KR20210123729A - Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train - Google Patents

Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train Download PDF

Info

Publication number
KR20210123729A
KR20210123729A KR1020200041249A KR20200041249A KR20210123729A KR 20210123729 A KR20210123729 A KR 20210123729A KR 1020200041249 A KR1020200041249 A KR 1020200041249A KR 20200041249 A KR20200041249 A KR 20200041249A KR 20210123729 A KR20210123729 A KR 20210123729A
Authority
KR
South Korea
Prior art keywords
lifespan
life
acceleration
time
accelerated
Prior art date
Application number
KR1020200041249A
Other languages
Korean (ko)
Inventor
이한민
Original Assignee
에너지인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에너지인 주식회사 filed Critical 에너지인 주식회사
Priority to KR1020200041249A priority Critical patent/KR20210123729A/en
Publication of KR20210123729A publication Critical patent/KR20210123729A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention relates to an inverter stack acceleration lifespan prediction method for a railway vehicle for which is derived by multiplying an acceleration lifespan time by an acceleration factor in order to know a lifespan under a current operating condition. Provided is a method for which the acceleration factor is applied to the Arrhenius model, allows the acceleration lifespan test time to be derived through a lifespan ratio model between the lifespan time and B10, and allows the lifespan of the inverter stack for the railway vehicle to be predicted through a relationship between a temperature and the acceleration test time.

Description

철도 차량용 인버터스택 가속수명 예측방법{Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train} Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train

본 발명은 철도차량용 인버터스택 가속수명 예측 방법에 관한 것이다. 현재 운영조건에서의 수명을 알기 위해서는 가속수명시간에 가속계수를 곱하여 도출하게 된다. 도 1에 도시된 바와 같이, 본 발명은 가속계수는 아레늬우스 모델을 적용하고 수명시간과 B10 간 수명비 모델을 통해 가속수명 시험시간을 도출하는 것이다. The present invention relates to a method for predicting the accelerated life of an inverter stack for a railway vehicle. In order to know the lifespan under the current operating conditions, it is derived by multiplying the accelerated life time by the acceleration factor. As shown in Fig. 1, the present invention applies the Arrhenius model to the acceleration coefficient and derives the accelerated life test time through the life ratio model between the life time and B 10.

철도차량용 전장품 중의 하나인 인버터 스택은 전기전자 부품이 복잡하게 구성된 제품이므로 고신뢰성과 내구성 그리고 유지보수성을 기본으로 요구하고 있으나, 여전히 고장이 발생하고 있으며, 전자기기의 고장원인은 열화, 습도, 서지, 화학반응, 분진, 진동 등이 요인으로 들 수 있다. 최근 전자기기는 소형 경량화가 진행되어 왔으며 그 결과, 온도 등의 요인에 대한 환경이 기존보다 가혹해졌다. 따라서 제품의 강건 설계를 목적으로 제품의 고장형태와 고장분포 그리고 수명을 분석하고 이를 검증하기 위해 비용과 시간을 고려한 수명예측 방법 개발이 필요하다. Inverter stack, one of the electronic components for railway vehicles, is a product with complicated electrical and electronic components, so high reliability, durability, and maintainability are required as the basics, but failures still occur. , chemical reaction, dust, vibration, etc. are factors. Recently, electronic devices have been reduced in size and weight, and as a result, the environment for factors such as temperature has become harsher than before. Therefore, it is necessary to develop a life prediction method considering cost and time to analyze and verify the failure mode, failure distribution, and lifespan of a product for the purpose of robust design of the product.

인버터에 대해 과거 고장데이터를 확보하고 있으나, 이를 체계적으로 분석하고 해석하는 능력이 부족하므로 제품의 신뢰성에 대해 통계적 기법을 통해 데이터 분석 방법과 신뢰성 지표 발굴이 요구된다. 따라서 본 발명에서는 철도 차량용 인버터스택의 수명 예측 및 해석하기 위한 방법에 대한 것이다.Although the inverter has past failure data, it lacks the ability to systematically analyze and interpret it, so data analysis methods and reliability index discovery are required for product reliability through statistical techniques. Therefore, the present invention relates to a method for predicting and interpreting the life of an inverter stack for a railway vehicle.

