KR20210124775A - Manufacturing method of porous body using natural mineral resources and preparation of porous body using same - Google Patents

Manufacturing method of porous body using natural mineral resources and preparation of porous body using same Download PDF

Info

Publication number
KR20210124775A
KR20210124775A KR1020200042264A KR20200042264A KR20210124775A KR 20210124775 A KR20210124775 A KR 20210124775A KR 1020200042264 A KR1020200042264 A KR 1020200042264A KR 20200042264 A KR20200042264 A KR 20200042264A KR 20210124775 A KR20210124775 A KR 20210124775A
Authority
KR
South Korea
Prior art keywords
porous body
natural mineral
manufacturing
mineral resources
natural
Prior art date
Application number
KR1020200042264A
Other languages
Korean (ko)
Other versions
KR102388716B1 (en
Inventor
허대준
안종빈
유은진
천혜빈
Original Assignee
주식회사 디아이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디아이씨 filed Critical 주식회사 디아이씨
Priority to KR1020200042264A priority Critical patent/KR102388716B1/en
Publication of KR20210124775A publication Critical patent/KR20210124775A/en
Application granted granted Critical
Publication of KR102388716B1 publication Critical patent/KR102388716B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/50Zeolites wherein inorganic bases or salts occlude channels in the lattice framework, e.g. sodalite, cancrinite, nosean, hauynite
    • C01B39/52Sodalites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention relates to a method for manufacturing a porous body using natural mineral resources and manufacturing a porous body using the same. The present invention enables a ceramic porous to be manufactured from natural mineral resources through a simple aging and recrystallization process that does not require high-temperature/high-pressure devices or a complicated procedure, thereby having an advantage in terms of manufacturing energy. To this end, the present invention comprises: 1) a step for pulverizing natural minerals; 2) a step for adding a solvent and alkali to the mineral pulverized in step 1 and allowing a ripening reaction to proceed; 3) a step for crystallizing the reactant obtained in step 2 by adding distilled water thereto; and 4) a step for obtaining a porous body by washing and drying the crystals obtained in step 3.

Description

천연광물자원을 활용한 다공체 제조방법 및 이를 이용한 다공체 제조{Manufacturing method of porous body using natural mineral resources and preparation of porous body using same}Method for manufacturing a porous body using natural mineral resources and manufacturing a porous body using the same

본 발명은 천연광물자원을 활용한 다공체 제조방법 및 이를 이용한 다공체 제조에 관한 것이다.The present invention relates to a method for manufacturing a porous body using natural mineral resources and to manufacturing a porous body using the same.

일반적으로 천연 층상 광물은 2차원적으로 전개된 실리카 사면체 층의 상부 및 하부에 알루미늄 팔면체 층이 일정한 형태로 결합·적층되어 있는 광물로서 실리카 사면체층과 알루미늄 팔면체층의 적층된 형태에 따라 2:1형 또는 1:1형 구조로 분류된다.In general, a natural layered mineral is a mineral in which an aluminum octahedral layer is combined and laminated in a certain form on the upper and lower portions of the two-dimensionally developed silica tetrahedral layer. It is classified as a type or 1:1 type structure.

대표적인 2:1형 구조의 층상 광물은 운모, 버미큘라이트, 몬모릴로나이트 등이 있으며, 1:1형 구조를 이루는 광물로는 사문석, 카올린 등이 있다.Typical layered minerals with a 2:1 structure include mica, vermiculite, and montmorillonite, and minerals with a 1:1 structure include serpentine and kaolin.

이중 카올린(고령토)은 세계적으로 제지와 요업용으로 수요가 급증하고 있는 광물이나, 국내 고령토는 정제하여 사용해야 하는 저품위 광석이 고품위 광석보다 많은 실정이며, 주로 고품위 광석은 도자기용으로만 사용되고 있고, 저품위 광석은 폐기하고 있기 때문에 이를 활용할 기술 개발이 시급한 현실이다.Among them, kaolin (kaolin) is a mineral whose demand is rapidly increasing worldwide for paper and ceramics. Since ore is being discarded, it is urgent to develop technology to utilize it.

한편, 세라믹스 제조 분야에서 실리카와 알루미나의 원료원으로 층상 광물이 주로 사용되는데, 이러한 층상 광물은 안정하여 활성이 없으므로 대부분의 경우 고온에서 소성하거나, 또는 산, 알칼리 처리를 통해 활성을 부여한 후 세라믹스의 원료로 사용하고 있다.On the other hand, in the field of ceramics manufacturing, layered minerals are mainly used as raw materials for silica and alumina. Since these layered minerals are stable and inactive, in most cases, they are calcined at a high temperature or after giving activity through acid or alkali treatment, It is used as raw material.

특히, 종래 층상 광물은 그 화학 조성이 제올라이트와 유사하여 알칼리와의 수열 합성을 통해 제올라이트 다공체를 합성하는데 널리 이용되고 있다.In particular, since the conventional layered mineral has a chemical composition similar to that of zeolite, it is widely used to synthesize a zeolite porous body through hydrothermal synthesis with alkali.

그러나 상기와 같이 층상 광물을 원료로 하여 제올라이트를 합성하는 방법은, 반응 조건이 매우 엄격하여 일반적으로 100℃ 이상의 고온과 높은 압력 조건에서 장시간 반응하여야만 제조가 가능한 것으로 알려져 있다. 또한, 그 제조 기술은 고가의 장치나 복잡한 설비를 필요로 하고, 공정이 복잡하므로 경제적인 측면에서도 문제가 되고 있다.However, the method of synthesizing zeolite using the layered mineral as a raw material as described above is known to be possible only when the reaction conditions are very strict and generally react for a long time under high temperature and high pressure conditions of 100° C. or more. In addition, the manufacturing technology requires expensive equipment or complicated equipment, and since the process is complicated, it is also a problem in terms of economy.

