대한 위치 신호가 목표 위치 신호의 크기(K2)에 도달한 이후에 포화 시간(t3-t2) 이후에도 진동이 존재한 경우 광신호의 출력을 차단할 수 있다.
예컨대, 제1 광학부(제1 렌즈 배럴)에 손상, 틸트 등의 문제로 인하여 제1 광학부(제1 렌즈 배럴)의 무게중심이 바뀌게 되는 경우 기준 위치 신호에 따른 포화 시간(t3-t2) 이후에도 진동이 존재할 수 있다.
이에, 제어부는 기준 위치 신호와 달리 포화 시간 이후에도 진동이 존재하는 경우 상술한 제1 광학부(제1 렌즈 배럴)의 이상이 존재하는 것으로 판단하여 광신호의 출력을 차단할 수 있다. 이에, 사용자의 안구 보호가 용이하게 이루어질 수 있다.
도 21는 실시예에 따른 카메라 모듈을 포함하는 광학기기를 도시한 도면이다.
도 21를 참조하면, 실시예에 따른 광학기기는 전면 케이스(fc), 후면 케이스(rc) 및 전면 케이스(fc)와 후면 케이스(rc)에 또는 그 사이에 구비되는 카메라 모듈(10)을 포함한다.
그리고 카메라 모듈(10)은 상술한 카메라 모듈일 수 있다. 이에, 광학기기는 이러한 3차원 깊이 이미지를 출력하는 카메라 모듈(10)을 통해 입체영상을 촬영할 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 이미지 센서;
    광원;
    상기 광원 상에 배치되는 광학부; 및
    상기 광학부를 이동하여 광을 면 광원 패턴 또는 점 광원 패턴으로 변환하는 구동부를 포함하고;
    상기 광학부의 이동을 위해 입력된 이동 신호와 상기 이동 신호에 대응하여 감지된 상기 광학부의 위치 신호를 이용하여 상기 광원으로부터 출력된 광신호의 출력을 제어하는 카메라 모듈.
  2. 제1항에 있어서,
    상기 구동부는,
    상기 광학부와 결합하는 렌즈 배럴;
    상기 렌즈 배럴과 결합하는 구동 마그넷부; 및
    상기 구동 마그넷부와 이격 배치되는 구동 코일부;을 포함하는 카메라 모듈.
  3. 제2항에 있어서,
    상기 구동 마그넷부의 위치를 감지하여 상기 위치 신호를 생성하는 위치 센서;를 더 포함하고,
    상기 이동 신호는 상기 구동 코일에 인가되는 전류에 대응하는 신호인 카메라 모듈.
  4. 제2항에 있어서,
    상기 광학부는 복수의 렌즈를 포함하고,
    상기 복수의 렌즈는 상기 광원으로부터 출력된 광신호의 발산각을 낮추는 콜리메이터 렌즈이고,
    상기 광학부의 백포커스는 상기 광원 측에 배치되고,
    상기 광학부의 화각(FoI, Field of illumination)은 60도 내지 120도인 카메라 모듈.
  5. 제1항에 있어서,
    상기 이동 신호는 객체와의 거리에 따라 미리 설정되는 카메라 모듈.
  6. 제1항에 있어서,
    상기 광원에 인가되는 전원을 차단하여 상기 광신호의 출력을 제어하는 제어부;를 포함하고,
    상기 제어부는 상기 이동 신호에 대응한 기준 위치 신호와 상기 위치 신호 간의 크기 오차가 제1 임계값보다 큰 경우 상기 광신호의 출력을 차단하는 카메라 모듈.
  7. 제6항에 있어서,
    상기 제어부는 상기 기준 위치 신호와 상기 위치 신호 간의 시간 오차가 제2 임계값보다 큰 경우 상기 광신호의 출력을 차단하는 카메라 모듈.
  8. 제7항에 있어서,
    상기 제어부는 상기 기준 위치 신호의 포화 시간 이후에 상기 위치 신호의 진동이 존재하는 경우 상기 광신호의 출력을 차단하는 카메라 모듈.
  9. 제1항에 있어서,
    상기 위치 신호가 초기화되는 경우 상기 광신호의 출력을 차단하는 카메라 모듈.
  10. 제1항에 있어서,
    상기 광학부가 점 광원 패턴을 형성하는 위치에 있는 경우에만 상기 광신호의 출력을 차단하는 카메라 모듈.
KR1020200058480A 2020-05-15 2020-05-15 카메라 모듈 KR20210141167A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200058480A KR20210141167A (ko) 2020-05-15 2020-05-15 카메라 모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200058480A KR20210141167A (ko) 2020-05-15 2020-05-15 카메라 모듈

Publications (1)

Publication Number Publication Date
KR20210141167A true KR20210141167A (ko) 2021-11-23

Family

ID=78695377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200058480A KR20210141167A (ko) 2020-05-15 2020-05-15 카메라 모듈

Country Status (1)

Country Link
KR (1) KR20210141167A (ko)

Similar Documents

Publication Publication Date Title
EP3832797A1 (en) Handheld electronic device
EP3832993B1 (en) Handheld electronic device
US11093034B2 (en) Eye tracking method and system and integration of the same with wearable heads-up displays
CN110099226B (zh) 阵列摄像模组及其深度信息采集方法和电子设备
KR20200085579A (ko) 카메라 모듈
EP4117268A1 (en) Distance measuring camera apparatus
EP4064661B1 (en) Handheld electronic device
US20230064678A1 (en) Camera module
KR102618276B1 (ko) 카메라 모듈
US20220155651A1 (en) Lens driving device
KR20210141167A (ko) 카메라 모듈
KR102656494B1 (ko) 카메라 모듈
KR20220003295A (ko) 카메라 모듈
KR20210138305A (ko) 카메라 장치
KR20220055916A (ko) 거리 측정 카메라 장치
US20220214432A1 (en) Camera module
KR20220055917A (ko) 거리 측정 카메라 장치
US20230076838A1 (en) Camera module
KR20220103392A (ko) 거리 측정 카메라 장치
KR20220000599A (ko) 카메라 모듈
KR20210103182A (ko) 카메라 모듈
US11985409B2 (en) Camera module
KR20210083141A (ko) 카메라 모듈
KR20240043246A (ko) 카메라용 액추에이터
KR20200073022A (ko) 카메라 모듈

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal