KR20210128074A - 립리딩 기반의 화자 검출에 따른 오디오 줌 - Google Patents

립리딩 기반의 화자 검출에 따른 오디오 줌 Download PDF

Info

Publication number
KR20210128074A
KR20210128074A KR1020200045736A KR20200045736A KR20210128074A KR 20210128074 A KR20210128074 A KR 20210128074A KR 1020200045736 A KR1020200045736 A KR 1020200045736A KR 20200045736 A KR20200045736 A KR 20200045736A KR 20210128074 A KR20210128074 A KR 20210128074A
Authority
KR
South Korea
Prior art keywords
speaker
processor
microphone
sound
electronic device
Prior art date
Application number
KR1020200045736A
Other languages
English (en)
Inventor
맹지찬
채종훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020200045736A priority Critical patent/KR20210128074A/ko
Priority to US16/941,470 priority patent/US11250869B2/en
Publication of KR20210128074A publication Critical patent/KR20210128074A/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/24Speech recognition using non-acoustical features
    • G10L15/25Speech recognition using non-acoustical features using position of the lips, movement of the lips or face analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G06N3/0454
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/326Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/226Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics
    • G10L2015/227Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics of the speaker; Human-factor methodology
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02087Noise filtering the noise being separate speech, e.g. cocktail party
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Traffic Control Systems (AREA)

Abstract

립리딩 기반의 화자 검출에 따른 오디오 줌을 수행하는 전자 기기 및 전자 기기의 제어 방법이 개시된다. 일 실시예에 따르면, 전자 기기는 동영상을 촬영하는 중 음원의 방향을 검출하고, 음원 방향에서 얼굴 인식 및 입모양 인식을 통해 화자 방향을 결정한다. 화자 방향에 기초하여 마이크로폰의 빔포밍이 수행되도록 하여 오디오 줌의 정확성을 향상시킬 수 있다.

Description

립리딩 기반의 화자 검출에 따른 오디오 줌{AUDIO ZOOM BASED ON SPEAKER DETECTION USING LIP LEARDING}
본 명세서는 립리딩 기반의 화자 검출에 따른 오디오 줌을 수행하는 전자 기기 및 전자 기기의 제어 방법에 관한 것이다.
인공지능(Artificial Intelligence, AI) 시스템은 인간 수준의 지능을 구현하는 컴퓨터 시스템이며, 기존 Rule기반 스마트 시스템과 달리 기계가 스스로 학습하고 판단하며 똑똑해지는 시스템이다. 인공지능 시스템은 사용할수록 인식률이 향상되고 사용자 취향을 보다 정확하게 이해할 수 있게 되어, 기존 규칙(Rule) 기반 스마트 시스템은 점차 딥러닝 기반 인공지능 시스템으로 대체되고 있다.
인공지능 기술은 기계학습(딥러닝) 및 기계학습을 활용한 요소 기술들로 구성된다. 기계학습은 입력 데이터들의 특징을 스스로 분류/학습하는 알고리즘 기술이며, 요소기술은 딥러닝 등의 기계학습 알고리즘을 활용하여 인간 두뇌의 인지, 판단 등의 기능을 모사하는 기술로서, 언어적 이해, 시각적 이해, 추론/예측, 지식 표현, 동작 제어 등의 기술 분야로 구성된다.
최근, 음성을 인식함에 있어서 인공 지능 기술이 보다 다양한 방법으로 활용되고 있다.
동영상 촬영 중 화자의 음성을 획득하고자 하는 경우, 오디오 줌 기능을 사용하더라도 화자의 방향을 정밀하게 설정하지 못하여 취음 성능이 떨어질 수 있다.
본 명세서는 전술한 필요성 및/또는 문제점을 해결하는 것을 목적으로 한다.
또한, 본 명세서는 음성 분석을 통해 화자의 위치를 추정함으로써, 동영상 촬영 중 오디오 줌의 정확도를 향상시킬 수 있는 전자 기기 및 전자 기기의 제어 방법을 제공한다.
또한, 본 명세서는 추정된 방향에 위치하는 화자를 보다 정교한 방법으로 특정함으로써 마이크의 취음 방향을 보다 정밀하게 설정함으로서 오디오 줌의 정확도를 향상시킬 수 있는 전자 기기 및 전자 기기의 제어 방법을 제공한다.
본 명세서의 일 양상에 따른 전자 기기는, 동영상을 촬영하는 카메라; 상기 동영상을 촬영하는 중 음향을 획득하는 적어도 하나의 마이크로폰; 및 상기 획득된 음향의 음향 특성에 기초하여 상기 음향의 음원 방향을 검출하고, 상기 음원 방향에 위치하는 사람의 얼굴 및 입 모양을 인식하고, 립리딩(lip reading) 분석을 통해 발화 중인 화자를 인식하는 프로세서;를 포함하고, 상기 프로세서는, 상기 인식된 화자의 방향으로 상기 마이크로폰의 빔포밍 방향을 제어하여 오디오 줌(audio zoom)을 수행한다.
상기 프로세서는, 영상으로부터 얼굴 인식을 위해 학습된 제1 학습 모델에 기초하여 상기 음원 방향에 위치하는 사람의 얼굴을 인식할 수 있다.
상기 제1 학습 모델은 인공 신경망을 포함하고, 상기 인공 신경망의 출력 결과는 상기 화자의 얼굴, 상기 얼굴 내에서 눈, 코, 입의 위치 정보를 포함할 수 있다.
상기 제1 학습 모델은 얼굴 인식을 위한 딥러닝 모델로서, 클라우드 서버 또는 엣지 컴퓨팅 환경에서 얼굴 인식 동작을 수행한 후, 전자 기기로 얼굴 인식 결과가 전달될 수 있다.
또는, 전자 기기에서 촬영된 영상에 딥러닝 모델을 적용함으로써, 얼굴 인식 동작을 수행할 수도 있다.
상기 프로세서는, 제2 학습 모델에 기초하여 상기 인식된 화자의 입술 모양의 변화를 통해 상기 화자가 발화중임을 인식할 수 있다.
상기 프로세서는, 상기 화자 방향에서 발생하는 음성은 증폭하고, 상기 화자 방향을 제외한 방향에서의 음향은 감소시킬 수 있다.
상기 프로세서는, 상기 화자의 위치가 변경되었음을 인식한 경우, 변경된 위치에 기초하여 상기 마이크 빔포밍을 제어할 수 있다.
상기 프로세서는, 상기 카메라를 통해 획득된 영상에 기초하여 상기 화자의 위치가 변경되었음을 인식할 수 있다.
상기 프로세서는, 상기 마이크로폰을 통해 획득되는 음향을 분석하여 사람의 음성이 포함된 것으로 판단한 경우, 상기 음원 방향을 검출할 수 있다.
상기 프로세서는, 상기 마이크로폰이 복수인 경우, 상기 마이크로폰을 통해 획득되는 음향으로부터 상기 마이크로폰의 개수만큼 음원을 분리하고, 분리된 각각의 음원 방향에 기초하여 상기 사람의 얼굴 및 입모양 인식 동작을 수행할 수 있다.
상기 프로세서는, 상기 분리된 음원이 상기 마이크로폰의 개수보다 많은 경우, 복수의 화자 간 거리에 기초하여 상기 복수의 화자 중 적어도 둘 이상을 하나의 그룹으로 설정하고, 하나의 마이크로폰의 빔포밍 방향이 상기 설정된 그룹을 커버하여 상기 오디오줌을 수행하도록 제어할 수 있다.
상기 프로세서는, 상기 분리된 음원이 상기 마이크로폰의 개수보다 적은 경우, 미리 정해진 기준에 따라 상기 복수의 마이크로폰 중 적어도 둘 이상의 빔포밍 방향이 동일한 방향을 향하도록 제어할 수 있다.
상기 적어도 하나의 마이크로폰은, 전 방향의 음향에 동일한 감도로 반응하는 무지향 마이크, 전면 180도 범위의 방향의 음향에만 임계치 이상의 감도로 반응하는 단일 지향성 마이크 또는 전면 30도 범위의 방향으로부터의 음향에만 임계치 이상의 감도로 반응하는 초지향성 마이크 중 적어도 하나를 포함할 수 있다.
상기 프로세서는, 상기 화자의 방향을 인식하여 상기 빔포밍 방향이 결정된 후, 상기 화자의 발화를 인식하는 경우, 상기 빔포밍 방향에서 상기 마이크로폰의 이득을 조절할 수 있다.
상기 프로세서는, 상기 카메라를 통해 촬영 중인 상기 화자와의 거리에 따라 상기 마이크로폰의 이득을 조절할 수 있다.
상기 프로세서는, 상기 오디오줌에 따라 상기 화자의 발화에 대하여 음성인식 결과에 대응하는 텍스트를 상기 동영상과 함께 메모리에 저장할 수 있다.
상기 프로세서는, 상기 저장된 동영상을 재생하는 중 상기 음성인식 결과에 대응하는 텍스트를 상기 화자의 입모양에 매핑하여 디스플레이에 표시할 수 있다.
상기 프로세서는, 상기 화자의 방향을 인식한 경우, 상기 빔포밍 방향을 설정하기 위한 가이드 정보를 디스플레이에 표시할 수 있다.
상기 가이드 정보는, 상기 마이크로폰의 개수에 대응되는 그래픽 객체를 포함하고, 상기 프로세서는, 상기 특정 그래픽 객체와 특정 화자를 연계시키는 제스처 입력이 수신됨에 따라 특정 마이크로폰의 빔포밍 방향을 상기 특정 화자로 설정하도록 제어할 수 있다.
상기 촬영되는 동영상은 음성 데이터와 영상 데이터가 시간 동기화되어 저장부에 저장되고, 상기 프로세서는, 미리 정해진 수 이상의 프레임이 상기 저장부에 저장되는 경우, 영상 데이터와 음성 데이터를 각각 분석할 수 있다.
본 명세서의 다른 양상에 따른 전자 기기의 제어 방법은, 카메라를 통해 동영상을 촬영하는 단계; 적어도 하나의 마이크로폰을 통해 상기 동영상을 촬영하는 중 음향을 획득하는 단계; 상기 획득된 음향의 음향 특성에 기초하여 상기 음향의 음원 방향을 검출하는 단계; 상기 음원 방향에 위치하는 사람의 얼굴 및 입 모양을 인식하고, 립리딩(lip reading) 분석을 통해 발화 중인 화자를 인식하는 단계; 및 상기 인식된 화자의 방향으로 상기 마이크로폰의 빔포밍 방향을 제어하여 오디오 줌(audio zoom)을 수행하는 단계;를 포함한다.
본 명세서는 음성 분석을 통해 화자의 위치를 추정함으로써, 동영상 촬영 중 오디오 줌의 정확도를 향상시킬 수 있다.
또한, 본 명세서는 추정된 방향에 위치하는 화자를 보다 정교한 방법으로 특정함으로써 마이크의 취음 방향을 보다 정밀하게 설정함으로서 오디오 줌의 정확도를 향상시킬 수 있다.
도 1은 본 명세서가 적용될 수 있는 시스템을 설명하기 위한 도면이다.
도 2는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 3은 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸다.
도 4a는 본 명세서와 관련된 이동 단말기를 설명하기 위한 블록도이다.
도 4b 및 4c는 본 명세서과 관련된 이동 단말기의 일 예를 서로 다른 방향에서 바라본 개념도이다.
도 5는 5G 통신 시스템에서 사용자 단말과 5G 네트워크의 기본동작의 일 예를 나타낸다.
도 6은 본 명세서의 일 실시예에 따른 AI 장치의 블록도이다.
도 7은 본 명세서의 일 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 8은 도 7의 S730을 설명하기 위한 도면이다.
도 9는 얼굴 인식에 기초하여 입모양 변화를 통해 화자의 발화를 감지하는 예를 설명하기 위한 도면이다.
도 10a 내지 도 10c는 본 명세서의 일 실시예에서 마이크의 지향 특성을 설명하기 위한 도면들이다.
도 11은 본 명세서의 다른 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 12는 본 명세서의 일 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 13은 도 12의 실시예를 설명하기 위한 도면이다.
도 14는 본 명세서의 일 실시에에 따라 마이크의 빔포밍 방향을 설정하는 예를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 설명되는 이동 단말기에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시 예에 따른 구성은 이동 단말기에만 적용 가능한 경우를 제외하면, 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등과 같은 고정 단말기에도 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 명세서가 적용될 수 있는 시스템을 설명하기 위한 도면이다.
도 1을 참조하면, AI 시스템은 AI 서버(16), 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 등을 AI 장치(11 내지 15)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템을 구성하는 각 장치들(11 내지 16)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(11 내지 16)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(16)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(16)는 AI 시스템을 구성하는 AI 장치들인 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(11 내지 15)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이 때, AI 서버(16)는 AI 장치(11 내지 15)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(11 내지 15)에 전송할 수 있다.
이 때, AI 서버(16)는 AI 장치(11 내지 15)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(11 내지 15)로 전송할 수 있다.
또는, AI 장치(11 내지 15)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
<AI+로봇>
로봇(11)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(11)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(11)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(11)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(11)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(11)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(11)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(11)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, 로봇(11)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(11)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(11)을 주행시킬 수 있다.
맵 데이터에는 로봇(11)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(11)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이 때, 로봇(11)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율주행 차량(12)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율주행 차량(12)은 자율주행 기능을 제어하기 위한 자율주행 제어 모듈을 포함할 수 있고, 자율주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율주행 제어 모듈은 자율주행 차량(12)의 구성으로써 내부에 포함될 수도 있지만, 자율주행 차량(12)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율주행 차량(12)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율주행 차량(12)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율주행 차량(12)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(11)과와 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율주행 차량(12)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율주행 차량(12)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율주행 차량(12)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율주행 차량(12)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, 자율주행 차량(12)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율주행 차량(12)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율주행 차량(12)을 주행시킬 수 있다.
맵 데이터에는 자율주행 차량(12)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율주행 차량(12)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이 때, 자율주행 차량(12)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(13)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(13)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(13)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(13)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(13)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(13)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, XR 장치(13)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(11)은 AI 기술 및 자율주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율주행 기술이 적용된 로봇(11)은 자율주행 기능을 가진 로봇 자체나, 자율주행 차량(12)과 상호작용하는 로봇(11) 등을 의미할 수 있다.
자율주행 기능을 가진 로봇(11)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율주행 기능을 가진 로봇(11) 및 자율주행 차량(12)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율주행 기능을 가진 로봇(11) 및 자율주행 차량(12)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)과 별개로 존재하면서, 자율주행 차량(12)의 내부 또는 외부에서 자율주행 기능에 연계되거나, 자율주행 차량(12)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이 때, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)을 대신하여 센서 정보를 획득하여 자율주행 차량(12)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율주행 차량(12)에 제공함으로써, 자율주행 차량(12)의 자율주행 기능을 제어하거나 보조할 수 있다.
또는, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율주행 차량(12)의 기능을 제어할 수 있다. 예컨대, 로봇(11)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율주행 차량(12)의 자율주행 기능을 활성화하거나 자율주행 차량(12)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(11)이 제어하는 자율주행 차량(12)의 기능에는 단순히 자율주행 기능뿐만 아니라, 자율주행 차량(12)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)의 외부에서 자율주행 차량(12)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(11)은 스마트 신호등과 같이 자율주행 차량(12)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율주행 차량(12)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(11)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(11)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(11)은 XR 장치(13)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(11)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(11) 또는 XR 장치(13)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(13)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(11)은 XR 장치(13)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(13) 등의 외부 장치를 통해 원격으로 연동된 로봇(11)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(11)의 자율주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율주행 차량(12)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율주행 차량(12)은 XR 영상을 제공하는 수단을 구비한 자율주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량(12)은 XR 장치(13)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율주행 차량(12)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율주행 차량(12)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이 때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율주행 차량(12)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율주행 차량(12)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량(12)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율주행 차량(12) 또는 XR 장치(13)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(13)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율주행 차량(12)은 XR 장치(13) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
[확장현실 기술]
확장현실(XR: eXtended Reality)은 가상현실(VR: Virtual Reality), 증강현실(AR: Augmented Reality), 혼합현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
A. UE 및 5G 네트워크 블록도 예시
도 2는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2를 참조하면, AI 모듈을 포함하는 장치(AI 장치)를 제1 통신 장치로 정의(도 3의 910)하고, 프로세서(911)가 AI 상세 동작을 수행할 수 있다.
AI 장치와 통신하는 다른 장치(AI 서버)를 포함하는 5G 네트워크를 제2 통신 장치로 정의(도 3의 920)하고, 프로세서(921)가 AI 상세 동작을 수행할 수 있다.
5G 네트워크가 제1 통신 장치로, AI 장치가 제2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제1 통신 장치 또는 상기 제2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, AI(Artificial Intelligence) 장치 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 3을 참고하면, 제1 통신 장치(910)와 제2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제1 통신 장치에서 제2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제2 통신 장치에서 제1 통신 장치로의 통신)은 제2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 3은 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 3을 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 3을 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 3을 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리 (Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고를 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ??}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제1 주파수 자원에서 제2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
도 4a 내지 도 4c를 참조하면, 도 4a는 본 발명과 관련된 이동 단말기를 설명하기 위한 블록도이고, 도 4b 및 1c는 본 발명과 관련된 이동 단말기의 일 예를 서로 다른 방향에서 바라본 개념도이다.
상기 이동 단말기(100)는 무선 통신부(110), 입력부(120), 센싱부(140), 출력부(150), 인터페이스부(160), 메모리(170), 제어부(180) 및 전원 공급부(190) 등을 포함할 수 있다. 도 4a에 도시된 구성요소들은 이동 단말기를 구현하는데 있어서 필수적인 것은 아니어서, 본 명세서 상에서 설명되는 이동 단말기는 위에서 열거된 구성요소들 보다 많거나, 또는 적은 구성요소들을 가질 수 있다.
보다 구체적으로, 상기 구성요소들 중 무선 통신부(110)는, 이동 단말기(100)와 무선 통신 시스템 사이, 이동 단말기(100)와 다른 이동 단말기(100) 사이, 또는 이동 단말기(100)와 외부서버 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 또한, 상기 무선 통신부(110)는, 이동 단말기(100)를 하나 이상의 네트워크에 연결하는 하나 이상의 모듈을 포함할 수 있다.
이러한 무선 통신부(110)는, 방송 수신 모듈(111), 이동통신 모듈(112), 무선 인터넷 모듈(113), 근거리 통신 모듈(114), 위치정보 모듈(115) 중 적어도 하나를 포함할 수 있다.
입력부(120)는, 영상 신호 입력을 위한 카메라(121) 또는 영상 입력부, 오디오 신호 입력을 위한 마이크로폰(microphone, 122), 또는 오디오 입력부, 사용자로부터 정보를 입력받기 위한 사용자 입력부(123, 예를 들어, 터치키(touch key), 푸시키(mechanical key) 등)를 포함할 수 있다. 입력부(120)에서 수집한 음성 데이터나 이미지 데이터는 분석되어 사용자의 제어명령으로 처리될 수 있다.
센싱부(140)는 이동 단말기 내 정보, 이동 단말기를 둘러싼 주변 환경 정보 및 사용자 정보 중 적어도 하나를 센싱하기 위한 하나 이상의 센서를 포함할 수 있다. 예를 들어, 센싱부(140)는 근접센서(141, proximity sensor), 조도 센서( illumination sensor), 터치 센서(touch sensor), 가속도 센서(acceleration sensor), 자기 센서(magnetic sensor), 중력 센서(G-sensor), 자이로스코프 센서(gyroscope sensor), 모션 센서(motion sensor), RGB 센서, 적외선 센서(IR 센서: infrared sensor), 포스 센서(142, force sensor), 지문인식 센서(143,finger scan sensor), 초음파 센서(ultrasonic sensor), 광 센서(optical sensor, 예를 들어, 카메라(121 참조)), 마이크로폰(microphone, 122 참조), 배터리 게이지(battery gauge), 환경 센서(예를 들어, 기압계, 습도계, 온도계, 방사능 감지 센서, 열 감지 센서, 가스 감지 센서 등), 화학 센서(예를 들어, 전자 코, 헬스케어 센서, 생체 인식 센서 등) 중 적어도 하나를 포함할 수 있다. 한편, 본 명세서에 개시된 이동 단말기는, 이러한 센서들 중 적어도 둘 이상의 센서에서 센싱되는 정보들을 조합하여 활용할 수 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 디스플레이부(151), 음향 출력부(152), 햅팁 모듈(153), 광 출력부(154) 중 적어도 하나를 포함할 수 있다. 디스플레이부(151)는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 이동 단말기(100)와 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부(123)로써 기능함과 동시에, 이동 단말기(100)와 사용자 사이의 출력 인터페이스를 제공할 수 있다.
인터페이스부(160)는 이동 단말기(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행한다. 이러한 인터페이스부(160)는, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port) 중 적어도 하나를 포함할 수 있다. 이동 단말기(100)에서는, 상기 인터페이스부(160)에 외부 기기가 연결되는 것에 대응하여, 연결된 외부 기기와 관련된 적절할 제어를 수행할 수 있다.
또한, 메모리(170)는 이동 단말기(100)의 다양한 기능을 지원하는 데이터를 저장한다. 메모리(170)는 이동 단말기(100)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 이동 단말기(100)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 무선 통신을 통해 외부 서버로부터 다운로드 될 수 있다. 또한 이러한 응용 프로그램 중 적어도 일부는, 이동 단말기(100)의 기본적인 기능(예를 들어, 전화 착신, 발신 기능, 메시지 수신, 발신 기능)을 위하여 출고 당시부터 이동 단말기(100)상에 존재할 수 있다. 한편, 응용 프로그램은, 메모리(170)에 저장되고, 이동 단말기(100) 상에 설치되어, 제어부(180)에 의하여 상기 이동 단말기의 동작(또는 기능)을 수행하도록 구동될 수 있다.
제어부(180)는 상기 응용 프로그램과 관련된 동작 외에도, 통상적으로 이동 단말기(100)의 전반적인 동작을 제어한다. 제어부(180)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 메모리(170)에 저장된 응용 프로그램을 구동함으로써, 사용자에게 적절한 정보 또는 기능을 제공 또는 처리할 수 있다.
또한, 제어부(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, 도 4a와 함께 살펴본 구성요소들 중 적어도 일부를 제어할 수 있다. 나아가, 제어부(180)는 상기 응용 프로그램의 구동을 위하여, 이동 단말기(100)에 포함된 구성요소들 중 적어도 둘 이상을 서로 조합하여 동작시킬 수 있다.
메모리(170)는 애플리케이션(171), 애플리케이션 프로그래밍 인터페이스(API), 미들웨어(173), 커널(174) 등의 프로그래밍 모듈을 포함할 수 있다.
커널(174)은 나머지 다른 프로그래밍 모듈들 예들 들어 미들웨어(173), API(172) 또는 애플리케이션(171)에 구현된 동작 또는 기능을 실행하는 데 사용되는 시스템 리소스(예를 들어, 버스, 프로세서 또는 메모리 등)을 제어 또는 관리할 수 있다. 상기 커널(174)은 상기 미들웨어(173), API(172) 또는 애플리케이션(171)에서 이동 단말기(100)의 개별 구성 요소에 접근하여 제어 또는 관리할 수 있는 인터페이스를 제공할 수 있다.
상기 미들웨어(173)는 상기 API(172) 또는 애플리케이션(171)이 커널(174)과 통신하여 데이터를 주고받을 수 있도록 중개역할을 수행할 수 있다. 또한, 상기 미들웨어(173)는 애플리케이션(171)으로부터 수신된 작업 요청들과 관련하여 예를 들어, 애플리케이션들 중 적어도 하나의 애플리케이션에 이동 단말기(100)의 시스템 리소스를 사용할 수 있는 우선 순위를 배정하는 등의 방법을 이용하여 작업 요청에 대한 로드 밸런싱을 수행할 수 있다.
상기 API(172)는 애플리케이션(171)이 커널(174) 또는 미들웨어(173)에서 제공하는 기능을 제어할 수 있는 인터페이스로 예를 들어, 파일 제어, 창 제어, 화상 처리 또는 문자 제어 등을 위한 적어도 하나의 인터페이스 또는 함수를 포함할 수 있다. 본 발명의 일 실시에에 의하면, 애플리케이션 재실행에 따른 초기 화면이 설정되면, 상기 API(172)가 설정된 초기 화면을 디스플레이하도록 제어할 수 있다.
전원공급부(190)는 제어부(180)의 제어 하에서, 외부의 전원, 내부의 전원을 인가받아 이동 단말기(100)에 포함된 각 구성요소들에 전원을 공급한다. 이러한 전원공급부(190)는 배터리를 포함하며, 상기 배터리는 내장형 배터리 또는 교체가능한 형태의 배터리가 될 수 있다.
상기 각 구성요소들 중 적어도 일부는, 이하에서 설명되는 다양한 실시 예들에 따른 이동 단말기의 동작, 제어, 또는 제어방법을 구현하기 위하여 서로 협력하여 동작할 수 있다. 또한, 상기 이동 단말기의 동작, 제어, 또는 제어방법은 상기 메모리(170)에 저장된 적어도 하나의 응용 프로그램의 구동에 의하여 이동 단말기 상에서 구현될 수 있다.
이하에서는, 위에서 살펴본 이동 단말기(100)를 통하여 구현되는 다양한 실시 예들을 살펴보기에 앞서, 위에서 열거된 구성요소들에 대하여 도 4a를 참조하여 보다 구체적으로 살펴본다.
먼저, 무선 통신부(110)에 대하여 살펴보면, 무선 통신부(110)의 방송 수신 모듈(111)은 방송 채널을 통하여 외부의 방송 관리 서버로부터 방송 신호 및/또는 방송 관련된 정보를 수신한다. 상기 방송 채널은 위성 채널, 지상파 채널을 포함할 수 있다. 적어도 두 개의 방송 채널들에 대한 동시 방송 수신 또는 방송 채널 스위칭을 위해 둘 이상의 상기 방송 수신 모듈이 상기 이동단말기(100)에 제공될 수 있다.
이동통신 모듈(112)은, 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등)에 따라 구축된 이동 통신망 상에서 기지국, 외부의 단말, 서버 중 적어도 하나와 무선 신호를 송수신한다.
상기 무선 신호는, 음성 호 신호, 화상 통화 호 신호 또는 문자/멀티미디어 메시지 송수신에 따른 다양한 형태의 데이터를 포함할 수 있다.
무선 인터넷 모듈(113)은 무선 인터넷 접속을 위한 모듈을 말하는 것으로, 이동 단말기(100)에 내장되거나 외장될 수 있다. 무선 인터넷 모듈(113)은 무선 인터넷 기술들에 따른 통신망에서 무선 신호를 송수신하도록 이루어진다.
무선 인터넷 기술로는, 예를 들어 WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등이 있으며, 상기 무선 인터넷 모듈(113)은 상기에서 나열되지 않은 인터넷 기술까지 포함한 범위에서 적어도 하나의 무선 인터넷 기술에 따라 데이터를 송수신하게 된다.
WiBro, HSDPA, HSUPA, GSM, CDMA, WCDMA, LTE, LTE-A 등에 의한 무선인터넷 접속은 이동통신망을 통해 이루어진다는 관점에서 본다면, 상기 이동통신망을 통해 무선인터넷 접속을 수행하는 상기 무선 인터넷 모듈(113)은 상기 이동통신 모듈(112)의 일종으로 이해될 수도 있다.
근거리 통신 모듈(114)은 근거리 통신(Short range communication)을 위한 것으로서, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다. 이러한, 근거리 통신 모듈(114)은, 근거리 무선 통신망(Wireless Area Networks)을 통해 이동 단말기(100)와 무선 통신 시스템 사이, 이동 단말기(100)와 다른 이동 단말기(100) 사이, 또는 이동 단말기(100)와 다른 이동 단말기(100, 또는 외부서버)가 위치한 네트워크 사이의 무선 통신을 지원할 수 있다. 상기 근거리 무선 통신망은 근거리 무선 개인 통신망(Wireless Personal Area Networks)일 수 있다.
여기에서, 다른 이동 단말기(100)는 본 발명에 따른 이동 단말기(100)와 데이터를 상호 교환하는 것이 가능한(또는 연동 가능한) 웨어러블 디바이스(wearable device, 예를 들어, 스마트워치(smartwatch), 스마트 글래스(smart glass), HMD(head mounted display))가 될 수 있다. 근거리 통신 모듈(114)은, 이동 단말기(100) 주변에, 상기 이동 단말기(100)와 통신 가능한 웨어러블 디바이스를 감지(또는 인식)할 수 있다. 나아가, 제어부(180)는 상기 감지된 웨어러블 디바이스가 본 발명에 따른 이동 단말기(100)와 통신하도록 인증된 디바이스인 경우, 이동 단말기(100)에서 처리되는 데이터의 적어도 일부를, 상기 근거리 통신 모듈(114)을 통해 웨어러블 디바이스로 전송할 수 있다. 따라서, 웨어러블 디바이스의 사용자는, 이동 단말기(100)에서 처리되는 데이터를, 웨어러블 디바이스를 통해 이용할 수 있다. 예를 들어, 이에 따르면 사용자는, 이동 단말기(100)에 전화가 수신된 경우, 웨어러블 디바이스를 통해 전화 통화를 수행하거나, 이동 단말기(100)에 메시지가 수신된 경우, 웨어러블 디바이스를 통해 상기 수신된 메시지를 확인하는 것이 가능하다.
위치정보 모듈(115)은 이동 단말기의 위치(또는 현재 위치)를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Positioning System) 모듈 또는 WiFi(Wireless Fidelity) 모듈이 있다. 예를 들어, 이동 단말기는 GPS모듈을 활용하면, GPS 위성에서 보내는 신호를 이용하여 이동 단말기의 위치를 획득할 수 있다. 다른 예로서, 이동 단말기는 Wi-Fi모듈을 활용하면, Wi-Fi모듈과 무선신호를 송신 또는 수신하는 무선 AP(Wireless Access Point)의 정보에 기반하여, 이동 단말기의 위치를 획득할 수 있다. 필요에 따라서, 위치정보모듈(115)은 치환 또는 부가적으로 이동 단말기의 위치에 관한 데이터를 얻기 위해 무선 통신부(110)의 다른 모듈 중 어느 기능을 수행할 수 있다. 위치정보모듈(115)은 이동 단말기의 위치(또는 현재 위치)를 획득하기 위해 이용되는 모듈로, 이동 단말기의 위치를 직접적으로 계산하거나 획득하는 모듈로 한정되지는 않는다.
다음으로, 입력부(120)는 영상 정보(또는 신호), 오디오 정보(또는 신호), 데이터, 또는 사용자로부터 입력되는 정보의 입력을 위한 것으로서, 영상 정보의 입력을 위하여, 이동 단말기(100) 는 하나 또는 복수의 카메라(121)를 구비할 수 있다. 카메라(121)는 화상 통화모드 또는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(151)에 표시되거나 메모리(170)에 저장될 수 있다. 한편, 이동 단말기(100)에 구비되는 복수의 카메라(121)는 매트릭스 구조를 이루도록 배치될 수 있으며, 이와 같이 매트릭스 구조를 이루는 카메라(121)를 통하여, 이동 단말기(100)에는 다양한 각도 또는 초점을 갖는 복수의 영상정보가 입력될 수 있다. 또한, 복수의 카메라(121)는 입체영상을 구현하기 위한 좌 영상 및 우 영상을 획득하도록, 스트레오 구조로 배치될 수 있다.
마이크로폰(122)은 외부의 음향 신호를 전기적인 음성 데이터로 처리한다. 처리된 음성 데이터는 이동 단말기(100)에서 수행 중인 기능(또는 실행 중인 응용 프로그램)에 따라 다양하게 활용될 수 있다. 한편, 마이크로폰(122)에는 외부의 음향 신호를 입력 받는 과정에서 발생되는 잡음(noise)을 제거하기 위한 다양한 잡음 제거 알고리즘이 구현될 수 있다.
사용자 입력부(123)는 사용자로부터 정보를 입력받기 위한 것으로서, 사용자 입력부(123)를 통해 정보가 입력되면, 제어부(180)는 입력된 정보에 대응되도록 이동 단말기(100)의 동작을 제어할 수 있다. 이러한, 사용자 입력부(123)는 기계식 (mechanical) 입력수단(또는, 메커니컬 키, 예를 들어, 이동 단말기(100)의 전·후면 또는 측면에 위치하는 버튼, 돔 스위치 (dome switch), 조그 휠, 조그 스위치 등) 및 터치식 입력수단을 포함할 수 있다. 일 예로서, 터치식 입력수단은, 소프트웨어적인 처리를 통해 터치스크린에 표시되는 가상 키(virtual key), 소프트 키(soft key) 또는 비주얼 키(visual key)로 이루어지거나, 상기 터치스크린 이외의 부분에 배치되는 터치 키(touch key)로 이루어질 수 있다. 한편, 상기 가상키 또는 비주얼 키는, 다양한 형태를 가지면서 터치스크린 상에 표시되는 것이 가능하며, 예를 들어, 그래픽(graphic), 텍스트(text), 아이콘(icon), 비디오(video) 또는 이들의 조합으로 이루어질 수 있다.
한편, 센싱부(140)는 이동 단말기 내 정보, 이동 단말기를 둘러싼 주변 환경 정보 및 사용자 정보 중 적어도 하나를 센싱하고, 이에 대응하는 센싱 신호를 발생시킨다. 제어부(180)는 이러한 센싱 신호에 기초하여, 이동 단말기(100)의 구동 또는 동작을 제어하거나, 이동 단말기(100)에 설치된 응용 프로그램과 관련된 데이터 처리, 기능 또는 동작을 수행 할 수 있다. 센싱부(140)에 포함될 수 있는 다양한 센서 중 대표적인 센서들의 대하여, 보다 구체적으로 살펴본다.
먼저, 근접 센서(141)는 소정의 검출면에 접근하는 물체, 혹은 근방에 존재하는 물체의 유무를 전자계의 힘 또는 적외선 등을 이용하여 기계적 접촉이 없이 검출하는 센서를 말한다. 이러한 근접 센서(141)는 위에서 살펴본 터치 스크린에 의해 감싸지는 이동 단말기의 내부 영역 또는 상기 터치 스크린의 근처에 근접 센서(141)가 배치될 수 있다.
근접 센서(141)의 예로는 투과형 광전 센서, 직접 반사형 광전 센서, 미러 반사형 광전 센서, 고주파 발진형 근접 센서, 정전 용량형 근접 센서, 자기형 근접 센서, 적외선 근접 센서 등이 있다. 터치 스크린이 정전식인 경우에, 근접 센서(141)는 전도성을 갖는 물체의 근접에 따른 전계의 변화로 상기 물체의 근접을 검출하도록 구성될 수 있다. 이 경우 터치 스크린(또는 터치 센서) 자체가 근접 센서로 분류될 수 있다.
한편, 설명의 편의를 위해, 터치 스크린 상에 물체가 접촉되지 않으면서 근접되어 상기 물체가 상기 터치 스크린 상에 위치함이 인식되도록 하는 행위를 "근접 터치(proximity touch)"라고 명명하고, 상기 터치 스크린 상에 물체가 실제로 접촉되는 행위를 "접촉 터치(contact touch)"라고 명명한다. 상기 터치 스크린 상에서 물체가 근접 터치 되는 위치라 함은, 상기 물체가 근접 터치될 때 상기 물체가 상기 터치 스크린에 대해 수직으로 대응되는 위치를 의미한다. 상기 근접 센서(141)는, 근접 터치와, 근접 터치 패턴(예를 들어, 근접 터치 거리, 근접 터치 방향, 근접 터치 속도, 근접 터치 시간, 근접 터치 위치, 근접 터치 이동 상태 등)을 감지할 수 있다. 한편, 제어부(180)는 위와 같이, 근접 센서(141)를 통해 감지된 근접 터치 동작 및 근접 터치 패턴에 상응하는 데이터(또는 정보)를 처리하며, 나아가, 처리된 데이터에 대응하는 시각적인 정보를 터치 스크린상에 출력시킬 수 있다. 나아가, 제어부(180)는, 터치 스크린 상의 동일한 지점에 대한 터치가, 근접 터치인지 또는 접촉 터치인지에 따라, 서로 다른 동작 또는 데이터(또는 정보)가 처리되도록 이동 단말기(100)를 제어할 수 있다.
터치 센서는 저항막 방식, 정전용량 방식, 적외선 방식, 초음파 방식, 자기장 방식 등 여러 가지 터치방식 중 적어도 하나를 이용하여 터치 스크린(또는 디스플레이부(151))에 가해지는 터치(또는 터치입력)을 감지한다.
일 예로서, 터치 센서는, 터치 스크린의 특정 부위에 가해진 압력 또는 특정 부위에 발생하는 정전 용량 등의 변화를 전기적인 입력신호로 변환하도록 구성될 수 있다. 터치 센서는, 터치 스크린 상에 터치를 가하는 터치 대상체가 터치 센서 상에 터치 되는 위치, 면적, 터치 시의 압력, 터치 시의 정전 용량 등을 검출할 수 있도록 구성될 수 있다. 여기에서, 터치 대상체는 상기 터치 센서에 터치를 인가하는 물체로서, 예를 들어, 손가락, 터치펜 또는 스타일러스 펜(Stylus pen), 포인터 등이 될 수 있다.
이와 같이, 터치 센서에 대한 터치 입력이 있는 경우, 그에 대응하는 신호(들)는 터치 제어기로 보내진다. 터치 제어기는 그 신호(들)를 처리한 다음 대응하는 데이터를 제어부(180)로 전송한다. 이로써, 제어부(180)는 디스플레이부(151)의 어느 영역이 터치 되었는지 여부 등을 알 수 있게 된다. 여기에서, 터치 제어기는, 제어부(180)와 별도의 구성요소일 수 있고, 제어부(180) 자체일 수 있다.
한편, 제어부(180)는, 터치 스크린(또는 터치 스크린 이외에 구비된 터치키)을 터치하는, 터치 대상체의 종류에 따라 서로 다른 제어를 수행하거나, 동일한 제어를 수행할 수 있다. 터치 대상체의 종류에 따라 서로 다른 제어를 수행할지 또는 동일한 제어를 수행할 지는, 현재 이동 단말기(100)의 동작상태 또는 실행 중인 응용 프로그램에 따라 결정될 수 있다.
한편, 위에서 살펴본 터치 센서 및 근접 센서는 독립적으로 또는 조합되어, 터치 스크린에 대한 숏(또는 탭) 터치(short touch), 롱 터치(long touch), 멀티 터치(multi touch), 드래그 터치(drag touch), 플리크 터치(flick touch), 핀치-인 터치(pinch-in touch), 핀치-아웃 터치(pinch-out 터치), 스와이프(swype) 터치, 호버링(hovering) 터치 등과 같은, 다양한 방식의 터치를 센싱할 수 있다.
초음파 센서는 초음파를 이용하여, 감지대상의 위치정보를 인식할 수 있다. 한편 제어부(180)는 광 센서와 복수의 초음파 센서로부터 감지되는 정보를 통해, 파동 발생원의 위치를 산출하는 것이 가능하다. 파동 발생원의 위치는, 광이 초음파보다 매우 빠른 성질, 즉, 광이 광 센서에 도달하는 시간이 초음파가 초음파 센서에 도달하는 시간보다 매우 빠름을 이용하여, 산출될 수 있다. 보다 구체적으로 광을 기준 신호로 초음파가 도달하는 시간과의 시간차를 이용하여 파동 발생원의 위치가 산출될 수 있다
한편, 입력부(120)의 구성으로 살펴본, 카메라(121)는 카메라 센서(예를 들어, CCD, CMOS 등), 포토 센서(또는 이미지 센서) 및 레이저 센서 중 적어도 하나를 포함한다.
카메라(121)와 레이저 센서는 서로 조합되어, 3차원 입체영상에 대한 감지대상의 터치를 감지할 수 있다. 포토 센서는 디스플레이 소자에 적층될 수 있는데, 이러한 포토 센서는 터치 스크린에 근접한 감지대상의 움직임을 스캐닝하도록 이루어진다. 보다 구체적으로, 포토 센서는 행/열에 Photo Diode와 TR(Transistor)를 실장하여 Photo Diode에 인가되는 빛의 양에 따라 변화되는 전기적 신호를 이용하여 포토 센서 위에 올려지는 내용물을 스캔한다. 즉, 포토 센서는 빛의 변화량에 따른 감지대상의 좌표 계산을 수행하며, 이를 통하여 감지대상의 위치정보가 획득될 수 있다.
디스플레이부(151)는 이동 단말기(100)에서 처리되는 정보를 표시(출력)한다. 예를 들어, 디스플레이부(151)는 이동 단말기(100)에서 구동되는 응용 프로그램의 실행화면 정보, 또는 이러한 실행화면 정보에 따른 UI(User Interface), GUI(Graphic User Interface) 정보를 표시할 수 있다.
또한, 상기 디스플레이부(151)는 입체영상을 표시하는 입체 디스플레이부로서 구성될 수 있다.
상기 입체 디스플레이부에는 스테레오스코픽 방식(안경 방식), 오토 스테레오스코픽 방식(무안경 방식), 프로젝션 방식(홀로그래픽 방식) 등의 3차원 디스플레이 방식이 적용될 수 있다.
음향 출력부(152)는 호신호 수신, 통화모드 또는 녹음 모드, 음성인식 모드, 방송수신 모드 등에서 무선 통신부(110)로부터 수신되거나 메모리(170)에 저장된 오디오 데이터를 출력할 수 있다. 음향 출력부(152)는 이동 단말기(100)에서 수행되는 기능(예를 들어, 호신호 수신음, 메시지 수신음 등)과 관련된 음향 신호를 출력하기도 한다. 이러한 음향 출력부(152)에는 리시버(receiver), 스피커(speaker), 버저(buzzer) 등이 포함될 수 있다.
햅틱 모듈(haptic module)(153)은 사용자가 느낄 수 있는 다양한 촉각 효과를 발생시킨다. 햅틱 모듈(153)이 발생시키는 촉각 효과의 대표적인 예로는 진동이 될 수 있다. 햅틱 모듈(153)에서 발생하는 진동의 세기와 패턴 등은 사용자의 선택 또는 제어부의 설정에 의해 제어될 수 있다. 예를 들어, 상기 햅틱 모듈(153)은 서로 다른 진동을 합성하여 출력하거나 순차적으로 출력할 수도 있다.
햅틱 모듈(153)은, 진동 외에도, 접촉 피부면에 대해 수직 운동하는 핀 배열, 분사구나 흡입구를 통한 공기의 분사력이나 흡입력, 피부 표면에 대한 스침, 전극(electrode)의 접촉, 정전기력 등의 자극에 의한 효과와, 흡열이나 발열 가능한 소자를 이용한 냉온감 재현에 의한 효과 등 다양한 촉각 효과를 발생시킬 수 있다.
햅틱 모듈(153)은 직접적인 접촉을 통해 촉각 효과를 전달할 수 있을 뿐만 아니라, 사용자가 손가락이나 팔 등의 근 감각을 통해 촉각 효과를 느낄 수 있도록 구현할 수도 있다. 햅틱 모듈(153)은 이동 단말기(100)의 구성 태양에 따라 2개 이상이 구비될 수 있다.
광출력부(154)는 이동 단말기(100)의 광원의 빛을 이용하여 이벤트 발생을 알리기 위한 신호를 출력한다. 이동 단말기(100)에서 발생 되는 이벤트의 예로는 메시지 수신, 호 신호 수신, 부재중 전화, 알람, 일정 알림, 이메일 수신, 애플리케이션을 통한 정보 수신 등이 될 수 있다.
광출력부(154)가 출력하는 신호는 이동 단말기가 전면이나 후면으로 단색이나 복수색의 빛을 발광함에 따라 구현된다. 상기 신호 출력은 이동 단말기가 사용자의 이벤트 확인을 감지함에 의하여 종료될 수 있다.
인터페이스부(160)는 이동 단말기(100)에 연결되는 모든 외부 기기와의 통로 역할을 한다. 인터페이스부(160)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 이동 단말기(100) 내부의 각 구성요소에 전달하거나, 이동 단말기(100) 내부의 데이터가 외부 기기로 전송되도록 한다. 예를 들어, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트(port), 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port) 등이 인터페이스부(160)에 포함될 수 있다.
한편, 식별 모듈은 이동 단말기(100)의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(user identify module; UIM), 가입자 인증 모듈(subscriber identity module; SIM), 범용 사용자 인증 모듈(universal subscriber identity module; USIM) 등을 포함할 수 있다. 식별 모듈이 구비된 장치(이하 '식별 장치')는, 스마트 카드(smart card) 형식으로 제작될 수 있다. 따라서 식별 장치는 상기 인터페이스부(160)를 통하여 단말기(100)와 연결될 수 있다.
또한, 상기 인터페이스부(160)는 이동 단말기(100)가 외부 크래들(cradle)과 연결될 때 상기 크래들로부터의 전원이 상기 이동 단말기(100)에 공급되는 통로가 되거나, 사용자에 의해 상기 크래들에서 입력되는 각종 명령 신호가 상기 이동 단말기(100)로 전달되는 통로가 될 수 있다. 상기 크래들로부터 입력되는 각종 명령 신호 또는 상기 전원은 상기 이동 단말기(100)가 상기 크래들에 정확히 장착되었음을 인지하기 위한 신호로 동작될 수 있다.
메모리(170)는 제어부(180)의 동작을 위한 프로그램을 저장할 수 있고, 입/출력되는 데이터들(예를 들어, 폰북, 메시지, 정지영상, 동영상 등)을 임시 저장할 수도 있다. 상기 메모리(170)는 상기 터치 스크린 상의 터치 입력시 출력되는 다양한 패턴의 진동 및 음향에 관한 데이터를 저장할 수 있다.
메모리(170)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory), 자기 메모리, 자기 디스크 및 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 이동 단말기(100)는 인터넷(internet)상에서 상기 메모리(170)의 저장 기능을 수행하는 웹 스토리지(web storage)와 관련되어 동작될 수도 있다.
한편, 앞서 살펴본 것과 같이, 제어부(180)는 응용 프로그램과 관련된 동작과, 통상적으로 이동 단말기(100)의 전반적인 동작을 제어한다. 예를 들어, 제어부(180)는 상기 이동 단말기의 상태가 설정된 조건을 만족하면, 애플리케이션들에 대한 사용자의 제어 명령의 입력을 제한하는 잠금 상태를 실행하거나, 해제할 수 있다.
또한, 제어부(180)는 음성 통화, 데이터 통신, 화상 통화 등과 관련된 제어 및 처리를 수행하거나, 터치 스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 행할 수 있다. 나아가 제어부(180)는 이하에서 설명되는 다양한 실시 예들을 본 발명에 따른 이동 단말기(100) 상에서 구현하기 위하여, 위에서 살펴본 구성요소들을 중 어느 하나 또는 복수를 조합하여 제어할 수 있다.
전원 공급부(190)는 제어부(180)의 제어에 의해 외부의 전원, 내부의 전원을 인가 받아 각 구성요소들의 동작에 필요한 전원을 공급한다. 전원공급부(190)는 배터리를 포함하며, 배터리는 충전 가능하도록 이루어지는 내장형 배터리가 될 수 있으며, 충전 등을 위하여 단말기 바디에 착탈 가능하게 결합될 수 있다.
또한, 전원공급부(190)는 연결포트를 구비할 수 있으며, 연결포트는 배터리의 충전을 위하여 전원을 공급하는 외부 충전기가 전기적으로 연결되는 인터페이스(160)의 일 예로서 구성될 수 있다.
다른 예로서, 전원공급부(190)는 상기 연결포트를 이용하지 않고 무선방식으로 배터리를 충전하도록 이루어질 수 있다. 이 경우에, 전원공급부(190)는 외부의 무선 전력 전송장치로부터 자기 유도 현상에 기초한 유도 결합(Inductive Coupling) 방식이나 전자기적 공진 현상에 기초한 공진 결합(Magnetic Resonance Coupling) 방식 중 하나 이상을 이용하여 전력을 전달받을 수 있다.
한편, 이하에서 다양한 실시 예는 예를 들어, 소프트웨어, 하드웨어 또는 이들의 조합된 것을 이용하여 컴퓨터 또는 이와 유사한 장치로 읽을 수 있는 기록매체 내에서 구현될 수 있다.
도 4b 및 4c를 참조하면, 개시된 이동 단말기(100)는 바 형태의 단말기 바디를 구비하고 있다. 다만, 본 발명은 여기에 한정되지 않고 와치 타입, 클립 타입, 글래스 타입 또는 2 이상의 바디들이 상대 이동 가능하게 결합되는 폴더 타입, 플립 타입, 슬라이드 타입, 스윙 타입, 스위블 타입 등 다양한 구조에 적용될 수 있다. 이동 단말기의 특정 유형에 관련될 것이나, 이동 단말기의 특정유형에 관한 설명은 다른 타입의 이동 단말기에 일반적으로 적용될 수 있다.
여기에서, 단말기 바디는 이동 단말기(100)를 적어도 하나의 집합체로 보아 이를 지칭하는 개념으로 이해될 수 있다.
이동 단말기(100)는 외관을 이루는 케이스(예를 들면, 프레임, 하우징, 커버 등)를 포함한다. 도시된 바와 같이, 이동 단말기(100)는 프론트 케이스(101)와 리어 케이스(102)를 포함할 수 있다. 프론트 케이스(101)와 리어 케이스(102)의 결합에 의해 형성되는 내부공간에는 각종 전자부품들이 배치된다. 프론트 케이스(101)와 리어 케이스(102) 사이에는 적어도 하나의 미들 케이스가 추가로 배치될 수 있다.
단말기 바디의 전면에는 디스플레이부(151)가 배치되어 정보를 출력할 수 있다. 도시된 바와 같이, 디스플레이부(151)의 윈도우(151a)는 프론트 케이스(101)에 장착되어 프론트 케이스(101)와 함께 단말기 바디의 전면을 형성할 수 있다.
경우에 따라서, 리어 케이스(102)에도 전자부품이 장착될 수 있다. 리어 케이스(102)에 장착 가능한 전자부품은 착탈 가능한 배터리, 식별 모듈, 메모리 카드 등이 있다. 이 경우, 리어 케이스(102)에는 장착된 전자부품을 덮기 위한 후면커버(103)가 착탈 가능하게 결합될 수 있다. 따라서, 후면 커버(103)가 리어 케이스(102)로부터 분리되면, 리어 케이스(102)에 장착된 전자부품은 외부로 노출된다.
도시된 바와 같이, 후면커버(103)가 리어 케이스(102)에 결합되면, 리어 케이스(102)의 측면 일부가 노출될 수 있다. 경우에 따라서, 상기 결합시 리어 케이스(102)는 후면커버(103)에 의해 완전히 가려질 수도 있다. 한편, 후면커버(103)에는 카메라(121b, 121c)나 음향 출력부(152b)를 외부로 노출시키기 위한 개구부가 구비될 수 있다.
이러한 케이스들(101, 102, 103)은 합성수지를 사출하여 형성되거나 금속, 예를 들어 스테인레스 스틸(STS), 알루미늄(Al), 티타늄(Ti) 등으로 형성될 수도 있다.
이동 단말기(100)는, 복수의 케이스가 각종 전자부품들을 수용하는 내부 공간을 마련하는 위의 예와 달리, 하나의 케이스가 상기 내부 공간을 마련하도록 구성될 수도 있다. 이 경우, 합성수지 또는 금속이 측면에서 후면으로 이어지는 유니 바디의 이동 단말기(100)가 구현될 수 있다.
한편, 이동 단말기(100)는 단말기 바디 내부로 물이 스며들지 않도록 하는 방수부(미도시)를 구비할 수 있다. 예를 들어, 방수부는 윈도우(151a)와 프론트 케이스(101) 사이, 프론트 케이스(101)와 리어 케이스(102) 사이 또는 리어 케이스(102)와 후면 커버(103) 사이에 구비되어, 이들의 결합 시 내부 공간을 밀폐하는 방수부재를 포함할 수 있다.
이동 단말기(100)에는 디스플레이부(151), 제1 및 제2 음향 출력부(152a, 152b), 근접 센서(141), 조도 센서(142), 광 출력부(154), 제1 및 제2 카메라(121a, 121b, 121c), 제1 및 제2 조작유닛(123a, 123b), 마이크로폰(122), 인터페이스부(160) 등이 구비될 수 있다.
이하에서는, 도 4b 및 도 4c에 도시된 바와 같이, 단말기 바디의 전면에 디스플레이부(151), 제1 음향 출력부(152a), 근접 센서(141), 조도 센서(142), 광 출력부(154), 제1 카메라(121a) 및 제1 조작유닛(123a)이 배치되고, 단말기 바디의 측면에 제2 조작유닛(123b), 마이크로폰(122) 및 인터페이스부(160)이 배치되며, 단말기 바디의 후면에 제2 음향 출력부(152b) 및 제2 카메라(121b, 121c)가 배치된 이동 단말기(100)를 일 예로 들어 설명한다.
다만, 이들 구성은 이러한 배치에 한정되는 것은 아니다. 이들 구성은 필요에 따라 제외 또는 대체되거나, 다른 면에 배치될 수 있다. 예를 들어, 단말기 바디의 전면에는 제1 조작유닛(123a)이 구비되지 않을 수 있으며, 제2 음향 출력부(152b)는 단말기 바디의 후면이 아닌 단말기 바디의 측면에 구비될 수 있다.
디스플레이부(151)는 이동 단말기(100)에서 처리되는 정보를 표시(출력)한다. 예를 들어, 디스플레이부(151)는 이동 단말기(100)에서 구동되는 응용 프로그램의 실행화면 정보, 또는 이러한 실행화면 정보에 따른 UI(User Interface), GUI(Graphic User Interface) 정보를 표시할 수 있다.
디스플레이부(151)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
또한, 디스플레이부(151)는 이동 단말기(100)의 구현 형태에 따라 2개 이상 존재할 수 있다. 이 경우, 이동 단말기(100)에는 복수의 디스플레이부들이 하나의 면에 이격되거나 일체로 배치될 수 있고, 또한 서로 다른 면에 각각 배치될 수도 있다.
디스플레이부(151)는 터치 방식에 의하여 제어 명령을 입력 받을 수 있도록, 디스플레이부(151)에 대한 터치를 감지하는 터치센서를 포함할 수 있다. 이를 이용하여, 디스플레이부(151)에 대하여 터치가 이루어지면, 터치센서는 상기 터치를 감지하고, 제어부(180)는 이에 근거하여 상기 터치에 대응하는 제어명령을 발생시키도록 이루어질 수 있다. 터치 방식에 의하여 입력되는 내용은 문자 또는 숫자이거나, 각종 모드에서의 지시 또는 지정 가능한 메뉴항목 등일 수 있다.
한편, 터치센서는, 터치패턴을 구비하는 필름 형태로 구성되어 윈도우(151a)와 윈도우(151a)의 배면 상의 디스플레이(미도시) 사이에 배치되거나, 윈도우(151a)의 배면에 직접 패터닝되는 메탈 와이어가 될 수도 있다. 또는, 터치센서는 디스플레이와 일체로 형성될 수 있다. 예를 들어, 터치센서는, 디스플레이의 기판 상에 배치되거나, 디스플레이의 내부에 구비될 수 있다.
이처럼, 디스플레이부(151)는 터치센서와 함께 터치 스크린을 형성할 수 있으며, 이 경우에 터치 스크린은 사용자 입력부(123, 도 4a 참조)로 기능할 수 있다. 경우에 따라, 터치 스크린은 제1조작유닛(123a)의 적어도 일부 기능을 대체할 수 있다.
제1 음향 출력부(152a)는 통화음을 사용자의 귀에 전달시키는 리시버(receiver)로 구현될 수 있으며, 제2 음향 출력부(152b)는 각종 알람음이나 멀티미디어의 재생음을 출력하는 라우드 스피커(loud speaker)의 형태로 구현될 수 있다.