이에 따라, 천연 층상 광물은, 고유의 분체 특성을 이용하는 분야에서만 제한적으로 사용될 뿐 제올라이트와 같이 고온, 고압의 엄격한 제조 조건이 요구되는 제품의 원료로 사용하기에는 부적합한 단점이 있어왔다.Accordingly, natural lamellar minerals are limitedly used only in fields using their unique powder properties, and are unsuitable for use as raw materials for products requiring strict manufacturing conditions of high temperature and high pressure, such as zeolite.

따라서 가공되지 않은 저가의 천연광물자원으로부터 고온/고압의 장치나 복잡한 공정의 필요없이 간단한 방법으로 세라믹 다공체를 제조하여 고부가가치를 이룰 수 있는 방법에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on a method that can achieve high added value by manufacturing a ceramic porous body by a simple method without the need for a high-temperature/high-pressure device or complicated process from an unprocessed low-cost natural mineral resource.

1. 대한민국 등록특허 10-1869394(2018.06.21. 공고)1. Republic of Korea Patent Registration 10-1869394 (2018.06.21. Announcement)

본 발명의 목적은 천연광물자원으로부터 고온/고압의 장치나 복잡한 공정의 필요없이 간단한 방법으로 세라믹 다공체를 제조하는 방법을 제공하는 데 있다.It is an object of the present invention to provide a method for manufacturing a ceramic porous body from natural mineral resources in a simple manner without the need for high-temperature/high-pressure devices or complicated processes.

또한, 본 발명의 다른 목적은 상기 방법으로 제조되어 종래 제올라이트 보다 특성이 우수한 다공체를 제공하는 데 있다.In addition, another object of the present invention is to provide a porous body manufactured by the above method and having superior properties than conventional zeolites.

상기 목적을 달성하기 위하여, 본 발명은 천연광물을 분쇄하는 단계(제 1단계); 상기 제 1단계에서 분쇄된 광물에 용매 및 알칼리를 첨가하여 숙성 반응시키는 단계(제 2단계): 상기 제 2단계의 반응물에 증류수를 첨가하여 결정화시키는 단계(제 3단계); 및 상기 제 3단계의 결정을 세척 및 건조하여 다공체를 수득하는 단계(제 4단계); 를 포함하는 천연광물자원을 활용한 다공체 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of pulverizing natural minerals (first step); The step of aging reaction by adding a solvent and alkali to the mineral pulverized in the first step (second step): crystallizing by adding distilled water to the reactant of the second step (third step); and washing and drying the crystals of the third step to obtain a porous body (fourth step); It provides a method for manufacturing a porous body using natural mineral resources, including

또한, 본 발명은 상기 천연광물자원을 활용한 다공체 제조방법에 의해 제조되는 것을 특징으로 하는 천연광물자원을 활용한 다공체를 제공한다.In addition, the present invention provides a porous body utilizing a natural mineral resource, characterized in that manufactured by the method for manufacturing a porous body utilizing the natural mineral resource.

본 발명은 천연광물자원으로부터 간단한 숙성 및 재결정화 과정을 통해 세라믹 다공체를 제조할 수 있으며, 고온/고압의 장치나 복잡한 공정이 필요 없어 제조 에너지 측면에서도 이점이 있다.The present invention can manufacture a ceramic porous body from natural mineral resources through a simple aging and recrystallization process, and there is no need for a high-temperature/high-pressure device or a complicated process, which is advantageous in terms of manufacturing energy.

또한, 상기 방법을 통해 제조된 다공체는 종래 제올라이트 보다 비표면적이 높으며, 이온교환성이 우수하여 촉매, 흡착제, 분자체, 이온교환제, 멤브레인 소재로 유용하게 이용될 수 있다.In addition, the porous body prepared through the above method has a higher specific surface area than conventional zeolite and has excellent ion exchange properties, so that it can be usefully used as a catalyst, an adsorbent, a molecular sieve, an ion exchanger, and a membrane material.

게다가, 가공되지 않은 저가 천연광물자원인 고령토를 원료화할 수 있어, 광물자원의 부가가치 향상은 물론 세라믹 분야에서도 새로운 원료 소재로의 수요 창출을 기대할 수 있는 효과가 있다.In addition, since kaolin, which is a low-cost natural mineral resource that has not been processed, can be used as a raw material, it is possible to not only improve the added value of mineral resources but also to create demand for new raw materials in the ceramic field.

도 1은 본 발명에 따른 천연광물자원을 활용한 다공체 제조방법을 개략적으로 나타낸 도면이다.
도 2는 본 발명에 따라 제조된 다공체의 미세구조 변화를 FE-SEM으로 분석한 결과를 나타낸 도면이다.
도 3은 본 발명에 따라 제조된 다공체의 결정구조를 소달라이트의 결정구조와 비교한 XRD 분석 결과를 나타낸 도면이다.
도 4는 본 발명에 따라 제조된 다공체의 결정구조를 제올라이트, 소달라이트의 결정구조와 비교한 XRD 분석 결과를 나타낸 도면이다.
도 5는 본 발명에 따라 제조된 다공체의 비표면적 분석 결과를 나타낸 도면이다.
도 6은 본 발명에 따라 제조된 다공체의 실험조건(실험 1(a) 내지 실험 3(c))에 따른 양이온 교환능 분석 결과를 나타낸 도면이다.
1 is a view schematically showing a method for manufacturing a porous body using natural mineral resources according to the present invention.
2 is a view showing the result of analyzing the microstructure change of the porous body prepared according to the present invention by FE-SEM.
3 is a view showing the results of XRD analysis comparing the crystal structure of the porous body prepared according to the present invention with that of sodalite.
4 is a view showing the results of XRD analysis comparing the crystal structure of the porous body prepared according to the present invention with the crystal structure of zeolite and sodalite.
5 is a view showing a specific surface area analysis result of a porous body prepared according to the present invention.
6 is a view showing the cation exchange capacity analysis results according to the experimental conditions (Experiment 1 (a) to Experiment 3 (c)) of the porous body prepared according to the present invention.

이하에서는 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 가공되지 않은 저가 원료인 고령토로부터 고온/고압의 장치나 복잡한 공정의 필요없이 간단한 숙성 및 재결정화 과정을 통해 세라믹 다공체를 제조할 수 있는 최적 제조방법을 확인하였으며(도 1), 상기 방법을 통해 제조된 다공체는 종래 제올라이트 보다 비표면적이 높으며, 이온교환성이 우수하여 촉매, 흡착제, 분자체, 이온교환제, 멤브레인 소재로 유용하게 이용될 수 있음을 밝혀내어 본 발명은 완성하였다.The present inventors have identified an optimal manufacturing method capable of manufacturing a ceramic porous body from unprocessed low-cost raw material kaolin through simple aging and recrystallization without the need for high-temperature/high-pressure equipment or complicated processes (FIG. 1), the method The present invention has been completed by revealing that the porous body produced through zeolite has a higher specific surface area than conventional zeolites and has excellent ion exchange properties, which can be usefully used as catalysts, adsorbents, molecular sieves, ion exchangers, and membrane materials.

본 발명은 도 1과 같이 천연광물을 분쇄하는 단계(제 1단계); 상기 제 1단계에서 분쇄된 광물에 용매 및 알칼리를 첨가하여 숙성 반응시키는 단계(제 2단계): 상기 제 2단계의 반응물에 증류수를 첨가하여 결정화시키는 단계(제 3단계); 및 상기 제 3단계의 결정을 세척 및 건조하여 다공체를 수득하는 단계(제 4단계); 를 포함하는 천연광물자원을 활용한 다공체 제조방법을 제공한다.The present invention comprises the steps of pulverizing natural minerals as shown in FIG. 1 (first step); The step of aging reaction by adding a solvent and alkali to the mineral pulverized in the first step (second step): crystallizing by adding distilled water to the reactant of the second step (third step); and washing and drying the crystals of the third step to obtain a porous body (fourth step); It provides a method for manufacturing a porous body using natural mineral resources, including

상기 천연광물은 경석(pumice), 운모(mica), 버미큘라이트(vermiculite), 몬모릴로나이트(montmorillonite), 벤토나이트(bentonite), 사문석(serpentine), 카올린(kaolin), 백운모(Muscovite), 회장석(Anorthite) 및 중성장석(Andesine)으로 이루어진 군에서 하나 이상 선택될 수 있으며, 바람직하게는 카올린(고령토)일 수 있으나, 이에 제한되는 것은 아니다.The natural minerals are pumice, mica, vermiculite, montmorillonite, bentonite, serpentine, kaolin, muscovite, ilealite (Anorthite) and At least one may be selected from the group consisting of mesolithic stone (Andesine), preferably kaolin (kaolin), but is not limited thereto.

또한, 상기 알칼리는 NaOH, KOH 및 BaOH 으로 이루어진 군에서 하나 이상 선택되며, 바람직하게는 NaOH가 이용될 수 있으나, 이에 제한되는 것은 아니다.In addition, the alkali is at least one selected from the group consisting of NaOH, KOH and BaOH, and preferably NaOH may be used, but is not limited thereto.

또한, 상기 제 2단계에서 광물, 용매 및 알칼리는 각각 1 : (0.05 내지 2) : (0.5 내지 30)의 질량비로 첨가되는 것을 특징으로 하며, 용매는 에틸렌글리콜(Ethylene glycol), 아이소프로필알코올(Isopropyl alcohol) 및 증류수로 이루어진 군에서 하나 이상 선택될 수 있는데, 바람직하게는 에틸렌글리콜(Ethylene glycol)을 사용할 수 있으나, 이에 제한되는 것은 아니다.In addition, in the second step, the mineral, the solvent, and the alkali are each added in a mass ratio of 1: (0.05 to 2): (0.5 to 30), and the solvent is ethylene glycol, isopropyl alcohol ( Isopropyl alcohol) and at least one may be selected from the group consisting of distilled water, and preferably, ethylene glycol may be used, but is not limited thereto.

또한, 상기 제 2단계의 숙성 반응은 30 내지 100℃에서 2 내지 10시간동안 수행하며, 바람직하게는 50℃에서 4시간동안 수행될 수 있으나, 이에 제한되는 것은 아니다.In addition, the aging reaction of the second step may be performed at 30 to 100° C. for 2 to 10 hours, preferably at 50° C. for 4 hours, but is not limited thereto.

또한, 상기 제 3단계에서 알칼리 농도가 1 내지 15M이 되도록 증류수를 첨가할 수 있으며, 바람직하게는 알칼리 농도가 3M이 되도록 증류수를 첨가할 수 있으나, 이에 제한되는 것은 아니다.In addition, distilled water may be added so that the alkali concentration becomes 1 to 15M in the third step, and distilled water may be added so that the alkali concentration is preferably 3M, but is not limited thereto.

또한, 상기 제 3단계의 결정화는 50 내지 150℃에서 5 내지 20시간동안 수행할 수 있으며, 바람직하게는 90℃에서 12시간 수행할 수 있으나, 이에 제한되는 것은 아니다.In addition, the crystallization of the third step may be performed at 50 to 150° C. for 5 to 20 hours, preferably at 90° C. for 12 hours, but is not limited thereto.

또한, 상기 제 4단계의 건조는 50 내지 150℃에서 10 내지 30시간동안 수행할 수 있으며, 바람직하게는 80℃에서 24시간 수행할 수 있으나, 이에 제한되는 것은 아니다.In addition, drying in the fourth step may be performed at 50 to 150° C. for 10 to 30 hours, preferably at 80° C. for 24 hours, but is not limited thereto.

이때, 상기와 같은 숙성, 결정, 건조 조건과 광물, 용매 및 알칼리의 질량비 조건 및 증류수 첨가에 따른 알칼리 농도 조건을 벗어나면 본 발명에 따른 다공체가 제대로 형성되지 않아 우수한 비표면적 및 이온교환 특성 효과를 가질 수 없게 되거나, 목적 산물의 수율이 현저히 낮아져 경제적이지 못한 문제가 야기될 수 있다.At this time, if the aging, crystallization and drying conditions as described above, the mass ratio conditions of minerals, solvents and alkalis, and the alkali concentration conditions according to the addition of distilled water are exceeded, the porous body according to the present invention is not properly formed, resulting in excellent specific surface area and ion exchange characteristics. It may not be possible to have it, or the yield of the target product may be significantly lowered, which may cause uneconomical problems.

또한, 본 발명은 상기 천연광물자원을 활용한 다공체 제조방법에 의해 제조되는 것을 특징으로 하는 천연광물자원을 활용한 다공체를 제공한다.In addition, the present invention provides a porous body utilizing a natural mineral resource, characterized in that manufactured by the method for manufacturing a porous body utilizing the natural mineral resource.

본 발명의 일 실시예에 따라 제조된 다공체는 종래 시약급의 제올라이트(Zeolite 4A(제조사: Wako)) 다공체와 비교하여 비표면적이 10배 이상 높으며, 이온교환능 특성 또한 우수함을 확인하여 촉매, 흡착제, 분자체, 이온교환제, 멤브레인 소재 등 다양한 분야로의 활용이 가능하다.The porous body prepared according to an embodiment of the present invention has a specific surface area more than 10 times higher than that of a conventional reagent-grade zeolite (Zeolite 4A (Manufacturer: Wako)) porous body, and has excellent ion exchange capacity characteristics. It can be used in various fields such as molecular sieves, ion exchangers, and membrane materials.

따라서 본 발명은 고온/고압의 장치나 복잡한 공정 필요 없이 저가의 광물자원인 고령토를 원료화할 수 있어, 광물자원의 부가가치 향상은 물론 세라믹 분야에서도 새로운 원료 소재로의 수요 창출을 기대할 수 있는 효과가 있다.Therefore, the present invention can convert kaolin, a low-cost mineral resource, into a raw material without the need for high-temperature/high-pressure equipment or complicated processes, so it is possible to not only improve the added value of mineral resources but also create demand for new raw materials in the ceramic field. .

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for explaining the present invention in more detail, and it is to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples according to the gist of the present invention. it will be self-evident

<< 실시예Example 1> 고령토를 이용한 다공체 제조 1> Manufacture of porous body using kaolin

1. 분쇄1. crush

고령토의 입도를 제어하기 위한 단계로서, 가공되지 않은 고령토(경상남도 산청)의 입자를 지르코니아볼을 이용하여 미분화하였다.As a step for controlling the particle size of kaolin, particles of unprocessed kaolin (Sancheong, Gyeongsangnam-do) were pulverized using zirconia balls.

구체적으로, 고령토, 10mm 지르코니아볼 및 20mm 지르코니아볼을 1:1:1의 중량비로 테이블 볼밀링을 이용하여 24시간 동안 건식 분쇄하여 고령토 파우더를 제조하였다.Specifically, kaolin powder was prepared by dry grinding kaolin, 10 mm zirconia balls, and 20 mm zirconia balls in a weight ratio of 1:1:1 using table ball milling for 24 hours.

2. 숙성2. ripening

다공체의 씨드(seed)를 형성하기 위한 단계로서, 에틸렌글리콜(Ethylene glycol), NaOH 및 상기 분쇄된 고령토 파우더를 혼합/분산하였다.As a step for forming the seed of the porous body, ethylene glycol, NaOH, and the pulverized kaolin powder were mixed/dispersed.

구체적으로, 폴리에틸렌(Poly Ethylene, PE) 재질의 500ml 광구병에 하기 표 1과 같이 에틸렌글리콜(Ethylene glycol) 용매를 120 g, 고령토를 21 g, NaOH를 24 g 투입하여 50 ℃, 150 rpm의 조건에서 4시간 동안 교반하여 숙성과정을 수행하였다.Specifically, 120 g of ethylene glycol solvent, 21 g of kaolin, and 24 g of NaOH were added to a 500 ml wide-mouth bottle made of polyethylene (Poly Ethylene, PE) as shown in Table 1 below under conditions of 50 °C and 150 rpm. The aging process was performed by stirring for 4 hours.

