KR20210117217A - Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof - Google Patents

Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof Download PDF

Info

Publication number
KR20210117217A
KR20210117217A KR1020210035381A KR20210035381A KR20210117217A KR 20210117217 A KR20210117217 A KR 20210117217A KR 1020210035381 A KR1020210035381 A KR 1020210035381A KR 20210035381 A KR20210035381 A KR 20210035381A KR 20210117217 A KR20210117217 A KR 20210117217A
Authority
KR
South Korea
Prior art keywords
cells
cbpexo
cord blood
protein
derived
Prior art date
Application number
KR1020210035381A
Other languages
Korean (ko)
Other versions
KR102530161B1 (en
Inventor
김태규
김수언
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of KR20210117217A publication Critical patent/KR20210117217A/en
Application granted granted Critical
Publication of KR102530161B1 publication Critical patent/KR102530161B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to exosome derived from cord blood plasma or mimetibody thereof, and immunosuppressive uses thereof. More specifically, the present invention provides the use of exosomes derived from human cord blood plasma or exosomes mimicking the proteomics profile of the cord blood plasma-derived exosomes for the alleviation, prevention or treatment of various autoimmune diseases.

Description

제대혈 혈장 유래의 엑소좀 또는 이의 모방체 및 이의 면역억제 용도{Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof}Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof

본 발명은 제대혈 혈장 유래의 엑소좀 또는 이의 모방체 및 이의 면역억제 용도에 관한 것이다.The present invention relates to cord blood plasma-derived exosomes or mimetics thereof and to their immunosuppressive use.

인간 제대혈은 이식을 위한 조혈줄기세포의 소스로 사용되어 왔으나 면역세포, 중간엽 기질 세포 및 내피 전구체 세포 등의 다수의 세포들을 함께 포함하고 있다. 모체의 면역 시스템을 통한 태아의 면역 내성은 임신 유지에 중요한 역할을 담당한다. 태아와 모체 간의 면역학적 상호작용은 태아 항원의 제시 및/또는 모체 면역 시스템에 의한 이들 항원의 인지 및 이에 대한 반응에 의해 조절되는 양방향 커뮤니케이션 시스템을 나타낸다. 인간 제대혈 유래의 세포는 임신 유지에 기여하는 특정한 면역조절 특성들을 가지고 있다. 더욱이, 인간 제대혈은 또한 조절성 T 세포(Tregs) 및 단핵구-유래의 억제세포(MDSCs)와 같은 면역억제세포의 풍부한 소스이다.Human cord blood has been used as a source of hematopoietic stem cells for transplantation, but it contains a number of cells such as immune cells, mesenchymal stromal cells and endothelial precursor cells. Fetal immunity through the maternal immune system plays an important role in maintaining pregnancy. The immunological interaction between the fetus and the mother represents a two-way communication system that is regulated by the presentation of fetal antigens and/or recognition of these antigens by the maternal immune system and response thereto. Cells derived from human cord blood have specific immunomodulatory properties that contribute to the maintenance of pregnancy. Moreover, human umbilical cord blood is also a rich source of immunosuppressive cells such as regulatory T cells (Tregs) and monocyte-derived suppressor cells (MDSCs).

엑소좀은 기능성 단백질의 독특한 서브세트를 탑재하여 그들의 세포 혈통을 반영하는 작은 세포막 베지클이다. 인간 제대혈 유래의 세포는 엑스 비보에서 선별 및 확장되므로, 이들 세포 유래의 엑소좀은 세포 배양 상등액에서 효율적으로 분리될 수 있다. 인간 제대혈 유래의 세포에서 방출된 엑소좀은 그들은 Tregs 및 MDSCs와 같은 순환성 면역억제세포의 분화를 유도할 수 있어 면역억제 효과를 가질 수 있다. 그러나, 인간 제대혈 유래의 세포 및 엑소좀에 대한 연구에서의 발전에도 불구하고, 인간 제대혈 혈장 유래의 엑소좀(CBPexo)에 대한 연구는 빈약하다. CBPexo에 대한 프로테오믹스 연구 결과 엑소좀의 단백질은 T-세포 증식, 분화 및 음성적 조절; 막 투과성; 상처-치료; 아르기나아제 활성; 및 효소 조절 활성과 연관이 있었다. 인간 제대혈 유래의 세포외에도, 인간 제대혈 혈장 역시 다양한 면역조절 인자들을 포함하고 있어 IL-2 신호전달을 억제하여 T-세포 증식을 억제함에 있어 역할을 담당하고 있다. IL-2 및 이의 수용체인 IL-2R은 T 세포의 증식 및 생존 및 나이브 T 세포의 분화를 지원하는데 역할을 담당하고 있다. IL-2R 알파 체인(IL-2Rα/CD25)은 IL-2R의 필수 성분이다. 더욱이, CD4+T 세포에서의 IL-2Rα의 표면 발현 및 활성화 T 세포에서의 IL-2의 수준은 MMP-9에 의해 유의적으로 감소된다. 화학적 억제제에 의한 MMP 활성 억제는 IL-2 생산을 회복시키고, T 세포 증식을 부분적으로 회복시킨다. MMP-9 뿐만 아니라 CBP 면역조절인자들이 CBPexo에서 발견되며, 이들 엑소좀은 집중된 면역억제력을 나타낼 것이다.Exosomes are small cell membrane vesicles that mount a unique subset of functional proteins and reflect their cell lineage. Since human cord blood-derived cells are selected and expanded ex vivo, exosomes derived from these cells can be efficiently isolated from the cell culture supernatant. Exosomes released from cells derived from human umbilical cord blood may induce the differentiation of circulating immunosuppressive cells such as Tregs and MDSCs, and thus may have an immunosuppressive effect. However, despite advances in the study of cells and exosomes derived from human cord blood, studies on exosomes derived from human cord blood plasma (CBPexo) are poor. Proteomics studies on CBPexo showed that exosome proteins were involved in T-cell proliferation, differentiation and negative regulation; membrane permeability; wound-healing; arginase activity; and enzyme regulatory activity. In addition to cells derived from human cord blood, human cord blood plasma also contains various immunomodulatory factors, and thus plays a role in inhibiting T-cell proliferation by inhibiting IL-2 signaling. IL-2 and its receptor, IL-2R, are responsible for supporting the proliferation and survival of T cells and the differentiation of naive T cells. The IL-2R alpha chain (IL-2Rα/CD25) is an essential component of IL-2R. Moreover, the surface expression of IL-2Ra in CD4 + T cells and the level of IL-2 in activated T cells are significantly reduced by MMP-9. Inhibition of MMP activity by chemical inhibitors restores IL-2 production and partially restores T cell proliferation. MMP-9 as well as CBP immunomodulators are found in CBPexo, and these exosomes will exhibit concentrated immunosuppressive activity.

1. Ballen, K.K. et al., Blood, 2013. 122(4): p. 491-8.1. Ballen, K. K. et al., Blood, 2013. 122(4): p. 491-8. 2. Brunstein, C.G., et al., Blood, 2016. 127(8): p. 1044-51.2. Brunstein, C. G., et al., Blood, 2016. 127(8): p. 1044-51. 3. van Niel, G., et al., J Biochem, 2006. 140(1): p. 13-21.3. van Niel, G., et al., J Biochem, 2006. 140(1): p. 13-21. 4. Erices, A. et al., Br J Haematol, 2000. 109(1): p. 235-42.4. Erices, A. et al., Br J Haematol, 2000. 109(1): p. 235-42. 5. Lin, S.J., et al., Immunol Res, 2014. 60(1): p. 105-11.5. Lin, S.J., et al., Immunol Res, 2014. 60(1): p. 105-11. 6. Zhang, B., et al., Stem Cells Dev, 2014. 23(11): p. 1233-44.6. Zhang, B., et al., Stem Cells Dev, 2014. 23(11): p. 1233-44. 7. Jia, R., et al., Cell Physiol Biochem, 2015. 36(6): p. 2299-306.7. Jia, R., et al., Cell Physiol Biochem, 2015. 36(6): p. 2299-306. 8. Garanina, E.E., et al., Blood, 2017. 130.8. Garanina, E.E., et al., Blood, 2017. 130. 9. Jia, R., et al., Cell Physiol Biochem. 36(6): p. 2299-306.9. Jia, R., et al., Cell Physiol Biochem. 36(6): p. 2299-306.

본 발명의 목적은 성인 혈장 유래의 엑소좀과 비교하여 인간 제대혈 혈장 유래의 엑소좀의 프로테오믹스 프로파일을 규명함으로써 이의 약학적 용도를 제공하는 것이다.It is an object of the present invention to provide a pharmaceutical use thereof by identifying the proteomics profile of exosomes derived from human cord blood plasma compared to exosomes derived from adult plasma.

본 발명의 다른 목적은 인간 제대혈 혈장 유래의 엑소좀의 프로테오믹스 프로파일을 모방하는 엑소좀 모방체 및 이의 약학적 용도를 제공하는 것이다.Another object of the present invention is to provide an exosome mimic that mimics the proteomics profile of exosomes derived from human cord blood plasma and pharmaceutical uses thereof.

상기 목적을 달성하기 위하여, 본 발명은 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 면역억제용 조성물을 제공한다.In order to achieve the above object, the present invention is galectin-3 (galectin-3), Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7) ), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 ( ARG1) provides a composition for immunosuppression comprising, as an active ingredient, an exosome derived from umbilical cord blood plasma, wherein the expression of the gene group consisting of adult plasma is higher than that of adult plasma.

본 발명은 또한 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 Th1 및 Th17 세포의 분화 억제용 배지 조성물을 제공한다.The present invention also provides galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 ( GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B) ), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1). It provides a medium composition for inhibiting differentiation of Th1 and Th17 cells comprising exosomes derived from cord blood plasma as an active ingredient, the expression of which is higher than that of adult plasma-derived exosomes.

본 발명은 또한 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀과 나이브 CD4+T 세포를 인 비트로 배양하는 단계를 포함하는 인 비트로에서 Th1 및 Th17 세포의 분화 억제 방법을 제공한다.The present invention also provides galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 ( GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B) ), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1). Provided is a method for inhibiting differentiation of Th1 and Th17 cells in vitro, comprising culturing in vitro exosomes derived from cord blood plasma and naive CD4 + T cells whose expression is higher than that of adult plasma-derived exosomes.

본 발명은 또한 HLA 및 MIC 유전자 결핍 세포주에서 유래하고, 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군에서 선택된 하나 이상을 발현하는 제대혈 혈장 엑소좀 모방체를 제공한다.The present invention is also derived from HLA and MIC gene deficient cell lines, galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100 -A7 (S100A7), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Provided is an umbilical cord blood plasma exosome mimic expressing one or more selected from the gene group consisting of Arginase-1 (ARG1).

본 발명은 또한 상기 제대혈 혈장 엑소좀 모방체를 포함하는 면역억제용 조성물을 제공한다.The present invention also provides a composition for immunosuppression comprising the umbilical cord blood plasma exosome mimic.

본 발명은 인간 제대혈 혈장 유래의 엑소좀을 다양한 자가면역질환의 개선, 예방 또는 치료에 사용하며, 상기 엑소좀의 프로테오믹스 프로파일을 모방하는 엑소좀 모방체는 효과적인 면역억제 효과를 제공한다.The present invention uses exosomes derived from human cord blood plasma for the improvement, prevention or treatment of various autoimmune diseases, and an exosome mimic that mimics the proteomics profile of the exosomes provides an effective immunosuppressive effect.

도 1a-d는 인간 제대혈 혈장에서 정제된 엑소좀 막 베지클의 특성 규명 결과를 나타내는 도면이다.
(a) 다양한 엑소좀 특이 마커 항체가 코팅된 라텍스 비드에 결합된 CBPexo를 플로우 사이토메트리로 분석한 결과이다. 비교를 위해 완전 엑소좀 제제로 코팅된 라텍스 비드를 포함한다. 플롯은 상응하는 비드 단독 대조군에 대한 엑소좀 특이 항체들(CD9, CD63, CD82 및 HSP72)로부터 유래된 강도를 나타낸다.
(b)는 CBPexo 용해물의 도트 블롯 분석 결과이다. 대응하는 도트는 엑소좀 항체 어레이 키트를 사용하여 평가되었다. 엑소좀 특이 항체 스팟은 다양한 강도의 신호를 제공한다. 제시된 값은 3회의 독립적인 실험에서 얻은 값의 평균을 나타낸다. 오차 막대 = 평균의 표준 오차 (SEM). "블랭크"는 음성 대조군을 나타내며, φ로 나타내고, GM130은 세포 부스러기를 나타낸다. 평균 강도는 ImageJ 소프트웨어를 사용하여 분석된다.
(c)는 CBPexo의 형태적 특성 분석 결과이다. 전자현미경을 이용하여 CBPexo는 지질 이중층 구조로 구성되어있고 크기는 (50-130 nm)인 형태적 특성을 확인하였다. 스케일 바는 100 nm를 나타낸다.
(d)는 CBPexo의 크기와 파티클 수 분석 결과이다. 엑소좀의 크기는 81 ± 1.4 nm 이고 파티클 수는 1.64Х1012 ± 2.37Х1010 particles/mL 이다.
도 2a-c는 차등적으로 발현된 단백질과 관련된 분자적 기능 및 생물학적 과정을 나타내는 도면이다.
(a) 질량 분석법으로 스크리닝된 엑소좀에서 혈장 유래의 엑소좀 및 다양한 면역억제분자의 프로테오믹스 분석 결과이다(ExoCarta 및 Mascot v2.3.01로 질량 분석 데이터 검사).
(b) ExoCarta 데이터베이스와 SBC 분석 시스템을 사용한 인간 CBPexo 및 ABPexo의 다양한 생물학적 기능의 프로테오믹스 분석 결과이다. (c) ExoCarta 데이터베이스 및 SBC 분석 시스템을 사용하여 스크리닝된 인간 CBPexo 및 ABPexo의 프로테오믹스 분석 결과 및 면역억제분자의 다양한 분자적 기능을 나타낸다. 레드 박스는 기능적 분류 결과로서 CBPexo의 더 높은 연관성을 나타낸다.
도 3a-d는 CD3/CD28 DYNABEAD-자극된 인간 CD4+ 및 CD8+ T 세포에서 CBPexo 매개된 면역억제 메카니즘을 도시한 것이다.
(a) CBPexo가 CD4+ 및 CD8+ T 세포 자극을 억제함을 입증하는 대표 실험 데이터이다. CFSE-표지된 T 세포의 강도는 플로우 사이토메트리에 의해 얻고, ModFit LT 3.0 소프트웨어로 추가 분석한다.
(b) 인간 PBMC를 CBPexo 또는 ABPexo 하에서 CD3/CD28 DYNABEAD를 이용하여 농도 의존적으로 활성화시킨다. 라파마이신 및 시클로스포린은 면역억제제로 잘 알려져 있어 표준 양성 대조군으로 사용한다. CFSE-표지된 T 세포의 강도는 플로우 사이토메트리에 의해 얻고, ModFit LT 3.0 소프트웨어로 추가 분석한다. 모든 실험은 CBPexo의 5종의 상이한 배취를 이용하여 5회 이상 반복한다(혈장 엑소좀의 1 배취=제대혈 10 유닛의 합). 통계적으로 유의한 차이(ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01. 활성화된 PBMC는 양성 대조군=φ를 나타낸다.
(c) 아넥신 V-FITC 및 7AAD의 대표 실험 데이터는 인간 PBMC가 CBPexo 또는 ABPexo 하에서 CD3/CD28 DYNABEAD로 활성화됨을 도시한다.
(d) CBPexo는 CD3/CD28 DYNABEAD에 의해 활성화된 CD4+T 세포의 세포사멸을 유도한다. CD4+ 및 CD+8 T 세포는 156시간 후에 채취하고 아넥신 V-FITC, 7AAD, 항-CD4-APC 및 항-CD8-V450 항체로 염색한다. CD4상에 게이트된 세포를 도시한다. 분석 데이터는 FlowJo v10을 사용하여 분석한다. 이 실험은 5회 독립적으로 반복한다. 통계적으로 유의한 차이(ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01.
도 4는 CBPexo에 의해 유도된 CD4+T 세포에서의 G0/G1 세포주기 정지 효과를 나타낸 것이다. 실험은 독립적으로 3번 반복되며, 일원 분산 분석(one-way ANOVA)을 사용하여 그룹 간의 유의성을 계산한다 : * p <0.1 ** p <0.05 *** p <0.01.
도 5a-e는 CBPexo에 의한 Treg 세포의 분화 유도 및 T 세포 억제의 기능적 상향조절에 대한 효과를 나타낸다.
(a) CBPexo 하에서 PBMC의 CD4+CD25+ 및 FOXP3+의 발현을 나타낸 것이다. 이 실험은 3회 독립적으로 반복되며, 통계적으로 유의한 차이(ANOVA 시험)는 *p <0.1 **p <0.05 ***p <0.01이다.
(b) 제대혈 CD25+ 세포로부터 조절성 T 세포 확장 또는 분화를 도시한다.
(c) CBPexo가 있거나 없이 사이토카인, aAPC 및 항체 조합에 의해한 동일한 1 유닛 제대혈 CD25+ 세포의 배수 확장을 나타낸다.
(d) 항-CD3/CD28, IL-2 칵테일에 따라 소팅된 제대혈 CD25+ 세포의 확장 및 CBPexo가 있거나 없이 Treg의 분화를 나타낸다. 제대혈 단핵세포(CB-MNC)는 음성 대조군으로 사용한다.
(e) DYNABEAD 자극 후 PBMC에서 CBPexo-유도된 Treg 및 nTreg의 억제 기능의 비교를 나타낸다. 억제 기능은 CFSE 희석에 의해 평가한다. 3회 독립 실험으로부터 얻은 플로우 사이토메트리 데이터는 PBMC에서 CBPexo에 의해 유도된 Treg 및 nTreg에 의해 매개된 T 세포 증식의 비율로서 직선으로 요약된다. 데이터는 평균±표준편차로 나타낸다. 통계적으로 유의한 차이(Two-way ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01(n=4).
도 6a-b는 MDSC 분화 유도에 대한 CBPexo의 효과를 나타낸다.
(a) 비-자극 PBMCs는 CBPexo의 부재(CTRL) 또는 존재 하에서 배양된다. 게이팅 전략 : 단핵구(CD14+)를 선택하기 위해 물리적 매개 변수, 즉 전방 산란(FSC) 및 측방 산란(SSC)을 사용한다. CD11b/CD33의 발현을 평가하여 MDSC를 구분한다.
(b) PBMC 집단에서 CBPexos는 MDSC의 면역 억제 표현형을 촉진하고 아르기나제 1, NOS2 및 IDO의 생성을 자극한다. 아르기나제 1, NOS2 및 IDO의 세포 내 염색 및 CD14+/CD11b/CD33+ 세포의 염색에 대한 대표적인 FACS 히스토그램이 제시되어있다.
도 7a-b는 특정 MMP에 의한 T 세포 면역억제 유도에 대한 CBPexo의 효과를 나타낸다.
(a) 300㎍의 CBPexo 또는 ABPexo 용해물의 MMP 및 TIMP 항체 분석 결과를 나타낸다. 상등하는 도트는 엑소좀 항체 분석 키트를 사용하여 평가한다. 다양한 강도의 신호를 제공하는 MMP 및 TIMP 항체 스팟은 ImageJ 소프트웨어로 계산한다. 이 실험은 3회 독립적으로 반복한다.
(b) MMP 억제를 통한 CBPexo-매개된 억제는 T 세포 증식의 부분적인 회복을 유도한다. T 세포는 CBPexo 하에서 DYNABEAD로 자극되고 나서 156시간째에 CFSE 분석을 통한 비교 전에 GM6001이 처리되거나 그렇지 않는다. CFSE-표지된 세포는 FACSCanto에 의해 얻으며, 세포는 CD4+ 이벤트에서 게이팅된다. 각 제너레이션에서 세포의 비율은 ModFit LT4.0 소프트웨어를 사용하여 계산한다. 이 실험은 6회 독립적으로 반복한다. 통계적으로 유의한 차이(ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01.
도 8은 MMP 억제제인 GM6001 처리된 CBPexo에 의한 CD4+T 세포에서의 활성화 마커 CD25 및 CD69의 발현 효과를 나타낸 것이다.
도 9a-e는 인간 CBPexo에 의한 T 세포 억제 및 IL-2 하향조절의 마우스 교차-반응성을 나타낸다.
(a) CBPexo의 면역억제효과는 DYNABEAD-자극된 마우스 CD4+T 세포 증식에 의해 시험된다. 이 실험은 5회 독립적으로 반복한다. 통계적으로 유의한 차이(ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01.
(b) CBPexo의 면역억제효과는 DYNABEAD-자극된 마우스 CD8+T 세포 증식에 의해 시험된다. 이 실험은 5회 독립적으로 반복한다. 통계적으로 유의한 차이(ANOVA 시험): *p <0.1 **p <0.05 ***p <0.01.
(c) IL-2, IFN-γ 및 IL-17 분비 T 세포의 수준을 정량하기 위해 6일째에 ELISPOT 분석을 수행한다. 마우스 비장세포는 CBPexo 또는 ABPexo로 자극하고, IL-2, IFN-γ 및 IL-17 분비 T 세포 패턴을 관찰한다.
(d) CBPexo는 IL-2, IFN-γ 및 IL-6의 생산을 통해 인간 T 세포 증식을 유의적으로 감소시킨다. CBPexo는 인간 T 세포에서 IL-2Rα를 절단할뿐만 아니라 Th17 및 Th1 세포의 분화와 연관된 IL-2, IFN-γ 및 IL-6 분비를 하향조절한다. 이들 데이터는 사이토카인 생산이 CBPexo에 의해 억제되어 T 세포 분화능을 폐지한다. 채취된 배양 상등애게서 156시간째에 사이토카인 수준을 인간 사이토메트릭 비드 어레이를 이용하여 분석한다. 이 실험은 3회 독립적으로 반복한다.
(e) 사이토카인 수준에서의 변화는 마우스 사이토메트릭 비드 어레이를 이용하여 관찰한다. 그 결과, CBPexo는 인간 T 세포에서 IL-2의 분비를 하향조절할뿐만 아니라 마우스에서 IL-2를 감소시킨다. 이 실험은 3회 독립적으로 반복한다.
도 10a-c는 엑소좀 처리된 EAE 마우스에서 Treg 및 IL-2 수준의 변화 패턴을 나타낸다.
(a) EAE 발달은 CBPexo 처리된 EAE 마우스에 감소한다. EAE는 면역화를 위해 MOG/CFA 및 PTx가 함께 처리된 총 15마리의 C57BL/6 마우스에서 유도된다. CBPexo와 ABPexo를 0일 및 7일에 2회씩 EAE 마우스 5마리에 100㎍ 용량(검은색 화살표)으로 정맥주사한다. EAE의 임상 점수는 다음 기준에 따라 30일 동안 관찰되었다. 병에 걸린 쥐의 임상 점수: 0, 질병의 징후 없음; 1, 축쳐진 꼬리; 2, 축쳐진 꼬리 및 부분적인 뒷다리 약함; 3, 완전한 뒷다리 마비; 4, 완전한 뒷다리 및 부분적인 앞다리 마비; 5, 사망. 마우스는 EAE 유도 후 임상 점수를 분석하기 위해 상이한 그룹으로 배당한다: EAE 마우스(n=5) 대 CBPexo 또는 ABPexo 주사된 EAE 마우스(n=5). EAE는 양성 대조군=φ을 나타낸다.
(b) 급성 EAE 동안 전체 비장세포에서 MOG35-55 유도된 사이토카인 리콜 반응의 검출 결과를 나타낸다. C57BL/6 마우스를 CFA에서 MOG33-55로 면역화하고 면역화 22일 후에 시험하였다. 시험한 모든 마우스는 EAE의 임상 증상을 나타낸다. MOG 펩타이드 특이적인 IFN-γ, IL-2 및 IL-17 분비 세포의 빈도를 EAE 대조군, CBPexo 처리 EAE 군 및 ABPexo 처리 EAE군과 비교하기 위해 ELISPOT 분석을 이용하여 측정한다. MOG 펩타이드(25㎍/mL)로 재자극하는 동안 MOG 펩타이드-특이적인 T 세포를 분석한다.
(c) MOG33-55 펩타이드의 존재 또는 부재 하에서 Th1, Th2 및 Th17 특이 사이토카인 게이팅된 CD4+T 세포를 세포내 사이토카인 염색을 이용하여 측정하고 EAE 대조군, CBPexo 주사된 EAE 군 및 ABPexo 주사된 EAE 군과 비교한 결과를 나타낸다(n=4).
도 11은 EAE 모델의 비장세포에서 MOG35-55-유도된 사이토카인 재반응의 검출 결과를 나타낸 것이다.
도 12a-b는 엑소좀 처리 EAE 마우스의 비장(도 12a)과 흉선(도 12b)에서의 Treg 변화 양상을 나타낸다. CD4+T 게이팅된 MOG 펩타이드-특이적 FOXP3+ 세포의 빈도를 세포 내 사이토카인 염색 방법을 이용하여 EAE 대조군, CBPexo-처리 EAE 및 ABPexo-처리 EAE 군을 비교한다.
도 13은 엑소좀으로 치료한 실험적 자가 면역 뇌척수염(EAE) 마우스의 MDSC 집단을 나타낸다. CD11b + Gr1 + 세포 및 CD11b + NOS2 + 게이트 세포의 빈도를 건강한 대조군, EAE 대조군, CBPexo 주사 EAE 및 ABPexo 주사 EAE 군에서의 MDSC 집단의 빈도와 비교하여 결정한다.
도 14는 실험적 자가 면역 뇌척수염(EAE) 마우스의 뇌와 비장으로의 엑소좀의 이동능력을 나타낸다. DAPI로 염색된 조직에 PKH-67 형광염색을 한 엑소좀이 전달되었는지 EAE 대조군, CBPexo-처리 EAE 및 ABPexo-처리 EAE 군에서 비교한다.
도 15는 실험적 자가 면역 뇌척수염(EAE) 마우스의 뇌에서의 CBPexo에 의한 병리학적 치료효과를 EAE 대조군, CBPexo-처리 EAE 및 ABPexo-처리 EAE 군에서 비교한다.
도 16a-f는 CBPexo 모방체 및 이의 면역억제효과를 나타내는 도면이다.
(a) 멀티플렉스 CRISPR/Cas9 시스템을 이용한 HLA 클래스 I/MIC null HEK 293T(H1ME-5) 세포주의 확립을 나타낸다. H1ME-5 세포는 MICA/B 및 HLA 클래스 I의 발현을 나타내지 않는다.
(b) H1ME-5에서 방출된 엑소좀의 크기 분포를 나타낸다. CBPexo는 145.61 ± 75.89 nm의 크기를 갖는다.
(c) H1ME-5 세포에 형질도입된 CBPexo에 포함된 GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 및 HSP72의 발현을 나타낸다. 형질도입 후 6일째에, 각 분자에 대해 양성인 세포를 MoFlo XDP Cell Sorter를 사용하여 소팅한다.
(d) GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 및 HSP72 항체로 코팅된 라텍스 비드에 결합된 CBPexo 또는 CBPexo 모방체를 플로우 사이토메트리에 의해 분석한다. 상응하는 비드 단독 대조군과 GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 및 HSP72 항체에서 유래한 강도를 비교한다.
(e) CBPexo 및 MMP-9이 강화된 CBPexo 모방체가 T 세포 자극을 억제함을 입증하는 대표 실험 데이터를 나타낸다. CFSE-표지된 T 세포의 강도는 플로우 사이토메트리에 의해 얻고, ModFit LT4.0 소프트웨어를 사용하여 추가로 분석한다. CBPexo, CBPexo 모방체 및 H1ME-5 엑소좀의 농도는 10㎍/well이다.
(f) CBPexo, CBPexo 모방체 및 H1ME-5 엑소좀의 통계치는 CFSE 증식 분석에서 얻은 결과를 이용하여 분석된다.
1A-D are diagrams showing the results of characterization of exosome membrane vesicles purified from human umbilical cord blood plasma.
(a) Flow cytometry analysis of CBPexo bound to latex beads coated with various exosome-specific marker antibodies. For comparison, latex beads coated with a complete exosome preparation are included. Plots show intensities derived from exosome specific antibodies (CD9, CD63, CD82 and HSP72) against the corresponding bead-only controls.
(b) is a dot blot analysis result of CBPexo lysate. Corresponding dots were evaluated using the exosome antibody array kit. Exosome-specific antibody spots provide signals of varying intensities. The values presented represent the average of values obtained from three independent experiments. Error bars = standard error of the mean (SEM). “Blank” denotes negative control, denoted by φ, and GM130 denotes cell debris. Average intensity is analyzed using ImageJ software.
(c) is the result of morphological characterization of CBPexo. Using electron microscopy, the morphological characteristics of CBPexo with a lipid bilayer structure and a size (50-130 nm) were confirmed. Scale bar represents 100 nm.
(d) is the result of analysis of the size and number of particles of CBPexo. The size of the exosomes is 81 ± 1.4 nm and the number of particles is 1.64Х10 12 ± 2.37Х10 10 particles/mL.
2A-C are diagrams showing molecular functions and biological processes associated with differentially expressed proteins.
(a) Proteomics analysis results of plasma-derived exosomes and various immunosuppressive molecules in exosomes screened by mass spectrometry (mass spectrometry data examination with ExoCarta and Mascot v2.3.01).
(b) Results of proteomics analysis of various biological functions of human CBPexo and ABPexo using the ExoCarta database and SBC analysis system. (c) Shows the results of proteomics analysis of human CBPexo and ABPexo screened using the ExoCarta database and SBC analysis system and various molecular functions of immunosuppressive molecules. Red boxes indicate higher associations of CBPexo as functional classification results.
3A-D depict the mechanism of CBPexo mediated immunosuppression in CD3/CD28 DYNABEAD-stimulated human CD4+ and CD8+ T cells.
(A) Representative experimental data demonstrating that CBPexo inhibits CD4+ and CD8+ T cell stimulation. The intensity of CFSE-labeled T cells is obtained by flow cytometry and further analyzed with ModFit LT 3.0 software.
(b) Concentration-dependent activation of human PBMCs using CD3/CD28 DYNABEAD under CBPexo or ABPexo. Rapamycin and cyclosporine are well known immunosuppressants and are used as standard positive controls. The intensity of CFSE-labeled T cells is obtained by flow cytometry and further analyzed with ModFit LT 3.0 software. All experiments were repeated at least 5 times using 5 different batches of CBPexo (1 batch of plasma exosomes=sum of 10 units of cord blood). Statistically significant difference (ANOVA test): *p <0.1 **p <0.05 ***p <0.01. Activated PBMCs represent positive control=φ.
(c) Representative experimental data of annexins V-FITC and 7AAD show that human PBMCs are activated with CD3/CD28 DYNABEAD under CBPexo or ABPexo.
(d) CBPexo induces apoptosis of CD4+ T cells activated by CD3/CD28 DYNABEAD. CD4+ and CD+8 T cells were harvested after 156 hours and stained with annexin V-FITC, 7AAD, anti-CD4-APC and anti-CD8-V450 antibodies. Cells gated on CD4 are shown. Analysis data is analyzed using FlowJo v10. This experiment is independently repeated 5 times. Statistically significant difference (ANOVA test): *p <0.1 **p <0.05 ***p <0.01.
4 shows the effect of G0/G1 cell cycle arrest in CD4 + T cells induced by CBPexo. Experiments were independently repeated 3 times and one-way ANOVA was used to calculate the significance between groups: * p <0.1 ** p <0.05 *** p <0.01.
5a-e show the effect of CBPexo on the induction of differentiation of Treg cells and the functional upregulation of T cell inhibition.
(a) Expression of CD4+CD25+ and FOXP3+ of PBMCs under CBPexo. This experiment was independently repeated 3 times, and the statistically significant difference (ANOVA test) was *p <0.1 **p <0.05 ***p <0.01.
(b) Regulatory T cell expansion or differentiation from umbilical cord blood CD25+ cells.
(c) Shows fold expansion of the same 1 unit cord blood CD25+ cells by cytokine, aAPC and antibody combination with and without CBPexo.
(d) Anti-CD3/CD28, expansion of cord blood CD25+ cells sorted according to the IL-2 cocktail and differentiation of Tregs with and without CBPexo. Cord blood mononuclear cells (CB-MNC) are used as negative controls.
(e) Comparison of the inhibitory functions of CBPexo-induced Tregs and nTregs in PBMCs after DYNABEAD stimulation. Inhibitory function is assessed by CFSE dilution. Flow cytometry data from three independent experiments are summarized in a straight line as the ratio of CBPexo-induced Treg and nTreg-mediated T cell proliferation in PBMCs. Data are presented as mean ± standard deviation. Statistically significant difference (two-way ANOVA test): *p <0.1 **p <0.05 ***p <0.01 (n=4).
6a-b show the effect of CBPexo on the induction of MDSC differentiation.
(A) Non-stimulated PBMCs are cultured in the absence (CTRL) or presence of CBPexo. Gating strategy: use physical parameters, namely forward scatter (FSC) and side scatter (SSC) to select monocytes (CD14+). MDSCs are differentiated by evaluating the expression of CD11b/CD33.
(b) In the PBMC population, CBPexos promotes the immunosuppressive phenotype of MDSCs and stimulates the production of arginase 1, NOS2 and IDO. Representative FACS histograms for intracellular staining of arginase 1, NOS2 and IDO and staining of CD14+/CD11b/CD33+ cells are shown.
7a-b show the effect of CBPexo on the induction of T cell immunosuppression by specific MMPs.
(a) Shows the results of MMP and TIMP antibody analysis of 300 μg of CBPexo or ABPexo lysate. Corresponding dots are assessed using the Exosome Antibody Assay Kit. MMP and TIMP antibody spots giving signals of varying intensities are calculated with ImageJ software. This experiment is independently repeated 3 times.
(b) CBPexo-mediated inhibition through MMP inhibition induces partial restoration of T cell proliferation. T cells were stimulated with DYNABEAD under CBPexo at 156 h and with or without GM6001 prior to comparison via CFSE assay. CFSE-labeled cells are obtained by FACSCanto and cells are gated at CD4+ events. The proportion of cells in each generation is calculated using ModFit LT4.0 software. This experiment is independently repeated 6 times. Statistically significant difference (ANOVA test): *p <0.1 **p <0.05 ***p <0.01.
8 shows the expression effect of the activation markers CD25 and CD69 in CD4 + T cells by the MMP inhibitor GM6001 treated CBPexo.
9A-E show mouse cross-reactivity of T cell inhibition and IL-2 downregulation by human CBPexo.
(A) The immunosuppressive effect of CBPexo is tested by DYNABEAD-stimulated mouse CD4+ T cell proliferation. This experiment is independently repeated 5 times. Statistically significant difference (ANOVA test): *p <0.1 **p <0.05 ***p <0.01.
(b) The immunosuppressive effect of CBPexo was tested by DYNABEAD-stimulated mouse CD8 + T cell proliferation. This experiment is independently repeated 5 times. Statistically significant difference (ANOVA test): *p <0.1 **p <0.05 ***p <0.01.
(c) ELISPOT assay is performed on day 6 to quantify the levels of IL-2, IFN-γ and IL-17 secreting T cells. Mouse splenocytes were stimulated with CBPexo or ABPexo, and IL-2, IFN-γ and IL-17 secreting T cell patterns were observed.
(d) CBPexo significantly reduces human T cell proliferation through the production of IL-2, IFN-γ and IL-6. CBPexo not only cleaves IL-2Ra in human T cells, but also downregulates IL-2, IFN-γ and IL-6 secretion associated with differentiation of Th17 and Th1 cells. These data suggest that cytokine production is inhibited by CBPexo, abrogating T cell differentiation capacity. Cytokine levels at 156 hours in harvested culture supernatants are analyzed using a human cytometric bead array. This experiment is independently repeated 3 times.
(E) Changes in cytokine levels are observed using a mouse cytometric bead array. As a result, CBPexo downregulates IL-2 secretion in human T cells as well as decreases IL-2 in mice. This experiment is independently repeated 3 times.
10A-C show the pattern of changes in Treg and IL-2 levels in exosome-treated EAE mice.
(A) EAE development is reduced in CBPexo treated EAE mice. EAE was induced in a total of 15 C57BL/6 mice treated with MOG/CFA and PTx for immunization. CBPexo and ABPexo were injected intravenously at a dose of 100 μg (black arrow) into 5 EAE mice twice on days 0 and 7, respectively. The clinical score of EAE was observed for 30 days according to the following criteria. Clinical score of diseased rats: 0, no signs of disease; 1, shriveled tail; 2, saggy tail and partial hindlimb weakness; 3, complete hindlimb paralysis; 4, complete hindlimb and partial forelimb paralysis; 5, death. Mice are assigned to different groups for analysis of clinical scores after EAE induction: EAE mice (n=5) vs. EAE mice injected with CBPexo or ABPexo (n=5). EAE represents positive control=φ.
(b) shows the detection result of MOG35-55 induced cytokine recall response in total splenocytes during acute EAE. C57BL/6 mice were immunized with MOG33-55 in CFA and tested 22 days after immunization. All mice tested exhibit clinical symptoms of EAE. The frequency of MOG peptide-specific IFN-γ, IL-2 and IL-17 secreting cells was measured using ELISPOT assay to compare with EAE control group, CBPexo-treated EAE group and ABPexo-treated EAE group. Analyze MOG peptide-specific T cells during restimulation with MOG peptide (25 μg/mL).
(c) Th1, Th2 and Th17 specific cytokine-gated CD4+ T cells in the presence or absence of MOG33-55 peptide measured using intracellular cytokine staining and EAE control, CBPexo injected EAE group and ABPexo injected EAE The results compared to the group are shown (n=4).
11 shows the detection results of MOG35-55-induced cytokine re-reaction in splenocytes of the EAE model.
12a-b show the pattern of Treg changes in the spleen ( FIG. 12a ) and the thymus ( FIG. 12b ) of exosome-treated EAE mice. The frequency of CD4+T gated MOG peptide-specific FOXP3+ cells is compared to EAE control, CBPexo-treated EAE and ABPexo-treated EAE groups using intracellular cytokine staining method.
13 shows the MDSC population of experimental autoimmune encephalomyelitis (EAE) mice treated with exosomes. The frequencies of CD11b + Gr1 + cells and CD11b + NOS2 + gated cells are determined by comparing the frequencies of the MDSC populations in healthy control, EAE control, CBPexo injected EAE and ABPexo injected EAE groups.
14 shows the ability of exosomes to migrate to the brain and spleen of experimental autoimmune encephalomyelitis (EAE) mice. Whether exosomes stained with PKH-67 fluorescence were delivered to DAPI-stained tissues were compared in the EAE control group, CBPexo-treated EAE and ABPexo-treated EAE groups.
15 compares the pathological treatment effect of CBPexo in the brain of experimental autoimmune encephalomyelitis (EAE) mice in the EAE control group, CBPexo-treated EAE and ABPexo-treated EAE groups.
16A-F are diagrams showing the CBPexo mimic and its immunosuppressive effect.
(A) Shows the establishment of an HLA class I/MIC null HEK 293T (H1ME-5) cell line using the multiplex CRISPR/Cas9 system. H1ME-5 cells show no expression of MICA/B and HLA class I.
(b) Shows the size distribution of exosomes released from H1ME-5. CBPexo has a size of 145.61 ± 75.89 nm.
(c) Expression of GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 and HSP72 contained in CBPexo transduced into H1ME-5 cells. On day 6 post-transduction, cells positive for each molecule are sorted using the MoFlo XDP Cell Sorter.
(d) CBPexo or CBPexo mimetics bound to latex beads coated with GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 and HSP72 antibodies are analyzed by flow cytometry. The intensities derived from the GAL-3, MMP-8, MMP-9, PIP, S100A7, GAL-7 and HSP72 antibodies are compared with the corresponding bead-only controls.
(E) Representative experimental data demonstrating that CBPexo and MMP-9-enriched CBPexo mimetics inhibit T cell stimulation. The intensity of CFSE-labeled T cells is obtained by flow cytometry and further analyzed using ModFit LT4.0 software. The concentrations of CBPexo, CBPexo mimic and H1ME-5 exosomes were 10 μg/well.
(f) Statistics of CBPexo, CBPexo mimetics and H1ME-5 exosomes are analyzed using the results obtained from the CFSE proliferation assay.