디스플레이부(151)의 윈도우(151a)에는 제1 음향 출력부(152a)로부터 발생되는 사운드의 방출을 위한 음향홀이 형성될 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니고, 상기 사운드는 구조물 간의 조립틈(예를 들어, 윈도우(151a)와 프론트 케이스(101) 간의 틈)을 따라 방출되도록 구성될 수 있다. 이 경우, 외관상 음향 출력을 위하여 독립적으로 형성되는 홀이 보이지 않거나 숨겨져 이동 단말기(100)의 외관이 보다 심플해질 수 있다.
광 출력부(154)는 이벤트의 발생시 이를 알리기 위한 빛을 출력하도록 이루어진다. 상기 이벤트의 예로는 메시지 수신, 호 신호 수신, 부재중 전화, 알람, 일정 알림, 이메일 수신, 애플리케이션을 통한 정보 수신 등을 들 수 있다. 제어부(180)는 사용자의 이벤트 확인이 감지되면, 빛의 출력이 종료되도록 광 출력부(154)를 제어할 수 있다.
제1 카메라(121a)는 촬영 모드 또는 화상통화 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(151)에 표시될 수 있으며, 메모리(170)에 저장될 수 있다.
제1 및 제2 조작유닛(123a, 123b)은 이동 단말기(100)의 동작을 제어하기 위한 명령을 입력 받기 위해 조작되는 사용자 입력부(123)의 일 예로서, 조작부(manipulating portion)로도 통칭될 수 있다. 제1 및 제2 조작유닛(123a, 123b)은 터치, 푸시, 스크롤 등 사용자가 촉각적인 느낌을 받으면서 조작하게 되는 방식(tactile manner)이라면 어떤 방식이든 채용될 수 있다. 또한, 제1 및 제2 조작유닛(123a, 123b)은 근접 터치(proximity touch), 호버링(hovering) 터치 등을 통해서 사용자의 촉각적인 느낌이 없이 조작하게 되는 방식으로도 채용될 수 있다.
본 도면에서는 제1 조작유닛(123a)이 터치키(touch key)인 것으로 예시하나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 제1 조작유닛(123a)은 푸시키(mechanical key)가 되거나, 터치키와 푸시키의 조합으로 구성될 수 있다.
제1 및 제2 조작유닛(123a, 123b)에 의하여 입력되는 내용은 다양하게 설정될 수 있다. 예를 들어, 제1 조작유닛(123a)은 메뉴, 홈키, 취소, 검색 등의 명령을 입력 받고, 제2 조작유닛(123b)은 제1 또는 제2 음향 출력부(152a, 152b)에서 출력되는 음향의 크기 조절, 디스플레이부(151)의 터치 인식 모드로의 전환 등의 명령을 입력 받을 수 있다.
한편, 단말기 바디의 후면에는 사용자 입력부(123)의 다른 일 예로서, 후면 입력부(미도시)가 구비될 수 있다. 이러한 후면 입력부는 이동 단말기(100)의 동작을 제어하기 위한 명령을 입력 받기 위해 조작되는 것으로서, 입력되는 내용은 다양하게 설정될 수 있다. 예를 들어, 전원의 온/오프, 시작, 종료, 스크롤 등과 같은 명령, 제1 및 제2 음향 출력부(152a, 152b)에서 출력되는 음향의 크기 조절, 디스플레이부(151)의 터치 인식 모드로의 전환 등과 같은 명령을 입력 받을 수 있다. 후면 입력부는 터치입력, 푸시입력 또는 이들의 조합에 의한 입력이 가능한 형태로 구현될 수 있다.
후면 입력부는 단말기 바디의 두께방향으로 전면의 디스플레이부(151)와 중첩되게 배치될 수 있다. 일 예로, 사용자가 단말기 바디를 한 손으로 쥐었을 때 검지를 이용하여 용이하게 조작 가능하도록, 후면 입력부는 단말기 바디의 후면 상단부에 배치될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 후면 입력부의 위치는 변경될 수 있다.
이처럼 단말기 바디의 후면에 후면 입력부가 구비되는 경우, 이를 이용한 새로운 형태의 유저 인터페이스가 구현될 수 있다. 또한, 앞서 설명한 터치 스크린 또는 후면 입력부가 단말기 바디의 전면에 구비되는 제1 조작유닛(123a)의 적어도 일부 기능을 대체하여, 단말기 바디의 전면에 제1 조작유닛(123a)이 미배치되는 경우, 디스플레이부(151)가 보다 대화면(大畵面)으로 구성될 수 있다.
한편, 이동 단말기(100)에는 사용자의 지문을 인식하는 지문인식센서가 구비될 수 있으며, 제어부(180)는 지문인식센서를 통하여 감지되는 지문정보를 인증수단으로 이용할 수 있다. 상기 지문인식센서는 디스플레이부(151) 또는 사용자 입력부(123)에 내장될 수 있다.
마이크로폰(122)은 사용자의 음성, 기타 소리 등을 입력 받도록 이루어진다. 마이크로폰(122)은 복수의 개소에 구비되어 스테레오 음향을 입력 받도록 구성될 수 있다.
인터페이스부(160)는 이동 단말기(100)를 외부기기와 연결시킬 수 있는 통로가 된다. 예를 들어, 인터페이스부(160)는 다른 장치(예를 들어, 이어폰, 외장 스피커)와의 연결을 위한 접속단자, 근거리 통신을 위한 포트[예를 들어, 적외선 포트(IrDA Port), 블루투스 포트(Bluetooth Port), 무선 랜 포트(Wireless LAN Port) 등], 또는 이동 단말기(100)에 전원을 공급하기 위한 전원공급단자 중 적어도 하나일 수 있다. 이러한 인터페이스부(160)는 SIM(Subscriber Identification Module) 또는 UIM(User Identity Module), 정보 저장을 위한 메모리 카드 등의 외장형 카드를 수용하는 소켓의 형태로 구현될 수도 있다.
단말기 바디의 후면에는 제2카메라(121b, 121c)가 배치될 수 있다. 이 경우, 제2카메라(121b)는 제1카메라(121a)와 실질적으로 반대되는 촬영 방향을 가지게 된다.
제2카메라(121b,121c)는 적어도 하나의 라인을 따라 배열되는 복수의 렌즈를 포함할 수 있다. 복수의 렌즈는 행렬(matrix) 형식으로 배열될 수도 있다. 이러한 카메라는, '어레이(array) 카메라'로 명명될 수 있다. 제2카메라(121b)가 어레이 카메라로 구성되는 경우, 복수의 렌즈를 이용하여 다양한 방식으로 영상을 촬영할 수 있으며, 보다 나은 품질의 영상을 획득할 수 있다. 후면에 배치되는 카메라(121b,121c)는 화소와 화각이 서로 다른 렌즈를 구비할 수 있다. 예를 들어, 제2 후면 카메라(121c)는 광각 카메라로서, 제1 후면 카메라(121b)보다 화소는 작지만 보다 넓은 영역을 촬영할 수 있다.
플래시(124)는 제2카메라(121b)에 인접하게 배치될 수 있다. 플래시(124)는 제2카메라(121b)로 피사체를 촬영하는 경우에 피사체를 향하여 빛을 비추게 된다.
단말기 바디에는 제2 음향 출력부(152b)가 추가로 배치될 수 있다. 제2 음향 출력부(152b)는 제1 음향 출력부(152a)와 함께 스테레오 기능을 구현할 수 있으며, 통화시 스피커폰 모드의 구현을 위하여 사용될 수도 있다.
단말기 바디에는 무선 통신을 위한 적어도 하나의 안테나가 구비될 수 있다. 안테나는 단말기 바디에 내장되거나, 케이스에 형성될 수 있다. 예를 들어, 방송 수신 모듈(111, 도 4a 참조)의 일부를 이루는 안테나는 단말기 바디에서 인출 가능하게 구성될 수 있다. 또는, 안테나는 필름 타입으로 형성되어 후면 커버(103)의 내측면에 부착될 수도 있고, 도전성 재질을 포함하는 케이스가 안테나로서 기능하도록 구성될 수도 있다.
단말기 바디에는 이동 단말기(100)에 전원을 공급하기 위한 전원 공급부(190, 도 4a 참조)가 구비된다. 전원 공급부(190)는 단말기 바디에 내장되거나, 단말기 바디의 외부에서 착탈 가능하게 구성되는 배터리(191)를 포함할 수 있다.
배터리(191)는 인터페이스부(160)에 연결되는 전원 케이블을 통하여 전원을 공급받도록 구성될 수 있다. 또한, 배터리(191)는 무선충전기기를 통하여 무선충전 가능하도록 구성될 수도 있다. 상기 무선충전은 자기유도방식 또는 공진방식(자기공명방식)에 의하여 구현될 수 있다.
한편, 본 도면에서는 후면 커버(103)가 배터리(191)를 덮도록 리어 케이스(102)에 결합되어 배터리(191)의 이탈을 제한하고, 배터리(191)를 외부 충격과 이물질로부터 보호하도록 구성된 것을 예시하고 있다. 배터리(191)가 단말기 바디에 착탈 가능하게 구성되는 경우, 후면 커버(103)는 리어 케이스(102)에 착탈 가능하게 결합될 수 있다.
이동 단말기(100)에는 외관을 보호하거나, 이동 단말기(100)의 기능을 보조 또는 확장시키는 액세서리가 추가될 수 있다. 이러한 액세서리의 일 예로, 이동 단말기(100)의 적어도 일면을 덮거나 수용하는 커버 또는 파우치를 들 수 있다. 커버 또는 파우치는 디스플레이부(151)와 연동되어 이동 단말기(100)의 기능을 확장시키도록 구성될 수 있다. 액세서리의 다른 일 예로, 터치 스크린에 대한 터치입력을 보조 또는 확장하기 위한 터치펜을 들 수 있다.
F. 5G 통신을 이용한 AI 기본 동작
도 5는 5G 통신 시스템에서 사용자 단말과 5G 네트워크의 기본동작의 일 예를 나타낸다.
UE는 특정 정보 전송을 5G 네트워크로 전송한다(S1). 그리고, 상기 5G 네트워크는 상기 특정 정보에 대한 AI 프로세싱을 수행한다(S2). 그리고, 상기 5G 네트워크는 AI 프로세싱 결과를 포함하는 응답을 상기 UE로 전송한다(S3).
G. 5G 통신 시스템에서 사용자 단말과 5G 네트워크 간의 응용 동작
이하, 도 5 및 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 AI 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 5의 S1 단계 및 S3 단계와 같이, UE가 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, UE는 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, UE는 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, UE가 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, UE는 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다. 그리고, 상기 5G 네트워크는 상기 UE로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 UE는 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 UE로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 UE로 AI 프로세싱 결과를 포함하는 응답을 전송할 수 있다.
다음으로, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, UE가 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, UE는 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, UE는 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, UE는 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, UE는 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 명세서에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 5의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 5의 S1 단계에서, UE는 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 UE는 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제1 주파수 자원에서, 두 번째 특정 정보의 전송은 제2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
앞서 살핀 5G 통신 기술은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
도 6은 본 명세서의 일 실시예에 따른 AI 장치의 블록도이다.
상기 AI 장치(20)는 AI 프로세싱을 수행할 수 있는 AI 모듈을 포함하는 전자 기기 또는 상기 AI 모듈을 포함하는 서버 등을 포함할 수 있다. 또한, 상기 AI 장치(20)는 도 5에 도시된 디바이스(10)의 적어도 일부의 구성으로 포함되어 AI 프로세싱 중 적어도 일부를 함께 수행하도록 구비될 수도 있다.
상기 AI 프로세싱은, 도 5에 도시된 디바이스(10)의 제어와 관련된 모든 동작들을 포함할 수 있다. 예를 들어, 자율주행 차량은 센싱 데이터 또는 운전자 데이터를 AI 프로세싱 하여 처리/판단, 제어 신호 생성 동작을 수행할 수 있다. 또한, 예를 들어, 자율주행 차량은 상기 차량 내에 구비된 다른 전자 기기와의 인터랙션을 통해 획득되는 데이터를 AI 프로세싱 하여 자율주행 제어를 수행할 수 있다.
상기 AI 장치(20)는 AI 프로세서(21), 메모리(25) 및/또는 통신부(27)를 포함할 수 있다.
상기 AI 장치(20)는 신경망을 학습할 수 있는 컴퓨팅 장치로서, 서버, 데스크탑 PC, 노트북 PC, 태블릿 PC 등과 같은 다양한 전자 장치로 구현될 수 있다.
AI 프로세서(21)는 메모리(25)에 저장된 프로그램을 이용하여 신경망을 학습할 수 있다. 특히, AI 프로세서(21)는 디바이스 관련 데이터를 인식하기 위한 신경망을 학습할 수 있다. 여기서, 디바이스 관련 데이터를 인식하기 위한 신경망은 인간의 뇌 구조를 컴퓨터 상에서 모의하도록 설계될 수 있으며, 인간의 신경망의 뉴런(neuron)을 모의하는, 가중치를 갖는 복수의 네트워크 노드들을 포함할 수 있다. 복수의 네트워크 모드들은 뉴런이 시냅스(synapse)를 통해 신호를 주고 받는 뉴런의 시냅틱 활동을 모의하도록 각각 연결 관계에 따라 데이터를 주고 받을 수 있다. 여기서 신경망은 신경망 모델에서 발전한 딥러닝 모델을 포함할 수 있다. 딥 러닝 모델에서 복수의 네트워크 노드들은 서로 다른 레이어에 위치하면서 컨볼루션(convolution) 연결 관계에 따라 데이터를 주고 받을 수 있다. 신경망 모델의 예는 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine), 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
한편, 전술한 바와 같은 기능을 수행하는 프로세서는 범용 프로세서(예를 들어, CPU)일 수 있으나, 인공지능 학습을 위한 AI 전용 프로세서(예를 들어, GPU)일 수 있다.
메모리(25)는 AI 장치(20)의 동작에 필요한 각종 프로그램 및 데이터를 저장할 수 있다. 메모리(25)는 비 휘발성 메모리, 휘발성 메모리, 플래시 메모리(flash-memory), 하드디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SDD) 등으로 구현할 수 있다. 메모리(25)는 AI 프로세서(21)에 의해 액세스되며, AI 프로세서(21)에 의한 데이터의 독취/기록/수정/삭제/갱신 등이 수행될 수 있다. 또한, 메모리(25)는 본 명세서의 일 실시예에 따른 데이터 분류/인식을 위한 학습 알고리즘을 통해 생성된 신경망 모델(예를 들어, 딥 러닝 모델(26))을 저장할 수 있다.
한편, AI 프로세서(21)는 데이터 분류/인식을 위한 신경망을 학습하는 데이터 학습부(22)를 포함할 수 있다. 데이터 학습부(22)는 데이터 분류/인식을 판단하기 위하여 어떤 학습 데이터를 이용할지, 학습 데이터를 이용하여 데이터를 어떻게 분류하고 인식할지에 관한 기준을 학습할 수 있다. 데이터 학습부(22)는 학습에 이용될 학습 데이터를 획득하고, 획득된 학습데이터를 딥러닝 모델에 적용함으로써, 딥러닝 모델을 학습할 수 있다.
데이터 학습부(22)는 적어도 하나의 하드웨어 칩 형태로 제작되어 AI 장치(20)에 탑재될 수 있다. 예를 들어, 데이터 학습부(22)는 인공지능(AI)을 위한 전용 하드웨어 칩 형태로 제작될 수도 있고, 범용 프로세서(CPU) 또는 그래픽 전용 프로세서(GPU)의 일부로 제작되어 AI 장치(20)에 탑재될 수도 있다. 또한, 데이터 학습부(22)는 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈(또는 인스트럭션(instruction)을 포함하는 프로그램 모듈)로 구현되는 경우, 소프트웨어 모듈은 컴퓨터로 읽을 수 있는 판독 가능한 비일시적 판독 가능 기록 매체(non-transitory computer readable media)에 저장될 수 있다. 이 경우, 적어도 하나의 소프트웨어 모듈은 OS(Operating System)에 의해 제공되거나, 애플리케이션에 의해 제공될 수 있다.
데이터 학습부(22)는 학습 데이터 획득부(23) 및 모델 학습부(24)를 포함할 수 있다.
학습 데이터 획득부(23)는 데이터를 분류하고 인식하기 위한 신경망 모델에 필요한 학습 데이터를 획득할 수 있다. 예를 들어, 학습 데이터 획득부(23)는 학습 데이터로서, 신경망 모델에 입력하기 위한 차량 데이터 및/또는 샘플 데이터를 획득할 수 있다.
모델 학습부(24)는 상기 획득된 학습 데이터를 이용하여, 신경망 모델이 소정의 데이터를 어떻게 분류할지에 관한 판단 기준을 가지도록 학습할 수 있다. 이 때 모델 학습부(24)는 학습 데이터 중 적어도 일부를 판단 기준으로 이용하는 지도 학습(supervised learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또는 모델 학습부(24)는 지도 없이 학습 데이터를 이용하여 스스로 학습함으로써, 판단 기준을 발견하는 비지도 학습(unsupervised learning)을 통해 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 학습에 따른 상황 판단의 결과가 올바른지에 대한 피드백을 이용하여 강화 학습(reinforcement learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 오류 역전파법(error back-propagation) 또는 경사 하강법(gradient decent)을 포함하는 학습 알고리즘을 이용하여 신경망 모델을 학습시킬 수 있다.
신경망 모델이 학습되면, 모델 학습부(24)는 학습된 신경망 모델을 메모리에 저장할 수 있다. 모델 학습부(24)는 학습된 신경망 모델을 AI 장치(20)와 유선 또는 무선 네트워크로 연결된 서버의 메모리에 저장할 수도 있다.
데이터 학습부(22)는 인식 모델의 분석 결과를 향상시키거나, 인식 모델의 생성에 필요한 리소스 또는 시간을 절약하기 위해 학습 데이터 전처리부(미도시) 및 학습 데이터 선택부(미도시)를 더 포함할 수도 있다.
학습 데이터 전처리부는 획득된 데이터가 상황 판단을 위한 학습에 이용될 수 있도록, 획득된 데이터를 전처리할 수 있다. 예를 들어, 학습 데이터 전처리부는, 모델 학습부(24)가 이미지 인식을 위한 학습을 위하여 획득된 학습 데이터를 이용할 수 있도록, 획득된 데이터를 기 설정된 포맷으로 가공할 수 있다.
또한, 학습 데이터 선택부는, 학습 데이터 획득부(23)에서 획득된 학습 데이터 또는 전처리부에서 전처리된 학습 데이터 중 학습에 필요한 데이터를 선택할 수 있다. 선택된 학습 데이터는 모델 학습부(24)에 제공될 수 있다. 예를 들어, 학습 데이터 선택부는, 차량의 카메라를 통해 획득한 영상 중 특정 영역을 검출함으로써, 특정 영역에 포함된 객체에 대한 데이터만을 학습 데이터로 선택할 수 있다.
또한, 데이터 학습부(22)는 신경망 모델의 분석 결과를 향상시키기 위하여 모델 평가부(미도시)를 더 포함할 수도 있다.
모델 평가부는, 신경망 모델에 평가 데이터를 입력하고, 평가 데이터로부터 출력되는 분석 결과가 소정 기준을 만족하지 못하는 경우, 모델 학습부(22)로 하여금 다시 학습하도록 할 수 있다. 이 경우, 평가 데이터는 인식 모델을 평가하기 위한 기 정의된 데이터일 수 있다. 일 예로, 모델 평가부는 평가 데이터에 대한 학습된 인식 모델의 분석 결과 중, 분석 결과가 정확하지 않은 평가 데이터의 개수 또는 비율이 미리 설정되 임계치를 초과하는 경우, 소정 기준을 만족하지 못한 것으로 평가할 수 있다.
