KR20210132339A - Os12BGlu38 for male sterility induction in rice and use thereof - Google Patents

Os12BGlu38 for male sterility induction in rice and use thereof Download PDF

Info

Publication number
KR20210132339A
KR20210132339A KR1020200050576A KR20200050576A KR20210132339A KR 20210132339 A KR20210132339 A KR 20210132339A KR 1020200050576 A KR1020200050576 A KR 1020200050576A KR 20200050576 A KR20200050576 A KR 20200050576A KR 20210132339 A KR20210132339 A KR 20210132339A
Authority
KR
South Korea
Prior art keywords
os12bglu38
plant
gene
pollen
male
Prior art date
Application number
KR1020200050576A
Other languages
Korean (ko)
Other versions
KR102421653B1 (en
Inventor
전종성
반차 마홍
이상규
심수현
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200050576A priority Critical patent/KR102421653B1/en
Priority to PCT/KR2020/011964 priority patent/WO2021125500A1/en
Publication of KR20210132339A publication Critical patent/KR20210132339A/en
Application granted granted Critical
Publication of KR102421653B1 publication Critical patent/KR102421653B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/415Assays involving biological materials from specific organisms or of a specific nature from plants

Abstract

The present invention relates to an Oryza sativa beta-glucosidase 38 (Os12BGlu38) gene, which is predominantly expressed in the late pollen development phase to regulate intine synthesis in pollen cell walls, and uses thereof. More particularly, the present invention relates to Os12BGlu38 gene, protein, loss-of-function mutation, transformed plant and seeds thereof, which control intine synthesis in pollen cell wall and ultimately induce male infertility in rice, a method for controlling intine synthesis in pollen cell wall of plants by expressing the gene in plants, a method for inducing male infertility, and a composition for inducing male infertility in plants.

Description

벼 웅성불임 유도를 위한 Os12BGlu38 유전자 및 이의 용도{Os12BGlu38 for male sterility induction in rice and use thereof}Os12BGlu38 gene and use thereof for inducing male sterility in rice {Os12BGlu38 for male sterility induction in rice and use thereof}

본 발명은 벼의 화분에 발현되며 화분 세포벽의 인틴(intine) 합성에 가장 중요한 유전자인 Os12Bglu38(Oryza sativa beta-glucosidase 38)의 기능상실을 유발하여 웅성불임이 유도된 식물체에 관한 것이다.The present invention relates to a plant in which male sterility is induced by inducing loss of function of Os12Bglu38 (Oryza sativa beta-glucosidase 38), which is expressed in pollen of rice and is the most important gene for intine synthesis in pollen cell wall.

벼는 국내는 물론 전 세계의 3분의 1 이상의 나라에서 주식으로 삼고 있는 쌀의 생산식물로서 경제적으로 중요한 농작물 중 하나이다. 이 작물의 생산량 증대를 위해 웅성불임 도입을 통한 F1 하이브리드 생산은 모든 세계 연구자가 주목하고 있는 기술개발이다. 벼에서도 세포질웅성불임(CMS) 방식이 가능하나 생산비용이나 실제 이용면에서는 현실적이지 못하고 유전자 조작에 의한 웅성불임 형질전환체 개발 방식에는 타페튬(tapetum) 특이적 프로모터와 외부 독성유전자(박테리아 또는 식물체 유전자)를 이용하여 선택적인 수술조직의 사멸을 유도함으로서 웅성불임을 만드는 방법이 이용되고 있다.Rice is one of the economically important crops as a rice-producing plant that is used as a staple food not only in Korea but also in more than one-third of the world. F1 hybrid production through the introduction of male sterility to increase the production of this crop is a technological development that all researchers around the world are paying attention to. Cytoplasmic male sterility (CMS) method is also possible in rice, but it is not realistic in terms of production cost or actual use. A method of making male infertility by inducing selective surgical tissue death using genes) is being used.

수술은 꽃 식물의 웅성 생식기관으로 타페튬, 엔도세시움(endothecium), 결합조직, 관다발 조직 등의 다수 조직으로 구성되며 꽃가루의 생산을 담당한다. 수술의 발달과정은 수술의 형태가 확립되고 마이크로스포어(microspore) 모세포가 감수분열하여 테트라드의 마이크로스포어를 형성하는 제1기와, 꽃가루와 수술이 분화되고 조직 퇴화, 열개(dehiscence) 및 꽃가루 방출이 일어나는 제2기로 구분되는데, 이러한 발달과정에 관여하는 다양한 유전자 중 일부만이 수술 특이적으로 발현된다.Stamens are the male reproductive organs of flowering plants and are composed of multiple tissues such as tapetium, endothecium, connective tissue, and vascular tissue, and are responsible for the production of pollen. The development process of the stamen is the first stage in which the form of the stamen is established and the microspore hair cells undergo meiosis to form the microspores of the tetrad, and the pollen and stamen are differentiated, tissue degeneration, dehiscence and pollen release It is divided into the second stage that occurs, and only some of the various genes involved in this developmental process are expressed surgically.

식물 웅성 생식체인 화분은 14개의 단계를 거쳐 화분 낭(anther sac)에서 발달한다(Zang et al., 2011). 화분 세포벽은 엑신(exine)과 인틴(intine)의 두 가지 고유한 층으로 구성된다. 엑신(exine)층은 화분낭(anther sac)의 모본(parental part)에 의해 생성되며, 인틴(intine)층은 화분의 유전형에 의해 생성된다. 엑신은 약벽세포(tapetal cell)로부터의 분비에 의해 마이크로스포어(microspore) 발달 단계 동안 구성되는 반면, 인틴은 화분 세포에 의해 기여된 성분으로부터 2세포기(bicellular stage) 동안 구성된다. 엑신은 페놀 및 지방산 유도체로 구성된 스포로폴레닌(sporopollenin)의 순차적 중합에 의해 형성된다. 발달하기 시작한 인틴 세포는 셀룰로오스, 펙틴 및 다양한 단백질을 포함하여 전형적인 식물 세포의 1차 세포벽과 유사한 조성을 갖는다.Pollen, the male gametes of plants, develops from anther sac through 14 stages (Zang et al., 2011). The pollen cell wall consists of two distinct layers: exine and intine. The exine layer is generated by the parental part of anther sac, and the intine layer is generated by the pollen genotype. Axin is constructed during the microspore development stage by secretion from tapetal cells, whereas intin is constructed during the bicellular stage from components contributed by pollen cells. Axin is formed by sequential polymerization of sporopollenin composed of phenol and fatty acid derivatives. Intin cells, which have begun to develop, have a composition similar to the primary cell wall of a typical plant cell, including cellulose, pectin, and various proteins.

웅성불임 식물의 개발 및 연구에 많은 투자를 하고 있지만, 현재까지 웅성불임 식물이 가지고 있는 문제점으로 인해 이에 관한 연구 성과는 매우 미비한 실정이다. 또한, 유전공학 기법을 이용한 여러 웅성불임 식물 개발 방법들은 일대잡종 교배체가 제초제 저항성 유전자 등 외래 유전자를 포함한 경우가 대부분이며, 이들은 다양한 GMO 작물 규제로 인하여 사용이 매우 제한되어 있다. 이러한 웅성불임계 식물이 가지고 있는 단점들을 극복하여 이를 이용한 손쉬운 신품종 개발 및 고부가가치의 산업생산에 유용하게 이용할 수 있을 것이다. 따라서, 안정성 있는 웅성불임계를 확보할 수 있고, 웅성불임계를 유지할 수 있는 신규한 방법 또는 신규한 유전자에 대한 연구가 필요한 실정이다.Although a lot of investment is being made in the development and research of male sterile plants, the research results on this are very insignificant due to the problems that male sterile plants have so far. In addition, in many male sterile plant development methods using genetic engineering techniques, most of the cases in which one-to-one hybrids include foreign genes such as herbicide resistance genes, and their use is very limited due to regulations on various GMO crops. It will be possible to overcome the disadvantages of these male sterile plants and use them usefully for easy new variety development and high value-added industrial production. Therefore, it is possible to secure stable male sterility, and there is a need for research on novel methods or novel genes that can maintain male sterility.

대한민국 공개특허 10-2077-0121784호Republic of Korea Patent Publication No. 10-2077-0121784

따라서, 상기와 같은 문제점을 해결하기 위한 발명의 목적은, 식물체의 웅성불임을 유발하는 방법을 제공하는 데 있다.Accordingly, an object of the present invention for solving the above problems is to provide a method for inducing male infertility of plants.

또한, 본 발명의 다른 목적은 웅성불임이 유발된 형질전환 식물체의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a transgenic plant induced in male infertility.

또한, 본 발명의 다른 목적은 상기 방법으로 제조된 형질전환 식물체 및 이의 종자를 제공하는 데 있다.In addition, another object of the present invention is to provide a transgenic plant and seeds thereof prepared by the above method.

또한, 본 발명의 다른 목적은 Os12BGlu38 유전자의 발현을 억제하는 제제를 포함하는 식물체의 웅성불임 유도용 조성물을 제공하는 데 있다.In addition, another object of the present invention is to provide a composition for inducing male infertility in plants comprising an agent for inhibiting the expression of Os12BGlu38 gene.

또한, 본 발명의 다른 목적은 Os12BGlu38 유전자의 발현 여부를 판단하는 단계를 포함하는 식물체의 웅성불임성을 확인하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for confirming male sterility of a plant, comprising the step of determining whether the Os12BGlu38 gene is expressed.

또한, 본 발명의 다른 목적은 Os12BGlu38 유전자의 mRNA 또는 단백질 수준을 측정하는 제제를 포함하는 식물체의 웅성불임성 확인용 조성물을 제공하는 데 있다.In addition, another object of the present invention is to provide a composition for determining male infertility of a plant comprising an agent for measuring the mRNA or protein level of the Os12BGlu38 gene.

이상에서의 본 발명에서 해결하고자 하는 다양한 과제들은 이에 한정하는 것이 아니라, 후술할 실시예 및 청구범위에 기재된 사항을 통하여 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의하여 분명하게 이해될 수 있을 것이다.Various problems to be solved in the present invention in the above are not limited thereto, but can be clearly understood by those of ordinary skill in the art to which the present invention pertains through the examples and claims to be described later. will be.

전술한 목적을 달성하기 위하여, 본 발명은 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 발현을 억제하는 단계를 포함하는 식물체의 웅성불임을 유발하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for inducing male infertility in a plant comprising the step of suppressing the expression of Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene.

또한, 본 발명은 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 기능상실 돌연변이를 이용하여 Os12BGlu38 유전자의 발현을 저해시키는 단계를 포함하는 웅성불임이 유발된 형질전환 식물체의 제조방법을 제공한다.In addition, the present invention provides a method for producing a transgenic plant in which male infertility is induced, comprising the step of inhibiting the expression of the Os12BGlu38 gene using a loss-of-function mutation of the Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene.

또한, 본 발명은 상기 방법으로 제조된 형질전환 식물체 및 이의 종자를 제공한다.In addition, the present invention provides a transgenic plant and seeds thereof prepared by the above method.

또한, 본 발명은 Os12BGlu38 유전자의 발현을 억제하는 제제를 포함하는 식물체의 웅성불임 유도용 조성물을 제공한다.In addition, the present invention provides a composition for inducing male infertility in plants comprising an agent that inhibits the expression of Os12BGlu38 gene.

또한, 본 발명은 Os12BGlu38 유전자의 발현 여부를 판단하는 단계를 포함하는 식물체의 웅성불임성을 확인하는 방법을 제공한다.In addition, the present invention provides a method for confirming male sterility of a plant comprising the step of determining whether the expression of the Os12BGlu38 gene.

또한, 본 발명은 Os12BGlu38 유전자의 mRNA 또는 단백질 수준을 측정하는 제제를 포함하는 식물체의 웅성불임성 확인용 조성물을 제공한다.In addition, the present invention provides a composition for determining male infertility of a plant comprising an agent for measuring the mRNA or protein level of the Os12BGlu38 gene.

본 발명의 beta-glucosidase 38 유전자 활성을 조절한 웅성불임 식물은 채종 체계가 단순하고 채종 효율이 높은 동시에 환경의 영향을 거의 받지 않으며 안정적으로 이용할 수 있기 때문에 세포질 유전자적 웅성불임 계통과 온도 및 일장 감응성 핵유전자 웅성불임 계통을 대체할 수 있을 뿐만 아니라 화분 세포벽 발달에 인틴(intine)이 중요한 역할을 하는 모든 식물에 적용할 수 있으므로 유용하다.The male sterile plant regulated with beta-glucosidase 38 gene activity of the present invention has a simple seeding system, high seeding efficiency, and is hardly affected by the environment and can be used stably. It is useful because it can be applied to all plants where intines play an important role in pollen cell wall development, as well as being able to replace nuclear gene male sterility lines.

이상에서의 본 발명에 따른 효과는 상기에 한정되는 것은 아니며, 기타 본 발명의 효과들은 후술할 실시예 및 청구범위에 기재된 사항을 통하여 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의하여 분명하게 이해될 수 있을 것이다.The effects according to the present invention in the above are not limited to the above, and other effects of the present invention can be clearly identified by those of ordinary skill in the art through the examples and claims to be described later. can be understood

도 1은 Os12BGlu38 유전자의 발현을 나타낸 도이다.
(A) 화분에서 GH1 At/Os4 클러스터 유전자들의 발현.
(B) 다양한 화분 발달 단계별 Os12BGlu38 유전자의 발현.
(C) 액포기, 이세포기, 성숙기에서의 Os12BGlu38:GUS의 발현.
도 2는 Os12BGlu38 돌연변이체 대립유전자의 분리와 특성을 나타낸 도이다.
(A) os12bglu38-1의 대립유전자 계통도. 11개의 엑손은 검정색 상자로 표시됨, 유전형 분석과 발현 분석을 위한 프라이머는 화살표로 표시됨, 마지막 엑손인 11번째 엑손에 삽입된 T-DNA는 삼각형으로 표시됨.
(B) os12bglu38-1 이형접합체를 자가수정하여 얻은 자손 식물의 유전형 분석 결과. F1/R1 프라이머 세트는 Os12BGlu38 유전자 확인을 위해 사용되었고, F1/GUS 프라이머 세트는 os12bglu38-1 유전자 확인을 위해 사용됨.
(C) 꽃밥 배양(anther culture)를 통해 얻은 야생형(WT), 이형접합체(He), 동형접합체(Ho)의 성숙한 화분의 RT-PCR 결과. OsUBQ5는 대조군으로 사용됨. RT1F/RT1R 프라이머 세트는 Os12BGlu38 유전자의 mRNA 발현 확인을 위해 사용됨.
도 3은 다양한 화분 발달 단계에서 야생형, 이형접합체 및 os12bglu38-1 동형접합체의 꽃밥(anther)의 단면을 나타낸 도이다. 스케일 바: 25μm
도 4는 야생형, os12bglu38-1 이형접합체 및 동형접합체 화분립(pollen grain)의 세포벽 성분인 엑신(exine)과 인틴(intine)을 나타낸 도이다.
(A), (B), (C) 아우라민 O(Auramine O)로 엑신(exine)을 염색하여 명시야상 및 UV광 시야상을 관찰한 결과.
(D), (E), (F) 칼코플루오르 화이트(Calcofluor white)로 인틴(intine)을 염색하여 명시야상 및 UV광 시야상을 관찰한 결과. 형태 이상이 나타난 화분을 DP로 표시함. 스케일 바: 20μm
도 5는 야생형 및 os12bglu38-1 동형접합체의 성숙한 화분립(pollen grain)의 TEM 분석에 관한 도이다.
(A), (B) 야생형의 성숙한 화분립(pollen grain)의 TEM 분석 결과.
(C), (D) os12bglu38-1 동형접합체의 성숙한 화분립(pollen grain)의 TEM 분석 결과.
(E), (F) 기능회복 계통 Comp-7의 성숙한 화분립(pollen grain)의 TEM 분석 결과. 바큘룸(Baculum)은 Ba, 사이토솔(cytosol)은 Cy, 형태 이상이 나타난 화분은 DP, 엑신(exine)은 Ex, 인틴(intine)은 In, 성숙한 화분은 MP, 넥신(nexine)은 Ne, 텍튬(tectum)은 Te로 표시함. 스케일 바: 2μm
도 6은 ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자 도입 벼에서 자엽초(coleoptile) 세포 및 화분(pollen)에서 관찰한 Os12BGlu38-GFP의 세포 내 위치(subcellular localization)를 나타낸 도이다.
(A) ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자 도입 벼의 원형질 비분리 자엽초 세포에서의 GFP 형광 관찰 결과.
(B) ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자 도입 벼의 원형질 비분리 자엽초 세포에서의 FM4-64 red(세포막 마커) 형광 관찰 결과.
(C) ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자 도입 벼의 원형질 비분리 자엽초 세포에서의 명시야상 관찰 결과.
(D) (A)~(C)의 결과 종합.
(E) ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자도입 벼의 원형질 분리 자엽초세포의 GFP 형광 관찰 결과.
(F) ProZmUbi:Os12BGlu38-GFP를 운반하는 유전자 도입 벼의 원형질 분리 자엽초 세포의 현미경 관찰 결과.
(G) (E), (F)의 결과 종합.
(H) 화분의 순차적인 z-series 이미지 수집 결과. 세포벽은 CW, 세포막은 PM으로 표시함. 스케일 바: 5μm
도 7은 식물체의 다양한 조직에서 Os12BGlu38의 발현을 나타낸 도이다.
ProOs12BGlu38:GUS의 도입 후 (A) 수술, (B) 줄기, (C) 종자와 이삭, (D) 잎, (E) 뿌리에서 각각 GUS 활성을 확인한 결과.
도 8은 GH1 At/Os4 클러스터 유전자 Os3BGlu7, Os3BGlu8 및 Os7BGlu26의 T-DNA 삽입 동형접합 돌연변이체의 유전자 계통도를 나타낸 도이다.
엑손은 검정색 박스, 인트론은 박스 사이의 직선, 삽입된 T-DNA는 삼각형으로 표시됨.
도 9는 야생형 및 os12bglu38-1 동형접합체에서 성숙한 화분립(pollen grain)의 표현형을 나타낸 도이다.
(A) 야생형, (B) 이형접합체, (C) 동형접합체에 대하여 성숙한 화분립의 표현형을 비교하기 위해 핵 염색, 전분 염색을 수행하였음.
도 10은 os12bglu38의 유전자 기능회복 식물 분석을 나타낸 도이다.
(A) os12bglu38-1의 기능회복 식물 제작을 위한 재조합 벡터의 계통도.
(B) 기능회복 계통의 자가수정으로 얻은 자손 식물의 DNA PCR 결과. F1/R2 프라이머 세트는 야생형 대립유전자를 확인하기 위해 사용함. F1/GUS 프라이머 세트는 os12bglu38-1 대립유전자를 확인하기 위해 사용함. Fcomp/Rnos 프라이머 세트는 전이유전자가 도입 여부를 확인하기 위해 사용함.
도 11은 N. benthamiana 잎 표피세포에서 Os12BGlu38-GFP의 세포 내 위치(subcellular localization)를 나타낸 도이다.
(A) 침윤된 표피세포의 GFP 형광 관찰 결과.
(B) 침윤된 표피세포의 명시야상 관찰 결과.
(C) 0.8M 만니톨(Mannitol)을 첨가한 N. benthamiana 잎 표피세포 GFP 형광 관찰 결과.
(D) 0.8M 만니톨(Mannitol)을 첨가한 N. benthamiana 잎 표피세포 명시야상 관찰 결과.
세포벽은 CW, 세포막은 PM으로 나타냄. 스케일 바: 50μm
도 12는 침윤된 N. benthamiana 잎 표피세포에서 Os12BGlu38-GFP 및 RFP-KOR의 일과성 발현(Transient expression)을 나타낸 도이다. ProCaMV35S:RFP-KOR 벡터를 ProCaMV35S:Os12BGlu38-GFP 벡터와 공동 침윤시켜 3-4일 후 공초점 스캐닝 현미경으로 관찰함.
(A), (D) GFP 형광 관찰 결과.
(B), (E) RFP 형광 관찰 결과.
(C) (A),(B)의 결과 종합.
(F) 명시야상에서 현미경 관찰 결과.
(G) (D), (E), (F)의 결과 종합. 스케일 바: 20μm
도 13은 기능회복 라인 Comp-4, Comp-7, Comp-8 및 Comp-19 식물의 후대 식물체 유전형 분석 결과를 나타낸 표이다. Os12BGlu38의 유전자형은 Os12BGlu38 특이적 프라이머, T-DNA 특이적 프라이머 및 전이유전자 특이적 프라이머를 사용한 PCR에 의해 결정됨.
1 is a diagram showing the expression of Os12BGlu38 gene.
(A) Expression of GH1 At/Os4 cluster genes in pollen.
(B) Expression of the Os12BGlu38 gene at various pollen development stages.
(C) Expression of Os12BGlu38:GUS in the vacuolar, bicellular, and maturation phases.
Figure 2 is a diagram showing the isolation and characteristics of the Os12BGlu38 mutant allele.
(A) Allele tree diagram of os12bglu38-1. 11 exons are indicated by black boxes, primers for genotyping and expression analysis are indicated by arrows, T-DNA inserted into the 11th exon, the last exon, is indicated by triangles.
(B) Genotyping results of progeny plants obtained by self-fertilization of the os12bglu38-1 heterozygote. The F1/R1 primer set was used to identify the Os12BGlu38 gene, and the F1/GUS primer set was used to identify the os12bglu38-1 gene.
(C) RT-PCR results of mature pollen of wild-type (WT), heterozygous (He), and homozygous (Ho) obtained through anther culture. OsUBQ5 was used as a control. The RT1F/RT1R primer set was used to confirm the mRNA expression of the Os12BGlu38 gene.
3 is a diagram showing cross-sections of anthers of wild-type, heterozygous and os12bglu38-1 homozygotes at various stages of pollen development. Scale bar: 25 μm
4 is a view showing exine and intine, which are cell wall components of wild-type, os12bglu38-1 heterozygous and homozygous pollen grains.
(A), (B), (C) Results of observation of bright field images and UV light field images by staining exine with Auramine O.
(D), (E), (F) Results of observing bright field images and UV light field images by staining intine with Calcofluor white. Pots with morphological abnormalities are indicated by DP. Scale bar: 20 μm
5 is a diagram of TEM analysis of mature pollen grains of wild-type and os12bglu38-1 homozygotes.
(A), (B) TEM analysis of wild-type mature pollen grains.
(C), (D) TEM analysis of mature pollen grains of the os12bglu38-1 homozygote.
(E), (F) TEM analysis results of mature pollen grains of the functional recovery line Comp-7. Baculum is Ba, cytosol is Cy, pollen with abnormal morphology is DP, exine is Ex, intine is In, mature pollen is MP, nexine is Ne, Tectum is denoted by Te. Scale bar: 2 μm
6 is a diagram showing the subcellular localization of Os12BGlu38-GFP observed in coleoptile cells and pollen in transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(A) Observation of GFP fluorescence in protoplast non-isolated cotyledonous sheath cells of transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(B) Observation of FM4-64 red (cell membrane marker) fluorescence in protoplast non-isolated cotyledonous sheath cells of transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(C) Bright-field image observation results in non-isolated cotyledonous cells of transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(D) Synthesis of results from (A) to (C).
(E) GFP fluorescence observation of protoplast isolated cotyledonous sheath cells of transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(F) Microscopic observation of protoplast isolated cotyledonous cells of transgenic rice carrying ProZmUbi:Os12BGlu38-GFP.
(G) Synthesis of results from (E) and (F).
(H) Sequential z-series image acquisition results of pollen. The cell wall is denoted by CW and the cell membrane by PM. Scale bar: 5 μm
7 is a diagram showing the expression of Os12BGlu38 in various tissues of plants.
After introduction of ProOs12BGlu38:GUS, GUS activity was confirmed in (A) surgery, (B) stem, (C) seed and ear, (D) leaf, and (E) root, respectively.
8 is a diagram showing the gene tree of the T-DNA insertion homozygous mutant of the GH1 At/Os4 cluster genes Os3BGlu7, Os3BGlu8 and Os7BGlu26.
Exons are indicated by black boxes, introns are indicated by straight lines between the boxes, and inserted T-DNA is indicated by triangles.
9 is a diagram showing the phenotype of mature pollen grains in wild-type and os12bglu38-1 homozygotes.
Nuclear staining and starch staining were performed to compare the phenotypes of mature pollen grains for (A) wild-type, (B) heterozygous, and (C) homozygous.
10 is a diagram showing the analysis of the gene function recovery plant of os12bglu38.
(A) Schematic diagram of a recombinant vector for the production of os12bglu38-1 recovery plants.
(B) DNA PCR results of progeny plants obtained by self-fertilization of a functional recovery line. F1/R2 primer sets were used to identify wild-type alleles. The F1/GUS primer set was used to identify the os12bglu38-1 allele. The Fcomp/Rnos primer set was used to check whether a transgene was introduced.
11 is a diagram showing the subcellular localization of Os12BGlu38-GFP in N. benthamiana leaf epidermal cells.
(A) Observation result of GFP fluorescence of infiltrated epidermal cells.
(B) Observation result of bright field image of infiltrated epidermal cells.
(C) GFP fluorescence observation result of N. benthamiana leaf epidermal cells added with 0.8M mannitol.
(D) Bright field observation result of N. benthamiana leaf epidermal cells with 0.8M mannitol (Mannitol) added.
The cell wall is represented by CW, and the cell membrane is represented by PM. Scale bar: 50 μm
12 is a diagram showing the transient expression of Os12BGlu38-GFP and RFP-KOR in infiltrated N. benthamiana leaf epidermal cells. ProCaMV35S:RFP-KOR vector was co-infiltrated with ProCaMV35S:Os12BGlu38-GFP vector and observed with a confocal scanning microscope after 3-4 days.
(A), (D) GFP fluorescence observation.
(B), (E) RFP fluorescence observation.
(C) Synthesis of the results of (A), (B).
(F) Microscopic observation in bright field.
(G) Synthesis of results from (D), (E), (F). Scale bar: 20 μm
13 is a table showing the results of progeny plant genotyping of functional recovery lines Comp-4, Comp-7, Comp-8 and Comp-19 plants. The genotype of Os12BGlu38 was determined by PCR using Os12BGlu38-specific primers, T-DNA-specific primers and transgene-specific primers.

이하, 본 발명에 대하여 보다 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in more detail.

글리코시드 가수 분해 효소 패밀리 1(GH1) 효소는 식물에서 가수 분해 효소 및 트랜스 글리코시다아제와 같은 다양한 역할을 한다. 본 발명에서 Os12BGlu38의 생물학적 기능이 특정되었다. os12bglu38-1(Os12BGlu38의 T-DNA 삽입 돌연변이) 이형접합체를 자가수정시켜 얻은 자손 식물의 유전형을 분석한 결과, 야생형과 이형접합체의 비율이 1:1로 나타났으며 동형접합체는 나타나지 않았다. 이에 따라, 상호교배분석을 통해 Os12BGlu38 결핍이 웅성불임을 유도한다는 것을 확인하였다. 형태학적 분석에서, 성숙한 돌연변이 화분은 찌그러지고 비어있는 형태 이상이 관찰되었다. 염색 및 투과 전자 현미경 분석 결과 돌연변이 화분은 세포벽 인틴(intine)이 결핍되었음을 확인하였다. 이는 야생형의 Os12BGlu38 DNA의 도입에 의해 회복되었다. 녹색 형광 단백질(GFP)과 융합된 Os12BGlu38-GFP는 벼 화분 및 담배에서 세포막 및 세포벽에 위치해 있는 것을 확인하였다. 세포벽 조성 분석 결과, os12bglu38-1에서 글루코스가 감소하는 것으로 나타났다. 반면, 큐틴 단량체 및 왁스 성분은 야생형과 기능회복 식물 계통에 비하여 돌연변이체의 화분에서 증가되었다. 재조합 박테리아 및 효모에서 발현된 Os12BGlu38은 β-1,3- 및 β-1,4- 글루코-올리고당 및 β-시토스테롤 글루코시드에 대한 β-글루코시다아제 활성을 나타냈다. 이러한 결과를 바탕으로, Os12BGlu38은 화분에서 적절한 인틴 발달에 필요한 세포벽 합성 또는 재이용에 기여될 수 있음을 제안한다.Glycoside hydrolase family 1 (GH1) enzymes play a variety of roles in plants, such as hydrolases and transglycosidases. In the present invention, the biological function of Os12BGlu38 was characterized. As a result of genotype analysis of progeny plants obtained by self-fertilizing the os12bglu38-1 (T-DNA insertion mutant of Os12BGlu38) heterozygote, the ratio of wild-type to heterozygous was 1:1, and no homozygous. Accordingly, it was confirmed through crossbreeding analysis that Os12BGlu38 deficiency induces male infertility. In the morphological analysis, the mature mutant pollen was distorted and hollow morphological abnormalities were observed. As a result of staining and transmission electron microscopy analysis, it was confirmed that the mutant pollen was deficient in cell wall intines. This was restored by introduction of wild-type Os12BGlu38 DNA. Os12BGlu38-GFP fused with green fluorescent protein (GFP) was confirmed to be located in the cell membrane and cell wall in rice pollen and tobacco. As a result of cell wall composition analysis, glucose decreased in os12bglu38-1. On the other hand, cutin monomer and wax components were increased in the pollen of the mutant compared to the wild-type and restorative plant lines. Os12BGlu38 expressed in recombinant bacteria and yeast exhibited β-glucosidase activity on β-1,3- and β-1,4-gluco-oligosaccharides and β-sitosterol glucoside. Based on these results, we suggest that Os12BGlu38 may contribute to cell wall synthesis or recycling necessary for proper intin development in pollen.

본 발명자는 기존에 기능이 알려지지 않은 서열번호 1의 염기서열로 표시되는 Os12BGlu38(Oryza sativa beta-glucosidase 38)의 기능을 확인하기 위하여 Os12BGlu38 유전자의 T-DNA 삽입 돌연변이인 os12bglu38-1 식물체를 선별하였으며, 꽃밥 배양(anther culture)을 통해 생산된 동형접합체 os12bglu38-1의 웅성불임 표현형을 통하여 Os12BGlu38은 화분 발달 후기에서 중요한 역할을 하고 Os12BGlu38의 결실로 인해 웅성불임이 유발된다는 것을 확인하였다.In order to confirm the function of Os12BGlu38 (Oryza sativa beta-glucosidase 38) represented by the nucleotide sequence of SEQ ID NO: 1 whose function is not known in the past, the present inventors selected os12bglu38-1 plants, which are T-DNA insertion mutations of the Os12BGlu38 gene, Through the male infertility phenotype of the homozygous os12bglu38-1 produced through anther culture, it was confirmed that Os12BGlu38 plays an important role in late pollen development and that the deletion of Os12BGlu38 induces male infertility.

또한, os12bglu38 돌연변이체 화분을 가진 꽃밥(anther)의 생화학적 분석 결과를 통하여, Os12BGlu38의 기능상실이 화분 발달에 필수적인 화분 세포벽의 인틴(intine) 합성을 유의하게 감소시키는 것을 확인하였다. 따라서 본 발명은 Os12BGlu38이 화분 발달 단계 중 특히 화분 발달 후기에 화분 세포벽의 인틴(intine) 합성에 기여한다고 할 수 있다.In addition, through biochemical analysis of anther having os12bglu38 mutant pollen, it was confirmed that the loss of function of Os12BGlu38 significantly reduced intin synthesis in the pollen cell wall, which is essential for pollen development. Therefore, it can be said that Os12BGlu38 contributes to intin synthesis in the pollen cell wall during the pollen development stage, particularly in the late pollen development stage.

본 발명은 식물에서 서열번호 1의 염기서열로 표시되는 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 발현을 억제하는 단계를 포함하는 식물체의 웅성불임을 유발하는 방법을 제공한다.The present invention provides a method for inducing male infertility in a plant, comprising the step of suppressing the expression of Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene represented by the nucleotide sequence of SEQ ID NO: 1 in a plant.

또한, 기존의 세포질 유전자적 웅성불임 계통의 경우 환경의 영향을 거의 받지 않고 안정적으로 이용할 수 있는 반면 유지계와 임성 회복계가 함께 구비되어 있어야 이용 가능한 단점이 있으며, 온도 및 일장 감응성 핵유전자 웅성불임 계통의 경우 채종 체계가 단순하고 채종 효율이 높지만 웅성불임성 발현이 불안정하기 때문에 순도 높은 종자 채종에 문제가 있다. 반면에 본 발명의 Os12BGlu38 유전자 활성을 조절한 웅성불임 식물은 채종 체계가 단순하고 채종 효율이 높은 동시에 환경의 영향을 거의 받지 않으며 안정적으로 이용할 수 있기 때문에 세포질 유전자적 웅성불임 계통과 온도 및 일장감응성 핵유전자 웅성불임 계통을 대체할 수 있다.In addition, while the existing cytoplasmic genetic male sterility system can be used stably without being affected by the environment, there is a disadvantage that it can be used only when a maintenance system and a fertility recovery system are provided together. Although the seeding system is simple and the seeding efficiency is high, there is a problem in collecting high-purity seeds because the expression of male sterility is unstable. On the other hand, the male sterile plant regulated by Os12BGlu38 gene activity of the present invention has a simple seeding system and high seeding efficiency, and at the same time is hardly affected by the environment and can be used stably. Genetic male infertility strains can be replaced.

따라서, 서열번호 1의 염기서열로 표시되는 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 기능상실 돌연변이를 이용하여 Os12BGlu38 유전자의 발현을 저해시키는 단계를 포함하는 웅성불임 형질전환 식물체의 제조방법을 제공한다.Therefore, it provides a method for producing a transgenic plant with male infertility, comprising the step of inhibiting the expression of the Os12BGlu38 gene using a loss-of-function mutation of the Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene represented by the nucleotide sequence of SEQ ID NO: 1. .

또한, 상기 Os12BGlu38 유전자의 발현을 저해시키는 단계는 Os12BGlu38 유전자의 1개 이상의 일부 염기를 치환 또는 결실하여 이루어지는 것일 수 있다. 예를 들어 전장 DNA 중 0.1% 이상의 염기를 치환 또는 결실하여 이루어지는 것일 수 있다.In addition, the step of inhibiting the expression of the Os12BGlu38 gene may be made by substituting or deleting one or more partial bases of the Os12BGlu38 gene. For example, it may be formed by substituting or deleting 0.1% or more of bases in the full-length DNA.

또한, 상기 Os12BGlu38 유전자의 발현을 저해시키는 단계는 T-DNA 삽입에 의해 이루어지는 것일 수 있다. 본 발명에서의 T-DNA는 Os12BGlu38 유전자의 인트론 또는 엑손에 삽입되는 것일 수 있다. 예를 들어 Os12BGlu38 유전자에 T-DNA가 삽입된 동형접합체를 포함하는 식물은 화분 발달에 있어 심각한 문제를 초래하여 웅성불임 식물체가 제조될 수 있다. 또한 본 발명에서 상기 T-DNA가 Os12BGlu38 유전자에 삽입되는 위치는 특별한 제한이 있는 것은 아니며, 구체적인 일 실시예에 의하면 11번째 엑손에 삽입되는 것 일 수 있다(도 2A).In addition, the step of inhibiting the expression of the Os12BGlu38 gene may be performed by T-DNA insertion. The T-DNA in the present invention may be inserted into the intron or exon of the Os12BGlu38 gene. For example, a plant containing a homozygote in which T-DNA is inserted into the Os12BGlu38 gene may cause serious problems in pollen development, resulting in male infertility plants. Also, in the present invention, the position at which the T-DNA is inserted into the Os12BGlu38 gene is not particularly limited, and according to a specific embodiment, it may be inserted into the 11th exon ( FIG. 2A ).

또한, 상기 단계는 T-DNA와 같은 식물 게놈 내 삽입이 가능한 외래 유전자 외에도, TOS17과 같은 내생 트랜스포존을 이용하거나 엑스레이(X-ray)나 감마레이(gamma-ray) 등을 주사하여 돌연변이를 유발하거나, RNAi 또는 안티센스 방법을 이용하여 수행할 수 있으나, 이에 제한되지 않는다.In addition, in the above step, in addition to a foreign gene that can be inserted into the plant genome, such as T-DNA, an endogenous transposon such as TOS17 is used or X-rays or gamma-rays are injected to induce mutations or , RNAi or antisense methods, but are not limited thereto.

또한, 상기 방법은 모본인 Os12BGlu38 유전자의 발현이 억제된 식물체, 및 부본인 웅성가임의 식물체와 교배시키는 단계를 추가로 포함할 수 있다.In addition, the method may further include the step of crossing a plant in which expression of the parent Os12BGlu38 gene is suppressed, and a plant of male fertility as a parent.

또한, 상기 제조방법으로 제조된 웅성불임 식물체 및 이의 종자를 제공한다.In addition, it provides a male sterile plant and seeds thereof prepared by the above manufacturing method.

또한, 상기 형질전환은 통상적으로 사용되는 재조합 벡터를 모두 사용하여 이루어질 수 있으나, 아그로박테리움의 도입을 통하여 이루어지는 것이 바람직하다. 상기에서 아그로박테리움의 종류는 특별히 제한되는 것은 아니다.In addition, the transformation can be made using all commonly used recombinant vectors, but it is preferably made through the introduction of Agrobacterium. In the above, the type of Agrobacterium is not particularly limited.

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell in which the cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by the heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the native form of the cell, either in sense or antisense form. Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.

본 발명에서 상기 Os12BGlu38 유전자 서열은 재조합 발현 벡터 내로 삽입될 수 있다. 본 발명에서 용어 “재조합 발현 벡터”는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the Os12BGlu38 gene sequence may be inserted into a recombinant expression vector. As used herein, the term “recombinant expression vector” refers to a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector. In general, any plasmid and vector can be used as long as it is capable of replication and stabilization in the host. An important characteristic of the expression vector is that it has an origin of replication, a promoter, a marker gene and a translation control element.

본 발명의 Os12BGlu38 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.An expression vector containing the Os12BGlu38 gene sequence of the present invention and appropriate transcriptional/translational control signals can be constructed by methods well known to those skilled in the art. The methods include in vitro recombinant DNA techniques, DNA synthesis techniques and in vivo recombination techniques. The DNA sequence can be effectively linked to a suitable promoter in an expression vector to direct mRNA synthesis. The expression vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.

또한, 상기 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.In addition, the expression vector will preferably contain one or more selectable markers. The marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotics such as kanamycin, G418, Bleomycin, hygromycin, chloramphenicol resistance gene, aadA gene, and the like, but is not limited thereto.

본 발명은 Os12BGlu38 유전자의 발현을 억제하는 제제를 포함하는 식물체의 웅성불임 유도용 조성물을 제공한다.The present invention provides a composition for inducing male infertility in plants comprising an agent that inhibits the expression of Os12BGlu38 gene.

또한, 상기 제제는 Os12BGlu38 유전자의 mRNA에 특이적으로 결합하는 siRNA, shRNA, miRNA, 및 안티센스 올리고뉴클레오티드로 이루어진 군으로부터 선택되는 것일 수 있다.In addition, the agent may be selected from the group consisting of siRNA, shRNA, miRNA, and antisense oligonucleotide that specifically binds to the mRNA of the Os12BGlu38 gene.

이어서, 본 발명의 다른 실시예에 따르면, Os12BGlu38 유전자의 발현 여부를 판단하는 단계를 포함하는 식물체의 웅성불임성을 확인하는 방법을 제공한다.Next, according to another embodiment of the present invention, there is provided a method for confirming male sterility of a plant, comprising the step of determining whether the Os12BGlu38 gene is expressed.

또한, 상기 단계는 식물체의 화분의 엑신(exine) 또는 인틴(intine) 또는 핵(nuclear)을 염색하여 화분의 결함을 분석하는 방법일 수 있다.In addition, the step may be a method of analyzing pollen defects by staining exine, intine, or nucleus of pollen of a plant.

또한, 상기 단계는 화분 조직의 박막을 분석하는 방법일 수 있다.Also, the step may be a method of analyzing a thin film of pollen tissue.

본 발명은 Os12BGlu38 유전자의 mRNA 또는 단백질 수준을 측정하는 제제를 포함하는 식물체의 웅성불임성 확인용 조성물을 제공한다.The present invention provides a composition for confirming male infertility of a plant comprising an agent for measuring the mRNA or protein level of the Os12BGlu38 gene.

또한, 상기 제제는 Os12BGlu38 유전자에 특이적으로 결합할 수 있는 프라이머일 수 있다.In addition, the agent may be a primer capable of specifically binding to the Os12BGlu38 gene.

또한, 상기 제제는 서열번호 3의 아미노산 서열로 이루어진 Os12BGlu38 단백질에 대한 항체일 수 있다.In addition, the agent may be an antibody against the Os12BGlu38 protein consisting of the amino acid sequence of SEQ ID NO: 3.

본 발명에서 용어 “벼”는 학명이 Oryza sativa L이며, 일년생 초본식물이고, 본 발명에서의 벼에는 자포니카(Japonica)형, 인디카(Indica)형 및 자바니카(Javanica)형으로 이루어지는 군으로부터 선택되는 어느 하나일 수 있다.In the present invention, the term “rice” has a scientific name of Oryza sativa L, and is an annual herbaceous plant, and the rice in the present invention is selected from the group consisting of Japonica type, Indica type and Javanica type. It can be any one.

본 발명에서 용어 “웅성불임”은 웅성 기관의 형태적 또는 기능적 이상 때문에 수분, 수정, 종자현상이 이루어지지 않는 현상을 의미하며, 환경적인 일시적 변이로서 발현하는 경우와 유전형질로서 발현하는 경우가 있으나, 본 발명에서의 웅성불임은 유전형질로서 유도되는 것일 수 있다. 특히, 본 발명에서의 웅성불임은 화분 세포벽의 인틴(intine) 합성에 관여하는 Os12BGlu38 유전자의 발현을 억제하여 유도되는 것일 수 있다.In the present invention, the term “male infertility” refers to a phenomenon in which pollination, fertilization, and seed phenomena do not occur due to morphological or functional abnormalities of the male organ, and there are cases where it is expressed as an environmental temporary mutation or it is expressed as a genetic trait. , Male infertility in the present invention may be induced as a genetic trait. In particular, male infertility in the present invention may be induced by suppressing the expression of Os12BGlu38 gene, which is involved in intin synthesis in pollen cell wall.

또한, 본 발명에 따른 방법이 적용될 수 있는 식물체로는 애기장대, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물이 될 수 있으며, 바람직하게는 단자엽 식물이다. 상기 식물체는 바람직하게는 벼일 수 있으며, 화분 세포벽에 인틴(intine) 합성을 필요로 하는 모든 식물에 대해서는 이에 제한되지 않는다.In addition, plants to which the method according to the present invention can be applied include Arabidopsis thaliana, eggplant, tobacco, red pepper, tomato, burdock root, green radish, lettuce, bellflower, spinach, chard, sweet potato, celery, root, water parsley, parsley, Chinese cabbage, cabbage. , radish, watermelon, melon, cucumber, pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, pea, etc., or monocotyledonous plant such as rice, barley, wheat, rye, corn, sugarcane, oat, and onion. , preferably monocot plants. The plant may preferably be rice, but is not limited thereto for all plants that require intine synthesis in pollen cell walls.

이하, 본 발명의 실시예를 첨부된 도면을 참고하여 보다 상세하게 설명하도록 한다. 그러나, 하기의 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐, 이에 의해 본 발명이 한정되는 것은 아닐 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the following examples are only intended to embody the contents of the present invention, and the present invention will not be limited thereby.

<실시예 1> 식물재료<Example 1> Plant material

서열번호 1의 염기서열로 표시되는 Os12BGlu38 유전자의 기능상실 돌연변이인 os12bglu38-1의 대립유전자는 벼(품종명: 동진)의 3A-15719 계통으로부터 확인하였다. 벼는 온실에서 낮 동안 30℃에서 밤 동안 20℃로 대략 80%의 습도에서 14/10 시간의 명/암 주기(light/dark cycle)로 재배하거나 여름의 자연환경 조건 하에 유전자변형생물체(Living Modified Organisms, LMO) 재배가 허가된 논에서 재배되었다.The allele of os12bglu38-1, which is a loss-of-function mutation of the Os12BGlu38 gene represented by the nucleotide sequence of SEQ ID NO: 1, was identified from line 3A-15719 of rice (cultivar name: Dongjin). Rice is grown in a greenhouse at 30°C during the day to 20°C during the night, at approximately 80% humidity, with a light/dark cycle of 14/10 hours, or under natural environmental conditions in summer (Living Modified). Organisms, LMO) cultivated in paddy fields permitted for cultivation.

<실시예 2> GH1 At/Os4 클러스터 유전자 T-DNA 돌연변이 분리<Example 2> GH1 At / Os4 cluster gene T-DNA mutation isolation

야생형, 이형접합체 및 동형접합 돌연변이체 식물은 야생형 및 돌연변이 대립유전자 특이적 밴드를 증폭시키기 위해 도 2A를 참조하여 Os12BGlu38 유전자 특이적 F1(서열번호 4) 및 R1 프라이머(서열번호 5) 및 T-DNA 유래 GUS 유전자 특이적 프라이머(서열번호 12)를 사용하여 벼의 잎에서 분리된 게놈 DNA의 PCR 분석을 수행하였다. 위와 같은 방법으로 GH1 At/Os4 클러스터에 속하는 Os3bgGlu7(LOC_Os03g49600), Os3BGlu8(LOC_Os03g49610) 및 Os7BGlu26(LOC_Os07g46280)의 T-DNA 삽입 돌연변이 대립유전자를 추가적으로 분리 및 분석하였다. 이들 계통의 유전자형 분석은 그들의 유전자 특이적 프라이머 및 T-DNA 특이적 프라이머를 사용하여 수행하였다(도 8 및 표 1 참조).Wild-type, heterozygous and homozygous mutant plants were tested with Os12BGlu38 gene-specific F1 (SEQ ID NO: 4) and R1 primers (SEQ ID NO: 5) and T-DNA to amplify wild-type and mutant allele-specific bands with reference to Figure 2A. PCR analysis of genomic DNA isolated from rice leaves was performed using the derived GUS gene-specific primer (SEQ ID NO: 12). T-DNA insertion mutant alleles of Os3bgGlu7 (LOC_Os03g49600), Os3BGlu8 (LOC_Os03g49610) and Os7BGlu26 (LOC_Os07g46280) belonging to the GH1 At/Os4 cluster were additionally isolated and analyzed in the same way as above. Genotyping of these lines was performed using their gene-specific primers and T-DNA-specific primers (see FIG. 8 and Table 1).

서열order 서열번호SEQ ID NO: Os12BGlu38Os12BGlu38 ForwardForward AATTGGGAAACAGGTAAGCAACAATTTACAATTGGGAAACAGGTAAGCAACAATTTAC 서열번호 4SEQ ID NO: 4 ReverseReverse CCCAGGATGTTGTTTTCTTTAACCATTATCCCAGGATGTTGTTTTCTTTAACCATTAT 서열번호 5SEQ ID NO: 5 Os3BGlu7Os3BGlu7 ForwardForward GACAGTCAAACATTAGATACGGAAACCAGGACAGTCAAAACATTAGATACGGAAACCAG 서열번호 6SEQ ID NO: 6 ReverseReverse ATGTCATAATCATTTAGCCGTATGTCACCATGTCATAATCATTTAGCCGTATGTCACC 서열번호 7SEQ ID NO: 7 Os3BGlu8 Os3BGlu8 ForwardForward TGTATTTTCGGACTATGCTGAGTTTTGTTTGTATTTTCGGACTATGCTGAGTTTTTGTT 서열번호 8SEQ ID NO: 8 ReverseReverse TCTGGCCACATTTATTACAGCAAACTACTTCTGGCCACATTTATTACAGCAAACTACT 서열번호 9SEQ ID NO: 9 Os7BGlu26Os7BGlu26 ForwardForward ATAATTCAGTTTCTTGTAGTACTGTTTAAATAATTCAGTTTCTTGTAGTACTGTTTAA 서열번호 10SEQ ID NO: 10 ReverseReverse TCCTATTCAACAGCACAGATTTCATTCCCTCCTATTCAACAGCACAGATTTCATTCCC 서열번호 11SEQ ID NO: 11

<실시예 3> RNA 분리 및 semi-quantitative RT-PCR 분석<Example 3> RNA isolation and semi-quantitative RT-PCR analysis

GH1 At/Os4 클러스터의 유전자들의 꽃밥에서의 발현 여부를 확인하기 위하여, 야생형 벼의 꽃밥에서 채취한 mRNA로부터 합성한 cDNA를 Os1BGlu1(LOC_Os01g32364), Os3BGlu7(LOC_Os03g49600), Os3BGlu8 (LOC_Os03g49610) 및 Os7BGlu26(LOC_Os07g46280)에 대한 프라이머로 증폭하였다(표 2 참조). 벼 유비퀴틴5(ubiquitin 5; OsUBQ5, LOC_Os01g22490) 유전자는 cDNA의 상대적인 양을 정량하기 위해 내부 대조군으로서 OsUBQ5F(서열번호 15) 및 OsUBQ5R(서열번호 16) 프라이머를 이용하여 증폭하였다. 그 결과, GH1 At/Os4 클러스터 유전자들 중 Os12BGlu38 유전자만이 강하게 검출되었다(도 1A). 이러한 결과는 결과는 GH1 At/Os4 클러스터 유전자들 중 Os12BGlu38 유전자만이 꽃밥(anther)에 존재한다는 것을 의미한다.In order to check whether the genes of the GH1 At/Os4 cluster are expressed in the anthers, cDNAs synthesized from mRNA collected from the anthers of wild-type rice were synthesized from Os1BGlu1 (LOC_Os01g32364), Os3BGlu7 (LOC_Os03g49600), Os3BGlu8 (LOC_Os03g4628026) and Os3BGlu8 (LOC_Os03g4628026) was amplified with a primer for (see Table 2). The rice ubiquitin 5 (ubiquitin 5; OsUBQ5, LOC_Os01g22490) gene was amplified using OsUBQ5F (SEQ ID NO: 15) and OsUBQ5R (SEQ ID NO: 16) primers as internal controls to quantify the relative amount of cDNA. As a result, only the Os12BGlu38 gene was strongly detected among the GH1 At/Os4 cluster genes (FIG. 1A). These results mean that only the Os12BGlu38 gene among the GH1 At/Os4 cluster genes is present in anther.

서열order 서열번호SEQ ID NO: Os12BGlu38Os12BGlu38 ForwardForward AGACATCCATCAGCTATCTCAATAGACATCCATCAGCTATCTCAAT 서열번호 13SEQ ID NO: 13 ReverseReverse CAAACCTCACTTTTTATCATCTTCCAAACCTCACTTTTTATCATCTTC 서열번호 14SEQ ID NO: 14 Os1BGlu1Os1BGlu1 ForwardForward TTGTACCGTGGGGTTTGTACAAAGTTGTACCGTGGGGTTTGTACAAAG 서열번호 17SEQ ID NO: 17 ReverseReverse GTTTCCACTCGAAGTTATCCAGCAGTTTCCACTCGAAGTTATCCAGCA 서열번호 18SEQ ID NO: 18 Os3BGlu7Os3BGlu7 ForwardForward GAATCCGACAGTCGTCATAACTGAGAATCCGACAGTCGTCATAACTGA 서열번호 19SEQ ID NO: 19 ReverseReverse ACCAGTAGGCCGACGCCTTGGGGTACCAGTAGGCCGACGCCTTGGGGT 서열번호 20SEQ ID NO: 20 Os3BGlu8 Os3BGlu8 ForwardForward GTTCCGACTGGCATGTATGGAGCTGGTTCCGACTGGCATGTATGGAGCTG 서열번호 21SEQ ID NO: 21 ReverseReverse TGATGTGTAACCTGACAGCCACTCGTGATGTGTAACCTGACAGCCACTCG 서열번호 22SEQ ID NO: 22 Os7BGlu26Os7BGlu26 ForwardForward ATCAACAAGGCTGTGACCTATGTAAATCAACAAGGCTGTGACCTATGTAA 서열번호 23SEQ ID NO:23 ReverseReverse TGTAGTCCACGTAGACGATGCCAATGTAGTCCACGTAGACGATGCCAA 서열번호 24SEQ ID NO: 24 OsUBQ5OsUBQ5 ForwardForward GACTACAACATCCAGAAGGAGTCGACTACAACATCCAGAAGGAGTC 서열번호 15SEQ ID NO: 15 ReverseReverse TCATCTAATAACCAGTTCGATTTCTCATCTAATAACCAGTTCGATTTC 서열번호 16SEQ ID NO: 16

이어서, Os12BGlu38의 화분 발달 단계별 발현을 확인하기 위하여, 야생형 벼의 꽃밥(Anther)을 채취하여 길이와 양상에 따라 분류하였다. 수집된 꽃밥(Anther)의 전체 RNA를 Trizol 시약(Invitrogen, Gaithersburg, MD)을 이용하여 추출하였다. 분리된 RNA 추출물은 올리고-dT 프라이머 및 First Strand cDNA Synthesis Kit(Roche, Mannheim, Germany)를 사용하여 역전사시켰다. 합성한 cDNA(서열번호 2)는 주형으로서 Os12BGlu38 유전자 특이적 프라이머인 RTF1(서열번호 13) 및 RTR1(서열번호 14)을 이용한 semi-quantitative RT-PCR 반응에 사용하였다(도 2A 참조). OsUBQ5F(서열번호 15) 및 OsUBQ5R(서열번호 16) 프라이머로 증폭된 벼 유비퀴틴5 유전자(OsUBQ5; LOC_Os01g22490)를 로딩 대조군으로서 사용하였다.Then, in order to confirm the expression of Os12BGlu38 at each stage of pollen development, anthers of wild-type rice were collected and classified according to length and aspect. Total RNA of the collected anthers (Anther) was extracted using Trizol reagent (Invitrogen, Gaithersburg, MD). The isolated RNA extract was reverse transcribed using oligo-dT primers and First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany). The synthesized cDNA (SEQ ID NO: 2) was used as a template in a semi-quantitative RT-PCR reaction using Os12BGlu38 gene-specific primers RTF1 (SEQ ID NO: 13) and RTR1 (SEQ ID NO: 14) (see FIG. 2A ). The rice ubiquitin 5 gene (OsUBQ5; LOC_Os01g22490) amplified with OsUBQ5F (SEQ ID NO: 15) and OsUBQ5R (SEQ ID NO: 16) primers was used as a loading control.

그 결과, Os12BGlu38은 다양한 화분 발달 단계 모두에서 미묘한 발현이 관찰되었지만, 이세포성 화분(bicellular pollen) 및 성숙한 화분(Mature pollen)에서 발현이 훨씬 더 높았고 성숙한 화분에서 가장 강한 발현이 검출되었다(도 1B, 왼쪽). 또한, 성숙한 꽃밥(anther)과 화분(pollen)에서 Os12BGlu38의 발현을 비교하였을 때, 화분(pollen)에서 더 높은 유전자 표현이 발현되었다(도 1B, 오른쪽). 이러한 결과를 통해 Os12BGlu38은 꽃밥(anther) 조직보다는 화분(pollen)에서 우선적으로 발현될 수 있음을 알 수 있다. As a result, although subtle expression of Os12BGlu38 was observed at all different stages of pollen development, the expression was much higher in bicellular pollen and mature pollen, and the strongest expression was detected in mature pollen (Fig. 1B, left). Also, when comparing the expression of Os12BGlu38 in mature anther and pollen, higher gene expression was expressed in pollen ( FIG. 1B , right). From these results, it can be seen that Os12BGlu38 can be preferentially expressed in pollen rather than anther tissue.

<실시예 4> ProOs12BGlu38:GUS 유전자 변형 벼 분석<Example 4> Analysis of ProOs12BGlu38:GUS genetically modified rice

Os12BGlu38의 기관별 발현 패턴을 검증하기 위해, Os12BGlu38 프로모터 조절 하에 발현하는 β-glucoronidase(GUS)를 도입하여 ProOs12BGlu38:GUS 운반체를 제작하였다. ProOs12BGlu38:GUS 운반체를 제작하기 위하여 먼저 Os12BGlu38 유전자의 5‘ 2kb 상류영역을 PCR을 수행하여 증폭하였다. PCR을 통해 Os12BGlu38 유전자의 5‘ 2kb 상류영역을 증폭하였다. PCR 수행 시 주형으로 야생형 벼 DNA를 사용하였고, 프라이머로 ProOs12BGlu38:GusF(서열번호 25) 및 ProOs12BGlu38:GusR(서열번호 26)를 사용하였다. 그 후, PCR을 수행하여 얻은 생성물을 pENTRTM/D-TOPO® 벡터에 클로닝하였다. 이어서, 클로닝된 단편을 노팔린신타제(nopaline synthase) 유전자의 전사종결자(terminator)에 연결된 GUS 유전자의 발현을 조절하기 위해 pBI101의 프로모터가 없는 GUS 리포터 유전자 앞에 삽입하였다. 형질전환 식물은 아그로박테리움-매개 공배양법(Agrobacterium-mediated cocultivation method)에 따라 50mg/L 하이그로마이신(hygromycin) 및 250mg/L 세포탁심(cefotaxime)을 함유하는 선별 배지에서 수득하였다. 그 후 ProOs12BGlu38:GUS 유전자를 보유하는 형질전환 벼를 3세대 동안 재배하였다. 모든 자손 식물 중 하이그로마이신(hygromycin)에 내성을 가지는 식물만을 추가로 선택하여 ProOs12BGlu38:GUS 유전자를 가지는 동형 접합체를 선별하였다. 화분을 포함하는 다양한 조직은 0.2M 인산나트륨(pH 7.0), 0.1% 5-브로모-4-클로로-3-인돌β-글루쿠로나이드(5-bromo-4-chloro-3-indol β-glucuronide), 20% 메탄올, 2% DMSO, 10mM EDTA를 포함하는 GUS 반응 용액을 사용하여 염색하였다. 간략하게, 팔레아(palea)가 제거된 작은이삭(spikelet)을 포함하는 모든 샘플은 GUS 반응 용액으로 30분 동안 3회 진공 침투시키고, 37℃에서 밤새 인큐베이션한 다음 70% 에탄올로 옮겨 엽록소를 제거하였다. 염색된 샘플을 해부 현미경(SZX12, Olympus, Tokyo, Japan)으로 관찰하였다.To verify the organ-specific expression pattern of Os12BGlu38, β-glucoronidase (GUS) expressed under the control of the Os12BGlu38 promoter was introduced to construct a ProOs12BGlu38:GUS transporter. To construct the ProOs12BGlu38:GUS transporter, the 5' 2kb upstream region of the Os12BGlu38 gene was first amplified by PCR. The 5' 2kb upstream region of the Os12BGlu38 gene was amplified through PCR. When PCR was performed, wild-type rice DNA was used as a template, and ProOs12BGlu38:GusF (SEQ ID NO: 25) and ProOs12BGlu38:GusR (SEQ ID NO: 26) were used as primers. Then, PCR was performed and the obtained product was cloned into the pENTR TM /D-TOPO® vector. Then, the cloned fragment was inserted before the promoter-free GUS reporter gene of pBI101 in order to control the expression of the GUS gene linked to the terminator of the nopaline synthase gene. Transgenic plants were obtained in selective medium containing 50 mg/L hygromycin and 250 mg/L cefotaxime according to the Agrobacterium-mediated cocultivation method. Thereafter, transgenic rice carrying the ProOs12BGlu38:GUS gene was cultivated for three generations. Among all progeny plants, only plants resistant to hygromycin were additionally selected to select homozygotes having the ProOs12BGlu38:GUS gene. Various tissues, including pollen, were prepared using 0.2 M sodium phosphate (pH 7.0), 0.1% 5-bromo-4-chloro-3-indole β-glucuronide (5-bromo-4-chloro-3-indol β- glucuronide), 20% methanol, 2% DMSO, and a GUS reaction solution containing 10 mM EDTA was used for staining. Briefly, all samples containing spikelets from which palea was removed were vacuum infiltrated 3 times for 30 min with GUS reaction solution, incubated at 37° C. overnight, and then transferred to 70% ethanol to remove chlorophyll. did. The stained samples were observed under a dissecting microscope (SZX12, Olympus, Tokyo, Japan).

도 1C에 나타낸 바와 같이, β-glucoronidase(GUS) 활성은 액포 단계의 화분(pollen)에서 검출되지 않았으나, 이세포성 화분(bicellular pollen)에서 처음 검출되었으며, 성숙한 화분(mature pollen)에서 가장 많이 검출되었다. 또한, 화분을 포함하는 다양한 기관에서도 GUS 활성을 알아본 결과, 수술, 줄기, 종자와 이삭, 잎, 뿌리 등 화분 외의 기관에서는 발현되지 않았다(도 7). 이러한 결과는 Os12BGlu38 유전자가 다양한 식물 기관 중 화분(pollen)에서만 특이적으로 발현한다는 것을 의미한다.1C , β-glucoronidase (GUS) activity was not detected in vacuole stage pollen, but was first detected in bicellular pollen and was most detected in mature pollen. . In addition, as a result of examining GUS activity in various organs including pollen, it was not expressed in organs other than pollen, such as stamens, stems, seeds and ears, leaves, and roots (FIG. 7). These results suggest that the Os12BGlu38 gene is specifically expressed only in pollen among various plant organs.

<실시예 5> 역교배<Example 5> Backcross

실시예 3 및 4의 결과에 따라 화분(pollen)에서 Os12BGlu38의 우선적인 발현은 식물 조직에서 중요한 역할을 할 수 있다는 가설을 세웠다. T-DNA가 표지된 자포니카(japonica) 벼(품종명: 동진벼) 돌연변이 군으로부터 서열번호 1의 염기서열로 표시되는 Os12BGlu38 유전자의 11번째 엑손(exon) 위치인 3645번째 서열 위치에 T-DNA를 삽입한 돌연변이를 제작하고 이를 os12bglu38-1로 명명하였다(도 2A). Os12BGlu38 유전자 내에 T-DNA의 삽입이 유전형을 변경시켰는지 확인하기 위해, 본 발명자들은 자가수정 이형접합체 WT(+)/os12bglu38-1(-) 식물의 자손 식물의 유전자형을 분석하였다. 그 결과를 도 2B 및 표 3에 나타내었다. 도 2B에서 Os12BGlu38은 F1/R1 프라이머 세트를 사용하여 확인하고, os12bglu38-1은 F1/GUS 프라이머 세트를 사용하여 확인하였다. Os12BGlu38(+)에서만 검출되면 야생형, Os12BGlu38(+)과 os12bglu38-1(-)에서 모두 검출되면 이형접합체를 나타낸다. 야생형(WT, (+/+)):이형접합체(heterozygous, (+/-)):동형접합 돌연변이체(homozygous mutant, (-/-))의 비율이 정상적인 분리비인 1:2:1로 나타나지 않고 1:1:0으로 나타났다. 이는 전형적인 불임 계통의 후대 유전형 분리이다. 반대로, 실시예 2에서 제작한 Os3BGlu7, Os3BGlu8 및 Os7BGlu26 T-DNA 삽입 돌연변이체를 자가수정했을 때는 1:2:1의 정상적인 분리비를 나타내었고, 이러한 결과는 벼 GH1 At/Os4 클러스터 그룹 중 Os12BGlu38 유전자만이 화분 발달에 중요한 역할을 한다는 것을 시사한다. 따라서, os12bglu38-1이 불임을 유발하는 기능을 가질 것으로 예측하였다.According to the results of Examples 3 and 4, it was hypothesized that preferential expression of Os12BGlu38 in pollen may play an important role in plant tissue. T-DNA was inserted at the 3645th sequence position, the 11th exon position of the Os12BGlu38 gene represented by the nucleotide sequence of SEQ ID NO: 1 from the T-DNA-labeled japonica rice (cultivar name: Dongjinbyeo) mutant group. A mutant was created and named os12bglu38-1 (FIG. 2A). To determine whether insertion of T-DNA into the Os12BGlu38 gene altered the genotype, we genotyped the progeny plants of self-fertilizing heterozygous WT(+)/os12bglu38-1(-) plants. The results are shown in Figure 2B and Table 3. In FIG. 2B, Os12BGlu38 was confirmed using the F1/R1 primer set, and os12bglu38-1 was confirmed using the F1/GUS primer set. Wild type when detected only in Os12BGlu38(+), heterozygous when detected in both Os12BGlu38(+) and os12bglu38-1(-). The ratio of wild-type (WT, (+/+)):heterozygous ((+/-)):homozygous mutant (-/-)) appears to be 1:2:1, which is the normal separation ratio. and 1:1:0. This is a progeny genotypic segregation of a typical infertile lineage. Conversely, when the Os3BGlu7, Os3BGlu8 and Os7BGlu26 T-DNA insertion mutants prepared in Example 2 were self-fertilized, a normal separation ratio of 1:2:1 was exhibited, and this result showed that only the Os12BGlu38 gene in the rice GH1 At/Os4 cluster group was self-fertilized. This suggests that it plays an important role in pollen development. Therefore, it was predicted that os12bglu38-1 would have an infertility-inducing function.

계통system 야생형wild type 이형접합체heterozygote X2 X 2 Os12BGlu38/os12bglu38-1Os12BGlu38/os12bglu38-1 3131 4040 1.141(P<0.05)1.141 (P<0.05)

이어서, Os12BGlu38이 웅성불임을 유발하는지 확인하기 위하여 야생형과 이형접합체를 상호교배 하였다. 개화 전 모계식물(maternal donor)의 원추꽃차례(panicle)의 건강한 작은이삭(spikelet)을 중간 주위에서 가로로 자르고 꽃밥(anther)은 완전히 제거하여 암술만 남겼다. 꽃밥(anther)을 제거한 원추꽃차례(panicle)는 투명한 종이 봉지로 덮고 어둠 속에 두었다. 다음 날 정오 또는 개화시기에 모계 식물을 논 근처로 가져왔다. 화분 공여자로 사용되는 꽃이 만발한 원추꽃차례(panicle)를 수집한 다음 모체 식물의 절단된 작은이삭(spikelet)에 가깝게 옮기고 화분은 암술에 떨어트렸다. 수분된 원추꽃차례(panicle)를 다시 투명한 종이 봉지로 덮고 3-4 주 동안 온실에 두었다. 상호 교차 계통의 유전자형은 PCR을 수행하여 결정하였다.Then, to determine whether Os12BGlu38 induces male infertility, wild-type and heterozygous hybrids were crossed. Before flowering, the healthy spikelet of the panicle of the maternal donor was cut horizontally around the middle, and the anther was completely removed to leave only the pistil. Panicles with anthers removed were covered with a transparent paper bag and placed in the dark. The maternal plants were brought to the vicinity of the paddy fields at noon or flowering the next day. The blossoming panicle used as the pollen donor was collected and then moved closer to the cut spikelet of the parent plant and the pollen dropped onto the pistil. The pollinated panicles were again covered with a transparent paper bag and placed in the greenhouse for 3-4 weeks. The genotype of the crossover line was determined by performing PCR.

Os12BGlu38/os12bglu38-1과 야생형의 상호교배체의 자손 식물 유전형 검증 결과, 표 4에 나타낸 바와 같이 화분 수용자(Maternal parent, 모본)로서 이형접합체(heterozygous)와 화분 공여자(Paternal parent, 부본)로서 야생형(WT)를 교배했을 때 일대잡종(F1) 식물체의 표현형은 야생형과 이형접합체가 유사한 빈도로 나타났다. 이와 대조적으로, 화분 수용자(Maternal parent, 모본)로서 야생형(WT)과 화분 공여자(Paternal parent, 부본)로서 이형접합체(heterozygous)를 교배했을 때 일대잡종(F1) 식물체의 표현형은 야생형(WT)만 나타났다. 이러한 결과는, Os12BGlu38의 결핍이 웅성불임을 유도한다는 것을 의미한다. 또한, Os12BGlu38 유전자의 발현이 억제된 화분 수용자(Maternal parent, 모본)와 웅성가임의 화분 공여자(Paternal parent, 부본)를 교배하면 웅성불임 벼를 제조할 수 있다는 것을 나타낸다.As a result of verifying the progeny plant genotype of an intercross of Os12BGlu38/os12bglu38-1 and wild-type, as shown in Table 4, heterozygous (heterozygous) as a pollen recipient (Maternal parent) and a wild-type (Paternal parent, parent) as WT), the phenotype of the one-hybrid (F1) plant showed a similar frequency between the wild type and the heterozygote. In contrast, when a wild-type (WT) as a maternal parent and a heterozygous as a pollen donor (Paternal parent) were crossed, the phenotype of a single-hybrid (F1) plant was only wild-type (WT). appear. These results suggest that Os12BGlu38 deficiency induces male infertility. In addition, it is indicated that male sterility rice can be produced by crossing a pollen recipient whose expression of Os12BGlu38 gene is suppressed (Maternal parent) with a male fertile pollen donor (Paternal parent).

역교배 대상backcross target 역교배 결과Backcross result 화분 공여자pollen donor 화분 수용자flowerpot receiver 관찰된 비율(%) / 예측된 비율(%)
(관찰된 식물수 / 예측된 식물수)
Observed (%) / Predicted (%)
(Number of Observed Plants / Number of Predicted Plants)
Os12BGlu38/os12bglu38-1Os12BGlu38/os12bglu38-1 Os12BGlu38/Os12BGlu38(WT)Os12BGlu38/Os12BGlu38 (WT) WTWT Os12BGlu38/os12bglu38-1Os12BGlu38/os12bglu38-1 100/50(50/50)100/50 (50/50) 0/50(0/50)0/50 (0/50) Os12BGlu38/Os12BGlu38(WT)Os12BGlu38/Os12BGlu38 (WT) Os12BGlu38/os12bglu38-1Os12BGlu38/os12bglu38-1 WTWT Os12BGlu38/os12bglu38-1Os12BGlu38/os12bglu38-1 47.2/50(34/72)47.2/50 (34/72) 52.8/50(38/72)52.8/50 (38/72)

<실시예 6> 꽃밥 배양(Anther culture)<Example 6> Anther culture

os12bglu38-1 동형접합체(homozygous)를 자가수정으로 생산할 수 없기 때문에 꽃밥 배양(anther culture)을 통해 Os12BGlu38이 발현되지 않는 동형접합체를 획득하였다. os12bglu38-1 유전자만을 포함하는 동형접합체를 만들기 위하여, 이형접합체에서 분리된 꽃밥(anther)과 함께 Eom et al. (2016)에 묘사된 방법에 따라 꽃밥 배양(anther culture)을 수행하였다. 70%(v/v) 에탄올로 원추꽃차례(panicle) 표면을 살균한 후 작은이삭(spikelet)의 꽃밥(anther)을 N6 캘러스 유도 배지에서 배양하고 N6 재생 배지의 벼(calli)로부터 동형접합체를 생산하였다. 꽃밥 배양(anther culture)을 통해 획득한 동형접합 식물체는 식물 발달 전반에 걸쳐 야생형과 유의한 차이는 없었으므로 Os12BGlu38의 기능상실은 식물체의 생장에는 아무 관련이 없음을 확인하였다. Since the os12bglu38-1 homozygous cannot be produced by self-fertilization, a homozygote in which Os12BGlu38 is not expressed was obtained through anther culture. To create a homozygote containing only the os12bglu38-1 gene, Eom et al. (2016), anther culture was performed according to the method described. After sterilizing the panicle surface with 70% (v/v) ethanol, anther of spikelet was cultured in N 6 callus induction medium and homozygous from calli in N 6 regeneration medium. was produced. Homozygous plants obtained through anther culture did not differ significantly from wild-type plants throughout plant development, so it was confirmed that the loss of function of Os12BGlu38 had nothing to do with plant growth.

<실시예 7> 조직 화학적 박막 분석<Example 7> Histochemical thin film analysis

웅성 발달을 위한 Os12BGlu38의 필요성을 조사하기 위해, 야생형, 이형접합체, 동형접합체 각각에 대하여 화분 발달의 13가지 단계 중 미세포자 모세포기(6단계), 액포기(10단계), 유사분열기(11단계), 성숙한 화분기(13단계)의 화분에 대한 형태학적 분석을 수행하였다. 다양한 발달 단계의 꽃밥(anther)은 Moon et al. (2013)에 묘사된 방법에 따라 염색시켰다. 간단히 말해서, 수확한 꽃밥(anther)은 포르말린-아세트산-알코올 용액에 8시간 동안 고정시켰다. 이어서 Technovit® 8100 resin(Kulzer, Hanau, Germany)으로 담그고 rotary microtome(2165, Leica Microsystems, Wetzlar, Germany)을 이용하여 10mm 두께로 절단하였다. 염색된 면은 Olympus BX61 현미경을 이용하여 관찰하였다.To investigate the need for Os12BGlu38 for male development, for each of wild-type, heterozygous, and homozygous, microblastic stage (stage 6), vacuolar stage (stage 10), and mitosis (stage 11) out of 13 stages of pollen development. ), a morphological analysis of pollen in the mature pollen stage (step 13) was performed. Anthers at various stages of development are described in Moon et al. (2013) were stained according to the method described. Briefly, harvested anthers were fixed in a formalin-acetic acid-alcohol solution for 8 hours. Then, it was immersed in Technovit® 8100 resin (Kulzer, Hanau, Germany) and cut to a thickness of 10 mm using a rotary microtome (2165, Leica Microsystems, Wetzlar, Germany). Stained cotton was observed using an Olympus BX61 microscope.

그 결과는 도 3에 나타내었다. 3가지 유전자형(야생형, 이형접합체, 동형접합체)의 화분 발달은 6, 10, 11단계에서 유사하였다. 또한 3가지 유전자형 모두 11단계의 유사분열기에서 이세포성 화분(binuclear pollen grain, BP)이 관찰되었다. 그러나, 13단계의 성숙한 화분에서는 야생형의 모든 화분은 둥근 모양을 하고 있으며 전분이 채워진 온전한 형태로 나타난 반면, 이형접합체(heterozygote) 화분의 절반은 전분을 전혀 함유하지 않고 찌그러지거나 비어있는 형태 이상이 관찰되었고 나머지 절반은 야생형과 유사하게 온전한 형태를 보이는 것으로 나타났다. 꽃밥(anther) 배양을 통해 수득한 동형접합 돌연변이체의 경우 모든 화분(pollen)이 이형접합체의 형태 이상 화분과 같이 움츠러든 초승달 모양의 형태를 보이고 전분이 검출되지 않았다.The results are shown in FIG. 3 . Pollen development of the three genotypes (wild-type, heterozygous, and homozygous) was similar at stages 6, 10, and 11. Also, in all three genotypes, binuclear pollen grain (BP) was observed in the 11th stage of mitosis. However, in the mature pollen of stage 13, all pollen of the wild type had a round shape and appeared in an intact form filled with starch, whereas half of the pollen of the heterozygote did not contain any starch and an abnormal shape was observed. and the other half showed an intact form similar to that of the wild type. In the case of the homozygous mutant obtained through anther culture, all pollen showed a crescent-shaped form with a retracted crescent like pollen with abnormal shape of the heterozygote, and no starch was detected.

<실시예 8> 세포 화학적 분석<Example 8> Cytochemical analysis

실시예 7에서 확인한 Os12BGlu38의 유전형 별 화분 표현형 차이에 기인하여, 벼 화분의 핵, 엑신(exine), 인틴(intine) 및 화분에 함유된 전분을 염색하여 관찰하였다.Due to the difference in pollen phenotype for each genotype of Os12BGlu38 confirmed in Example 7, the nuclei, exine, intine, and starch contained in pollen of rice pollen were stained and observed.

핵 염색의 경우, 먼저 증류수를 사용해 Hoechst 33342 (trihydrochloride trihydrate)를 40mg/mL 농도로 희석하여 침전을 방지하고, pH7.4의 인산완충식염수(phosphate-buffered saline, PBS) 용액을 사용하여 1 : 1000 내지 1 : 2000배로 희석하였다. 13 내지 14단계의 성숙한 화분을 수확한 후 Hoechst 33342 용액에 65 ℃에서 1시간 동안 담구었다. 염색된 화분은 올림푸스 BX61 현미경(Olympus, Hamburg, Germany)을 사용하여 명시야상과 UV광시야상을 관찰하였다. 일반적으로 벼 화분(pollen)은 3개의 핵이 포함되어 있는데, Hoechst 33342로 핵을 염색한 결과, 야생형의 모든 화분(pollen)에는 3개의 핵이 검출된 반면, 동형접합 돌연변이체의 화분(pollen)에서는 핵이 검출되지 않았다(도 9 A, C 위).For nuclear staining, first dilute Hoechst 33342 (trihydrochloride trihydrate) to a concentration of 40 mg/mL with distilled water to prevent precipitation, and use a phosphate-buffered saline (PBS) solution of pH 7.4 to 1:1000 to 1: 2000-fold dilution. After harvesting the mature pollen from steps 13 to 14, it was immersed in Hoechst 33342 solution at 65° C. for 1 hour. Bright field images and UV light field images were observed for the dyed pollen using an Olympus BX61 microscope (Olympus, Hamburg, Germany). In general, rice pollen contains three nuclei. As a result of nuclei staining with Hoechst 33342, three nuclei were detected in all pollen of the wild type, whereas pollen of the homozygous mutant was detected. No nuclei were detected in Fig. 9A, C above.

그 후, os12bglu38-1 동형접합 돌연변이체, 야생형, 이형접합체의 화분의 전분 합량을 알아보기 위해 각 식물의 화분에 대해 Lugol's solution으로 전분 염색을 수행하였다. Lugol solution(Sigma Aldrich)을 핵 염색에 사용된 것과 동일한 단계의 화분과 혼합하고, 염색된 화분의 명시야상을 관찰한 결과 os12bglu38-1 동형접합 돌연변이체의 모든 화분이 염색되지 않았으며, 이는 전분이 없음을 나타낸다. 반면에, 야생형의 모든 화분 및 이형접합체의 화분의 절반은 요오드로 어둡게 염색되었다(도 9 아래). 이러한 결과는 os12bglu38-1 동형접합체의 화분이 소배우자형성(microgametogenesis)을 완료하지 못한다는 것을 의미하며, 이는 Os12BGlu38 유전자는 성숙한 화분의 형성에 반드시 필요한 유전자임을 나타낸다.Thereafter, starch staining was performed with Lugol's solution for the pollen of each plant to determine the total amount of starch in the pollen of the os12bglu38-1 homozygous mutant, wild type, and heterozygote. Lugol solution (Sigma Aldrich) was mixed with pollen at the same stage as used for nuclear staining, and bright field images of the stained pollen were observed. As a result, all pollen of the os12bglu38-1 homozygous mutant was not stained, indicating that starch indicates no. On the other hand, all pollen of the wild type and half of the pollen of the heterozygote were darkly stained with iodine (Fig. 9 below). These results indicate that pollen of the os12bglu38-1 homozygous do not complete microgametogenesis, indicating that the Os12BGlu38 gene is essential for the formation of mature pollen.

엑신(exine)은 17% 슈크로스(sucrose)에서 0.001 % 아우라민 O(auramine O)로 염색하고, 인틴(intine)은 0.1% 칼코플루오르 화이트(Calcofluor white)로 염색하였다. 염색된 화분을 올림푸스 BX61 현미경으로 명시야상과 UV광시야상을 관찰하였다.Exine was stained with 0.001% auramine O in 17% sucrose, and intine was stained with 0.1% Calcofluor white. Bright field images and UV light field images of the dyed pollen were observed with an Olympus BX61 microscope.

그 결과는 도 4에 나타내었다. 외부 화분 세포벽인 엑신(exine)을 아우라민 O(auramine O) 용액으로 염색한 경우, 야생형, 이형접합체 및 동형접합체에서 관찰된 형광의 강도는 크게 다르지 않았지만, 결함은 좀 더 강하게 나타났다(도 4A-C). 내부 화분 세포벽인 인틴(intine)을 칼코플루오르 화이트(Calcofluor white) 용액으로 염색한 경우, 이형접합체의 형태 이상 화분은 나머지 절반의 정상적이고 밝은 신호를 나타낸 화분에 비해 매우 낮은 형광 신호를 나타냈다(도 4E). 이와 유사하게, 동형접합 돌연변이체 유전자형의 모든 화분은 밝은 청색 형광을 나타내는 야생형의 화분과 비교하여 희미하게 염색되었으며, 이는 os12bglu38-1 유전자를 포함하는 화분은 인틴(intine) 세포벽에 결함이 있음을 나타낸다(도 4D 및 F). 이러한 결과는 Os12BGlu38의 기능을 상실시킨 os12bglu38-1 유전자는 인틴(intine) 합성을 억제한다는 것을 의미한다.The results are shown in FIG. 4 . When exine, the outer pollen cell wall, was stained with an auramine O solution, the intensity of fluorescence observed in wild-type, heterozygous, and homozygote was not significantly different, but the defect was slightly stronger (Fig. 4A- C). When intine, the inner pollen cell wall, was stained with a calcofluor white solution, the heterozygous pollen showed a very low fluorescence signal compared to the normal and bright pollen of the other half (Fig. 4E). ). Similarly, all pollen of the homozygous mutant genotype stained faintly compared to that of the wild type, which exhibited bright blue fluorescence, indicating that pollen containing the os12bglu38-1 gene is defective in the intine cell wall. (Figure 4D and F). These results indicate that the os12bglu38-1 gene, which loses the function of Os12BGlu38, inhibits intine synthesis.

<실시예 9> TEM(transmission electron microscope) 분석<Example 9> TEM (transmission electron microscope) analysis

꽃밥(anther)은 0.1M 인산나트륨완충액 pH 7.2의 2.5% 글루타르알데히드 용액에 고정시킨 후 동일한 완충액을 사용하여 0.8% 오스뮴 테트라옥시드(osmium tetroxide, OsO4)로 실온에서 하루 동안 고정시켰다. 이어서, 샘플을 일련의 농도 구배별 에탄올(graded series of ethanol)을 통해 탈수시키고 Epon 821 수지에 담근다. 초박형 단편(50 내지 70nm)은 다이아몬드 칼이 포함된 Ultracut-E (Reichert, Vienna, Austria) 울트라마이크로톰(ultramicrotome)을 사용하여 슬라이스하고 2% (w/v) 초산우라닐(uranyl acetate)과 2.6% (w/v) 리드 구연산 수용액(lead citrate aqueous solution)으로 염색하였다. 그 후 80kV 하에 JEM-1230 투과 전자 현미경(JEOL, Tokyo, Japan)로 조사하였다.Anthers were fixed in a 2.5% glutaraldehyde solution of 0.1M sodium phosphate buffer pH 7.2, and then, using the same buffer, 0.8% osmium tetraoxide (osmium tetroxide, OsO 4 ) was fixed at room temperature for one day. The sample is then dehydrated through a graded series of ethanol and dipped in Epon 821 resin. Ultra-thin fragments (50 to 70 nm) were sliced using an Ultracut-E (Reichert, Vienna, Austria) ultramicrotome with a diamond knife, 2% (w/v) uranyl acetate and 2.6% It was stained with (w/v) lead citrate aqueous solution. Then, it was irradiated with a JEM-1230 transmission electron microscope (JEOL, Tokyo, Japan) under 80 kV.

그 결과, 야생형의 모든 화분은 전분 과립을 함유하였으며 둥근 모양을 나타내었다(도 5A). 반면 찌그러진 모양의 os12bglu38-1 동형접합체 화분은 전분 과립을 함유하지 않음을 확인하였다(도 5C). 야생형의 성숙한 화분은 엑신(exine) 하부의 두꺼운 인틴(intine)층을 포함하고 있었지만, os12bglu38-1 동형접합체 화분의 경우 인틴(intine)층을 포함하지 않았다(도 5B, D). 이러한 결과는 야생형과 비교하여 os12bglu38-1 동형접합체 화분에서 약한 형광 신호를 보여준 실시예 8의 결과와 일치한다. 그러나, 엑신(exine)층의 경우 야생형 화분보다 os12bglu38-1 동형접합체 화분에서 더 두껍게 나타났다. 게다가, 외측에서 내측으로 이어지는 섹신(sexine)층 및 평평한 넥신(nexine)층을 포함하는 엑신 서브층(exine sublayer)은 야생형의 화분뿐만 아니라 os12bglu38-1 동형접합체 화분에서도 뚜렷하게 나타났다(도 5B, D).As a result, all of the wild-type pollen contained starch granules and exhibited a round shape (FIG. 5A). On the other hand, it was confirmed that the crushed os12bglu38-1 homozygous pollen did not contain starch granules (FIG. 5C). The wild-type mature pollen contained a thick intine layer below the exine, but the os12bglu38-1 homozygous pollen did not contain an intine layer (Fig. 5B, D). These results are consistent with the results of Example 8, which showed a weak fluorescence signal in pollen homozygous for os12bglu38-1 compared to the wild type. However, the exine layer was thicker in os12bglu38-1 homozygous pollen than in wild-type pollen. In addition, the exine sublayer comprising a flat nexine layer and a sexine layer running from the outside to the inside was evident not only in the wild-type pollen but also in the os12bglu38-1 homozygous pollen (Fig. 5B, D). .

<실시예 10> 유전자 기능회복 식물 분석<Example 10> Gene function recovery plant analysis

화분의 결함이 Os12BGlu38에 의해 야기된 것을 확인하기 위해 os12bglu38-1 동형접합체에 기능회복 운반체를 형질전환 하였다. Os12BGlu38 유전자의 개시코돈으로부터 2 kb 5' 상류 영역에서 모든 엑손, 인트론 및 정지 코돈으로부터 1kb 3’ 하류영역까지의 서열을 프라이머 Genomic F1(서열번호 27) 및 Genomic R1(서열번호 28) 프라이머를 사용하여 PCR로 증폭시켰다(도 10 참조). 이어서 PCR 생성물을 pENTRTM/D-TOPO®벡터(Invitrogen, Carlsbad, CA)에 클로닝한 후 시퀀싱하여 서열을 확인하였다. 야생형 gOs12BGlu38의 삽입물은 두 번째 선별마커로서 Bialaphos 저항성 유전자인 Bar(Bialaphos resistance gene)를 운반하는 Gateway cassette-pCAMBIA3301 벡터에 추가로 서브클로닝 하였다. 생성된 결과물(Os12BGlu38 유전자)을 아그로박테리움-매개 형질전환 방법을 이용하여 이형접합성 종자 유래 벼로 도입하고, 형질전환된 벼(calli) 및 식물을 300mg/L 포스피노트리신(phosphinothricin)으로 분리하였다. 야생형 gOs12BGlu38을 보유하는 형질전환 계통(os12bglu38-1 동형접합체 기능회복 계통) Comp-4, Comp-7, Comp-8 및 Comp-19를 3세대 동안 재배하였다. 기능회복 형질전환 계통의 모든 자손 식물은 마커로 사용된 포스피노트리신에 내성을 가진 것으로 선별하였다. 이들의 유전자형은 각각 야생형 gOs12BGlu38 및 os12bglu38-1 대립유전자에 대해 PCR을 수행하여 추가로 분석하였다. gOs12BGlu38 분석을 위하여 Fcomp(서열번호 29)와 Rnos 프라이머(서열번호 30)를 사용하고, os12bglu38-1 분석을 위하여 F1(서열번호 4)과 R2 프라이머(서열번호 37)를 사용하였다(표 5 참조).To confirm that pollen defects were caused by Os12BGlu38, a recovery vehicle was transformed into an os12bglu38-1 homozygote. Sequences from all exons, introns, and stop codons to 1 kb 3' downstream region from the start codon of the Os12BGlu38 gene 2 kb 5' upstream using primers Genomic F1 (SEQ ID NO: 27) and Genomic R1 (SEQ ID NO: 28) using primers It was amplified by PCR (see FIG. 10). The PCR product was then cloned into pENTRTM/D-TOPO® vector (Invitrogen, Carlsbad, CA) and sequenced to confirm the sequence. The wild-type gOs12BGlu38 insert was further subcloned into the Gateway cassette-pCAMBIA3301 vector carrying the Bialaphos resistance gene (Bar) as a second selectable marker. The resulting product (Os12BGlu38 gene) was introduced into heterozygous seed-derived rice using an Agrobacterium-mediated transformation method, and transformed calli and plants were isolated with 300 mg/L phosphinothricin. . Transgenic lines carrying wild-type gOs12BGlu38 (os12bglu38-1 homozygous recovery lines) Comp-4, Comp-7, Comp-8 and Comp-19 were cultivated for 3 generations. All progeny plants of the recovery transformation line were selected as resistant to the phosphinothricin used as a marker. Their genotypes were further analyzed by performing PCR on the wild-type gOs12BGlu38 and os12bglu38-1 alleles, respectively. For gOs12BGlu38 analysis, Fcomp (SEQ ID NO: 29) and Rnos primers (SEQ ID NO: 30) were used, and for os12bglu38-1 analysis, F1 (SEQ ID NO: 4) and R2 primers (SEQ ID NO: 37) were used (see Table 5). .

서열order 서열번호SEQ ID NO: gOs12BGlu38gOs12BGlu38 ForwardForward TGTGGACACCATAGCCTCACTTTGTTGTGGACACCATAGCCTCACTTTGT 서열번호 29SEQ ID NO: 29 ReverseReverse AGACCGGCAACAGGATTCAATCAGACCGGCAACAGGATTCAATC 서열번호 30SEQ ID NO: 30 os12bglu38-1os12bglu38-1 ForwardForward AATTGGGAAACAGGTAAGCAACAATTTACAATTGGGAAACAGGTAAGCAACAATTTAC 서열번호 4SEQ ID NO: 4 ReverseReverse ACTGTTTTGGCTTGTGTGGATGGGGCAACTGTTTTGGCTTGTGTGGATGGGGCA 서열번호 37SEQ ID NO: 37

포스피노트리신 내성 형질전환 벼(Comp-4, Comp-7, Comp-8 및 Comp-19)를 자가수정시켜 자손 식물을 생산하였다. 이들 자손 식물의 유전형 분석은 야생형:이형접합체:동형접합체의 비율이 26:47:24로 멘델의 유전법칙의 분리비인 1:2:1과 유사하게 나타났다(도 10B 및 도 13). 도 10B의 F1/R2 프라이머 세트는 야생형의 대립유전자, F1/GUS 프라이머 세트는 T-DNA 삽입 돌연변이의 대립유전자를 확인하기 위해 사용하였다. Fcomp/Rnos 프라이머 세트는 대조군으로서 전이유전자가 도입된 것을 확인하기 위해 사용하였다. 자손 식물의 수는 적었지만, 모든 부모 식물은 동형접합체 자손을 가졌고, 야생형과 os12bglu38-1 동형접합체 자손 식물보다 이형접합체 자손 식물을 더 많이 가지고 있었다. 이러한 결과는 전이유전자로 도입된 야생형 Os12BGlu38 유전자의 발현이 os12bglu38-1 동형접합체의 Os12BGlu38 유전자의 결함을 회복하고, 멘델의 유전법칙을 회복시켰음을 나타낸다. 또한, Comp-7의 이형접합체로부터 선택된 13단계의 성숙한 화분기(mature pollen)를 TEM 분석을 수행한 결과, 전분 과립의 표현형과 인틴층을 야생형과 유사하게 회복시키는 것을 확인하였다(도 5E, F). 이를 통해 Os12BGlu38 유전자의 기능상실이 화분의 발달을 억제했음을 알 수 있다.Progeny plants were produced by self-fertilization of phosphinothricin-resistant transgenic rice (Comp-4, Comp-7, Comp-8 and Comp-19). Genotyping analysis of these progeny plants showed that the wild-type:heterozygous:homozygous ratio was 26:47:24, similar to the 1:2:1 separation ratio of Mendel's genetic law ( FIGS. 10B and 13 ). The F1/R2 primer set of FIG. 10B was used to identify the allele of the wild type, and the F1/GUS primer set was used to confirm the allele of the T-DNA insertion mutation. The Fcomp/Rnos primer set was used as a control to confirm that the transgene was introduced. Although the number of progeny plants was small, all parent plants had homozygous progeny and had more heterozygous progeny plants than wild-type and os12bglu38-1 homozygous progeny plants. These results indicate that the expression of the wild-type Os12BGlu38 gene introduced as a transgene repaired the defect of the Os12BGlu38 gene of the os12bglu38-1 homozygote and restored Mendel's genetic law. In addition, as a result of performing TEM analysis of 13-stage mature pollen selected from the heterozygote of Comp-7, it was confirmed that the phenotype of starch granules and the intin layer were restored similarly to those of the wild type (Fig. 5E, F). ). This indicates that the loss of function of the Os12BGlu38 gene inhibited the development of pollen.

