KR20210133192A - 영상 부호화 또는 복호화하기 위한 장치 및 방법 - Google Patents

영상 부호화 또는 복호화하기 위한 장치 및 방법 Download PDF

Info

Publication number
KR20210133192A
KR20210133192A KR1020210144071A KR20210144071A KR20210133192A KR 20210133192 A KR20210133192 A KR 20210133192A KR 1020210144071 A KR1020210144071 A KR 1020210144071A KR 20210144071 A KR20210144071 A KR 20210144071A KR 20210133192 A KR20210133192 A KR 20210133192A
Authority
KR
South Korea
Prior art keywords
current block
prediction
block
information
pixel
Prior art date
Application number
KR1020210144071A
Other languages
English (en)
Inventor
임정연
이선영
손세훈
신재섭
김형덕
이경택
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Publication of KR20210133192A publication Critical patent/KR20210133192A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 비트스트림으로부터 픽처들의 시퀀스를 복원하기 위한 영상 복호화 방법에 관한 것이다. 영상 복호화 방법은 복호화할 현재블록을 예측하기 위해 사용될 참조픽셀 위치를 수정하기 위한 신택스 요소(syntax element)를 상기 비트스트림으로부터 복호화하는 단계, 상기 신택스 요소는 상기 비트스트림 내의 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set)으로부터 복호화됨; 상기 현재블록을 인트라 예측하기 위한 인트라 모드 정보 또는 인터 예측하기 위한 움직임벡터 정보를 포함하는 예측정보를 상기 비트스트림으로부터 복호화하는 단계; 및 상기 신택스 요소 및 상기 예측정보에 근거하여 결정되는 기복원된 참조픽셀들로부터 상기 현재블록 내의 픽셀을 예측하는 단계를 포함한다.

Description

영상 부호화 또는 복호화하기 위한 장치 및 방법{Apparatus and Method for Video Encoding or Decoding}
본 발명은 영상을 효율적으로 부호화하기 위한 영상 부호화 또는 복호화에 관한 것이다.
동영상 데이터는 음성 데이터나 정지 영상 데이터 등에 비하여 데이터량이 많기 때문에, 압축을 위한 처리 없이 그 자체를 저장하거나 전송하기 위해서는 메모리를 포함하여 많은 하드웨어 자원을 필요로 한다. 따라서, 통상적으로 동영상 데이터를 저장하거나 전송할 때에는 부호화기를 사용하여 동영상 데이터를 압축하여 저장하거나 전송하며, 복호화기에서는 압축된 동영상 데이터를 수신하여 압축을 해제하고 재생한다. 이러한 동영상 압축 기술로는 H.264/AVC를 비롯하여, H.264/AVC 약 40% 정도의 부호화 효율을 향상시킨 2013년 초에 제정된 HEVC(High Efficiency Video Coding)가 존재한다.
그러나, 영상의 크기 및 해상도, 프레임율이 점차 증가하고 있고, 이에 따라 부호화해야 하는 데이터량도 증가하고 있다. 따라서, 기존의 압축 기술보다 더 부호화 효율이 좋은 압축 기술이 요구된다.
또한, 카메라에 의해 생성된 기존의 2D 자연 영상 이외에 게임이나 360도 영상(이하, '360 영상'이라 함) 등의 비디오 콘텐츠에 대한 수요도 갈수록 증가하고 있다. 이러한 게임이나 360 영상은 기존 2D 자연 영상과는 다른 특징을 포함하므로, 2D 영상을 기반으로 하는 기존의 압축 기술로는 압축에 한계가 있다.
360 영상은 여러 대의 카메라로 여러 방향에서 촬영한 영상으로, 여러 장면의 영상을 압축, 전송할 수 있도록 여러 카메라에서 출력된 영상을 하나의 2D 영상으로 스티칭(stitching)하며, 스티칭된 영상은 압축되어 복호화 장치로 전송된다. 복호화 장치는 압축된 영상을 복호화한 이후에 3D로 매핑하여 재생된다.
360 영상에 대한 투영 포맷으로 대표적인 것은 도 1에 도시된 바와 같은 정방형 투영(equirectangular projection)이다. 도 1의 (a)는 3D로 매핑된 구(sphere) 모양의 360 영상을, (b)는 구(sphere) 모양의 360 영상을 equirectangular format으로 투영한 결과이다.
이러한 정방형 투영은 위, 아래 부분의 픽셀을 늘려 심하게 왜곡시키는 단점이 있으며, 영상의 압축 시에도 늘어난 부분에 데이터량 증가 및 인코딩 처리량을 늘리는 단점이 있다. 따라서, 360 영상을 효율적으로 부호화할 수 있는 영상 압축 기술이 요구된다.
본 발명은 해상도나 프레임율이 높은 영상 또는 360 영상을 효율적으로 부호화하기 위한 영상 부호화 또는 복호화 기술을 제공한다.
본 발명의 일 측면은 360 영상으로부터 투영된 2D 이미지의 각 면을 부호화할 때, 부호화하고자 제1 면에 위치하는 현재블록의 예측정보를 부호화하는 방법에 있어서, 상기 현재블록의 주변블록들을 이용하여 예측정보 후보들을 생성하는 단계; 및 상기 예측정보 후보들을 이용하여 상기 현재블록의 예측정보에 대한 신택스 요소(syntax element)를 부호화하는 단계를 포함하되, 상기 현재블록의 경계가 상기 제1 면의 경계와 일치할 때, 상기 360 영상을 기준으로 상기 현재블록에 인접한 블록을 상기 주변블록들 중 적어도 일부로 설정하는 것을 특징으로 하는 예측정보 부호화 방법을 제공한다.
본 발명의 다른 측면은 2D 이미지로 부호화된 360 영상에서 복호화하고자 하는 제1 면에 위치하는 현재블록의 예측정보를 복호화하는 방법에 있어서, 비트스트림으로부터 상기 현재블록의 예측정보에 대한 신택스 요소(syntax element)를 복호화하는 단계; 상기 현재블록의 주변블록들을 이용하여 예측정보 후보들을 생성하는 단계; 및 상기 예측정보 후보들 및 상기 복호화된 신택스 요소를 이용하여 상기 현재블록의 예측정보를 복원하는 단계를 포함하되, 상기 현재블록의 경계가 상기 제1 면의 경계와 일치할 때, 상기 360 영상을 기준으로 상기 현재블록에 인접한 블록을 상기 주변블록들 중 적어도 일부로 설정하는 것을 특징으로 하는 예측정보 복호화 방법을 제공한다.
본 발명의 또 다른 측면은 2D 이미지로 부호화된 360 영상에서 복호화하고자 하는 제1 면에 위치하는 현재블록의 예측정보를 복호화하는 장치에 있어서, 비트스트림으로부터 상기 현재블록의 예측정보에 대한 신택스 요소(syntax element)를 복호화하는 복호화부; 상기 현재블록의 주변블록들을 이용하여 예측정보 후보들을 생성하는 예측정보 후보 생성부; 및 상기 예측정보 후보들 및 상기 복호화된 신택스 요소를 이용하여 상기 현재블록의 예측정보를 복원하는 예측정보 결정부를 포함하되, 상기 예측정보 후보 생성부는, 상기 현재블록의 경계가 상기 제1 면의 경계와 일치할 때, 상기 360 영상을 기준으로 상기 현재블록에 인접한 블록을 상기 주변블록들 중 적어도 일부로 설정하는 것을 특징으로 하는 예측정보 복호화 장치를 제공한다.
도 1은 360 영상의 정방형 투영(equirectangular projection) 포맷에 대한 예시도,
도 2는 본 발명의 일 실시예에 따른 영상 부호화 장치에 대한 블록도,
도 3은 QTBT(QuadTree plus BinaryTree) 구조를 이용한 블록 분할의 예시도,
도 4는 복수의 인트라 예측 모드에 대한 예시도,
도 5는 현재블록의 주변블록에 대한 예시도,
도 6은 360 영상의 다양한 투영 포맷에 대한 예시도,
도 7은 큐브 투영 포맷의 레이아웃에 대한 예시도,
도 8은 큐브 투영 포맷에서 레이아웃의 재배치를 설명하기 위한 예시도,
도 9는 본 발명의 일 실시예에 따른 360 영상에서 현재블록의 예측정보에 대한 신택스 요소를 생성하는 장치의 블록도,
도 10은 compact 레이아웃을 적용한 큐브 포맷에서 현재블록의 주변블록을 결정하는 방법을 설명하기 위한 예시도,
도 11은 도 9의 장치를 인트라 예측에 적용한 경우 도 2의 인트라 예측부의 세부 구성을 나타내는 도면,
도 12는 큐브 포맷에서 인트라 예측을 위한 참조픽셀들을 설정하는 방법을 설명하기 위한 예시도,
도 13은 다양한 투영 포맷에서 인트라 예측을 위한 참조픽셀을 설정하는 방법을 설명하기 위한 예시도,
도 14는 도 9의 장치를 인터 예측에 적용한 경우 도 2의 인터 예측부의 세부 구성을 나타내는 도면,
도 15는 본 발명의 일 실시예에 따른 영상 복호화 장치를 나타내는 블록도,
도 16은 본 발명의 일 실시예에 따른 360 영상에서 현재블록의 예측정보를 복호화하기 위한 장치의 블록도,
도 17은 도 16의 장치를 인트라 예측에 적용한 경우 도 15의 인트라 예측부의 세부 구성을 나타내는 도면,
도 18은 도 16의 장치를 인터 예측에 적용한 경우 도 15의 인터 예측부의 세부 구성을 나타내는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 식별 부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 2는 본 발명의 일 실시예에 따른 영상 부호화 장치에 대한 블록도이다.
영상 부호화 장치는 블록 분할부(210), 예측부(220), 감산기(230), 변환부(240), 양자화부(245), 부호화부(250), 역양자화부(260), 역변환부(265), 가산기(270), 필터부(280) 및 메모리(290)를 포함한다. 영상 부호화 장치는 각 구성요소는 하드웨어 칩으로 구현될 수 있으며, 또는 소프트웨어로 구현되고 마이크로프로세서가 각 구성요소에 대응하는 소프트웨어의 기능을 실행하도록 구현될 수도 있다.
블록 분할부(210)는 영상을 구성하는 각 픽처(picture)를 복수의 CTU(Coding Tree Unit)으로 분할한 이후에, CTU를 트리 구조(tree structure)를 이용하여 반복적으로(recursively) 분할한다. 트리 구조에서의 리프 노드(leaf node)가 부호화의 기본 단위인 CU (coding unit)가 된다. 트리 구조로는 상위 노드가 네 개의 하위 노드로 분할하는 쿼드트리(QuadTree, QT), 또는 QT 구조 및 상위 노드가 두 개의 하위 노드로 분할하는 바이너리트리(BinaryTree, BT) 구조를 혼용한 QTBT (QuadTree plus BinaryTree) 구조가 사용될 수 있다.
QTBT (QuadTree plus BinaryTree) 구조에서, CTU는 먼저 QT 구조로 분할된다. 이후, QT의 리프 노드들은 BT에 의해 추가로 더 분할될 수 있다. 블록 분할부(210)가 QTBT 구조에 의해 CTU를 분할하여 생성하는 분할 정보는 부호화부(250)에 의해 부호화되어 복호화 장치로 전달된다.
QT에서는 해당 노드의 블록이 분할 여부를 지시하는 제1 플래그(QT 분할 플래그, QT_split_flag)가 부호화된다. 제1 플래그가 1이면 해당 노드의 블록이 동일 크기의 네 개의 블록으로 분할되고, 0이면 해당 노드는 QT에 의해 더 이상 분할되지 않는다.
BT에서는 해당 노드의 블록의 분할 여부를 지시하는 제2 플래그(BT 분할 플래그, BT_split_flag)가 부호화된다. BT 에서는 복수의 분할 타입이 존재할 수 있다. 예컨대, 해당 노드의 블록을 동일 크기의 두 개 블록으로 가로로 분할하는 타입과 세로로 분할하는 타입 두 가지가 존재할 수 있다. 또는, 해당 노드의 블록을 서로 비대칭 형태의 두 개의 블록으로 분할하는 타입이 추가로 더 존재할 수도 있다. 비대칭 형태로는 해당 노드의 블록을 1:3의 크기 비율을 가지는 두 개의 직사각형 블록으로 분할하는 형태를 포함할 수 있고, 또는 해당 노드의 블록을 대각선 방향으로 분할하는 형태를 포함할 수도 있다. 이렇게 BT가 복수의 분할 타입을 가지는 경우에는, 블록이 분할됨을 의미하는 제2 플래그가 부호화되면, 해당 블록의 분할 타입을 지시하는 분할 타입 정보가 추가로 부호화된다.
도 3은 QTBT 구조를 이용한 블록 분할의 예시도이다. 도 3의 (a)는 QTBT 구조에 의해 블록이 분할되는 예시이고, (b)는 이를 트리구조로 표현한 것이다. 도 3에서 실선은 QT 구조에 의한 분할을, 점선은 BT 구조에 의한 분할을 나타낸다. 또한, 도 3 (b)에서 layer 표기와 관련하여, 괄호가 없는 것은 QT의 레이어를, 괄호가 있는 것은 BT의 레이어를 나타낸다. 점선으로 표현된 BT 구조에서 숫자는 분할 타입 정보를 나타낸다.
도 3에서, QT의 최상위 레이어인 CTU는 layer 1의 네 개의 노드로 분할된다. 이에 따라 블록 분할부(210)는 CTU가 분할됨을 지시하는 QT 분할 플래그(QT_split_flag = 1)를 생성한다. layer 1의 첫 번째 노드에 해당하는 블록은 더 이상 QT에 의해 분할되지 않다. 따라서, 블록 분할부(210)는 QT_split_flag = 0을 생성한다.
이후, QT의 layer 1의 첫 번째 노드에 해당하는 블록은 BT로 진행한다. 본 실시예에서는, BT가 해당 노드의 블록을 동일 크기의 두 개 블록으로 가로로 분할하는 타입과 세로로 분할하는 타입 두 가지가 존재하는 것으로 설명한다. QT의 layer 1의 첫 번째 노드는 BT의 루트 노드(root node, (layer 0))가 된다. BT의 루트 노드에 해당하는 블록은 (layer 1)의 블록으로 더 분할되므로, 블록 분할부(210)는 BT에 의해 분할됨을 지시하는 BT 분할 플래그(BT_split_flag) = 1을 생성한다. 이후, 해당 블록이 가로로 분할되는지 아니면 세로로 분할되는지 여부를 지시하는 분할 타입 정보를 생성한다. 도 3에서 BT의 루트 노드에 해당하는 블록은 세로로 분할되므로 세로 분할을 지시하는 1이 분할 타입 정보로서 생성된다. 루트 노드로부터 분할된 (layer 1)의 블록 중 첫 번째 블록은 추가로 더 분할되고 분할 타입은 세로이므로, BT_split_flag = 1 및 분할 타입 정보 1을 생성한다. 반면, BT의 루트 노드로부터 분할된 (layer 1)의 두 번째 블록은 더 이상 분할되지 않으므로 BT_split_flag = 0을 생성한다.
한편, QTBT 구조에 의한 블록 분할에 대한 정보를 효율적으로 복호화 장치로 시그널링하기 위해, 다음의 정보가 추가로 부호화될 수 있다. 이 정보들은 영상의 헤더 정보로서 부호화되는데, 예컨대 SPS (Sequence Parameter Set)이나 PPS (Picture Parameter Set)로 부호화될 수 있다.
- CTU size: QTBT의 최상위 레이어, 즉, 루트 노드의 블록 크기
- MinQTSize: QT에서 허용되는 리프 노드의 최소 블록 크기
- MaxBTSize: BT에서 허용되는 루트 노드의 최대 블록 크기
- MaxBTDepth: BT에서 허용되는 최대 심도(Depth)
- MinBTSize: BT에서 허용되는 리프 노드의 최소 블록 크기
QT에서 MinQTSize 과 동일한 크기를 가지는 블록은 더 이상 분할되지 않으며, 따라서 해당 블록에 대응하는 QT에 관한 분할 정보(제1 플래그)는 부호화되지 않는다. 또한, QT에서 MaxBTSize보다 큰 크기를 가지는 블록은 BT가 존재하지 않는다. 따라서, 해당 블록에 대응하는 BT에 관한 분할 정보(제2 플래그, 분할 타입 정보)는 부호화되지 않는다. 또한, BT의 해당 노드의 심도(depth)가 MaxBTDepth에 도달하면, 해당 노드의 블록은 더 이상 분할되지 않으며 해당 노드의 BT에 관한 분할 정보(제2 플래그, 분할 타입 정보) 또한 부호화되지 않는다. 또한, BT에서 MinBTSize와 동일한 크기를 가지는 블록은 더 이상 분할되지 않으며 BT에 관한 분할 정보(제2 플래그, 분할 타입 정보) 또한 부호화되지 않는다. 이렇게, QT와 BT의 루프나 리프 노드가 가질 수 있는 최대 또는 최소 블록 크기를 SPS (Sequence Parameter Set)이나 PPS (Picture Parameter Set) 등의 하이 레벨(high level)에서 정의함으로써, CTU의 분할 여부나 분할 타입을 지시하는 정보들에 대한 부호화량을 줄일 수 있다.
한편, CTU의 휘도(luma) 성분과 색차(chroma) 성분은 동일한 QTBT 구조로 분할될 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며 휘도 성분과 색차 성분이 각각 별개의 QTBT 구조를 사용하여 분할될 수 있다. 예컨대, I (Intra) 슬라이스의 경우에는 루마(luma) 성분과 chroma 성분이 서로 다른 QTBT 구조로 분할될 수도 있다.
이하에서는, 부호화 또는 복호화하고자 하는 CU에 해당하는 블록을 '현재블록'이라 칭한다.
예측부(220)는 현재블록을 예측하여 예측블록을 생성한다. 예측부(220)는 인트라 예측부(222)와 인터 예측부(224)를 포함한다.
인트라 예측부(222)는 현재블록이 포함된 현재 픽처 내에서 현재블록의 주변에 위치한 픽셀(참조 픽셀)들을 이용하여 현재블록 내의 픽셀들을 예측한다. 예측 방향에 따라 복수의 인트라 예측모드가 존재하며, 각 예측모드에 따라 사용할 주변 픽셀과 연산식이 다르게 정의된다.
도 4는 복수의 인트라 예측 모드에 대한 예시를 나타낸다.
도 4에서 보는 바와 같이, 복수의 인트라 예측 모드는 2개의 비방향성 모드(planar 모드 및 DC 모드)와 65개의 방향성 모드를 포함할 수 있다.
인트라 예측부(222)는 복수의 인트라 예측 모드 중에서 하나의 인트라 예측 모드를 선택하고, 선택된 인트라 예측 모드에 따라 결정되는 주변 픽셀(참조 픽셀)과 연산식을 사용하여 현재블록을 예측한다. 선택된 인트라 예측 모드에 대한 정보는 부호화부(250)에 의해 부호화되어 복호화 장치로 전달된다.
한편, 인트라 예측부(222)는, 복수의 인트라 예측 모드 중 어느 모드가 현재블록의 인트라 예측 모드로 사용되었는지를 지시하는 인트라 예측 모드 정보를 효율적으로 부호화하기 위해, 복수의 인트라 예측 모드 중 현재블록의 인트라 예측 모드로서 가능성이 높은 일부의 모드를 MPM(most probable mode)으로 선택한다. 그리고, 현재블록의 인트라 예측 모드가 MPM 중에서 선택되는지 여부를 지시하는 모드 정보를 생성하여 부호화부(250)로 전달한다. 현재블록의 인트라 예측 모드가 MPM 중에서 선택되는 경우, MPM 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제1 인트라 식별정보를 부호화부로 전달한다. 반면 현재블록의 인트라 예측 모드가 MPM 중에서 선택되지 않은 경우, MPM이 아닌 나머지 모드들 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제2 인트라 식별정보를 부호화부로 전달한다.
이하에서는, MPM 리스트를 구성하는 방법을 설명한다. 본 명세서에서는 6개의 MPM으로 MPM 리스트를 구성하는 것을 예로 설명하나, 본 발명이 이에 한정되는 것은 아니며 MPM 리스트에 포함되는 MPM의 개수는 3개 내지 10개의 범위 내에서 선택될 수 있다.
먼저, 현재블록의 주변블록들의 인트라 예측 모드를 이용하여 MPM 후보를 구성한다. 주변블록은, 예컨대 도 5에 도시된 바와 같이, 현재블록의 좌측블록(L), 상단블록(A), 좌하단블록(BL), 우상단블록(AR), 좌상단블록(AL) 중에서 전부 또는 일부를 포함할 수 있다.
이 주변블록들의 인트라 예측 모드가 MPM 리스트에 포함된다. 여기서, 좌측블록(L), 상단블록(A), 좌하단블록(BL), 우상단블록(AR), 좌상단블록(AL)의 순서로 유효한 블록의 인트라 예측모드가 MPM 리스트에 포함된다. 또는, 이 주변블록들의 인트라 예측 모드들에 planar 모드 및 DC 모드를 추가하여 후보를 구성한 이후에, 좌측블록(L), 상단블록(A), planar 모드, DC 모드, 좌하단블록(BL), 우상단블록(AR), 좌상단블록(AL)의 순으로 유효한 모드가 MPM 리스트에 추가될 수도 있다.
MPM 리스트에는 서로 다른 인트라 예측 모드만이 포함된다. 즉, 중복된 모드(duplicated mode)가 존재하는 경우 그 중 하나의 모드만이 MPM 리스트에 포함된다.
만약, 리스트 내의 MPM의 개수가 기결정된 개수(예컨대, 6)보다 작은 경우에는, 리스트 내의 비방향성 모드들에 -1 또는 +1을 가산하여 MPM을 유도할 수도 있다. 또한, 리스트 내의 MPM의 개수가 기결정된 개수보다 작은 경우에는, 수직 모드(vertical mode), 수직 모드(horizontal mode), 대각선 모드(diagonal mode) 등의 순서로 부족한 개수 만큼의 모드를 MPM 리스트에 추가할 수도 있다.
인터 예측부(224)는 현재 픽처보다 먼저 부호화 및 복호화된 참조 픽처 내에서 현재블록과 가장 유사한 블록을 탐색하고, 그 탐색된 블록을 이용하여 현재블록에 대한 예측블록을 생성한다. 그리고, 현재 픽처 내의 현재블록과 참조 픽처 내의 예측블록 간의 변위(displacement)에 해당하는 움직임벡터(motion vector)를 생성한다. 현재블록을 예측하기 위해 사용된 참조 픽처에 대한 정보 및 움직임벡터에 대한 정보를 포함하는 움직임 정보는 부호화부(250)에 의해 부호화되어 복호화 장치로 전달된다.
움직임 정보를 부호화하는 데에 소요되는 비트량을 최소화하기 위해 다양한 방법이 사용될 수 있다.
예컨대, 현재블록의 참조 픽처와 움직임벡터가 주변블록의 참조 픽처 및 움직임벡터와 동일한 경우에는 그 주변블록을 식별할 수 있는 정보를 부호화함으로써, 현재블록의 움직임 정보를 복호화 장치로 전달할 수 있다. 이러한 방법을 '머지 모드 (merge mode)'라 한다.
머지 모드에서, 인터 예측부(224)는 현재블록의 주변블록들로부터 기 결정된 개수의 머지 후보블록(이하, '머지 후보'라 함)들을 선택한다.
머지 후보를 유도하기 위한 주변블록으로는, 도 5에 도시된 바와 같이, 현재 픽처 내에서 현재블록에 인접한 좌측블록(L), 상단블록(A), 우상단블록(AR), 좌하단블록(BL), 좌상단블록(AL) 중에서 전부 또는 일부가 사용될 수 있다. 또한, 현재블록이 위치한 현재 픽처가 아닌 참조 픽처(현재블록을 예측하기 위해 사용된 참조 픽처와 동일할 수도 있고 다를 수도 있음) 내에 위치한 블록이 머지 후보로서 사용될 수도 있다. 예컨대, 참조 픽처 내에서 현재블록과 동일 위치에 있는 블록(co-located block) 또는 그 동일 위치의 블록에 인접한 블록들이 머지 후보로서 추가로 더 사용될 수 있다.
인터 예측부(224)는 이러한 주변블록들을 이용하여 기 결정된 개수의 머지 후보를 포함하는 머지 리스트를 구성한다. 머지 리스트에 포함된 머지 후보들 중에서 현재블록의 움직임정보로서 사용할 머지 후보를 선택하고 선택된 후보를 식별하기 위한 머지 인덱스 정보를 생성한다. 생성된 머지 인덱스 정보는 부호화부(250)에 의해 부호화되어 복호화 장치로 전달된다.
움직임 정보를 부호화하는 또 다른 방법은 차분 움직임벡터를 부호화하는 것이다.
이 방법에서, 인터 예측부(224)는 현재블록의 주변블록들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터 후보들을 유도한다. 예측 움직임벡터 후보들을 유도하기 위해 사용되는 주변블록으로는, 도 5에 도시된 현재 픽처 내에서 현재블록에 인접한 좌측블록(L), 상단블록(A), 우상단블록(AR), 좌하단블록(BL), 좌상단블록(AL) 중에서 전부 또는 일부가 사용될 수 있다. 또한, 현재블록이 위치한 현재 픽처가 아닌 참조 픽처(현재블록을 예측하기 위해 사용된 참조 픽처와 동일할 수도 있고 다를 수도 있음) 내에 위치한 블록이 머지 후보로서 사용될 수도 있다. 예컨대, 참조 픽처 내에서 현재블록과 동일 위치에 있는 블록(co-located block) 또는 그 동일 위치의 블록에 인접한 블록들이 머지 후보로서 추가로 더 사용될 수 있다.
인터 예측부(224)는 이 주변블록들의 움직임벡터를 이용하여 예측 움직임벡터 후보들을 유도하고, 예측 움직임벡터 후보들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정한다. 그리고, 현재블록의 움직임벡터로부터 예측 움직임벡터를 감산하여 차분 움직임벡터를 산출한다.
예측 움직임벡터는 예측 움직임벡터 후보들에 기 정의된 함수(예컨대, 중앙값, 평균값 연산 등)를 적용하여 구할 수 있다. 이 경우, 영상 복호화 장치도 기 정의된 함수를 알고 있다. 또한, 예측 움직임벡터 후보를 유도하기 위해 사용하는 주변블록은 이미 부호화 및 복호화가 완료된 블록이므로 영상 복호화 장치도 그 주변블록의 움직임벡터로 이미 알고 있다. 그러므로 영상 부호화 장치는 예측 움직임벡터 후보를 식별하기 위한 정보를 부호화할 필요가 없다. 따라서, 이 경우에는 차분 움직임벡터에 대한 정보와 현재블록을 예측하기 위해 사용한 참조 픽처에 대한 정보가 부호화된다.
한편, 예측 움직임벡터는 예측 움직임벡터 후보들 중 어느 하나를 선택하는 방식으로 결정될 수도 있다. 이 경우에는 차분 움직임벡터에 대한 정보 및 현재블록을 예측하기 위해 사용한 참조 픽처에 대한 정보와 함께, 선택된 예측 움직임벡터 후보를 식별하기 위한 정보가 추가로 부호화된다.
감산기(230)는 현재블록으로부터 인트라 예측부(222) 또는 인터 예측부(224)에 의해 생성된 예측블록을 감산하여 잔차 블록을 생성한다.
변환부(240)는 공간 영역의 픽셀 값들을 가지는 잔차 블록 내의 잔차 신호를 주파수 도메인의 변환 계수로 변환한다. 변환부(240)는 잔차 블록 내의 잔차 신호들을 현재블록의 크기를 변환 단위로 사용하여 변환할 수 있으며, 또는 잔차 블록을 더 작은 복수의 서브블록을 분할하고 서브블록 크기의 변환 단위로 잔차 신호들을 변환할 수도 있다. 잔차 블록을 더 작은 서브블록으로 분할하는 방법은 다양하게 존재할 수 있다. 예컨대, 기정의된 동일한 크기의 서브블록으로 분할할 수도 있으며, 또는 잔차 블록을 루트 노드로 하는 QT(quadtree) 방식의 분할을 사용할 수도 있다.
양자화부(245)는 변환부(240)로부터 출력되는 변환 계수들을 양자화하고, 양자화된 변환 계수들을 부호화부(250)로 출력한다.
부호화부(250)는 양자화된 변환 계수들을 CABAC 등의 부호화 방식을 사용하여 부호화하여 비트스트림을 생성한다. 또한, 부호화부(250)는 블록 분할과 관련된 CTU size, MinQTSize, MaxBTSize, MaxBTDepth, MinBTSize, QT 분할 플래그, BT 분할 플래그, 분할 타입 등의 정보를 부호화하여, 복호화 장치가 부호화 장치와 동일하게 블록을 분할할 수 있도록 한다.
부호화부(250)는 현재블록이 인트라 예측에 의해 부호화되었는지 아니면 인터 예측에 의해 부호화되었는지 여부를 지시하는 예측 타입에 대한 정보를 부호화하고, 예측 타입에 따라 인트라 예측정보 또는 인터 예측정보를 부호화한다.
현재블록이 인트라 예측된 경우에는 인트라 예측정보로서 인트라 예측 모드에 대한 신택스 요소(syntax element)를 부호화한다. 인트라 예측 모드에 대한 신택스 요소(syntax element)는 다음을 포함한다.
(1) 현재블록의 인트라 예측 모드가 MPM 중에서 선택되는지 여부를 지시하는 모드 정보,
(2) 현재블록의 인트라 예측 모드가 MPM 중에서 선택되는 경우, MPM 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제1 인트라 식별정보,
(3) 현재블록의 인트라 예측 모드가 MPM 중에서 선택되지 않은 경우, MPM이 아닌 나머지 모드들 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제2 인트라 식별정보
한편, 현재블록이 인터 예측된 경우, 부호화부(250)는 인터 예측정보에 대한 신택스 요소를 부호화한다. 인터 예측정보에 대한 신택스 요소는 다음을 포함한다.
(1) 현재블록의 움직임정보가 머지 모드로 부호화되는지 아니면 차분 움직임벡터를 부호화하는 모드로 부호화되는지 여부를 지시하는 모드 정보
(2) 움직임정보에 대한 신택스 요소
움직임정보가 머지 모드에 의해 부호화되는 경우, 부호화부(250)는 머지 후보들 중 어느 후보가 현재블록의 움직임정보를 추출하기 위한 후보로서 선택되는지를 지시하는 머지 인덱스 정보를 움직임정보에 대한 신택스 요소로 부호화한다.
반면, 움직임정보가 차분 움직임벡터를 부호화하는 모드에 의해 부호화되는 경우, 차분 움직임벡터에 대한 정보 및 참조 픽처에 대한 정보를 움직임정보에 대한 신택스 요소로 부호화한다. 만약, 예측 움직임벡터가 복수의 예측 움직임벡터 후보들 중 어느 하나의 후보를 선택하는 방식으로 결정되는 경우에는, 움직임정보에 대한 신택스 요소는 그 선택된 후보를 식별하기 위한 예측 움직임벡터 식별 정보를 추가로 더 포함한다.
역양자화부(260)는 양자화부(245)로부터 출력되는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 생성한다. 역변환부(265)는 역양자화부(260)로부터 출력되는 변환 계수들을 주파수 도메인으로부터 공간 도메인으로 변환하여 잔차블록을 복원한다.
가산부(270)는 복원된 잔차블록과 예측부(220)에 의해 생성된 예측블록을 가산하여 현재블록을 복원한다. 복원된 현재블록 내의 픽셀들은 다음 순서의 블록을 인트라 예측할 때 참조 픽셀로서 사용된다.
필터부(280)는 블록 단위의 부호화/복호화로 인해 발생하는 블록킹 현상(blocking artifact)을 제거하기 위해 복원된 블록 간의 경계를 디블록킹 필터링하고 메모리(290)에 저장한다. 한 픽처 내의 모든 블록들이 복원되면, 복원된 픽처는 이후에 부호화하고자 하는 픽처 내의 블록을 인터 예측하기 위한 참조 픽처로 사용된다.
이상에서 설명한 영상 부호화 기술은 360 영상을 2D로 투영한 이후에, 2D 이미지를 부호화할 때에도 적용된다.
360 영상에 사용되는 대표적인 투영 포맷인 정방형 투영(equirectangular projection)은, 2D 이미지를 360 영상으로 투영할 때 위, 아래 부분의 픽셀을 늘려 심하게 왜곡시키는 단점이 있으며, 영상의 압축 시에도 늘어난 부분에 데이터량 증가 및 인코딩 처리량을 늘리는 단점이 있다. 따라서, 본 발명에서는 다양한 투영 포맷을 지원하는 영상 부호화 기술을 제공하고자 한다. 또한, 2D 이미지에서 서로 인접하지 않은 영역도 360 영상에서는 서로 인접하다. 예컨대, 도 1의 (a)에 도시된 2D 이미지의 좌측 경계와 우측 경계는 360 영상으로 투영할 때 서로 인접하게 된다. 따라서, 본 발명에서는 360 영상의 이러한 특징을 반영하여 효율적으로 영상을 부호화할 수 있는 방법을 제공하고자 한다.
360 영상의 위한 메타 데이터(meta data)
아래 표 1은 다양한 투영 포맷을 지원하기 위해 비트스트림으로 부호화되는 360 영상의 메타 데이터의 일례를 나타낸다.
360_video( ) {
projection_format_idx
If (projection_format_idx != ERP && projection_format_idx != TSP)
compact_layout_flag
If (projection_format == CMP) {
num_face_rows_minus1
num_face_columns_minus1
face_width
face_height
for( i = 0; i <= num_face_rows_minus1; i++ ) {
for( j = 0; j <= num_face_columns_minus1; j++ ) {
face_ idx[ i ][ j ]
face_rotation_ idx[ i ][ j ]
}
}
}
}
360 영상의 메타 데이터는 VPS (Video Parameter Set), SPS (Sequence Parameter Set), PPS (Picture Patameter Set), SEI (Supplementary Enhancement Information) 중 어느 하나의 위치에서 부호화된다.
1-1) projection_format_ idx
이 신택스 요소(syntax element)는 360 영상의 투영 포맷(projection format)을 지시하는 인덱스를 의미한다. 이 인덱스 값에 따른 투영 포맷은 표 2와 같이 정의될 수 있다.
Index Projection format Description
0 ERP Equirectangular projection
1 CMP Cubemap projection
2 ISP Icosahedron projection
3 OHP Octahedron projection
4 EAP Equal-area projection
5 TSP Truncated square pyramid projection
6 SSP Segmented sphere projection
정방형 투영은 도 1에서 보는 바와 같으며, 그 이외의 다양한 투영 포맷의 예시가 도 6에 도시된 바와 같다.
1-2) compact_layout_flag
이 신택스 요소는 360 영상으로부터 투영된 2D 이미지의 레이아웃(layout)을 변경할지 여부를 지시하는 플래그이다. 이 플래그가 0이면 레이아웃의 변경이 없는 non-compact 레이아웃이 사용되고, 1이면 각 면(face)을 재배치하여 공백이 없는 직사각형 형상의 compact 레이아웃이 사용된다.
도 7은 큐브 포맷의 레이아웃을 예시도이다. 도 7의 (a)는 레이아웃의 변경이 없는 non-compact 레이아웃을, (b)는 레이아웃을 변경한 compact 레이아웃을 나타낸다.
1-3) num _face_rows_ minus1 num _face_columns_ minus1
num_face_rows_minus1 는 가로축을 기준으로 한 (face의 개수 - 1)의 값을 나타내고, num_face_columns_minus1은 세로축을 기준으로 (face의 개수 - 1)의 값을 나타낸다. 예컨대, 도 7 (a)의 경우, num_face_rows_minus1 은 2, num_face_columns_minus1은 3가 되며, 도 7 (b)의 경우, num_face_rows_minus1 은 1, num_face_columns_minus1은 2가 된다.
1-4) face_width 및 face_height
face의 너비 정보(너비 방향으로의 픽셀의 개수) 및 높이 정보(높이 방향으로의 픽셀의 개수)를 의미한다. 다만, 이 신택스들에 의해 결정되는 face의 해상도는 num_face_rows_minus1 및 num_face_columns_minus1에 의해 충분히 유추 가능하므로 이 신택스들은 부호화되지 않을 수도 있다.
1-5) face_ idx
이 신택스 요소는 360 영상에서 각 면들의 위치를 나타내는 인덱스이다. 이 인덱스는 표3과 같이 정의될 수 있다.
face_ idx location
0 Top
1 Bottom
2 Front
3 Right
4 Back
5 Left
도 7 (a)의 non-compact 레이아웃과 같이 공백 영역이 존재하는 경우에는, 'null'을 의미하는 인덱스 값(예컨대, 6)을 공백 영역에 설정하고, null로 설정된 면에 대한 부호화는 생략할 수 있다. 예컨대, 도 7 (a)의 non-compact 레이아웃의 경우, 각 면에 대한 인덱스 값은 래스터 스캔 순서로 0 (top), 6 (null), 6 (null), 6 (null), 2 (front), 3 (right), 4 (back), 5 (left), 1 (bottom), 6 (null), 6 (null), 6 (null)을 가질 수 있다.
1-6) face_rotation_ idx
이 신택스 요소는 각 면의 회전 정보를 의미하는 인덱스이다. 2D 레이아웃에서 레이아웃을 회전시키면 서로 인접한 면 간의 연관성을 높일 수 있다. 예컨대, 도 8의 (a)에서 좌측(Left) 면의 위쪽 경계와 상단(Top) 면의 좌측 경계는 360 영상에서 서로 맞닿는다. 따라서, 도 8의 (a)의 레이아웃을 도 7의 (b)와 같은 compact 레이아웃으로 변경한 이후에 left를 270도(-90도) 회전시키면, 도 8(b)에서 보는 바와 같이 좌측 면과 상단 면 간의 연속성을 유지할 수 있다. 따라서, 각 면의 회전에 대한 신택스 요소로서, face_rotation_ idx를 정의한다. 이 인덱스는 표 4와 같이 정의될 수 있다.
Index Face rotation in counter-clockwise
0 0
1 90
2 180
3 270
표 1에는 투영 포맷이 큐브 투영 포맷인 경우에 1-3) 내지 1-6)의 신택스 요소들이 부호화되는 것으로 설명하였으나, 이러한 신택스 요소들은 큐브 투영 포맷 이외에 정20면체(icosahedron), 8면체(octahedron) 등 다른 포맷으로도 확장이 가능할 것이다. 또한, 표 1에 정의된 신택스 요소들 모두가 항상 부호화되어야 하는 것은 아니다. 360 영상의 메타데이터를 어디까지 정의하느냐에 따라 일부의 신택스 요소들은 부호화되지 않을 수도 있다. 예컨대, compact 레이아웃을 적용하지 않거나 면을 회전시키는 기술을 채택하지 않는 경우에는, compact_layout_flag, face_rotation_ idx 등의 신택스 요소는 생략될 수도 있다.
360 영상의 예측
360 영상의 2D 레이아웃에서 하나의 면 또는 서로 인접한 면들을 묶은 영역은 하나의 타일(tile) 또는 슬라이스(slice)로 취급하거나 픽처(picture)로 취급된다. 영상 부호화에서 각 타일 또는 슬라이스들은 서로 간의 의존성(dependency)이 낮기 때문에 독립적으로 취급된다. 각 타일 또는 슬라이스에 포함된 블록을 예측할 때 다른 타일 또는 슬라이스의 정보를 이용하지 않는다. 따라서, 타일 또는 슬라이스 경계에 위치한 블록을 예측하는 경우, 그 블록에 대한 주변블록이 존재하지 않을 수 있다. 기존의 영상 부호화 장치는 존재하지 않는 위치의 주변블록의 픽셀값을 기결정된 값으로 패딩하여 사용하거나, 또는 유효하지 않은 블록으로 간주한다.
그러나, 2D 레이아웃에서 서로 인접하는 영역도 360 영상을 기준으로는 서로 인접할 수 있다. 따라서, 본 발명은 360 영상의 이러한 특징을 반영하여 부호화하고자 하는 현재블록을 예측하거나 또는 그 현재블록에 대한 예측정보를 부호화할 필요가 있다.
도 9는 본 발명의 일 실시예에 따른 360 영상에서 현재블록의 예측정보에 대한 신택스 요소를 생성하는 장치를 도시한 것이다.
본 장치(900)는 예측정보 후보 생성부(910) 및 신택스 생성부(920)를 포함한다.
예측정보 후보 생성부(910)는 360 영상으로부터 투영된 2D 레이아웃의 제1 면에 위치하는 현재블록의 주변블록들을 이용하여 예측정보 후보들을 생성한다. 주변블록들은 현재블록의 주변의 기 지정된 위치에 위치한 블록들로서, 도 5에 바와 같이, 좌측블록(L), 상단블록(A), 좌하단블록(BL), 우상단블록(AR), 좌상단블록(AL) 중 전부 또는 일부를 포함할 수 있다.
현재블록이 제1 면의 경계에 접하는 경우, 즉, 현재블록의 경계가 제1 면의 경계와 일치하는 경우, 기 지정된 위치의 주변블록들 중 일부는 제1 면 내에 존재하지 않을 수 있다. 예컨대, 현재블록이 제1 면의 상단 경계에 접하는 경우, 도 5에서 상단블록(A), 우상단블록(AR) 및 좌상단블록(AL)은 제1 면에 존재하지 않는다. 기존의 영상 부호화에서는 이러한 주변블록들은 유효하지 않은 블록으로 간주되어 사용되지 않았다. 그러나, 본 발명에서는, 현재블록이 제1 면의 경계와 일치하는 경우, 2D 레이아웃 아닌 360 영상을 기준으로 주변블록을 결정한다. 즉, 360 영상을 기준으로 현재블록에 인접한 블록을 주변블록으로 결정한다. 여기서, 예측정보 후보 생성부(910)는 360 영상의 투영 포맷, 면의 인덱스(face index) 및 면의 회전 정보 중 하나 이상의 정보를 이용하여 360 영상을 기준으로 현재블록에 인접한 블록을 식별할 수 있다. 예컨대, 정방형 투영 포맷의 경우에는 면이 1개이므로, 면의 인덱스나 면의 회전 정보를 이용할 필요 없이 투영 포맷만을 이용하여 현재블록에 인접한 블록을 식별할 수 있다. 또한, 정방형 투영 이외에 복수의 면을 가지는 투영 포맷의 경우에는, 투영 포맷 이외에 면의 인덱스를 이용하여 현재블록에 인접한 블록을 식별할 수 있다. 면을 회전시키는 기술을 채택하는 경우에는 면의 인덱스뿐만 아니라 면의 회전 정보를 추가로 더 이용하여 현재블록에 인접한 블록을 식별할 수 있다.
예컨대, 예측정보 후보 생성부(910)는, 현재블록의 경계가 제1 면의 경계와 일치하는 경우, 현재블록의 경계에 접하고 먼저 부호화된 제2 면을 식별한다. 여기서, 현재블록의 경계가 제1 면의 경계와 일치하는지 여부는 현재블록의 위치, 예컨대, 현재블록 내의 최좌측상단 픽셀의 위치에 의해 결정할 수 있다. 제2 면은 투영 포맷, 면의 인덱스(face index) 및 면의 회전 정보 중 하나 이상의 정보를 이용하여 식별된다. 예측정보 후보 생성부(910)는 제2 면에 위치하고 360 영상에서 현재블록에 인접한 블록을 현재블록의 주변블록으로 결정한다.
도 10은 compact 레이아웃을 적용한 큐브 포맷에서 현재블록의 주변블록을 결정하는 방법을 설명하기 위한 예시도이다.
도 10에서 각 면에 기재된 숫자는 면의 인덱스를 나타낸 것이고, 면의 인덱스는, 표 3에서 보는 바와 같이, 0은 상면(top face), 1은 저면(bottom face), 2는 앞면(front face), 3은 우측면(right face), 4는 뒷면(back face), 5는 좌측면(left face)를 의미한다. 도 10 (b)의 compact 레이아웃에서 현재블록(X)이 앞면(2)의 상부 경계에 접할 때, 현재블록의 좌측 주변블록(L)은 앞면(2)에 존재하지만 상단에 위치한 주변블록(A)은 앞면(2)에 존재하지 않는다. 그러나, 도 10(a)에서 보는 바와 같이, compact 레이아웃을 큐브 포맷에 따라 360 영상으로 투영하는 경우, 현재블록이 접하는 앞면(2)의 상부 경계는 상면(0)의 하부 경계에 접한다. 그리고, 상면(0)의 하부 경계에 현재블록(X)에 인접한 블록(A)가 존재한다. 따라서, 상면(0)의 블록(A)를 현재블록의 주변블록으로 사용한다.
한편, 도 2에 도시된 부호화 장치의 부호화부(250)는 서로 다른 면 간의 참조가 허용되는지 여부를 지시하는 플래그를 추가로 더 부호화할 수 있다. 360 영상을 기준으로 현재블록의 주변블록을 결정하는 것은, 각 면 간의 dependency가 존재하여 부호화기 및 복호화기의 실행 속도 감소를 초래할 수 있다. 이를 방지하기 위해 SSP (sequence parameter set) 혹은 PPS (picture parameter set) 등의 헤더에 상기의 플래그를 부호화할 수 있다. 이 때, 예측정보 후보 생성부(910)는 그 플래그가 on(예컨대, 플래그 = 1)이 되면 360 영상을 기준으로 현재블록의 주변블록을 결정하고, off(예컨대, 플래그 = 0)가 되면 360 영상이 아니라 기존과 마찬가지로 2D 이미지를 기준으로 각 면마다 독립적으로 주변블록을 결정한다.
신택스 생성부(920)는 예측정부 후보 생성부(910)에 의해 생성된 예측정보 후보들을 이용하여 현재블록의 예측정보에 대한 신택스 요소를 부호화한다. 여기서, 예측정보는 인터 예측정보일 수도 있고 인트라 예측정보일 수도 있다.
도 9의 장치가 인트라 예측과 인터 예측에 적용되는 경우에 대한 실시예를 설명한다.
도 11은 도 9의 장치를 인트라 예측에 적용한 경우 인트라 예측부(222)의 세부 구성을 나타내는 도면이다.
본 실시예의 인트라 예측부(222)는 MPM 생성부(1110) 및 신택스 생성부(1120)를 포함하는데, 이 구성요소들은 각각 도 10의 예측정보 후보 생성부(910) 및 신택스 생성부(920)에 대응한다.
MPM 생성부(1110)는, 전술한 바와 같이, 현재블록의 주변블록의 인트라 예측모드로부터 MPM들을 생성하여 MPM 리스트를 구성한다. MPM 리스트를 구성하는 방법은 도 2의 인트라 예측부(222)에서 이미 설명하였으므로, 더 이상의 설명은 생략한다.
현재블록의 경계가 현재블록이 위치하는 면의 경계와 동일한 경우, MPM 생성부(1110)는 360 영상을 기준으로 현재블록에 인접한 블록을 현재블록의 주변블록으로 결정하게 된다. 예컨대, 도 10의 예에서와 같이 현재블록(X)이 앞면(2)의 상부 경계에 접하는 경우, 상단블록(A), 우상단블록(AR) 및 좌상단블록(AL)은 앞면(2)에 존재하지 않는다. 따라서, 360 영상에서 앞면(2)의 상부 경계에 접하는 상면(0)을 식별하고, 현재블록의 위치에 근거하여 상단블록(A), 우상단블록(AR) 및 좌상단블록(AL)에 해당하는 블록을 상면(0)에서 식별하여 주변블록으로 사용한다.
신택스 생성부(1120)는 MPM 리스트에 포함된 MPM들을 이용하여 현재블록의 인트라 예측 모드에 대한 신택스 요소를 생성하여 부호화부(250)로 출력한다. 즉, 신택스 생성부(1120)는 현재블록의 인트라 예측 모드가 MPM 리스트 내의 MPM 중 어느 하나와 동일한지를 판단하고, 현재블록의 인트라 예측 모드가 MPM 리스트 내의 MPM들로부터 선택되는지 여부를 지시하는 모드 정보를 생성한다. 현재블록의 인트라 예측 정보가 MPM들로부터 선택되는 경우, MPM들 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되는지를 지시하는 제1 식별정보를 생성한다. 현재블록의 인트라 예측 정보가 MPM들로부터 선택되지 않는 경우, 복수의 인트라 예측 모드로부터 MPM들을 제외한 나머지 모드들 중에서 현재블록의 인트라 예측 모드를 지시하는 제 2 식별정보를 생성한다. 생성된 모드 정보, 제1 식별정보 및 제2 식별정보는 부호화부(250)로 출력되고, 부호화부(250)에 의해 부호화된다.
한편, 인트라 예측부(222)는 참조 픽셀 생성부(1130) 및 예측블록 생성부(1140)를 더 포함할 수도 있다.
참조 픽셀 생성부(1130)는 현재블록의 주변의 위치한 먼저 부호화된 블록 내의 픽셀들을 참조 픽셀로 설정한다. 예컨대, 현재블록에서 상단 및 상단우측에 위치하는 픽셀들과 좌측 및 좌측하단에 위치하는 픽셀들을 참조 픽셀로 설정할 수 있다. 상단 및 상단우측에 위치하는 픽셀은 현재블록 주변의 하나 또는 복수 개 행(row)의 픽셀들을 포함할 수 있다. 좌측 및 좌측하단에 위치하는 픽셀들은 현재블록 주변의 하나 또는 복수 개 열(row)의 픽셀들을 포함할 수 있다.
현재블록의 경계가 현재블록이 위치하는 면의 경계와 일치하는 경우, 참조 픽셀 생성부(1130)는 360 영상을 기준으로 현재블록 참조 픽셀을 설정한다. 원리는 도 10을 통해 설명한 바와 같다. 예컨대, 도 12를 참조하면, 2D 레이아웃에서, 앞면(2)에 위치한 현재블록(X)의 좌측 및 좌측하단에는 참조픽셀들이 존재하지만, 상단 및 상단우측에는 참조픽셀들이 존재하지 않는다. 그러나, compact 레이아웃을 큐브 포맷에 따라 360 영상으로 투영하는 경우, 현재블록이 접하는 앞면(2)의 상부 경계는 상면(0)의 하부 경계에 접한다. 따라서, 상면(0)의 하부 경계에서 현재블록의 상단 및 상단우측에 대응하는 픽셀들을 참조 픽셀로 설정한다.
도 13은 다양한 투영 포맷에서 인트라 예측을 위한 참조픽셀을 설정하는 방법을 설명하기 위한 예시도이다. 도 13의 (a) 내지 (e)에서 보는 바와 같이, 참조픽셀이 존재하지 않는 위치는 360 영상을 기준으로 현재블록 주변에 위치하는 픽셀들로 패딩(padding)된다. 패딩은 360 영상에서 픽셀들이 서로 맞닿는 위치를 고려하여 결정된다. 예컨대, 도 13의 (b)의 큐브 포맷의 경우 뒷면(back face) 내의 좌측 경계에 아래에서 위 방향으로 순차적으로 위치한 1~8번 픽셀들이 오른쪽에서 왼쪽 방향으로 좌측면(left face)의 상단에 위치한 주변 픽셀로 순차적으로 패딩된다. 그러나 본 발명이 이에 한정되는 것은 아니며, 경우에 따라서는 역방향의 패딩도 가능하다. 예컨대, 도 13의 (b)에서 뒷면(back face) 내의 좌측 경계에 아래에서 위 방향으로 위치한 1~8번 픽셀들이 좌에서 우 방향으로 좌측면(left face)의 상단에 위치한 주변 픽셀로 순차적으로 패딩될 수도 있다.
예측블록 생성부(1140)는 참조 픽셀 생성부(1130)에 의해 설정된 참조 픽셀들을 이용하여 현재블록을 예측하고 현재블록의 인트라 예측모드를 결정한다. 결정된 인트라 예측 모드는 MPM 생성부(1110)로 입력되고, MPM 생성부(1110) 및 신택스 생성부(1120)는 결정된 인트라 예측 모드에 대한 신택스 요소를 생성하여 부호화부로 출력하게 된다.
도 14는 도 9의 장치를 인터 예측에 적용한 경우 인터 예측부(224)의 세부 구성을 나타내는 도면이다.
도 9의 장치가 인터 예측에 적용되는 경우, 인터 예측부(224)는 예측블록 생성부(1410), 머지 후보 생성부(1420) 및 신택스 생성부(1430)를 포함한다. 머지 후보 생성부(1420) 및 신택스 생성부(1430)는 도 9의 예측정보 후보 생성부(910) 및 신택스 생성부(920)에 각각 대응한다.
예측블록 생성부(1410)는 참조 픽처 내에서 현재블록의 픽셀값과 가장 유사한 픽셀값을 가지는 블록을 탐색하여 현재블록의 움직임벡터와 예측블록을 생성한다. 그리고 예측블록을 감산기(230) 및 가산기(270)로 출력하고, 움직임벡터와 참조 픽처에 대한 정보를 포함하는 움직임정보를 머지 후보 생성부(1420)로 출력한다.
머지 후보 생성부(1420)는 현재블록의 주변블록을 이용하여 머지 후보들을 포함하는 머지 리스트를 생성한다. 전술한 바와 같이, 도 5에 도시된 도 5에 도시된 현재블록에 인접한 좌측블록(L), 상단블록(A), 우상단블록(AR), 좌하단블록(BL), 좌상단블록(AL) 중에서 전부 또는 일부가 머지 후보들을 생성하기 위한 주변블록으로 사용될 수 있다.
현재블록의 경계가 현재블록이 위치한 제1 면에 위치하는 경우, 머지 후보 생성부(1420)는 360 영상을 기준으로 현재블록에 인접한 블록을 주변블록으로 결정한다. 머지 후보 생성부(1420)는 도 9의 예측정보 후보 생성부(910)에 대응하는 구성이다. 따라서, 예측정보 후보 생성부(910)의 모든 기능이 머지 후보 생성부(1420)에 적용될 수 있으므로, 더 이상의 상세한 설명은 생략한다.
신택스 생성부(1430)는 머지 리스트에 포함된 머지 후보들을 이용하여 현재블록의 인터 예측정보에 대한 신택스 요소를 생성한다. 먼저, 현재블록의 움직임정보를 머지 모드로 부호화할지 여부를 지시하는 모드 정보를 생성한다. 현재블록의 움직임정보가 머지 모드로 부호화되는 경우, 신택스 생성부(1430)는 머지 리스트에 포함된 머지 후보들 중 어떠한 머지 후보의 움직임정보를 현재블록의 움직임정보로 설정할 것인지를 머지 인덱스 정보를 생성한다.
머지 모드로 부호화되지 않는 경우, 신택스 생성부(1430)는 차분 움직임벡터에 대한 정보와 현재블록을 예측하기 위한 사용한(즉, 현재블록의 움직임벡터가 참조하는) 참조픽처에 대한 정보를 생성한다.
신택스 생성부(1430)는 차분 움직임벡터를 생성하기 위해, 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정한다. 신택스 생성부(1430)는 도 2의 인터 예측부(224)에서 설명한 바와 같이, 현재블록의 주변블록을 이용하여 예측 움직임벡터 후보들을 유도하고 예측 움직임벡터 후보들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정할 수 있다. 이 때 현재블록의 경계가 현재블록이 위치한 제1 면에 위치하는 경우, 머지 후보 생성부(1420)과 동일한 방식으로 360 영상을 기준으로 현재블록에 인접한 블록을 주변블록으로 결정한다.
만약, 예측 움직임벡터 후보들 중에서 어느 하나의 후보를 선택하는 방식으로 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정하는 경우, 신택스 생성부(1430)는 예측 움직임벡터 후보들 중에서 예측 움직임벡터로 선택된 후보를 식별하기 위한 예측 움직임벡터 식별정보를 추가로 생성한다.
신택스 생성부(1430)에 의해 생성된 신택스 요소는 부호화부(250)에 의해 부호화되어 복호화 장치로 전달된다.
이하에서는 영상 복호화 장치에 대해 설명한다.
도 15는 본 발명의 실시예에 따른 영상 복호화 장치를 도시한 것이다.
영상 복호화 장치는 복호화부(1510), 역양자화부(1520), 역변환부(1530), 예측부(1540), 가산기(1550), 필터부(1560) 및 메모리(1570)를 포함한다. 도 2의 영상 부호화 장치와 마찬가지로, 영상 복호화 장치는 각 구성요소가 하드웨어 칩으로 구현될 수 있으며, 또는 소프트웨어로 구현되고 마이크로프로세서가 각 구성요소에 대응하는 소프트웨어의 기능을 실행하도록 구현될 수도 있다.
복호화부(1510)는 영상 부호화 장치로부터 수신한 비트스트림을 복호화하여 블록 분할과 관련된 정보를 추출하여 복호화하고자 하는 현재블록을 결정하고, 현재블록을 복원하기 위해 필요한 예측 정보와 잔차신호에 대한 정보 등을 추출한다.
복호화부(1510)는 SPS (Sequence Parameter Set) 또는 PPS (Picture Parameter Set)로부터 CTU size에 대한 정보를 추출하여 CTU의 크기를 결정하고, 픽처를 결정된 크기의 CTU로 분할한다. 그리고 CTU를 트리 구조의 최상위 레이어, 즉, 루트 노드로 결정하고, CTU에 대한 분할 정보를 추출함으로써 CTU를 트리 구조를 이용하여 분할한다. 예컨대, QTBT 구조를 사용하여 CTU를 분할하는 경우, 먼저 QT의 분할과 관련된 제1 플래그(QT_split_flag)를 추출하여 각 노드를 하위 레이어의 네 개의 노드로 분할한다. 그리고, QT의 리프 노드에 해당하는 노드에 대해서는 BT의 분할과 관련된 제2 플래그(BT_split_flag) 및 분할 타입 정보를 추출하여 해당 리프 노드를 BT 구조로 분할한다.
도 3의 블록 분할 구조를 예로 들면, QTBT 구조의 최상위 레이어의 노드에 대응하는 QT 분할 플래그(QT_split_flag)를 추출한다. 추출된 QT 분할 플래그(QT_split_flag)의 값은 1이므로, 최상위 레이어의 노드는 하위 레이어(QT의 layer 1)의 네 개의 노드로 분할된다. 그리고, layer 1의 첫 번째 노드에 대한 QT 분할 플래그(QT_split_flag)를 추출한다. 추출된 QT 분할 플래그(QT_split_flag) 값은 0이므로, layer 1의 첫 번째 노드는 더 이상 QT 구조로 분할되지 않는다.
QT의 layer 1의 첫 번째 노드는 QT의 리프 노드가 되므로, QT의 layer 1의 첫 번째 노드를 BT의 루트 노드로 하는 BT로 진행한다. BT의 루트 노드, 즉 (layer 0))에 대응하는 BT 분할 플래그(BT_split_flag)를 추출한다. BT 분할 플래그(BT_split_flag)는 1이므로, BT의 루트 노드는 (layer 1)의 두 개의 노드로 분할된다. BT의 루트 노드가 분할되므로, BT의 루트 노드에 대응하는 블록이 세로로 분할되는지 아니면 가로로 분할되는지 여부를 지시하는 분할 타입 정보를 추출한다. 분할 타입 정보가 1이므로, BT의 루트 노드에 대응하는 블록은 세로로 분할된다. 이후, BT의 루트 노드로부터 분할된 (layer 1)의 첫 번째 노드에 대한 BT 분할 플래그(BT_split_flag)를 추출한다. BT 분할 플래그(BT_split_flag)가 1이므로, (layer 1)의 첫 번째 노드의 블록의 분할 타입 정보를 추출한다. (layer 1)의 첫 번째 노드의 블록의 분할 타입 정보가 1이므로 (layer 1)의 첫 번째 노드의 블록은 세로로 분할된다. 이후, BT의 루트 노드로부터 분할된 (layer 1)의 두 번째 노드의 BT 분할 플래그(BT_split_flag)를 추출한다. BT 분할 플래그(BT_split_flag)가 0이므로, 더 이상 BT에 의해 분할되지 않는다.
이렇게, 복호화부(1510)는 먼저 QT 분할 플래그(QT_split_flag)를 반복적으로(recursively) 추출하여 CTU를 QT 구조로 분할한다. 그리고 QT의 리프 노드에 대해서는 BT 분할 플래그(BT_split_flag)를 추출하고, BT 분할 플래그(BT_split_flag)가 분할을 지시하면 분할 타입 정보를 추출한다. 이러한 방식을 통해 복호화부(1510)은 CTU가 도 3의 (a)와 같은 구조로 분할됨을 확인할 수 있다.
한편, SPS 또는 PPS에 MinQTSize, MaxBTSize, MaxBTDepth, MinBTSize 등의 정보가 추가로 정의되어 있는 경우에는, 복호화부(1510)는 해당 정보를 추출하고 QT 및 BT에 대한 분할 정보를 추출할 때 이 정보를 반영할 수 있다.
예컨대, QT에서 MinQTSize 과 동일한 크기를 가지는 블록은 더 이상 분할되지 않는다. 따라서 복호화부(1510)는 해당 블록의 QT에 관한 분할 정보(QT 분할 플래그)를 비트스트림으로부터 추출하지 않으며(즉, 비트스트림에는 해당 블록의 QT 분할 플래그가 존재하지 않음), 그 값을 자동으로 0으로 설정한다. 또한, QT에서 MaxBTSize보다 큰 크기를 가지는 블록은 BT가 존재하지 않는다. 따라서, 복호화부(1510)는 QT에서 MaxBTSize보다 큰 크기의 블록을 가지는 리프 노드에 대한 BT 분할 플래그가 추출하지 않으며, BT 분할 플래그를 자동으로 0으로 설정한다. 또한, BT의 해당 노드의 심도(depth)가 MaxBTDepth에 도달하면, 해당 노드의 블록은 더 이상 분할되지 않는다. 따라서, 해당 노드의 BT 분할 플래그를 비트스트림으로부터 추출되지 않으며, 그 값을 자동으로 0으로 설정한다. 또한, BT에서 MinBTSize와 동일한 크기를 가지는 블록은 더 이상 분할되지 않는다. 따라서, 복호화부(1510)는 MinBTSize와 동일한 크기를 가지는 블록의 BT 분할 플래그를 비트스트림으로부터 추출되지 않으며, 그 값을 자동으로 0으로 설정한다.
한편, 복호화부(1510)는 트리 구조의 분할을 통해 복호화하고자 하는 현재블록(현재블록)을 결정하게 되면, 현재블록이 인트라 예측되었는지 아니면 인터 예측되었는지를 지시하는 예측 타입에 대한 정보를 추출한다.
예측 타입 정보가 인트라 예측을 지시하는 경우, 복호화부(1510)는 현재블록의 인트라 예측정보(인트라 예측 모드)에 대한 신택스 요소를 추출한다. 먼저, 현재블록의 인트라 예측 모드가 MPM 중에서 선택되는지 여부를 지시하는 모드 정보를 추출한다. 인트라 모드 부호화 정보가 현재블록의 인트라 예측 모드가 MPM 중에서 선택됨을 지시하는 경우, MPM 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제1 인트라 식별정보를 추출한다. 반면, 인트라 모드 부호화 정보가 현재블록의 인트라 예측 모드가 MPM 중에서 선택되지 않음을 지시하는 경우, MPM이 아닌 나머지 모드들 중 어느 모드가 현재블록의 인트라 예측 모드로 선택되었는지를 지시하기 위한 제2 인트라 식별정보를 추출한다.
예측 타입 정보가 인터 예측을 지시하는 경우, 복호화부(1510)는 인터 예측정보에 대한 신택스 요소를 추출한다. 먼저, 현재블록의 움직임정보가 복수의 부호화 모드 중 어느 모드에 의해 부호화되었는지 여부를 지시하는 모드 정보를 추출한다. 여기서, 복수의 부호화 모드는 머지 모드 및 차분 움직임벡터 부호화 모드를 포함한다. 모드 정보가 머지 모드를 지시하는 경우, 복호화부(1510)는 머지 후보들 중 어느 후보로부터 현재블록의 움직임벡터를 유도할지 여부를 지시하는 머지 인덱스 정보를 움직임정보에 대한 신택스 요소로서 추출한다. 반면, 모드 정보가 차분 움직임벡터 부호화 모드를 지시하는 경우, 복호화부(1510)는 차분 움직임벡터에 대한 정보 및 현재블록의 움직임벡터가 참조하는 참조 픽처에 대한 정보를 움직임벡터에 대한 신택스 요소로서 추출한다. 한편, 영상 부호화 장치가 복수의 예측 움직임벡터 후보들 중에서 어느 하나의 후보를 현재블록의 예측 움직임벡터로 사용한 경우에는 예측 움직임벡터 식별정보가 비트스트림에 포함된다. 따라서 이 경우에는, 차분 움직임벡터에 대한 정보와 참조 픽처에 대한 정보뿐만 아니라 예측 움직임벡터 식별정보도 움직임벡터에 대한 신택스 요소로서 추출한다.
한편, 복호화부(1510)는 잔차신호에 대한 정보로서 현재블록의 양자화된 변환계수들에 대한 정보를 추출한다.
역양자화부(1520)는 양자화된 변환계수들을 역양자화하고 역변환부(1530)는 역양자화된 변환계수들을 주파수 도메인으로부터 공간 도메인으로 역변환하여 잔차신호들을 복원함으로써 현재블록에 대한 잔차블록을 생성한다.
예측부(1540)는 인트라 예측부(1542) 및 인터 예측부(1544)를 포함한다. 인트라 예측부(1542)는 현재블록의 예측 타입인 인트라 예측일 때 활성화되고, 인터 예측부(1544)는 현재블록의 예측 타입인 인트라 예측일 때 활성화된다.
인트라 예측부(1542)는 복호화부(1510)로부터 추출된 인트라 예측 모드에 대한 신택스 요소로부터 복수의 인트라 예측 모드 중 현재블록의 인트라 예측 모드를 결정하고, 인트라 예측 모드에 따라 현재블록 주변의 참조 픽셀들을 이용하여 현재블록을 예측한다.
현재블록의 인트라 예측 모드를 결정하기 위해, 인트라 예측부(1542)는 현재블록의 주변블록으로부터 기 결정된 개수의 MPM들을 포함하는 MPM 리스트를 구성한다. MPM 리스트를 구성하는 방법은 도 2의 인트라 예측부(222)와 동일하다. 인트라 예측의 모드 정보가 현재블록의 인트라 예측 모드가 MPM 중에서 선택됨을 지시하는 경우에는, 인트라 예측부(1542)는 MPM 리스트 내의 MPM들 중 제1 인트라 식별정보에 의해 지시되는 MPM을 현재블록의 인트라 예측 모드로 선택한다. 반면, 모드 정보가 현재블록의 인트라 예측 모드가 MPM으로부터 선택되지 않음을 지시하는 경우, 제2 인트라 식별정보를 이용하여 MPM 리스트 내의 MPM들을 제외한 나머지 인트라 예측 모드들 중에서 현재블록의 인트라 예측 모드를 결정한다.
인터 예측부(1544)는 복호화부(1510)로부터 추출된 인트라 예측 모드에 대한 신택스 요소를 이용하여 현재블록의 움직임정보를 결정하고, 결정된 움직임정보를 이용하여 현재블록을 예측한다.
먼저, 인터 예측부(1544)는 복호화부(1510)로부터 추출된 인터 예측에서의 모드 정보를 확인한다. 모드 정보가 머지 모드를 지시하는 경우, 인터 예측부(1544)는 현재블록의 주변블록을 이용하여 기 결정된 개수의 머지 후보를 포함하는 머지 리스트를 구성한다. 인터 예측부(1544)가 머지 리스트를 구성하는 방법은 영상 부호화 장치의 인터 예측부(224)와 동일하다. 그리고, 복호화부(1510)으로부터 전달된 머지 인덱스 정보를 이용하여 머지 리스트 내의 머지 후보들 중에서 하나의 머지 후보를 선택한다. 그리고 선택된 머지 후보의 움직임정보, 즉, 머지 후보의 움직임벡터와 참조 픽처를 현재블록의 움직임벡터와 참조픽처로 설정한다.
반면, 모드 정보가 차분 움직임벡터 부호화 모드를 지시하는 경우, 인터 예측부(1544)는 현재블록의 주변블록들의 움직임벡터를 이용하여 예측 움직임벡터 후보들을 유도하고, 예측 움직임벡터 후보들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정한다. 인터 예측부(1544)가 예측 움직임벡터 후보들을 유도하는 방법은 영상 부호화 장치의 인터 예측부(224)와 동일하다. 만약, 영상 부호화 장치가 복수의 예측 움직임벡터 후보들 중에서 어느 하나의 후보를 현재블록의 예측 움직임벡터로 사용한 경우에는 움직임정보에 대한 신택스 요소는 예측 움직임벡터 식별정보를 포함한다. 따라서, 이 경우에, 인터 예측부(1544)는 예측 움직임벡터 후보들 중 예측 움직임벡터 식별정보에 의해 지시되는 후보를 예측 움직임벡터로 선택할 수 있다. 그러나, 영상 부호화 장치가 복수의 예측 움직임벡터 후보들에 기 정의된 함수를 사용하여 예측 움직임벡터를 결정한 경우에는, 인터 예측부는 영상 부호화 장치와 동일한 함수를 적용하여 예측 움직임벡터를 결정할 수도 있다. 현재블록의 예측 움직임벡터가 결정되면, 인터 예측부(1544)는 예측 움직임벡터와 복호화부(1510)로부터 전달된 차분 움직임벡터를 가산하여 현재블록의 움직임벡터를 결정한다. 그리고 복호화부(1510)로부터 전달된 참조픽처에 대한 정보를 이용하여 현재블록의 움직임벡터가 참조하는 참조픽처를 결정한다.
머지 모드 또는 차분 움직임벡터 부호화 모드에서 현재블록의 움직임벡터와 참조픽처가 결정되면, 인터 예측부(1542)는 참조픽처 내에서 움직임벡터가 지시하는 위치의 블록을 이용하여 현재블록의 예측블록을 생성한다.
가산기(1550)는 역변환부로부터 출력되는 잔차블록과 인터 예측부 또는 인트라 예측부로부터 출력되는 예측블록을 가산하여 현재블록을 복원한다. 복원된 현재블록 내의 픽셀들은 이후에 복호화할 블록을 인트라 예측할 때의 참조픽셀로서 활용된다.
필터부(1560)는 블록 단위의 복호화로 인해 발생하는 블록킹 현상(blocking artifact)를 제거하기 위해 복원된 블록 간의 경계를 디블록킹 필터링하고 메모리(290)에 저장한다. 한 픽처 내의 모든 블록들이 복원되면, 복원된 픽처는 이후에 복호화하고자 하는 픽처 내의 블록을 인터 예측하기 위한 참조 픽처로 사용된다.
이상에서 설명한 영상 복호화 기술은 2D로 투영된 이후에 2D로 부호화된 360 영상을 복호화할 때에도 적용된다.
360 영상의 경우에는, 전술한 바와 같이, VPS (Video Parameter Set), SPS (Sequence Parameter Set), PPS (Picture Patameter Set), SEI (Supplementary Enhancement Information) 중 어느 하나의 위치에 360 영상의 메타 데이터가 부호화되어 있다. 따라서, 복호화부(1510)는 해당 위치에서 360 영상의 메타 데이터를 추출한다. 추출한 메타 데이터는 360 영상을 복원하는 데에 활용된다. 특히, 메타 데이터는 현재블록을 예측하거나 또는 현재블록에 대한 예측정보를 복호화할 때 사용될 수 있다.
도 16은 본 발명의 일 실시예에 따른 360 영상에서 현재블록의 예측정보를 결정하기 위한 장치를 도시한 것이다.
본 장치(1600)는 예측정보 후보 생성부(1610) 및 예측정보 결정부(1620)를 포함한다.
예측정보 후보 생성부(1610)는 360 영상으로부터 투영된 2D 레이아웃의 제1 면에 위치하는 현재블록의 주변블록들을 이용하여 예측정보 후보들을 생성한다. 특히, 현재블록의 경계와 제1 면의 경계가 일치하는 경우, 즉, 현재블록이 제1 면의 경계에 접하는 경우, 예측정보 후보 생성부(1610)는 2D 레이아웃에서는 현재블록과 인접하지 않아도 360 영상에서 현재블록에 인접한 블록을 현재블록의 주변블록으로 설정한다. 예컨대, 예측정보 후보 생성부(910)는, 현재블록의 경계가 제1 면의 경계와 일치하는 경우, 현재블록의 경계에 접하고 먼저 부호화된 제2 면을 식별한다. 제2 면은 360 영상의 메타 데이터 중 투영 포맷, 면의 인덱스(face index) 및 면의 회전 정보들을 하나 이상 사용하여 식별된다. 예측정보 후보 생성부(1610)가 360 영상을 기준으로 현재블록의 주변블록을 결정하는 방법은 도 9의 예측정보 후보 생성부(910)과 동일하므로, 더 이상의 상세한 설명은 생략한다.
예측정보 결정부(1620)는 예측정보 후보 생성부(1610)에 의해 생성된 예측정보 후보들 및 복호화부(1510)에 의해 추출된 예측정보에 대한 신택스 요소, 즉 인트라 예측정보에 대한 신택스 요소 또는 인터 예측정보에 대한 신택스 요소를 이용하여 현재블록의 예측정보를 복원한다.
이하에서는, 도 16의 장치가 인트라 예측과 인터 예측에 적용된 경우의 실시예를 설명한다.
도 17은 도 16의 장치를 인트라 예측에 적용한 경우의 인트라 예측부(1542)의 세부 구성을 나타내는 도면이다.
도 16의 장치가 인트라 예측에 적용되는 경우, 인트라 예측부(1542)는 MPM 생성부(1710), 인트라 예측모드 결정부(1720), 참조픽셀 생성부(1730) 및 예측블록 생성부(1740)를 포함한다. 여기서, MPM 생성부(1710) 및 인트라 예측모드 결정부(1720)는 각각 도 16의 예측정보 후보 생성부(1610) 및 예측정보 결정부(1620)에 대응한다.
MPM 생성부(1710)는 현재블록의 주변블록의 인트라 예측모드로부터 MPM들을 유도하여 MPM 리스트를 구성한다. 특히, 현재블록의 경계가 현재블록이 위치하는 제1 면의 경계와 일치하는 경우, MPM 생성부(1710)는 2D 레이아웃이 아닌 360 영상을 기준으로 현재블록의 주변블록을 결정한다. 즉, 2D 레이아웃에서 현재블록의 주변블록이 존재하지 않더라도 360 영상에서 현재블록에 인접한 블록이 존재하면 그 블록을 현재블록의 주변블록을 설정한다. MPM 생성부(1710)가 주변블록을 결정하는 방법은 도 11의 MPM 생성부(1110)과 동일하다.
인트라 예측모드 결정부(1720)는 MPM 생성부(1710)에 의해 생성된 MPM 리스트 내의 MPM들과 복호화부(1510)로부터 추출된 인트라 예측모드에 대한 신택스 요소로부터 현재블록의 인트라 예측모드를 결정한다. 즉, 인트라 예측의 모드 정보가 현재블록의 인트라 예측모드가 MPM 리스트로부터 결정됨을 지시하면, 인트라 예측모드 결정부(1720)는 MPM 리스트에 속하는 MPM 후보들 중에서 제1 인트라 식별정보에 의해 식별되는 모드를 현재블록의 인트라 예측모드로 결정한다. 반면, 인트라 예측의 모드 정보가 현재블록의 인트라 예측모드가 MPM 리스트로부터 결정되지 않음을 지시하면, 복수의 인트라 예측모드, 즉, 현재블록의 인트라 예측에 활용될 수 있는 전체 인트라 예측 모드 중에서 MPM 리스트 내의 MPM들을 제외한 나머지 인트라 예측모드들 중에서 제2 인트라 식별정보를 이용하여 현재블록의 인트라 예측모드를 결정한다.
참조픽셀 생성부(1730)는 현재블록의 주변의 위치한 먼저 복호화된 블록 내의 픽셀들을 참조 픽셀로 설정한다. 만약, 현재블록의 경계가 현재블록이 위치하는 제1 면의 경계와 일치하는 경우, 참조픽셀 생성부(1730)는 2D 레이아웃이 아닌 360 영상을 기준으로 참조픽셀을 설정한다. 참조픽셀 생성부(1730)가 참조픽셀을 설정하는 방법은 도 11의 참조픽셀 생성부(1130)과 동일하다.
예측블록 생성부(1740)는 참조픽셀들 중에서 현재블록의 인트라 예측모드에 대응하는 참조픽셀들을 선택하고 선택된 참조픽셀들에 현재블록의 인트라 예측모드에 대응하는 연산식을 사용하여 현재블록에 대한 예측블록을 생성한다.
도 18은 도 16의 장치를 인터 예측에 적용하는 경우 인터 예측부(1544)의 세부 구성을 나타내는 도면이다.
도 16의 장치가 인터 예측에 적용되는 경우, 인터 예측부(1544)는 머지 후보 생성부(1810)와 MVP(motion vector predictor) 후보 생성부(1820), 움직임정보 결정부(1830) 및 예측블록 생성부(1840)를 포함한다. 머지 후보 생성부(1810)과 MVP 후보 생성부(1820)는 도 16의 예측정보 후보 생성부(1610)에 대응한다. 그리고 움직임정보 결정부(1830)는 도 16의 예측정보 결정부(1620)에 대응한다.
머지 후보 생성부(1810)는 복호화부(1510)로부터 추출된 인터 예측의 모드 정보가 머지 모드를 지시하는 경우에 활성화된다. 머지 후보 생성부(1810)는 현재블록의 주변블록을 이용하여 머지 후보들을 포함하는 머지 리스트를 생성한다. 특히, 현재블록의 경계가 현재블록이 위치한 제1 면에 위치하는 경우, 머지 후보 생성부(1420)는 360 영상을 기준으로 현재블록에 인접한 블록을 주변블록으로 결정한다. 즉, 2D 레이아웃에서는 현재블록과 인접하지 않아도 360 영상에서 현재블록에 인접한 블록을 현재블록의 주변블록으로 설정한다. 머지 후보 생성부(1810)는 도 14의 머지 후보 생성부(1420)와 동일하다.
MVP 후보 생성부(1820)는 복호화부(1510)로부터 추출된 인터 예측의 모드 정보가 차분 움직임벡터 부호화 모드를 지시하는 경우에 활성화된다. MVP 후보 생성부(1820)는 현재블록의 주변블록들의 움직임벡터를 이용하여 현재블록의 예측 움직임벡터에 대한 후보(예측 움직임벡터 후보)를 결정한다. MVP 후보 생성부(1820)가 예측 움직임벡터 후보들을 결정하는 방식은 도 14에서 신택스 생성부(1430)가 예측 움직임벡터 후보들을 결정하는 방식과 동일하다. 예컨대, MVP 후보 생성부(1820)는, 도 14의 신택스 생성부(1430)와 마찬가지로, 현재블록의 경계가 현재블록이 위치하는 제1 면의 경계와 일치하는 경우, 2D 레이아웃의 이미지가 아닌 360 영상을 기준으로 현재블록에 인접한 블록을 현재블록의 주변블록으로 결정한다.
움직임정보 결정부(1830)는 인터 예측의 모드 정보에 따라 머지 후보들 또는 예측 움직임벡터 후보들과 복호화부(1510)로부터 추출된 움직임정보 신택스 요소를 이용하여 현재블록의 움직임정보를 복원한다. 예컨대, 인터 예측의 모드 정보가 머지 모드를 지시하는 경우, 움직임정보 결정부(1830)는 머지 리스트 내의 머지 후보들 중에서 머지 인덱스 정보에 의해 지시되는 후보가 가지는 움직임벡터 및 참조픽처를 현재블록의 움직임벡터와 참조픽처로 설정한다. 반면, 인터 예측의 모드 정보가 차분 움직임벡터 부호화 모드를 지시하는 경우, 움직임정보 결정부(1830)는 예측 움직임벡터 후보들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정하고, 결정된 예측 움직임벡터와 복호화부(1510)로부터 전달된 차분 움직임벡터를 가산하여 현재블록의 움직임벡터를 결정한다. 그리고, 복호화부(1510)로부터 전달된 참조픽처에 대한 정보를 이용하여 참조픽처를 결정한다.
예측블록 생성부(1840)는 움직임정보 결정부(1830)에 의해 결정된 현재블록의 움직임벡터와 참조픽처를 이용하여 현재블록을 예측한다. 즉, 참조픽처 내에서 현재블록의 움직임벡터가 지시하는 블록을 이용하여 현재블록에 대한 예측블록을 생성한다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 비트스트림으로부터 픽처들의 시퀀스를 복원하기 위한 영상 복호화 방법에 있어서,
    복호화할 현재블록을 예측하기 위해 사용될 참조픽셀 위치를 수정하기 위한 신택스 요소(syntax element)를 상기 비트스트림으로부터 복호화하는 단계, 상기 신택스 요소는 상기 비트스트림 내의 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set)으로부터 복호화됨;
    상기 현재블록을 인트라 예측하기 위한 인트라 모드 정보 또는 인터 예측하기 위한 움직임벡터 정보를 포함하는 예측정보를 상기 비트스트림으로부터 복호화하는 단계; 및
    상기 신택스 요소 및 상기 예측정보에 근거하여 결정되는 기복원된 참조픽셀들로부터 상기 현재블록 내의 픽셀을 예측하는 단계
    를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 현재블록 내의 픽셀을 예측하는 단계는,
    상기 예측정보를 이용하여, 상기 현재블록 내의 픽셀을 예측하기 위해 참조될 픽셀 위치들을 결정하는 단계; 및
    결정된 픽셀 위치들에 대응하는 상기 기복원된 참조픽셀들을 이용하여 상기 현재블록 내의 픽셀을 예측하는 단계를 포함하되,
    상기 결정된 픽셀 위치들 중 적어도 하나가 이미지 영역을 벗어날 때, 상기 신택스 요소를 이용하여 상기 이미지 영역을 벗어난 상기 적어도 하나의 픽셀 위치를 상기 이미지 영역 내의 위치로 대체하는 것을 특징을 하는 영상 복호화 방법.
  3. 제1항에 있어서,
    상기 현재블록을 예측하기 위해 사용될 상기 참조픽셀 위치의 수정을 허용할지 여부를 나타내는 플래그를 상기 비트스트림으로부터 복호화하는 단계를 더 포함하고,
    상기 신택스 요소는, 상기 플래그가 상기 참조픽셀 위치의 수정이 허용됨을 지시할 때, 상기 비트스트림으로부터 복호화되는 것을 특징으로 하는 영상 복호화 방법.
  4. 제3항에 있어서,
    상기 플래그는 상기 비트스트림 내의 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set)으로부터 복호화되는 것을 특징으로 하는 영상 복호화 방법.
  5. 제1항에 있어서,
    상기 픽처들은 360 비디오의 2 차원 이미지로의 투영(projection)을 통해 생성되고,
    상기 신택스 요소는 투영 포맷 정보, 투영 이후의 각 면(face)의 인덱스, 및 각 면의 회전 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  6. 픽처들의 시퀀스를 부호화하는 영상 부호화 장치에 있어서,
    부호화할 현재블록을 예측하기 위해 사용될 참조픽셀 위치를 수정하기 위한 신택스 요소(syntax element), 상기 현재블록을 인트라 예측 또는 인터 예측하기 위한 예측정보, 및 상기 현재블록 내의 픽셀과 예측픽셀 간의 차이를 부호화하는 부호화부; 및
    상기 신택스 요소 및 상기 예측정보에 근거하여 결정되는 기복원된 참조픽셀들로부터 상기 예측픽셀을 생성하는 예측부를 포함하고,
    상기 신택스 요소는 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set) 내에 부호화되는 것을 특징으로 하는 영상 부호화 장치.
  7. 제6항에 있어서,
    상기 예측부는,
    상기 현재블록 내의 픽셀을 예측하기 위해 참조될 픽셀 위치들을 상기 예측정보를 이용하여 결정하고, 결정된 픽셀 위치들에 대응하는 상기 기복원된 참조픽셀들을 이용하여 상기 현재블록 내의 픽셀을 예측하되,
    상기 결정된 픽셀 위치들 중 적어도 하나가 이미지 영역을 벗어날 때, 상기 신택스 요소를 이용하여 상기 이미지 영역을 벗어난 상기 적어도 하나의 픽셀 위치를 상기 이미지 영역 내의 위치로 대체하는 것을 특징으로 하는 영상 부호화 장치.
  8. 제6항에 있어서,
    상기 부호화부는,
    상기 현재블록을 예측하기 위해 사용될 상기 참조픽셀 위치의 수정을 허용할지 여부를 나타내는 플래그를 더 부호화하고,
    상기 신택스 요소는, 상기 플래그가 상기 참조픽셀 위치의 수정이 허용됨을 지시할 때, 부호화하는 것을 특징으로 하는 영상 부호화 장치.
  9. 제8항에 있어서,
    상기 플래그는 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set) 내에 부호화되는 것을 특징으로 하는 영상 부호화 장치.
  10. 영상 부호화 방법을 이용하여 픽처들의 시퀀스를 부호화한 비트스트림을 저장하는, 디코더에 의해 판독 가능한, 기록 매체에 있어서,
    상기 방법은,
    부호화할 현재블록을 예측하기 위해 사용될 참조픽셀 위치를 수정하기 위한 신택스 요소(syntax element)를 부호화하는 단계, 상기 신택스 요소는 시퀀스 파라미터 셋(sequence parameter set) 또는 픽처 파라미터 셋(picture parameter set) 내에 부호화됨;
    상기 현재블록을 인트라 예측 또는 인터 예측하기 위한 예측정보를 부호화하는 단계;
    상기 신택스 요소 및 상기 예측정보에 근거하여 결정되는 기복원된 참조픽셀들로부터 상기 현재블록 내의 픽셀에 대한 예측픽셀을 생성하는 단계; 및
    상기 현재블록 내의 픽셀과 상기 예측픽셀 간의 차이를 부호화하는 단계를 포함하는, 디코더에 의해 판독 가능한 비트스트림을 저장하는 기록 매체.
KR1020210144071A 2016-10-17 2021-10-26 영상 부호화 또는 복호화하기 위한 장치 및 방법 KR20210133192A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160134654 2016-10-17
KR1020160134654 2016-10-17
KR1020170003154A KR20180042098A (ko) 2016-10-17 2017-01-09 영상 부호화 또는 복호화하기 위한 장치 및 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170003154A Division KR20180042098A (ko) 2016-10-17 2017-01-09 영상 부호화 또는 복호화하기 위한 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20210133192A true KR20210133192A (ko) 2021-11-05