통신부(27)는 AI 프로세서(21)에 의한 AI 프로세싱 결과를 외부 전자 기기로 전송할 수 있다.
여기서 외부 전자 기기는 자율 주행 차량으로 정의될 수 있다. 또한, 상기 AI 장치(20)는 상기 자율 주행 모듈 차량과 통신하는 다른 차량 또는 5G 네트워크로 정의될 수 있다. 한편, 상기 AI 장치(20)는 차량 내에 구비된 자율주행 모듈에 기능적으로 임베딩되어 구현될 수도 있다. 또한, 상기 5G 네트워크는 자율 주행 관련 제어를 수행하는 서버 또는 모듈을 포함할 수 있다.
한편, 도 6에 도시된 AI 장치(20)는 AI 프로세서(21)와 메모리(25), 통신부(27) 등으로 기능적으로 구분하여 설명하였지만, 전술한 구성요소들이 하나의 모듈로 통합되어 AI 모듈로 호칭될 수도 있음을 밝혀둔다.
도 7은 본 명세서의 일 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 7에 도시된 전자 기기의 제어 방법은 도 4a에 도시한 제어부에서 구현되거나, 제어부가 프로세서의 조작을 지시함으로써 구현될 수 있다. 이하, 명세서에서는 제어부와 프로세서는 동일한 기능을 수행하는 것으로 가정하여 설명한다.
도 7을 참조하면, 전자 기기(100)의 프로세서(180)는 카메라를 통해 동영상을 촬영한다(S700).
상기 전자 기기는 이동 단말기에 구비된 적어도 하나의 카메라를 포함할 수 있다. 상기 전자 기기는 실내에 구비된 모니터링 카메라 시스템을 포함할 수도 있으며, 동영상 촬영 기기라면 제한이 없을 수 있다. 한편, 본 명세서의 일 실시에에 따라 오디오 줌 기능을 실행하는 전자 기기와 카메라는 분리되어 존재할 수도 있다. 일 실시예에 따라, 무선 통신부를 통해 카메라 시스템에서 촬영된 영상이 상기 전자 기기로 전달된 이후, 본 명세서에서 개시되는 오디오 줌 기능이 구현될 수도 있다.
프로세서(180)는 적어도 하나의 마이크로폰을 통해 상기 동영상 촬영 중 음향을 획득할 수 있다(S710).
프로세서(180)는 소정의 신호 처리를 통해 획득된 음향의 음원 방향을 감지할 수 있다(S720).
여기서 상기 소정의 신호 처리는, 복수의 음향 신호들 간의 상관 관계 또는 복수의 잡음 신호들 간의 상관 관계를 이용하여 음향 신호의 위치(예를 들어, 공간 상의 위상 또는 방향)을 결정하는 과정을 의미할 수 있다.
본 명세서의 일 실시예에 따라 동영상 촬영 중 음원 방향의 검출은 다양항 방법을 통해 구현될 수 있다.
일 실시예에 따라, 전자 기기(100)는 복수의 마이크를 구비할 수 있는데, 상기 복수의 마이크를 이용하여 특정 방향으로 빔이 형성되도록 하는 빔포밍 기술이 적용될 수 있다. 예를 들어, 복수의 마이크를 이용하는 빔포밍 기법이 적용되는 경우 이동 단말기(100)는 제1 빔 및 제2 빔을 형성하되, 제1 빔은 복수의 마이크의 전방으로 형성되고, 제2 빔은 상기 제1 빔을 기준으로 좌측 방향 및 우측 방향 중 적어도 하나의 방향으로 형성되도록 제어될 수 있다. 전자 기기(100)는 상기 제2 빔을 통해 수신된 오디오 신호와 제1 빔을 통해 수신된 오디오 신호의 차이를 이용하여 음성 신호를 추출할 수 있다. 이 경우, 노이즈 신호는 상기 제1 빔과 제2 빔을 통해 수신된 오디오 신호에서 제1 빔을 통해 수신된 오디오 신호를 차감하여 상기 노이즈 신호를 제거할 수 있다.
또한, 일 실시예에 따라 적응형 디지털 필터(Adaptive Digital Filter)를 적용한 빔포밍 방법이 적용될 수 있다. 전자 기기(100)에 구비된 복수의 마이크를 주 마이크와 부 마이크로 구분하되, 주 마이크 신호에서 부 마이크 신호를 뺀 신호가 적응형 디지털 필터(ADF)에 입력되도록 구성할 수 있다.
프로세서(180)는 음원 방향이 검출되면 상기 음향에 사람의 음성이 포함되어 있는지 여부를 판단할 수 있다
일 실시 예에 따르면, 프로세서(180)는 입력 신호에서 음성 신호의 존재 여부 또는 음성 신호의 존재 확률을 결정(또는 추정)할 수 있다. 예를 들어, 프로세서(180)는 하나의 채널에 대한 잡음 제거(noise suppression, NS)를 위하여 이용되는 SPP(speech presence probability) 추정 알고리즘 또는 복수의 채널에 대한 NS를 위하여 이용되는 CGMM 기반(complex Gaussian mixture model based) 추정 알고리즘을 이용하여 특정 주파수 대역에서 음성 신호가 존재하는 구간을 결정할 수 있다.
프로세서(180)는 상기 음원 방향에 위치하는 사람의 얼굴 및 입모양을 인식하고(S730), 립리딩 분석을 통해 발화 중인 화자를 인식할 수 있다(S740).
프로세서(180)는 미리 학습된 신경망 모델에 입력 영상을 적용함으로써, 사람의 얼굴을 인식할 수 있다. 상기 신경망 모델은 훈련 데이터의 종류에 따라 영상 내에서 얼굴 인식 뿐 아니라, 인식된 얼굴 내에서 눈, 코, 입 등의 랜드마크 위치를 함께 인식할 수 있다.
또한, 프로세서(180)는 카메라를 통해 촬영된 영상에 기초하여 상기 인식된 사람의 얼굴 내에서 입의 위치를 디텍트할 수 있다. 또한, 프로세서(180)는 입술 움직임을 판독함으로써, 상기 입술의 움직임에 따라 인식된 사람이 발화 중인지 여부를 판단할 수 있다.
일 실시에에 따라, 상기 입술의 움직임에 따라 윗입술과 아랫입술의 사이의 간격이 미리 정해진 크기 이상인 경우 화자가 발화 중인 것으로 판단할 수 있다. 또한, 일 실시예에 따라, 상기 인식된 사람의 입술의 특징점들을 검출하고 상기 특징점들의 위치 변화에 따라 발화 여부 및/또는 상기 발화에 따른 음성 인식 결과를 추정할 수 있도록 학습된 신경망 모델을 이용함으로써, 화자의 발화 여부를 판단할 수도 있다. 또한, 일 실시예에 따라, 상기 인식된 사람의 입술의 특징점들을 검출하고, 일정 시간 간격으로 입력되는 동영상 프레임에 기초하여 입술의 특징점들의 위치 변화가 상기 일정 시간 간격 내에 존재하는 것으로 판단하되, 상기 특징점들의 위치 변화가 미리 정해진 횟수 이상인 경우에 화자의 발화가 존재하는 것으로 판단할 수도 있다. 화자가 하품을 하는 경우 입술의 특징점 위치 변화가 존재하지만, 특징점의 위치 변화가 일정 횟수 이상 반복되는 경우에 한하여 발화가 존재하는 것으로 판단할 수 있다.
프로세서(180)는 상기 화자 방향에 기초하여 마이크로폰의 빔포밍을 수행하여 오디오 줌 기능을 실행할 수 있다(S750).
빔포밍 동작은 전자 기기(100)가 입력되는 음향 신호의 방향성을 제어하기 위하여 가중치(weight)를 적용하는 동작을 의미할 수 있다. 전자 기기(100)는 소정의 파라미터에 의해 결정되는 가중치를 입력되는 음향 신호들에 적용하여 음향 신호에 포함된 잡음 신호를 감쇠시킬 수 있다. 일 실시예에 따라 상기 빔포밍 동작의 수행에 이용되는 가중치는 DNN 모델에 의해 결정될 수 있다.
상기 빔포밍 동작은 소정의 신호처리 모듈에서 구현될 수 있으며, 신호 처리 모듈은 빔포밍을 수행하기 위한 일련의 동작을 수행하는 소프트웨어 모듈 또는 하드웨어 모듈을 포함할 수 있다. 상기 신호처리 모듈은 마이크로폰에 내장되고 프로세서(180)에 의해 제어될 수 있다.
한편, 일 실시예에 따라, 프로세서(180)는 화자의 방향을 인식하여 빔포밍 방향이 결정된 후, 상기 화자의 발화를 인식한 이후에 상기 빔포밍 방향에서 상기 마이크로폰의 이득을 조절할 수 있다. 예를 들어, 전자 기기(100)가 화자를 인식하더라도, 화자가 발화하고 있지 않는 동안에는 마이크로폰의 반응 감도는 낮게 유지하고 화자의 발화를 인식하는 시점 이후부터 마이크로폰의 반응 감도를 높게 유지함으로써, 빔 형성기의 조향된 파워를 필요시에 최대화시킴으로써 자원을 효율적으로 운용할 수 있다.
또한, 일 실시예에 따라, 프로세서(180)는 카메라를 통해 촬영 중인 화자와 전자 기기(100) 사이의 거리에 따라 마이크로폰의 이득을 조절함으로써, 오디오 줌을 보다 효율적으로 수행할 수 있다.
또한, 일 실시에에 따라, 프로세서(180)는 촬영 중인 동영상에 포함되어 있는 인물의 수에 따라 마이크로폰의 이득을 조절함으로써, 오디오 줌을 수행할 수 있다. 예를 들어, 화자는 한명이고 다수의 청중인 존재하는 강연 장면을 촬상하는 음성 신호와 구분되는 잡음 신호만이 제거되도록 마이크로폰의 빔포밍을 수행하거나, 상기 마이크로폰의 이득을 최대값으로 유지할 필요가 없을 수도 있다.
도 8은 도 7의 S730을 설명하기 위한 도면이다.
도 8을 참조하면, 프로세서(180)는 음원 방향이 검출되면, 검출된 음원 방향에 대한 정보를 얼굴 인식 동작에 활용할 수 있다. 예를 들어, 동영상 촬영 화면(MP)에 복수의 객체(P1,P2,P3)가 존재하고, 음원 방향이 위치하는 제1 영역(A1)에 제1 객체(P1)와 제2 객체(P2)가 존재할 수 있다.
프로세서(180)는 복수의 동영상 프레임(IF1,IF2,...,IFn)을 인공 신경망(ANN)의 입력으로 적용하고, 상기 인공 신경망을 통해 영상 인식(얼굴 인식) 동작을 수행하도록 제어할 수 있다. 상기 인공 신경망의 출력은 제1 객체(P1)의 얼굴 영상 및 제2 객체(P2)의 얼굴 영상을 포함할 수 있다. 상기 인공 신경망이 객체의 얼굴 뿐 아니라, 상기 얼굴 내부의 눈, 코, 입 까지 인식하도록 학습된 모델인 경우, 제1 객체(P1)의 얼굴 내에 눈(810), 코(820), 입(830)의 모양까지 구분되는 영상을 출력할 수 있다.
도 9는 얼굴 인식에 기초하여 입모양 변화를 통해 화자의 발화를 감지하는 예를 설명하기 위한 도면이다.
도 9를 참조하면, 인공 신경망을 통해 인식된 얼굴에 입의 위치까지 확인할 수 있다. 또한, 상기 인공 신경망은 입 모양의 변화를 감지하도록 학습된 모델일 수 있다. 얼굴 인식을 위한 인공 신경망은 사람의 입술을 검출하고, 검출된 입술에스 특징점(F1,F2,...F10)을 추출할 수 있다.
ANN은 일정 시간 동안의 촬영된 동영상의 프레임을 입력값으로 전달받고, 상기 프레임을 분석하여 화자가 발화 중인지, 아닌지 여부에 대한 결과를 출력할 수 있다. 여기서, ANN은 미리 정해진 시간 동안 화자 입모양의 변화가 존재하는지 여부를 판단할 수 있다.
일 실시예에 따라, 상기 화자 입모양의 변화는 음성 인식 분야에서 활용되는 립리딩(lipreading)이 활용될 수 있다. 이를 위해, 프로세서(180)는 촬영된 영상으로부터 인식에 필요한 특징을 추출할 수 있다. 영상에서 특징을 추출하는 방법은 크게 기하학적 모델을 이용하여 입술의 윤곽선을 추출하고, 추출된 입술 모델의 계수를 특징 값으로 사용하는 모델 기반의 방법이 있을 수 있다. 또한, 입력 영상에서 입술 영역을 추출한 후 픽셀값에 주성분 분석, 선형 판별 분석, 이산 코사인 변환 등의 변환을 적용하여 특징의 크기를 줄여서 사용하는 픽셀 기반의 방법이 적용될 수 있다.
일 실시예에 따라, 인공 신경망은 입력되는 영상으로부터 입술 특징을 검출할 수 있다. 상기 인공 신경망은 AAM(Active Appearance Model) 입술 모델의 기능을 수행하도록 학습된 모델일 수 있다. 이를 통해 입술의 형상(shape), 외관(appearance) 모델을 생성할 수 있다. 입술이 검출된 후, AAM 피팅 결과로 획득된 입술 특징점들을 기 생성한 형상 모델과 소정의 알고리즘을 이용하여 영상으로부터 입술을 추적할 수 있다. 연속된 입력 영상에 대해 입술을 추적한 결과 일련의 입술 모델 파라미터들을 일정 구간 프레임 데이터를 인공 신경망에 입력함으로써, 발화 구간인지 침묵 구간인지 여부를 판단할 수 있다.
도 10a 내지 도 10c는 본 명세서의 일 실시예에서 마이크의 지향 특성을 설명하기 위한 도면들이다.
도 10a는 무지향성 마이크의 감도 및 반경을 도시한다. 도 10a을 참조하면, 무지향성 마이크는 모든 각도에서 획득되는 음향에 반응하는 특성을 갖는다. 여기서 모든 각도라 함은 0도 내지 180도 방향에서 획득되는 음향에 동일하게 반응함을 의미한다.
도 10b는 단일 지향성 마이크의 감도 및 반영을 도시한다. 도 10b를 참조하면, 단일 지향성 마이크는 특정한 방향으로부터 획득되는 음향에만 민감한 반응을 나타낼 수 있다. 마이크가 향하는 전방 즉 0도 방향과 측면 방향(90도 방향)의 음향에만 반응을 하고, 전자 기기의 후방(뒤쪽) 방향으로부터의 음향에는 둔감할 수 있다.
도 10c는 초 지향성 마이크의 감도 및 반경을 도시한다. 도 10c를 참조하면, 전면 30도 방향 이내의 좁은 각도에서 획득되는 음향에만 민감한 반응을 보이고, 다른 각도에서 획득되는 음향에는 거의 반응을 하지 않을 수 있다.
본 명세서의 일 실시예에 따라 프로세서(180)는 도 10a 내지 도 10c의 지향 특성이 서로 다른 복수의 마이크로폰을 이용하여 화자 방향에서 발생하는 음성은 증폭하고, 상기 화자 방향을 제외한 방향에서의 음향은 감소시킬 수 있다.
한편, 본 명세서의 일 실시예에 따라 프로세서(180)는 화자의 위치가 변경되는 것을 인식하는 경우, 변경된 위치에 기초하여 마이크 빔포밍 동작이 수행되도록 제어할 수도 있다. 예를 들어, 서로 다른 지향 특성을 갖는 복수의 마이크를 선택적으로 이용함으로써, 변경된 위치에서의 화자 음성에 대하여 오디오 줌을 효율적으로 수행할 수 있다.
본 명세서의 일 실시에에 따라 프로세서(180)는 화자의 위치 변경을 음원 방향 검출을 통해서도 확인할 수 있지만, 화자로 특정된 후 발화하지 않은 상태에서 화자 위치 변경이 존재할 수도 있다. 이 경우, 프로세서(180)는 카메라 영상 내에서 특정된 화자의 위치가 실시간으로 변경되는 것을 디텍트함으로써 화자 위치 변경에 따른 오디오 줌을 제어할 수 있다.
도 11은 본 명세서의 다른 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 11을 참조하면, 전자 기기(100)의 프로세서(180)는 카메라를 통해 동영상을 촬영할 수 있다(S1100).
상기 전자 기기(100)는 복수의 마이크로폰을 구비할 수 있으며, 프로세서(180)는 상기 복수의 마이크로폰을 통해 상기 동영상을 촬영하는 중 음향을 획득할 수 있다(S1110). 복수의 마이크로폰이 구비된 전자 기기(100)는 마이크로폰의 개수만큼 음원을 분리할 수 있다.
또한, 프로세서(180)는 획득된 음향에 대하여 음원 방향을 검출할 수 있다(S120). S1100 내지 S1120은 도 7에서 설명한 바와 같다.
프로세서(180)는 획득된 음향에 사람의 음성이 존재하는지 판단할 수 있다. 프로세서(180)는 상기 음성이 복수의 사람으로부터 기인하는지 여부를 함께 판단할 수 있다(S1130). 프로세서(180)는 복수의 음성이 존재하는 것으로 판단한 경우, 복수의 마이크로폰을 이용하여 화자별 음성을 분리할 수 있다(S1140).
일반적으로 N 개의 마이크로폰이 소정의 음성 신호를 입력받는 경우, N 개의 음원 분리가 가능하다. 따라서, 분리된 음원수는 화자수에 대응될 수 있다. 화자 수에 대응되도록 마이크로폰의 개수가 준비된 전자 기기(100)의 경우, 마이크로폰을 통해 획득되는 음향으로부터 마이크로폰의 개수만큼 음원을 분리하고, 분리된 각각의 음원 방향에 기초하여 사람의 얼굴 및 입모양 인식 동작을 수행할 수 있다.
그러나, 전자 기기(100)가 구비한 마이크로폰의 수는 화자 수와 동일하지 않을 수 있다.
프로세서(180)는 분리된 음원수 상기 마이크로폰의 개수보다 많은 경우(S1150:Y), 복수의 화자 중 적어도 둘 이상을 하나의 그룹으로 설정함으로써, 복수의 마이크로폰 각각이 취음하는 화자수를 일치시킬 수 있다. 예를 들어, 프로세서(180)는 분리된 음원의 수가 마이크로폰의 개수보다 큰 경우, 촬영된 영상 내에서 복수의 화자 간 거리를 산출할 수 있다. 프로세서(180)는 화자간 거리에 가까운 화자들을 하나의 그룹으로 설정하고, 그룹 설정된 화자들에 대하여 하나의 마이크로폰의 빔포밍 방향이 설정된 그룹 전체를 커버하도록 오디오 줌을 수행할 수 있다.
한편, 프로세서(180)는 분리된 음원수가 상기 마이크로폰의 개수보다 적은 경우(S1150:N), 적어도 둘 이상의 마이프로폰의 빔포밍 방향이 동일하도록 제어할 수 있다. 프로세서(180)는 미리 정해진 기준에 따라 복수의 마이크로폰 중 적어도 둘 이상의 빔포밍 방향이 동일한 방향을 향하도록 제어할 수 있다. 예를 들어, 상기 미리 정해진 기준은 화자 간의 거리일 수 있다. 가까운 거리에 위치하는 화자들의 발화 시간이 적어도 일부가 중복되는 경우 하나의 마이크로폰으로 음원분리가 불가능할 수 있다. 따라서, 프로세서(180)는 마이크로폰의 수가 화자수 보다 많은 경우, 한 명의 화자 또는 둘 이상의 화자로부터 발화되는 음성에 대하여 적어도 둘 이상의 마이크로폰이 동일한 화자 그룹의 방향으로 빔포밍이 이루어지도록 마이크로폰을 제어할 수 있다.
도 12는 본 명세서의 일 실시예에 따른 전자 기기의 제어 방법의 흐름도이다.
도 12를 참조하면, 프로세서(180)는 카메라를 통해 동영상을 촬영하는 중 획득되는 음향의 음원 방향을 인식할 수 있다(S1200).
프로세서(180)는 상기 인식된 음원 방향에 대응되는 영역 내에 사람의 얼굴을 인식할 수 있다. 또한, 상기 사람의 얼굴 내에서 입모양의 변화를 인식할 수 있다(S1210). 프로세서(180)는 립리딩 프로세싱을 통해 인식된 사람이 발화 중임을 인식하는 경우, 화자가 존재하는 것으로 판단하고, 상기 화자의 발화를 확인할 수 있다.
상기 사람 얼굴의 인식 및 입모양 변화의 인식은 전술한 바와 같이, DNN 모델을 적용하여 검출될 수 있다.
프로세서(180)는 화자 방향에 기초하여 마이크로폰의 빔포밍을 제어하고, 입력되는 오디오 신호에 대하여 음성인식(speech recognition)을 수행할 수 있다(S1220).
프로세서(180)는 상기 음성인식 결과에 대응하는 텍스트를 촬영중인 동영상과 함께 메모리에 저장할 수 있다. 프로세서(180)는 수신된 오디오 신호로부터 자연어 처리(Natural Language Process)를 수행하여 화자의 의도가 반영된 발화 내용을 텍스트로 변환하여 동영상과 함께 저장할 수 있다(S1230). 일 실시예에 따라, 프로세서(180)는 수신된 오디오 신호를 무선 통신부를 통해 클라우드 서버로 전송하고, 상기 클라우드 서버로부터 자연어 처리결과를 수신하여 촬영된 동영상과 함께 저장할 수 있다.
일 실시에에 따라, 프로세서(180)는 상기 메모리에 저장된 동영상을 재생하는 경우, 상기 함께 저장된 음성 인식 결과에 대응하는 텍스트를 재생 중인 영상에 포함된 화자의 입모양에 매핑하여 디스플레이에 표시할 수 있다(S1240).
도 13은 도 12의 실시예를 설명하기 위한 도면이다.
도 13을 참조하면, 레코딩된 동영상을 재생하는 경우, 화자의 입모양 움직임에 대응되도록 음성인식 결과를 디스플레이에 표시할 수 있다. 도 13에 도시된 바와 같이, 저장된 동영상 재생을 제어하기 위한 프로그레스바(PB)를 통해 일시 정지 버튼이 입력되는 경우, 화자의 입술 움직임이 정지되고, 음성 인식 결과에 대한 표시 또한 함께 중단될 수 있다.
도 14는 본 명세서의 일 실시에에 따라 마이크의 빔포밍 방향을 설정하는 예를 설명하기 위한 도면이다.
도 14를 참조하면, 프로세서(180)는 화자의 방향을 인식한 경우, 마이크로폰의 빔포밍 방향을 설정하기 위한 가이드 정보를 디스플레이에 표시할 수 있다. 상기 가이드 정보는 상기 마이크로폰의 개수에 대응되는 그래픽 객체(G1,G2)를 포함할 수 있다. 프로세서(180)는 상기 특정 그래픽 객체(G1)와 특정 화자(SG1)를 연계시키는 제스처 입력(예를 들어, 드래그 입력)을 수신한 경우, 특정 마이크로폰(G1)의 빔포밍 방향을 상기 특정 화자(SG1)로 설정되도록 제어할 수 있다.
일 실시예 따라, 프로세서(180)는 음원 방향에 대하여 얼굴 인식 및 입모양 인식을 통해 화자 방향을 인식한 상태에서 마이크로폰의 개수와 화자수가 일치하는 경우는 상기 가이드 정보를 별도로 표시하지 않을 수 잇다. 일 실시에에 따라, 상기 마이크로폰의 개수와 화자수가 일치하지 않는 경우, 사용자가 마이크로폰의 빔포밍 방향을 화자에 대응되도록 설정하기 위한 가이드 정보를 표시할 수 있다.
전술한 본 명세서는, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
100: 전자 기기