<실시예 11> Os12BGlu38의 세포 내 위치(Subcelluar localization)<Example 11> Subcelluar localization of Os12BGlu38

SignalP (http://www.cbs.dtu.dk/services/SignalP/), BaCelLo (http://gpcr.biocomp.unibo.it/bacello/pred.htm) 및 PrediSi (http://www.predisi.de/index.html)를 포함하는 여러 개의 computational subcellular localization prediction tools는 Os12BGlu38가 소포체를 표적으로 하는 신호펩타이드를 가진다고 예측했다. 이것은 소포체, 골지체 또는 액포와 같은 분비 경로 소기관에 위치하거나 Os12BGlu38과 동일한 계통발생 클러스터에 그룹화된 Os1BGlu1, Os3BGlu7 및 Os3BGlu8와 유사하게 세포 외부에서 분비될 수 있다는 것을 시사한다. 또한, transmembrane protein prediction tools인 TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) (Hofmann and Stoffel, 1993) 및 DAS (http://www.sbc.su.se/~miklos/DAS/)는 Os12BGlu38이 신호 펩타이드에 상응하게 N-말단에 하나의 막 횡단 도메인을 갖는다고 제안했다. Os12BGlu38의 세포 내 위치를 명확히 하기 위해서, 옥수수 Ubi 프로모터 및 CaMV35S 프로모터의 제어 하에 Os12BGlu38-GFP 융합의 벡터를 제작하고, 벼 캘러스(callus) 및 담배 (Nicotiana benthamiana) 잎으로 형질전환 시켰다.SignalP (http://www.cbs.dtu.dk/services/SignalP/), BaCelLo (http://gpcr.biocomp.unibo.it/bacello/pred.htm) and PrediSi (http://www.predisi) Several computational subcellular localization prediction tools, including .de/index.html), have predicted that Os12BGlu38 has a signal peptide that targets the endoplasmic reticulum. This suggests that they can be secreted extracellularly, similar to Os1BGlu1, Os3BGlu7 and Os3BGlu8, located in secretion pathway organelles such as the endoplasmic reticulum, Golgi apparatus or vacuole or grouped in the same phylogenetic cluster as Os12BGlu38. In addition, transmembrane protein prediction tools TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) (Hofmann and Stoffel, 1993) and DAS (http://www.sbc.su.se/~ miklos/DAS/) suggested that Os12BGlu38 has one transmembrane domain at the N-terminus corresponding to the signal peptide. To clarify the intracellular localization of Os12BGlu38, a vector of Os12BGlu38-GFP fusion was constructed under the control of the maize Ubi promoter and the CaMV35S promoter, and transformed into rice callus and tobacco (Nicotiana benthamiana) leaves.

옥수수 Ubi 프로모터:Os12BGlu38-GFP 융합 벡터 제작을 위해, Os12BGlu38 cDNA(서열번호 2)의 정지 코돈 없이 전체 open reading frame(ORF)을 Os12BGlu38 R C-fusion 프라이머(서열번호 31) 및 Os12BGlu38 Full F 프라이머(서열번호 32)와 함께 교정 EF-Taq 중합 효소(SolGent, 대전)를 사용하여 PCR로 증폭시켰다. 각각의 PCR 생성물을 pENTRTM/D-TOPO® 벡터(Invitrogen)에 클로닝하였다. Zea mays Ubiquitin1 프로모터 및 GFP는 각각 Os12BGlu38(ProZmUbi:Os12BGlu38-GFP)의 N-말단과 C-말단에 융합되었고, pENTR/D-TOPO-Os12BGlu38은 LR clonase(Invitrogen, USA)를 이용하여 바이너리 pIPKb002 발현 벡터에 재조합하였다. ProZmUbi:Os12BGlu38-GFP는 아그로박테리움 매개 형질전환을 통해 벼 캘러스(callus)로 형질전환하였다. 형질전환 식물의 성숙한 화분 및 하이그로마이신(hygromycin)을 함유하는 1/2 Murashige 및 Skoog 배지에서 자란 육묘의 공극 조직을 공초점 현미경 (LSM 510 META; Carl Jeniss GmbH, Jena, Germany)으로 시각화하였다. For the construction of the maize Ubi promoter:Os12BGlu38-GFP fusion vector, the entire open reading frame (ORF) without the stop codon of the Os12BGlu38 cDNA (SEQ ID NO: 2) was transferred to the Os12BGlu38 R C-fusion primer (SEQ ID NO: 31) and Os12BGlu38 Full F primer (SEQ ID NO: 31) and Os12BGlu38 Full F primer (SEQ ID NO: 2). No. 32) and amplified by PCR using a proofreading EF-Taq polymerase (SolGent, Daejeon). Each PCR product was cloned into the pENTRTM/D-TOPO® vector (Invitrogen). Zea mays Ubiquitin1 promoter and GFP were fused to the N-terminus and C-terminus of Os12BGlu38 (ProZmUbi: Os12BGlu38-GFP), respectively, and pENTR/D-TOPO-Os12BGlu38 was a binary pIPKb002 expression vector using LR clonase (Invitrogen, USA). was recombined in ProZmUbi:Os12BGlu38-GFP was transformed into rice callus through Agrobacterium-mediated transformation. The mature pollen of transgenic plants and pore tissues of seedlings grown in 1/2 Murashige and Skoog medium containing hygromycin were visualized with a confocal microscope (LSM 510 META; Carl Jeniss GmbH, Jena, Germany).

또한 담배에서의 Os12BGlu38-GFP 융합단백질과 RFP-AtKOR 융합단백질의 일시적 발현을 위해 재조합 벡터를 구성하였다. ProCaMV35S:Os12BGlu38-GFP 벡터는 다.pENTR/D-TOPO-Os12BGlu38 벡터를바이너리 벡터 p2GWF7과 재조합하여 구성하였다. ProCaMV35S:RFP-AtKOR 벡터를 구축하기 위해, AtF1Kor1RFP(서열번호 35) 및 AtR1Kor1RFP(서열번호 36) 프라이머를 사용하여 어린 Arabidopsis 잎 cDNA로부터 Arabidopsis KOR (AT5G49720)을 증폭시켰다. AtKOR 유전자 생성물은 세포막 마커 단백질로 사용되었다. PCR 생성물은 ProCaMV35S:RFP 뒤쪽에 삽입하였다. Os12BGlu38-GFP 및 RFP-AtKOR는 아그로박테리움 매개 침윤법을 이용하여 토마토 부쉬 스턴트 바이러스(Tomato Bushy Stunt Virus) P19 단백질의 식물 발현 벡터를 갖는 아그로박테리움과 함께 Nicotiana benthamiana 잎에 침윤시켰다. 엽육세포의 전이유전자(transgene) 발현은 침윤 후 3~4일 째에 공초점현미경(LSM 510 META)을 이용하여 모니터링 하였다.In addition, a recombinant vector was constructed for transient expression of the Os12BGlu38-GFP fusion protein and the RFP-AtKOR fusion protein in tobacco. The ProCaMV35S:Os12BGlu38-GFP vector was constructed by recombination of the pENTR/D-TOPO-Os12BGlu38 vector with the binary vector p2GWF7. To construct the ProCaMV35S:RFP-AtKOR vector, AtF1Kor1RFP (SEQ ID NO: 35) and AtR1Kor1RFP (SEQ ID NO: 36) primers were used to amplify Arabidopsis KOR (AT5G49720) from young Arabidopsis leaf cDNA. The AtKOR gene product was used as a cell membrane marker protein. The PCR product was inserted after ProCaMV35S:RFP. Os12BGlu38-GFP and RFP-AtKOR were infiltrated into Nicotiana benthamiana leaves together with Agrobacterium carrying a plant expression vector of Tomato Bushy Stunt Virus P19 protein using Agrobacterium-mediated infiltration. Transgene expression of mesophyll cells was monitored using a confocal microscope (LSM 510 META) 3 to 4 days after invasion.

유전자 도입 벼(transgenic rice)(ProZmUbi:Os12BGlu38-GFP)의 4-5일 된 자엽초(coleoptile)의 흰색 조직은 세포벽과 세포막의 가장자리에서 GFP 신호를 나타내었고, 세포막에 위치한 FM4-64는 적색으로 표시되었다(도 6A-D). 이 결과는 Os12BGlu38이 세포막 또는 세포벽 단백질일 수 있음을 시사한다. 또한 20mM 수크로스(sucrose)를 첨가하여 세포벽와 세포막을 분리한 후 형광을 관찰한 결과 대부분의 GFP 형광 신호는 세포막에서 관찰되었다(도 6E-G). 성숙한 화분에서 z-시리즈의 순차적 이미지 섹션은 세포벽으로 구성된 외부 층에서 상당한 GFP 신호를 나타냈다(도 6H). 이러한 결과는 Os12BGlu38이 세포 외 세포막 혹은 세포벽 관련 단백질일 수 있음을 입증한다.The white tissue of 4-5 day-old coleoptile of transgenic rice (ProZmUbi:Os12BGlu38-GFP) showed GFP signals at the cell wall and the edge of the cell membrane, and FM4-64 located at the cell membrane was colored red. indicated (Fig. 6A-D). This result suggests that Os12BGlu38 may be a cell membrane or cell wall protein. In addition, when 20 mM sucrose was added to separate the cell wall and the cell membrane, fluorescence was observed. As a result, most of the GFP fluorescence signal was observed in the cell membrane (FIGS. 6E-G). Sequential image sections of the z-series in mature pollen revealed a significant GFP signal in the outer layer composed of the cell wall (Fig. 6H). These results demonstrate that Os12BGlu38 can be an extracellular membrane or cell wall-associated protein.

또한, 융합단백질의 일시적 발현을 위해 형질전환된 N. benthamiana 잎 표피 세포에서 세포막과 세포벽을 분리하였을 때 세포막에서 대부분의 GFP 신호를 나타냈다(도 11). ProCaMV35S:Os12BGlu38-GFP 및 RFP-AtKOR [Arabidopsis Korrigan (KOR)]과 함께 침윤된 N. benthamiana 잎 표피 세포에서 두 단백질의 형광은 부분적으로 중첩되었다(도 12). GFP 신호의 대부분은 세포막 근처에 위치하는 것으로 보인 반면, 적색 Korrigan 신호는 세포막에 고정되어 있었다. 이는 Os12BGlu38이 세포 외 세포막 연관 단백질임을 시사한다.In addition, when the cell membrane and the cell wall were separated from the N. benthamiana leaf epidermal cells transformed for transient expression of the fusion protein, most of the GFP signals were exhibited in the cell membrane (FIG. 11). The fluorescence of the two proteins partially overlapped in N. benthamiana leaf epidermal cells infiltrated with ProCaMV35S:Os12BGlu38-GFP and RFP-AtKOR [Arabidopsis Korrigan (KOR)] (Fig. 12). Most of the GFP signal appeared to be located near the cell membrane, whereas the red Korrigan signal was anchored to the cell membrane. This suggests that Os12BGlu38 is an extracellular membrane-associated protein.

이상에서 살펴본 바와 같이, 본 발명의 구체적인 실시예를 상세하게 설명되었으나, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허 청구의 범위에 의하여 나타내어지며, 특허 청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, although specific embodiments of the present invention have been described in detail, those skilled in the art who understand the spirit of the present invention may add, change, delete, etc. other components within the scope of the same spirit, and other degenerate inventions However, other embodiments included within the scope of the present invention may be easily proposed. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention. should be interpreted as