국내 도시철도 운영기관의 전동차를 대상으로 최근 3년간 고장 이력을 분석하여 고장의 원인으로 온도가 가장 중요인 원인인 것으로 분석되었다. By analyzing the failure histories of trains of domestic urban railroad operating organizations for the past three years, it was analyzed that temperature was the most important cause of the failure.

도 2에 도시된 바와 같이 국내 운영기관의 전동차를 대상으로 인버터모듈과 관련된 최근 3년간 고장 이력을 분석하였다. 도 2에 도시된 바와 같이 2015년∼2017년 최근 3년간 평균해보면 월별로 2∼3건의 고장이 발생하였고, 5월∼8월에 4∼5건의 고장이 발생하였다. 이는 여름에 고장이 더 많이 발생한다는 것은 온도와 고장간 상관관계가 있음을 보여주는 것으로 판단된다. As shown in FIG. 2 , failure histories related to the inverter module for the last 3 years were analyzed for electric vehicles of domestic operating organizations. As shown in FIG. 2 , on average for the last three years from 2015 to 2017, 2 to 3 failures occurred per month, and 4 to 5 failures occurred in May to August. It is judged that the occurrence of more failures in summer shows that there is a correlation between temperature and failure.

운전 중에 있는 인버터스택은 열적 스트레스를 받고 있으며, 일반적으로 열적 열화에 의해 인버터스택이 손상을 받아서 절연내력의 저하로 수명이 다하는 것이 알려진 결과이며 열적 스트레스를 이용한 온도가속 수명시험을 적용하는 경우에는 널리 알려진 아레늬우스 모델을 이용하게 된다. 아레늬우스 식은 온도함수로 표현되는 화학반응의 속도론에서 유도되어 절연물의 수명과 온도 사이의 관계를 근사적으로 다음과 같이 표현한다.The inverter stack during operation is under thermal stress, and it is a known result that the inverter stack is damaged by thermal degradation and its lifespan is reached due to a decrease in dielectric strength. The known Arrhenius model is used. The Arrhenius equation is derived from the kinetics of a chemical reaction expressed as a function of temperature, and approximately expresses the relationship between the lifespan of an insulator and temperature as follows.

Figure pat00001
Figure pat00001

여기서 k는 볼쯔만 기체상수, E는 활성화 에너지, T는 절대온도를 나타낸다. where k is the Boltzmann gas constant, E is the activation energy, and T is the absolute temperature.

전기기기의 수명을 단기간에 평가하는 것은 매우 중요하다. 신뢰성 시험에서는 실제 사용조건에서 받는 스트레스를 모의한 시험을 실시하지만 통상 수명에 이르기까지 대단히 긴 시간이 걸린다. 따라서 온도와 가속시험시간과의 관계를 통해 철도차량용 인버터 스택의 수명을 예측하는 방법을 제공함에 있다.It is very important to evaluate the lifespan of electrical equipment in a short period of time. In the reliability test, a test that simulates the stress under actual operating conditions is performed, but it usually takes a very long time to reach the service life. Therefore, it is to provide a method of predicting the lifespan of an inverter stack for railroad vehicles through the relationship between temperature and accelerated test time.

아레늬우스 모델을 적용한 온도 가속계수와 가속시험시간과 B10 수명비 모델을 통해 철도차량용 인버터 스택의 수명을 예측하고자 한다.The purpose of this study is to predict the lifespan of the inverter stack for railway vehicles through the temperature acceleration coefficient, acceleration test time, and B 10 life ratio model to which the Arrhenius model is applied.