Family

ID=62088884

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170003154A KR20180042098A (ko) 2016-10-17 2017-01-09 영상 부호화 또는 복호화하기 위한 장치 및 방법
KR1020210144071A KR20210133192A (ko) 2016-10-17 2021-10-26 영상 부호화 또는 복호화하기 위한 장치 및 방법
KR1020210144073A KR20210133193A (ko) 2016-10-17 2021-10-26 영상 부호화 또는 복호화하기 위한 장치 및 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170003154A KR20180042098A (ko) 2016-10-17 2017-01-09 영상 부호화 또는 복호화하기 위한 장치 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210144073A KR20210133193A (ko) 2016-10-17 2021-10-26 영상 부호화 또는 복호화하기 위한 장치 및 방법

Country Status (3)

Country Link
US (2) US20190260990A1 (ko)
KR (3) KR20180042098A (ko)
CN (1) CN109863748A (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066991A1 (ko) * 2016-10-04 2018-04-12 김기백 영상 데이터 부호화/복호화 방법 및 장치
WO2018066988A1 (ko) * 2016-10-04 2018-04-12 김기백 영상 데이터 부호화/복호화 방법 및 장치
US12022199B2 (en) 2016-10-06 2024-06-25 B1 Institute Of Image Technology, Inc. Image data encoding/decoding method and apparatus
US11259046B2 (en) 2017-02-15 2022-02-22 Apple Inc. Processing of equirectangular object data to compensate for distortion by spherical projections
US11093752B2 (en) 2017-06-02 2021-08-17 Apple Inc. Object tracking in multi-view video
KR20200064989A (ko) * 2017-09-20 2020-06-08 브이아이디 스케일, 인크. 360도 비디오 코딩에서의 면 불연속 처리
US10764605B2 (en) * 2018-02-14 2020-09-01 Qualcomm Incorporated Intra prediction for 360-degree video
WO2019203456A1 (ko) * 2018-04-15 2019-10-24 엘지전자 주식회사 복수의 뷰포인트들에 대한 메타데이터를 송수신하는 방법 및 장치
KR20190140387A (ko) 2018-06-11 2019-12-19 에스케이텔레콤 주식회사 360도 영상의 인터 예측 방법 및 이를 이용한 영상 복호화 장치
WO2019240425A1 (ko) 2018-06-11 2019-12-19 에스케이텔레콤 주식회사 인터 예측 방법 및 영상 복호화 장치
KR102188270B1 (ko) * 2018-07-06 2020-12-09 엘지전자 주식회사 360 비디오 데이터의 서브픽처 기반 처리 방법 및 그 장치
US10735759B2 (en) * 2018-10-06 2020-08-04 Tencent America LLC Pairwise average motion vector prediction
WO2020101451A1 (ko) * 2018-11-15 2020-05-22 한국전자통신연구원 지역 기반 화면간/화면내 예측 기술을 이용한 부호화/복호화 방법 및 장치
JP7271672B2 (ja) * 2018-12-14 2023-05-11 中興通訊股▲ふん▼有限公司 没入型ビデオビットストリーム処理
KR102183895B1 (ko) * 2018-12-19 2020-11-27 가천대학교 산학협력단 가상 현실 비디오 스트리밍에서의 관심영역 타일 인덱싱
BR112022005293A2 (pt) 2019-09-19 2022-09-20 Beijing Bytedance Network Tech Co Ltd Método de processamento de vídeo, aparelho para processar dados de vídeo e meios de armazenamento e de gravação não transitórios legíveis por computador
KR20220066045A (ko) 2019-09-19 2022-05-23 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 비디오 코딩의 스케일링 윈도우
EP4026336A4 (en) 2019-10-05 2022-12-07 Beijing Bytedance Network Technology Co., Ltd. LEVEL-BASED SIGNALING OF VIDEO CODING TOOLS
JP7391203B2 (ja) 2019-10-12 2023-12-04 北京字節跳動網絡技術有限公司 ビデオコーディングツールを洗練する使用およびシグナリング
CN117376557A (zh) 2019-10-13 2024-01-09 北京字节跳动网络技术有限公司 参考图片重采样与视频编解码工具之间的相互作用
WO2021129866A1 (en) 2019-12-27 2021-07-01 Beijing Bytedance Network Technology Co., Ltd. Signaling of slice types in video pictures headers
AR121127A1 (es) 2020-02-29 2022-04-20 Beijing Bytedance Network Tech Co Ltd Señalización de información de imagen de referencia en un flujo de bits de video
KR102387254B1 (ko) 2021-04-16 2022-04-14 박유석 가변형 실링부를 갖는 마스크팩 포장지의 제조방법, 상기 방법에 의해 제조되는 마스크팩 포장지, 이를 위한 가변형 실링 헤더를 갖는 마스크팩 실링장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122950A1 (en) * 2009-11-26 2011-05-26 Ji Tianying Video decoder and method for motion compensation for out-of-boundary pixels
KR101620619B1 (ko) * 2012-01-30 2016-05-12 한국전자통신연구원 인트라 예측 모드 부호화/복호화 방법 및 장치
US20150110181A1 (en) * 2013-10-18 2015-04-23 Samsung Electronics Co., Ltd. Methods for palette prediction and intra block copy padding
JP5973526B2 (ja) * 2014-02-21 2016-08-23 パナソニック株式会社 画像復号方法、画像符号化方法、画像復号装置及び画像符号化装置
KR20190035678A (ko) * 2016-07-08 2019-04-03 브이아이디 스케일, 인크. 지오메트리 투영을 이용한 360도 비디오 코딩
CN109644279B (zh) * 2016-09-02 2023-09-22 Vid拓展公司 用于用信号通知360度视频信息的方法和系统
US10827159B2 (en) * 2017-08-23 2020-11-03 Mediatek Inc. Method and apparatus of signalling syntax for immersive video coding

Also Published As

Publication number Publication date
CN109863748A (zh) 2019-06-07
KR20180042098A (ko) 2018-04-25
US20190260990A1 (en) 2019-08-22
US20210092367A1 (en) 2021-03-25
KR20210133193A (ko) 2021-11-05

Similar Documents

Publication Publication Date Title
KR20210133192A (ko) 영상 부호화 또는 복호화하기 위한 장치 및 방법
US11539882B2 (en) Method and apparatus for reconstructing 360-degree image according to projection format
US11463672B2 (en) Image data encoding/decoding method and apparatus
US20210006714A1 (en) Image data encoding/decoding method and apparatus
US11902668B2 (en) Image data encoding/decoding method and apparatus
KR102468596B1 (ko) 360 영상을 부호화 또는 복호화하기 위한 방법 및 장치
US20240323541A1 (en) Method and apparatus for reconstructing 360-degree image according to projection format
US20240323539A1 (en) Method and apparatus for reconstructing 360-degree image according to projection format
US20240323336A1 (en) Image data encoding/decoding method and apparatus
US20240323540A1 (en) Method and apparatus for reconstructing 360-degree image according to projection format
US20240305764A1 (en) Image data encoding/decoding method and apparatus

Legal Events

Date Code Title Description
A107 Divisional application of patent