<110> University-Industry Cooperation Group of Kyung Hee University <120> Os12Bglu38 for male sterility induction in rice and use thereof <130> GKH19P-0297-KR <160> 37 <170> KoPatentIn 3.0 <210> 1 <211> 4048 <212> DNA <213> Oryza sativa <220> <221> gene <222> (1)..(4048) <223> BGlu38 <400> 1 gtagaccacg acatcgtgag ggaggtgaga cgggcgacac accacgaaga cgtaatagga 60 cggtggaggc aaatgggggc atcaagaaac cagtggttag gtgacgacaa tggcacatcc 120 tatggcggaa tacaaaggaa acatcagaga aattaaggta gtgtggggct ttagagacaa 180 agaatatata caggtaatgg gaagaattaa ttgagccaga gtgccagagc agaaggagac 240 ggtgttgggg ctagccaaac aacatctcta gtgggtcttt aacggtcgta gcgagataga 300 caagtggtgg cacgtagaac agaaatagtg atgaaaagac ggtggcggtg gaagctgtgg 360 catagaggag acgctcatat gagtgggttg agggtgggcc agtggaggac tggtggaaga 420 tagcaggaca tggacagcag ttggatctta atccggtggt aaaaaacttg tcatatttaa 480 aggggagttt ttttaaatat gatatactat ctgtatctca aaatataaca tttttttact 540 gtgtatttgg ggatctcaga aattgttata ttttcagact gaggtacgta ccatgcagtt 600 tccaaattta aaggcgataa gctcactgtc atgcccacta gtccagacgg tgtttaaccc 660 atcacctgat taaaagaaga aaaaaaaaca gggtaaaaac agaaatagaa aaaaataaaa 720 aaaattctag tggctcagga ccagtgcaag ccacactgct ccacaaaggc agggtggaag 780 gagtcctcct tgccgctgcc accattcgtg ccagagaaaa tcgctgttcc cctgctgcat 840 gcatgcatcg ccccgccctg accacttcac ctgcctctcc atatatacgc agtttgcagc 900 agatcagaca ctctcaccgc cgctctctct tcctctccaa catgaatatg ccattgctac 960 tcctcatcgc catcgtcgtc gtctccctct cccatggcaa cggggagcag accgacctca 1020 cgcgggagac gttccccgcg ggcttcgtct tcggcaccgc gtcgtcggcg taccaggtgg 1080 aggggaacgc cctccagtat ggccgagggc cctgcatctg ggacaccttc ctgatgcaac 1140 ctggtgagat cgatgataca tgttcaggca aaactagcaa tgtggtatct aaatatacag 1200 atcataaaca gtttgtcgca tttttcaaat aatggaatta acaatgtgtt gggacgatcc 1260 acctaaaaag agaatatgac aacaacaatc taaaaagaat tacatagcct gatattgaaa 1320 tgttgttgca ttacggcgcg ttgcattttg tacgtctcta gtggatgtat gactggttgt 1380 tgatttggct ctgattgttc ctttggatag gtgtaactcc tgataattcg accgcgaatg 1440 tgaccgtcga cgagtaccac cgctacatgg tcagtgaaag tctcatgtgt ttcagtgcct 1500 gttctaatgg gtttctgttc ctctgtatga ctcttgattt gtagcttatg tggctcctct 1560 gatgatcttc tttgcaggat gatgtggaca acatggtgag agtgggcttc gacgcgtatc 1620 gcttctcgat ctcctggtct cgcattttcc ccagtaagtt accggctgaa acatggtcag 1680 gcacagtgat gagatcatgg gatattcctt tcattgatgg tttttcttct gcgtgttgta 1740 ggtggacttg ggaagattaa caaagacggc gtggattatt accacaggct cattgattac 1800 atgcttgcta acagtacgtt ggtcttggca tttcttctag ttcttgccca tttcggattt 1860 catgatctcg aattaatagg tttttttttg gtttgatttg cacatcagac attattccat 1920 atgttgtgct ctaccactac gaccttccac aggtgctcca tgatcaatac aagggatggc 1980 tacaccccag aattgtgtaa gtgttcgtga tcaaagccat ctgtttggct gtaaaactta 2040 aaattaaata ccctttaaat tgtttgacaa actacagaag cacctctgaa gattttgtgc 2100 taaattatga aacccatagc tctctaactg cgaaatcctg acagtgaaag ttctgcaggt 2160 gtttaaccaa aataggtttc actgtagcat atccgacata cacaaatatc aaacccagac 2220 aatctgtatc ctccctttct tacgttcctt actccctttt tcttgaatta atgtgtgatt 2280 catgtctgcg acttcatttt gcaggagaga ttttgtgaga tttgcagact tctgcttcaa 2340 gacatatggt cataaggtga agaactggtt taccattaac gaacctagga tgatggcaaa 2400 tcatggctac ggtgacggct tcttcccccc tggcagatgc accggctgcc aacccggtgg 2460 gaattccgcc accgagcctt acatcgcagc ccataacctt ctcctttcac atgccgctgc 2520 tgtcaggaca tatcgtgaca agtaccaggc tagtgaatga tatccatgcc cctactatcc 2580 aattcaacat ttcttaaaat ctccaatgta tcagctcatg ttcatgatac cttgcgattt 2640 tcaggctatt cagaagggga agattggcat ccttctcgat tttgtatggt atgagccact 2700 caccgacaaa gaagaggatc acgcagctgc acatagagcc agggagttta cccttggctg 2760 gtgatacatc ttacactgtt catcaatcat tgctcttaca cggtgtccgc atgaaggttg 2820 aactgaactt ccacttgaaa cttttgctag gtacctgcac ccgattacat atggtcatta 2880 cccagaaact atgcagaatg ctgttaagga aaggctgccc aatttcacac gtgagcagtc 2940 tgagatgata aaaggatcag cggattatat tgcgatcaac cattacacaa cttattatgt 3000 cagtcaccac gtcaacaaga catccatcag ctatctcaat gattgggatg tgaaaatttc 3060 atgtatgaca ctttcaaatc acacagtatt agaccagaaa tatttgtacc ttttcaattc 3120 tttgccttcc tagctaacac attttggtcc tctattcaga tgagcgtaac ggtgtgccaa 3180 ttgggaaaca ggtaagcaac aatttacaag aaaggttgaa aagaatggta gatcatgaac 3240 taaattctgg tttttaaaca tctatgcagg cgtactcgaa ctggctttat gttgttcctt 3300 gggggatcta caaagctgtc atgcatgtca aggagaagta caaggacccc attataatca 3360 tcggagaaaa tggtaaataa agataatact ggagaccctt tcaattttcg gacagtgaac 3420 agtacaacta taaaagtgct ctgcagaatg aatctaggag caaaatctaa caagaacctt 3480 ttgcaggcat tgaccagcca ggcaatgaga ccctacctgg tgcactgtat gacttcttca 3540 ggatacaata ttttgatcag tacctccatg agcttaagag ggcgatcaag gatggtgcaa 3600 gggtcactgg gtattttgct tggtccctgc ttgacaactt cgagtggcgg ctcgggttca 3660 cttcaaaatt cggaatcgtc tatgtagacc ggagcacttt cacacggtac cctaaagact 3720 caacacgttg gttcaggaag atgataaaaa gtgaggtttg agttggatta ttatcactgt 3780 tggcagctgc tggagtgctt ttttgttatg ctagttttgg ttgtatgaat aataagatgt 3840 cttgtactag ttgagaactt cttcagattt tgtacttcta gtattctact ttttgtactt 3900 cagattttgc aagcaaggat gattttagtt taatagattc aggacatcta tatatactgg 3960 tgataagaga ggcagatttc aatttttggc ttgaattgcc catatttgtg ttttccaatg 4020 ttttttaact tcaaatttta aactttgg 4048 <210> 2 <211> 2820 <212> DNA <213> Oryza sativa <220> <221> gene <222> (1)..(2820) <223> cDNA <400> 2 atgaatatgc cattgctact cctcatcgcc atcgtcgtcg tctccctctc ccatggcaac 60 ggggagcaga ccgacctcac gcgggagacg ttccccgcgg gcttcgtctt cggcaccgcg 120 tcgtcggcgt accaggtgga ggggaacgcc ctccagtatg gccgagggcc ctgcatctgg 180 gacaccttcc tgatgcaacc tggtgagatc gatgatacat gttcaggcaa aactagcaat 240 gtggtatcta aatatacaga tcataaacag tttgtcgcat ttttcaaata atggaattaa 300 caatgtgttg ggacgatcca cctaaaaaga gaatatgaca acaacaatct aaaaagaatt 360 acatagcctg atattgaaat gttgttgcat tacggcgcgt tgcattttgt acgtctctag 420 tggatgtatg actggttgtt gatttggctc tgattgttcc tttggatagg tgtaactcct 480 gataattcga ccgcgaatgt gaccgtcgac gagtaccacc gctacatggt cagtgaaagt 540 ctcatgtgtt tcagtgcctg ttctaatggg tttctgttcc tctgtatgac tcttgatttg 600 tagcttatgt ggctcctctg atgatcttct ttgcaggatg atgtggacaa catggtgaga 660 gtgggcttcg acgcgtatcg cttctcgatc tcctggtctc gcattttccc cagtaagtta 720 ccggctgaaa catggtcagg cacagtgatg agatcatggg atattccttt cattgatggt 780 ttttcttctg cgtgttgtag gtggacttgg gaagattaac aaagacggcg tggattatta 840 ccacaggctc attgattaca tgcttgctaa cagtacgttg gtcttggcat ttcttctagt 900 tcttgcccat ttcggatttc atgatctcga attaataggt ttttttttgg tttgatttgc 960 acatcagaca ttattccata tgttgtgctc taccactacg accttccaca ggtgctccat 1020 gatcaataca agggatggct acaccccaga attgtgtaag tgttcgtgat caaagccatc 1080 tgtttggctg taaaacttaa aattaaatac cctttaaatt gtttgacaaa ctacagaagc 1140 acctctgaag attttgtgct aaattatgaa acccatagct ctctaactgc gaaatcctga 1200 cagtgaaagt tctgcaggtg tttaaccaaa ataggtttca ctgtagcata tccgacatac 1260 acaaatatca aacccagaca atctgtatcc tccctttctt acgttcctta ctcccttttt 1320 cttgaattaa tgtgtgattc atgtctgcga cttcattttg caggagagat tttgtgagat 1380 ttgcagactt ctgcttcaag acatatggtc ataaggtgaa gaactggttt accattaacg 1440 aacctaggat gatggcaaat catggctacg gtgacggctt cttcccccct ggcagatgca 1500 ccggctgcca acccggtggg aattccgcca ccgagcctta catcgcagcc cataaccttc 1560 tcctttcaca tgccgctgct gtcaggacat atcgtgacaa gtaccaggct agtgaatgat 1620 atccatgccc ctactatcca attcaacatt tcttaaaatc tccaatgtat cagctcatgt 1680 tcatgatacc ttgcgatttt caggctattc agaaggggaa gattggcatc cttctcgatt 1740 ttgtatggta tgagccactc accgacaaag aagaggatca cgcagctgca catagagcca 1800 gggagtttac ccttggctgg tgatacatct tacactgttc atcaatcatt gctcttacac 1860 ggtgtccgca tgaaggttga actgaacttc cacttgaaac ttttgctagg tacctgcacc 1920 cgattacata tggtcattac ccagaaacta tgcagaatgc tgttaaggaa aggctgccca 1980 atttcacacg tgagcagtct gagatgataa aaggatcagc ggattatatt gcgatcaacc 2040 attacacaac ttattatgtc agtcaccacg tcaacaagac atccatcagc tatctcaatg 2100 attgggatgt gaaaatttca tgtatgacac tttcaaatca cacagtatta gaccagaaat 2160 atttgtacct tttcaattct ttgccttcct agctaacaca ttttggtcct ctattcagat 2220 gagcgtaacg gtgtgccaat tgggaaacag gtaagcaaca atttacaaga aaggttgaaa 2280 agaatggtag atcatgaact aaattctggt ttttaaacat ctatgcaggc gtactcgaac 2340 tggctttatg ttgttccttg ggggatctac aaagctgtca tgcatgtcaa ggagaagtac 2400 aaggacccca ttataatcat cggagaaaat ggtaaataaa gataatactg gagacccttt 2460 caattttcgg acagtgaaca gtacaactat aaaagtgctc tgcagaatga atctaggagc 2520 aaaatctaac aagaaccttt tgcaggcatt gaccagccag gcaatgagac cctacctggt 2580 gcactgtatg acttcttcag gatacaatat tttgatcagt acctccatga gcttaagagg 2640 gcgatcaagg atggtgcaag ggtcactggg tattttgctt ggtccctgct tgacaacttc 2700 gagtggcggc tcgggttcac ttcaaaattc ggaatcgtct atgtagaccg gagcactttc 2760 acacggtacc ctaaagactc aacacgttgg ttcaggaaga tgataaaaag tgaggtttga 2820 2820 <210> 3 <211> 60 <212> PRT <213> Oryza sativa <400> 3 Met Asn Met Pro Leu Leu Leu Leu Ile Ala Ile Val Val Val Ser Leu 1 5 10 15 Ser His Gly Asn Gly Glu Gln Thr Asp Leu Thr Arg Glu Thr Phe Pro 20 25 30 Ala Gly Phe Val Phe Gly Thr Ala Ser Ser Ala Tyr Gln Val Glu Gly 35 40 45 Asn Ala Leu Gln Tyr Gly Arg Gly Pro Cys Ile Trp 50 55 60 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> F1 primer <400> 4 aattgggaaa caggtaagca acaatttac 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R1 primer <400> 5 cccaggatgt tgttttcttt aaccattat 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu7-1F primer <400> 6 gacagtcaaa cattagatac ggaaaccag 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu7-1R primer <400> 7 atgtcataat catttagccg tatgtcacc 29 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu8-1F primer <400> 8 tgtattttcg gactatgctg agttttgtt 29 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu8-1R primer <400> 9 tctggccaca tttattacag caaactact 29 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os7BGlu26-1F primer <400> 10 ataattcagt ttcttgtagt actgtttaa 29 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os7BGlu26-1R primer <400> 11 tcctattcaa cagcacagat ttcattccc 29 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GUS primer <400> 12 atccagactg aatgcccaca gg 22 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RTF1 primer <400> 13 agacatccat cagctatctc aat 23 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTR1 primer <400> 14 caaacctcac tttttatcat cttc 24 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OsUBQ5F primer <400> 15 gactacaaca tccagaagga gtc 23 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OsUBQ5R primer <400> 16 tcatctaata accagttcga tttc 24 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu1F primer <400> 17 ttgtaccgtg gggtttgtac aaag 24 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu1R primer <400> 18 gtttccactc gaagttatcc agca 24 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu7F primer <400> 19 gaatccgaca gtcgtcataa ctga 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu7R primer <400> 20 accagtaggc cgacgccttg gggt 24 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu8F primer <400> 21 gttccgactg gcatgtatgg agctg 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu8R primer <400> 22 tgatgtgtaa cctgacagcc actcg 25 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu26F primer <400> 23 atcaacaagg ctgtgaccta tgtaa 25 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu26R primer <400> 24 tgtagtccac gtagacgatg ccaa 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ProOs12Bglu38:GusF primer <400> 25 tcatctaata accagttcga tttc 24 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ProOs12Bglu38:GusR primer <400> 26 gttggagagg aagagagagc gg 22 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Genomic F1 primer <400> 27 caccaccaat atacttttca ctcttagctc 30 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Genomic R1 primer <400> 28 gatcctctcc tctcattctt tcttc 25 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Fcomp primer <400> 29 tgtggacacc atagcctcac tttgt 25 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Rnos primer <400> 30 agaccggcaa caggattcaa tc 22 <210> 31 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Os12BGlu38 R C-fusion primer <400> 31 aacctcactt tttatcatct tcctga 26 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Os12BGlu38 Full F primer <400> 32 caccatgaat atgccattgc tactcctc 28 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Recombinant F1 primer <400> 33 ggatccgggg agcagaccga cctcacgcgg 30 <210> 34 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Recombinant R1 primer <400> 34 tctagatcaa acctcacttt ttatcat 27 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> AtF1Kor1RFP primer <400> 35 caccatgtac ggaagagatc catggggagg 30 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtR1Kor1RFP primer <400> 36 tcaaggtttc catggtgctg gtg 23 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R2 primer <400> 37 actgttttgg cttgtgtgga tggggca 27 <110> University-Industry Cooperation Group of Kyung Hee University <120> Os12Bglu38 for male sterility induction in rice and use thereof <130> GKH19P-0297-EN <160> 37 <170> KoPatentIn 3.0 <210> 1 <211> 4048 <212> DNA <213> Oryza sativa <220> <221> gene <222> (1)..(4048) <223> BGlu38 <400> 1 gtagaccacg acatcgtgag ggaggtgaga cgggcgacac accacgaaga cgtaatagga 60 cggtggaggc aaatgggggc atcaagaaac cagtggttag gtgacgacaa tggcacatcc 120 tatggcggaa tacaaaggaa acatcagaga aattaaggta gtgtggggct ttagagacaa 180 agaatatata caggtaatgg gaagaattaa ttgagccaga gtgccagagc agaaggagac 240 ggtgttgggg ctagccaaac aacatctcta gtgggtcttt aacggtcgta gcgagataga 300 caagtggtgg cacgtagaac agaaatagtg atgaaaagac ggtggcggtg gaagctgtgg 360 catagaggag acgctcatat gagtgggttg agggtgggcc agtggaggac tggtggaaga 420 tagcaggaca tggacagcag ttggatctta atccggtggt aaaaaacttg tcatatttaa 480 aggggagttt ttttaaatat gatatactat ctgtatctca aaatataaca tttttttact 540 gtgtatttgg ggatctcaga aattgttata ttttcagact gaggtacgta ccatgcagtt 600 tccaaattta aaggcgataa gctcactgtc atgcccacta gtccagacgg tgtttaaccc 660 atcacctgat taaaagaaga aaaaaaaaca gggtaaaaac agaaatagaa aaaaataaaa 720 aaaattctag tggctcagga ccagtgcaag ccacactgct ccacaaaggc agggtggaag 780 gagtcctcct tgccgctgcc accattcgtg ccagagaaaa tcgctgttcc cctgctgcat 840 gcatgcatcg ccccgccctg accacttcac ctgcctctcc atatatacgc agtttgcagc 900 agatcagaca ctctcaccgc cgctctctct tcctctccaa catgaatatg ccattgctac 960 tcctcatcgc catcgtcgtc gtctccctct cccatggcaa cggggagcag accgacctca 1020 cgcgggagac gttccccgcg ggcttcgtct tcggcaccgc gtcgtcggcg taccaggtgg 1080 aggggaacgc cctccagtat ggccgagggc cctgcatctg ggacaccttc ctgatgcaac 1140 ctggtgagat cgatgataca tgttcaggca aaactagcaa tgtggtatct aaatatacag 1200 atcataaaca gtttgtcgca tttttcaaat aatggaatta acaatgtgtt gggacgatcc 1260 acctaaaaag agaatatgac aacaacaatc taaaaagaat tacatagcct gatattgaaa 1320 tgttgttgca ttacggcgcg ttgcattttg tacgtctcta gtggatgtat gactggttgt 1380 tgatttggct ctgattgttc ctttggatag gtgtaactcc tgataattcg accgcgaatg 1440 tgaccgtcga cgagtaccac cgctacatgg tcagtgaaag tctcatgtgt ttcagtgcct 1500 gttctaatgg gtttctgttc ctctgtatga ctcttgattt gtagcttatg tggctcctct 1560 gatgatcttc tttgcaggat gatgtggaca acatggtgag agtgggcttc gacgcgtatc 1620 gcttctcgat ctcctggtct cgcattttcc ccagtaagtt accggctgaa acatggtcag 1680 gcacagtgat gagatcatgg gatattcctt tcattgatgg tttttcttct gcgtgttgta 1740 ggtggacttg ggaagattaa caaagacggc gtggattatt accacaggct cattgattac 1800 atgcttgcta acagtacgtt ggtcttggca tttcttctag ttcttgccca tttcggattt 1860 catgatctcg aattaatagg tttttttttg gtttgatttg cacatcagac attattccat 1920 atgttgtgct ctaccactac gaccttccac aggtgctcca tgatcaatac aagggatggc 1980 tacaccccag aattgtgtaa gtgttcgtga tcaaagccat ctgtttggct gtaaaactta 2040 aaattaaata ccctttaaat tgtttgacaa actacagaag cacctctgaa gattttgtgc 2100 taaattatga aacccatagc tctctaactg cgaaatcctg acagtgaaag ttctgcaggt 2160 gtttaaccaa aataggtttc actgtagcat atccgacata cacaaatatc aaacccagac 2220 aatctgtatc ctccctttct tacgttcctt actccctttt tcttgaatta atgtgtgatt 2280 catgtctgcg acttcatttt gcaggagaga ttttgtgaga tttgcagact tctgcttcaa 2340 gacatatggt cataaggtga agaactggtt taccattaac gaacctagga tgatggcaaa 2400 tcatggctac ggtgacggct tcttcccccc tggcagatgc accggctgcc aacccggtgg 2460 gaattccgcc accgagcctt acatcgcagc ccataacctt ctcctttcac atgccgctgc 2520 tgtcaggaca tatcgtgaca agtaccaggc tagtgaatga tatccatgcc cctactatcc 2580 aattcaacat ttcttaaaat ctccaatgta tcagctcatg ttcatgatac cttgcgattt 2640 tcaggctatt cagaagggga agattggcat ccttctcgat tttgtatggt atgagccact 2700 caccgacaaa gaagaggatc acgcagctgc acatagagcc agggagttta cccttggctg 2760 gtgatacatc ttacactgtt catcaatcat tgctcttaca cggtgtccgc atgaaggttg 2820 aactgaactt ccacttgaaa cttttgctag gtacctgcac ccgattacat atggtcatta 2880 cccagaaact atgcagaatg ctgttaagga aaggctgccc aatttcacac gtgagcagtc 2940 tgagatgata aaaggatcag cggattatat tgcgatcaac cattacacaa cttattatgt 3000 cagtcaccac gtcaacaaga catccatcag ctatctcaat gattgggatg tgaaaatttc 3060 atgtatgaca ctttcaaatc acacagtatt agaccagaaa tatttgtacc ttttcaattc 3120 tttgccttcc tagctaacac attttggtcc tctattcaga tgagcgtaac ggtgtgccaa 3180 ttgggaaaca ggtaagcaac aatttacaag aaaggttgaa aagaatggta gatcatgaac 3240 taaattctgg tttttaaaca tctatgcagg cgtactcgaa ctggctttat gttgttcctt 3300 gggggatcta caaagctgtc atgcatgtca aggagaagta caaggacccc attataatca 3360 tcggagaaaa tggtaaataa agataatact ggagaccctt tcaattttcg gacagtgaac 3420 agtacaacta taaaagtgct ctgcagaatg aatctaggag caaaatctaa caagaacctt 3480 ttgcaggcat tgaccagcca ggcaatgaga ccctacctgg tgcactgtat gacttcttca 3540 ggatacaata ttttgatcag tacctccatg agcttaagag ggcgatcaag gatggtgcaa 3600 gggtcactgg gtattttgct tggtccctgc ttgacaactt cgagtggcgg ctcgggttca 3660 cttcaaaatt cggaatcgtc tatgtagacc ggagcacttt cacacggtac cctaaagact 3720 caacacgttg gttcaggaag atgataaaaa gtgaggtttg agttggatta ttatcactgt 3780 tggcagctgc tggagtgctt ttttgttatg ctagttttgg ttgtatgaat aataagatgt 3840 cttgtactag ttgagaactt cttcagattt tgtacttcta gtattctact ttttgtactt 3900 cagattttgc aagcaaggat gattttagtt taatagattc aggacatcta tatatactgg 3960 tgataagaga ggcagatttc aatttttggc ttgaattgcc catatttgtg ttttccaatg 4020 ttttttaact tcaaatttta aactttgg 4048 <210> 2 <211> 2820 <212> DNA <213> Oryza sativa <220> <221> gene <222> (1)..(2820) <223> cDNA <400> 2 atgaatatgc cattgctact cctcatcgcc atcgtcgtcg tctccctctc ccatggcaac 60 ggggagcaga ccgacctcac gcgggagacg ttccccgcgg gcttcgtctt cggcaccgcg 120 tcgtcggcgt accaggtgga ggggaacgcc ctccagtatg gccgagggcc ctgcatctgg 180 gacaccttcc tgatgcaacc tggtgagatc gatgatacat gttcaggcaa aactagcaat 240 gtggtatcta aatatacaga tcataaacag tttgtcgcat ttttcaaata atggaattaa 300 caatgtgttg ggacgatcca cctaaaaaga gaatatgaca acaacaatct aaaaagaatt 360 acatagcctg atattgaaat gttgttgcat tacggcgcgt tgcattttgt acgtctctag 420 tggatgtatg actggttgtt gatttggctc tgattgttcc tttggatagg tgtaactcct 480 gataattcga ccgcgaatgt gaccgtcgac gagtaccacc gctacatggt cagtgaaagt 540 ctcatgtgtt tcagtgcctg ttctaatggg tttctgttcc tctgtatgac tcttgatttg 600 tagcttatgt ggctcctctg atgatcttct ttgcaggatg atgtggacaa catggtgaga 660 gtgggcttcg acgcgtatcg cttctcgatc tcctggtctc gcattttccc cagtaagtta 720 ccggctgaaa catggtcagg cacagtgatg agatcatggg atattccttt cattgatggt 780 ttttcttctg cgtgttgtag gtggacttgg gaagattaac aaagacggcg tggattatta 840 ccacaggctc attgattaca tgcttgctaa cagtacgttg gtcttggcat ttcttctagt 900 tcttgcccat ttcggatttc atgatctcga attaataggt ttttttttgg tttgatttgc 960 acatcagaca ttattccata tgttgtgctc taccactacg accttccaca ggtgctccat 1020 gatcaataca agggatggct acaccccaga attgtgtaag tgttcgtgat caaagccatc 1080 tgtttggctg taaaacttaa aattaaatac cctttaaatt gtttgacaaa ctacagaagc 1140 acctctgaag attttgtgct aaattatgaa acccatagct ctctaactgc gaaatcctga 1200 cagtgaaagt tctgcaggtg tttaaccaaa ataggtttca ctgtagcata tccgacatac 1260 acaaatatca aacccagaca atctgtatcc tccctttctt acgttcctta ctcccttttt 1320 cttgaattaa tgtgtgattc atgtctgcga cttcattttg caggagagat tttgtgagat 1380 ttgcagactt ctgcttcaag acatatggtc ataaggtgaa gaactggttt accattaacg 1440 aacctaggat gatggcaaat catggctacg gtgacggctt cttcccccct ggcagatgca 1500 ccggctgcca acccggtggg aattccgcca ccgagcctta catcgcagcc cataaccttc 1560 tcctttcaca tgccgctgct gtcaggacat atcgtgacaa gtaccaggct agtgaatgat 1620 atccatgccc ctactatcca attcaacatt tcttaaaatc tccaatgtat cagctcatgt 1680 tcatgatacc ttgcgatttt caggctattc agaaggggaa gattggcatc cttctcgatt 1740 ttgtatggta tgagccactc accgacaaag aagaggatca cgcagctgca catagagcca 1800 gggagtttac ccttggctgg tgatacatct tacactgttc atcaatcatt gctcttacac 1860 ggtgtccgca tgaaggttga actgaacttc cacttgaaac ttttgctagg tacctgcacc 1920 cgattacata tggtcattac ccagaaacta tgcagaatgc tgttaaggaa aggctgccca 1980 atttcacacg tgagcagtct gagatgataa aaggatcagc ggattatatt gcgatcaacc 2040 attacacaac ttattatgtc agtcaccacg tcaacaagac atccatcagc tatctcaatg 2100 attgggatgt gaaaatttca tgtatgacac tttcaaatca cacagtatta gaccagaaat 2160 atttgtacct tttcaattct ttgccttcct agctaacaca ttttggtcct ctattcagat 2220 gagcgtaacg gtgtgccaat tgggaaacag gtaagcaaca atttacaaga aaggttgaaa 2280 agaatggtag atcatgaact aaattctggt ttttaaacat ctatgcaggc gtactcgaac 2340 tggctttatg ttgttccttg ggggatctac aaagctgtca tgcatgtcaa ggagaagtac 2400 aaggacccca ttataatcat cggagaaaat ggtaaataaa gataatactg gagacccttt 2460 caattttcgg acagtgaaca gtacaactat aaaagtgctc tgcagaatga atctaggagc 2520 aaaatctaac aagaaccttt tgcaggcatt gaccagccag gcaatgagac cctacctggt 2580 gcactgtatg acttcttcag gatacaatat tttgatcagt acctccatga gcttaagagg 2640 gcgatcaagg atggtgcaag ggtcactggg tattttgctt ggtccctgct tgacaacttc 2700 gagtggcggc tcgggttcac ttcaaaattc ggaatcgtct atgtagaccg gagcactttc 2760 acacggtacc ctaaagactc aacacgttgg ttcaggaaga tgataaaaag tgaggtttga 2820 2820 <210> 3 <211> 60 <212> PRT <213> Oryza sativa <400> 3 Met Asn Met Pro Leu Leu Leu Leu Ile Ala Ile Val Val Val Ser Leu 1 5 10 15 Ser His Gly Asn Gly Glu Gln Thr Asp Leu Thr Arg Glu Thr Phe Pro 20 25 30 Ala Gly Phe Val Phe Gly Thr Ala Ser Ser Ala Tyr Gln Val Glu Gly 35 40 45 Asn Ala Leu Gln Tyr Gly Arg Gly Pro Cys Ile Trp 50 55 60 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> F1 primer <400> 4 aattgggaaa caggtaagca acaatttac 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R1 primer <400> 5 cccaggatgt tgttttcttt aaccattat 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu7-1F primer <400> 6 gacagtcaaa cattagatac ggaaaccag 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu7-1R primer <400> 7 atgtcataat catttagccg tatgtcacc 29 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu8-1F primer <400> 8 tgtattttcg gactatgctg agttttgtt 29 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os3BGlu8-1R primer <400> 9 tctggccaca tttattacag caaactact 29 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os7BGlu26-1F primer <400> 10 ataattcagt ttcttgtagt actgtttaa 29 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Os7BGlu26-1R primer <400> 11 tcctattcaa cagcacagat ttcattccc 29 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GUS primer <400> 12 atccagactg aatgcccaca gg 22 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RTF1 primer <400> 13 agacatccat cagctatctc aat 23 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTR1 primer <400> 14 caaacctcac tttttatcat cttc 24 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OsUBQ5F primer <400> 15 gactacaaca tccagaagga gtc 23 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OsUBQ5R primer <400> 16 tcatctaata accagttcga tttc 24 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu1F primer <400> 17 ttgtaccgtg gggtttgtac aaag 24 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu1R primer <400> 18 gtttccactc gaagttatcc agca 24 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu7F primer <400> 19 gaatccgaca gtcgtcataa ctga 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu7R primer <400> 20 accagtaggc cgacgccttg gggt 24 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu8F primer <400> 21 gttccgactg gcatgtatgg agctg 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu8R primer <400> 22 tgatgtgtaa cctgacagcc actcg 25 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu26F primer <400> 23 atcaacaagg ctgtgaccta tgtaa 25 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RTBGlu26R primer <400> 24 tgtagtccac gtagacgatg ccaa 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ProOs12Bglu38:GusF primer <400> 25 tcatctaata accagttcga tttc 24 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ProOs12Bglu38:GusR primer <400> 26 gttggagagg aagagagagc gg 22 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Genomic F1 primer <400> 27 caccaccaat atacttttca ctcttagctc 30 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Genomic R1 primer <400> 28 gatcctctcc tctcattctt tcttc 25 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Fcomp primer <400> 29 tgtggacacc atagcctcac tttgt 25 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Rnos primer <400> 30 agaccggcaa caggattcaa tc 22 <210> 31 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Os12BGlu38 R C-fusion primer <400> 31 aacctcactt tttatcatct tcctga 26 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Os12BGlu38 Full F primer <400> 32 caccatgaat atgccattgc tactcctc 28 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Recombinant F1 primer <400> 33 ggatccgggg agcagaccga cctcacgcgg 30 <210> 34 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Recombinant R1 primer <400> 34 tctagatcaa acctcacttt ttatcat 27 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> AtF1Kor1RFP primer <400> 35 caccatgtac ggaagagatc catggggagg 30 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtR1Kor1RFP primer <400> 36 tcaaggtttc catggtgctg gtg 23 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R2 primer <400> 37 actgttttgg cttgtgtgga tggggca 27