철도차량용 인버터스택 가속수명 예측 방법에 관한 것으로, 현재 운영조건에서의 수명을 알기 위해서는 가속수명시간에 가속계수를 곱하여 도출하게 된다. 국내 도시철도 전동차 인버터스택의 고장 원인으로 온도가 가장 중요요소인 것으로 분석되어 가속계수는 아레늬우스 모델을 적용하고 수명시간과 B10간 수명비 모델을 통해 가속수명 시험시간을 도출하게 된다. 무고장의 경우 신뢰성 수준에 따른 수명을 예측할 수 있으며, 고장이 1개 이상 발생하는 경우에도 수명을 예측할 수 있는 효과를 얻는다.It relates to a method for predicting the accelerated lifespan of an inverter stack for railroad vehicles, and in order to know the lifespan under current operating conditions, it is derived by multiplying the accelerated life time by the acceleration factor. It is analyzed as the domestic city railway train failure caused by a temperature most important element of the drive stack of the acceleration factor is applied to the fringing nuiwooseu model to derive the accelerated life test time over the life time and the B 10 life of the non-liver model. In the case of no failure, the lifespan according to the reliability level can be predicted, and even if one or more failures occur, the effect of predicting the lifespan is obtained.

도 1은 철도 차량용 인버터스택 가속수명 예측방법의 순서도,
도 2는 철도차량 인버터 스택의 고장이력
도 3은 전동차 운행 속도 및 전력도
도 4는 한 역간 전동차 운행 속도 및 전력도
도 5는 철도차량 인버터 스택 수명예측도
1 is a flowchart of an inverter stack accelerated life prediction method for a railway vehicle;
2 is a failure history of a railway vehicle inverter stack;
3 is a train running speed and power diagram
4 is a train operation speed and power diagram between one station
5 is a prediction diagram of a railway vehicle inverter stack life;

가속수명 예측을 위해 실제 부산2호선의 운행 패턴을 분석하엿고 가속수명 시험시간을 예측하였다. 도 2에 도시된 바와 같이 차량의 운행 패턴을 분석하여 역간 이동시 인버터 모듈의 운행 시간을 분석하였다. 부산2호선이 경우 약 89초로 분석되었다. To predict the accelerated life, the actual operation pattern of Busan Line 2 was analyzed and the accelerated life test time was predicted. As shown in FIG. 2 , by analyzing the driving pattern of the vehicle, the driving time of the inverter module when moving between stations was analyzed. In the case of Busan Line 2, it was analyzed to be about 89 seconds.

도 3에 도시된 바와 같이, 한 구간을 보면 역행과 회생시 인버터 모듈이 동작하는 것을 확인할 수 있었다. 이는 운행 동안 타행구간이 없는 경우 인버터 모듈이 지속적으로 동작하는 것을 알 수 있다.As shown in FIG. 3 , it was confirmed that the inverter module operates during powering and regeneration in one section. It can be seen that the inverter module continuously operates when there is no other running section during operation.

전동차 운행 분석 결과 부산2호선 전동차 IGBT 동작시간은 평균 89초이고 일일 전동차 운행 시간을 5시부터 새벽 1시까지 19시간으로 할 때 12회 왕복 운행하고 이는 44,856초이고 월 12.46시간, 년간 4,548시간 운행하는 것으로 나타났다. As a result of the analysis of the train operation, the IGBT operation time of the Busan Line 2 train is 89 seconds on average, and when the daily train operation time is 19 hours from 5:00 to 1:00 a.m., it operates 12 round trips, which is 44,856 seconds, which is 12.46 hours per month, 4,548 hours per year. appeared to do

시제품 수는 연구과제 여건상 3개로 하고 이에 대한 시험시간을 산정할 수 있다. 와이블 분포에서 형상모수와 신뢰수준을 고려하여 B10 수명과 신뢰수준에 따른 수명비를 표1과 같이 산출 하였다. 시험시간과 B10 수명의 비 수식은 다음과 같다 The number of prototypes should be three depending on the research project conditions, and the test time for them can be calculated. Considering the shape parameter and the reliability level in the Weibull distribution, the lifespan ratio of the B 10 lifespan and the reliability level was calculated as shown in Table 1. The formula for the ratio between test time and B 10 life is as follows:

Figure pat00002
Figure pat00002

구분division 신뢰성수준90%Reliability level 90% 신뢰성수준80%Reliability level 80% 신뢰성수준60%Reliability level 60% B10B10 1.4881.488 1.3851.385 1.2371.237 B20B20 1.2801.280 1.1921.192 1.0651.065 B40B40 1.0851.085 1.0101.010 0.9020.902

형상모수에 따른 신뢰수준 90%에서의 수명비는 표2와 같다.Table 2 shows the life ratio at a confidence level of 90% according to the shape parameter.

신뢰성수준90%Reliability level 90% 형상모수shape parameter B=3B=3 B=5B=5 B=10B=10 B10B10 수명비life ratio 1.9391.939 1.4881.488 1.2201.220 B20B20 수명비life ratio 1.5101.510 1.2801.280 1.1311.131 B40B40 수명비life ratio 1.1451.145 1.0851.085 1.0421.042

즉, 3개의 시제품으로 보증하고자 하는 B10수명의 1,488배 시험을 하여 고장이 한 개도 없으면 B10 수명을 90% 신뢰수준으로 보증할 수 있다. In other words, if there is no failure by testing 1,488 times the lifetime of B 10 to be guaranteed with three prototypes, the lifetime of B 10 can be guaranteed with a 90% confidence level.

○ 신뢰수중 90%, B10 수명을 보증하기 위한 가속수명 시험시간 ○ Accelerated life test time to guarantee 90% of reliability, B 10 life

· 시제품 수 3개, 형상모수 β=5.0을 고려 The number of prototypes is 3, considering the shape parameter β=5.0

· 10년 수명 보증(신뢰수준 90%, B10 수명)· 10-year lifespan guarantee (reliability level 90%, B 10 lifespan)

- 10년 기준 스위칭 동작시간 계산 : 4,548시간/1년으로 설정하고 계산 - Calculation of switching operation time based on 10 years: Set and calculate as 4,548 hours/year

- 10년 보증을 위한 B10 수명 : - B 10 lifespan for 10 years warranty:

4,548시간 x 10년 x 1,488 = 67,654시간/10년 4,548 hours x 10 years x 1,488 = 67,654 hours/10 years

10년간 제품의 수명을 보증하기 위해서는 67,654시간 시험이 필요하므로 가속수명시험이 필요하다.Accelerated life test is required because 67,654 hours of test are required to guarantee the lifespan of the product for 10 years.

○ 온도 스트레스에 의한 가속시험시간 도출○ Derivation of accelerated test time by temperature stress

· 가속수명시험 : Accelerated life test:

수명-스트레스 관계식 : 온도 스트레스 조건이므로 아레늬우스(Arrhenius) 모형을 사용하여 시험시간을 도출한다. 가속계수 AF는 다음과 같이 계산한다. Life-stress relationship: Since it is a temperature stress condition, the test time is derived using the Arrhenius model. The acceleration factor AF is calculated as follows.

아레늬우스 모델을 사용 시험시간은 다음과 같이 도출된다.Using the Arrhenius model, the test time is derived as follows.

Figure pat00003
Figure pat00003

여기서, Lu = 실제 사용 환경온도에서의 수명where Lu = life at actual operating environment temperature

La = 가속 온도에서의 수명 La = Life at accelerated temperature

E = 활성화 에너지(단위: eV), 평균활성화 에너지 0.94 eV 고려E = activation energy (unit: eV), average activation energy 0.94 eV Consideration

k = 기체상수(8.6173 X 10-5 eV/K) k = gas constant (8.6173 X 10 -5 eV/K )

Tu = 사용환경온도 Tu = Operating environment temperature

Ta = 가속 온도 Ta = accelerated temperature

구분division 사용온도
(℃)
operating temperature
(℃)
시험온도
(℃)
test temperature
(℃)
가속계수
(AF)
acceleration factor
(AF)
가속계수
(AF)
acceleration factor
(AF)
시험기간
(일)
Test period
(Work)
1One 4040 4040 1One 67,65467,654 2,8192,819 22 4040 6565 13.213.2 5,1385,138 214214 33 4040 7070 21.121.1 3,2103,210 134134 44 4040 7575 33.333.3 2,0332,033 8585 55 4040 8080 51.951.9 1,3041,304 5454

표 3과 같이, 중 80℃ 시험시 가속시험시간은 54일로 예상할 수 있다. 가속수명시험 결과 총 54일(1,304시간) 동안 고장이 없는 경우가 발행하는 것을 가정하면, 신뢰수준 90%인 경우 고장률 λ와 가속계수 (AF), 가속시험시간(Ta)의 관계식은 다음과 같다. λ = x2 (1-CL)(2r+2)/2x(1/(n x AF x Ta))이고 평균수명 MTTF = 1/λ = 2 x n x AF x Ta /x2 (1-CL)(2r+2)가 된다. 고장이 없는 경우를 가정한 시험결과에 대해 수명을 예측하면, 80℃에서 3대로 가속시험하는 것으로 1,304시간 동안 고장이 없고 가속계수는 51.9이며, 정상 사용조건 40℃에서 MTTF 를 계산하면 MTTF = 2 x 3 x 51.9 x 1,304 / x2 (0.1)(2) = 2 x 202,962 / 4.61 = 88,145시간(약 10.06년)으로 예측할 수 있다. 신뢰성 수준을 90%, 80%, 70%, 60%로 하여 수명을 예측하면 도 5와 같다. 따라서 가장 신뢰수준이 높은 90%의 경우에 약 10년 예상이 가능하다.As shown in Table 3, the accelerated test time can be expected to be 54 days during the 80℃ test. Assuming that there is no failure for a total of 54 days (1,304 hours) as a result of the accelerated life test, the relationship between the failure rate λ, the acceleration factor (AF), and the accelerated test time (Ta) is as follows when the confidence level is 90%. . λ = x 2 (1-CL) (2r+2)/2x(1/(nx AF x Ta)) and life expectancy MTTF = 1/λ = 2 xnx AF x Ta /x 2 (1-CL) (2r +2) becomes If the life expectancy is predicted for the test results assuming no failure, there is no failure for 1,304 hours by performing an accelerated test with 3 units at 80°C, and the acceleration factor is 51.9. x 3 x 51.9 x 1,304 / x 2 (0.1) (2) = 2 x 202,962 / 4.61 = 88,145 hours (about 10.06 years). When the reliability level is 90%, 80%, 70%, and 60%, the life expectancy is predicted as shown in FIG. 5 . Therefore, in the case of 90% with the highest level of confidence, it is possible to predict about 10 years.

고장이 1개 이상 발생하게 되면 수명예측은 정상시료와 고장시료를 구분하여 상기 MTTF 식에 고장시간의 합(ΣTr)을 대입하여 MTTF = 2 x (ΣTr + (n-r) x Tz)*AF/x2 (1-CL)(2r+2) 식으로 예측한다.If one or more failures occur, life prediction divides the normal sample from the failed sample and substitutes the sum of the failure times (ΣTr) in the MTTF equation to MTTF = 2 x (ΣTr + (nr) x Tz)*AF/x 2 (1-CL) (2r+2) It is predicted by the equation.

110: 철도차량용 인버터스택 스위칭 시간분석
120 : 가속계수 계산
200 : Bx 수명비 모델 적용
201 : 신뢰성수준과 형상모수 적용 수명비 계산
300 10년 보증 시험시간 계산
400 : 가속수명시간 계산
500 : 현재 수명 계산
110: Inverter stack switching time analysis for railway vehicles
120: Acceleration coefficient calculation
200 : Bx life ratio model applied
201: Reliability level and shape parameter applied life ratio calculation
300 10-Year Guarantee Test Time Calculation
400: Accelerated life time calculation
500: Calculate the current lifespan

Claims (2)