Claims (20)

  1. 동영상을 촬영하는 카메라;
    상기 동영상을 촬영하는 중 음향을 획득하는 적어도 하나의 마이크로폰; 및
    상기 획득된 음향의 음향 특성에 기초하여 상기 음향의 음원 방향을 검출하고, 상기 음원 방향에 위치하는 사람의 얼굴 및 입 모양을 인식하고, 립리딩(lip reading) 분석을 통해 발화 중인 화자를 인식하는 프로세서;를 포함하고,
    상기 프로세서는,
    상기 인식된 화자의 방향에 기초하여 상기 마이크로폰의 빔포밍을 수행하여 오디오 줌(audio zoom)을 수행하는 것을 특징으로 하는 전자 기기.
  2. 제 1 항에 있어서,
    상기 프로세서는,
    영상으로부터 얼굴 인식을 위해 학습된 제1 학습 모델에 기초하여 상기 음원 방향에 위치하는 사람의 얼굴을 인식하는 것을 특징으로 하는 전자 기기.
  3. 제 2 항에 있어서,
    상기 제1 학습 모델은 인공 신경망을 포함하고, 상기 인공 신경망의 출력 결과는 상기 화자의 얼굴, 상기 얼굴 내에서 눈, 코, 입의 위치 정보를 포함하는 것을 특징으로 하는 전자 기기.
  4. 제 1 항에 있어서,
    상기 프로세서는,
    제2 학습 모델에 기초하여 상기 인식된 화자의 입술 모양의 변화를 통해 상기 화자가 발화중임을 인식하는 것을 특징으로 하는 전자 기기.
  5. 제 1 항에 있어서,
    상기 프로세서는,
    상기 화자 방향에서 발생하는 음성은 증폭하고, 상기 화자 방향을 제외한 방향에서의 음향은 감소시키는 것을 특징으로 하는 전자 기기.
  6. 제 1 항에 있어서,
    상기 프로세서는,
    상기 화자의 위치가 변경되었음을 인식한 경우, 변경된 위치에 기초하여 상기 마이크 빔포밍을 제어하는 것을 특징으로 하는 전자 기기.
  7. 제 6 항에 있어서,
    상기 프로세서는,
    상기 카메라를 통해 획득된 영상에 기초하여 상기 화자의 위치가 변경되었음을 인식하는 것을 특징으로 하는 전자 기기.
  8. 제 1 항에 있어서,
    상기 프로세서는,
    상기 마이크로폰을 통해 획득되는 음향을 분석하여 사람의 음성이 포함된 것으로 판단한 경우, 상기 음원 방향을 검출하는 것을 특징으로 하는 전자 기기.
  9. 제 1 항에 있어서,
    상기 프로세서는,
    상기 마이크로폰이 복수인 경우, 상기 마이크로폰을 통해 획득되는 음향으로부터 상기 마이크로폰의 개수만큼 음원을 분리하고, 분리된 각각의 음원 방향에 기초하여 상기 사람의 얼굴 및 입모양 인식 동작을 수행하는 것을 특징으로 하는 전자 기기.
  10. 제 9 항에 있어서,
    상기 프로세서는,
    상기 분리된 음원이 상기 마이크로폰의 개수보다 많은 경우, 복수의 화자 간 거리에 기초하여 상기 복수의 화자 중 적어도 둘 이상을 하나의 그룹으로 설정하고, 하나의 마이크로폰의 빔포밍 방향이 상기 설정된 그룹을 커버하여 상기 오디오줌을 수행하도록 제어하는 것을 특징으로 하는 전자 기기.
  11. 제 9 항에 있어서,
    상기 프로세서는,
    상기 분리된 음원이 상기 마이크로폰의 개수보다 적은 경우, 미리 정해진 기준에 따라 상기 복수의 마이크로폰 중 적어도 둘 이상의 빔포밍 방향이 동일한 방향을 향하도록 제어하는 것을 특징으로 하는 전자 기기.
  12. 제 1 항에 있어서,
    상기 적어도 하나의 마이크로폰은,
    전 방향의 음향에 동일한 감도로 반응하는 무지향 마이크, 전면 180도 범위의 방향의 음향에만 임계치 이상의 감도로 반응하는 단일 지향성 마이크 또는 전면 30도 범위의 방향으로부터의 음향에만 임계치 이상의 감도로 반응하는 초지향성 마이크 중 적어도 하나를 포함하는 것을 특징으로 하는 전자 기기.
  13. 제 1 항에 있어서,
    상기 프로세서는,
    상기 화자의 방향을 인식하여 상기 빔포밍 방향이 결정된 후, 상기 화자의 발화를 인식하는 경우, 상기 빔포밍 방향에서 상기 마이크로폰의 이득을 조절하는 것을 특징으로 하는 전자 기기.
  14. 제 1 항에 있어서,
    상기 프로세서는,
    상기 카메라를 통해 촬영 중인 상기 화자와의 거리에 따라 상기 마이크로폰의 이득을 조절하는 것을 특징으로 하는 전자 기기.
  15. 제 1 항에 있어서,
    상기 프로세서는,
    상기 오디오줌에 따라 상기 화자의 발화에 대하여 음성인식 결과에 대응하는 텍스트를 상기 동영상과 함께 메모리에 저장하는 것을 특징으로 하는 전자 기기.
  16. 제 15 항에 있어서,
    상기 프로세서는,
    상기 저장된 동영상을 재생하는 중 상기 음성인식 결과에 대응하는 텍스트를 상기 화자의 입모양에 매핑하여 디스플레이에 표시하는 것을 특징으로 하는 전자 기기.
  17. 제 1 항에 있어서,
    상기 프로세서는,
    상기 화자의 방향을 인식한 경우, 상기 빔포밍 방향을 설정하기 위한 가이드 정보를 디스플레이에 표시하는 것을 특징으로 하는 전자 기기.
  18. 제 17 항에 있어서,
    상기 가이드 정보는, 상기 마이크로폰의 개수에 대응되는 그래픽 객체를 포함하고,
    상기 프로세서는, 상기 특정 그래픽 객체와 특정 화자를 연계시키는 제스처 입력이 수신됨에 따라 특정 마이크로폰의 빔포밍 방향을 상기 특정 화자로 설정하도록 제어하는 것을 특징으로 하는 전자 기기.
  19. 제 1 항에 있어서,
    상기 촬영되는 동영상은 음성 데이터와 영상 데이터가 시간 동기화되어 저장부에 저장되고,
    상기 프로세서는,
    미리 정해진 수 이상의 프레임이 상기 저장부에 저장되는 경우, 영상 데이터와 음성 데이터를 각각 분석하는 것을 특징으로 하는 전자 기기.
  20. 카메라를 통해 동영상을 촬영하는 단계;
    적어도 하나의 마이크로폰을 통해 상기 동영상을 촬영하는 중 음향을 획득하는 단계;
    상기 획득된 음향의 음향 특성에 기초하여 상기 음향의 음원 방향을 검출하는 단계;
    상기 음원 방향에 위치하는 사람의 얼굴 및 입 모양을 인식하고, 립리딩(lip reading) 분석을 통해 발화 중인 화자를 인식하는 단계; 및
    상기 인식된 화자의 방향으로 상기 마이크로폰의 빔포밍 방향을 제어하여 오디오 줌(audio zoom)을 수행하는 단계;
    를 포함하는 전자 기기의 제어 방법.
KR1020200045736A 2020-04-16 2020-04-16 립리딩 기반의 화자 검출에 따른 오디오 줌 KR20210128074A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200045736A KR20210128074A (ko) 2020-04-16 2020-04-16 립리딩 기반의 화자 검출에 따른 오디오 줌
US16/941,470 US11250869B2 (en) 2020-04-16 2020-07-28 Audio zoom based on speaker detection using lip reading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200045736A KR20210128074A (ko) 2020-04-16 2020-04-16 립리딩 기반의 화자 검출에 따른 오디오 줌

Publications (1)

Publication Number Publication Date
KR20210128074A true KR20210128074A (ko) 2021-10-26

Family

ID=78081869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200045736A KR20210128074A (ko) 2020-04-16 2020-04-16 립리딩 기반의 화자 검출에 따른 오디오 줌

Country Status (2)

Country Link
US (1) US11250869B2 (ko)
KR (1) KR20210128074A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234429A1 (ko) * 2022-05-30 2023-12-07 엘지전자 주식회사 인공 지능 기기
KR102640762B1 (ko) * 2023-05-15 2024-02-28 주식회사 상화 화자 기반 영상 오토 스위칭 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107171A1 (en) 2016-12-09 2018-06-14 The Research Foundation For The State University Of New York Fiber microphone
US11881220B2 (en) * 2019-05-15 2024-01-23 Lg Electronics Inc. Display device for providing speech recognition service and method of operation thereof
KR20210061115A (ko) * 2019-11-19 2021-05-27 엘지전자 주식회사 인공지능형 로봇 디바이스의 음성 인식 방법
US11688412B2 (en) * 2020-06-15 2023-06-27 Tencent America LLC Multi-modal framework for multi-channel target speech separation
CN111833899B (zh) * 2020-07-27 2022-07-26 腾讯科技(深圳)有限公司 一种基于多音区的语音检测方法、相关装置及存储介质
US20220415003A1 (en) * 2021-06-27 2022-12-29 Realtek Semiconductor Corp. Video processing method and associated system on chip
US20230031145A1 (en) * 2021-07-29 2023-02-02 Comcast Cable Communications, Llc Accidental voice trigger avoidance using thermal data
US20230068798A1 (en) * 2021-09-02 2023-03-02 Amazon Technologies, Inc. Active speaker detection using image data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154644B2 (en) * 2008-10-08 2012-04-10 Sony Ericsson Mobile Communications Ab System and method for manipulation of a digital image
US11082460B2 (en) * 2019-06-27 2021-08-03 Synaptics Incorporated Audio source enhancement facilitated using video data
KR20210017229A (ko) * 2019-08-07 2021-02-17 삼성전자주식회사 오디오 줌 기능을 갖는 전자 장치 및 이의 동작 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234429A1 (ko) * 2022-05-30 2023-12-07 엘지전자 주식회사 인공 지능 기기
KR102640762B1 (ko) * 2023-05-15 2024-02-28 주식회사 상화 화자 기반 영상 오토 스위칭 방법

Also Published As

Publication number Publication date
US11250869B2 (en) 2022-02-15
US20210327447A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
KR102201858B1 (ko) 인공지능 기반 영상 편집 방법 및 지능형 디바이스
KR20210128074A (ko) 립리딩 기반의 화자 검출에 따른 오디오 줌
KR102384641B1 (ko) 다국어 처리를 수행하는 인공 지능 시스템의 제어 방법
KR102130503B1 (ko) 이동 단말기
CN112468655B (zh) 智能电子装置
KR102421487B1 (ko) 인공 지능 기기
KR102225918B1 (ko) 인공 지능 기기
US11082610B2 (en) Artificial device and method of collecting image of the same
KR102455199B1 (ko) 인공지능 디바이스
US11073541B2 (en) Intelligent method for controlling home appliance, apparatus and intelligent computing device for controlling home appliance
KR102479499B1 (ko) 이동 단말기
US11057750B2 (en) Intelligent device controlling method, mobile terminal and intelligent computing device
KR20190106939A (ko) 증강현실기기 및 이의 제스쳐 인식 캘리브레이션 방법
KR20190099170A (ko) 지능형 단말의 주변 상황에 따른 알림 제공 방법 및 이를 위한 장치
US20200043241A1 (en) Artificial device and method for controlling the same
KR20210077977A (ko) 지능형 전자 디바이스 및 이를 이용한 얼굴 인식 방법
KR102434459B1 (ko) 이동 단말기
KR20190103085A (ko) 지능형 진단 디바이스
US20210405758A1 (en) Method of controlling augmented reality electronic device
KR102369559B1 (ko) 단말기
US11240602B2 (en) Sound quality improvement based on artificial intelligence
KR102114064B1 (ko) 이동 단말기
KR20210087788A (ko) 이미지 콘텍스트 처리
KR102120674B1 (ko) 이동 단말기