3. 결정화3. Crystallization

상기 숙성과정에서 형성된 다공체 씨드의 결정화를 위한 단계로서, 상기 숙성단계에서 제조된 혼합물에 증류수를 투입하여 용액 상 NaOH의 농도를 조절하였다.As a step for crystallization of the porous seed formed in the aging process, distilled water was added to the mixture prepared in the aging step to adjust the concentration of NaOH in the solution.

구체적으로, 하기 표 1과 같이 상기 혼합물에 증류수를 NaOH의 농도가 각각 12 M(투입 증류수 양 : 50 g, 이하 '실험 1'), 6 M(투입 증류수 양 : 100 g, 이하 '실험 2'), 3 M(투입 증류수 양 : 200 g, 이하 '실험 3')이 될 수 있도록 제어하여 투입한 후, 90℃, 200 rpm의 조건에서 12시간 동안 결정화를 수행하였다.Specifically, as shown in Table 1 below, the concentration of distilled water and NaOH in the mixture was 12 M (input distilled water amount: 50 g, hereinafter 'Experiment 1'), 6 M (input distilled water amount: 100 g, hereinafter 'Experiment 2') ), 3 M (input distilled water amount: 200 g, hereinafter 'Experiment 3') was controlled to be added, and crystallization was performed for 12 hours at 90° C. and 200 rpm.

Figure pat00001
Figure pat00001

4. 세척 및 건조4. Wash and dry

상기 결정화 과정 수행 후, 반응물에 대한 세척 및 건조를 위한 단계로서, 결정화가 완료된 샘플을 수거한 후 증류수를 이용하여 초음파 세척을 15분, 3회 진행하고, 세척이 완료된 샘플은 서스 트레이(Sus tray)를 이용하여 80 ℃에서 24시간동안 건조하였다.After the crystallization process is performed, as a step for washing and drying the reactants, after collecting the crystallized sample, ultrasonic washing is performed for 15 minutes using distilled water 3 times, and the washed sample is placed on a sus tray ) and dried at 80 °C for 24 hours.

<< 실험예Experimental example 1> FE- 1> FE- SEMSEM 측정 분석 measurement analysis

상기 <실시예 1>에서 제조된 실험 1 내지 3 샘플과 아무 처리를 수행하지 않은 고령토를 Tescn의 Mira3(FE-SEM) 주사전자현미경 장비를 이용하여 가속전압 20kV로 형태 분석을 수행하였다.The samples of Experiments 1 to 3 prepared in Example 1 and kaolin untreated were subjected to morphological analysis using a Mira3 (FE-SEM) scanning electron microscope of Tescn at an acceleration voltage of 20 kV.

그 결과, 아무 처리를 수행하지 않은 고령토와 비교하여 실험 1 내지 3은 약 700 nm의 구형 미립자가 형성되는 것을 확인하였다. 또한, 증류수 첨가량이 증가하여 NaOH의 농도가 옅어짐에 따라 원만한 형태의 구(spherical)가 형성되는 것을 확인하였다(도 2).As a result, it was confirmed that spherical fine particles of about 700 nm were formed in Experiments 1 to 3 compared to kaolin without any treatment. In addition, as the concentration of NaOH decreased as the amount of distilled water was increased, it was confirmed that a spherical shape of a smooth shape was formed (FIG. 2).

다만, 결정화 단계에서 투입되는 증류수의 양이 300g 이상일 경우, 다공체 합성이 불가능해짐을 확인하였다.However, it was confirmed that when the amount of distilled water input in the crystallization step was 300 g or more, the synthesis of the porous body became impossible.

<< 실험예Experimental example 2> EDS 분석 2> EDS analysis

상기 FE-SEM 장비에 부착된 EDS(Energy Dispersive X-ray Spectroscopy) 장비를 이용하여 Point scan 으로 실험 1 내지 3 샘플의 성분분석을 수행하였다.Component analysis of the samples of Experiments 1 to 3 was performed by point scan using EDS (Energy Dispersive X-ray Spectroscopy) equipment attached to the FE-SEM equipment.

그 결과, 각 샘플은 하기 표 2와 같은 조성을 얻었으며, 표 3과 같이 각 샘플의 Si/Al의 비율은 약 1인 것으로 확인되었다.As a result, each sample obtained the composition shown in Table 2 below, and it was confirmed that the ratio of Si/Al of each sample was about 1 as shown in Table 3.

조성(Composition)(atomic Composition (atomic) %% )) 샘플명sample name OO NaNa AlAl SiSi KK CaCa TiTi FeFe CuCu 실험 1Experiment 1 47.8047.80 7.377.37 20.3320.33 22.9422.94 -- -- -- 0.830.83 1.11.1 실험 2Experiment 2 70.8270.82 4.674.67 8.238.23 13.6413.64 2.542.54 -- -- 0.0350.035 0.070.07 실험 3Experiment 3 67.2667.26 8.398.39 11.7911.79 11.7011.70 0.090.09 0.120.12 0.050.05 0.450.45 0.120.12

샘플명sample name SiSi /Al/Al 실험 1Experiment 1 1.121.12 실험 2Experiment 2 1.671.67 실험 3Experiment 3 0.990.99

이는, 하기 표 4와 같이 종래 보고된 소달라이트(Sodalite)와 제올라이트(Zeolite) A 다공체의 화학조성식과 유사함을 확인하였다.This was confirmed to be similar to the chemical formulas of the porous bodies of Sodalite and Zeolite A reported previously as shown in Table 4 below.

다공체명Porous body name 화학조성식chemical formula 구조structure Zeolite 4AZeolite 4A Na12Al12Si12O48 Na 12 Al 12 Si 12 O 48 입방(Cubic)Cubic Zeolite 4A
(K-exchanged,dehydrated)
Zeolite 4A
(K-exchanged, dehydrated)
K3Na9Al12Si12O48 K 3 Na 9 Al 12 Si 12 O 48 입방(Cubic)Cubic
Hydro SodaliteHydro Sodalite Na8H6Al6O28Si6 Na 8 H 6 Al 6 O 28 Si 6 입방(Cubic)Cubic Sodalite basicSodalite basic Na8H6Al6O28Si6 Na 8 H 6 Al 6 O 28 Si 6 입방(Cubic)Cubic

<< 실험예Experimental example 3> 3> XRDXRD 분석 analysis

상기 <실시예 1>에서 제조된 실험 1 내지 3 샘플에 대하여 40kV, 40mA의 Cu Kα x-선을 Scan speed 0.007°/S, Step size 0.028°조건으로 XRD(X-Ray Diffraction) 분석을 진행한 결과, 소달라이트와 유사한 피크(peak)를 가지는 것을 확인하였다.For the samples 1 to 3 prepared in <Example 1>, XRD (X-Ray Diffraction) analysis was performed with Cu Kα x-rays of 40 kV and 40 mA under the conditions of a scan speed of 0.007 °/S and a step size of 0.028 °. As a result, it was confirmed to have a peak (peak) similar to that of sodalite.

그러나 실험 1 내지 3 샘플은 소달라이트와는 다르게 8.9, 32.5, 34.4, 34.8, 42.5, 43.1, 51.7, 58.0, 69.3, 77.9°의 위치에서 peak가 발생되는 것으로 보았을 때 소달라이트와는 다른 결정구조를 가지는 것을 확인하였으며, 특히나 결정화 단계에서 조절되는 투입 증류수의 양이 증가되어 NaOH의 농도가 옅어짐에 따라 8.9, 34.8, 43.1°에 위치한 peak의 강도가 변화되는 것을 확인하였다(도 3).However, the samples of Experiments 1 to 3 showed a crystal structure different from that of sodalite when it was observed that peaks were generated at positions of 8.9, 32.5, 34.4, 34.8, 42.5, 43.1, 51.7, 58.0, 69.3, and 77.9°, unlike sodalite. In particular, it was confirmed that the intensity of the peaks located at 8.9, 34.8, and 43.1° was changed as the concentration of NaOH decreased as the amount of distilled water added was increased, especially in the crystallization step (FIG. 3).

또한, 종래 알려진 제올라이트 다공체[Zeolite A(제조사:Wako), Zeolite Na-Y(Uytterhoeven, J.B.;van den Bossche, E.;Mortier, W.J., Zeolites, 4, 41 - 44(1984)), Zeolite Na-X(Ibrahim, T.K.;Hawa, A.I.F.;Evmerides, N.P.;Dwyer, J.;Beagley, B., Kristallografiya, 24, 461 - 468(1979)), Zeolite ZSM-10(Dorset, D.L., Zeitschrift fuer Kristallographie(1979-2010), 21, 260 - 265(2006))] 와의 XRD 비교 분석 결과에서 peak의 강도와 위치가 차이나는 것을 확인하였다(도 4).In addition, conventionally known porous zeolite [Zeolite A (manufacturer: Wako), Zeolite Na-Y (Uytterhoeven, JB; van den Bossche, E.; Mortier, WJ, Zeolites , 4, 41 - 44 (1984)), Zeolite Na- X (Ibrahim, TK; Hawa, AIF; Evmerides, NP; Dwyer, J.; Beagley, B., Kristallografiya , 24, 461 - 468 (1979)), Zeolite ZSM-10 (Dorset, DL, Zeitschrift) future Kristallographie (1979-2010), 21, 260 - 265 (2006))] and it was confirmed that the intensity and position of the peak were different in the XRD comparison analysis result (FIG. 4).

따라서 상기 <실시예 1>에서 제조된 실험 1 내지 3 다공체는 소달라이트와 유사한 결정 구조의 새로운 다공체가 합성되었음을 확인하였다.Therefore, it was confirmed that the new porous bodies having a crystal structure similar to that of sodalite were synthesized in Experiments 1 to 3 porous bodies prepared in <Example 1>.

<< 실험예Experimental example 4> 4> 비표면적specific surface area (( BrunauerBrunauer Emmett Teller; BET) 분석 Emmett Teller; BET) analysis

상기 <실시예 1>에서 제조된 실험 1 내지 3 샘플을 350 ℃에서 480분 동안 처리하여 유기물 및 수분을 완전히 증발시킨 후, 질소흡착을 이용한 비표면적 분석 장치를 이용하여 비표면적을 분석한 결과, 시약급의 제올라이트(Zeolite 4A(제조사: Wako))와 비교하여 하기 표 5 및 도 5와 같이 비표면적이 향상되는 것을 확인하였다.Experiments 1 to 3 samples prepared in <Example 1> were treated at 350° C. for 480 minutes to completely evaporate organic matter and moisture, and then the specific surface area was analyzed using a specific surface area analyzer using nitrogen adsorption. Compared with reagent grade zeolite (Zeolite 4A (manufacturer: Wako)), it was confirmed that the specific surface area was improved as shown in Table 5 and FIG. 5 below.

특히, 결정화 단계에서 조절되는 투입 증류수의 양이 증가 되어 NaOH의 농도가 옅어짐에 따라 비표면적이 더욱 향상되는 것을 확인하였다.In particular, it was confirmed that the specific surface area was further improved as the concentration of NaOH was decreased by increasing the amount of the input distilled water controlled in the crystallization step.

샘플명sample name BET BET 비표면적specific surface area (Surface Area)(m(Surface Area)(m) 33 /g)/g) Zeolite 4AZeolite 4A 1.041.04 실험 1Experiment 1 4.87354.8735 실험 2Experiment 2 6.89766.8976 실험 3Experiment 3 10.614710.6147

<< 실험예Experimental example 5> 양이온 교환능력 5> Cation exchange capacity

0.2M 농도의 MgCl2 수용액을 제조한 후 실험 1 내지 3의 샘플과 30분간 교반하여 양이온 교환을 수행한 후 이를 회수하여 XRD 분석을 수행하였다.0.2M concentration of MgCl 2 After preparing an aqueous solution, it was stirred with the samples of Experiments 1 to 3 for 30 minutes to perform cation exchange, and then recovered and XRD analysis was performed.

그 결과, NaCl의 주 peak인 31.8, 45.6°의 peak 세기가 증가하는 것을 확인하였으며, 이는 곧 양이온 교환 반응에 의해 수용액 상의 Cl-와 다공체의 Na+가 반응하여 NaCl이 형성되는 것을 의미한다(도 6a~c).As a result, it was confirmed that the peak intensity of 31.8 and 45.6°, which is the main peak of NaCl, increased, which means that Cl - in the aqueous solution and Na + of the porous body react with the cation exchange reaction to form NaCl (Fig. 6a-c).

따라서 상기 <실시예 1>에서 제조된 실험 1 내지 3 다공체는 양이온 교환능력이 있음을 확인하였다.Therefore, it was confirmed that the porous bodies 1 to 3 prepared in <Example 1> had cation exchange ability.

Claims (10)

천연광물을 분쇄하는 단계(제 1단계);
상기 제 1단계에서 분쇄된 광물에 용매 및 알칼리를 첨가하여 숙성 반응시키는 단계(제 2단계);
상기 제 2단계의 반응물에 증류수를 첨가하여 결정화시키는 단계(제 3단계); 및
상기 제 3단계의 결정을 세척 및 건조하여 다공체를 수득하는 단계(제 4단계); 를 포함하는 천연광물자원을 활용한 다공체 제조방법.
pulverizing natural minerals (first step);
The step of aging reaction by adding a solvent and alkali to the mineral pulverized in the first step (second step);
crystallizing by adding distilled water to the reactant of the second step (third step); and
washing and drying the crystals of the third step to obtain a porous body (fourth step); A method for manufacturing a porous body using natural mineral resources, including
제 1항에 있어서,
상기 천연광물은 경석(pumice), 운모(mica), 버미큘라이트(vermiculite), 몬모릴로나이트(montmorillonite), 벤토나이트(bentonite), 사문석(serpentine), 카올린(kaolin), 백운모(Muscovite), 회장석(Anorthite) 및 중성장석(Andesine)으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
The natural minerals are pumice, mica, vermiculite, montmorillonite, bentonite, serpentine, kaolin, muscovite, ilealite (Anorthite) and A method for manufacturing a porous body using natural mineral resources, characterized in that at least one selected from the group consisting of andesine.
제 1항에 있어서,
상기 알칼리는 NaOH, KOH 및 BaOH 으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
The alkali is a method for producing a porous body using natural mineral resources, characterized in that at least one selected from the group consisting of NaOH, KOH and BaOH.
제 1항에 있어서,
상기 제 2단계에서 광물, 용매 및 알칼리는 각각 1 : (0.05 내지 2) : (0.5 내지 30)의 질량비로 첨가되는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
In the second step, the mineral, the solvent, and the alkali are each added in a mass ratio of 1: (0.05 to 2): (0.5 to 30). A method for producing a porous body using natural mineral resources.
제 1항에 있어서,
상기 제 2단계에서 용매는 에틸렌글리콜(Ethylene glycol), 아이소프로필알코올(Isopropyl alcohol) 및 증류수로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
In the second step, the solvent is at least one selected from the group consisting of ethylene glycol, isopropyl alcohol, and distilled water. A method for manufacturing a porous body using natural mineral resources.
제 1항에 있어서,
상기 제 2단계의 숙성 반응은 30 내지 100℃에서 2 내지 10시간동안 수행하는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
A method for producing a porous body using natural mineral resources, characterized in that the aging reaction of the second step is performed at 30 to 100° C. for 2 to 10 hours.
제 1항에 있어서,
상기 제 3단계에서 알칼리 농도가 1 내지 15M이 되도록 증류수를 첨가하는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
A method for producing a porous body using natural mineral resources, characterized in that distilled water is added so that the alkali concentration becomes 1 to 15M in the third step.
제 1항에 있어서,
상기 제 3단계의 결정화는 50 내지 150℃에서 5 내지 20시간동안 수행하는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
The third step of crystallization is a method for producing a porous body using natural mineral resources, characterized in that it is carried out at 50 to 150 ℃ for 5 to 20 hours.
제 1항에 있어서,
상기 제 4단계의 건조는 50 내지 150℃에서 10 내지 30시간동안 수행하는 것을 특징으로 하는 천연광물자원을 활용한 다공체 제조방법.
The method of claim 1,
Drying in the fourth step is a method for manufacturing a porous body using natural mineral resources, characterized in that it is performed at 50 to 150 ℃ for 10 to 30 hours.
제 1항 내지 9항 중 어느 한 항에 따른 천연광물자원을 활용한 다공체 제조방법에 의해 제조되는 것을 특징으로 하는 천연광물자원을 활용한 다공체.A porous body using a natural mineral resource, characterized in that it is manufactured by the method for manufacturing a porous body using the natural mineral resource according to any one of claims 1 to 9.
KR1020200042264A 2020-04-07 2020-04-07 Manufacturing method of porous body using natural mineral resources and preparation of porous body using same KR102388716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200042264A KR102388716B1 (en) 2020-04-07 2020-04-07 Manufacturing method of porous body using natural mineral resources and preparation of porous body using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200042264A KR102388716B1 (en) 2020-04-07 2020-04-07 Manufacturing method of porous body using natural mineral resources and preparation of porous body using same

Publications (2)

Publication Number Publication Date
KR20210124775A true KR20210124775A (en) 2021-10-15
KR102388716B1 KR102388716B1 (en) 2022-04-20

Family

ID=78151034

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200042264A KR102388716B1 (en) 2020-04-07 2020-04-07 Manufacturing method of porous body using natural mineral resources and preparation of porous body using same

Country Status (1)

Country Link
KR (1) KR102388716B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0139424B1 (en) * 1995-01-18 1998-06-01 김무경 Method of manufacturing the x-zeolite and p-zeolite utilizing the mordenite
JP2006232594A (en) * 2005-02-23 2006-09-07 Tokyo Institute Of Technology Mesoporous inorganic body and method for manufacturing the same
KR100875820B1 (en) * 2007-07-27 2008-12-26 강원대학교산학협력단 Method for manufacturing porous body by paper and clay mineral and the porous body using the same
CN103601210A (en) * 2013-12-03 2014-02-26 西南科技大学 Method for synthesizing zeolite by one-step alkali dissolution of bentonite
CN104743573A (en) * 2013-12-26 2015-07-01 中国科学院过程工程研究所 ZSM-5 molecular sieve and preparation method thereof
KR101869394B1 (en) 2016-07-12 2018-06-21 한국원자력연구원 Trapping filter of radioactive cesium gas made of kaolinite raw material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0139424B1 (en) * 1995-01-18 1998-06-01 김무경 Method of manufacturing the x-zeolite and p-zeolite utilizing the mordenite
JP2006232594A (en) * 2005-02-23 2006-09-07 Tokyo Institute Of Technology Mesoporous inorganic body and method for manufacturing the same
KR100875820B1 (en) * 2007-07-27 2008-12-26 강원대학교산학협력단 Method for manufacturing porous body by paper and clay mineral and the porous body using the same
CN103601210A (en) * 2013-12-03 2014-02-26 西南科技大学 Method for synthesizing zeolite by one-step alkali dissolution of bentonite
CN104743573A (en) * 2013-12-26 2015-07-01 中国科学院过程工程研究所 ZSM-5 molecular sieve and preparation method thereof
KR101869394B1 (en) 2016-07-12 2018-06-21 한국원자력연구원 Trapping filter of radioactive cesium gas made of kaolinite raw material and preparation method thereof

Also Published As

Publication number Publication date
KR102388716B1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
Vinu Two‐dimensional hexagonally‐ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content
JP5764124B2 (en) Zeolite nanosheets with multiple or single plate structure, regularly or irregularly arranged, having a skeleton thickness corresponding to the size of one single unit crystal lattice or the size of a single unit crystal lattice of 10 or less And similar substances
Wang et al. Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species
Gashti et al. Structural, optical and electromagnetic properties of aluminum–clay nanocomposites
Ohashi et al. Synthetic allophane from highconcentration solutions: nanoengineering of the porous solid
RU2640759C2 (en) Cryptocrystalline zsm-5, its synthesis and application
Letaief et al. Reactivity of kaolinite in ionic liquids: preparation and characterization of a 1-ethyl pyridinium chloride–kaolinite intercalate
AU2014413311B2 (en) Method for synthesizing nanoscale ZSM-5 molecular sieve
Luan et al. Transformation of lamellar silicate into the mesoporous molecular sieve MCM-41
Perdigón et al. Synthesis of porous clay heterostructures from high charge mica-type aluminosilicates
Mokaya et al. Restructuring of mesoporous silica: high quality large crystal MCM-41 via a seeded recrystallisation routeElectronic supplementary information (ESI) available: SEM images of samples MCM-41 (96) as prepared and after recrystallisation for 48 and 96 hours. See http://www. rsc. org/suppdata/jm/b0/b000179l
Tavasoli et al. Synthesis and characterization of zeolite NaY using kaolin with different synthesis methods
Wei et al. Novel acidic porous clay heterostructure with highly ordered organic–inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay
Prokof’ev et al. Synthesis of type A zeolite from mechanoactivated metakaolin mixtures
Lombardi et al. Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin
KR102388716B1 (en) Manufacturing method of porous body using natural mineral resources and preparation of porous body using same
WO2014030477A1 (en) Activated earth for treating aromatic hydrocarbons
Yunusa et al. Preparation of high grade silica from rice husk for zeolite synthesis
WO2014013969A1 (en) Method for producing maz-type zeolite
JP3322308B2 (en) Synthetic method of zeolite
Ayalew Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process
Nasedkin et al. The crystal structure and chemistry of several palygorskite samples with different geneses
Kooli et al. Hydrothermal conversion of Na-magadiite to a new silicate layered structure in a TMAOH–water–1, 4-dioxane system
Chaves et al. Vanadosilicate with MWW zeolite structure synthesized from VCl3 by cooperative assembly of organic templates
Schoeman Preparation of ZSM-5 films from template free precursors

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right