철도차량용 인버터스택 가속수명 예측 방법에 관한 것으로, 현재 운영조건에서의 수명을 알기 위해서는 가속수명시간에 가속계수를 곱하여 도출하게 된다. 가속계수는 아레늬우스 모델을 적용하고 수명시간과 B10간 수명비 모델을 통해 가속수명 시험시간을 도출하는 방법
It relates to a method for predicting the accelerated lifespan of an inverter stack for railroad vehicles, and in order to know the lifespan under current operating conditions, it is derived by multiplying the accelerated life time by the acceleration factor. Acceleration coefficient is a method of deriving the accelerated life test time by applying the Arrhenius model and using the life ratio model between the life time and B 10
제 1항에 있어서, 상기 시험방법을 활용하여 무고장의 경우 신뢰성 수준에 따른 수명을 예측할 수 있으며, 고장이 1개 이상 발생하는 경우에도 수명을 예측하는 방법The method of claim 1, wherein the lifespan according to the reliability level can be predicted in the case of no failure by using the test method, and the lifespan can be predicted even when one or more failures occur.
KR1020200041249A 2020-04-03 2020-04-03 Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train KR20210123729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200041249A KR20210123729A (en) 2020-04-03 2020-04-03 Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200041249A KR20210123729A (en) 2020-04-03 2020-04-03 Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train

Publications (1)

Publication Number Publication Date
KR20210123729A true KR20210123729A (en) 2021-10-14

Family

ID=78151346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200041249A KR20210123729A (en) 2020-04-03 2020-04-03 Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train

Country Status (1)

Country Link
KR (1) KR20210123729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117113102A (en) * 2023-09-04 2023-11-24 贵州省机械电子产品质量检验检测院(贵州省农业机械质量鉴定站) Electronic component life prediction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117113102A (en) * 2023-09-04 2023-11-24 贵州省机械电子产品质量检验检测院(贵州省农业机械质量鉴定站) Electronic component life prediction method
CN117113102B (en) * 2023-09-04 2024-04-16 贵州省机械电子产品质量检验检测院(贵州省农业机械质量鉴定站) Electronic component life prediction method

Similar Documents

Publication Publication Date Title
Gupta et al. A review of degradation behavior and modeling of capacitors
CN109917251B (en) Method for predicting aging life of XLPE cable insulation material
CN111929514B (en) Method for evaluating reliability and predicting service life of electrical component
Soni et al. Estimation of life cycle of distribution transformer in context to furan content formation, pollution index, and dielectric strength
Forouhari et al. Remnant life estimation of power transformer based on IFT and acidity number of transformer oil
CN113567795B (en) Step-back stress acceleration reliability test method based on Weibull distribution
KR20210123729A (en) Acceleration Life Prediction Method of Inverter Stack in Railway Electric Train
Ortiz Fernández et al. Estimating the age of power transformers using the concentration of furans in dielectric oil
Agarwal et al. Prognostic and health management of active assets in nuclear power plants
US11520324B2 (en) Apparatus for prediction of the residual lifetime of an electrical system
KR20230040642A (en) Method for evaluating lifetime of extra high voltage electric cable
Jin et al. An investigation into fan reliability
Fikri et al. Partial discharge diagnosis and remaining useful lifetime in XLPE extruded power cables under DC voltage: a review
Mehairjan et al. Statistical life data analysis for electricity distribution cable assets-An Asset Management approach
Cao et al. An approach for economic assessment on oil-paper insulation diagnosis through accelerated aging experiments
Kumpalavalee et al. Condition evaluation of power transformers using dissolved gas analysis and dielectric breakdown voltage test
Trappey et al. Data driven modeling for power transformer lifespan evaluation
Kim et al. A study on the accelerated life models for lifetime prediction of the GIS based on insulation spacer
Ross Prognostics and Health Management for Power Electronics and Electrical Power Systems
Rodriguez-Urrego et al. Diagnosis of intermittent faults in IGBTs using the latent nestling method with hybrid coloured Petri nets
CN111638458B (en) Method and device for analyzing battery cell fault
Lian et al. Smart asset management of aging devices in energy systems: A case study of transformers
KR20220011046A (en) Method for status prediction of transformer based on oil filtering and apparatus for using the method
Agarwal et al. Implementation of remaining useful lifetime transformer models in the fleet-wide prognostic and health management suite
Arora Innovative way of Understanding Test Results Obtained by DGA Test of power Transformers based on iEEE & iEC Standards

Legal Events

Date Code Title Description
E601 Decision to refuse application
E601 Decision to refuse application