Claims (17)

식물에서 서열번호 1의 염기서열로 표시되는 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 발현을 억제하는 단계를 포함하는, 식물체의 웅성불임을 유발하는 방법.A method of inducing male infertility in a plant, comprising the step of suppressing the expression of Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene represented by the nucleotide sequence of SEQ ID NO: 1 in a plant. 제1항에 있어서,
상기 방법은 식물의 화분 세포벽의 인틴 합성을 조절하는 것을 특징으로 하는, 식물체의 웅성불임을 유발하는 방법.
According to claim 1,
The method is a method for inducing male infertility in a plant, characterized in that it regulates intin synthesis in the pollen cell wall of the plant.
서열번호 1의 염기서열로 표시되는 Os12BGlu38(Oryza sativa beta-glucosidase 38) 유전자의 기능상실 돌연변이를 이용하여 Os12BGlu38 유전자의 발현을 저해시키는 단계를 포함하는, 웅성불임 식물체의 제조방법.A method for producing a male sterile plant, comprising the step of inhibiting the expression of the Os12BGlu38 gene using a loss-of-function mutation of the Os12BGlu38 (Oryza sativa beta-glucosidase 38) gene represented by the nucleotide sequence of SEQ ID NO: 1. 제3항에 있어서,
상기 식물체는 벼인 것을 특징으로 하는, 웅성불임 식물체의 제조방법.
4. The method of claim 3,
The method for producing a male infertile plant, characterized in that the plant is rice.
제3항에 있어서,
상기 단계는 Os12BGlu38 (Oryza sativa beta-glucosidase 38) 유전자의 일부 염기를 치환 또는 결실하여 이루어지는 것을 특징으로 하는, 웅성불임 식물체의 제조방법.
4. The method of claim 3,
The step is Os12BGlu38 (Oryza sativa beta-glucosidase 38) A method for producing a male infertile plant, characterized in that made by substituting or deleting some bases of the gene.
제3항에 있어서,
상기 단계는 T-DNA 삽입에 의해 이루어지는 것을 특징으로 하는, 웅성불임 식물체의 제조방법.
4. The method of claim 3,
The step is a method for producing a male infertile plant, characterized in that made by T-DNA insertion.
제3항에 있어서,
상기 방법은 모본인 Os12BGlu38 유전자의 발현이 억제된 식물체, 및 부본인 웅성가임의 식물체와 교배시키는 단계를 추가로 포함하는, 웅성불임 식물체의 제조방법.
4. The method of claim 3,
The method is a method for producing a male infertile plant, further comprising the step of crossing the parent plant, the expression of the Os12BGlu38 gene is suppressed, and the parent male plant of male fertility.
제3항 내지 제7항 중 어느 한 항의 방법으로 제조된 웅성불임 식물체.A male infertile plant prepared by the method of any one of claims 3 to 7. 제8항의 웅성불임 식물체의 종자.The seed of the male infertile plant of claim 8. Os12BGlu38 유전자의 발현을 억제하는 제제를 포함하는, 식물체의 웅성불임 유도용 조성물.A composition for inducing male infertility in plants, comprising an agent that inhibits the expression of Os12BGlu38 gene. 제10항에 있어서,
상기 제제는 Os12BGlu38 유전자의 mRNA에 특이적으로 결합하는 siRNA, shRNA, miRNA 및 안티센스 올리고뉴클레오티드로 이루어진 군으로부터 선택되는 것인, 벼의 웅성불임 유도용 조성물.
11. The method of claim 10,
The agent is selected from the group consisting of siRNA, shRNA, miRNA and antisense oligonucleotides that specifically bind to the mRNA of the Os12BGlu38 gene, the composition for inducing male infertility in rice.
Os12BGlu38 유전자의 발현 여부를 판단하는 단계를 포함하는, 식물체의 웅성불임성을 확인하는 방법.A method for determining male sterility of a plant, comprising the step of determining whether the Os12BGlu38 gene is expressed. 제12항에 있어서,
상기 단계는 식물체의 화분의 엑신(exine), 인틴(intine) 또는 핵(nuclear)을 염색하여 화분의 결함을 확인하는 것을 특징으로 하는, 식물체의 웅성불임성을 확인하는 방법.
13. The method of claim 12,
The method of confirming male sterility of a plant, wherein the step is characterized in that the defect of the pollen is confirmed by staining the exine, intine, or nucleus of the pollen of the plant.
제12항에 있어서,
상기 단계는 화분 조직의 박막을 분석하는 것을 특징으로 하는, 식물체의 웅성불임성을 확인하는 방법.
13. The method of claim 12,
The step is a method of confirming male sterility of a plant, characterized in that the analysis of the thin film of pollen tissue.
Os12BGlu38 유전자의 mRNA 또는 단백질 수준을 측정하는 제제를 포함하는, 식물체의 웅성불임성 확인용 조성물.A composition for confirming male infertility of plants, comprising an agent for measuring the mRNA or protein level of the Os12BGlu38 gene. 제15항에 있어서,
상기 제제는 Os12BGlu38 유전자에 특이적으로 결합할 수 있는 프라이머인 것을 특징으로 하는, 식물체의 웅성불임성 확인용 조성물.
16. The method of claim 15,
The agent is a primer that can specifically bind to the Os12BGlu38 gene, a composition for confirming male sterility of a plant.
제15항에 있어서,
상기 제제는 서열번호 3의 아미노산 서열로 이루어진 Os12BGlu38 단백질에 대한 항체인 것을 특징으로 하는, 식물체의 웅성불임성 확인용 조성물.
16. The method of claim 15,
The formulation is characterized in that the antibody against the Os12BGlu38 protein consisting of the amino acid sequence of SEQ ID NO: 3, a composition for confirming male sterility of a plant.
KR1020200050576A 2019-12-17 2020-04-27 Os12BGlu38 for male sterility induction in rice and use thereof KR102421653B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200050576A KR102421653B1 (en) 2020-04-27 2020-04-27 Os12BGlu38 for male sterility induction in rice and use thereof
PCT/KR2020/011964 WO2021125500A1 (en) 2019-12-17 2020-09-04 Os12bglu38 gene for induction of male sterility in rice and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200050576A KR102421653B1 (en) 2020-04-27 2020-04-27 Os12BGlu38 for male sterility induction in rice and use thereof

Publications (2)

Publication Number Publication Date
KR20210132339A true KR20210132339A (en) 2021-11-04
KR102421653B1 KR102421653B1 (en) 2022-07-18

Family

ID=78521689

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200050576A KR102421653B1 (en) 2019-12-17 2020-04-27 Os12BGlu38 for male sterility induction in rice and use thereof

Country Status (1)

Country Link
KR (1) KR102421653B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070039076A1 (en) * 1999-07-20 2007-02-15 Boukharov Andrey A Plant genome sequence and uses thereof
KR20170121784A (en) 2016-04-25 2017-11-03 양준묵 Farming a waterway draw water into system
KR20180077369A (en) * 2016-12-28 2018-07-09 경희대학교 산학협력단 Preparation method of male sterility rice using OspPGM gene, composition for inducing male sterility of rice and male sterility rice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070039076A1 (en) * 1999-07-20 2007-02-15 Boukharov Andrey A Plant genome sequence and uses thereof
KR20170121784A (en) 2016-04-25 2017-11-03 양준묵 Farming a waterway draw water into system
KR20180077369A (en) * 2016-12-28 2018-07-09 경희대학교 산학협력단 Preparation method of male sterility rice using OspPGM gene, composition for inducing male sterility of rice and male sterility rice

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession number AP014968 (2015.10.10.) *

Also Published As

Publication number Publication date
KR102421653B1 (en) 2022-07-18

Similar Documents

Publication Publication Date Title
Wu et al. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes
US11357189B2 (en) Brassica plant comprising a mutant indehiscent allele
Ren et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm
US20220098604A1 (en) Genetic control of axillary bud growth in tobacco plants
Zhou et al. Pollen semi-sterility1 encodes a kinesin-1–like protein important for male meiosis, anther dehiscence, and fertility in rice
Eklund et al. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens
Westermann et al. An evolutionarily conserved receptor-like kinases signaling module controls cell wall integrity during tip growth
Chanroj et al. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set
Liu et al. Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice
JP2019103526A (en) Manipulation of self-incompatibility in plants
Zhu et al. ATP-binding cassette G transporters SGE1 and MtABCG13 control stigma exsertion
Li et al. WHITE PANICLE3, a novel nucleus-encoded mitochondrial protein, is essential for proper development and maintenance of chloroplasts and mitochondria in rice
WO2008120820A1 (en) Method for producing transgenic surface chimeric plant
KR102421653B1 (en) Os12BGlu38 for male sterility induction in rice and use thereof
KR20110085729A (en) Ostmt1 gene involved in vacuolar sugar transport from rice
WO2021125500A1 (en) Os12bglu38 gene for induction of male sterility in rice and use thereof
Hu et al. Mutation of DEFECTIVE EMBRYO SAC1 results in a low seed-setting rate in rice by regulating embryo sac development
WO2008120410A1 (en) Genes having activity of promoting endoreduplication
Kumari et al. Female gametophyte expressed Arabidopsis thaliana lipid transfer proteins AtLtpI. 4 and AtLtpI. 8 provide a link between callose homeostasis, pollen tube guidance, and fertilization success
JP4953050B2 (en) Plant node-specific gene expression promoter and use thereof
KR20110085732A (en) Ostmt2 gene involved in vacuolar sugar transport from rice
KR101592863B1 (en) D-h gene showing dwarf phenotype and uses thereof
Waters Plastid tubules in higher plants: an analysis of form and function
Yi et al. The naked endosperm genes encode duplicate ID domain transcription factors required for maize aleurone differentiation
Emons et al. EXO70A1-Mediated Vesicle Trafficking Is Critical for Tracheary Element Development in ArabidopsisW OA

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant