KR20210122540A - Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass - Google Patents

Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass Download PDF

Info

Publication number
KR20210122540A
KR20210122540A KR1020200039823A KR20200039823A KR20210122540A KR 20210122540 A KR20210122540 A KR 20210122540A KR 1020200039823 A KR1020200039823 A KR 1020200039823A KR 20200039823 A KR20200039823 A KR 20200039823A KR 20210122540 A KR20210122540 A KR 20210122540A
Authority
KR
South Korea
Prior art keywords
coal
mixed
mixed bio
low
bio
Prior art date
Application number
KR1020200039823A
Other languages
Korean (ko)
Inventor
오동훈
김읽음
최영찬
Original Assignee
한국중부발전(주)
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국중부발전(주), 한국에너지기술연구원 filed Critical 한국중부발전(주)
Priority to KR1020200039823A priority Critical patent/KR20210122540A/en
Publication of KR20210122540A publication Critical patent/KR20210122540A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/32Coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/28Heating the shaped fuels, e.g. briquettes; Coking the binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

The present invention relates to a method for manufacturing hybrid coal using a mixed bio liquid extracted from herbal biomass, wherein the mixed bio liquid extracted from herbal biomass is impregnated into low-grade coal for carbonization, thereby having a higher calorific value than that of low-grade coal due to a single combustion characteristic (two-in-one fuel) and having enough moldability to be manufactured into pellets and the like. According to the present invention, a method for manufacturing a modified hybrid coal impregnated with a mixed bio liquid comprises the following steps: preparing coal (S10); preparing a mixed solution (mixed bio liquid) containing sugar extracted from herbal biomass (S20); impregnating the mixed bio liquid into pores and surface of the coal (S30); drying the mixed bio liquid-impregnated coal to form a coating layer of the mixed bio liquid (S40); carbonizing the mixed bio liquid-impregnated coal at low temperature (S50); and forming the mixed bio liquid-impregnated coal (S60).

Description

초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법{Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass}Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass

발명은 하이브리드 석탄 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 초본계 바이오매스에서 추출한 혼합바이오를 이용하여 저급탄에 함침, 탄화시켜 단일 연소특성(two-in-one fuel)으로 저급탄보다 발열량이 우수하고 팰렛 등으로 제작할 수 있는 우수한 성형성을 갖는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법에 관한 것이다.The present invention relates to hybrid coal and a method for producing the same, and more particularly, by using mixed bio extracted from herbal biomass to impregnate and carbonize the low coal to provide a single combustion characteristic (two-in-one fuel), the calorific value than the low coal. It relates to a method for producing hybrid coal using mixed biomass extracted from herbaceous biomass, which is excellent and has excellent moldability that can be produced into pellets or the like.

최근 지속적으로 상승하는 유가와 원자력 에너지의 안정성에 대한 불신 등의 원인으로 에너지원으로서의 석탄에 대한 관심이 다시 고조되고 있다. 그러나 석탄은 화석연료 중 이산화탄소 발생량이 가장 많은 것으로서 지구 온난화 문제를 감안하면 경쟁력이 취약한 에너지원인 셈이다. 따라서 현재 에너지원으로서 세계적으로 이슈화 되고 있는 것 중에 신재생에너지의 이용 및 보급을 들 수 있는데, 이는 기존의 석유, 석탄 등 화석연료에 비하여 이산화탄소의 배출이 저감되어 지구온난화 및 기후변화에 대응할 수 있는 에너지원으로서 각광받고 있기 때문이다. 그러나 국내에서는 아직까지 태양광 또는 풍력 등의 신재생에너지원을 발전용 또는 난방용으로 사용하는 경우에는 화석연료와 비교하면 발전단가 등의 차이로 인하여 획기적인 이용 및 보급이 제한적인 상황이었다.Recently, interest in coal as an energy source is rising again due to reasons such as continuously rising oil prices and distrust in the stability of nuclear energy. However, coal produces the largest amount of carbon dioxide among fossil fuels, so it is a weak energy source considering global warming. Therefore, one of the current global issues as an energy source is the use and dissemination of new and renewable energy, which reduces carbon dioxide emissions compared to the existing fossil fuels such as petroleum and coal, so that it can respond to global warming and climate change. Because it is in the spotlight as an energy source. However, in the case of using renewable energy sources such as solar power or wind power for power generation or heating in Korea, epoch-making use and dissemination were limited due to the difference in power generation cost compared to fossil fuels.

우리나라도 화석연료의 고갈과 더불어 국제조약인 기후변화협약 대응에 따른 온실가스 감축이 대두되면서 신재생에너지 의무할당제가 거론되기 시작한 이래 2012년부터 신재생에너지 의무할당제[Renewable Portfolio Standard(RPS)]가 도입됨으로써 에너지 사업자들에게는 부담으로 작용하는 것이 사실이다. 이에 따라 발전사에서는 석탄의 이산화탄소 발생을 감축시키는 노력으로 석탄가스화복합발전[Integrated Gasification Combined Cycle(IGCC)] 및 바이오매스 혼소 등을 시도하고 있지만, IGCC는 기존의 석탄 화력 발전시설을 이용할 수 없고, 1기당 약 1조 3천억원 규모의 막대한 건설비용이 필요하며, 이산화탄소 처리를 위하여 이산화탄소 포집 및 저장설비[Carbon Capture and Storage(CCS)]를 추가로 설치해야 하는 기술로서 경제적인 부담이 매우 크다. 그리고 바이오매스 혼소의 경우에는 석탄에 비하여 상대적으로 낮은 발열량의 바이오매스를 연소함에 따른 발전효율 감소 등의 문제점을 안고 있다.In Korea, as well as the depletion of fossil fuels and the rise of greenhouse gas reduction in response to the international treaty on climate change, the mandatory quota system for renewable energy began to be discussed. Since 2012, the Renewable Portfolio Standard (RPS) It is true that the introduction puts a burden on energy providers. Accordingly, power generation companies are attempting Integrated Gasification Combined Cycle (IGCC) and biomass co-firing as an effort to reduce carbon dioxide emissions from coal, but IGCC cannot use existing coal-fired power generation facilities, 1 It requires a huge construction cost of about 1.3 trillion won per unit, and it is a technology that additionally needs to install a carbon capture and storage facility [Carbon Capture and Storage (CCS)] for carbon dioxide treatment, which is very economically burdensome. And in the case of biomass co-firing, there is a problem such as a decrease in power generation efficiency due to combustion of biomass having a relatively low calorific value compared to coal.

또한, 최근 역청탄과 같은 고급탄의 공급이 불안정해지면서 발전사에서도 저급탄을 불가피하게 이용할 수밖에 없는 상황인데, 저급탄의 높은 수분 함량 때문에 저급탄을 혼소할 경우 발전성능을 저해하는 결과를 초래하게 되고, CO2 발생량이 고급탄에 비해 20%이상 증가하는 문제가 발생한다. 그러므로 이러한 저급탄이 전체 석탄 매장량의 약 50%를 차지하는 것을 고려하면 저급탄의 고부가가치화는 저급탄을 효율적으로 이용하기 위해서라도 반드시 필요한 기술이다.In addition, as the supply of high-grade coal such as bituminous coal has recently become unstable, power generation companies inevitably have no choice but to use low-grade coal. , there is a problem that the amount of CO2 generated increases by more than 20% compared to high-grade coal. Therefore, considering that such low-grade coal occupies about 50% of the total coal reserves, the high value-added of low-grade coal is a necessary technology for efficient use of low-grade coal.

이에 따라 저급탄을 단순건조, 열수를 이용한 고압건조, 또는 고온의 유기용매를 이용한 건조 등의 저급탄 건조에 관한 연구가 활발히 진행 중에 있지만, 공정이 복잡하다는 문제점 및 건조 후에 수분이 재흡착되어 발전효율이 떨어지는 문제점을 여전히 안고 있다. 또한, 저급탄의 경우 자연발화가 발생하고 이로 인해 저장된 석탄이 손실되는 문제점도 있다.Accordingly, research on low coal drying such as simple drying of low coal, high pressure drying using hot water, or drying using high temperature organic solvent is being actively conducted. There is still the problem of low efficiency. In addition, in the case of low-grade coal, there is a problem in that spontaneous ignition occurs and thus stored coal is lost.

또한, 바이오매스 건류 생성물 중의 타르를 석탄에 부착시키는 방법으로 저급탄을 고품질로 개질하는 기술도 공지되어 있으나, 수분의 재흡착에 대한 평가는 이루어지지 않았다. In addition, a technique for high-quality reforming of low-grade coal by a method of attaching tar in a biomass dry distillation product to coal is also known, but the re-adsorption of moisture has not been evaluated.

본 발명이 해결하고자 하는 과제는 초본계 바이오매스에서 추출한 혼합바이오를 이용하여 저급탄에 함침, 탄화시켜 단일 연소특성(two-in-one fuel)으로 저급탄보다 발열량이 우수하고 팰렛 등으로 제작할 수 있는 우수한 성형성을 갖는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is that it is impregnated and carbonized in low-grade coal using mixed bio extracted from herbal biomass to have a single combustion characteristic (two-in-one fuel), which has superior calorific value than low-grade coal and can be manufactured into pellets. An object of the present invention is to provide a method for producing hybrid coal using mixed biomass extracted from herbal biomass having excellent moldability.

본 발명에 따른 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법은, 석탄을 준비하는 단계(S10)와; 초본계 바이오매스에서 추출한 당이 포함된 혼합액(혼합바이오)을 준비하는 단계(S20)와; 혼합바이오를 석탄의 기공 및 표면에 함침시키는 단계(S30)와; 혼합바이오가 함침된 석탄을 건조시켜 혼합바이오의 코팅층을 형성시키는 단계(S40)와; 혼합바이오가 함침된 석탄을 저온 탄화시키는 단계(S50); 포함하는 것을 특징으로 한다.A method for producing hybrid coal using a mixed bio extracted from herbal biomass according to the present invention includes the steps of preparing coal (S10); Preparing a mixed solution (mixed bio) containing sugar extracted from herbal biomass (S20) and; Impregnating the mixed bio into the pores and the surface of the coal (S30) and; forming a coating layer of the mixed bio by drying the coal impregnated with the mixed bio (S40); Low-temperature carbonization of the mixed bio-impregnated coal (S50); characterized by including.

바람직하게, 혼합바이오는 석탄을 기준으로 각각 3 내지 80 중량%로 혼합되는 것을 특징으로 한다. Preferably, the mixed bio is characterized in that it is mixed in an amount of 3 to 80% by weight, respectively, based on coal.

바람직하게, 혼합바이오의 코팅층을 형성하는 단계는 80~120℃에서 이루어지는 것을 특징으로 한다. Preferably, the step of forming the coating layer of the mixed bio is characterized in that it is made at 80 ~ 120 ℃.

바람직하게, 저온 탄화단계는 불활성가스 분위기에서 200~250℃에서 이루어지는 것을 특징으로 한다. Preferably, the low-temperature carbonization step is characterized in that it is performed at 200 ~ 250 ℃ in an inert gas atmosphere.

바람직하게, 불활성가스는 질소가스인 것을 특징으로 한다. Preferably, the inert gas is nitrogen gas.

바람직하게, 혼합바이오의 함침 단계(S30) 이후에 소정형상의 성형탄으로 성형하는 단계(S60)를 더 포함하는 것을 특징으로 한다. Preferably, it characterized in that it further comprises a step (S60) of molding into coal briquettes of a predetermined shape after the step (S30) of impregnating the mixed bio.

본 발명에 의하면 초본계 바이오매스에서 추출한 혼합바이오를 석탄에 함침시키고 저온 탄화시켜 단일 연소특성(two-in-one fuel)으로 저급탄보다 발열량이 우수하며 다단연소가 일어나지 않아 미연소탄소가 적게 배출되는 장점이 있다.According to the present invention, the mixed bio extracted from herbal biomass is impregnated into coal and carbonized at low temperature, so that the calorific value is superior to that of low-grade coal with a single combustion characteristic (two-in-one fuel). has the advantage of being

또한, 혼합바이오가 바인더로도 사용되어 낮은 수분흡수율과 높은 압축강도를 갖고 있어 팰렛 등의 성형탄으로 제작되어도 형태가 유지되는 효과가 있다.In addition, since mixed bio is used as a binder, it has a low moisture absorption rate and high compressive strength, so that its shape is maintained even when it is made of coal briquettes such as pellets.

또한 본 발명에 따른 하이브리드 석탄은 저급탄의 발열량을 증가시켜 고급탄을 대체하여 저급탄의 활용을 촉진할 수 있다.In addition, the hybrid coal according to the present invention can increase the calorific value of the low-grade coal to replace the high-grade coal and promote the use of the low-grade coal.

도 1은 본 발명에 따른 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조과정에 대한 플로차트.
도 2는 본 발명에 따른 혼합바이오가 함침된 하이브리드 석탄의 수분흡수성 및 성형성 시험 사진.
도 3은 본 발명에 따른 혼합바이오가 함침된 후에 하이브리드 석탄의 연소특성 그래프.
도 4는 본 발명에 따른 혼합바이오가 함침된 후에 고밀도화된 하이브리드 석탄 성형탄의 압착강도 그래프.
1 is a flowchart for the manufacturing process of hybrid coal using a mixed bio extracted from herbal biomass according to the present invention.
2 is a photograph of moisture absorption and moldability test of hybrid coal impregnated with mixed bio according to the present invention.
3 is a graph of combustion characteristics of hybrid coal after being impregnated with mixed bio according to the present invention.
Figure 4 is a graph of the compression strength of the hybrid coal briquettes densified after being impregnated with the mixed bio according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 1에 도시된 바와 같이, 본 발명에 따른 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법은 석탄을 준비하는 단계(S10)와; 바이오매스에서 추출한 당이 포함된 혼합액(이하, '혼합바이오'라 한다)을 준비하는 단계(S20)와; 혼합바이오를 석탄에 함침시키는 단계(S30)와; 혼합바이오가 함침된 석탄을 건조시켜 코팅층을 형성시키는 단계(S40)와; 혼합바이오가 함침된 석탄을 저온 탄화시키는 단계(S50);를 포함한다. 그리고, 혼합바이오가 함침된 석탄을 성형하여 성형탄을 제조하는 단계(S60)를 더 포함할 수 있다.As shown in Figure 1, the method for producing hybrid coal using a mixed bio extracted from herbal biomass according to the present invention comprises the steps of preparing coal (S10); Preparing a mixed solution containing sugar extracted from biomass (hereinafter referred to as 'mixed bio') (S20); Impregnating the mixed bio into coal (S30) and; Drying the mixed bio-impregnated coal to form a coating layer (S40); and carbonizing the coal impregnated with mixed bio at low temperature (S50). And, it may further include the step of manufacturing the coal briquettes by molding the mixed bio-impregnated coal (S60).

S10의 석탄 준비단계는 이탄, 갈탄, 아역청탄, 역청탄 또는 무연탄 등의 저급탄을 사용한다. 저급탄은 파쇄된 미분탄, 조분쇄탄 또는 덩어리형태로 사용될 수 있으며, 이것에 한정되는 것은 아니다. 이때, 석탄의 준비단계에서 석탄의 수분을 제거하는 것도 바람직하다.In the coal preparation step of S10, low-grade coal such as peat, lignite, sub-bituminous coal, bituminous coal, or anthracite coal is used. Low-grade coal may be used in the form of crushed pulverized coal, coarsely pulverized coal, or lump, but is not limited thereto. At this time, it is also preferable to remove moisture from the coal in the preparation stage of the coal.

S20의 혼합바이오 준비단계는 초본계 바이오매스인 거대억새 또는 팜피트(Empty Fruit Bunches)를 약 200℃에서 가열하여 당을 포함하는 혼합바이오를 추출하고 고형 이물질을 제거하여 혼합바이오를 제조한다. 이러한 혼합바이오는 석탄에 함침되어 수분의 흡수를 방지하면서도 성형탄의 제조시에 바인더의 역할을 수행하여 고강도, 고밀도이면서 형태가 유지되는 성형탄을 제조할 수 있게 된다. In the mixed bio preparation step of S20, the herbaceous biomass giant pampas grass or empty fruit bundles are heated at about 200 ° C to extract the mixed bio containing sugar and remove solid foreign substances to prepare the mixed bio. This mixed bio is impregnated in coal to prevent absorption of moisture and to act as a binder in the manufacture of coal briquettes, thereby making it possible to manufacture coal briquettes that maintain high strength, high density and shape.

S30의 혼합바이오 함침단계는 초본계 바이오매스에서 추출된 혼합바이오는 석탄 중량 대비 3~80 중량% 혼합되어 석탄의 기공 및 표면에 함침되면서 페이스트로 형성된다. 이때, 혼합바이오의 첨가량이 3 중량% 미만이면 석탄의 기공 및 표면에 충분하게 함침되기 어렵고, 80 중량%를 초과하면 페이스트 성상을 얻기 어려워 성형시에 가공성이 떨어진다.In the mixed bio-impregnation step of S30, the mixed bio extracted from herbal biomass is mixed with 3 to 80 wt% based on the weight of the coal, and is impregnated into the pores and surface of the coal to form a paste. At this time, if the amount of mixed bio is less than 3% by weight, it is difficult to sufficiently impregnate the pores and surfaces of the coal.

S40의 혼합바이오 코팅층 형성단계는 혼합바이오가 석탄의 기공 및 표면에 함침 된 후 혼합바이오의 수분을 건조시킨다. 건조단계에 의해 혼합바이오가 석탄의 기공 및 표면에 달라붙으면서 코팅층을 형성하게 된다.The mixed bio coating layer formation step of S40 dries the moisture of the mixed bio after impregnating the pores and surface of the coal. By the drying step, the mixed bio is adhered to the pores and surface of the coal to form a coating layer.

S50의 저온 탄화단계는 혼합바이오의 코팅층이 형성된 석탄을 불활성가스 분위기에서 200~250℃로 가열하여 저온 탄화시킨다. 이때, 저온 탄화는 질소 등의 불활성가스 분위기에서 진행하여 석탄 및 혼합바이오가 발화되지 않고 탄화되어 혼합바이오가 석탄의 기공 및 표면에 남아 있게 된다. 이러한 저온 탄화과정을 거쳐 혼합바이오가 석탄에 결합되어 석탄이 단일 연소특성(two-in-one fuel)을 갖게 된다.In the low-temperature carbonization step of S50, the coal on which the coating layer of the mixed bio is formed is heated to 200-250° C. in an inert gas atmosphere to carbonize it at a low temperature. At this time, the low-temperature carbonization proceeds in an inert gas atmosphere such as nitrogen, so that the coal and the mixed biomass are carbonized without being ignited, so that the mixed biomass remains in the pores and the surface of the coal. Through this low-temperature carbonization process, the mixed bio is combined with coal so that coal has a single combustion characteristic (two-in-one fuel).

한편, S60단계의 성형탄 제작단계는 혼합바이오가 함침된 미분탄 또는 조분쇄탄 등의 저급탄을 운반, 보관 및 가공이 용이한 펠렛 등의 성형탄으로 제작한다. 예를 들면, 성형탄은 상호 반대방향으로 회전하는 압착 성형롤을 이용하여 펠렛 등으로 제조하게 된다.On the other hand, the coal briquettes manufacturing step of step S60 produces coal briquettes such as pellets that are easy to transport, store and process low-grade coal such as pulverized coal or coarsely pulverized coal impregnated with mixed bio. For example, coal briquettes are manufactured into pellets or the like using compression molding rolls rotating in opposite directions.

상기 제조방법에 의하여 제조된 혼합바이오가 함침되고 반탄화 과정을 거친 하이브리드 석탄은 안정적인 투-인-원 연료(Two-in-one fuel)의 연소 특징을 보인다. 이로 인해 본 발명에 따른 하이브리드 석탄은 에너지 효율을 증대시킬 수 있다.Hybrid coal, which is impregnated with mixed bio produced by the above method and undergoes torrefaction process, exhibits stable combustion characteristics of two-in-one fuel. Due to this, the hybrid coal according to the present invention can increase energy efficiency.

또한 본 발명에 따른 하이브리드 석탄은 저급탄을 활용하여 고급탄으로 변화시킬 수 있기 때문에, 저급탄의 활용을 촉진할 수 있다.In addition, since the hybrid coal according to the present invention can be changed to high-grade coal by utilizing low-grade coal, it is possible to promote the utilization of low-grade coal.

이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific examples will be described in detail.

(하이드리드 석탄의 제조)(Production of hydride coal)

초본계 바이오매스인 거대억새 또는 팜피트(Empty Fruit Bunches)를 약 200℃에서 가열하여 당을 포함하는 혼합바이오를 추출하고 이물질을 제거하였다. 이물질이 제거된 혼합바이오 10g과 입자크기가 4 mm이하인 저급탄 100g를 혼합하여 혼합바이오를 저급탄에 함침시켰다. 그리고, 압착 성형롤을 이용하여 펠렛으로 형성한 후에 105℃에서 6 시간 동안 건조한 후, 질소분위기 하에서 250℃에서 1 시간 동안 저온 탄화 과정을 수행하여 하이브리드 석탄을 제조하였다. Herbal biomass, giant pampas grass or palm pit (Empty Fruit Bunches) was heated at about 200 ℃ to extract the mixed bio containing sugar and remove foreign substances. The mixed bio was impregnated with 10 g of mixed bio from which foreign substances were removed and 100 g of low-grade coal with a particle size of 4 mm or less. Then, after forming into pellets using a compression molding roll, after drying at 105° C. for 6 hours, a low-temperature carbonization process was performed at 250° C. for 1 hour under a nitrogen atmosphere to prepare hybrid coal.

<수분흡수성 및 성형성 확인><Check moisture absorption and moldability>

하이브리드 석탄의 제조 과정에서 혼합바이오를 석탄에 함침시켜 펠렛으로 성형한 성형탄(비교예)과 200℃에서 건조한 성형탄(비교예) 및 250℃에서 저온 탄화된 성형탄(실시예1)을 각각 물이 담긴 비이커에 넣은 후에 석탄의 침출여부를 확인하여 도 2의 사진으로 나타내었다.In the manufacturing process of hybrid coal, coal briquettes (comparative example) formed into pellets by impregnating mixed bio into coal, coal briquettes dried at 200°C (comparative example), and coal briquettes carbonized at 250°C low temperature (Example 1) were each filled with water. After putting it in the beaker, it was confirmed whether the coal was leached, and it is shown in the photo of FIG. 2 .

도 2에 나타난 바와 같이 저온 탄화과정을 거치지 않은 경우에 성형탄이 수분을 흡수하여 미분탄이 분리된 것을 확인할 수 있었다. 또한, 200℃에서 건조한 성형탄의 경우에는 투입직후 성형탄의 형태가 유지되었지만 수분을 흡수하여 석탄에서 미분탄이 서서히 분리되었고 1 시간 경과 후에는 수분의 흡수량이 증가되어 비이커에 미분탄이 침출되는 것을 확인할 수 있었다. 그러나, 250℃에서 저온 탄화를 거친 성형탄의 경우에 수분이 흡수되지 않아 1 시간이 경과되어도 물의 색이 변하지 않으며 미분탄이 분리되지 않는 것을 확인할 수 있었다.As shown in FIG. 2 , when the low-temperature carbonization process was not performed, the coal briquettes absorbed moisture and it was confirmed that the pulverized coal was separated. In addition, in the case of coal briquettes dried at 200°C, the shape of the coal briquettes was maintained immediately after input, but the pulverized coal was gradually separated from the coal by absorbing moisture. . However, in the case of coal briquettes subjected to low-temperature carbonization at 250° C., moisture was not absorbed, so it was confirmed that the color of the water did not change even after 1 hour had elapsed, and the pulverized coal was not separated.

이처럼 본 발명의 초본계 바이오매스에서 추출된 혼합바이오가 함침된 성형탄은 저온 탄화를 거쳐 성형탄의 형태를 그대로 유지하면서 수분 흡수가 거의 없는 것을 확인할 수 있다.As such, it can be seen that the coal briquettes impregnated with the mixed bio extracted from the herbal biomass of the present invention undergoes low-temperature carbonization to maintain the shape of the coal briquettes as they are, and hardly absorb moisture.

<발열량 확인><Check the calorific value>

인도네시아 저급탄(ILRC), 초본계 바이오매스인 거대억새 또는 팜피트, 당밀, 흑액고형물(그리닌), 톱밥의 공업분석 결과와 발열량을 아래 표 1에 나타내었다.Industrial analysis results and calorific value of Indonesian low-grade coal (ILRC), herbaceous biomass giant pampas grass or palm pit, molasses, black liquor solids (grinin), and sawdust are shown in Table 1 below.

공업분석(wt%) Industry analysis (wt%) 고위 발열량
(kcal/kg)
high calorific value
(kcal/kg)
저위 발열량
(kcal/kg)
low calorific value
(kcal/kg)
수분 moisture 휘발분 volatile matter 회분 ash 고정탄소 fixed carbon 저급탄(ILRC)Low-grade ammunition (ILRC) 43.8843.88 25.8625.86 10.6410.64 19.6219.62 5,3505,350 4,8804,880 당밀(건조)Molasses (dried) 2.682.68 67.8567.85 9.299.29 20.1820.18 3,2503,250 2,9402,940 흑액고형물(그리닌)Black liquor solid (Greenin) 5.145.14 44.5844.58 42.9242.92 7.367.36 3,0703,070 2,8502,850 톱밥sawdust 30.27 30.27 45.7445.74 13.28 13.28 10.7110.71 3,7703,770 1,4301,430 혼합바이오(거대억새)Mixed Bio (Giant Grasshopper) 2.642.64 52.2952.29 16.2916.29 28.7828.78 4,3804,380 4,1104,110 혼합바이오(EFB)Mixed Bio (EFB) 1.561.56 59.0659.06 22.3822.38 17.0017.00 3,9703,970 3,7203,720

상기 표 1에서 보는 것처럼 본 발명의 초본계 바이오매스에서 추출된 혼합바이오의 경우 기존에 하이브리드 석탄 제조시 바이오매스 원료로 사용된 당밀보다 상당히 높은 발열량을 갖고 있어 바인더로서 적합한 것을 확인할 수 있다.<연소반응특성 확인>As shown in Table 1 above, it can be seen that the mixed bio extracted from the herbal biomass of the present invention has a significantly higher calorific value than molasses used as a biomass raw material in the conventional hybrid coal production, so it can be confirmed that it is suitable as a binder. <Combustion Check reaction characteristics>

실시예 1의 혼합바이오가 함침되고 저온 탄화된 하이브리드 석탄과 비교예로 인도네시아 저급탄과, 석탄과 혼합바이오를 물리적으로 혼합한 성형탄(비교예)의 연소특성을 확인하여 도 3의 그래프로 나타내었다.The combustion characteristics of the hybrid coal impregnated with the mixed bio of Example 1 and low-temperature carbonized as a comparative example and the low-grade coal of Indonesia and the coal briquettes (comparative example) physically mixed with coal (comparative example) were shown in the graph of FIG. .

도 3의 그래프에서 확인할 수 있듯이 단순히 혼합바이오가 혼합된 성형탄은 혼합바이오의 연소특성과 석탄의 연소특성이 모두 나타내는 이중 연소 특성을 갖지만, 본 발명의 혼합바이오가 함침되고 저온 탄화된 하이브리드 석탄은 단일 연소특성을 갖는 것을 확인할 수 있었다. 이러한 단일 연소특성에 의해서 성형탄의 발전효율이 저급탄보다 향상된 효과를 갖게 된다.As can be seen from the graph of FIG. 3, the coal briquettes simply mixed with the mixed bio have dual combustion characteristics that both the combustion characteristics of the mixed bio and the combustion characteristics of coal, but the hybrid coal impregnated with the mixed bio and low-temperature carbonized hybrid coal of the present invention is a single It was confirmed that it has combustion characteristics. Due to this single combustion characteristic, the power generation efficiency of coal briquettes has an improved effect than that of low-grade coal.

<압축강도 확인><Checking Compressive Strength>

실시예 1과 같이 초본계 바이오매스인 거대억새 또는 EFB에서 추출된 혼합바이오를 수분을 15%, 20% 조건에서 석탄 무게 대비하여 각각 3%, 10%, 20% 및 30%를 미분탄에 함침시키고 성형한 후에 반탄화된 하이브리드 성형탄을 각각 제조하고 압축강도를 측정하여 도 4의 그래프로 나타내었다.As in Example 1, 3%, 10%, 20%, and 30% of the mixed bio extracted from the herbaceous biomass giant pampas grass or EFB was impregnated in pulverized coal with moisture at 15% and 20% relative to the weight of coal, respectively. After molding, torrefied hybrid briquettes were prepared, respectively, and the compressive strength was measured and shown in the graph of FIG. 4 .

도 4에 나타난 것과 같이 혼합바이오의 함유량이 높을수록 압축강도가 높게 나타났으며 이는 펠렛 등으로 성형되어도 성형탄의 형태를 유지하여 성형성이 높음을 확인할 수 있다.As shown in FIG. 4 , the higher the content of the mixed bio, the higher the compressive strength, and it can be confirmed that the formability is high by maintaining the shape of the coal briquettes even when it is molded into pellets.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those of ordinary skill in the art to which the present invention pertains Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (6)

석탄을 준비하는 단계(S10)와;
초본계 바이오매스에서 추출한 당이 포함된 혼합액(혼합바이오)을 준비하는 단계(S20)와;
혼합바이오를 석탄의 기공 및 표면에 함침시키는 단계(S30)와;
혼합바이오가 함침된 석탄을 건조시켜 혼합바이오의 코팅층을 형성시키는 단계(S40)와;
혼합바이오가 함침된 석탄을 저온 탄화시키는 단계(S50); 포함하는 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법의 제조방법.
Preparing coal (S10) and;
Preparing a mixed solution (mixed bio) containing sugar extracted from herbal biomass (S20) and;
Impregnating the mixed bio into the pores and the surface of the coal (S30) and;
forming a coating layer of the mixed bio by drying the coal impregnated with the mixed bio (S40);
Low-temperature carbonization of the mixed bio-impregnated coal (S50); A method of manufacturing a hybrid coal using a mixed bio extracted from herbal biomass, characterized in that it comprises.
청구항 1에 있어서, 혼합바이오는 석탄을 기준으로 각각 3 내지 80 중량%로 혼합되는 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법. The method according to claim 1, wherein the hybrid biomass is mixed in an amount of 3 to 80% by weight, respectively, based on the coal. 청구항 1에 있어서, 혼합바이오의 코팅층을 형성하는 단계는 80~120℃에서 이루어지는 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법. The method according to claim 1, wherein the step of forming the coating layer of the mixed bio is performed at 80 ~ 120 ℃ method for producing hybrid coal using the mixed bio extracted from herbal biomass. 청구항 1에 있어서, 저온 탄화단계는 불활성가스 분위기에서 200~250℃에서 이루어지는 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법. The method according to claim 1, wherein the low-temperature carbonization step is performed at 200 ~ 250 ℃ in an inert gas atmosphere. 청구항 4에 있어서, 불활성가스는 질소가스인 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법. The method of claim 4, wherein the inert gas is nitrogen gas. 청구항 1에 있어서, 혼합바이오의 함침 단계(S30) 이후에 소정형상의 성형탄으로 성형하는 단계(S60)를 더 포함하는 것을 특징으로 하는 초본계 바이오매스에서 추출된 혼합바이오를 이용한 하이브리드 석탄의 제조방법의 제조방법. The method according to claim 1, further comprising the step (S60) of molding into coal briquettes of a predetermined shape after the impregnation step (S30) of the mixed biomass. manufacturing method.
KR1020200039823A 2020-04-01 2020-04-01 Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass KR20210122540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200039823A KR20210122540A (en) 2020-04-01 2020-04-01 Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200039823A KR20210122540A (en) 2020-04-01 2020-04-01 Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass

Publications (1)

Publication Number Publication Date
KR20210122540A true KR20210122540A (en) 2021-10-12

Family

ID=78078684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200039823A KR20210122540A (en) 2020-04-01 2020-04-01 Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass

Country Status (1)

Country Link
KR (1) KR20210122540A (en)

Similar Documents

Publication Publication Date Title
Zhu et al. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA
Khiari et al. Biomass derived chars for energy applications
ES2549920T3 (en) Methods for the manufacture of combustible pellets and other products from lignocellulosic biomass
Nhuchhen et al. A comprehensive review on biomass torrefaction
KR101796461B1 (en) Method for Producing Coal-Biomass Mixed Fuel with High Biomass Content
KR101809077B1 (en) Semi-carbonized biomass solid fuel and method for preparation thereof
Mythili et al. Briquetting of Agro-residues
US20210332305A1 (en) Process for producing solid biomass fuel
KR101210928B1 (en) Method for preparation of glycerol-embedded high caloric hybrid coal and glycerol-embedded high caloric hybrid coal prepared thereby
CN111847449A (en) Preparation method of low-ash high-specific surface area activated carbon
Firdaus et al. Biobrickets Made from Cassava Skin Waste Utilizing Banana Plastic Waste Glue and Water Hyacinth
KR101315522B1 (en) Method of manufacturering lowly absorbent powder fuel made from spent coffee bean
KR101308397B1 (en) Preparation method of wood solid-fuel having high heating value by semi-carbonization at low temperature
KR101464919B1 (en) Hybrid sludge-liquid type biomass mixed fuel, apparatus and manufacturing method thereof
BR112020011698B1 (en) TOASTED BIOMASS BRIQUETS AND RELATED METHODS
KR20210122540A (en) Preparation method of hybrid coal using mixed bio extracted from herbaceous biomass
KR101937766B1 (en) Design coal having improved surface characteristics
CN108192679B (en) Briquette and its preparation method and use
KR101546369B1 (en) Production of Coal water fuel and coal water fuel produced by the same
KR101269391B1 (en) Pulverized fuel and method for production of the same
KR102271800B1 (en) Preparation method of glycerol-impregnated modified hybrid coal
Sirijuncheun et al. Upgrading bagasse quality by torrefaction for a biomass power plant
Dewi Utilization of sawdust and coconut shell as raw materials in briquettes production
Siahdashti et al. Investigation of Physical and Thermal Properties of Fuel Briquettes Made of Bagasse.
CN105131987A (en) Preparation method of smoke-free long-acting pure-biomass barbecue carbon

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application