이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.

본 발명은 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 면역억제용 조성물에 관한 것이다.The present invention is galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL) -7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B) , Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1). It relates to a composition for immunosuppression comprising, as an active ingredient, exosomes derived from cord blood plasma, whose expression is higher than that of adult plasma-derived exosomes.

본 발명의 제대혈 혈장 유래의 엑소좀(CBPexo)은 성인 혈장 유래의 엑소좀(ABPexo)에 비해 면역억제-관련 단백질을 더 많이 포함하는데, CBPexo에서 인자들에 의한 T 세포 증식 억제는 세포사멸 및 세포주기 어레스트에서 기인한다. 또한, CBPexo 처리 시 CD4+CD25+FOXP3+ Treg 세포 집단이 증가하며 다클론성 확장된 Treg의 기능을 상향조절한다. CBPexo는 mTOR 신호전달의 다운스트림을 억제하는 CD25를 절단하여 세포주기를 어레스트시키는 것으로 추측된다. 실제로, CBPexo 처리된 활성화 T 세포에서 IL-2의 분비 및 IL-2Rα의 표면 발현은 CD4+T 세포에서 유의적으로 감소되었다. CBPexo에 의한 IL-2 신호전달의 차단은 CD4+ 및 CD8+T 세포의 증식 억제에 중추적인 역할을 담당한다. IL-2 신호전달 경로의 차단은 면역시스템의 억제를 유도하고, 치료 효과를 나타낸다. IL-2/IL-2R 상호작용은 세포내 Ras/Raf/MARP, JAK/STAT 및 PI3K/AKT 신호전달 경로를 활성화시켜 T 세포의 성장, 분화 및 생존을 촉진한다. Cord blood plasma-derived exosomes (CBPexo) of the present invention contain more immunosuppression-related proteins than adult plasma-derived exosomes (ABPexo). It is caused by the period arrest. In addition, CBPexo treatment increases the CD4+CD25+FOXP3+ Treg cell population and upregulates the function of polyclonal expanded Tregs. It is speculated that CBPexo arrests the cell cycle by cleaving CD25, which inhibits mTOR signaling downstream. Indeed, the secretion of IL-2 and the surface expression of IL-2Rα in CBPexo-treated activated T cells were significantly reduced in CD4+ T cells. Blockade of IL-2 signaling by CBPexo plays a pivotal role in the inhibition of proliferation of CD4+ and CD8+ T cells. Blockade of the IL-2 signaling pathway leads to suppression of the immune system and has therapeutic effects. IL-2/IL-2R interaction activates intracellular Ras/Raf/MARP, JAK/STAT and PI3K/AKT signaling pathways to promote growth, differentiation and survival of T cells.

또한, CBPexo의 MMP-9는 암세포와 만날 때 T 세포에서 발현되는 CD25의 절단에 관여하고, MMP-8 역시 세포외 도메인의 붕괴를 유도하여 면역 반응과 연관된 표면 분자의 절단을 초래하여 면역조절 효과를 나타낸다. IL-2Rα의 절단은 MMP-9에 의존한다.In addition, MMP-9 of CBPexo is involved in the cleavage of CD25 expressed in T cells when it encounters cancer cells, and MMP-8 also induces the disruption of the extracellular domain, resulting in cleavage of surface molecules related to immune responses, resulting in immunomodulatory effects. indicates Cleavage of IL-2Ra is dependent on MMP-9.

인간 CBPexo를 마우스 모델에 적용한 경우, 인 비트로에서 마우스 T 세포에서 면역억제효과가 관찰되어 인간 CBPexo의 마우스 교차-반응성을 확인할 수 있다. When human CBPexo was applied to a mouse model, an immunosuppressive effect was observed in mouse T cells in vitro, confirming the mouse cross-reactivity of human CBPexo.

또한, EAE 마우스 모델은 질환 발달 시 Th 세포의 역할을 조사하는데 포괄적으로 이용된다. 예를 들어, 마이엘린 특이적인 CD4+Th1 세포를 미성숙 수혜자 마우스에 이식하면 EAE의 유도가 촉진됨을 보여준다. 유사하게, Th17 세포로 알려진 IL-17 분비 T 세포 역시 EAE 발달에 추진력이 된다고 보고된바 있다. 또한, EAE는 Treg의 빈도를 낮추고 그들의 억제 기능을 손상시켜 질병의 개시를 촉진한다. 본 발명의 CBPexo는 인 비보에서 Treg 분화를 증가시키고 Th1 및 Th17 분화를 감소시켜 EAE 발달 과정을 바꾸고 항원 특이적인 CD4+T 세포의 분화를 조절할 수 있다.In addition, the EAE mouse model is used comprehensively to investigate the role of Th cells in disease development. For example, we show that transplantation of myelin-specific CD4+Th1 cells into immature recipient mice promotes the induction of EAE. Similarly, IL-17 secreting T cells known as Th17 cells have also been reported to be a driving force in EAE development. In addition, EAE promotes disease initiation by lowering the frequency of Tregs and impairing their inhibitory function. The CBPexo of the present invention can change the EAE development process and regulate the differentiation of antigen-specific CD4+ T cells by increasing Treg differentiation and decreasing Th1 and Th17 differentiation in vivo.

상술한 바와 같이, 본 발명의 엑소좀은 1) 엑소좀에서 발현되는 MMP-9이 활성화 T 세포 표면의 IL-2 수용체 α(CD25)를 분해하여 IL-2 생산을 감소시킴으로써 T 세포 증식을 억제하고, 2) 조절성 T 세포(Treg 세포) 및 단핵구-유래 억제 세포(MDSC) 분화를 유도하며, 및 3) Th1 및 Th17 세포의 분화를 억제하는 특징을 가진다.As described above, the exosome of the present invention inhibits T cell proliferation by 1) reducing IL-2 production by 1) MMP-9 expressed in the exosome degrades IL-2 receptor α (CD25) on the activated T cell surface. and 2) induce regulatory T cell (Treg cell) and monocyte-derived suppressor cell (MDSC) differentiation, and 3) inhibit the differentiation of Th1 and Th17 cells.

본 명세서에서, 용어 "제대혈 혈장 유래의 엑소좀 (exosome)" 또는 "CBPexo"은 제대혈 혈장에서 유래된 세포막 입자이다. 상기 엑소좀(exosome)은 당업계에서, 미세소포체, 순환 미세소포체 또는 미세소낭과 동일한 의미를 갖으며, 세포로부터 탈락된 50 ㎚ 내지 100 ㎚의 원형질막을 갖는 프래그먼트를 말한다. 미세소포체는 세포 간의 mRNA, miRNA 및 단백질을 운송을 매개하고 세포 내의 상호 작용에 중요한 역할을 한다. 미세소포체는 유래한 세포, 세포의 수, 세포의 크기 및 항원의 구성에 따라 비균질한 집단을 나타낸다. 바람직하게는, 본 발명의 엑소좀은 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 것을 특징으로 한다.As used herein, the term "cord blood plasma-derived exosome" or "CBPexo" is a cell membrane particle derived from cord blood plasma. The exosome (exosome) has the same meaning as microvesicles, circulating microvesicles or microvesicles in the art, and refers to a fragment having a plasma membrane of 50 nm to 100 nm removed from the cell. Microvesicles mediate the transport of mRNA, miRNA and proteins between cells and play an important role in intracellular interactions. Microvesicles represent a heterogeneous population depending on the cell from which it is derived, the number of cells, the size of the cells and the composition of the antigen. Preferably, the exosome of the present invention is galectin-3 (galectin-3), Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7) ), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 ( It is characterized in that the expression of the gene group consisting of ARG1) is higher than that of exosomes derived from adult plasma.

본 명세서에서 "유효성분"이란 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.As used herein, the term "active ingredient" refers to a component capable of exhibiting the desired activity by itself or in combination with a carrier having no activity by itself.

또한, 본 명세서에서, "면역억제"란 과면역 반응 또는 비정상적 면역 반응으로 인한 면역질환의 개선(증상의 경감), 치료, 그러한 질환의 예방, 발병 억제 또는 지연을 포함하는 의미이다. 상기 "면역질환"이란 이식편대숙주질환, 자가면역질환(류마티스 관절염 등), 과증식성 피부질환(아토피성 피부염, 접촉성 피부염 등), 만성 폐색성 호흡기 질환(chronic obstructive pulmonary disease; COPD), 알레르기성 천식 천식, 기관지염(bronchitis), 알레르기성 비염, 자가면역성 간염(autoimmune hepatitis)을 포함하는 의미이나, 이에 한정되는 것은 아니다. In addition, as used herein, the term "immunosuppression" is meant to include improvement (relief of symptoms), treatment, prevention, suppression or delay of the onset of immune diseases caused by hyperimmune or abnormal immune responses. The "immune disease" means graft-versus-host disease, autoimmune disease (rheumatoid arthritis, etc.), hyperproliferative skin disease (atopic dermatitis, contact dermatitis, etc.), chronic obstructive pulmonary disease (COPD), allergy It includes, but is not limited to, sexual asthma, asthma, bronchitis, allergic rhinitis, and autoimmune hepatitis.

본 발명은 또한 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 Th1 및 Th17 세포의 분화 억제용 배지 조성물에 관한 것이다.The present invention also provides galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 ( GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B) ), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1). To a medium composition for inhibiting differentiation of Th1 and Th17 cells comprising exosomes derived from cord blood plasma as an active ingredient, the expression of which is higher than that of adult plasma-derived exosomes.

또한, 본 발명은 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀과 나이브 CD4+T 세포를 인 비트로 배양하는 단계를 포함하는 인 비트로에서 Th1 및 Th17 세포의 분화 억제 방법을 제공한다.In addition, the present invention is galectin-3 (galectin-3), Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B ( C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1) Provided is a method for inhibiting differentiation of Th1 and Th17 cells in vitro, comprising culturing in vitro exosomes derived from cord blood plasma and naive CD4 + T cells, wherein the group expression is higher than that of adult plasma.

본 명세서에서 "배지"는 인 비트로에서 나이브 CD4+T 세포의 Th1 및 Th17 세포로의 분화를 억제할 수 있는 배지를 의미하고, 세포 배양에 적절한 당 분야에서 사용되는 통상의 배지를 모두 포함한다. 세포의 종류에 따라 배지와 배양 조건을 선택할 수 있다. 배양에 사용되는 배지는 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 이런 세포 배양 배지에는 예들 들어, DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal essential Medium), BME(Basal Medium Eagle), RPMI1640, F-10, F-12, αMEM(α Minimal essential Medium), GMEM(Glasgow's Minimal essential Medium), Iscove's Modified Dulbecco's Medium 등이 있으나, 이로 제한되지 않는다. As used herein, the term "medium" refers to a medium capable of inhibiting the differentiation of naive CD4 + T cells into Th1 and Th17 cells in vitro, and includes any medium used in the art suitable for cell culture. Depending on the type of cell, the medium and culture conditions can be selected. The medium used for culture generally contains a carbon source, a nitrogen source, and a trace element component. Such cell culture medium includes, for example, DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, αMEM (α Minimal essential Medium), GMEM ( Glasgow's Minimal essential Medium), Iscove's Modified Dulbecco's Medium, etc., but are not limited thereto.

또한, 상기 배지는 페니실린(penicillin), 스트렙토마이신(streptomycin), 겐타마이신(gentamicin) 등의 항생제를 포함할 수 있다.In addition, the medium may contain antibiotics such as penicillin, streptomycin, and gentamicin.

본 발명의 배지 조성물은 단독으로 또는 다른 물질들과 조합하여 Th1 및 Th17 세포의 배양 및 분화 억제를 위한 미세환경 조성에 이용될 수 있다.The medium composition of the present invention can be used alone or in combination with other substances to form a microenvironment for culturing and inhibiting differentiation of Th1 and Th17 cells.

본 발명의 배지 조성물은 상기 다른 물질로서 분화 억제 물질을 추가적으로 첨가할 수 있으며, 상기 분화 억제 물질은 당업계에 공지된 어떠한 분화 억제 물질도 이용될 수 있으며, 분화를 억제하고자 하는 Th1 및 Th17 세포의 상태에 따라 다양하게 단독 또는 조합하여 첨가될 수 있다.In the medium composition of the present invention, a differentiation inhibitory material may be additionally added as the other material, and any differentiation inhibitory material known in the art may be used as the differentiation inhibitory material. It may be added alone or in combination in various ways depending on the state.

배양 조건은 CO2 배양기에서, 5 내지 15%의 이산화탄소의 통기량으로 35 내지 37℃에서 수행할 수 있으나, 이에 특별히 제한하는 것은 아니다.Culturing conditions may be carried out at 35 to 37° C. with an aeration of 5 to 15% carbon dioxide in a CO 2 incubator, but is not particularly limited thereto.

본 발명의 조성물은 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)를 과발현하는 제대혈 혈장 유래의 엑소좀을 포함하므로, 이와 중복된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.The composition of the present invention is galectin-3 (galectin-3), Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B ( C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1) overexpressing Since it includes exosomes derived from cord blood plasma, the overlapping content will be omitted to avoid excessive complexity of the present specification.

본 발명은 또한 HLA 및 MIC 유전자 결핍 세포주에서 유래하고, 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군에서 선택된 하나 이상을 발현하는 제대혈 혈장 엑소좀 모방체에 관한 것이다.The present invention is also derived from HLA and MIC gene deficient cell lines, galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100 -A7 (S100A7), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and It relates to an umbilical cord blood plasma exosome mimic expressing one or more selected from the gene group consisting of Arginase-1 (ARG1).

본 발명자들은 CBPexo의 프로테오믹스 프로파일에서 약학적 용도, 예컨대, 면역억제, 상처치료 등과 연관된 GAL-3, MMP-9, HSP72, PIP, S100A7, GAL-7, LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B, MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen, ARG1 등이 포함되어 있음을 확인하였다. 그러나, 제대혈 혈장으로부터 충분한 엑소좀을 분리하기 어려우므로 면역억제효과가 없는 H1ME-5(HLA 클래스 I 및 MIC 편집 클론-5 세포주) 세포주에 면역억제와 연관된 단백질을 코딩하는 핵산을 단독 또는 2종 이상 도입하고, 이로부터 엑소좀을 분리 정제하였다. 본 발명의 일 구체예에 따르면, 그러한 단백질로 GAL-3, GAL-7, PIP, HSP72 및 S100-A7를 선정하여 엑소좀 모방체, 예컨대, GAL-3 exo, GAL-7 exo, PIP exo, HSP72 exo, S100-A7 exo, HSP72 & PIP dual exo를 분리 정제하였다.The present inventors have identified GAL-3, MMP-9, HSP72, PIP, S100A7, GAL-7, LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B associated with pharmaceutical uses in the proteomics profile of CBPexo, such as immunosuppression, wound healing, etc. , MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen, ARG1, etc. were confirmed to be included. However, since it is difficult to isolate sufficient exosomes from umbilical cord blood plasma, the nucleic acid encoding the immunosuppression-related protein alone or two or more types was added to the H1ME-5 (HLA class I and MIC-edited clone-5 cell line) cell line, which has no immunosuppressive effect. introduced, and the exosomes were separated and purified therefrom. According to one embodiment of the present invention, by selecting GAL-3, GAL-7, PIP, HSP72 and S100-A7 as such proteins, exosome mimetics, such as GAL-3 exo, GAL-7 exo, PIP exo, HSP72 exo, S100-A7 exo, HSP72 & PIP dual exo were separated and purified.

따라서, 본 명세서에서, 용어 "제대혈 혈장 엑소좀 모방체"는 제대혈 혈장에서 분리한 엑소좀의 프로테오믹스 프로파일을 모방하는 엑소좀을 지칭하며, 특히 특정한 목적으로 상기 엑소좀에서 과발현되는 단독 또는 복수의 단백질을 유전자 재조합 기술을 이용하여 과발현되도록 제조된 면역억제효과가 없는 세포주 유래의 엑소좀을 지칭한다. 따라서, 상기 제대혈 혈장 엑소좀 모방체는 엑소좀 단백질을 코딩하는 핵산을 면역억제효과가 없는 세포주에 도입하여 이로부터 분리하여 제조될 수 있다. 상기 핵산은 가장 광의적인 의미로 사용되며, 단일가닥(ss) DNA, 이중가닥(ds) DNA, cDNA, (-)-RNA, (+)-RNA, dsRNA 등을 포괄한다.Accordingly, as used herein, the term "umbilical cord blood plasma exosome mimic" refers to an exosome that mimics the proteomics profile of an exosome isolated from cord blood plasma, and in particular, a single or a plurality of proteins overexpressed in the exosome for a specific purpose. refers to an exosome derived from a cell line without an immunosuppressive effect prepared to be overexpressed using a genetic recombination technique. Therefore, the umbilical cord blood plasma exosome mimic can be prepared by introducing a nucleic acid encoding an exosome protein into a cell line having no immunosuppressive effect and separating it therefrom. The nucleic acid is used in the broadest sense, and includes single-stranded (ss) DNA, double-stranded (ds) DNA, cDNA, (-)-RNA, (+)-RNA, dsRNA, and the like.

상기 엑소좀 모방체의 크기는 60 nm 내지 250 nm, 또는 70 nm 내지 230 nm의 직경을 가질 수 있다.The size of the exosome mimic may have a diameter of 60 nm to 250 nm, or 70 nm to 230 nm.

상기 면역억제효과가 없는 세포주로 HLA 및 MIC 유전자 결핍 세포주를 사용한다. 예컨대, CRISPR-Cas9 시스템을 이용하여 HLAA-A, HLA-B, HLA-C 및 MICA/B 각각의 엑손 2와 3 사이를 결실시켜 HLAA-A, HLA-B, HLA-C 및 MICA/B 유전자가 유전체 상에서 완전히 제거된 HLA 및 MICA/B 결핍 293T 세포주인 H1ME-5(기탁번호: KCTC 13602BP)를 사용할 수 있다. As the cell line without the immunosuppressive effect, a cell line deficient in HLA and MIC genes is used. For example, by using the CRISPR-Cas9 system to delete between exons 2 and 3 of each of HLAA-A, HLA-B, HLA-C and MICA/B, the HLAA-A, HLA-B, HLA-C and MICA/B genes H1ME-5 (Accession No.: KCTC 13602BP), which is a 293T cell line deficient in HLA and MICA/B completely removed from the pseudogenome, can be used.

상기 H1ME-5 세포주에 GAL-3, MMP-9, HSP72, PIP, S100A7, GAL-7, LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B, MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen 및 ARG1 유전자를 발현하는 벡터로 트랜스펙션시키고, GAL-3, MMP-9, HSP72, S100A7, GAL-7 및 PIP 유전자를 단독 또는 2종 이상 발현하는 H1ME-5 세포주를 선별한 후 엑소좀(CBPexo 모방체)을 분리한다.GAL-3, MMP-9, HSP72, PIP, S100A7, GAL-7, LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B, MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen and ARG1 genes were added to the H1ME-5 cell line. After transfection with an expressing vector, and selecting an H1ME-5 cell line expressing GAL-3, MMP-9, HSP72, S100A7, GAL-7 and PIP genes alone or two or more types, exosomes (CBPexo mimic) separate

따라서, 바람직하게는, 본 발명의 제대혈 혈장 엑소좀 모방체는 LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B, MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen 및 ARG1를 발현하는 것일 수 있다.Therefore, preferably, the umbilical cord blood plasma exosome mimic of the present invention may express LAMP1, SERPINB12, LTF, ORM1, CD5L, C4B, MASP1, PSMA6, PRDX1, DEFA3, CD44 antigen and ARG1.

또는, 본 발명의 제대혈 혈장 엑소좀 모방체는 HSP72 및 PIP를 단독 또는 둘 다 발현하는 것일 수 있다. Alternatively, the umbilical cord blood plasma exosome mimetic of the present invention may express HSP72 and PIP alone or both.

상기 트랜스펙션은 미세주입법(microinjection), 전기천공법(electroporation), DEAE-덱스트란 처리(DEAE-dextran treatment), 리포펙션(lipofection), 나노파티클-매개 형질주입, 단백질 전달 도메인 매개 도입, 바이러스-매개 유전자 전달, 및 원생동물에서 PEG-매개 트랜스펙션 등과 같은 당업계의 다양한 방법에 의해 세포로 전달될 수 있으나, 이에 제한되는 것은 아니다.The transfection includes microinjection, electroporation, DEAE-dextran treatment, lipofection, nanoparticle-mediated transfection, protein transduction domain mediated introduction, virus It can be delivered to cells by various methods in the art, such as, but not limited to -mediated gene delivery, and PEG-mediated transfection in protozoa.

본 명세서에서, 용어 "벡터"는 자신에게 연결된 다른 핵산을 운반할 수 있는 핵산 분자를 말한다. 벡터의 한 유형으로 "플라스미드"가 있는데, 플라스미드란 추가의 DNA 분절을 결찰시킬 수 있는 원형의 이중 가닥 DNA 루프를 말한다. 벡터의 또 다른 유형으로는 추가적인 DNA 분절을 바이러스 게놈으로 결찰시킬 수 있는 바이러스 벡터가 있다. 일부 벡터는 숙주세포로 도입될 때 이 숙주세포 내에서 자가 복제할 수 있다(예를 들어, 박테리아 복제 기점을 갖는 박테리아 벡터 및 에피솜 포유동물 벡터). 다른 벡터(예를 들어, 비에피솜 포유동물 벡터)는 숙주세포로 도입될 때 숙주세포의 게놈으로 통합되어, 숙주 게놈과 함께 복제될 수 있다. 또한, 일부 벡터는 이들이 작동 가능하게 연결되어 있는 유전자의 발현을 지시할 수 있다. 본 명세서에서 이러한 벡터를 "재조합 발현 벡터"(또는 간단히, "발현 벡터")라 한다. 일반적으로, 재조합 DNA IVT mRNA 기법에 유용한 발현 벡터는 대개 플라스미드의 형태로 플라스미드가 가장 일반적으로 사용되는 벡터 유형이기 때문에, "플라스미드"와 "벡터"는 서로 교환하여 사용될 수 있다. 그러나 본 발명은 동등한 기능을 제공하는 바이러스 벡터(예를 들어, 아데노바이러스 벡터, 아데노-관련 바이러스(AAV) 벡터, 헤르페스 바이러스 벡터, 레트로바이러스 벡터, 렌티바이러스 벡터, 바큘로바이러스 벡터)와 IVT mRNA와 같은 다른 형태의 발현 벡터도 포함한다. 바람직하게는, 렌티바이러스 벡터를 사용할 수 있다. 형질전환은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 상술한 표준 기술을 선택하여 수행할 수 있다.As used herein, the term "vector" refers to a nucleic acid molecule capable of carrying another nucleic acid linked thereto. One type of vector is a "plasmid," which refers to a circular double-stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector that can ligate additional DNA segments into the viral genome. Some vectors are capable of self-replication within a host cell when introduced into the host cell (eg, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (eg, non-episomal mammalian vectors) can be integrated into the genome of a host cell when introduced into the host cell and replicated along with the host genome. In addition, some vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors useful for recombinant DNA IVT mRNA techniques are usually in the form of plasmids, since plasmids are the most commonly used type of vector, so "plasmid" and "vector" can be used interchangeably. However, the present invention relates to viral vectors (eg, adenoviral vectors, adeno-associated virus (AAV) vectors, herpes virus vectors, retroviral vectors, lentiviral vectors, baculovirus vectors) and IVT mRNAs that provide equivalent functions Other types of expression vectors are also included. Preferably, a lentiviral vector can be used. Transformation includes any method of introducing a nucleic acid into an organism, cell, tissue or organ, and as is known in the art, it can be carried out by selecting the above-mentioned standard technique suitable for the host cell.

본 발명은 또한 상기의 제대혈 혈장 엑소좀 모방체를 포함하는 면역억제용 조성물에 관한 것이다.The present invention also relates to a composition for immunosuppression comprising the umbilical cord blood plasma exosome mimic.

본 발명의 일 구체예에 따르면, CBPexo 모방체 중 MMP-9이 강화된 엑소좀이 T 세포 면역억제를 위한 전도유망한 치료 분자임을 나타낸다. 이들 결과는 MMP에 의한 CD25의 절단, IL-2 생산 억제, 사이토카인 분비 패턴에서의 변화, Treg 세포의 증식과 같은 몇몇 복합 효과들이 T 세포 분화 및 증식과 동시에 연관됨을 나타낸다. 또한, HSP72를 발현하는 엑소좀은 T 세포 증식을 억제하고, HSP72는 MMP-9를 상향조절하는 것으로 알려져 있다.According to one embodiment of the present invention, it is shown that MMP-9-enhanced exosomes among CBPexo mimics are promising therapeutic molecules for T cell immunosuppression. These results indicate that several complex effects such as cleavage of CD25 by MMP, inhibition of IL-2 production, changes in cytokine secretion pattern, and proliferation of Treg cells are simultaneously associated with T cell differentiation and proliferation. In addition, it is known that exosomes expressing HSP72 inhibit T cell proliferation, and HSP72 upregulates MMP-9.

따라서, 본 발명의 제대혈 혈장 엑소좀 모방체는 면역억제용 조성물의 유효성분으로 사용될 수 있다.Therefore, the umbilical cord blood plasma exosome mimic of the present invention can be used as an active ingredient of the composition for immunosuppression.

상기 면역억제는 상술한 면역질환의 개선, 예방 또는 치료를 위한 것으로, 면역질환과 관련된 중복된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.The immunosuppression is for the improvement, prevention, or treatment of the above-mentioned immune diseases, and the overlapping contents related to the immune diseases are omitted in order to avoid excessive complexity of the present specification.

한편, 본 발명의 면역억제용 조성물은 인 비트로, 인 비보 또는 엑스 비보에서 진단적 또는 치료적 용도에 적합한 조성물을 이루는 활성성분 및 활성 또는 무활성 약학적으로 허용가능한 담체를 포함할 수 있다.On the other hand, the immunosuppressive composition of the present invention may include an active ingredient and an active or inactive pharmaceutically acceptable carrier constituting a composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.

상기 약학적으로 허용가능한 담체는 인산 완충화된 염수 용액, 인간 혈청 알부민(HSA) 등의 혈청 알부민, 재조합 인간 알부민(rHA), 젤라틴, 카세인 등을 포함하는 단백질 부형제와 같이, 엑소좀 모방체와 혼용가능한 임의의 약학적 담체를 포함한다. 담체, 안정화제 및 보강제의 예는, Martin REMINGTON'S PHARM. SCI, 18th Ed.(Mack Publ. Co., Easton (1995)) 및 the "PHYSICIAN'S DESK REFERENCE", 58nd Ed., Medical Economics, Montvale, NJ. (2004)를 참조한다. 용어 "담체"는 완충액 또는 pH 조정제를 포함할 수 있으며, 전형적으로 완충액은 유기산 또는 염기로부터 제조된 염이다. 대표적인 완충액으로는 시트르산의 염, 아스코르브산의 염, 글루콘산의 염, 카본산의 염, 타르타르산의 염, 숙신산의 염, 아세트산의 염 또는 프탈산의 염 등의 유기산 염; 트리스, 트로메타민 하이드로클로라이드 또는 포스페이트 완충액을 포함한다. 추가적인 담체로, 폴리비닐피롤리돈, 피콜(폴리머 당), 덱스트레이트(예, 사이클로덱스트린, 예컨대 2-하이드록시프로필-쿼드러셔(quadrature), -사이클로덱스트린), 폴리에틸렌 글리콜, 항산화제, 항-대전제, 계면활성제(예, "TWEEN 20" 및 "TWEEN 80" 등의 폴리소르베이트), 지질(예, 인지질, 지방산), 스테로이드(예, 콜레스테롤) 및 킬레이트제(예, EDTA) 등의 폴리머성 부형제/첨가제를 포함한다. 빙결 방지제 또는 강하제도 포함될 수 있다.The pharmaceutically acceptable carrier includes exosome mimetics and protein excipients including phosphate buffered saline solution, serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like. any pharmaceutical carrier that is compatible with it. Examples of carriers, stabilizers and adjuvants can be found in Martin REMINGTON'S PHARM. SCI, 18 th Ed. (Mack Publ. Co., Easton (1995)) and the "PHYSICIAN'S DESK REFERENCE", 58nd Ed., Medical Economics, Montvale, NJ. (2004). The term "carrier" may include buffers or pH adjusting agents, typically buffers are salts prepared from organic acids or bases. Representative buffers include organic acid salts such as citric acid salt, ascorbic acid salt, gluconic acid salt, carbonic acid salt, tartaric acid salt, succinic acid salt, acetic acid salt or phthalic acid salt; tris, tromethamine hydrochloride or phosphate buffers. As additional carriers, polyvinylpyrrolidone, ficol (polymer sugar), dextrates (eg, cyclodextrins such as 2-hydroxypropyl-quadrature, -cyclodextrin), polyethylene glycol, antioxidants, anti- Polymers such as antistatic agents, surfactants (e.g., polysorbates such as "TWEEN 20" and "TWEEN 80"), lipids (e.g. phospholipids, fatty acids), steroids (e.g. cholesterol) and chelating agents (e.g. EDTA) Contains excipients/additives. An anti-freeze or de-icing agent may also be included.

본 발명의 면역억제용 조성물은 다양한 적정 제형으로 제조될 수 있다. 예를 들면, 종양내, 동맥내(관절에서), 정맥내, 근육내, 피내, 복강내, 결절내(intranodal) 및 피하 경로와 같은 비경구 투여에 적합한 제형과 담체는 항산화제, 완충액, 정균제, 및 제형을 목적하는 수용자의 혈액과 등장으로 만들어 줄 용질, 및 현탁제, 용해제, 증점제, 안정화제, 및 방부제를 포함할 수 있는 수성 및 비수성의 멸균 현탁액을 포함한다. 정맥내 또는 복강 투여가 바람직한 방법이다. 개체에게 투여된 세포의 투여량은 시간의 경과에 따라 개체에서 목적하는 유익한 치료적 반응을 달성하기에 유효한 양, 또는 세포의 성장 억제에 유효한 양 또는 감염의 억제에 유효한 양이다. 예컨대, 주입 전에 개체로부터 혈액시료를 수득한 후 보관하여 후속적인 분석 및 비교에 사용하는 방식으로 실시될 수 있다. 일반적으로, 적어도 약 104 내지 106 및 전형적으로 1×108 내지 1×1010개의 세포를 70 kg의 환자에게 대략 60분 내지 120분에 걸쳐 정맥내 또는 복강내로 주입할 수 있다. 투여의 경우, 개체의 전반적 건강상태 및 체중을 고려하면서, 본 발명의 엑소좀을 세포의 유형에 따른 LD-50(또는 기타 독성 측정 방법) 및 다양한 농도에서의 세포의 유형에 따른 부작용에 의해 결정된 비율로 투여한다. 투여는 한번에 또는 여러 회 나누어 투여할 수 있다. 본 발명의 엑소좀은 세포독성제, 뉴클레오타이드 유사체 및 생물학적 반응 변형제를 포함하는 공지된 통상의 치료법을 사용하여 다른 특정 증상에 대한 치료를 보충할 수 있다. 유사하게, 생물학적 반응 변형제는 본 발명의 엑소좀에 의한 치료에 선택적으로 추가될 수 있다.The composition for immunosuppression of the present invention can be prepared in various suitable formulations. Formulations and carriers suitable for parenteral administration such as, for example, intratumoral, intraarterial (in the joint), intravenous, intramuscular, intradermal, intraperitoneal, intranodal and subcutaneous routes include antioxidants, buffers, bacteriostatic agents. , and aqueous and non-aqueous sterile suspensions which may contain solutes which will render the formulation isotonic with the blood of the intended recipient, and suspending, solubilizing, thickening, stabilizing, and preservative agents. Intravenous or intraperitoneal administration is the preferred method. The dosage of cells administered to a subject is an amount effective to achieve a desired beneficial therapeutic response in the subject over time, or an amount effective to inhibit the growth of cells or an amount effective to inhibit infection. For example, it can be carried out in such a way that a blood sample is obtained from the subject prior to injection and stored for use in subsequent analysis and comparison. In general, at least about 10 4 to 10 6 and typically 1×10 8 to 1×10 10 cells may be infused intravenously or intraperitoneally into a 70 kg patient over approximately 60 to 120 minutes. In the case of administration, taking into account the overall health and weight of the individual, the exosomes of the present invention can be administered according to the LD-50 (or other toxicity measurement method) according to the type of cell and the side effect determined by the type of cell at various concentrations. administered in proportion. Administration may be administered at one time or in several divided doses. The exosomes of the present invention can supplement treatment for other specific conditions using known conventional therapies including cytotoxic agents, nucleotide analogs and biological response modifiers. Similarly, biological response modifiers may optionally be added to treatment with the exosomes of the present invention.

이하, 본 발명에 따르는 실시예 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples according to the present invention, but the scope of the present invention is not limited by the Examples presented below.

<실시예 1> 제대혈 혈장 유래 엑소좀의 제조 및 특성 규명<Example 1> Preparation and characterization of exosomes derived from cord blood plasma

1. 샘플 제조1. Sample Preparation

인간 말초혈액단핵구와 인간 제대혈(UCB)은 건강한 기증자 또는 정상적인 만삭의 임산부에게서 서면 동의서를 받은 후 카톨릭 조혈줄기세포은행(Catholic Hematopoietic Stem Cell Bank)에서 제공받았다. 모든 인간 피험자에 관한 실험은 헬싱키 선언의 권고에 따라 수행하였다. 프로토콜은 가톨릭대학교의 동물실험윤리위원회(IACUC)에 의해 승인되었다. 모든 피험자는 헬싱키 선언에 따라 샘플 기증에 대한 서면 동의를 받았다.Human peripheral blood mononuclear cells and human umbilical cord blood (UCB) were provided by the Catholic Hematopoietic Stem Cell Bank after informed consent was obtained from a healthy donor or from a normal full-term pregnant woman. All experiments on human subjects were performed in accordance with the recommendations of the Declaration of Helsinki. The protocol was approved by the Animal Experimental Ethics Committee (IACUC) of the Catholic University of Korea. All subjects received written consent to donate samples in accordance with the Declaration of Helsinki.

2. 마우스2. Mouse

OrientBio, Inc.(Seoul, Korea)에서 C57BL/6 마우스를 구입하여 한국 가톨릭대학교 실험 동물 자원 연구소의 지침에 따라 특정 병원균이 없는 상태로 유지하였다. 모든 동물 실험은 한국 가톨릭대학교의 동물 실험 및 사용 위원회(Institutional Animal Care and Use Committee)의 승인을 받았다. 모든 동물 실험은 한국 카톨릭대학교 의과 대학 기관 동물 관리 및 이용 위원회(허가 번호 CUMC-2017-0273-05)가 사전에 승인한 연구자의 프로토콜에 따라 수행되었다.C57BL/6 mice were purchased from OrientBio, Inc. (Seoul, Korea) and maintained free of specific pathogens according to the guidelines of the Institute of Laboratory Animal Resources, Catholic University of Korea, Korea. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Catholic University of Korea, Korea. All animal experiments were performed according to the researcher's protocol previously approved by the Institutional Animal Care and Use Committee (Permission No. CUMC-2017-0273-05), Catholic University of Korea Medical School.

3. 엑소좀 분리3. Isolation of exosomes

인간 제대혈 혈장을 순차적으로 400g에서 5분간, 2,000g에서 10분간 원심분리하여 세포 및 세포 찌꺼기를 제거하였다. 그런 다음 제대혈 혈장을 0.45-㎛ 폴리비닐리덴 플루오라이드(PVDF) 멤브레인(Nalgene™ Rochester, NY)으로 여과하였다. 단백질 용출은 나노드롭 분광기(Thermo Scientific, San Diego, CA)을 사용하여 280nm에서 각 분획의 흡광도를 판독하여 검사하였다. CBP를 100,000g에서 2시간 동안 초원심분리하고, 제대혈 혈장 펠렛을 비교 실험에 사용하였다. 대조군으로 성인 혈액의 혈장을 분리하고 동일한 엑소좀 분리 절차를 따랐다. 모든 분획물은 4℃에서 보관하고 인 비트로 실험을 위해 24시간 이내에 사용하거나 -80℃에서 동결시켰다. CBPexos는 배치(batch) 당 총 10명의 건강한 기증자로부터 CBP 샘플을 지속적으로 수집하여 얻었다. Exo-Check Exosome Antibody Array(System Biosciences, Palo Alto, CA) 또는 PE-컨쥬게이트 된 항-인간 CD9(e-Bioscience, San Diego, CA), 항-인간 CD63(BD Biosciences, San Jowe, CA), 또는 항-인간 CD82(Biolegend, San Diego, CA), 또는 항-인간 HSP70/HSP72(Enzo Life Sciences, Farmingdale, NY) FACS 항체를 이용하여 가 배치에 대해 엑소좀의 특성 분석을 수행하였다. 배치 간 엑소좀의 특성 차이는 없었다.Human cord blood plasma was sequentially centrifuged at 400 g for 5 minutes and at 2,000 g for 10 minutes to remove cells and cell debris. Cord blood plasma was then filtered through a 0.45-μm polyvinylidene fluoride (PVDF) membrane (Nalgene™ Rochester, NY). Protein elution was checked by reading the absorbance of each fraction at 280 nm using a nanodrop spectrometer (Thermo Scientific, San Diego, CA). CBP was ultracentrifuged at 100,000 g for 2 hours, and cord blood plasma pellets were used for comparative experiments. As a control, plasma from adult blood was isolated and the same exosome isolation procedure was followed. All fractions were stored at 4°C and used within 24 hours for in vitro experiments or frozen at -80°C. CBPexos was obtained by continuously collecting CBP samples from a total of 10 healthy donors per batch. Exo-Check Exosome Antibody Array (System Biosciences, Palo Alto, CA) or PE-conjugated anti-human CD9 (e-Bioscience, San Diego, CA), anti-human CD63 (BD Biosciences, San Jowe, CA), or anti-human CD82 (Biolegend, San Diego, CA), or anti-human HSP70/HSP72 (Enzo Life Sciences, Farmingdale, NY) FACS antibodies were used to characterize the exosomes on the false batches. There was no difference in the properties of exosomes between batches.

4. 인간 제대혈 Treg 확장4. Human Cord Blood Treg Expansion

Tregs는 항-CD25가 직접적으로 컨쥬게이트 된 자성 마이크로비드 및 매뉴얼 컬럼(Miltenyi, Bergisch-Gladbach, Germany)을 이용하여 포지티브 선별을 통해 1 UCB 유닛(The Catholic Hematopoietic Stem Cell Bank)으로부터 정제되었다. CD25+ 세포를 CD80, CD83, 4-1BBL 및 CD32를 발현하는 렌티바이러스-형질도입된 K562 세포주(aAPC)와 2:1의 비율로 배양하였다. aAPC에 10000cGY를 조사하고, 0.5㎍/mL의 항-CD3(OKT3) 및 항-CD28(CD28.2; 둘 다 BD Pharmingen, San Diego, CA)과 인큐베이션 하였다. 재조합 IL-2(300 IU/mL; Chiron, Emeryville, CA)를 3일 마다 첨가하고 배양 기간 동안 유지하였다. 세포를 14일 동안 배양하고 3-4일마다 나누었다.Tregs were purified from 1 UCB unit (The Catholic Hematopoietic Stem Cell Bank) through positive selection using magnetic microbeads directly conjugated with anti-CD25 and a manual column (Miltenyi, Bergisch-Gladbach, Germany). CD25+ cells were cultured with a lentivirus-transduced K562 cell line (aAPC) expressing CD80, CD83, 4-1BBL and CD32 at a ratio of 2:1. aAPCs were irradiated with 10000 cGY and incubated with 0.5 μg/mL of anti-CD3 (OKT3) and anti-CD28 (CD28.2; both BD Pharmingen, San Diego, CA). Recombinant IL-2 (300 IU/mL; Chiron, Emeryville, CA) was added every 3 days and maintained for the incubation period. Cells were cultured for 14 days and split every 3-4 days.

5. LC-MS/MS 분석5. LC-MS/MS analysis

분해된 샘플 절반에 대해 ThermoFisher Q Exactive HF 질량 분석기에 연결된 Waters NanoAcquity HPLC 시스템을 사용하여 나노 LC-MS/MS를 통해 분석하였다. 트랩핑 컬럼에 펩타이드를 로딩하고, 75㎛ 분석 컬럼에서 2-h 역상 구배를 이용하여 350nL/min로 용출하였다: 두 컬럼은 Luna C18 resin(Phenomenex)으로 패킹되었다. 질량 분석기는 MS 및 MS/MS 각각에 대해 60,000 FWHM 및 17,500 FWHM에서 작동하는 Orbitrap을 사용하여 데이터-의존 방식으로 작동되었다. MS/MS을 위해 15종의 가장 풍부한 이온들을 선별하였다. Mascot DAT 파일은 Scaffold(Proteome Software)로 분석되어 샘플당 미상 리스트를 검증, 필터링 및 생성하였다. 데이터는 1% 단백질 및 펩타이드 FDR에서 필터링되었으며, 단백질당 적어도 2개의 특정 단백질이 필요하였다. Half of the digested samples were analyzed by nano LC-MS/MS using a Waters NanoAcquity HPLC system connected to a ThermoFisher Q Exactive HF mass spectrometer. The peptide was loaded onto the trapping column and eluted at 350 nL/min using a 2-h reversed-phase gradient on a 75 μm analytical column: both columns were packed with Luna C18 resin (Phenomenex). The mass spectrometer was operated in a data-dependent manner using Orbitrap operating at 60,000 FWHM and 17,500 FWHM for MS and MS/MS, respectively. The 15 most abundant ions were selected for MS/MS. Mascot DAT files were analyzed with Scaffold (Proteome Software) to validate, filter and generate an unknown list per sample. Data were filtered at 1% protein and peptide FDR, requiring at least 2 specific proteins per protein.

6. 6. CBPexo 모방체 제조CBPexo mimic preparation

H1ME-5 세포(Null-293T(H1ME-5, 기탁번호: KCTC 13602BP)를 10% 소 태아 혈청(FBS), 1% L-글루타민 및 1% 페니실린-스트렙토마이신이 보충된 DMEM 배지(Lonza)에서 배양하였다. T2 세포를 10% FBS, 1% L-글루타민 및 1% 페니실린-스트렙토마이신이 보충된 RPMI-1640 배지(Lonza)에서 배양하였다.H1ME-5 cells (Null-293T (H1ME-5, accession number: KCTC 13602BP) were cultured in DMEM medium (Lonza) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine and 1% penicillin-streptomycin. T2 cells were cultured in RPMI-1640 medium (Lonza) supplemented with 10% FBS, 1% L-glutamine and 1% penicillin-streptomycin.

H1ME-5 세포를 항생제가 없는 DMEM(Lonza)에서 2×106 cells/10 mL로 씨딩하였다. 24시간 후, 4개의 타겟 GAL-3(SEQ ID NO: 5), MMP-9(SEQ ID NO: 1), HSP72(SEQ ID NO: 4) S100A7(SEQ ID NO: 6), GAL-7(SEQ ID NO: 2), 및 PIP(SEQ ID NO: 3)(NCBI reference sequence; pCDH 벡터를 이용하여 자체 제작) 각각에 대해 특이적인 6종의 개별 올-인-원 플라스미드의 혼합물을 Lipofectamine 시약(Invitrogen, Carlsbad, CA)을 사용하여 293T 세포에 트랜스펙션 시켰다. 트랜스펙션 48시간 후, 플로우 사이토메트리로 세포를 분석하였다. 트랜스펙션 6일 후에 GAL-3, MMP-9, HSP72, S100A7, GAL-7 및 PIP에 대해 양성인 세포를 Moflo XDP Cell Sorter(Beckman)를 사용하여 소팅하고, 클론을 확립하였다. H1ME-5 cells were seeded at 2×10 6 cells/10 mL in DMEM without antibiotics (Lonza). After 24 hours, four targets GAL-3 (SEQ ID NO: 5), MMP-9 (SEQ ID NO: 1), HSP72 (SEQ ID NO: 4) S100A7 (SEQ ID NO: 6), GAL-7 ( A mixture of six individual all-in-one plasmids specific for each of SEQ ID NO: 2), and PIP (SEQ ID NO: 3) (NCBI reference sequence; self-made using pCDH vector) was combined with Lipofectamine reagent ( Invitrogen, Carlsbad, CA) was used to transfect 293T cells. 48 hours after transfection, cells were analyzed by flow cytometry. After 6 days of transfection, cells positive for GAL-3, MMP-9, HSP72, S100A7, GAL-7 and PIP were sorted using a Moflo XDP Cell Sorter (Beckman) and clones were established.

7. 증식 분석7. Proliferation Assay

배양 배지 중 말초혈액단핵구(PBMC) 또는 비장 세포(5Х105)를 항-CD3/CD28 DYNABEAD(Invitrogen, Oslo, Norway)가 첨가된 96-웰 조직 배양 플레이트에 씨딩하였다. CBPexo 또는 ABPexo를 적당한 웰에 동시에 첨가하였다. 세포 증식은 5,6-carboxyfluorescein diacetate-succinimidyl ester(CFSE) 염색법과 플로우 사이토메트리를 통해 측정하였다. 간단히 말해서 5Х105 비장 세포 또는 PBMC를 37℃에서 10분간 PBS 1mL에 포함된 5μM의 CFSE(Molecular Probes, Eugene, OR, USA)와 함께 인큐베이션한 후 얼음처럼 차가운 10% FBS 함유 배양배지로 2회 세척하였다. 염색된 세포를 CBPexo 또는 ABPexo의 존재 하에서 상기 기술한 대로 DYNABEAD로 자극하였다. 표시된 시간 동안 인큐베이션한 후, 세포를 FACSCanto(Becton Dickinson Biosciences, Heidelberg, Germany)로 습득하고 Modfit LT 3.0 소프트웨어(Verity Software House, Topsham, ME)로 데이터를 분석하였다. 적어도 3회 독립 실험을 수행하여 10명의 건강한 기증자로부터 활성화 PBMC 또는 비장세포에서 CBPexo의 면역억제 효과를 검증하였다.Peripheral blood mononuclear cells (PBMC) or splenocytes (5Х10 5 ) in culture medium were seeded in 96-well tissue culture plates supplemented with anti-CD3/CD28 DYNABEAD (Invitrogen, Oslo, Norway). CBPexo or ABPexo was added simultaneously to the appropriate wells. Cell proliferation was measured by 5,6-carboxyfluorescein diacetate-succinimidyl ester (CFSE) staining and flow cytometry. Briefly, 5Х10 5 splenocytes or PBMCs were incubated with 5 μM CFSE (Molecular Probes, Eugene, OR, USA) in 1 mL of PBS at 37 °C for 10 min, followed by washing twice with ice-cold culture medium containing 10% FBS. did. Stained cells were stimulated with DYNABEAD as described above in the presence of CBPexo or ABPexo. After incubation for the indicated time, cells were acquired with a FACSCanto (Becton Dickinson Biosciences, Heidelberg, Germany) and data were analyzed with Modfit LT 3.0 software (Verity Software House, Topsham, ME). At least three independent experiments were performed to verify the immunosuppressive effect of CBPexo on activated PBMCs or splenocytes from 10 healthy donors.

8. 세포사멸 분석 및 세포주기 분석8. Apoptosis Assay and Cell Cycle Assay

세포사멸 세포를 아넥신 V로 염색하고 제조업체의 설명서에 따라 분석하였다. 간략하게, 1Х106 세포를 아넥신 결합 버퍼 1mL에 재현탁시켰다. APC-아넥신 V 또는 FITC-아넥신 V(BD Biosciences, San Jose, CA, USA) 및 7AAD(BD Biosciences, Catalog # 551076, 미국 캘리포니아 산호세 소재)의 워킹 용액 5㎕를 100㎕ 중의 5Х105 세포에 넣고 37℃, 5% CO2에서 15분간 배양하였다. 분석 데이터는 FlowJo v10를 사용하여 분석하였다.Apoptotic cells were stained with Annexin V and analyzed according to the manufacturer's instructions. Briefly, 1Х10 6 cells were resuspended in 1 mL of annexin binding buffer. 5 μl of a working solution of APC-Annexin V or FITC-Annexin V (BD Biosciences, San Jose, CA, USA) and 7AAD (BD Biosciences, Catalog # 551076, San Jose, CA) was added to 5Х10 5 cells in 100 μl. and incubated at 37° C., 5% CO 2 for 15 minutes. Analysis data were analyzed using FlowJo v10.

PBMC는 DNYNABEAD로 자극하고, 96-웰의 편평한 바닥의 플레이트에서 12-48시간 동안 인큐베이션 하였다. 세포를 수확하고, 70% 에탄올에서 고정하고, 세포 펠렛은 PBS 중의 RNase A가 보충된 프로피디움 아이오다이드(PI; Sigma) 용액으로 염색하였다. DNA 함량은 FACS Canto(Becton Dickinson)으로 측정하고 ModFITLT 4.0 소프트웨어를 이용하여 분석하여 세포주기의 sub-G1, G1, S 및 G2기를 측정하였다.PBMCs were stimulated with DNYNABEAD and incubated for 12-48 hours in 96-well flat bottom plates. Cells were harvested, fixed in 70% ethanol, and the cell pellet was stained with a solution of propidium iodide (PI; Sigma) supplemented with RNase A in PBS. DNA content was measured by FACS Canto (Becton Dickinson) and analyzed using ModFITLT 4.0 software to measure sub-G1, G1, S and G2 phases of the cell cycle.

9. 9. 프로테아제protease 억제 control

프로테아제 활성을 억제하기 위해, 10㎍/mL의 MMP 저해제 GM6001(Calbiochem, San Diego, USA)을 CBPexo에 첨가하고 21℃에서 2시간 동안 인큐베이션하였다. GM6001 전처리된 CBPexo는 지시된 대로 추가 실험을 위해 사용되었다. To inhibit protease activity, 10 μg/mL of the MMP inhibitor GM6001 (Calbiochem, San Diego, USA) was added to CBPexo and incubated at 21° C. for 2 hours. GM6001 pretreated CBPexo was used for further experiments as indicated.

10. ELISPOT 분석10. ELISPOT Analysis

제조업체의 프로토콜에 따라 ELISPOT 분석을 수행하였다. 간단히 말해, 인간 IL-2(Catalog # 551076, BD Biosciences), IFN-γ(Catalog # 551083, BD Biosciences), IL-17(Catalog # SEL421, R&D Systems)에 특이적인 단클론 항체를 마이크로플레이트(Millipore, Billerica, MA) 에 코팅하였다. 인 비트로 실험을 위해, 6일 동안 배양된 세포를 배지로 3번 세척하고 ELISPOT 분석을 진행하기 전에 1mL의 배지로 재현탁하고 밤새도록 인큐베이션 하였다. 엑스 비보 실험을 위해, MOG33-55를 배지 중 1Х106 세포/웰의 농도로 96-웰 마이크로플레이트에 첨가하였다. 마이크로플레이트를 37℃, CO2 인큐베이터에서 20시간 동안 인큐베이션하였다. 이어서, 마이크로플레이트를 세척 버퍼로 4회 세척하였다. 이어서, 웰을 100㎕/웰의 비오티닐화 다클론 항-마우스 IL-2, IFN-γ 및 IL-17로 채웠다. 플레이트를 21℃에서 2시간 동안 인큐베이션 하고, 버퍼로 세척한 다음, 100㎕/웰의 스트렙타비딘-호스래디쉬 퍼옥시다아제(HRP)의 존재하에 주위 온도에서 1시간 동안 인큐베이션하였다. 이어서, 결합되지 않은 효소를 세척을 통해 제거하고 효소 기질 용액을 첨가하였다. 스폿이 전개된 후, 증류수를 첨가하여 반응을 정지시켰다. 플레이트를 거꾸로 뒤집어 밤새 빛으로부터 보호한채 건조시켰다. IL-2, IFN-γ, IL-17 분비 세포에 상응하는 스팟의 수를 자동 AID-ELISPOT 판독기(AID Diagnostika GmbH, Strassberg, Germany)를 사용하여 측정하였다.ELISPOT analysis was performed according to the manufacturer's protocol. Briefly, monoclonal antibodies specific for human IL-2 (Catalog #551076, BD Biosciences), IFN-γ (Catalog #551083, BD Biosciences), IL-17 (Catalog #SEL421, R&D Systems) were microplate (Millipore, Billerica, MA). For in vitro experiments, cells cultured for 6 days were washed 3 times with medium, resuspended in 1 mL of medium before proceeding with ELISPOT analysis, and incubated overnight. For ex vivo experiments, MOG33-55 was added to 96-well microplates at a concentration of 1Х10 6 cells/well in medium. Microplates were incubated at 37° C., in a CO 2 incubator for 20 hours. The microplate was then washed 4 times with wash buffer. The wells were then filled with 100 μl/well of biotinylated polyclonal anti-mouse IL-2, IFN-γ and IL-17. Plates were incubated at 21° C. for 2 hours, washed with buffer, and then incubated for 1 hour at ambient temperature in the presence of 100 μl/well of streptavidin-horseradish peroxidase (HRP). Unbound enzyme was then removed by washing and enzyme substrate solution was added. After the spot developed, distilled water was added to stop the reaction. The plate was inverted and dried overnight protected from light. The number of spots corresponding to IL-2, IFN-γ, IL-17 secreting cells was determined using an automatic AID-ELISPOT reader (AID Diagnostika GmbH, Strassberg, Germany).

11. 사이토메트릭 비드 어레이(CBA) 인간 및 마우스 11. Cytometric Bead Array (CBA) Human and Mouse Th1/Th2/Th17 Th1/Th2/Th17 사이토카인 키트cytokine kit 를 이용한 Th1, Th2 및 Th17 사이토카인의 평가Evaluation of Th1, Th2 and Th17 cytokines using

인간 및 마우스 사이토메트릭 비드 어레이(CBA) Th1/Th2/Th17 사이토카인 키트는 BD Biosciences(Catalog #560484 및 #560485)에서 구입하였다. 50㎕의 분석 비드, 50㎕의 검출 시약 및 50㎕의 연구 샘플 또는 표준물질을 연속적으로 각 샘플 튜브에 첨가하고 21℃에서 3시간 동안 어둠 속에서 인큐베이션하였다. 다음으로, 샘플을 1mL의 세척 버퍼로 세척하고, 500Хg에서 5분 동안 원심분리하였다. 상층액을 버린 후, 펠렛을 300㎕의 버퍼에 재현탁하고 같은 날 플로우 사이토메트리로 분석하였다.Human and Mouse Cytometric Bead Array (CBA) Th1/Th2/Th17 Cytokine Kits were purchased from BD Biosciences (Catalog #560484 and #560485). 50 μl of assay beads, 50 μl of detection reagent and 50 μl of study sample or standard were successively added to each sample tube and incubated at 21° C. for 3 hours in the dark. Next, the samples were washed with 1 mL of wash buffer and centrifuged at 500 Хg for 5 minutes. After discarding the supernatant, the pellet was resuspended in 300 μl of buffer and analyzed by flow cytometry on the same day.

12. EAE 유도 및 엑소좀 투여12. EAE induction and exosome administration

뇌수막염은 이전에 설명한 대로(McCarthy, D.P. et al. Methods Mol Biol, 2012. 900: p.381-401) 백일해 독소(PTx)를 가진 완전 Freund's adjuvant(CFA)에서 MOG35-55 펩타이드를 사용하여 마우스에서 유도되었다(조건 당 n=5). EAE 증상이 나타난 후, 실험 간섭 이전에 동등하게 가중치가 적용된 평균 질병 점수를 얻기 위해 두명의 독립적인 연구자가 마우스를 매일 채점하고, 층화하고, 별도의 시험 그룹에 배정하였다(0, 질병의 징후 없음; 1, 축쳐진 꼬리; 2, 축쳐진 꼬리 및 부분적인 뒷다리 약함; 3, 완전한 뒷다리 마비; 4, 완전한 뒷다리 및 부분적인 앞다리 마비; 5, 사망). 엑소좀은 마우스 당 100㎍/100㎕로 "도전 상태"에서 매주 간격으로 주입되었다.Meningitis was treated in mice using MOG35-55 peptide in complete Freund's adjuvant (CFA) with pertussis toxin (PTx) as previously described (McCarthy, DP et al. Methods Mol Biol, 2012. 900: p.381-401). induced (n=5 per condition). After the onset of EAE symptoms, mice were scored daily, stratified, and assigned to separate test groups by two independent investigators to obtain an equally weighted mean disease score prior to experimental intervention (0, no signs of disease). ; 1, saggy tail; 2, saggy tail and partial hindlimb weakness; 3, complete hindlimb paralysis; 4,complete hindlimb and partial forelimb paralysis; 5, death). Exosomes were injected at weekly intervals in the “challenge state” at 100 μg/100 μl per mouse.

1313 . 통계 분석. statistical analysis

모든 실험은 그룹당 적어도 3반복으로 수행하였고, 인 비트로 실험은 최소 3회 반복하였다. 데이터는 이들 실험의 대표값이며, 평균 ± 표준편차(SEM)로 도시하였다. 데이터는 Prism 버전 7.0(GraphPad, San Diego, CA)을 사용하여 통계적 유의성을 분석하였다. 복수의 그룹의 평균은 일원 분산 분석(ANOVA)로 비교되었다. 독립-샘플 t-test는 두 개의 상이한 그룹의 평균을 비교하는데 사용되었다. 통계 분석은 GraphPad Prism 소프트웨어를 사용하여 수행하였고, P < 0.05는 통계적으로 유의한 것으로 간주되었다.All experiments were performed at least 3 replicates per group, and in vitro experiments were repeated at least 3 times. Data are representative of these experiments and are plotted as mean ± standard deviation (SEM). Data were analyzed for statistical significance using Prism version 7.0 (GraphPad, San Diego, CA). Means of multiple groups were compared by one-way analysis of variance (ANOVA). An independent-sample t-test was used to compare the means of two different groups. Statistical analysis was performed using GraphPad Prism software, and P < 0.05 was considered statistically significant.

(1) 제대혈 혈장 유래 엑소좀의 분자적 특성(1) Molecular properties of umbilical cord blood plasma-derived exosomes

플로우 사이토메트리를 이용하여 CBPexo는 전형적인 엑소좀 마커 단백질 CD9, CD63, CD82 및 HSP72를 포함함을 확인하였다. 이들 마커는 비드-단독 대조군에는 없었다(도 1a). 또한, 이들 엑소좀의 순도는 잘 특성화 된 엑소좀 단백질 마커 CD81, ICAM, CD63, ALIX, TSG101, EpCAM 및 FLOT-1뿐만 아니라 세포 오염을 모니터링하기 위한 cis-Golgi 마커 GM130을 포함하는 엑소좀 항체 분석 키트를 사용하여 확인되었다. Exo Anibody Array Kit는 양성(+) 대조군으로 표준 엑소좀 단백질 및 음성(-) 대조군은 블랭크로 구성된다. ImageJ 소프트웨어로 Exo Anibody Array Kit를 사용하여 농도 측정 분석에서 얻은 결과를 그래픽으로 표현하여 특정 엑소좀 마커의 양성 발현을 나타내었다. CBPexo는 FLOT1, ICAM, ALIX, CD81, TSG101, EpCAM 및 ANXA5에 대해 매우 양성이었지만 CD63의 발현은 낮았다. 분리된 엑소좀에는 GM130에 대한 음성 염색으로 입증된 바와 같이 세포 파편 및 다른 오염물이 없었다(도 1b). Using flow cytometry, it was confirmed that CBPexo contains the typical exosome marker proteins CD9, CD63, CD82 and HSP72. These markers were absent in the bead-only control ( FIG. 1A ). In addition, the purity of these exosomes was assayed for exosome antibodies, including the well-characterized exosomal protein markers CD81, ICAM, CD63, ALIX, TSG101, EpCAM and FLOT-1, as well as the cis-Golgi marker GM130 for monitoring cellular contamination. confirmed using the kit. The Exo Anibody Array Kit consists of a positive (+) control, a standard exosomal protein, and a negative (-) control, a blank. The results obtained from densitometry analysis using the Exo Anibody Array Kit with ImageJ software were graphically expressed to indicate the positive expression of specific exosome markers. CBPexo was highly positive for FLOT1, ICAM, ALIX, CD81, TSG101, EpCAM and ANXA5, but the expression of CD63 was low. The isolated exosomes were free of cellular debris and other contaminants as evidenced by negative staining for GM130 (Fig. 1b).

(2) 인간 CBPexo 및 ABPexo의 프로테오믹스 프로파일 비교(2) Comparison of proteomics profiles of human CBPexo and ABPexo

액체 크로마토그래피 및 탠덤 질량분석(LC-MS/MS) 분석 결과 CBPexo에서 150개의 단백질, ABPexo에서 214개의 단백질이 동정되었으며, 서열당 적어도 2개의 매핑 펩타이드를 가지고 있다. CBPexo의 150개 단백질 중 11개의 단백질은 2개의 하위 그룹(4개는 면역 조절 단백질 또는 7개는 면역 조절 단백질과 관련이 없음)으로 나뉘는 반면, 19개의 면역 조절 단백질이 차등적으로 발현되었다(도 2a). ExoCarta databse를 사용하여 ABPexo 및 CBPexo의 기능적 분류를 수행하였다(도 2a의 우측 표). ABPexo 및 CBPexo의 기능적 분류와 그들 간의 추가적인 비교로 5개의 상이한 생물학적 과정 및 분자적 기능을 강조하였다. 그들 중 일부는 IL-6의 음성 조절, 세포 분화, 세포 증식의 음성 조절, 트랜스멤브레인 트랜스포트 및 상처 치유와 같이 특정 경로 내에서만 전적으로 발견된다(도 2b). ABPexo 및 CBPexo의 분자 기능에 초점을 맞추어, 메탈로엔도펩티다아제 활성과 관련된 흥미로운 기능을 발견하였다. CBPexo는 ABPexo보다 더 높은 정도로 아르기나아제 활성, 열 충격 단백질 결합, S100 단백질 결합 및 히알루론산 결합과 연관된 것으로 보인다(도 2c). 그리하여, CBPexo의 프로테오믹스 분석은 엑소좀 단백질이 면역억제 및 상처 치유와 연관됨을 나타낸다. 표 1은 CBPexo 중의 면역 조절 관련 단백질 목록을 나열한 것이다.Liquid chromatography and tandem mass spectrometry (LC-MS/MS) analysis identified 150 proteins in CBPexo and 214 proteins in ABPexo, each with at least two mapping peptides per sequence. Of the 150 proteins of CBPexo, 11 proteins were divided into two subgroups (4 immunomodulatory proteins or 7 unrelated immunomodulatory proteins), whereas 19 immunomodulatory proteins were differentially expressed (Fig. 2a). Functional classification of ABPexo and CBPexo was performed using the ExoCarta databse (table on the right of Fig. 2a). The functional classification of ABPexo and CBPexo and further comparisons between them highlighted five different biological processes and molecular functions. Some of them are found exclusively within certain pathways, such as negative regulation of IL-6, cell differentiation, negative regulation of cell proliferation, transmembrane transport and wound healing (Fig. 2b). Focusing on the molecular functions of ABPexo and CBPexo, we discovered interesting functions related to metalloendopeptidase activity. CBPexo appears to be associated with arginase activity, heat shock protein binding, S100 protein binding and hyaluronic acid binding to a higher degree than ABPexo (Fig. 2c). Thus, proteomics analysis of CBPexo indicates that exosomal proteins are associated with immunosuppression and wound healing. Table 1 lists the immunomodulation-related proteins in CBPexo.

Figure pat00001
Figure pat00001

(3) 인간 T-세포 증식 반응에 대한 CBPexo의 억제 효과(3) Inhibitory effect of CBPexo on human T-cell proliferative response

양성 대조군으로서 라파마이신 및 시클로스포린은 농도 의존적으로 면역억제를 억제하였다(도 3a 및 도 3b). 본 실험예에서는 주로 CBPexo 및 면역세포 간의 직접 접촉에 의해 매개된 면역억제 메커니즘에 초점을 맞추었다. 이를 해결하기 위해, DYNABEAD 항-CD3/CD28 활성화된 PBMC를 CBPexo 또는 ABPexo와 함께 배양하여 CBPexo가 활성화된 면역세포에 대해 강력한 면역억제 효과를 갖는지 여부를 측정하였다. CBPexo의 면역억제 효과는 CD4+ 및 CD8+ T 세포 증식에 의해 조사되었다. As positive controls, rapamycin and cyclosporine inhibited immunosuppression in a concentration-dependent manner ( FIGS. 3A and 3B ). In this experimental example, the focus was mainly on the immunosuppression mechanism mediated by direct contact between CBPexo and immune cells. To address this, DYNABEAD anti-CD3/CD28 activated PBMCs were cultured with CBPexo or ABPexo to determine whether CBPexo had a potent immunosuppressive effect on activated immune cells. The immunosuppressive effect of CBPexo was investigated by CD4+ and CD8+ T cell proliferation.

CFSE 희석 분석에 의해 분석된 바와 같이, ABPexo는 그렇지 않지만 CBPexo는 CD4+ 및 CD8+ T 세포 증식을 억제하지 않았다(도 3a 및 도 3b).As analyzed by CFSE dilution analysis, ABPexo did not, but CBPexo did not inhibit CD4+ and CD8+ T cell proliferation ( FIGS. 3A and 3B ).

억제 효과의 근본적인 메커니즘을 기술하기 위해 아넥신 V 및 7AAD로 CBPexo 또는 ABPexo 처리된 군에서 세포사멸 세포의 비율과 플로우 사이토메트리 분석을 조사하였다. 또한, CBPexo가 활성화 T 세포의 세포사멸에 영향을 줄 수 있는지를 확인하였다. To elucidate the mechanism underlying the inhibitory effect, the proportion of apoptotic cells and flow cytometry analysis were investigated in CBPexo or ABPexo-treated groups with Annexin V and 7AAD. In addition, it was confirmed whether CBPexo can affect the apoptosis of activated T cells.

그 결과, PBMC는 엑소좀의 존재에서 DYNABEAD에 의해 활성화되었다. T 세포의 세포사멸은 플로우 사이토메트리에 의해 156시간째에 측정되었다. 아넥신 V 및 7AAD 이중 네거티브 염색은 살아있는 세포를 나타내고, 7AAD 및 아넥신 V 포지티브 염색은 각각 죽은 세포 및 세포사멸 세포를 나타낸다. 결과적으로, CBPexo 처리군에서 세포사멸 비율은 ABPexo 처리군과 비교하여 증가하였다. 그러나, 양성 대조군과 비교하여, 초기 세포사멸 시기에서 엑소좀 처리군은 어떠한 차이도 보이지 않았다. 게다가, CD8+ T 세포 세포사멸을 비교하였을 때, CBPexo 처리군과 대조군 간의 차이는 없었다. 이들 결과는 CBPexo가 처리된 PBMC 내에서 CD4+ T 세포의 세포사멸이 증가하나, CD8+ T 세포에 대한 유의한 효과는 없음을 보여준다(도 3c 및 도 3d).As a result, PBMCs were activated by DYNABEAD in the presence of exosomes. Apoptosis of T cells was measured at 156 hours by flow cytometry. Annexin V and 7AAD double negative staining indicates live cells, and 7AAD and Annexin V positive staining indicates dead and apoptotic cells, respectively. As a result, the apoptosis rate in the CBPexo treatment group was increased compared to the ABPexo treatment group. However, compared to the positive control group, the exosome-treated group did not show any difference in the initial apoptosis period. Moreover, when comparing CD8+ T cell apoptosis, there was no difference between the CBPexo-treated group and the control group. These results show that apoptosis of CD4+ T cells is increased in CBPexo-treated PBMCs, but there is no significant effect on CD8+ T cells ( FIGS. 3c and 3d ).

상기 결과로부터, 증식 반응의 감소는 세포주기 어레스트의 유도로 인한 것일 수 있다고 가정하였다. 따라서, PI 염색 후 플로우 사이토메트리에 의해 각 세포군의 DNA 함량을 측정하여 세포주기 분석을 수행하였다. CBPexo 또는 ABPexo의 존재하에서 PBMC를 DYNABEAD로 자극하고, 156시간 동안 인큐베이션한 후, PI로 염색하였다. From the above results, it was hypothesized that the decrease in the proliferative response could be due to the induction of cell cycle arrest. Therefore, cell cycle analysis was performed by measuring the DNA content of each cell group by flow cytometry after PI staining. PBMCs were stimulated with DYNABEAD in the presence of CBPexo or ABPexo, incubated for 156 h, and then stained with PI.

세포사멸을 보이는 G0/G1기의 세포 비율이 대조군보다 CBPexo 처리군에서 더 높았으나, 이 차이는 유의적이지 않았다. 더욱이, sub-G2/M 및 S기의 세포의 빈도는 156시간에서 대조군보다 CBPexo 처리군에서 더 높았다(도 4). 이들 결과는 CBPexo는 세포사멸과 함께 G0/G1 세포주기 어레스트를 유도하여 T 세포 증식을 감소시킴을 시사한다.The ratio of cells in the G0/G1 phase showing apoptosis was higher in the CBPexo-treated group than in the control group, but this difference was not significant. Moreover, the frequency of cells in sub-G2/M and S phases was higher in the CBPexo-treated group than in the control group at 156 h ( FIG. 4 ). These results suggest that CBPexo reduces T cell proliferation by inducing G0/G1 cell cycle arrest along with apoptosis.

(4) CBPexo에 의한 인 비트로에서 면역억제성 세포 분화의 유도 효과(4) Induction effect of immunosuppressive cell differentiation in vitro by CBPexo

상기 결과로부터, 전체 PBMC 집단 내의 T 세포에서 관찰된 CBPexo의 억제 효과가 면역억제세포의 유도로 인한 것일 수 있다고 가정하였다. 실험 결과, CBPexo와의 인큐베이션은 2일째에 자극된 PBMC 내 CD4+/CD25+/FoxP3+ 세포의 비율을 증가시켰다(도 5a). 그러나, CD4+ T 세포의 비율을 기초로 게이팅된 CD25+ 세포는 6일째에 CBPexo의 존재에서 유의적으로 하향조절되어, IL-2 수용체 알파 체인, CD25를 하향조절하는 인자가 CBPexo에 존재함을 나타낸다; 본 발명자들은 MMP9 또는 MMP2가 이러한 역할을 담당함을 이전 레퍼런스를 통해 보여준 바 있다.From the above results, it was hypothesized that the inhibitory effect of CBPexo observed on T cells in the entire PBMC population may be due to the induction of immunosuppressive cells. As a result of the experiment, incubation with CBPexo increased the ratio of CD4+/CD25+/FoxP3+ cells in stimulated PBMCs on day 2 (Fig. 5a). However, CD25+ cells gated based on the proportion of CD4+ T cells were significantly downregulated in the presence of CBPexo at day 6, indicating that the IL-2 receptor alpha chain, a factor that downregulates CD25, is present in CBPexo; The present inventors have shown through previous references that MMP9 or MMP2 plays this role.

조절성 T 세포와 연관된 CBPexo의 효과를 더 시험하기 위해, CBPexo를 제대혈 유래의 CD25+ 세포와 공배양하고, 세포는 CD4+/CD25+/FoxP3+ 및 CD127low 세포의 검출 전에 21일 동안 인큐베이션 하였다. 세포는 인공항원제시세포와 항-CD3/CD28 및 IL-2의 조합에 의해 효과적으로 확장되었다(도 5b). Treg 및 CBPexo-Treg 세포는 제대혈의 동일한 1 유닛에서 생성되며, 배양 후 17일에 CBPexo-Treg에서 16.32배 증가하였다(도 5c). Foxp3 발현은 nTregs에서의 그것의 발현과 비교하여 CBPexo-유도된 Treg에서 확장된 제대혈 CD25+ 세포를 증가시켰다. 그러나, CBPexo와 Treg 배양 후 21일째에 CD25 및 CD127의 발현에서의 차이는 없었다. 그리하여, CBPexo는 Treg 분화 후 21일째에 Foxp3 상향조절을 유도한다(도 5d). CBPexo를 통한 신호전달이 nTregs의 억제 특성들을 향상시키는지를 조사하기 위해, CFSE 염색을 이용하여 nTregs 및 CBPexo 유도된 Tregs 간의 면역억제 차이를 시험하였다. 게다가, CBPexo 유도된 Tregs는 시험된 거의 모든 Treg:PBMC 비율에서 강력하였다. >50%의 억제가 1:4의 Tregs:PBMC 비율에서 관찰되어, CBPexo-유도된 Tregs의 강한 억제능력을 입증한다(도 5e). 그러므로, CBPexo는 직접적으로 T 세포의 면역을 억제할 수 있으나, 초기 단계에서 Tregs의 분화 역시 유도하고 제대혈 Treg 세포의 기능성 개선에 참여할 수 있다.To further test the effect of CBPexo associated with regulatory T cells, CBPexo was co-cultured with cord blood-derived CD25+ cells, and the cells were incubated for 21 days prior to detection of CD4+/CD25+/FoxP3+ and CD127 low cells. Cells were effectively expanded by the combination of artificial antigen presenting cells and anti-CD3/CD28 and IL-2 (Fig. 5b). Treg and CBPexo-Treg cells were generated from the same 1 unit of umbilical cord blood, and increased 16.32-fold in CBPexo-Treg on day 17 after culture ( FIG. 5c ). Foxp3 expression increased expanded cord blood CD25+ cells in CBPexo-induced Tregs compared to their expression in nTregs. However, there was no difference in the expression of CD25 and CD127 on day 21 after CBPexo and Treg culture. Thus, CBPexo induces Foxp3 upregulation 21 days after Treg differentiation (Fig. 5d). To investigate whether signaling through CBPexo enhances the inhibitory properties of nTregs, we tested the immunosuppressive differences between nTregs and CBPexo-induced Tregs using CFSE staining. Moreover, CBPexo-derived Tregs were potent in almost all Treg:PBMC ratios tested. Inhibition of >50% was observed at a Tregs:PBMC ratio of 1:4, demonstrating the strong inhibitory ability of CBPexo-induced Tregs ( FIG. 5E ). Therefore, CBPexo can directly suppress the immunity of T cells, but it can also induce the differentiation of Tregs at an early stage and participate in the improvement of the function of cord blood Treg cells.

PBMC 집단 내 이들 억제성 단핵구의 표현형의 특성규명을 위해, CBPexo로 24시간 처리한 세포를 염색하여 CD33, CD11b 및 CD14를 평가하였다(도 6a). 그 결과, CBPexo는 MDSC의 집단인 CD33+CD11b+CD14+ 세포에서 아르기나아제-1, NOS2 및 IDO의 발현을 촉진하였다(도 6b). 이들 결과는, CBPexo가 직접적으로 면역억제에 참여할뿐만 아니라 면역억제세포를 유도함을 나타낸다.For characterization of the phenotype of these inhibitory monocytes in the PBMC population, cells treated with CBPexo for 24 h were stained to evaluate CD33, CD11b and CD14 (Fig. 6a). As a result, CBPexo promoted the expression of arginase-1, NOS2 and IDO in CD33+CD11b+CD14+ cells, a population of MDSCs ( FIG. 6b ). These results indicate that CBPexo not only directly participates in immunosuppression but also induces immunosuppressive cells.

(5) CBPexo에서 발현된 MMP의 억제에 의한 T 세포 증식의 회복(5) Restoration of T cell proliferation by inhibition of MMP expressed in CBPexo

T 세포 증식을 억제할 수 있는 CBPexo 내 인자들을 동정하고자 하였다. CD25는 MMP-9에 의해 단백질분해로 절단되며, T 세포에 대한 면역억제효과를 보여준다. 이들 징크-의존적 엔도펩티데이즈는 세포외 기질을 통한 세포 침입을 위한 필수 인자들이다. CBPexo에서 MMP의 존재를 측정하기 위해, 인간 MMP 항체 분석을 이용하여 CBPexo에서 다양한 MMP 및 TIMP를 분석하였다. We tried to identify factors in CBPexo that can inhibit T cell proliferation. CD25 is proteolytically cleaved by MMP-9 and shows an immunosuppressive effect on T cells. These zinc-dependent endopeptidases are essential factors for cell invasion through the extracellular matrix. To determine the presence of MMPs in CBPexo, various MMPs and TIMPs were assayed in CBPexo using a human MMP antibody assay.

도 7a에 도시된 바와 같이, MMP 억제 분자인 TIMP1 및 TIMP2의 발현에도 불구하고, CBPexo는 고농도의 MMP9 및 MMP8을 유의적으로 포함하였다. 그리하여, CBPexo는 MMP9에 의해 막-결합 IL-2Rα(CD25)를 절단하고, 활성화 T 림프구의 증식을 억제함을 추측하였다. MMP가 면역억제에 관여하는지를 추가적으로 확인하기 위해, 인간 T 세포와 인큐베이션 하기 전에 CBPexo와 MMP-1, -2, -3, -8 및 -9를 포함하여 다양한 MMP의 억제제인 GM6001과 2시간 동안 인큐베이션 하였다. GM6001-처리된 CBPexo와 배양된 인간 CD4+T 세포는 세포의 증식을 회복하였다(도 7b). As shown in FIG. 7a , despite the expression of the MMP inhibitory molecules TIMP1 and TIMP2, CBPexo significantly contained high concentrations of MMP9 and MMP8. Thus, it was speculated that CBPexo cleaves membrane-bound IL-2Rα (CD25) by MMP9 and inhibits the proliferation of activated T lymphocytes. To further confirm whether MMPs are involved in immunosuppression, CBPexo and GM6001, inhibitors of various MMPs, including MMP-1, -2, -3, -8 and -9, were incubated for 2 h prior to incubation with human T cells. did. Human CD4 + T cells cultured with GM6001-treated CBPexo restored cell proliferation (Fig. 7b).

또한, MMP 억제제인 GM6001(10㎍/mL)-처리된 CBPexo와 배양된 CD4+ 및 CD8+T 세포는 CD25 발현의 회복을 보였으나, 활성화 마커인 CD69에서의 차이는 없었다(도 8). 이들 결과는 MMP-9이 주로 MMP-9에 의한 CD25의 억제에 의해 유발되는 CBPexo의 면역억제와 연관이 있음을 나타낸다.In addition, CD4+ and CD8+ T cells cultured with the MMP inhibitor GM6001 (10 μg/mL)-treated CBPexo showed recovery of CD25 expression, but there was no difference in the activation marker CD69 ( FIG. 8 ). These results indicate that MMP-9 is mainly associated with the immunosuppression of CBPexo induced by inhibition of CD25 by MMP-9.

(6) 마우스 시스템에서 CBPexo의 면역억제 기능 확인(6) Confirmation of immunosuppressive function of CBPexo in mouse system

CBPexo는 마우스 비장세포 및 인간 PBMC에 대한 강력한 면역억제효과를 나타냈다. CBPexo의 면역억제효과는 DYNABEAD-자극된 마우스 CD4+ 및 CD8+T 세포 증식에 의해 시험되었다. CFSE 희석 분석에 의해 분석된 바와 같이 CBPexo는 CD4+ 및 CD8+T 세포 증식을 억제하나, ABPexo는 그렇지 않았다(도 9a-b). 인간 CBPexo는 증식성 T 세포 억제의 마우스 교차-반응성을 나타냈다. 따라서, 이들 결과는 CBPexo가 자가면역질환의 동물 모델인 EAE에 적용가능함을 나타낸다. CBPexo showed a strong immunosuppressive effect on mouse splenocytes and human PBMC. The immunosuppressive effect of CBPexo was tested by DYNABEAD-stimulated mouse CD4+ and CD8+ T cell proliferation. CBPexo inhibited CD4+ and CD8+ T cell proliferation, but not ABPexo, as analyzed by CFSE dilution assay ( FIGS. 9A-B ). Human CBPexo exhibited mouse cross-reactivity of proliferative T cell inhibition. Therefore, these results indicate that CBPexo is applicable to EAE, an animal model of autoimmune disease.

(7) IL-2 신호전달 및 Th1 및 Th2 세포-관련 사이토카인 조절에 대한 CBPexo의 효과(7) Effect of CBPexo on IL-2 signaling and regulation of Th1 and Th2 cell-associated cytokines

CBPexo에 대해 T 세포가 확장 및 반응하도록 항-CD3/CD28과 함께 세포(96-웰 배양 플레이트에서 1Х105 cells/well)를 6일 동안 배양하였다. 각 웰 내 세포를 세척하고 그대로 둔 후 ELISPOT 분석에 사용하였다. Cells (1Х10 5 cells/well in 96-well culture plates) were cultured for 6 days with anti-CD3/CD28 to allow T cells to expand and respond to CBPexo. Cells in each well were washed and left to be used for ELISPOT analysis.

그 결과, CBPexo와 공배양하였을 때, IL-2 및 IFN-γ-분비 세포의 집단이 현저히 감소하였으나, L-17 분비 세포는 대조군, CBPexo 처리군 및 ABPexo 처리군 간에 차이가 없었다(도 9c). CBPexo는 IL-2 및 IFN-γ 분비 세포를 억제하여 면역억제 기능을 나타냈다.As a result, when co-cultured with CBPexo, the population of IL-2 and IFN-γ-secreting cells was significantly reduced, but there was no difference in L-17-secreting cells between the control group, CBPexo-treated group and ABPexo-treated group ( FIG. 9c ). . CBPexo showed immunosuppressive function by inhibiting IL-2 and IFN-γ secreting cells.

사이토카인 분비를 평가하기 위해, 사이토메트릭 비드 분석을 사용하여 IL-2, IFN-γ 및 IL-6의 수준을 평가하였다. 그 결과, CBPexo는 Th1 및 Th17 세포의 분화 및 자가면역질환의 발생과 연관된 인간 IL-2, IFN-γ 및 IL-6을 하향조절하였다(도 9d). 그러나, 배양 상등액의 평가 결과, 마우스 T 세포에서 CBPexo와 배양될 때 IL-2의 농도 만 유의적으로 감소하였다(도 9e). 이들 데이터는 CBPexo에 의한 IL-2 생산의 억제가 인간 및 마우스 둘 다에서 T 세포 억제의 중요한 메커니즘임을 나타낸다.To assess cytokine secretion, levels of IL-2, IFN-γ and IL-6 were assessed using a cytometric bead assay. As a result, CBPexo down-regulated human IL-2, IFN-γ and IL-6 associated with the differentiation of Th1 and Th17 cells and the development of autoimmune diseases ( FIG. 9D ). However, as a result of evaluation of the culture supernatant, only the concentration of IL-2 was significantly reduced when incubated with CBPexo in mouse T cells (FIG. 9e). These data indicate that inhibition of IL-2 production by CBPexo is an important mechanism of T cell inhibition in both humans and mice.

(8) IL-2 사이토카인 수준 조절 및 EAE 증상을 완화하기 위한 Th1 및 Th17 세포 분화의 상호 조절 유도에 대한 CBPexo의 효과(8) Effect of CBPexo on IL-2 cytokine level regulation and induction of mutual regulation of Th1 and Th17 cell differentiation to alleviate EAE symptoms

도 10a에 도시된 바와 같이, CBPexo-처리된 EAE 군의 임상 점수는 ABPexo-처리된 EAE 군 및 EAE 대조군 보다 유의적으로 더 낮았다. 이들 결과는 CBPexo가 자가면역 증상을 완화할 수 있음을 보여준다. CBPexo가 헬퍼 T 세포에서 면역조절 기능을 가지는 지를 확인하기 위해 ELISPOT 분석에 의해 비장세포에서 사이토카인의 발현 수준을 측정하였다. MOG 펩타이드-특이 IFN-γ, IL-2 및 IL-17를 분비하는 세포의 빈도는 ELISPOT 분석에 의해 EAE 대조군, CBPexo-처리 EAE 군 및 ABPexo-처리 EAE 군 중에서 비교하여 측정하였다. As shown in FIG. 10A , the clinical score of the CBPexo-treated EAE group was significantly lower than that of the ABPexo-treated EAE group and the EAE control group. These results show that CBPexo can alleviate autoimmune symptoms. To determine whether CBPexo has an immunomodulatory function in helper T cells, the expression level of cytokines in splenocytes was measured by ELISPOT analysis. The frequency of cells secreting MOG peptide-specific IFN-γ, IL-2 and IL-17 was determined by ELISPOT assay compared among the EAE control group, CBPexo-treated EAE group and ABPexo-treated EAE group.

그 결과, MOG 펩타이드-특이 IL-2 세포는 CBPeox-처리 EAE 군에서 유의적으로 감소되었으나, IFN-γ 및 IL-17를 분비하는 세포에서의 차이는 없었고, 인 비트로 분석 결과와 유사하였다(도 10b). As a result, MOG peptide-specific IL-2 cells were significantly reduced in the CBPeox-treated EAE group, but there was no difference in the cells secreting IFN-γ and IL-17, similar to the in vitro analysis results (Fig. 10b).

도너 CD4+T 세포는 T 세포 면역 반응을 조절하는데 중요한 역할을 담당하면서 EAE 및 Th 서브세트의 균형을 매개하는 Th1, Th2 및 Th17 세포로 서로 분화한다. 따라서, CBPexo에 의해 Th1, Th2 및 Th17 세포 관련 사이토카인을 감소시키는 그들의 능력을 추가로 조사하였다. 이를 확인하기 위해, Th1, Th2 및 Th17 사이토메트릭 비드 분석을 이용하여 사이토카인 수준을 평가하였다. 분비된 단백질의 농도 평가 결과, CBPexo 투여는 EAE 군과 비교하여 IFN-γ, IL-2, IL-6, IL-17 및 IL-4의 수준에서의 감소를 유발하였다(도 10c). Donor CD4+ T cells differentiate from each other into Th1, Th2 and Th17 cells, which mediate the balance of EAE and Th subsets, playing an important role in regulating the T cell immune response. Therefore, their ability to reduce Th1, Th2 and Th17 cell-associated cytokines by CBPexo was further investigated. To confirm this, cytokine levels were evaluated using Th1, Th2 and Th17 cytometric bead assays. As a result of evaluating the concentration of the secreted protein, CBPexo administration induced a decrease in the levels of IFN-γ, IL-2, IL-6, IL-17 and IL-4 compared to the EAE group ( FIG. 10c ).

EAE 모델에서 Th1, Th2, Th17 및 IL-2의 사이토카인 프로파일을 비교하기 위해 세포내 염색을 수행하였다. 그 결과, IL-2의 비율은 2배 감소하였고, IFN-γ 및 IL-17은 ABPexo-처리군과 비교하여 CBPexo 처리군에서 1-4% 감소하였다(도 11). 이들 결과는 CBPexo 투여가 IL-2 신호전달을 조절하고, Th1 및 Th17 세포 분화의 상호 조절을 유도하여 EAE에 대해 보호 효과를 가짐을 입증하는 것이다.Intracellular staining was performed to compare the cytokine profiles of Th1, Th2, Th17 and IL-2 in the EAE model. As a result, the ratio of IL-2 was reduced two-fold, and IFN-γ and IL-17 were decreased by 1-4% in the CBPexo-treated group compared to the ABPexo-treated group ( FIG. 11 ). These results demonstrate that CBPexo administration modulates IL-2 signaling and induces mutual regulation of Th1 and Th17 cell differentiation to have a protective effect against EAE.

(9) EAE 모델에서 면역 조절 세포 분화 유도에 대한 CBPexo의 효과(9) Effect of CBPexo on induction of immune regulatory cell differentiation in EAE model

CD4+CD25+FOXP3+ Treg 세포의 빈도를 측정하고, 미처리 대조군(음성 대조군), EAE 대조군(양성 대조군), CBPexo-처리 EAE 군 및 ABPexo-처리 EAE 군을 비교하였다. The frequency of CD4+CD25+FOXP3+ Treg cells was measured, and the untreated control (negative control), EAE control (positive control), CBPexo-treated EAE group and ABPexo-treated EAE group were compared.

그 결과, Treg 집단이 대조군과 비교하여 CBPexo-처리 EAE 군에서 증가하였다(도 12a-b). 이들 결과는 CBPexo가 IL-2 신호전달을 억제할뿐만 아니라 인 비보에서 CD4+CD25+FOXP3+ Treg 집단을 증가시켜 그들의 면역억제 효과를 나타냄을 입증하는 것이다. CD11b+Gr-1+ 세포(마우스 MDSC)의 표현형은 CBPexo-주사된 마우스에서 EAE 질병 진행 동안 확장되었다(도 13). CBPexo 주사된 EAE 마우스의 비장세포에서 강화 및 축적된 MDSC는 조절 역할을 담당한다.As a result, the Treg population was increased in the CBPexo-treated EAE group compared to the control group (FIGS. 12a-b). These results demonstrate that CBPexo not only inhibits IL-2 signaling, but also increases the CD4+CD25+FOXP3+ Treg population in vivo, demonstrating their immunosuppressive effect. The phenotype of CD11b+Gr-1+ cells (mouse MDSCs) expanded during EAE disease progression in CBPexo-injected mice ( FIG. 13 ). Enriched and accumulated MDSCs in splenocytes of CBPexo-injected EAE mice play a regulatory role.

(10) EAE 모델에서 국소 및 전신적으로 작용하는 CBPexo의 효과(10) Effects of CBPexo acting locally and systemically in the EAE model

국소 또는 전신적으로 작용하는 CBPexo의 효과를 확인하기 위해 PKH67로 표지된 CBPexo 또는 ABPexo를 EAE 마우스의 꼬리 정맥에 주입하였다. EAE 모델은 뇌에 국소적으로 또는 전신에 동시다발적으로 발병할 수 있다. 따라서, 질환 발생에 있어 가장 중요한 기관인 뇌와 전신에 작용하는 가장 중요한 림프기관인 비장 조직의 세포 핵을 DAPI로 염색하였고 PKH67 표지된 CBPexo는 비장과 뇌 조직 모두에서 검출되었다 (도 14). To confirm the effect of CBPexo acting locally or systemically, CBPexo or ABPexo labeled with PKH67 was injected into the tail vein of EAE mice. The EAE model can be localized to the brain or co-occurring throughout the body. Therefore, the cell nucleus of the brain, which is the most important organ in disease development, and the spleen tissue, which is the most important lymph organ acting on the whole body, were stained with DAPI, and CBPexo labeled with PKH67 was detected in both the spleen and brain tissue (FIG. 14).

조직 병리학 검사를 검사를 통해 CBPexo 또는 ABPexo를 처리한 EAE 마우스와 EAE 마우스, 그리고 정상 마우스의 뇌에서 세포 침윤 수와 염증세포 면적을 비교한 결과, CBPexo 투여군에서 세포침윤과 염증세포의 면적이 감소되었다 (도 15).As a result of comparing the number of cell infiltration and the area of inflammatory cells in the brains of EAE mice, EAE mice, and normal mice treated with CBPexo or ABPexo through histopathological examination, the cell infiltration and area of inflammatory cells were reduced in the CBPexo-administered group. (Fig. 15).

<실시예 2> 인공 엑소좀(엑소좀 모방체)의 제조 및 면역억제효과<Example 2> Preparation of artificial exosomes (exosome mimics) and immunosuppressive effect

본 발명자들은 CBPexo의 분자 기능에 초점을 맞춤으로써 면역 조절과 연관된 MMP-9, GAL-3, HSP72, S100A7, GAL-7 및 PIP와 연관된 흥미로운 기능을 발견하였다(도 2 및 도 7). MICA는 자연 살해 세포 증식을 유도하고, MHC-I 결핍은 면역 활성화를 위태롭게한다. 그러므로, H1ME-5 세포는 CRISPR/cas9 시스템을 이용하여 침묵시킴으로써 면역-활성화 효과가 없는 세포를 만들 수 있다. HEK 293T 세포는 높은 트랜스펙션 효율 및 HLA 클래스 I(A*02:01, B*07:02 및 C*07:02) 및 MICA/B의 상동의 반수체를 포함하여 몇 가지 장점을 가지고 있다. HLA 클래스 I 및 MICA/B 유전자의 완전 제거를 위해, HLAA-A, HLA-B, HLA-C 및 MICA/B 유전자의 엑손 2 및 3을 표적으로 하는 Cas9 단백질 및 gRNA를 인코딩하는 7종의 플라스미드를 사용하였다(Hong, C.H., et al., J Immunother, 2017. 40(6): p. 201-210 참조). HLA 클래스 I 및 MICA/B의 발현 결핍을 나타내는 이들 H1ME-5 세포는 플로우 사이토메트리에 의해 분석되며(도 16a), GAL-3, MMP-9, HS672, S100A7, GAL-7 및 PIP 유전자를 인코딩하는 렌티바이러스로 형질도입되었다. 형질도입 6일 후, GAL-3, MMP-9, HSP72, S100A7, GAL-7 및 PIP-양성 세포를 소팅하였다. By focusing on the molecular function of CBPexo, we found interesting functions associated with MMP-9, GAL-3, HSP72, S100A7, GAL-7 and PIP associated with immune regulation ( FIGS. 2 and 7 ). MICA induces natural killer cell proliferation, and MHC-I deficiency jeopardizes immune activation. Therefore, H1ME-5 cells can be silenced using the CRISPR/cas9 system to create cells without immune-activating effects. HEK 293T cells have several advantages, including high transfection efficiency and homologous haploids of HLA class I (A*02:01, B*07:02 and C*07:02) and MICA/B. For complete removal of HLA class I and MICA/B genes, seven plasmids encoding Cas9 proteins and gRNAs targeting exons 2 and 3 of HLAA-A, HLA-B, HLA-C and MICA/B genes was used (see Hong, CH, et al., J Immunother, 2017. 40(6): p. 201-210). These H1ME-5 cells exhibiting a lack of expression of HLA class I and MICA/B were analyzed by flow cytometry ( FIG. 16A ), encoding the GAL-3, MMP-9, HS672, S100A7, GAL-7 and PIP genes. was transduced with a lentivirus. After 6 days of transduction, GAL-3, MMP-9, HSP72, S100A7, GAL-7 and PIP-positive cells were sorted.

H1ME-5에서 방출된 엑소좀의 크기 분포는 DLS를 이용하여 특성규명하였고, 관찰된 엑소좀의 입자 크기는 145.61±75.89 nm 였다(도 16b).The size distribution of the exosomes released from H1ME-5 was characterized using DLS, and the observed particle size of the exosomes was 145.61±75.89 nm ( FIG. 16b ).

플로우 사이토메트리 분석 결과, 90% 이상의 H1ME-5 세포가 GAL-3, MMP-9, HSP72, S100A7, GAL-7 및 PIP를 발현하였다(도 16c). 또한, 이 세포주에서 유래된 엑소좀은 목적 분자인 GAL-3, MMP-9, HSP72, S100A7, GAL-7 및 PIP를 발현하였다(도 16d).As a result of flow cytometry analysis, more than 90% of H1ME-5 cells expressed GAL-3, MMP-9, HSP72, S100A7, GAL-7 and PIP (FIG. 16c). In addition, exosomes derived from this cell line expressed target molecules GAL-3, MMP-9, HSP72, S100A7, GAL-7 and PIP (FIG. 16d).

다양한 CBPexo 모방체 중, MMP-9 및 HSP72를 발현하는 엑소좀이 유의한 면역억제효과를 보였으며 MMP-9과 HSP72를 발현하는 엑소좀을 각각 절반의 농도로 섞어서 넣어 줬을 때 면역억제의 상승효과를 나타냈다(도 16e-f). HSP72는 MMP-9의 생산을 증가시킨다. 따라서, 이들 데이터는 MMP-9이 CBPexo에서 존재하는 다양한 면역억제 분자 중 중요한 역할을 담당함을 나타낸다.Among the various CBPexo mimetics, the exosomes expressing MMP-9 and HSP72 showed a significant immunosuppressive effect. was shown (FIGS. 16e-f). HSP72 increases the production of MMP-9. Thus, these data indicate that MMP-9 plays an important role among various immunosuppressive molecules present in CBPexo.

<110> CATHOLIC UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof <130> P21U11C0247 <150> KR 10-2020-0033254 <151> 2020-03-18 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 2387 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens matrix metallopeptidase 9 (MMP9) <400> 1 agacacctct gccctcacca tgagcctctg gcagcccctg gtcctggtgc tcctggtgct 60 gggctgctgc tttgctgccc ccagacagcg ccagtccacc cttgtgctct tccctggaga 120 cctgagaacc aatctcaccg acaggcagct ggcagaggaa tacctgtacc gctatggtta 180 cactcgggtg gcagagatgc gtggagagtc gaaatctctg gggcctgcgc tgctgcttct 240 ccagaagcaa ctgtccctgc ccgagaccgg tgagctggat agcgccacgc tgaaggccat 300 gcgaacccca cggtgcgggg tcccagacct gggcagattc caaacctttg agggcgacct 360 caagtggcac caccacaaca tcacctattg gatccaaaac tactcggaag acttgccgcg 420 ggcggtgatt gacgacgcct ttgcccgcgc cttcgcactg tggagcgcgg tgacgccgct 480 caccttcact cgcgtgtaca gccgggacgc agacatcgtc atccagtttg gtgtcgcgga 540 gcacggagac gggtatccct tcgacgggaa ggacgggctc ctggcacacg cctttcctcc 600 tggccccggc attcagggag acgcccattt cgacgatgac gagttgtggt ccctgggcaa 660 gggcgtcgtg gttccaactc ggtttggaaa cgcagatggc gcggcctgcc acttcccctt 720 catcttcgag ggccgctcct actctgcctg caccaccgac ggtcgctccg acggcttgcc 780 ctggtgcagt accacggcca actacgacac cgacgaccgg tttggcttct gccccagcga 840 gagactctac acccaggacg gcaatgctga tgggaaaccc tgccagtttc cattcatctt 900 ccaaggccaa tcctactccg cctgcaccac ggacggtcgc tccgacggct accgctggtg 960 cgccaccacc gccaactacg accgggacaa gctcttcggc ttctgcccga cccgagctga 1020 ctcgacggtg atggggggca actcggcggg ggagctgtgc gtcttcccct tcactttcct 1080 gggtaaggag tactcgacct gtaccagcga gggccgcgga gatgggcgcc tctggtgcgc 1140 taccacctcg aactttgaca gcgacaagaa gtggggcttc tgcccggacc aaggatacag 1200 tttgttcctc gtggcggcgc atgagttcgg ccacgcgctg ggcttagatc attcctcagt 1260 gccggaggcg ctcatgtacc ctatgtaccg cttcactgag gggcccccct tgcataagga 1320 cgacgtgaat ggcatccggc acctctatgg tcctcgccct gaacctgagc cacggcctcc 1380 aaccaccacc acaccgcagc ccacggctcc cccgacggtc tgccccaccg gaccccccac 1440 tgtccacccc tcagagcgcc ccacagctgg ccccacaggt cccccctcag ctggccccac 1500 aggtcccccc actgctggcc cttctacggc cactactgtg cctttgagtc cggtggacga 1560 tgcctgcaac gtgaacatct tcgacgccat cgcggagatt gggaaccagc tgtatttgtt 1620 caaggatggg aagtactggc gattctctga gggcaggggg agccggccgc agggcccctt 1680 ccttatcgcc gacaagtggc ccgcgctgcc ccgcaagctg gactcggtct ttgaggagcg 1740 gctctccaag aagcttttct tcttctctgg gcgccaggtg tgggtgtaca caggcgcgtc 1800 ggtgctgggc ccgaggcgtc tggacaagct gggcctggga gccgacgtgg cccaggtgac 1860 cggggccctc cggagtggca gggggaagat gctgctgttc agcgggcggc gcctctggag 1920 gttcgacgtg aaggcgcaga tggtggatcc ccggagcgcc agcgaggtgg accggatgtt 1980 ccccggggtg cctttggaca cgcacgacgt cttccagtac cgagagaaag cctatttctg 2040 ccaggaccgc ttctactggc gcgtgagttc ccggagtgag ttgaaccagg tggaccaagt 2100 gggctacgtg acctatgaca tcctgcagtg ccctgaggac tagggctccc gtcctgcttt 2160 ggcagtgcca tgtaaatccc cactgggacc aaccctgggg aaggagccag tttgccggat 2220 acaaactggt attctgttct ggaggaaagg gaggagtgga ggtgggctgg gccctctctt 2280 ctcacctttg ttttttgttg gagtgtttct aataaacttg gattctctaa cctttaaaaa 2340 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2387 <210> 2 <211> 515 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens galectin 7 (LGALS7) <400> 2 acggctgccc aacccggtcc cagccatgtc caacgtcccc cacaagtcct cactgcccga 60 gggcatccgc cctggcacgg tgctgagaat tcgcggcttg gttcctccca atgccagcag 120 gttccatgta aacctgctgt gcggggagga gcagggctcc gatgccgcgc tgcatttcaa 180 cccccggctg gacacgtcgg aggtggtctt caacagcaag gagcaaggct cctggggccg 240 cgaggagcgc gggccgggcg ttcctttcca gcgcgggcag cccttcgagg tgctcatcat 300 cgcgtcagac gacggcttca aggccgtggt tggggacgcc cagtaccacc acttccgcca 360 ccgcctgccg ctggcgcgcg tgcgcctggt ggaggtgggc ggggacgtgc agctggactc 420 cgtgaggatc ttctgagcag aagcccaggc gggcccgggg ccttggctgg caaataaagc 480 gttagcccgc agcgaaaaaa aaaaaaaaaa aaaaa 515 <210> 3 <211> 618 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens prolactin-induced protein(PIP) <400> 3 ggggaccact tctctgggac acattgcctt ctgttttctc cagcatgcgc ttgctccagc 60 tcctgttcag ggccagccct gccaccctgc tcctggttct ctgcctgcag ttgggggcca 120 acaaagctca ggacaacact cggaagatca taataaagaa ttttgacatt cccaagtcag 180 tacgtccaaa tgacgaagtc actgcagtgc ttgcagttca aacagaattg aaagaatgca 240 tggtggttaa aacttacctc attagcagca tccctctaca aggtgcattt aactataagt 300 atactgcctg cctatgtgac gacaatccaa aaaccttcta ctgggacttt tacaccaaca 360 gaactgtgca aattgcagcc gtcgttgatg ttattcggga attaggcatc tgccctgatg 420 atgctgctgt aatccccatc aaaaacaacc ggttttatac tattgaaatc ctaaaggtag 480 aataatggaa gccctgtctg tttgccacac ccaggtgatt tcctctaaag aaacttggct 540 ggaatttctg ctgtggtcta taaaataaac ttcttaacat gcttctacaa aaaaaaaaaa 600 aaaaaaaaaa aaaaaaaa 618 <210> 4 <211> 2802 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens heat shock protein family A <400> 4 ccagcagcag gaggcgcgcg aggcaccacg gcctggcggc cgagagtcag ggaggaacct 60 catttacata acggccgccc ctctgtctcc tggcgggggc cggagtcccg cccctcgtcc 120 aacttgaaat ctgttgggtc acgggccagt cactccgacc taggcaagcc tgtggtggag 180 ctggaagagt ttgtgagggc ggtcccggga gcggattggg tctgggagtt cccagaggcg 240 gctataagaa ccgggaactg ggcgcgggga gctgagttgc tggtagtgcc cgtggtgctt 300 ggttcgaggt ggccgttagt tgactccgcg gagttcatct ccctggtttt cccgtcctaa 360 cgtcgctcgc ctttcagtca ggatgtctgc ccgtggcccg gctatcggca tcgacctggg 420 caccacctat tcgtgcgtcg gggtcttcca acatggcaag gtggagatca tcgccaacga 480 ccagggcaat cgcaccaccc ccagctacgt ggccttcacg gacaccgagc gcctcatcgg 540 cgacgccgcc aagaaccagg tggccatgaa ccccaccaac accatcttcg acgccaagag 600 gctgattgga cggaaattcg aggatgccac agtgcagtcg gatatgaaac actggccgtt 660 ccgggtggtg agcgagggag gcaagcccaa agtgcaagta gagtacaagg gggagaccaa 720 gaccttcttc ccagaggaga tatcctccat ggtcctcacg aagatgaagg agatcgcgga 780 agcctacctg gggggcaagg tgcacagcgc ggtcataacg gtcccggcct atttcaacga 840 ctcgcagcgc caggccacca aggacgcagg caccatcacg gggctcaatg tgctgcgcat 900 catcaacgag cccacggcgg cggccatcgc ctacggcctg gacaagaagg gctgcgcggg 960 cggcgagaag aacgtgctca tctttgacct gggcggtggc actttcgacg tgtccatcct 1020 gaccatcgag gatggcatct tcgaggtgaa gtccacggcc ggcgacaccc acctgggcgg 1080 tgaggacttc gacaaccgca tggtgagcca cctggcggag gagttcaagc gcaagcacaa 1140 gaaggacatt gggcccaaca agcgcgccgt gaggcggctg cgcaccgctt gcgagcgcgc 1200 caagcgcacc ctgagctcgt ccacgcaggc gagcatcgag atcgactcgc tctacgaggg 1260 cgtggacttc tatacgtcca tcacgcgcgc ccgcttcgag gagctcaatg ccgacctctt 1320 tcgcgggacc ctggagccgg tggagaaggc gctgcgcgac gccaagctgg acaagggcca 1380 gatccaggag atcgtgctgg tgggcggctc cactcgtatc cccaagatcc agaagctgct 1440 gcaggatttc ttcaacggca aggagctgaa caagagcatc aaccccgacg aggcggtggc 1500 ctatggcgcc gcggtgcagg cggccatcct catcggcgac aaatcagaga atgtgcagga 1560 cctgctgcta ctcgacgtga ccccgttgtc gctgggcatc gagacagctg gcggtgtcat 1620 gaccccactc atcaagagga acaccacgat ccccaccaag cagacgcaga ccttcaccac 1680 ctactcggac aaccagagca gcgtactggt gcaggtatac gagggcgaac gggccatgac 1740 caaggacaat aacctgctgg gcaagttcga cctgaccggg attccccctg cgcctcgcgg 1800 ggtcccccaa atcgaggtta ccttcgacat tgacgccaat ggcatcctta acgttaccgc 1860 cgccgacaag agcaccggta aggaaaacaa aatcaccatc accaatgaca aaggtcgtct 1920 gagcaaggac gacattgacc ggatggtgca ggaggcggag cggtacaaat cggaagatga 1980 ggcgaatcgc gaccgagtcg cggccaaaaa cgccctggag tcctatacct acaacatcaa 2040 gcagacggtg gaagacgaga aactgagggg caagattagc gagcaggaca aaaacaagat 2100 cctcgacaag tgtcaggagg tgatcaactg gctcgaccga aaccagatgg cagagaaaga 2160 tgagtatgaa cacaagcaga aagagctcga aagagtttgc aaccccatca tcagcaaact 2220 ttaccaaggt ggtcctggcg gcggcagcgg cggcggcggt tcaggagcct ccgggggacc 2280 caccatcgaa gaagtggact aagcttgcac tcaagtcagc gtaaacctct ttgcctttct 2340 ctctctctct ttttttttgt ttgtttcttt gaaatgtcct tgtgccaagt acgagatcta 2400 ttgttggaag tctttggtat atgcaaatga aaggagaggt gcaacaactt agtttaatta 2460 taaaagttcc aaagtttgtt ttttaaaaac attattcgag gtttctcttt aatgcatttt 2520 gcgtgtttgc tgacttgagc atttttgatt agttcgtgca tggagatttg tttgagatga 2580 gaaaccttaa gtttgcacac ctgttctgta gaagcttgga aacagtaaaa tatataggag 2640 cttaaattgt ttatttttat gtactacttt aaaactaaac tgaacattgc agtaatgtta 2700 aggacaggta tactttttgc aaacaaatgc ataaatgcaa atgtaaagta aagctgaaat 2760 tgatctcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 2802 <210> 5 <211> 1017 <212> DNA <213> Artificial Sequence <220> <223> galectin 3 (LGALS3) <400> 5 gagtatttga ggctcggagc caccgccccg ccggcgcccg cagcacctcc tcgccagcag 60 ccgtccggag ccagccaacg agcggaaaat ggcagacaat ttttcgctcc atgatgcgtt 120 atctgggtct ggaaacccaa accctcaagg atggcctggc gcatggggga accagcctgc 180 tggggcaggg ggctacccag gggcttccta tcctggggcc taccccgggc aggcaccccc 240 aggggcttat cctggacagg cacctccagg cgcctaccct ggagcacctg gagcttatcc 300 cggagcacct gcacctggag tctacccagg gccacccagc ggccctgggg cctacccatc 360 ttctggacag ccaagtgcca ccggagccta ccctgccact ggcccctatg gcgcccctgc 420 tgggccactg attgtgcctt ataacctgcc tttgcctggg ggagtggtgc ctcgcatgct 480 gataacaatt ctgggcacgg tgaagcccaa tgcaaacaga attgctttag atttccaaag 540 agggaatgat gttgccttcc actttaaccc acgcttcaat gagaacaaca ggagagtcat 600 tgtttgcaat acaaagctgg ataataactg gggaagggaa gaaagacagt cggttttccc 660 atttgaaagt gggaaaccat tcaaaataca agtactggtt gaacctgacc acttcaaggt 720 tgcagtgaat gatgctcact tgttgcagta caatcatcgg gttaaaaaac tcaatgaaat 780 cagcaaactg ggaatttctg gtgacataga cctcaccagt gcttcatata ccatgatata 840 atctgaaagg ggcagattaa aaaaaaaaaa agaatctaaa ccttacatgt gtaaaggttt 900 catgttcact gtgagtgaaa atttttacat tcatcaatat ccctcttgta agtcatctac 960 ttaataaata ttacagtgaa ttacctgtct caatatgtca aaaaaaaaaa aaaaaaa 1017 <210> 6 <211> 450 <212> DNA <213> Artificial Sequence <220> <223> S100 calcium binding protein A <400> 6 gtccaaacac acacatctca ctcatccttc tactcgtgac gcttcccagc tctggctttt 60 tgaaagcaaa gatgagcaac actcaagctg agaggtccat aataggcatg atcgacatgt 120 ttcacaaata caccagacgt gatgacaaga ttgagaagcc aagcctgctg acgatgatga 180 aggagaactt ccccaacttc cttagtgcct gtgacaaaaa gggcacaaat tacctcgccg 240 atgtctttga gaaaaaggac aagaatgagg ataagaagat tgatttttct gagtttctgt 300 ccttgctggg agacatagcc acagactacc acaagcagag ccatggagca gcgccctgtt 360 ccgggggcag ccagtgaccc agccccacca atgggcctcc agagacccca ggaacaataa 420 aatgtcttct cccaccagaa aaaaaaaaaa 450 <210> 7 <211> 1254 <212> DNA <213> Artificial Sequence <220> <223> Lysosome-associated membrane glycoprotein 1 <400> 7 atggcggccc ccggcagcgc ccggcgaccc ctgctgctgc tactgctgtt gctgctgctc 60 ggcctcatgc attgtgcgtc agcagcaatg tttatggtga aaaatggcaa cgggaccgcg 120 tgcataatgg ccaacttctc tgctgccttc tcagtgaact acgacaccaa gagtggccct 180 aagaacatga cctttgacct gccatcagat gccacagtgg tgctcaaccg cagctcctgt 240 ggaaaagaga acacttctga ccccagtctc gtgattgctt ttggaagagg acatacactc 300 actctcaatt tcacgagaaa tgcaacacgt tacagcgtcc agctcatgag ttttgtttat 360 aacttgtcag acacacacct tttccccaat gcgagctcca aagaaatcaa gactgtggaa 420 tctataactg acatcagggc agatatagat aaaaaataca gatgtgttag tggcacccag 480 gtccacatga acaacgtgac cgtaacgctc catgatgcca ccatccaggc gtacctttcc 540 aacagcagct tcagccgggg agagacacgc tgtgaacaag acaggccttc cccaaccaca 600 gcgccccctg cgccacccag cccctcgccc tcacccgtgc ccaagagccc ctctgtggac 660 aagtacaacg tgagcggcac caacgggacc tgcctgctgg ccagcatggg gctgcagctg 720 aacctcacct atgagaggaa ggacaacacg acggtgacaa ggcttctcaa catcaacccc 780 aacaagacct cggccagcgg gagctgcggc gcccacctgg tgactctgga gctgcacagc 840 gagggcacca ccgtcctgct cttccagttc gggatgaatg caagttctag ccggtttttc 900 ctacaaggaa tccagttgaa tacaattctt cctgacgcca gagaccctgc ctttaaagct 960 gccaacggct ccctgcgagc gctgcaggcc acagtcggca attcctacaa gtgcaacgcg 1020 gaggagcacg tccgtgtcac gaaggcgttt tcagtcaata tattcaaagt gtgggtccag 1080 gctttcaagg tggaaggtgg ccagtttggc tctgtggagg agtgtctgct ggacgagaac 1140 agcatgctga tccccatcgc tgtgggtggt gccctggcgg ggctggtcct catcgtcctc 1200 atcgcctacc tcgtcggcag gaagaggagt cacgcaggct accagactat ctag 1254 <210> 8 <211> 1278 <212> DNA <213> Artificial Sequence <220> <223> Serpin B12 <400> 8 atggactctc ttgttacagc aaacaccaaa ttttgctttg atctttttca agagataggc 60 aaagatgatc gtcataaaaa catatttttc tctcccctga gcctctcagc tgcccttggt 120 atggtacgct tgggtgctag aagtgacagt gcacatcaga ttgatgaggt actacacttc 180 aacgaatttt cccagaatga aagcaaagaa cctgaccctt gtctgaaaag caacaaacaa 240 aaagtgctgg ctgacagctc tctggagggg cagaaaaaaa cgacagagcc tctggatcag 300 caggctgggt ccttaaacaa tgagagcgga ctggtcagct gctactttgg gcagcttctc 360 tccaaattag acaggatcaa gactgattac acactgagta ttgccaacag gctttatgga 420 gagcaggaat tcccaatctg tcaggaatac ttagatggtg tgattcaatt ttaccacacg 480 acgattgaaa gtgttgattt ccaaaaaaac cctgaaaaat ccagacaaga gattaacttc 540 tgggttgaat gtcaatccca aggtaaaatc aaggaactct tcagcaagga cgctattaat 600 gctgagactg tgctggtact ggtgaatgct gtttacttca aggccaaatg ggaaacatac 660 tttgaccatg aaaacacggt ggatgcacct ttctgtctaa atgcgaatga aaacaagagt 720 gtgaagatga tgacgcaaaa aggcctctac agaattggct tcatagagga ggtgaaggca 780 cagatcctgg aaatgaggta caccaagggg aagctcagca tgttcgtgct gctgccatct 840 cactctaaag ataacctgaa gggtctggaa gagcttgaaa ggaaaatcac ctatgaaaaa 900 atggtggcct ggagcagctc agaaaacatg tcagaagaat cggtggtcct gtccttcccc 960 cggttcaccc tggaagacag ctatgatctc aattccattt tacaagacat gggcattacg 1020 gatatctttg atgaaacgag ggctgatctt actggaatct ctccaagtcc caatttgtac 1080 ttgtcaaaaa ttatccacaa aacctttgtg gaggtggatg aaaacggtac ccaggcagct 1140 gcagccactg gggctgttgt ctcggaaagg tcactacgat cttgggtgga gtttaatgcc 1200 aaccaccctt ttctcttttt cattagacac aacaaaaccc aaaccattct cttttatggc 1260 agggtctgct ctccttaa 1278 <210> 9 <211> 2132 <212> DNA <213> Artificial Sequence <220> <223> Lactotransferrin <400> 9 tgaaacttgt cttcctcgtc ctgctgttcc tcggggccct cggactgtgt ctggctggcc 60 gtaggaggag tgttcagtgg tgcgccgtat cccaacccga ggccacaaaa tgcttccaat 120 ggcaaaggaa tatgagaaaa gtgcgtggcc ctcctgtcag ctgcataaag agagactccc 180 ccatccagtg tatccaggcc attgcggaaa acagggccga tgctgtgacc cttgatggtg 240 gtttcatata cgaggcaggc ctggccccct acaaactgcg acctgtagcg gcggaagtct 300 acgggaccga aagacagcca cgaactcact attatgccgt ggctgtggtg aagaagggcg 360 gcagctttca gctgaacgaa ctgcaaggtc tgaagtcctg ccacacaggc cttcgcagga 420 ccgctggatg gaatgtccct atagggacac ttcgtccatt cttgaattgg acgggtccac 480 ctgagcccat tgaggcagct gtggccaggt tcttctcagc cagctgtgtt cccggtgcag 540 ataaaggaca gttccccaac ctgtgtcgcc tgtgtgcggg gacaggggaa aacaaatgtg 600 ccttctcctc ccaggaaccg tacttcagct actctggtgc cttcaagtgt ctgagagacg 660 gggctggaga cgtggctttt atcagagaga gcacagtgtt tgaggacctg tcagacgagg 720 ctgaaaggga cgagtatgag ttactctgcc cagacaacac tcggaagcca gtggacaagt 780 tcaaagactg ccatctggcc cgggtccctt ctcatgccgt tgtggcacga agtgtgaatg 840 gcaaggagga tgccatctgg aatcttctcc gccaggcaca ggaaaagttt ggaaaggaca 900 agtcaccgaa attccagctc tttggctccc ctagtgggca gaaagatctg ctgttcaagg 960 actctgccat tgggttttcg agggtgcccc cgaggataga ttctgggctg taccttggct 1020 ccggctactt cactgccatc cagaacttga ggaaaagtga ggaggaagtg gctgcccggc 1080 gtgcgcgggt cgtgtggtgt gcggtgggcg agcaggagct gcgcaagtgt aaccagtgga 1140 gtggcttgag cgaaggcagc gtgacctgct cctcggcctc caccacagag gactgcatcg 1200 ccctggtgct gaaaggagaa gctgatgcca tgagtttgga tggaggatat gtgtacactg 1260 caggcaaatg tggtttggtg cctgtcctgg cagagaacta caaatcccaa caaagcagtg 1320 accctgatcc taactgtgtg gatagacctg tggaaggata tcttgctgtg gcggtggtta 1380 ggagatcaga cactagcctt acctggaact ctgtgaaagg caagaagtcc tgccacaccg 1440 ccgtggacag gactgcaggc tggaatatcc ccatgggcct gctcttcaac cagacgggct 1500 cctgcaaatt tgatgaatat ttcagtcaaa gctgtgcccc tgggtctgac ccgagatcta 1560 atctctgtgc tctgtgtatt ggcgacgagc agggtgagaa taagtgcgtg cccaacagca 1620 acgagagata ctacggctac actggggctt tccggtgcct ggctgagaat gctggagacg 1680 ttgcatttgt gaaagatgtc actgtcttgc agaacactga tggaaataac aatgaggcat 1740 gggctaagga tttgaagctg gcagactttg cgctgctgtg cctcgatggc aaacggaagc 1800 ctgtgactga ggctagaagc tgccatcttg ccatggcccc gaatcatgcc gtggtgtctc 1860 ggatggataa ggtggaacgc ctgaaacagg tgttgctcca ccaacaggct aaatttggga 1920 gaaatggatc tgactgcccg gacaagtttt gcttattcca gtctgaaacc aaaaaccttc 1980 tgttcaatga caacactgag tgtctggcca gactccatgg caaaacaaca tatgaaaaat 2040 atttgggacc acagtatgtc gcaggcatta ctaatctgaa aaagtgctca acctcccccc 2100 tcctggaagc ctgtgaattc ctcaggaagt aa 2132 <210> 10 <211> 606 <212> DNA <213> Artificial Sequence <220> <223> Alpha-1-acid glycoprotein 1 <400> 10 atggcgctgt cctgggttct tacagtcctg agcctcctac ctctgctgga agcccagatc 60 ccattgtgtg ccaacctagt accggtgccc atcaccaacg ccaccctgga ccggatcact 120 ggcaagtggt tttatatcgc atcggccttt cgaaacgagg agtacaataa gtcggttcag 180 gagatccaag caaccttctt ttacttcacc cccaacaaga cagaggacac gatctttctc 240 agagagtacc agacccgaca ggaccagtgc atctataaca ccacctacct gaatgtccag 300 cgggaaaatg ggaccatctc cagatacgtg ggaggccaag agcatttcgc tcacttgctg 360 atcctcaggg acaccaagac ctacatgctt gcttttgacg tgaacgatga gaagaactgg 420 gggctgtctg tctatgctga caagccagag acgaccaagg agcaactggg agagttctac 480 gaagctctcg actgcttgcg cattcccaag tcagatgtcg tgtacaccga ttggaaaaag 540 gataagtgtg agccactgga gaagcagcac gagaaggaga ggaaacagga ggagggggaa 600 tcctag 606 <210> 11 <211> 1044 <212> DNA <213> Artificial Sequence <220> <223> CD5 antigen-like <400> 11 atggctctgc tattctcctt gatccttgcc atttgcacca gacctggatt cctagcgtct 60 ccatctggag tgcggctggt ggggggcctc caccgctgtg aagggcgggt ggaggtggaa 120 cagaaaggcc agtggggcac cgtgtgtgat gacggctggg acattaagga cgtggctgtg 180 ttgtgccggg agctgggctg tggagctgcc agcggaaccc ctagtggtat tttgtatgag 240 ccaccagcag aaaaagagca aaaggtcctc atccaatcag tcagttgcac aggaacagaa 300 gatacattgg ctcagtgtga gcaagaagaa gtttatgatt gttcacatga tgaagatgct 360 ggggcatcgt gtgagaaccc agagagctct ttctccccag tcccagaggg tgtcaggctg 420 gctgacggcc ctgggcattg caagggacgc gtggaagtga agcaccagaa ccagtggtat 480 accgtgtgcc agacaggctg gagcctccgg gccgcaaagg tggtgtgccg gcagctggga 540 tgtgggaggg ctgtactgac tcaaaaacgc tgcaacaagc atgcctatgg ccgaaaaccc 600 atctggctga gccagatgtc atgctcagga cgagaagcaa cccttcagga ttgcccttct 660 gggccttggg ggaagaacac ctgcaaccat gatgaagaca cgtgggtcga atgtgaagat 720 ccctttgact tgagactagt aggaggagac aacctctgct ctgggcgact ggaggtgctg 780 cacaagggcg tatggggctc tgtctgtgat gacaactggg gagaaaagga ggaccaggtg 840 gtatgcaagc aactgggctg tgggaagtcc ctctctccct ccttcagaga ccggaaatgc 900 tatggccctg gggttggccg catctggctg gataatgttc gttgctcagg ggaggagcag 960 tccctggagc agtgccagca cagattttgg gggtttcacg actgcaccca ccaggaagat 1020 gtggctgtca tctgctcagg atag 1044 <210> 12 <211> 5235 <212> DNA <213> Artificial Sequence <220> <223> Complement C4-B <400> 12 atgaggctgc tctgggggct gatctgggca tccagcttct tcaccttatc tctgcagaag 60 cccaggttgc tcttgttctc tccttctgtg gttcatctgg gggtccccct atcggtgggg 120 gtgcagctcc aggatgtgcc ccgaggacag gtagtgaaag gatcagtgtt cctgagaaac 180 ccatctcgta ataatgtccc ctgctcccca aaggtggact tcacccttag ctcagaaaga 240 gacttcgcac tcctcagtct ccaggtgccc ttgaaagatg cgaagagctg tggcctccat 300 caactcctca gaggccctga ggtccagctg gtggcccatt cgccatggct aaaggactct 360 ctgtccagaa cgacaaacat ccagggtatc aacctgctct tctcctctcg ccgggggcac 420 ctctttttgc agacggacca gcccatttac aaccctggcc agcgggttcg gtaccgggtc 480 tttgctctgg atcagaagat gcgcccgagc actgacacca tcacagtcat ggtggagaac 540 tctcacggcc tccgcgtgcg gaagaaggag gtgtacatgc cctcgtccat cttccaggat 600 gactttgtga tcccagacat ctcagagcca gggacctgga agatctcagc ccgattctca 660 gatggcctgg aatccaacag cagcacccag tttgaggtga agaaatatgt ccttcccaac 720 tttgaggtga agatcacccc tggaaagccc tacatcctga cggtgccagg ccatcttgat 780 gaaatgcagt tagacatcca ggccaggtac atctatggga agccagtgca gggggtggca 840 tatgtgcgct ttgggctcct agatgaggat ggtaagaaga ctttctttcg ggggctggag 900 agtcagacca agctggtgaa tggacagagc cacatttccc tctcaaaggc agagttccag 960 gacgccctgg agaagctgaa tatgggcatt actgacctcc aggggctgcg cctctacgtt 1020 gctgcagcca tcattgagtc tccaggtggg gagatggagg aggcagagct cacatcctgg 1080 tattttgtgt catctccctt ctccttggat cttagcaaga ccaagcgaca ccttgtgcct 1140 ggggccccct tcctgctgca ggccttggtc cgtgagatgt caggctcccc agcttctggc 1200 attcctgtca aagtttctgc cacggtgtct tctcctgggt ctgttcctga agtccaggac 1260 attcagcaaa acacagacgg gagcggccaa gtcagcattc caataattat ccctcagacc 1320 atctcagagc tgcagctctc agtatctgca ggctccccac atccagcgat agccaggctc 1380 actgtggcag ccccaccttc aggaggcccc gggtttctgt ctattgagcg gccggattct 1440 cgacctcctc gtgttgggga cactctgaac ctgaacttgc gagccgtggg cagtggggcc 1500 accttttctc attactacta catgatccta tcccgagggc agatcgtgtt catgaatcga 1560 gagcccaaga ggaccctgac ctcggtctcg gtgtttgtgg accatcacct ggcaccctcc 1620 ttctactttg tggccttcta ctaccatgga gaccacccag tggccaactc cctgcgagtg 1680 gatgtccagg ctggggcctg cgagggcaag ctggagctca gcgtggacgg tgccaagcag 1740 taccggaacg gggagtccgt gaagctccac ttagaaaccg actccctagc cctggtggcg 1800 ctgggagcct tggacacagc tctgtatgct gcaggcagca agtcccacaa gcccctcaac 1860 atgggcaagg tctttgaagc tatgaacagc tatgacctcg gctgtggtcc tgggggtggg 1920 gacagtgccc ttcaggtgtt ccaggcagcg ggcctggcct tttctgatgg agaccagtgg 1980 accttatcca gaaagagact aagctgtccc aaggagaaga caacccggaa aaagagaaac 2040 gtgaacttcc aaaaggcgat taatgagaaa ttgggtcagt atgcttcccc gacagccaag 2100 cgctgctgcc aggatggggt gacacgtctg cccatgatgc gttcctgcga gcagcgggca 2160 gcccgcgtgc agcagccgga ctgccgggag cccttcctgt cctgctgcca atttgctgag 2220 agtctgcgca agaagagcag ggacaagggc caggcgggcc tccaacgagc cctggagatc 2280 ctgcaggagg aggacctgat tgatgaggat gacattcccg tgcgcagctt cttcccagag 2340 aactggctct ggagagtgga aacagtggac cgctttcaaa tattgacact gtggctcccc 2400 gactctctga ccacgtggga gatccatggc ctgagcctgt ccaaaaccaa aggcctatgt 2460 gtggccaccc cagtccagct ccgggtgttc cgcgagttcc acctgcacct ccgcctgccc 2520 atgtctgtcc gccgctttga gcagctggag ctgcggcctg tcctctataa ctacctggat 2580 aaaaacctga ctgtgagcgt ccacgtgtcc ccagtggagg ggctgtgcct ggctgggggc 2640 ggagggctgg cccagcaggt gctggtgcct gcgggctctg cccggcctgt tgccttctct 2700 gtggtgccca cggcagccac cgctgtgtct ctgaaggtgg tggctcgagg gtccttcgaa 2760 ttccctgtgg gagatgcggt gtccaaggtt ctgcagattg agaaggaagg ggccatccat 2820 agagaggagc tggtctatga actcaacccc ttggaccacc gaggccggac cttggaaata 2880 cctggcaact ctgatcccaa tatgatccct gatggggact ttaacagcta cgtcagggtt 2940 acagcctcag atccattgga cactttaggc tctgaggggg ccttgtcacc aggaggcgtg 3000 gcctccctct tgaggcttcc tcgaggctgt ggggagcaaa ccatgatcta cttggctccg 3060 acactggctg cttcccgcta cctggacaag acagagcagt ggagcacact gcctcccgag 3120 accaaggacc acgccgtgga tctgatccag aaaggctaca tgcggatcca gcagtttcgg 3180 aaggcggatg gttcctatgc ggcttggttg tcacggggca gcagcacctg gctcacagcc 3240 tttgtgttga aggtcctgag tttggcccag gagcaggtag gaggctcgcc tgagaaactg 3300 caggagacat ctaactggct tctgtcccag cagcaggctg acggctcgtt ccaggacctc 3360 tctccagtga tacataggag catgcagggg ggtttggtgg gcaatgatga gactgtggca 3420 ctcacagcct ttgtgaccat cgcccttcat catgggctgg ccgtcttcca ggatgagggt 3480 gcagagccat tgaagcagag agtggaagcc tccatctcaa aggcaagctc atttttgggg 3540 gagaaagcaa gtgctgggct cctgggtgcc cacgcagctg ccatcacggc ctatgccctg 3600 acactgacca aggcccctgc ggacctgcgg ggtgttgccc acaacaacct catggcaatg 3660 gcccaggaga ctggagataa cctgtactgg ggctcagtca ctggttctca gagcaatgcc 3720 gtgtcgccca ccccggctcc tcgcaaccca tccgacccca tgccccaggc cccagccctg 3780 tggattgaaa ccacagccta cgccctgctg cacctcctgc ttcacgaggg caaagcagag 3840 atggcagacc aggctgcggc ctggctcacc cgtcagggca gcttccaagg gggattccgc 3900 agtacccaag acacggtgat tgccctggat gccctgtctg cctactggat tgcctcccac 3960 accactgagg agaggggtct caatgtgact ctcagctcca caggccggaa tgggttcaag 4020 tcccacgcgc tgcagctgaa caaccgccag attcgcggcc tggaggagga gctgcagttt 4080 tccttgggca gcaagatcaa tgtgaaggtg ggaggaaaca gcaaaggaac cctgaaggtc 4140 cttcgtacct acaatgtcct ggacatgaag aacacgacct gccaggacct acagatagaa 4200 gtgacagtca aaggccacgt cgagtacacg atggaagcaa acgaggacta tgaggactat 4260 gagtacgatg agcttccagc caaggatgac ccagatgccc ctctgcagcc cgtgacaccc 4320 ctgcagctgt ttgagggtcg gaggaaccgc cgcaggaggg aggcgcccaa ggtggtggag 4380 gagcaggagt ccagggtgca ctacaccgtg tgcatctggc ggaacggcaa ggtggggctg 4440 tctggcatgg ccatcgcgga cgtcaccctc ctgagtggat tccacgccct gcgtgctgac 4500 ctggagaagc tgacctccct ctctgaccgt tacgtgagtc actttgagac cgaggggccc 4560 cacgtcctgc tgtattttga ctcggtcccc acctcccggg agtgcgtggg ctttgaggct 4620 gtgcaggaag tgccggtggg gctggtgcag ccggccagcg caaccctgta cgactactac 4680 aaccccgagc gcagatgttc tgtgttttac ggggcaccaa gtaagagcag actcttggcc 4740 accttgtgtt ctgctgaagt ctgccagtgt gctgagggga agtgccctcg ccagcgtcgc 4800 gccctggagc ggggtctgca ggacgaggat ggctacagga tgaagtttgc ctgctactac 4860 ccccgtgtgg agtacggctt ccaggttaag gttctccgag aagacagcag agctgctttc 4920 cgcctctttg agaccaagat cacccaagtc ctgcacttca ccaaggatgt caaggccgct 4980 gctaatcaga tgcgcaactt cctggttcga gcctcctgcc gccttcgctt ggaacctggg 5040 aaagaatatt tgatcatggg tctggatggg gccacctatg acctcgaggg acacccccag 5100 tacctgctgg actcgaatag ctggatcgag gagatgccct ctgaacgcct gtgccggagc 5160 acccgccagc gggcagcctg tgcccagctc aacgacttcc tccaggagta tggcactcag 5220 gggtgccagg tgtga 5235 <210> 13 <211> 2208 <212> DNA <213> Artificial Sequence <220> <223> Mannan-binding lectin serine protease 1 <400> 13 atgagaccta cattcatgtc tttcaggtgg ctgcttctct attatgctct gtgcttctcc 60 ctgtcaaagg cttcagccca caccgtggag ctaaacaata tgtttggcca gatccagtcg 120 cctggttatc cagactccta tcccagtgat tcagaggtga cttggaatat cactgtccca 180 gatgggtttc ggatcaagct ttacttcatg cacttcaact tggaatcctc ctacctttgt 240 gaatatgact atgtgaaggt agaaactgag gaccaggtgc tggcaacctt ctgtggcagg 300 gagaccacag acacagagca gactcccggc caggaggtgg tcctctcccc tggctccttc 360 atgtccatca ctttccggtc agatttctcc aatgaggagc gtttcacagg ctttgatgcc 420 cactacatgg ctgtggatgt ggacgagtgc aaggagaggg aggacgagga gctgtcctgt 480 gaccactact gccacaacta cattggcggc tactactgct cctgccgctt cggctacatc 540 ctccacacag acaacaggac ctgccgagtg gagtgcagtg acaacctctt cactcaaagg 600 actggggtga tcaccagccc tgacttccca aacccttacc ccaagagctc tgaatgcctg 660 tataccatcg agctggagga gggtttcatg gtcaacctgc agtttgagga catatttgac 720 attgaggacc atcctgaggt gccctgcccc tatgactaca tcaagatcaa agttggtcca 780 aaagttttgg ggcctttctg tggagagaaa gccccagaac ccatcagcac ccagagccac 840 agtgtcctga tcctgttcca tagtgacaac tcgggagaga accggggctg gaggctctca 900 tacagggctg caggaaatga gtgcccagag ctacagcctc ctgtccatgg gaaaatcgag 960 ccctcccaag ccaagtattt cttcaaagac caagtgctcg tcagctgtga cacaggctac 1020 aaagtgctga aggataatgt ggagatggac acattccaga ttgagtgtct gaaggatggg 1080 acgtggagta acaagattcc cacctgtaaa attgtagact gtagagcccc aggagagctg 1140 gaacacgggc tgatcacctt ctctacaagg aacaacctca ccacatacaa gtctgagatc 1200 aaatactcct gtcaggagcc ctattacaag atgctcaaca ataacacagg tatatatacc 1260 tgttctgccc aaggagtctg gatgaataaa gtattgggga gaagcctacc cacctgcctt 1320 ccagagtgtg gtcagccctc ccgctccctg ccaagcctgg tcaagaggat cattgggggc 1380 cgaaatgctg agcctggcct cttcccgtgg caggccctga tagtggtgga ggacacttcg 1440 agagtgccaa atgacaagtg gtttgggagt ggggccctgc tctctgcgtc ctggatcctc 1500 acagcagctc atgtgctgcg ctcccagcgt agagacacca cggtgatacc agtctccaag 1560 gagcatgtca ccgtctacct gggcttgcat gatgtgcgag acaaatcggg ggcagtcaac 1620 agctcagctg cccgagtggt gctccaccca gacttcaaca tccaaaacta caaccacgat 1680 atagctctgg tgcagctgca ggagcctgtg cccctgggac cccacgttat gcctgtctgc 1740 ctgccaaggc ttgagcctga aggcccggcc ccccacatgc tgggcctggt ggccggctgg 1800 ggcatctcca atcccaatgt gacagtggat gagatcatca gcagtggcac acggaccttg 1860 tcagatgtcc tgcagtatgt caagttaccc gtggtgcctc acgctgagtg caaaactagc 1920 tatgagtccc gctcgggcaa ttacagcgtc acggagaaca tgttctgtgc tggctactac 1980 gagggcggca aagacacgtg ccttggagat agcggtgggg cctttgtcat ctttgatgac 2040 ttgagccagc gctgggtggt gcaaggcctg gtgtcctggg ggggacctga agaatgcggc 2100 agcaagcagg tctatggagt ctacacaaag gtctccaatt acgtggactg ggtgtgggag 2160 cagatgggct taccacaaag tgttgtggag ccccaggtgg aacggtga 2208 <210> 14 <211> 741 <212> DNA <213> Artificial Sequence <220> <223> Proteasome subunit alpha type-6 <400> 14 atgtcccgtg gttccagcgc cggttttgac cgccacatta ccattttttc acccgagggt 60 cggctctacc aagtagaata tgcttttaag gctattaacc agggtggcct tacatcagta 120 gctgtcagag ggaaagactg tgcagtaatt gtcacacaga agaaagtacc tgacaaatta 180 ttggattcca gcacagtgac tcacttattc aagataactg aaaacattgg ttgtgtgatg 240 accggaatga cagctgacag cagatcccag gtacagaggg cacgctatga ggcagctaac 300 tggaaataca agtatggcta tgagattcct gtggacatgc tgtgtaaaag aattgccgat 360 atttctcagg tctacacaca gaatgctgaa atgaggcctc ttggttgttg tatgatttta 420 attggtatag atgaagagca aggccctcag gtatataagt gtgatcctgc aggttactac 480 tgtgggttta aagccactgc agcgggagtt aaacaaactg agtcaaccag cttccttgaa 540 aaaaaagtga agaagaaatt tgattggaca tttgaacaga cagtggaaac tgcaattaca 600 tgcctgtcta ctgttctatc aattgatttc aaaccttcag aaatagaagt tggagtagtg 660 acagttgaaa atcctaaatt caggattctt acagaagcag agattgatgc tcaccttgtt 720 gctctagcag agagagacta a 741 <210> 15 <211> 600 <212> DNA <213> Artificial Sequence <220> <223> Peroxiredoxin-1 <400> 15 atgtcttcag gaaatgctaa aattgggcac cctgccccca acttcaaagc cacagctgtt 60 atgccagatg gtcagtttaa agatatcagc ctgtctgact acaaaggaaa atatgttgtg 120 ttcttctttt accctcttga cttcaccttt gtgtgcccca cggagatcat tgctttcagt 180 gatagggcag aagaatttaa gaaactcaac tgccaagtga ttggtgcttc tgtggattct 240 cacttctgtc atctagcatg ggtcaataca cctaagaaac aaggaggact gggacccatg 300 aacattcctt tggtatcaga cccgaagcgc accattgctc aggattatgg ggtcttaaag 360 gctgatgaag gcatctcgtt caggggcctt tttatcattg atgataaggg tattcttcgg 420 cagatcactg taaatgacct ccctgttggc cgctctgtgg atgagacttt gagactagtt 480 caggccttcc agttcactga caaacatggg gaagtgtgcc cagctggctg gaaacctggc 540 agtgatacca tcaagcctga tgtccaaaag agcaaagaat atttctccaa gcagaagtga 600 600 <210> 16 <211> 285 <212> DNA <213> Artificial Sequence <220> <223> Neutrophil defensin 3 <400> 16 atgaggaccc tcgccatcct tgctgccatt ctcctggtgg ccctgcaggc ccaggctgag 60 ccactccagg caagagctga tgaggttgct gcagccccgg agcagattgc agcggacatc 120 ccagaagtgg ttgtttccct tgcatgggac gaaagcttgg ctccaaagca tccaggctca 180 aggaaaaaca tggactgcta ttgcagaata ccagcgtgca ttgcaggaga acgtcgctat 240 ggaacctgca tctaccaggg aagactctgg gcattctgct gctga 285 <210> 17 <211> 2232 <212> DNA <213> Artificial Sequence <220> <223> CD44 antigen <400> 17 atggacaagt tttggtggca cgcagcctgg ggactctgcc tcgtgccgct gagcctggcg 60 cagatcgatt tgaatataac ctgccgcttt gcaggtgtat tccacgtgga gaaaaatggt 120 cgctacagca tctctcggac ggaggccgct gacctctgca aggctttcaa tagcaccttg 180 cccacaatgg cccagatgga gaaagctctg agcatcggat ttgagacctg caggtatggg 240 ttcatagaag ggcacgtggt gattccccgg atccacccca actccatctg tgcagcaaac 300 aacacagggg tgtacatcct cacatccaac acctcccagt atgacacata ttgcttcaat 360 gcttcagctc cacctgaaga agattgtaca tcagtcacag acctgcccaa tgcctttgat 420 ggaccaatta ccataactat tgttaaccgt gatggcaccc gctatgtcca gaaaggagaa 480 tacagaacga atcctgaaga catctacccc agcaacccta ctgatgatga cgtgagcagc 540 ggctcctcca gtgaaaggag cagcacttca ggaggttaca tcttttacac cttttctact 600 gtacacccca tcccagacga agacagtccc tggatcaccg acagcacaga cagaatccct 660 gctaccactt tgatgagcac tagtgctaca gcaactgaga cagcaaccaa gaggcaagaa 720 acctgggatt ggttttcatg gttgtttcta ccatcagagt caaagaatca tcttcacaca 780 acaacacaaa tggctggtac gtcttcaaat accatctcag caggctggga gccaaatgaa 840 gaaaatgaag atgaaagaga cagacacctc agtttttctg gatcaggcat tgatgatgat 900 gaagatttta tctccagcac catttcaacc acaccacggg cttttgacca cacaaaacag 960 aaccaggact ggacccagtg gaacccaagc cattcaaatc cggaagtgct acttcagaca 1020 accacaagga tgactgcaga tgtagacaga aatggcacca ctgcttatga aggaaactgg 1080 aacccagaag cacaccctcc cctcattcac catgagcatc atgaggaaga agagacccca 1140 cattctacaa gcacaatcca ggcaactcct agtagtacaa cggaagaaac agctacccag 1200 aaggaacagt ggtttggcaa cagatggcat gagggatatc gccaaacacc caaagaagac 1260 tcccattcga caacagggac agctgcagcc tcagctcata ccagccatcc aatgcaagga 1320 aggacaacac caagcccaga ggacagttcc tggactgatt tcttcaaccc aatctcacac 1380 cccatgggac gaggtcatca agcaggaaga aggatggata tggactccag tcatagtata 1440 acgcttcagc ctactgcaaa tccaaacaca ggtttggtgg aagatttgga caggacagga 1500 cctctttcaa tgacaacgca gcagagtaat tctcagagct tctctacatc acatgaaggc 1560 ttggaagaag ataaagacca tccaacaact tctactctga catcaagcaa taggaatgat 1620 gtcacaggtg gaagaagaga cccaaatcat tctgaaggct caactacttt actggaaggt 1680 tatacctctc attacccaca cacgaaggaa agcaggacct tcatcccagt gacctcagct 1740 aagactgggt cctttggagt tactgcagtt actgttggag attccaactc taatgtcaat 1800 cgttccttat caggagacca agacacattc caccccagtg gggggtccca taccactcat 1860 ggatctgaat cagatggaca ctcacatggg agtcaagaag gtggagcaaa cacaacctct 1920 ggtcctataa ggacacccca aattccagaa tggctgatca tcttggcatc cctcttggcc 1980 ttggctttga ttcttgcagt ttgcattgca gtcaacagtc gaagaaggtg tgggcagaag 2040 aaaaagctag tgatcaacag tggcaatgga gctgtggagg acagaaagcc aagtggactc 2100 aacggagagg ccagcaagtc tcaggaaatg gtgcatttgg tgaacaagga gtcgtcagaa 2160 actccagacc agtttatgac agctgatgag acaaggaacc tgcagaatgt ggacatgaag 2220 attggggtgt aa 2232 <210> 18 <211> 993 <212> DNA <213> Artificial Sequence <220> <223> Arginase-1 <400> 18 atgagcgcca agtccagaac catagggatt attggagctc ctttctcaaa gggacagcca 60 cgaggagggg tggaagaagg ccctacagta ttgagaaagg ctggtctgct tgagaaactt 120 aaagaacaag taactcaaaa ctttttaatt ttagagtgtg atgtgaagga ttatggggac 180 ctgccctttg ctgacatccc taatgacagt ccctttcaaa ttgtgaagaa tccaaggtct 240 gtgggaaaag caagcgagca gctggctggc aaggtggcag aagtcaagaa gaacggaaga 300 atcagcctgg tgctgggcgg agaccacagt ttggcaattg gaagcatctc tggccatgcc 360 agggtccacc ctgatcttgg agtcatctgg gtggatgctc acactgatat caacactcca 420 ctgacaacca caagtggaaa cttgcatgga caacctgtat ctttcctcct gaaggaacta 480 aaaggaaaga ttcccgatgt gccaggattc tcctgggtga ctccctgtat atctgccaag 540 gatattgtgt atattggctt gagagacgtg gaccctgggg aacactacat tttgaaaact 600 ctaggcatta aatacttttc aatgactgaa gtggacagac taggaattgg caaggtgatg 660 gaagaaacac tcagctatct actaggaaga aagaaaaggc caattcatct aagttttgat 720 gttgacggac tggacccatc tttcacacca gctactggca caccagtcgt gggaggtctg 780 acatacagag aaggtctcta catcacagaa gaaatctaca aaacagggct actctcagga 840 ttagatataa tggaagtgaa cccatccctg gggaagacac cagaagaagt aactcgaaca 900 gtgaacacag cagttgcaat aaccttggct tgtttcggac ttgctcggga gggtaatcac 960 aagcctattg actaccttaa cccacctaag taa 993 <110> CATHOLIC UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of them <130> P21U11C0247 <150> KR 10-2020-0033254 <151> 2020-03-18 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 2387 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens matrix metallopeptidase 9 (MMP9) <400> 1 agacacctct gccctcacca tgagcctctg gcagcccctg gtcctggtgc tcctggtgct 60 gggctgctgc tttgctgccc ccagacagcg ccagtccacc cttgtgctct tccctggaga 120 cctgagaacc aatctcaccg acaggcagct ggcagaggaa tacctgtacc gctatggtta 180 cactcgggtg gcagagatgc gtggagagtc gaaatctctg gggcctgcgc tgctgcttct 240 ccagaagcaa ctgtccctgc ccgagaccgg tgagctggat agcgccacgc tgaaggccat 300 gcgaacccca cggtgcgggg tcccagacct gggcagattc caaacctttg agggcgacct 360 caagtggcac caccacaaca tcacctattg gatccaaaac tactcggaag acttgccgcg 420 ggcggtgatt gacgacgcct ttgcccgcgc cttcgcactg tggagcgcgg tgacgccgct 480 caccttcact cgcgtgtaca gccgggacgc agacatcgtc atccagtttg gtgtcgcgga 540 gcacggagac gggtatccct tcgacgggaa ggacgggctc ctggcacacg cctttcctcc 600 tggccccggc attcagggag acgcccattt cgacgatgac gagttgtggt ccctgggcaa 660 gggcgtcgtg gttccaactc ggtttggaaa cgcagatggc gcggcctgcc acttcccctt 720 catcttcgag ggccgctcct actctgcctg caccaccgac ggtcgctccg acggcttgcc 780 ctggtgcagt accacggcca actacgacac cgacgaccgg tttggcttct gccccagcga 840 gagactctac acccaggacg gcaatgctga tgggaaaccc tgccagtttc cattcatctt 900 ccaaggccaa tcctactccg cctgcaccac ggacggtcgc tccgacggct accgctggtg 960 cgccaccacc gccaactacg accgggacaa gctcttcggc ttctgcccga cccgagctga 1020 ctcgacggtg atggggggca actcggcggg ggagctgtgc gtcttcccct tcactttcct 1080 gggtaaggag tactcgacct gtaccagcga gggccgcgga gatgggcgcc tctggtgcgc 1140 taccacctcg aactttgaca gcgacaagaa gtggggcttc tgcccggacc aaggatacag 1200 tttgttcctc gtggcggcgc atgagttcgg ccacgcgctg ggcttagatc attcctcagt 1260 gccggaggcg ctcatgtacc ctatgtaccg cttcactgag gggcccccct tgcataagga 1320 cgacgtgaat ggcatccggc acctctatgg tcctcgccct gaacctgagc cacggcctcc 1380 aaccaccacc acaccgcagc ccacggctcc cccgacggtc tgccccaccg gaccccccac 1440 tgtccacccc tcagagcgcc ccacagctgg ccccacaggt cccccctcag ctggccccac 1500 aggtcccccc actgctggcc cttctacggc cactactgtg cctttgagtc cggtggacga 1560 tgcctgcaac gtgaacatct tcgacgccat cgcggagatt gggaaccagc tgtatttgtt 1620 caaggatggg aagtactggc gattctctga gggcaggggg agccggccgc agggcccctt 1680 ccttatcgcc gacaagtggc ccgcgctgcc ccgcaagctg gactcggtct ttgaggagcg 1740 gctctccaag aagcttttct tcttctctgg gcgccaggtg tgggtgtaca caggcgcgtc 1800 ggtgctgggc ccgaggcgtc tggacaagct gggcctggga gccgacgtgg cccaggtgac 1860 cggggccctc cggagtggca gggggaagat gctgctgttc agcgggcggc gcctctggag 1920 gttcgacgtg aaggcgcaga tggtggatcc ccggagcgcc agcgaggtgg accggatgtt 1980 ccccggggtg cctttggaca cgcacgacgt cttccagtac cgagagaaag cctatttctg 2040 ccaggaccgc ttctactggc gcgtgagttc ccggagtgag ttgaaccagg tggaccaagt 2100 gggctacgtg acctatgaca tcctgcagtg ccctgaggac tagggctccc gtcctgcttt 2160 ggcagtgcca tgtaaatccc cactgggacc aaccctgggg aaggagccag tttgccggat 2220 acaaactggt attctgttct ggaggaaagg gaggagtgga ggtgggctgg gccctctctt 2280 ctcacctttg ttttttgttg gagtgtttct aataaacttg gattctctaa cctttaaaaa 2340 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2387 <210> 2 <211> 515 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens galectin 7 (LGALS7) <400> 2 acggctgccc aacccggtcc cagccatgtc caacgtcccc cacaagtcct cactgcccga 60 gggcatccgc cctggcacgg tgctgagaat tcgcggcttg gttcctccca atgccagcag 120 gttccatgta aacctgctgt gcggggagga gcagggctcc gatgccgcgc tgcatttcaa 180 cccccggctg gacacgtcgg aggtggtctt caacagcaag gagcaaggct cctggggccg 240 cgaggagcgc gggccgggcg ttcctttcca gcgcgggcag cccttcgagg tgctcatcat 300 cgcgtcagac gacggcttca aggccgtggt tggggacgcc cagtaccacc acttccgcca 360 ccgcctgccg ctggcgcgcg tgcgcctggt ggaggtgggc ggggacgtgc agctggactc 420 cgtgaggatc ttctgagcag aagcccaggc gggcccgggg ccttggctgg caaataaagc 480 gttagcccgc agcgaaaaaa aaaaaaaaaa aaaaa 515 <210> 3 <211> 618 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens prolactin-induced protein (PIP) <400> 3 ggggaccact tctctgggac acattgcctt ctgttttctc cagcatgcgc ttgctccagc 60 tcctgttcag ggccagccct gccaccctgc tcctggttct ctgcctgcag ttgggggcca 120 acaaagctca ggacaacact cggaagatca taataaagaa ttttgacatt cccaagtcag 180 tacgtccaaa tgacgaagtc actgcagtgc ttgcagttca aacagaattg aaagaatgca 240 tggtggttaa aacttacctc attagcagca tccctctaca aggtgcattt aactataagt 300 atactgcctg cctatgtgac gacaatccaa aaaccttcta ctgggacttt tacaccaaca 360 gaactgtgca aattgcagcc gtcgttgatg ttattcggga attaggcatc tgccctgatg 420 atgctgctgt aatccccatc aaaaacaacc ggttttatac tattgaaatc ctaaaggtag 480 aataatggaa gccctgtctg tttgccacac ccaggtgatt tcctctaaag aaacttggct 540 ggaatttctg ctgtggtcta taaaataaac ttcttaacat gcttctacaa aaaaaaaaaa 600 aaaaaaaaaa aaaaaaaa 618 <210> 4 <211> 2802 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens heat shock protein family A <400> 4 ccagcagcag gaggcgcgcg aggcaccacg gcctggcggc cgagagtcag ggaggaacct 60 catttacata acggccgccc ctctgtctcc tggcgggggc cggagtcccg cccctcgtcc 120 aacttgaaat ctgttgggtc acgggccagt cactccgacc taggcaagcc tgtggtggag 180 ctggaagagt ttgtgagggc ggtcccggga gcggattggg tctgggagtt cccagaggcg 240 gctataagaa ccgggaactg ggcgcgggga gctgagttgc tggtagtgcc cgtggtgctt 300 ggttcgaggt ggccgttagt tgactccgcg gagttcatct ccctggtttt cccgtcctaa 360 cgtcgctcgc ctttcagtca ggatgtctgc ccgtggcccg gctatcggca tcgacctggg 420 caccacctat tcgtgcgtcg gggtcttcca acatggcaag gtggagatca tcgccaacga 480 ccagggcaat cgcaccaccc ccagctacgt ggccttcacg gacaccgagc gcctcatcgg 540 cgacgccgcc aagaaccagg tggccatgaa ccccaccaac accatcttcg acgccaagag 600 gctgattgga cggaaattcg aggatgccac agtgcagtcg gatatgaaac actggccgtt 660 ccgggtggtg agcgagggag gcaagcccaa agtgcaagta gagtacaagg gggagaccaa 720 gaccttcttc ccagaggaga tatcctccat ggtcctcacg aagatgaagg agatcgcgga 780 agcctacctg gggggcaagg tgcacagcgc ggtcataacg gtcccggcct atttcaacga 840 ctcgcagcgc caggccacca aggacgcagg caccatcacg gggctcaatg tgctgcgcat 900 catcaacgag cccacggcgg cggccatcgc ctacggcctg gacaagaagg gctgcgcggg 960 cggcgagaag aacgtgctca tctttgacct gggcggtggc actttcgacg tgtccatcct 1020 gaccatcgag gatggcatct tcgaggtgaa gtccacggcc ggcgacaccc acctgggcgg 1080 tgaggacttc gacaaccgca tggtgagcca cctggcggag gagttcaagc gcaagcacaa 1140 gaaggacatt gggcccaaca agcgcgccgt gaggcggctg cgcaccgctt gcgagcgcgc 1200 caagcgcacc ctgagctcgt ccacgcaggc gagcatcgag atcgactcgc tctacgaggg 1260 cgtggacttc tatacgtcca tcacgcgcgc ccgcttcgag gagctcaatg ccgacctctt 1320 tcgcgggacc ctggagccgg tggagaaggc gctgcgcgac gccaagctgg acaagggcca 1380 gatccaggag atcgtgctgg tgggcggctc cactcgtatc cccaagatcc agaagctgct 1440 gcaggatttc ttcaacggca aggagctgaa caagagcatc aaccccgacg aggcggtggc 1500 ctatggcgcc gcggtgcagg cggccatcct catcggcgac aaatcagaga atgtgcagga 1560 cctgctgcta ctcgacgtga ccccgttgtc gctgggcatc gagacagctg gcggtgtcat 1620 gaccccactc atcaagagga acaccacgat ccccaccaag cagacgcaga ccttcaccac 1680 ctactcggac aaccagagca gcgtactggt gcaggtatac gagggcgaac gggccatgac 1740 caaggacaat aacctgctgg gcaagttcga cctgaccggg attccccctg cgcctcgcgg 1800 ggtcccccaa atcgaggtta ccttcgacat tgacgccaat ggcatcctta acgttaccgc 1860 cgccgacaag agcaccggta aggaaaacaa aatcaccatc accaatgaca aaggtcgtct 1920 gagcaaggac gacattgacc ggatggtgca ggaggcggag cggtacaaat cggaagatga 1980 ggcgaatcgc gaccgagtcg cggccaaaaa cgccctggag tcctatacct acaacatcaa 2040 gcagacggtg gaagacgaga aactgagggg caagattagc gagcaggaca aaaacaagat 2100 cctcgacaag tgtcaggagg tgatcaactg gctcgaccga aaccagatgg cagagaaaga 2160 tgagtatgaa cacaagcaga aagagctcga aagagtttgc aaccccatca tcagcaaact 2220 ttaccaaggt ggtcctggcg gcggcagcgg cggcggcggt tcaggagcct ccggggggacc 2280 caccatcgaa gaagtggact aagcttgcac tcaagtcagc gtaaacctct ttgcctttct 2340 ctctctctct ttttttttgt ttgtttcttt gaaatgtcct tgtgccaagt acgagatcta 2400 ttgttggaag tctttggtat atgcaaatga aaggagaggt gcaacaactt agtttaatta 2460 taaaagttcc aaagtttgtt ttttaaaaac attattcgag gtttctcttt aatgcatttt 2520 gcgtgtttgc tgacttgagc atttttgatt agttcgtgca tggagatttg tttgagatga 2580 gaaaccttaa gtttgcacac ctgttctgta gaagcttgga aacagtaaaa tatataggag 2640 cttaaattgt ttatttttat gtactacttt aaaactaaac tgaacattgc agtaatgtta 2700 aggacaggta tactttttgc aaacaaatgc ataaatgcaa atgtaaagta aagctgaaat 2760 tgatctcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 2802 <210> 5 <211> 1017 <212> DNA <213> Artificial Sequence <220> <223> galectin 3 (LGALS3) <400> 5 gagtatttga ggctcggagc caccgccccg ccggcgcccg cagcacctcc tcgccagcag 60 ccgtccggag ccagccaacg agcggaaaat ggcagacaat ttttcgctcc atgatgcgtt 120 atctgggtct ggaaacccaa accctcaagg atggcctggc gcatggggga accagcctgc 180 tggggcaggg ggctacccag gggcttccta tcctggggcc taccccgggc aggcaccccc 240 aggggcttat cctggacagg cacctccagg cgcctaccct ggagcacctg gagcttatcc 300 cggagcacct gcacctggag tctacccagg gccacccagc ggccctgggg cctacccatc 360 ttctggacag ccaagtgcca ccggagccta ccctgccact ggcccctatg gcgcccctgc 420 tgggccactg attgtgcctt ataacctgcc tttgcctggg ggagtggtgc ctcgcatgct 480 gataacaatt ctgggcacgg tgaagcccaa tgcaaacaga attgctttag atttccaaag 540 agggaatgat gttgccttcc actttaaccc acgcttcaat gagaacaaca ggagagtcat 600 tgtttgcaat acaaagctgg ataataactg gggaagggaa gaaagacagt cggttttccc 660 atttgaaagt gggaaaccat tcaaaataca agtactggtt gaacctgacc acttcaaggt 720 tgcagtgaat gatgctcact tgttgcagta caatcatcgg gttaaaaaac tcaatgaaat 780 cagcaaactg ggaatttctg gtgacataga cctcaccagt gcttcatata ccatgatata 840 atctgaaagg ggcagattaa aaaaaaaaaa agaatctaaa ccttacatgt gtaaaggttt 900 catgttcact gtgagtgaaa atttttacat tcatcaatat ccctcttgta agtcatctac 960 ttaataaata ttacagtgaa ttacctgtct caatatgtca aaaaaaaaaa aaaaaaa 1017 <210> 6 <211> 450 <212> DNA <213> Artificial Sequence <220> <223> S100 calcium binding protein A <400> 6 gtccaaacac acacatctca ctcatccttc tactcgtgac gcttcccagc tctggctttt 60 tgaaagcaaa gatgagcaac actcaagctg agaggtccat aataggcatg atcgacatgt 120 ttcacaaata caccagacgt gatgacaaga ttgagaagcc aagcctgctg acgatgatga 180 aggagaactt ccccaacttc cttagtgcct gtgacaaaaa gggcacaaat tacctcgccg 240 atgtctttga gaaaaaggac aagaatgagg ataagaagat tgatttttct gagtttctgt 300 ccttgctggg agacatagcc acagactacc acaagcagag ccatggagca gcgccctgtt 360 ccgggggcag ccagtgaccc agccccacca atgggcctcc agagacccca ggaacaataa 420 aatgtcttct cccaccagaa aaaaaaaaaa 450 <210> 7 <211> 1254 <212> DNA <213> Artificial Sequence <220> <223> Lysosome-associated membrane glycoprotein 1 <400> 7 atggcggccc ccggcagcgc ccggcgaccc ctgctgctgc tactgctgtt gctgctgctc 60 ggcctcatgc attgtgcgtc agcagcaatg tttatggtga aaaatggcaa cgggaccgcg 120 tgcataatgg ccaacttctc tgctgccttc tcagtgaact acgacaccaa gagtggccct 180 aagaacatga cctttgacct gccatcagat gccacagtgg tgctcaaccg cagctcctgt 240 ggaaaagaga acacttctga ccccagtctc gtgattgctt ttggaagagg acatacactc 300 actctcaatt tcacgagaaa tgcaacacgt tacagcgtcc agctcatgag ttttgtttat 360 aacttgtcag acacacacct tttccccaat gcgagctcca aagaaatcaa gactgtggaa 420 tctataactg acatcagggc agatatagat aaaaaataca gatgtgttag tggcacccag 480 gtccacatga acaacgtgac cgtaacgctc catgatgcca ccatccaggc gtacctttcc 540 aacagcagct tcagccgggg agagacacgc tgtgaacaag acaggccttc cccaaccaca 600 gcgccccctg cgccacccag cccctcgccc tcacccgtgc ccaagagccc ctctgtggac 660 aagtacaacg tgagcggcac caacgggacc tgcctgctgg ccagcatggg gctgcagctg 720 aacctcacct atgagaggaa ggacaacacg acggtgacaa ggcttctcaa catcaacccc 780 aacaagacct cggccagcgg gagctgcggc gcccacctgg tgactctgga gctgcacagc 840 gagggcacca ccgtcctgct cttccagttc gggatgaatg caagttctag ccggtttttc 900 ctacaaggaa tccagttgaa tacaattctt cctgacgcca gagaccctgc ctttaaagct 960 gccaacggct ccctgcgagc gctgcaggcc acagtcggca attcctacaa gtgcaacgcg 1020 gaggagcacg tccgtgtcac gaaggcgttt tcagtcaata tattcaaagt gtgggtccag 1080 gctttcaagg tggaaggtgg ccagtttggc tctgtggagg agtgtctgct ggacgagaac 1140 agcatgctga tccccatcgc tgtgggtggt gccctggcgg ggctggtcct catcgtcctc 1200 atcgcctacc tcgtcggcag gaagaggagt cacgcaggct accagactat ctag 1254 <210> 8 <211> 1278 <212> DNA <213> Artificial Sequence <220> <223> Serpin B12 <400> 8 atggactctc ttgttacagc aaacaccaaa ttttgctttg atctttttca agagataggc 60 aaagatgatc gtcataaaaa catatttttc tctcccctga gcctctcagc tgcccttggt 120 atggtacgct tgggtgctag aagtgacagt gcacatcaga ttgatgaggt actacacttc 180 aacgaatttt cccagaatga aagcaaagaa cctgaccctt gtctgaaaag caacaaacaa 240 aaagtgctgg ctgacagctc tctggagggg cagaaaaaaa cgacagagcc tctggatcag 300 caggctgggt ccttaaacaa tgagagcgga ctggtcagct gctactttgg gcagcttctc 360 tccaaattag acaggatcaa gactgattac acactgagta ttgccaacag gctttatgga 420 gagcaggaat tcccaatctg tcaggaatac tagatggtg tgattcaatt ttaccacacg 480 acgattgaaa gtgttgattt ccaaaaaaac cctgaaaaat ccagacaaga gattaacttc 540 tgggttgaat gtcaatccca aggtaaaatc aaggaactct tcagcaagga cgctattaat 600 gctgagactg tgctggtact ggtgaatgct gtttacttca aggccaaatg ggaaacatac 660 tttgaccatg aaaacacggt ggatgcacct ttctgtctaa atgcgaatga aaacaagagt 720 gtgaagatga tgacgcaaaa aggcctctac agaattggct tcatagagga ggtgaaggca 780 cagatcctgg aaatgaggta caccaagggg aagctcagca tgttcgtgct gctgccatct 840 cactctaaag ataacctgaa gggtctggaa gagcttgaaa ggaaaatcac ctatgaaaaa 900 atggtggcct ggagcagctc agaaaacatg tcagaagaat cggtggtcct gtccttcccc 960 cggttcaccc tggaagacag ctatgatctc aattccattt tacaagacat gggcattacg 1020 gatatctttg atgaaacgag ggctgatctt actggaatct ctccaagtcc caatttgtac 1080 ttgtcaaaaa ttatccacaa aacctttgtg gaggtggatg aaaacggtac ccaggcagct 1140 gcagccactg gggctgttgt ctcggaaagg tcactacgat cttgggtgga gtttaatgcc 1200 aaccaccctt ttctcttttt cattagacac aacaaaaccc aaaccattct cttttatggc 1260 agggtctgct ctccttaa 1278 <210> 9 <211> 2132 <212> DNA <213> Artificial Sequence <220> <223> Lactotransferrin <400> 9 tgaaacttgt cttcctcgtc ctgctgttcc tcggggccct cggactgtgt ctggctggcc 60 gtaggaggag tgttcagtgg tgcgccgtat cccaacccga ggccacaaaa tgcttccaat 120 ggcaaaggaa tatgagaaaa gtgcgtggcc ctcctgtcag ctgcataaag agagactccc 180 ccatccagtg tatccaggcc attgcggaaa acagggccga tgctgtgacc cttgatggtg 240 gtttcatata cgaggcaggc ctggccccct acaaactgcg acctgtagcg gcggaagtct 300 acgggaccga aagacagcca cgaactcact attatgccgt ggctgtggtg aagaagggcg 360 gcagctttca gctgaacgaa ctgcaaggtc tgaagtcctg ccacacaggc cttcgcagga 420 ccgctggatg gaatgtccct atagggacac ttcgtccatt cttgaattgg acgggtccac 480 ctgagcccat tgaggcagct gtggccaggt tcttctcagc cagctgtgtt cccggtgcag 540 ataaaggaca gttccccaac ctgtgtcgcc tgtgtgcggg gacaggggaa aacaaatgtg 600 ccttctcctc ccaggaaccg tacttcagct actctggtgc cttcaagtgt ctgagagacg 660 gggctggaga cgtggctttt atcagagaga gcacagtgtt tgaggacctg tcagacgagg 720 ctgaaaggga cgagtatgag ttactctgcc cagacaacac tcggaagcca gtggacaagt 780 tcaaagactg ccatctggcc cgggtccctt ctcatgccgt tgtggcacga agtgtgaatg 840 gcaaggagga tgccatctgg aatcttctcc gccaggcaca ggaaaagttt ggaaaggaca 900 agtcaccgaa attccagctc tttggctccc ctagtgggca gaaagatctg ctgttcaagg 960 actctgccat tgggttttcg agggtgcccc cgaggataga ttctgggctg taccttggct 1020 ccggctactt cactgccatc cagaacttga ggaaaagtga ggaggaagtg gctgcccggc 1080 gtgcgcgggt cgtgtggtgt gcggtgggcg agcaggagct gcgcaagtgt aaccagtgga 1140 gtggcttgag cgaaggcagc gtgacctgct cctcggcctc caccacagag gactgcatcg 1200 ccctggtgct gaaaggagaa gctgatgcca tgagtttgga tggaggatat gtgtacactg 1260 caggcaaatg tggtttggtg cctgtcctgg cagagaacta caaatcccaa caaagcagtg 1320 accctgatcc taactgtgtg gatagacctg tggaaggata tcttgctgtg gcggtggtta 1380 ggagatcaga cactagcctt acctggaact ctgtgaaagg caagaagtcc tgccacaccg 1440 ccgtggacag gactgcaggc tggaatatcc ccatgggcct gctcttcaac cagacgggct 1500 cctgcaaatt tgatgaatat ttcagtcaaa gctgtgcccc tgggtctgac ccgagatcta 1560 atctctgtgc tctgtgtatt ggcgacgagc agggtgagaa taagtgcgtg cccaacagca 1620 acgagagata ctacggctac actggggctt tccggtgcct ggctgagaat gctggagacg 1680 ttgcatttgt gaaagatgtc actgtcttgc agaacactga tggaaataac aatgaggcat 1740 gggctaagga tttgaagctg gcagactttg cgctgctgtg cctcgatggc aaacggaagc 1800 ctgtgactga ggctagaagc tgccatcttg ccatggcccc gaatcatgcc gtggtgtctc 1860 ggatggataa ggtggaacgc ctgaaacagg tgttgctcca ccaacaggct aaatttggga 1920 gaaatggatc tgactgcccg gacaagtttt gcttattcca gtctgaaacc aaaaaccttc 1980 tgttcaatga caacactgag tgtctggcca gactccatgg caaaacaaca tatgaaaaat 2040 atttgggacc acagtatgtc gcaggcatta ctaatctgaa aaagtgctca acctcccccc 2100 tcctggaagc ctgtgaattc ctcaggaagt aa 2132 <210> 10 <211> 606 <212> DNA <213> Artificial Sequence <220> <223> Alpha-1-acid glycoprotein 1 <400> 10 atggcgctgt cctgggttct tacagtcctg agcctcctac ctctgctgga agcccagatc 60 ccattgtgtg ccaacctagt accggtgccc atcaccaacg ccaccctgga ccggatcact 120 ggcaagtggt tttatatcgc atcggccttt cgaaacgagg agtacaataa gtcggttcag 180 gagatccaag caaccttctt ttacttcacc cccaacaaga cagaggacac gatctttctc 240 agagagtacc agacccgaca ggaccagtgc atctataaca ccacctacct gaatgtccag 300 cgggaaaatg ggaccatctc cagatacgtg ggaggccaag agcatttcgc tcacttgctg 360 atcctcaggg acaccaagac ctacatgctt gcttttgacg tgaacgatga gaagaactgg 420 gggctgtctg tctatgctga caagccagag acgaccaagg agcaactggg agagttctac 480 gaagctctcg actgcttgcg cattcccaag tcagatgtcg tgtacaccga ttggaaaaag 540 gataagtgtg agccactgga gaagcagcac gagaaggaga ggaaacagga ggagggggaa 600 tcctag 606 <210> 11 <211> 1044 <212> DNA <213> Artificial Sequence <220> <223> CD5 antigen-like <400> 11 atggctctgc tattctcctt gatccttgcc atttgcacca gacctggatt cctagcgtct 60 ccatctggag tgcggctggt ggggggcctc caccgctgtg aagggcgggt ggaggtggaa 120 cagaaaggcc agtggggcac cgtgtgtgat gacggctggg acattaagga cgtggctgtg 180 ttgtgccggg agctgggctg tggagctgcc agcggaaccc ctagtggtat tttgtatgag 240 ccaccagcag aaaaagagca aaaggtcctc atccaatcag tcagttgcac aggaacagaa 300 gatacattgg ctcagtgtga gcaagaagaa gtttatgatt gttcacatga tgaagatgct 360 ggggcatcgt gtgagaaccc agagagctct ttctccccag tcccagaggg tgtcaggctg 420 gctgacggcc ctgggcattg caagggacgc gtggaagtga agcaccagaa ccagtggtat 480 accgtgtgcc agacaggctg gagcctccgg gccgcaaagg tggtgtgccg gcagctggga 540 tgtgggaggg ctgtactgac tcaaaaacgc tgcaacaagc atgcctatgg ccgaaaaccc 600 atctggctga gccagatgtc atgctcagga cgagaagcaa cccttcagga ttgcccttct 660 gggccttggg ggaagaacac ctgcaaccat gatgaagaca cgtgggtcga atgtgaagat 720 ccctttgact tgagactagt aggaggagac aacctctgct ctgggcgact ggaggtgctg 780 cacaagggcg tatggggctc tgtctgtgat gacaactggg gagaaaagga ggaccaggtg 840 gtatgcaagc aactgggctg tgggaagtcc ctctctccct ccttcagaga ccggaaatgc 900 tatggccctg gggttggccg catctggctg gataatgttc gttgctcagg ggaggagcag 960 tccctggagc agtgccagca cagattttgg gggtttcacg actgcaccca ccaggaagat 1020 gtggctgtca tctgctcagg atag 1044 <210> 12 <211> 5235 <212> DNA <213> Artificial Sequence <220> <223> Complement C4-B <400> 12 atgaggctgc tctgggggct gatctgggca tccagcttct tcaccttatc tctgcagaag 60 cccaggttgc tcttgttctc tccttctgtg gttcatctgg gggtccccct atcggtgggg 120 gtgcagctcc aggatgtgcc ccgaggacag gtagtgaaag gatcagtgtt cctgagaaac 180 ccatctcgta ataatgtccc ctgctcccca aaggtggact tcacccttag ctcagaaaga 240 gacttcgcac tcctcagtct ccaggtgccc ttgaaagatg cgaagagctg tggcctccat 300 caactcctca gaggccctga ggtccagctg gtggcccatt cgccatggct aaaggactct 360 ctgtccagaa cgacaaacat ccagggtatc aacctgctct tctcctctcg ccgggggcac 420 ctctttttgc agacggacca gcccatttac aaccctggcc agcgggttcg gtaccgggtc 480 tttgctctgg atcagaagat gcgcccgagc actgacacca tcacagtcat ggtggagaac 540 tctcacggcc tccgcgtgcg gaagaaggag gtgtacatgc cctcgtccat cttccaggat 600 gactttgtga tcccagacat ctcagagcca gggacctgga agatctcagc ccgattctca 660 gatggcctgg aatccaacag cagcacccag tttgaggtga agaaatatgt ccttcccaac 720 tttgaggtga agatcacccc tggaaagccc tacatcctga cggtgccagg ccatcttgat 780 gaaatgcagt tagacatcca ggccaggtac atctatggga agccagtgca gggggtggca 840 tatgtgcgct ttgggctcct agatgaggat ggtaagaaga ctttctttcg ggggctggag 900 agtcagacca agctggtgaa tggacagagc cacatttccc tctcaaaggc agagttccag 960 gacgccctgg agaagctgaa tatgggcatt actgacctcc aggggctgcg cctctacgtt 1020 gctgcagcca tcattgagtc tccaggtggg gagatggagg aggcagagct cacatcctgg 1080 tattttgtgt catctccctt ctccttggat cttagcaaga ccaagcgaca ccttgtgcct 1140 ggggccccct tcctgctgca ggccttggtc cgtgagatgt caggctcccc agcttctggc 1200 attcctgtca aagtttctgc cacggtgtct tctcctgggt ctgttcctga agtccaggac 1260 attcagcaaa acacagacgg gagcggccaa gtcagcattc caataattat ccctcagacc 1320 atctcagagc tgcagctctc agtatctgca ggctccccac atccagcgat agccaggctc 1380 actgtggcag ccccaccttc aggaggcccc gggtttctgt ctattgagcg gccggattct 1440 cgacctcctc gtgttgggga cactctgaac ctgaacttgc gagccgtggg cagtggggcc 1500 accttttctc attactacta catgatccta tcccgagggc agatcgtgtt catgaatcga 1560 gagcccaaga ggaccctgac ctcggtctcg gtgtttgtgg accatcacct ggcaccctcc 1620 ttctactttg tggccttcta ctaccatgga gaccacccag tggccaactc cctgcgagtg 1680 gatgtccagg ctggggcctg cgagggcaag ctggagctca gcgtggacgg tgccaagcag 1740 taccggaacg gggagtccgt gaagctccac ttagaaaccg actccctagc cctggtggcg 1800 ctgggagcct tggacacagc tctgtatgct gcaggcagca agtcccacaa gcccctcaac 1860 atgggcaagg tctttgaagc tatgaacagc tatgacctcg gctgtggtcc tgggggtggg 1920 gacagtgccc ttcaggtgtt ccaggcagcg ggcctggcct tttctgatgg agaccagtgg 1980 accttatcca gaaagagact aagctgtccc aaggagaaga caacccggaa aaagagaaac 2040 gtgaacttcc aaaaggcgat taatgagaaa ttgggtcagt atgcttcccc gacagccaag 2100 cgctgctgcc aggatggggt gacacgtctg cccatgatgc gttcctgcga gcagcgggca 2160 gcccgcgtgc agcagccgga ctgccgggag cccttcctgt cctgctgcca atttgctgag 2220 agtctgcgca agaagagcag ggacaagggc caggcgggcc tccaacgagc cctggagatc 2280 ctgcaggagg aggacctgat tgatgaggat gacattcccg tgcgcagctt cttcccagag 2340 aactggctct ggagagtgga aacagtggac cgctttcaaa tattgacact gtggctcccc 2400 gactctctga ccacgtggga gatccatggc ctgagcctgt ccaaaaccaa aggcctatgt 2460 gtggccaccc cagtccagct ccgggtgttc cgcgagttcc acctgcacct ccgcctgccc 2520 atgtctgtcc gccgctttga gcagctggag ctgcggcctg tcctctataa ctacctggat 2580 aaaaacctga ctgtgagcgt ccacgtgtcc ccagtggagg ggctgtgcct ggctgggggc 2640 ggagggctgg cccagcaggt gctggtgcct gcgggctctg cccggcctgt tgccttctct 2700 gtggtgccca cggcagccac cgctgtgtct ctgaaggtgg tggctcgagg gtccttcgaa 2760 ttccctgtgg gagatgcggt gtccaaggtt ctgcagattg agaaggaagg ggccatccat 2820 agagaggagc tggtctatga actcaacccc ttggaccacc gaggccggac cttggaaata 2880 cctggcaact ctgatcccaa tatgatccct gatggggact ttaacagcta cgtcagggtt 2940 acagcctcag atccattgga cactttaggc tctgaggggg ccttgtcacc aggaggcgtg 3000 gcctccctct tgaggcttcc tcgaggctgt ggggagcaaa ccatgatcta cttggctccg 3060 acactggctg cttcccgcta cctggacaag acagagcagt ggagcacact gcctcccgag 3120 accaaggacc acgccgtgga tctgatccag aaaggctaca tgcggatcca gcagtttcgg 3180 aaggcggatg gttcctatgc ggcttggttg tcacggggca gcagcacctg gctcacagcc 3240 tttgtgttga aggtcctgag tttggcccag gagcaggtag gaggctcgcc tgagaaactg 3300 caggagacat ctaactggct tctgtcccag cagcaggctg acggctcgtt ccaggacctc 3360 tctccagtga tacataggag catgcagggg ggtttggtgg gcaatgatga gactgtggca 3420 ctcacagcct ttgtgaccat cgcccttcat catgggctgg ccgtcttcca ggatgagggt 3480 gcagagccat tgaagcagag agtggaagcc tccatctcaa aggcaagctc atttttgggg 3540 gagaaagcaa gtgctgggct cctgggtgcc cacgcagctg ccatcacggc ctatgccctg 3600 acactgacca aggcccctgc ggacctgcgg ggtgttgccc acaacaacct catggcaatg 3660 gcccaggaga ctggagataa cctgtactgg ggctcagtca ctggttctca gagcaatgcc 3720 gtgtcgccca ccccggctcc tcgcaaccca tccgacccca tgccccaggc cccagccctg 3780 tggattgaaa ccacagccta cgccctgctg cacctcctgc ttcacgaggg caaagcagag 3840 atggcagacc aggctgcggc ctggctcacc cgtcagggca gcttccaagg gggattccgc 3900 agtacccaag acacggtgat tgccctggat gccctgtctg cctactggat tgcctcccac 3960 accactgagg agaggggtct caatgtgact ctcagctcca caggccggaa tgggttcaag 4020 tcccacgcgc tgcagctgaa caaccgccag attcgcggcc tggaggagga gctgcagttt 4080 tccttgggca gcaagatcaa tgtgaaggtg ggaggaaaca gcaaaggaac cctgaaggtc 4140 cttcgtacct acaatgtcct ggacatgaag aacacgacct gccaggacct acagatagaa 4200 gtgacagtca aaggccacgt cgagtacacg atggaagcaa acgaggacta tgaggactat 4260 gagtacgatg agcttccagc caaggatgac ccagatgccc ctctgcagcc cgtgacaccc 4320 ctgcagctgt ttgagggtcg gaggaaccgc cgcaggaggg aggcgcccaa ggtggtggag 4380 gagcaggagt ccagggtgca ctacaccgtg tgcatctggc ggaacggcaa ggtggggctg 4440 tctggcatgg ccatcgcgga cgtcaccctc ctgagtggat tccacgccct gcgtgctgac 4500 ctggagaagc tgacctccct ctctgaccgt tacgtgagtc actttgagac cgaggggccc 4560 cacgtcctgc tgtattttga ctcggtcccc acctcccggg agtgcgtggg ctttgaggct 4620 gtgcaggaag tgccggtggg gctggtgcag ccggccagcg caaccctgta cgactactac 4680 aaccccgagc gcagatgttc tgtgttttac ggggcaccaa gtaagagcag actcttggcc 4740 accttgtgtt ctgctgaagt ctgccagtgt gctgagggga agtgccctcg ccagcgtcgc 4800 gccctggagc ggggtctgca ggacgaggat ggctacagga tgaagtttgc ctgctactac 4860 ccccgtgtgg agtacggctt ccaggttaag gttctccgag aagacagcag agctgctttc 4920 cgcctctttg agaccaagat cacccaagtc ctgcacttca ccaaggatgt caaggccgct 4980 gctaatcaga tgcgcaactt cctggttcga gcctcctgcc gccttcgctt ggaacctggg 5040 aaagaatatt tgatcatggg tctggatggg gccacctatg acctcgaggg acacccccag 5100 tacctgctgg actcgaatag ctggatcgag gagatgccct ctgaacgcct gtgccggagc 5160 acccgccagc gggcagcctg tgcccagctc aacgacttcc tccaggagta tggcactcag 5220 gggtgccagg tgtga 5235 <210> 13 <211> 2208 <212> DNA <213> Artificial Sequence <220> <223> Mannan-binding lectin serine protease 1 <400> 13 atgagaccta cattcatgtc tttcaggtgg ctgcttctct attatgctct gtgcttctcc 60 ctgtcaaagg cttcagccca caccgtggag ctaaacaata tgtttggcca gatccagtcg 120 cctggttatc cagactccta tcccagtgat tcagaggtga cttggaatat cactgtccca 180 gatgggtttc ggatcaagct ttacttcatg cacttcaact tggaatcctc ctacctttgt 240 gaatatgact atgtgaaggt agaaactgag gaccaggtgc tggcaacctt ctgtggcagg 300 gagaccacag acacagagca gactcccggc caggaggtgg tcctctcccc tggctccttc 360 atgtccatca ctttccggtc agatttctcc aatgaggagc gtttcacagg ctttgatgcc 420 cactacatgg ctgtggatgt ggacgagtgc aaggagaggg aggacgagga gctgtcctgt 480 gaccactact gccacaacta cattggcggc tactactgct cctgccgctt cggctacatc 540 ctccacacag acaacaggac ctgccgagtg gagtgcagtg acaacctctt cactcaaagg 600 actggggtga tcaccagccc tgacttccca aacccttacc ccaagagctc tgaatgcctg 660 tataccatcg agctggagga gggtttcatg gtcaacctgc agtttgagga catatttgac 720 attgaggacc atcctgaggt gccctgcccc tatgactaca tcaagatcaa agttggtcca 780 aaagttttgg ggcctttctg tggagagaaa gccccagaac ccatcagcac ccagagccac 840 agtgtcctga tcctgttcca tagtgacaac tcgggagaga accggggctg gaggctctca 900 tacagggctg caggaaatga gtgcccagag ctacagcctc ctgtccatgg gaaaatcgag 960 ccctcccaag ccaagtattt cttcaaagac caagtgctcg tcagctgtga cacaggctac 1020 aaagtgctga aggataatgt ggagatggac acattccaga ttgagtgtct gaaggatggg 1080 acgtggagta acaagattcc cacctgtaaa attgtagact gtagagcccc aggagagctg 1140 gaacacgggc tgatcacctt ctctacaagg aacaacctca ccacatacaa gtctgagatc 1200 aaatactcct gtcaggagcc ctattacaag atgctcaaca ataacacagg tatatatacc 1260 tgttctgccc aaggagtctg gatgaataaa gtattgggga gaagcctacc cacctgcctt 1320 ccagagtgtg gtcagccctc ccgctccctg ccaagcctgg tcaagaggat cattgggggc 1380 cgaaatgctg agcctggcct cttcccgtgg caggccctga tagtggtgga ggacacttcg 1440 agagtgccaa atgacaagtg gtttgggagt ggggccctgc tctctgcgtc ctggatcctc 1500 acagcagctc atgtgctgcg ctcccagcgt agagacacca cggtgatacc agtctccaag 1560 gagcatgtca ccgtctacct gggcttgcat gatgtgcgag acaaatcggg ggcagtcaac 1620 agctcagctg cccgagtggt gctccaccca gacttcaaca tccaaaacta caaccacgat 1680 atagctctgg tgcagctgca ggagcctgtg cccctgggac cccacgttat gcctgtctgc 1740 ctgccaaggc ttgagcctga aggcccggcc ccccacatgc tgggcctggt ggccggctgg 1800 ggcatctcca atcccaatgt gacagtggat gagatcatca gcagtggcac acggaccttg 1860 tcagatgtcc tgcagtatgt caagttaccc gtggtgcctc acgctgagtg caaaactagc 1920 tatgagtccc gctcgggcaa ttacagcgtc acggagaaca tgttctgtgc tggctactac 1980 gagggcggca aagacacgtg ccttggagat agcggtgggg cctttgtcat ctttgatgac 2040 ttgagccagc gctgggtggt gcaaggcctg gtgtcctggg ggggacctga agaatgcggc 2100 agcaagcagg tctatggagt ctacacaaag gtctccaatt acgtggactg ggtgtgggag 2160 cagatgggct taccacaaag tgttgtggag ccccaggtgg aacggtga 2208 <210> 14 <211> 741 <212> DNA <213> Artificial Sequence <220> <223> Proteasome subunit alpha type-6 <400> 14 atgtcccgtg gttccagcgc cggttttgac cgccacatta ccattttttc acccgagggt 60 cggctctacc aagtagaata tgcttttaag gctattaacc agggtggcct tacatcagta 120 gctgtcagag ggaaagactg tgcagtaatt gtcacacaga agaaagtacc tgacaaatta 180 ttggattcca gcacagtgac tcacttattc aagataactg aaaacattgg ttgtgtgatg 240 accggaatga cagctgacag cagatcccag gtacagaggg cacgctatga ggcagctaac 300 tggaaataca agtatggcta tgagattcct gtggacatgc tgtgtaaaag aattgccgat 360 atttctcagg tctacacaca gaatgctgaa atgaggcctc ttggttgttg tatgatttta 420 attggtatag atgaagagca aggccctcag gtatataagt gtgatcctgc aggttactac 480 tgtgggttta aagccactgc agcgggagtt aaacaaactg agtcaaccag cttccttgaa 540 aaaaaagtga agaagaaatt tgattggaca tttgaacaga cagtggaaac tgcaattaca 600 tgcctgtcta ctgttctatc aattgatttc aaaccttcag aaatagaagt tggagtagtg 660 acagttgaaa atcctaaatt caggattctt acagaagcag agattgatgc tcaccttgtt 720 gctctagcag agagagacta a 741 <210> 15 <211> 600 <212> DNA <213> Artificial Sequence <220> <223> Peroxiredoxin-1 <400> 15 atgtcttcag gaaatgctaa aattgggcac cctgccccca acttcaaagc cacagctgtt 60 atgccagatg gtcagtttaa agatatcagc ctgtctgact acaaaggaaa atatgttgtg 120 ttcttctttt accctcttga cttcaccttt gtgtgcccca cggagatcat tgctttcagt 180 gatagggcag aagaatttaa gaaactcaac tgccaagtga ttggtgcttc tgtggattct 240 cacttctgtc atctagcatg ggtcaataca cctaagaaac aaggaggact gggacccatg 300 aacattcctt tggtatcaga cccgaagcgc accattgctc aggattatgg ggtcttaaag 360 gctgatgaag gcatctcgtt caggggcctt tttatcattg atgataaggg tattcttcgg 420 cagatcactg taaatgacct ccctgttggc cgctctgtgg atgagacttt gagactagtt 480 caggccttcc agttcactga caaacatggg gaagtgtgcc cagctggctg gaaacctggc 540 agtgatacca tcaagcctga tgtccaaaag agcaaagaat atttctccaa gcagaagtga 600 600 <210> 16 <211> 285 <212> DNA <213> Artificial Sequence <220> <223> Neutrophil defensin 3 <400> 16 atgaggaccc tcgccatcct tgctgccatt ctcctggtgg ccctgcaggc ccaggctgag 60 ccactccagg caagagctga tgaggttgct gcagccccgg agcagattgc agcggacatc 120 ccagaagtgg ttgtttccct tgcatgggac gaaagcttgg ctccaaagca tccaggctca 180 aggaaaaaca tggactgcta ttgcagaata ccagcgtgca ttgcaggaga acgtcgctat 240 ggaacctgca tctaccaggg aagactctgg gcattctgct gctga 285 <210> 17 <211> 2232 <212> DNA <213> Artificial Sequence <220> <223> CD44 antigen <400> 17 atggacaagt tttggtggca cgcagcctgg ggactctgcc tcgtgccgct gagcctggcg 60 cagatcgatt tgaatataac ctgccgcttt gcaggtgtat tccacgtgga gaaaaatggt 120 cgctacagca tctctcggac ggaggccgct gacctctgca aggctttcaa tagcaccttg 180 cccacaatgg cccagatgga gaaagctctg agcatcggat ttgagacctg caggtatggg 240 ttcatagaag ggcacgtggt gattccccgg atccacccca actccatctg tgcagcaaac 300 aacacagggg tgtacatcct cacatccaac acctcccagt atgacacata ttgcttcaat 360 gcttcagctc cacctgaaga agattgtaca tcagtcacag acctgcccaa tgcctttgat 420 ggaccaatta ccataactat tgttaaccgt gatggcaccc gctatgtcca gaaaggagaa 480 tacagaacga atcctgaaga catctacccc agcaacccta ctgatgatga cgtgagcagc 540 ggctcctcca gtgaaaggag cagcacttca ggaggttaca tcttttacac cttttctact 600 gtacacccca tcccagacga agacagtccc tggatcaccg acagcacaga cagaatccct 660 gctaccactt tgatgagcac tagtgctaca gcaactgaga cagcaaccaa gaggcaagaa 720 acctgggatt ggttttcatg gttgtttcta ccatcagagt caaagaatca tcttcacaca 780 acaacacaaa tggctggtac gtcttcaaat accatctcag caggctggga gccaaatgaa 840 gaaaatgaag atgaaagaga cagacacctc agtttttctg gatcaggcat tgatgatgat 900 gaagatttta tctccagcac catttcaacc acaccacggg cttttgacca cacaaaacag 960 aaccaggact ggacccagtg gaacccaagc cattcaaatc cggaagtgct acttcagaca 1020 accacaagga tgactgcaga tgtagacaga aatggcacca ctgcttatga aggaaactgg 1080 aacccagaag cacaccctcc cctcattcac catgagcatc atgaggaaga agagacccca 1140 cattctacaa gcacaatcca ggcaactcct agtagtacaa cggaagaaac agctacccag 1200 aaggaacagt ggtttggcaa cagatggcat gagggatatc gccaaacacc caaagaagac 1260 tcccattcga caacagggac agctgcagcc tcagctcata ccagccatcc aatgcaagga 1320 aggacaacac caagcccaga ggacagttcc tggactgatt tcttcaaccc aatctcacac 1380 cccatgggac gaggtcatca agcaggaaga aggatggata tggactccag tcatagtata 1440 acgcttcagc ctactgcaaa tccaaacaca ggtttggtgg aagatttgga caggacagga 1500 cctctttcaa tgacaacgca gcagagtaat tctcagagct tctctacatc acatgaaggc 1560 ttggaagaag ataaagacca tccaacaact tctactctga catcaagcaa taggaatgat 1620 gtcacaggtg gaagaagaga cccaaatcat tctgaaggct caactacttt actggaaggt 1680 tatacctctc attacccaca cacgaaggaa agcaggacct tcatcccagt gacctcagct 1740 aagactgggt cctttggagt tactgcagtt actgttggag attccaactc taatgtcaat 1800 cgttccttat caggagacca agacacattc caccccagtg gggggtccca taccactcat 1860 ggatctgaat cagatggaca ctcacatggg agtcaagaag gtggagcaaa cacaacctct 1920 ggtcctataa ggacacccca aattccagaa tggctgatca tcttggcatc cctcttggcc 1980 ttggctttga ttcttgcagt ttgcattgca gtcaacagtc gaagaaggtg tgggcagaag 2040 aaaaagctag tgatcaacag tggcaatgga gctgtggagg acagaaagcc aagtggactc 2100 aacggagagg ccagcaagtc tcaggaaatg gtgcatttgg tgaacaagga gtcgtcagaa 2160 actccagacc agtttatgac agctgatgag acaaggaacc tgcagaatgt ggacatgaag 2220 attggggtgt aa 2232 <210> 18 <211> 993 <212> DNA <213> Artificial Sequence <220> <223> Arginase-1 <400> 18 atgagcgcca agtccagaac catagggatt attggagctc ctttctcaaa gggacagcca 60 cgaggagggg tggaagaagg ccctacagta ttgagaaagg ctggtctgct tgagaaactt 120 aaagaacaag taactcaaaa ctttttaatt ttagagtgtg atgtgaagga ttatggggac 180 ctgccctttg ctgacatccc taatgacagt ccctttcaaa ttgtgaagaa tccaaggtct 240 gtgggaaaag caagcgagca gctggctggc aaggtggcag aagtcaagaa gaacggaaga 300 atcagcctgg tgctgggcgg agaccacagt ttggcaattg gaagcatctc tggccatgcc 360 agggtccacc ctgatcttgg agtcatctgg gtggatgctc acactgatat caacactcca 420 ctgacaacca caagtggaaa cttgcatgga caacctgtat ctttcctcct gaaggaacta 480 aaaggaaaga ttcccgatgt gccaggattc tcctgggtga ctccctgtat atctgccaag 540 gatattgtgt atattggctt gagagacgtg gaccctgggg aacactacat tttgaaaact 600 ctaggcatta aatacttttc aatgactgaa gtggacagac taggaattgg caaggtgatg 660 gaagaaacac tcagctatct actaggaaga aagaaaaggc caattcatct aagttttgat 720 gttgacggac tggacccatc tttcacacca gctactggca caccagtcgt gggaggtctg 780 acatacagag aaggtctcta catcacagaa gaaatctaca aaacagggct actctcagga 840 ttagatataa tggaagtgaa cccatccctg gggaagacac cagaagaagt aactcgaaca 900 gtgaacacag cagttgcaat aaccttggct tgtttcggac ttgctcggga gggtaatcac 960 aagcctattg actaccttaa cccacctaag taa 993

Claims (8)

갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 면역억제용 조성물.
Galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL-7) , Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan- The expression of the gene family consisting of the binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1) in adults A composition for immunosuppression comprising, as an active ingredient, an exosome derived from cord blood plasma, which is higher than that of plasma-derived exosome.
제1항에 있어서,
면역억제는 이식편대숙주질환, 자가면역질환, 과증식성 피부질환, 만성 폐색성 호흡기 질환(chronic obstructive pulmonary disease; COPD), 알레르기성 천식, 기관지염(bronchitis), 알레르기성 비염 및 자가면역성 간염(autoimmune hepatitis) 중에서 선택된 면역질환의 개선, 예방 또는 치료를 위한 것인, 면역억제용 조성물.
According to claim 1,
Immunosuppression is associated with graft-versus-host disease, autoimmune disease, hyperproliferative skin disease, chronic obstructive pulmonary disease (COPD), allergic asthma, bronchitis, allergic rhinitis, and autoimmune hepatitis. ) for the improvement, prevention or treatment of an immune disease selected from, the composition for immunosuppression.
갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀을 유효성분으로 포함하는 Th1 및 Th17 세포의 분화 억제용 배지 조성물.
Galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL-7) , Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan- The expression of the gene family consisting of the binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1) in adults A medium composition for inhibiting differentiation of Th1 and Th17 cells comprising exosomes derived from cord blood plasma as an active ingredient, which is higher than that of plasma-derived exosomes.
갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군의 발현이 성인 혈장 유래의 엑소좀에 비해 높은 제대혈 혈장 유래의 엑소좀과 나이브 CD4+T 세포를 인 비트로 배양하는 단계를 포함하는 인 비트로에서 Th1 및 Th17 세포의 분화 억제 방법.
Galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7), Galectin-7 (GAL-7) , Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan- The expression of the gene family consisting of the binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 (ARG1) in adults A method for inhibiting differentiation of Th1 and Th17 cells in vitro comprising culturing in vitro exosomes derived from cord blood plasma and naive CD4 + T cells, which are higher than those derived from plasma.
HLA 및 MIC 유전자 결핍 세포주에서 유래하고, 갈렉틴-3(galectin-3), Matrix metalloproteinase(MMP-9), Heat shock protein 72(HSP72), Prolactin-inducible protein(PIP), Protein S100-A7(S100A7), Galectin-7(GAL-7), Lysosome-associated membrane glycoprotein 1(LAMP1), Serpin B12(SERPINB12), Lactotransferrin(LTF), Alpha-1-acid glycoprotein(ORM1), CD5 antigen-like(CD5L), Complement C4-B(C4B), Mannan-binding lectin serine protease 1(MASP1), Proteasome subunit alpha type-6(PSMA6), Peroxiredoxin-1(PRDX1), Neutrophil defensin 3(DEFA3), CD44 antigen 및 Arginase-1(ARG1)로 이루어진 유전자군에서 선택된 하나 이상을 발현하는 제대혈 혈장 엑소좀 모방체.
Derived from HLA and MIC gene deficient cell lines, galectin-3, Matrix metalloproteinase (MMP-9), Heat shock protein 72 (HSP72), Prolactin-inducible protein (PIP), Protein S100-A7 (S100A7) ), Galectin-7 (GAL-7), Lysosome-associated membrane glycoprotein 1 (LAMP1), Serpin B12 (SERPINB12), Lactotransferrin (LTF), Alpha-1-acid glycoprotein (ORM1), CD5 antigen-like (CD5L), Complement C4-B (C4B), Mannan-binding lectin serine protease 1 (MASP1), Proteasome subunit alpha type-6 (PSMA6), Peroxiredoxin-1 (PRDX1), Neutrophil defensin 3 (DEFA3), CD44 antigen and Arginase-1 ( A umbilical cord blood plasma exosome mimic expressing at least one selected from the group consisting of ARG1).
제5항에 있어서,
HLA 및 MIC 유전자 결핍 세포주는 H1ME-5(기탁번호: KCTC 13602BP)인, 제대혈 혈장 엑소좀 모방체.
6. The method of claim 5,
The cell line deficient in HLA and MIC genes is H1ME-5 (Accession No.: KCTC 13602BP), an umbilical cord blood plasma exosome mimetic.
제5항의 제대혈 혈장 엑소좀 모방체를 포함하는 면역억제용 조성물.
A composition for immunosuppression comprising the umbilical cord blood plasma exosome mimetic of claim 5.
제7항에 있어서,
면역억제는 이식편대숙주질환, 자가면역질환, 과증식성 피부질환, 만성 폐색성 호흡기 질환(chronic obstructive pulmonary disease; COPD), 알레르기성 천식 천식, 기관지염(bronchitis), 알레르기성 비염 및 자가면역성 간염(autoimmune hepatitis) 중에서 선택된 면역질환의 개선, 예방 또는 치료를 위한 것인, 면역억제용 조성물.
8. The method of claim 7,
Immunosuppression includes graft-versus-host disease, autoimmune disease, hyperproliferative skin disease, chronic obstructive pulmonary disease (COPD), allergic asthma asthma, bronchitis, allergic rhinitis and autoimmune hepatitis. hepatitis) for the improvement, prevention or treatment of an immune disease selected from, an immunosuppressive composition.
KR1020210035381A 2020-03-18 2021-03-18 Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof KR102530161B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200033254 2020-03-18
KR1020200033254 2020-03-18

Publications (2)

Publication Number Publication Date
KR20210117217A true KR20210117217A (en) 2021-09-28
KR102530161B1 KR102530161B1 (en) 2023-05-10

Family

ID=77923322

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210035381A KR102530161B1 (en) 2020-03-18 2021-03-18 Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof

Country Status (1)

Country Link
KR (1) KR102530161B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264069A (en) * 2023-11-23 2023-12-22 再少年(北京)生物科技有限公司 Preparation method and application of engineering exosome for promoting skin tissue regeneration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116163A (en) * 2017-04-14 2018-10-24 서울대학교산학협력단 A Method for Reducing Differentiation or Activity of Th17 Cells Comprising EID3 or EID3 Expressing MSC-Exosome
KR20180123106A (en) * 2016-03-24 2018-11-14 스템랩, 에스에이 Use of cord blood derived exosomes for tissue recovery
WO2019198077A1 (en) * 2018-04-10 2019-10-17 Brainstorm Cell Therapeutics Ltd. Cell-type specific exosomes and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123106A (en) * 2016-03-24 2018-11-14 스템랩, 에스에이 Use of cord blood derived exosomes for tissue recovery
KR20180116163A (en) * 2017-04-14 2018-10-24 서울대학교산학협력단 A Method for Reducing Differentiation or Activity of Th17 Cells Comprising EID3 or EID3 Expressing MSC-Exosome
WO2019198077A1 (en) * 2018-04-10 2019-10-17 Brainstorm Cell Therapeutics Ltd. Cell-type specific exosomes and use thereof

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
1. Ballen, K.K. et al., Blood, 2013. 122(4): p. 491-8.
2. Brunstein, C.G., et al., Blood, 2016. 127(8): p. 1044-51.
3. van Niel, G., et al., J Biochem, 2006. 140(1): p. 13-21.
4. Erices, A. et al., Br J Haematol, 2000. 109(1): p. 235-42.
5. Lin, S.J., et al., Immunol Res, 2014. 60(1): p. 105-11.
6. Zhang, B., et al., Stem Cells Dev, 2014. 23(11): p. 1233-44.
7. Jia, R., et al., Cell Physiol Biochem, 2015. 36(6): p. 2299-306.
8. Garanina, E.E., et al., Blood, 2017. 130.
9. Jia, R., et al., Cell Physiol Biochem. 36(6): p. 2299-306.
Theranostics. 2018 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264069A (en) * 2023-11-23 2023-12-22 再少年(北京)生物科技有限公司 Preparation method and application of engineering exosome for promoting skin tissue regeneration
CN117264069B (en) * 2023-11-23 2024-01-26 再少年(北京)生物科技有限公司 Preparation method and application of engineering exosome for promoting skin tissue regeneration

Also Published As

Publication number Publication date
KR102530161B1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
Cannons et al. SAP regulates TH2 differentiation and PKC-θ-mediated activation of NF-κB1
Wildenberg et al. Autophagy attenuates the adaptive immune response by destabilizing the immunologic synapse
Wen et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses
Robert et al. Protein kinase C–dependent activation of CaV1. 2 channels selectively controls human TH2-lymphocyte functions
AU2015265916B2 (en) Pharmaceutical combinations for immunotherapy
WO2016198470A2 (en) Composition for determination of cell-mediated immune responsiveness
Narisawa et al. Human dendritic cell-derived osteoclasts with high bone resorption capacity and T cell stimulation ability
Capelo et al. Cellular analysis of the histamine H4 receptor in human myeloid cells
AU2019268411B2 (en) Activating agents
Talker et al. Monocyte biology conserved across species: Functional insights from cattle
KR102530161B1 (en) Exosomes derived from umbilical cord blood plasma or their mimics and imunosuppression use of thereof
Li et al. HUWE1 causes an immune imbalance in immune thrombocytopenic purpura by reducing the number and function of treg cells through the ubiquitination degradation of ets-1
US20230218678A1 (en) Cord blood plasma-derived exosome or mimetic thereof and pharmaceutical use thereof
AU2019268412A1 (en) Peptide activating agent
JP2007517491A (en) Methods for identifying immunomodulators, immunomodulators, and uses thereof
Matsumiya et al. High frequency of Bob1lo T follicular helper cells in florid reactive follicular hyperplasia
Liu et al. Adhesion of monocytes to periodontal fibroblasts requires activation of NOD1/2-and TLR4-mediated LFA-1 and VLA-4
Gajardo et al. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement
Ajouaou et al. The oxygen sensor prolyl hydroxylase domain 2 regulates the in vivo suppressive capacity of regulatory T cells
WO2016176493A1 (en) Treatment of medical conditions
JP2022531296A (en) Methods and compositions with TERRT activation therapy
LU501764B1 (en) Gasdermin e expression in human t cells as a marker for proinflammatory t cell functions
JP2006290848A (en) Composition for functional regulation of t cell receptor and method for screening the same
Oseid Investigating the Role of the Membrane & Cellular Stress in Neurodegenerative Disorders
Caielli et al. An unconventional mechanism of IL-1β secretion that requires Type I IFN in lupus monocytes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right