KR20210114308A - Apparatus and method for recognizing heterogeneous faces based on relationship between component - Google Patents
Apparatus and method for recognizing heterogeneous faces based on relationship between component Download PDFInfo
- Publication number
- KR20210114308A KR20210114308A KR1020200038715A KR20200038715A KR20210114308A KR 20210114308 A KR20210114308 A KR 20210114308A KR 1020200038715 A KR1020200038715 A KR 1020200038715A KR 20200038715 A KR20200038715 A KR 20200038715A KR 20210114308 A KR20210114308 A KR 20210114308A
- Authority
- KR
- South Korea
- Prior art keywords
- node
- vector
- relationship
- vectors
- graph model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 239000013598 vector Substances 0.000 claims abstract description 265
- 238000012937 correction Methods 0.000 claims abstract description 35
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims abstract description 6
- 230000001815 facial effect Effects 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 10
- 230000001902 propagating effect Effects 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 6
- 238000013507 mapping Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 13
- 230000000644 propagated effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G06K9/00228—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G06K9/00268—
-
- G06K9/481—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/469—Contour-based spatial representations, e.g. vector-coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
- G06T2207/30201—Face
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
본 발명은 이종 얼굴 인식 장치 및 방법 및 방법에 관한 것으로, 요소 간 관계 추출 기반 이종 얼굴 인식 장치 및 방법에 관한 것이다.The present invention relates to an apparatus, method and method for recognizing heterogeneous faces, and to an apparatus and method for recognizing heterogeneous faces based on extracting relationships between elements.
얼굴 인식 분야는 딥러닝(deep learning) 기술의 등장과 함께 급진적으로 발전하였다. 기존에 딥러닝을 이용한 얼굴 인식은 주로 동일 종류의 센서를 이용하여 동일 방식으로 획득된 이미지 사이의 매칭을 통해 수행되었다. 일 예로 기존에는 컬러 이미지간의 얼굴을 매칭을 통해 얼굴을 인식하였다.The field of face recognition has developed radically with the advent of deep learning technology. In the past, face recognition using deep learning was mainly performed through matching between images acquired in the same way using the same type of sensor. For example, in the past, a face was recognized by matching a face between color images.
그러나 이미지에는 컬러 이미지뿐만 아니라 조명이 열악한 환경에서 적외선(NIR) 또는 열적외선(TIR) 센서 등을 이용하여 취득한 이미지도 있을 뿐만 아니라 경우에 따라서는 몽타주를 그린 스케치 이미지(Sketch) 등과 같이 다양한 센서를 방식으로 획득된 이미지들이 있다. 그리고 각 이미지들은 상황에 따라 칼라 이미지보다 더 유용한 정보를 담고 있는 경우가 있다. 일 예로 적외선-칼라(NIR-to-VIS) 또는 스케치-칼라(Sketch-to-Photo)처럼 서로 다른 방식으로 획득된 이종 얼굴 인식 기술은 밤에 촬영된 CCTV 영상, 범죄자의 몽타주 얼굴 인식 등 실생활 적용에서 매우 유용하게 활용될 수 있다.However, there are not only color images, but also images acquired using infrared (NIR) or thermal infrared (TIR) sensors in poor lighting conditions. There are images obtained in this way. And each image may contain more useful information than a color image depending on the situation. For example, heterogeneous face recognition technology acquired in different ways, such as infrared-to-vis or sketch-to-photo, is applied to real life such as CCTV images taken at night and montage face recognition of criminals. can be very useful in
이에 최근에는 서로 다른 종류의 센서 및 다양한 방식으로 획득된 이미지 사이에서도 얼굴을 인식할 수 있는 이종 얼굴 인식 분야에 대한 연구가 활발하게 진행되고 있다. 그러나 이종 얼굴 인식은 획득 방식에 따른 이미지 사이의 차이가 크며, 딥러닝 기술을 적용하고자 하여도 네트워크를 충분히 학습시킬 만한 이종 얼굴 데이터셋이 부족하다는 한계가 있다.Accordingly, recently, research into the field of heterogeneous face recognition capable of recognizing a face even between different types of sensors and images obtained by various methods is being actively conducted. However, heterogeneous face recognition has a large difference between images according to the acquisition method, and there is a limitation in that there is not enough heterogeneous face dataset to sufficiently train the network even if deep learning technology is applied.
본 발명의 목적은 서로 다른 방식으로 획득된 다양한 얼굴 이미지들로부터 정확하게 얼굴을 식별할 수 있는 이종 얼굴 인식 장치 및 방법을 제공하는데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a heterogeneous face recognition apparatus and method capable of accurately identifying a face from various face images obtained in different ways.
본 발명의 다른 목적은 구성 요소간 관계를 이용하여 가상의 공통 공간에 관계 그래프 모델을 생성함으로써 적은 학습 데이터로 효율적으로 학습될 수 있는 이종 얼굴 인식 장치 및 방법을 제공하는데 있다.Another object of the present invention is to provide a heterogeneous face recognition apparatus and method that can be efficiently learned with little learning data by generating a relationship graph model in a virtual common space using relationships between components.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 이종 얼굴 인식 장치는 획득되는 방식을 나타내는 도메인에 무관하게 획득된 얼굴 이미지를 미리 학습된 패턴 추정 방식에 따라 다수의 영역으로 구분하고, 구분된 각 영역의 패턴을 추정하여 다수의 특징 벡터로 구성된 특징맵을 획득하는 요소 특징 추출부; 상기 특징맵에서 상기 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산하여 대응하는 특징 벡터에 결합하는 벡터 위치 및 거리 계산부; 위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 가상의 공통 공간 상의 다수의 노드 벡터로 간주하고, 다수의 노드 벡터 사이의 관계가 에지로 표현하는 관계 그래프 모델을 획득하는 벡터 관계 모델링부; 미리 학습된 패턴 추정 방식에 따라 관계 그래프 모델의 상기 다수의 노드 벡터 각각의 의미적 중요도에 따른 가중치를 획득하고, 상기 다수의 노드 벡터 각각에 획득된 가중치를 가중하여 보정 관계 그래프 모델을 획득하는 관계 모델 업데이트부; 및 상기 보정 관계 그래프 모델을 대상자가 맵핑되어 미리 저장된 보정 관계 모델 그래프인 다수의 기준 관계 그래프 모델과 유사도 비교하여, 획득된 얼굴 이미지의 대상자를 인식하는 얼굴 인식부를 포함한다.A heterogeneous face recognition apparatus according to an embodiment of the present invention for achieving the above object divides an acquired face image irrespective of a domain indicating an acquired method into a plurality of regions according to a pre-learned pattern estimation method, and divides the an element feature extraction unit for estimating the pattern of each region to obtain a feature map composed of a plurality of feature vectors; a vector position and distance calculator for calculating a position and a relative distance of each of the plurality of feature vectors in the feature map and combining them with a corresponding feature vector; a vector relationship modeling unit that considers each of a plurality of feature vectors in which a position and a relative distance are combined as a plurality of node vectors on a virtual common space, and obtains a relationship graph model in which the relationship between the plurality of node vectors is expressed as an edge; A relation in which a weight according to the semantic importance of each of the plurality of node vectors of the relationship graph model is obtained according to a pre-learned pattern estimation method, and a correction relationship graph model is obtained by weighting the obtained weights to each of the plurality of node vectors model update unit; and a face recognition unit for recognizing the subject of the obtained face image by comparing the correction relation graph model with a plurality of reference relation graph models that are pre-stored correction relation model graphs to which the subject is mapped.
상기 벡터 관계 모델링부는 위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 다수의 노드 벡터로서 가상의 공통 공간 상에 투영하고, 상기 다수의 노드 벡터에 따라 상기 다수의 노드 벡터 사이의 관계를 나타내는 다수의 에지를 학습에 의해 획득되는 관계 가중치를 기반으로 설정하여 상기 관계 그래프 모델을 생성할 수 있다.The vector relationship modeling unit projects each of a plurality of feature vectors in which a position and a relative distance are combined as a plurality of node vectors on a virtual common space, and represents a plurality of relationships between the plurality of node vectors according to the plurality of node vectors. The relation graph model may be generated by setting the edge of , based on the relation weight obtained by learning.
상기 벡터 관계 모델링부는 설정된 다수의 에지에 따라 각 에지에 연결된 노드 벡터로 관계를 전파하여 다수의 노드 벡터를 다음 상태로 업데이트하고, 업데이트된 노드 벡터의 상태에 따라 다시 에지를 업데이트하는 관계 전파를 기지정된 횟수로 반복 수행할 수 있다.The vector relationship modeling unit propagates the relationship to the node vector connected to each edge according to the set plurality of edges, updates the plurality of node vectors to the next state, and updates the edge again according to the state of the updated node vector. It can be repeated a specified number of times.
상기 관계 모델 업데이트부는 기지정된 방식으로 상기 다수의 노드 벡터 각각의 대표값을 획득하여 대표값으로 표현된 대표 그래프 모델을 획득하는 대표값 계산부; 미리 학습된 패턴 추정 방식에 따라 상기 대표 그래프 모델을 인코딩하여 상기 관계 그래프 모델의 다수의 노드 벡터 각각의 중요도를 나타내는 중요도 벡터를 획득하는 인코더; 상기 중요도 벡터를 인가받아 미리 학습된 패턴 복구 방식에 따라 디코딩하여 상기 관계 그래프 모델의 각 노드 벡터의 중요도에 따른 가중치를 노드로 갖는 가중치 관계 모델 그래프를 획득하는 디코더; 및 상기 관계 그래프 모델의 다수의 노드 벡터 각각에 상기 가중치 관계 모델 그래프의 대응하는 노드의 가중치를 가중하여 상기 보정 관계 모델 그래프를 획득하는 업데이트부를 포함할 수 있다.The relation model update unit may include: a representative value calculation unit which obtains a representative value of each of the plurality of node vectors in a predetermined manner to obtain a representative graph model expressed as a representative value; an encoder that encodes the representative graph model according to a pre-learned pattern estimation method to obtain an importance vector indicating the importance of each of a plurality of node vectors of the relation graph model; a decoder that receives the importance vector and decodes it according to a pre-learned pattern recovery method to obtain a weight relationship model graph having a weight according to the importance of each node vector of the relationship graph model as a node; and an update unit configured to obtain the correction relationship model graph by weighting a weight of a corresponding node of the weight relationship model graph to each of the plurality of node vectors of the relationship graph model.
상기 이종 얼굴 인식 장치는 상기 벡터 관계 모델링부와 상기 관계 모델 업데이트부를 학습시키기 위한 학습부를 더 포함하고, 상기 학습부는 학습 데이터로서 인가되는 얼굴 이미지의 기준이 되는 대상자의 얼굴 이미지인 앵커와 상기 앵커와 동일한 대상자에 대한 다른 도메인의 얼굴 이미지인 포지티브 및 앵커와 상이한 대상자에 대한 얼굴 이미지인 네거티브 각각에 대한 보정 관계 모델 그래프를 획득하고, 상기 공통 공간 상에서 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리를 유사도에 기반하여 계산하며, 계산된 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리 사이의 비를 기반으로 손실을 계산하고 역전파할 수 있다.The heterogeneous face recognition apparatus further includes a learning unit for learning the vector relation modeling unit and the relation model updating unit, wherein the learning unit includes an anchor that is a face image of a subject as a reference for a face image applied as training data, and the anchor; A correction relationship model graph is obtained for each positive, which is a face image of a different domain for the same subject, and a negative, which is a face image for a different subject, with an anchor, and between the anchor and positive, respectively, corresponding multiple node vectors on the common space. Calculate the distance and the distance between the anchor and the corresponding plurality of node vectors of each negative based on the similarity, and calculate the distance between the calculated anchor and the corresponding plurality of node vectors of each of the positive and negative anchors and the corresponding plurality of each of the anchors and negatives. We can calculate and backpropagate the loss based on the ratio between the distances between the node vectors.
상기 학습부는 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si p)와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si n) 사이의 비에 기지정된 마진(m)을 추가로 적용하여, 수학식 The learning unit is a predetermined margin ( s i p ) between an anchor and a distance (s i p ) between an anchor and a corresponding plurality of node vectors of each positive and a distance (s i n ) between the anchor and a corresponding plurality of node vectors of each negative (s i n ) m) by additionally applying the equation
(여기서 []+ 는 양의 값만을 취하는 포지티브 함수이다.)에 따라 손실(Ltripletconditional)을 계산할 수 있다.(where [] + is a positive function that takes only positive values), we can calculate the loss (L tripletconditional ).
상기 이종 얼굴 인식 장치는 상기 다수의 기준 관계 그래프 모델이 대상자의 식별자에 맵핑되어 저장되는 얼굴 특징 데이터베이스를 더 포함하고, 상기 얼굴 인식부는 상기 보정 관계 그래프 모델과 기지정된 기준 유사도 이상의 유사도를 갖는 기준 관계 그래프 모델이 탐색되면, 탐색된 기준 관계 그래프 모델에 맵핑된 식별자를 얼굴 인식 결과로 출력할 수 있다.The heterogeneous face recognition apparatus further includes a facial feature database in which the plurality of reference relationship graph models are mapped to an identifier of a subject and stored, and the face recognition unit has a reference relationship having a similarity greater than or equal to a predetermined reference similarity to the correction relationship graph model. When the graph model is searched, an identifier mapped to the searched reference relationship graph model may be output as a face recognition result.
상기 이종 얼굴 인식 장치는 도메인에 따라 컬러 이미지, 적외선 이미지, 열적외선 이미지 또는 스케치 이미지 중 하나를 인가받아 대상자를 인식할 수 있다.The heterogeneous face recognition apparatus may recognize a subject by receiving one of a color image, an infrared image, a thermal infrared image, or a sketch image according to a domain.
상기 다른 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 이종 얼굴 인식 장치 및 방법은 획득되는 방식을 나타내는 도메인에 무관하게 획득된 얼굴 이미지를 미리 학습된 패턴 추정 방식에 따라 다수의 영역으로 구분하고, 구분된 각 영역의 패턴을 추정하여 다수의 특징 벡터로 구성된 특징맵을 획득하는 단계; 상기 특징맵에서 상기 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산하여 대응하는 특징 벡터에 결합하는 단계; 위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 가상의 공통 공간 상의 다수의 노드 벡터로 간주하고, 다수의 노드 벡터 사이의 관계가 에지로 표현하는 관계 그래프 모델을 획득하는 단계; 미리 학습된 패턴 추정 방식에 따라 관계 그래프 모델의 상기 다수의 노드 벡터 각각의 의미적 중요도에 따른 가중치를 획득하고, 상기 다수의 노드 벡터 각각에 획득된 가중치를 가중하여 보정 관계 그래프 모델을 획득하는 단계; 및 상기 보정 관계 그래프 모델을 대상자가 맵핑되어 미리 저장된 보정 관계 모델 그래프인 다수의 기준 관계 그래프 모델과 유사도 비교하여, 획득된 얼굴 이미지의 대상자를 인식하는 단계를 포함한다.A heterogeneous face recognition apparatus and method according to another embodiment of the present invention for achieving the above other object divides an acquired face image irrespective of a domain indicating an acquired method into a plurality of regions according to a pre-learned pattern estimation method, and , obtaining a feature map composed of a plurality of feature vectors by estimating the pattern of each divided region; calculating a position and a relative distance of each of the plurality of feature vectors in the feature map and combining them with a corresponding feature vector; obtaining a relationship graph model in which each of a plurality of feature vectors combined with a position and a relative distance is regarded as a plurality of node vectors on a virtual common space, and relationships between the plurality of node vectors are expressed as edges; Obtaining a weight according to the semantic importance of each of the plurality of node vectors of the relationship graph model according to a pre-learned pattern estimation method, and obtaining a corrected relationship graph model by weighting the obtained weights on each of the plurality of node vectors ; and recognizing the subject of the obtained face image by comparing the correction relation graph model with a plurality of reference relation graph models that are pre-stored correction relation model graphs to which the subject is mapped.
따라서, 본 발명의 실시예에 따른 이종 얼굴 인식 장치 및 방법은 구성 요소간 거리 관계를 이용하여 가상의 공통 공간에 관계 그래프 모델을 생성하고, 생성된 관계 그래프 모델의 노드 벡터 유사도 비교를 통해 서로 다른 방식으로 획득된 다양한 얼굴 이미지들로부터 정확하게 얼굴을 식별할 수 있을 뿐만 아니라, 적은 학습 데이터로 효율적으로 학습될 수 있다.Therefore, the heterogeneous face recognition apparatus and method according to an embodiment of the present invention generates a relationship graph model in a virtual common space using distance relationships between components, and compares the node vector similarity of the generated relationship graph model In addition to being able to accurately identify a face from various face images obtained in this way, it can be efficiently learned with a small amount of training data.
도 1은 본 발명의 일 실시예에 따른 이종 얼굴 인식 장치의 개략적 구조를 나타낸다.
도 2는 도 1의 요소 특징 추출부의 동작을 설명하기 위한 도면이다.
도 3은 도 1의 벡터 위치 및 거리 계산부의 동작을 설명하기 위한 도면이다.
도 4 및 도 5는 도 1의 벡터 관계 모델링부가 특징 벡터 사이의 관계 그래프 모델을 생성하고 관계 전파하는 동작을 설명하기 위한 도면이다.
도 6은 도 1의 관계 모델 업데이트부의 상세 구성을 나타낸다.
도 7은 도 6의 관계 모델 업데이트부가 관계 그래프 모델을 업데이트하는 개념을 설명하기 위한 도면이다.
도 8 및 도 9은 학습부가 이종 얼굴 인식 장치를 학습시키는 개념을 설명하기 위한 도면이다.
도 10는 마진 적용 학습 여부에 따라 공통 공간에 투영된 특징 벡터의 변화를 나타낸다.
도 11은 본 발명의 일 실시예에 따른 이종 얼굴 인식 방법을 나타낸다.
도 12는 도 11의 관계 그래프 모델 업데이트 단계를 상세하게 나타낸 도면이다.1 shows a schematic structure of a heterogeneous face recognition apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining an operation of the element feature extracting unit of FIG. 1 .
FIG. 3 is a diagram for explaining the operation of the vector position and distance calculator of FIG. 1 .
4 and 5 are diagrams for explaining an operation of the vector relationship modeling unit of FIG. 1 generating a relationship graph model between feature vectors and propagating the relationship.
6 shows a detailed configuration of the relation model update unit of FIG. 1 .
FIG. 7 is a diagram for explaining a concept in which the relationship model update unit of FIG. 6 updates the relationship graph model.
8 and 9 are diagrams for explaining a concept in which a learning unit learns a heterogeneous face recognition apparatus.
10 shows a change in a feature vector projected to a common space according to whether or not a margin-applied learning is performed.
11 illustrates a heterogeneous face recognition method according to an embodiment of the present invention.
12 is a diagram illustrating in detail a step of updating the relationship graph model of FIG. 11 .
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. Hereinafter, the present invention will be described in detail by describing preferred embodiments of the present invention with reference to the accompanying drawings. However, the present invention may be embodied in various different forms, and is not limited to the described embodiments. In addition, in order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals in the drawings indicate the same members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈", "블록" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components unless otherwise stated. In addition, terms such as "... unit", "... group", "module", and "block" described in the specification mean a unit that processes at least one function or operation, which is hardware, software, or hardware. and a combination of software.
도 1은 본 발명의 일 실시예에 따른 이종 얼굴 인식 장치의 개략적 구조를 나타낸다.1 shows a schematic structure of a heterogeneous face recognition apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 이종 얼굴 인식 장치는 이종 이미지 획득부(100), 요소 특징 추출부(200), 벡터 위치 및 거리 계산부(300), 벡터 관계 모델링부(400), 관계 모델 업데이트부(500), 얼굴 인식부(600) 및 얼굴 특징 데이터베이스(700)를 포함할 수 있다.Referring to FIG. 1 , the heterogeneous face recognition apparatus according to the present embodiment includes a heterogeneous
이종 이미지 획득부(100)는 다양한 방식으로 획득된 이종 얼굴 이미지를 획득한다. 여기서 얼굴 이미지는 컬러 이미지 센서나, 적외선 및 열적외선 센서와 같은 서로 다른 종류의 센서에서 획득된 이종 얼굴 이미지일 수 있으며, 얼굴을 그린 스케치 이미지와 같이 센서를 이용하지 않고 획득된 이미지일 수도 있다. The heterogeneous
여기서 이종 이미지 획득부(100)는 각 얼굴 이미지들이 획득된 방식을 구분하지 않아도 무방하다. 그러나 이종 이미지 획득부(100)는 각 얼굴 이미지들이 획득된 방식에 따라 도메인으로 구분하여 획득할 수도 있다. 즉 이종 이미지 획득부(100)는 이미지 획득 방식에 따라 다수의 얼굴 이미지를 컬러 도메인, 적외선 도메인 열적외선 도메인 및 스케치 도메인 등으로 구분하여 획득할 수 있다.Here, the heterogeneous
다만 이종 이미지 획득부(100)는 이종 얼굴 인식 장치의 학습 시에는 서로 다른 방식으로 획득된 얼굴 이미지들을 각 얼굴 이미지들이 획득된 방식에 따라 서로 다른 도메인으로 분류하여 획득한다. 즉 컬러 도메인 이미지와 적외선 도메인 이미지, 열적외선 도메인 이미지 및 스케치 도메인 이미지를 각각 서로 구분하여 획득하고 저장할 수 있다.However, the heterogeneous
뿐만 아니라 이종 이미지 획득부(100)는 이종 얼굴 인식 장치의 학습 시에 도메인별로 구분되어 획득되는 얼굴 이미지의 피사체인 대상자들에 따라 식별자를 맵핑하여 획득하고 저장할 수 있다. 즉 동일하거나 서로 다른 도메인에서 획득된 각각의 얼굴 이미지가 동일한 대상자 대한 얼굴 이미지이면 동일한 식별자를 부여하고 다른 대상자에 대한 얼굴 이미지이면 서로 다른 식별자를 부여하여 저장한다.In addition, the heterogeneous
그러나 얼굴 이미지의 도메인 구분 및 식별자 맵핑은 이종 얼굴 인식 장치의 학습을 위한 것으로, 본 실시예에 따른 이종 얼굴 인식 장치가 실제 얼굴 인식을 위해 이용되는 경우, 이종 이미지 획득부(100)는 획득되는 얼굴 이미지의 도메인을 구분하지 않으며, 식별자를 맵핑하지 않는다. 이는 본 실시예에 따른 이종 얼굴 인식 장치가 얼굴 이미지의 도메인에 무관하게 얼굴을 인식할 수 있도록 미리 학습되기 때문이다.However, domain division and identifier mapping of the face image are for learning of the heterogeneous face recognition apparatus, and when the heterogeneous face recognition apparatus according to the present embodiment is used for actual face recognition, the heterogeneous
요소 특징 추출부(200)는 이종 이미지 획득부(100)에서 획득된 얼굴 이미지 각각에 대해 미리 학습된 패턴 추정 방식에 따라 각 요소 특징을 추출하여 다수의 특징 벡터를 획득한다.The element feature extracting
도 2는 도 1의 요소 특징 추출부의 동작을 설명하기 위한 도면이다.FIG. 2 is a diagram for explaining an operation of the element feature extracting unit of FIG. 1 .
도 2에 도시된 바와 같이, 요소 특징 추출부(200)는 얼굴 이미지가 인가되면, 얼굴 이미지의 요소별 특징을 추출하여 특징맵을 획득한다. 요소 특징 추출부(200)는 얼굴 이미지를 기지정된 방식으로 다수의 영역으로 구분하고, 구분된 각 영역의 패턴을 추정하여 특징맵을 획득할 수 있다. 특징맵은 각각의 영역에 대응하여 패턴이 추정된 다수의 특징 벡터로 구성될 수 있으며, 다수의 특징 벡터 각각은 일 예로 도 2와 같이, Z 축 방향의 1차원 벡터로 획득될 수 있다.As shown in FIG. 2 , when a face image is applied, the element
얼굴 이미지에서 요소 특징을 추출하여 특징맵을 획득하는 요소 특징 추출부(200)는 인공 신경망으로 구현될 수 있으며, 이종 얼굴 인식 장치의 학습 시에 역전파되는 손실에 따라 학습될 수 있으나, 이미지로부터 특징을 추출하는 인공 신경망은 공개되어 있으므로, 이미 학습된 인공 신경망을 이용할 수도 있다.The element
벡터 위치 및 거리 계산부(300)는 특징맵을 구성하는 다수의 특징 벡터 각각의 위치를 계산하고, 계산된 특징 벡터들의 위치를 기반으로 다수의 특징 벡터 사이의 상대적 거리를 계산한다.The vector position and
요소 특징 추출부(200)에 의해 추출되는 특징 벡터 각각은 얼굴 이미지에서 대응하는 영역의 특징을 추출한 것으로, 이는 대상자의 얼굴에서 각각의 구성 요소에 대한 특징을 추출한 것으로 볼 수 있다. 그리고 이러한 구성 요소 사이의 상대적 거리는 각각의 대상자의 얼굴이 갖는 고유한 특성으로 얼굴 이미지를 획득한 방식인 도메인에 무관한 독립적인 특징으로 볼 수 있다. 일 예로 사람의 눈과 눈 사이의 거리와 입과 턱 사이의 거리는 대상자 개개인의 고유 특징으로 볼 수 있다.Each of the feature vectors extracted by the element
이에 본 실시예에서 벡터 위치 및 거리 계산부(300)는 특징맵에서 각 특징 벡터의 위치와 상대적 거리를 계산하고, 계산된 위치와 상대적 거리를 대응하는 특징 벡터에 결합한다.Accordingly, in the present embodiment, the vector position and
도 3은 도 1의 벡터 위치 및 거리 계산부의 동작을 설명하기 위한 도면이다.FIG. 3 is a diagram for explaining the operation of the vector position and distance calculator of FIG. 1 .
도 3에 도시된 바와 같이, 벡터 위치 및 거리 계산부(300)는 특징맵의 다수의 특징 벡터 각각에 대해 절대적 위치 정보인 x 좌표(xi)와 y 좌표(yj)를 계산하고, 계산된 다수의 특징 벡터 각각의 위치 좌표(xi, yj)를 기반으로 수학식 1에 따라 특징맵의 중심(x0, y0)을 기준으로 하는 각 특징 벡터의 상대적 거리(ri,j)를 계산하여 획득한다.As shown in FIG. 3 , the vector position and
여기서는 벡터 위치 및 거리 계산부(300)가 XY 평면 상에서 각 특징 벡터의 위치 좌표(xi, yj)와 상대적 거리(ri,j)를 계산하는 것으로 설명하였으나, 이는 특징맵의 특징 벡터가 Z축 방향의 1차원 벡터인 것으로 가정하였기 때문이며, 특징 벡터를 구성하는 방향에 따라 위치 좌표와 상대적 거리를 계산하는 평면은 변경될 수 있다.Here, it has been described that the vector position and
그리고 벡터 위치 및 거리 계산부(300)는 다수의 특징 벡터 각각의 위치 좌표(xi, yj)와 상대적 거리(ri,j)가 계산되면, 계산된 위치 좌표(xi, yj)와 상대적 거리(ri,j)를 대응하는 특징 벡터에 결합(concatenate)한다. 일 예로 특징맵의 다수의 특징 벡터 각각에 계산된 위치 좌표(xi, yj)와 상대적 거리(ri,j)를 Z축 방향으로 더 추가한다.In addition, the vector position and
다수의 특징 벡터 각각에 위치 좌표(xi, yj)와 상대적 거리(ri,j)가 결합되면, 벡터 관계 모델링부(400)는 위치 좌표(xi, yj)와 상대적 거리(ri,j)가 결합된 다수의 특징 벡터 각각을 노드 벡터(ni)로 설정하고, 설정된 노드 벡터 사이의 관계를 에지(ei,j)로 설정하여 특징 벡터 사이의 관계를 가상의 공통 공간 상에 그래프로 나타내는 관계 그래프 모델을 생성한다. When the position coordinates (x i , y j ) and the relative distance (r i,j ) are combined in each of the plurality of feature vectors, the vector
도 4 및 도 5는 도 1의 벡터 관계 모델링부가 특징 벡터 사이의 관계 그래프 모델을 생성하고 관계 전파하는 동작을 설명하기 위한 도면이다.4 and 5 are diagrams for explaining an operation of the vector relationship modeling unit of FIG. 1 generating a relationship graph model between feature vectors and propagating the relationship.
벡터 관계 모델링부(400)는 우선 도 4와 같이, 다수의 특징 벡터 각각을 가상의 공통 공간에 투영하여 대응하는 노드 벡터(ni)를 설정한다. 상기한 바와 같이, 특징 벡터들의 위치와 거리는 도메인에 무관하게 대상자의 얼굴이 갖는 고유한 특성을 나타낸 것이므로, 위치 좌표(xi, yj)와 상대적 거리(ri,j)가 결합된 다수의 특징 벡터 각각은 도메인에 제한되지 않는 공통 공간 상의 노드 벡터(ni)로서 표현될 수 있다.The vector
그리고 설정된 각 노드 벡터(ni t) 사이에 연결되어 노드 벡터 사이의 관계를 나타내는 다수의 에지(ei,j t)를 설정한다. 도 4에서 각 노드 벡터(ni t)와 에지(ei,j t)에 표기된 t는 현재 상태를 나타낸다. 즉 ni t 과 ei,j t 는 현재 상태의 i번째 노드 벡터와 i번째 노드 벡터(ni t)에서 j번째 노드 벡터(nj t)로의 에지를 의미하고, ni t+1 과 ei,j t+1 는 다음 상태의 i번째 노드 벡터와 i번째 노드 벡터(ni t)에서 j번째 노드 벡터(nj t)로의 에지를 의미한다. And a plurality of edges (e i,j t ) connected between each set node vector (n i t ) indicating a relationship between the node vectors are set. In FIG. 4 , t indicated in each node vector (n i t ) and edge (e i,j t ) indicates a current state. That is, n i t and e i,j t mean the edge from the i-th node vector and the i-th node vector (n i t ) to the j-th node vector (n j t ) in the current state, and n i t+1 and e i,j t+1 means the edge from the i-th node vector and the i-th node vector (n i t ) to the j-th node vector (n j t ) in the next state.
특징맵에서 전체 특징 벡터의 개수가 D개일 때, 벡터 관계 모델링부(400)는 그래프 공간에 D개의 노드 벡터(N = {n1 t, n2 t, …, nD t})를 생성하고, 생성된 D개의 노드 벡터 사이를 잇는 다수의 에지(ei,j t)를 수학식 2에 따라 설정할 수 있다.When the total number of feature vectors in the feature map is D, the vector
여기서 σ는 활성화 함수(Activation Function)로서, 일 예로 시그모이드(Sigmoid)일 수 있다. 그리고 We 는 관계 가중치로서 학습에 의해 업데이트되며, T는 전치 행렬을 나타낸다.Here, σ is an activation function, and may be, for example, a sigmoid. And W e is updated by learning as a relation weight, and T denotes a transpose matrix.
그리고 벡터 관계 모델링부(400)는 수학식 2에 따라 계산된 현재 상태의 에지(ei,j t)에 연결된 다수의 노드 벡터의 다음 상태(ni t+1)를 수학식 3에 따라 계산하여 업데이트한다. And the vector relationship modeling unit 400 calculates the next state (n i t+1 ) of the plurality of node vectors connected to the edge (e i,j t ) of the current state calculated according to
상기한 바와 같이 다수의 노드 벡터(ni)와 다수의 에지(ei,j)는 상호 관계를 가지므로, 다수의 노드 벡터(ni)와 다수의 에지(ei,j)가 교대로 반복하여 상태가 업데이트 될 수 있다. 이러한 업데이트 과정을 관계 전파라고 하며, 관계 전파는 기지정된 횟수로 반복 수행될 수 있다.As described above, since the plurality of node vectors (n i ) and the plurality of edges (e i,j ) have a mutual relationship, the plurality of node vectors (n i ) and the plurality of edges (e i,j ) are alternately The state can be updated repeatedly. This update process is called relationship propagation, and relationship propagation may be repeatedly performed a predetermined number of times.
관계 모델 업데이트부(500)는 벡터 관계 모델링부(400)에서 모델링되고 관계 전파된 관계 그래프 모델을 인가받고, 인가된 관계 그래프 모델의 다수의 노드 벡터(ni) 중 의미적으로 더욱 가치 있는 노드 벡터(ni)에 더 높은 관심이 집중되도록 각각의 노드 벡터(ni)에 대응하는 요소 가중치(wi)를 미리 학습된 패턴 추정 방식에 따라 획득하여 대응하는 관계 그래프 모델의 각 노드 벡터(ni)에 가중함으로써 관계 그래프 모델을 업데이트 한다.The relation
도 6은 도 1의 관계 모델 업데이트부의 상세 구성을 나타내고, 도 7은 도 6의 관계 모델 업데이트부가 관계 그래프 모델을 업데이트하는 개념을 설명하기 위한 도면이다.FIG. 6 shows a detailed configuration of the relationship model updater of FIG. 1 , and FIG. 7 is a diagram for explaining the concept of the relationship model updater updating the relationship graph model of FIG. 6 .
도 6을 참조하면, 관계 모델 업데이트부(500)는 대표값 계산부(510), 인코더(520), 디코더(530) 및 업데이트부(540)를 포함할 수 있다.Referring to FIG. 6 , the
대표값 계산부(510)는 도 7의 (a)와 같이, 벡터 관계 모델링부(400)에서 생성되고 관계 전파되어 업데이트된 관계 그래프 모델을 인가받고, 인가된 관계 그래프 모델에 대해 관계 전파 기법에 따라 업데이트된 노드 벡터(ni t+1)의 대표값(zi)을 계산하여, (b)와 같이 계산된 노드 벡터(ni t+1)의 대표값(zi)으로 표현된 대표 그래프 모델을 획득한다.The representative
대표값 계산부(510)는 다양한 방식으로 노드 벡터의 평균값을 대표값(zi)을 계산할 수 있으나, 여기서는 일 예로 수학식 4에 따라 노드 벡터의 평균값을 대표값(zi)으로 계산하는 것으로 가정한다. The representative value calculator 510 may calculate the representative value z i of the average value of the node vector in various ways, but here, as an example, the average value of the node vector is calculated as the representative value z i according to Equation 4 Assume
여기서 C는 노드 벡터의 길이를 나타낸다.Here, C represents the length of the node vector.
인코더(520)는 미리 학습된 패턴 추정 방식에 따라 대표 그래프 모델을 인코딩하여, (c)와 같이 관계 그래프 모델의 각 노드 벡터(ni t+1) 중요도를 나타내는 중요도 벡터를 획득한다.The
그리고 디코더(530)는 인코더(520)에서 획득된 중요도 벡터를 인가받아 미리 학습된 패턴 복구 방식에 따라 디코딩하여, (d)와 같이 관계 그래프 모델의 각 노드 벡터(ni t+1)의 중요도에 따른 가중치(wi)를 노드로 갖는 가중치 관계 모델 그래프를 획득한다.And the
업데이트부(540)는 관계 그래프 모델과 가중치 관계 모델 그래프를 인가받고, 관계 그래프 모델의 다수의 노드 벡터(ni t+1) 각각에 가중치 관계 모델 그래프의 대응하는 노드의 가중치(wi)를 가중하여 관계 모델 그래프를 업데이트 하여, 보정 관계 모델 그래프를 (e)와 같이 획득한다.The
얼굴 인식부(600)는 관계 모델 업데이트부(500)로부터 보정 관계 모델 그래프를 인가받고, 인가된 보정 관계 모델 그래프의 다수의 노드 벡터(wini) 각각과 얼굴 특징 데이터베이스(700)에 기저장된 다수의 기준 관계 그래프 모델의 대응하는 노드 벡터 사이의 유사도를 비교하여, 기지정된 기준 유사도 이상인 기준 관계 그래프 모델을 탐색한다. 그리고 기준 유사도 이상인 기준 관계 그래프 모델이 탐색되면, 획득된 관계 그래프 모델의 대상자와 기준 관계 그래프 모델의 대상자가 동일 인물로 판별한다. 이에 얼굴 인식부(600)는 탐색된 기준 관계 그래프 모델에 맵핑된 식별자를 얼굴 특징 데이터베이스(700)로부터 획득하여 출력한다.The
즉 얼굴 인식부(600)는 이종 이미지 획득부(100)에 도메인에 무관하게 다양한 방식으로 획득되어 인가된 얼굴 이미지로부터 생성된 보정 관계 그래프 모델의 다수의 노드 벡터(wini)와 얼굴 특징 데이터베이스(700)에 미리 저장된 다수의 기준 관계 그래프 모델 각각의 다수의 노드 벡터 사이의 유사도에 따라 이종 이미지 획득부(100)에 인가된 얼굴 이미지의 대상자가 얼굴 특징 데이터베이스(700)에 기준 관계 그래프 모델로 미리 저장된 대상자인지 여부를 판별하여 얼굴 인식을 수행하고, 얼굴 인식 수행 결과로 얼굴 이미지의 피사체인 대상자의 식별자를 출력한다. That is, the face recognition unit 600 includes a plurality of node vectors (w i n i ) and facial features of the correction relationship graph model generated from the facial images obtained and applied in various ways regardless of the domain to the heterogeneous
얼굴 특징 데이터베이스(700)는 얼굴 이미지로부터 이전 획득된 보정 관계 그래프 모델을 기준 관계 그래프 모델로서 얼굴 이미지의 피사체인 대상자의 식별자와 맵핑하여 저장하고, 얼굴 인식부(600)의 요청에 따라 보정 관계 그래프 모델을 얼굴 인식부(600)로 전달한다.The
얼굴 특징 데이터베이스(700)가 식별자에 맵핑된 다수의 기준 관계 그래프 모델이 미리 저장함에 따라, 얼굴 인식부(600)에서 기준 유사도 이상인 기준 관계 그래프 모델을 탐색하면, 탐색된 기준 관계 그래프 모델에 대응하는 식별자를 전달할 수 있다.As the
상기한 바와 같이, 본 실시예에 따른 이종 얼굴 인식 장치는 다양한 도메인의 얼굴 이미지가 인가되면, 인가된 얼굴 이미지에서 구성 요소, 즉 얼굴 이미지의 영역별 특징 벡터를 추출하여 특징맵을 획득하고, 획득된 특징맵의 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산하여 결합한 후, 가상의 공통 공간 상에 관계 그래프 모델로 투영하고 중요도에 따라 노드 벡터를 보정함으로써, 얼굴 이미지가 획득된 방식에 따른 얼굴 이미지의 도메인에 무관하게 각 얼굴 이미지의 고유한 특징을 상호 비교하여 얼굴 인식을 수행한다. 따라서 다양한 서로 다른 도메인의 얼굴 이미지가 인가되더라도 정확하게 얼굴 인식을 수행할 수 있다.As described above, when face images of various domains are applied, the heterogeneous face recognition apparatus according to this embodiment obtains a feature map by extracting component elements, that is, feature vectors for each area of the face image from the applied face image, and obtains After calculating and combining the positions and relative distances of each of the multiple feature vectors in the feature map, project them to a relation graph model on a virtual common space and correct the node vectors according to their importance. Face recognition is performed by comparing the unique features of each face image with each other regardless of the domain of the image. Therefore, even when face images of various different domains are applied, face recognition can be accurately performed.
다만 상기한 이종 얼굴 인식 장치가 얼굴 인식을 수행하기 위해서는 사전에 미리 학습이 되어야 한다. 특히 인공 신경망으로 구현되는 벡터 관계 모델링부(400)와 관계 모델 업데이트부(500)가 학습되어야 한다. 이에 본 실시예에 따른 이종 얼굴 인식 장치는 학습부(800)를 더 포함할 수 있다.However, in order for the above-described heterogeneous face recognition apparatus to perform face recognition, it must be learned in advance. In particular, the vector
도 8 및 도 9은 학습부가 이종 얼굴 인식 장치를 학습시키는 개념을 설명하기 위한 도면이다.8 and 9 are diagrams for explaining a concept in which a learning unit learns a heterogeneous face recognition apparatus.
본 실시예에 따른 학습부(800)는 도메인에 무관하게 동일 대상자 및 상이한 대상자에 대해 획득된 얼굴 이미지에서 획득된 보정 관계 모델 그래프의 노드 벡터(wini) 사이의 차를 기반으로 손실을 계산하고, 계산된 손실을 역전파하여 벡터 관계 모델링부(400)와 관계 모델 업데이트부(500)를 학습시킬 수 있다.The
이하에서는 얼굴 이미지의 도메인에 무관하게 얼굴 이미지의 기준이 되는 대상자의 얼굴 이미지를 앵커(Anchor)라 하고, 앵커와 동일한 대상자에 대한 얼굴 이미지를 포지티브(Positive)라 하며, 앵커와 상이한 대상자에 대한 얼굴 이미지를 네거티브(Negative)라 한다.Hereinafter, regardless of the domain of the face image, the face image of the subject, which is the basis of the face image, is referred to as an anchor, the face image of the subject same as the anchor is referred to as positive, and the face of the subject different from the anchor is referred to as an anchor. The image is called negative.
도 8의 (a)에서 좌측은 적외선 도메인 이미지인 앵커이고, 가운데 얼굴 이미지는 컬러 도메인 이미지이지만 동일한 대상자에 대한 얼굴 이미지이므로 포지티브이며, (c)는 (a)와 마찬가지로 적외선 도메인 이미지이지만 앵커와 상이한 대상자에 대한 얼굴 이미지이므로 네거티브이다.In (a) of FIG. 8, the left side is an infrared domain image of the anchor, the middle face image is a color domain image, but it is positive because it is a face image for the same subject, and (c) is an infrared domain image similar to (a), but different from the anchor. Since it is a face image of the subject, it is negative.
본 실시예에서 학습부(800)는 앵커를 기준으로 포지티브 및 네거티브를 비교하는 트리플렛 학습 방식을 이용하여 손실을 계산한다. 도 8의 (b)와 같이 트리플렛 학습 방식은 앵커와 포지티브 및 네거티브가 가상의 공통 공간 상에 투영된 보정 관계 모델 그래프의 다수의 노드 벡터(wini) 사이의 거리(유사도)를 비교하여 포지티브의 노드 벡터는 앵커의 대응하는 노드 벡터에 더욱 가깝게 되는 반면, 포지티브의 노드 벡터는 앵커의 대응하는 노드 벡터에 더욱 멀어지도록 손실을 계산하여 학습을 수행하는 방식을 의미한다.In this embodiment, the
앵커의 노드 벡터를 xi a 라 하고, 포지티브의 노드 벡터를 xi p 라 하며, 네거티브의 노드 벡터를 xi n 라 할 때, 공통 공간 상에서 앵커의 노드 벡터(xi a)와 포지티브의 노드 벡터(xi p) 사이의 거리(si p)는 코사인 유사도(Cosine similarity) 함수(CS)를 사용하여 si p = CS(xi a, xi p)로 계산될 수 있다. 그리고 앵커의 노드 벡터(xi a)와 네거티브의 노드 벡터(xi n) 사이의 거리(si n) 또한 코사인 유사도 함수(CS)를 사용하여 si n = CS(xi a, xi n)로 계산될 수 있다.Assuming that the node vector of the anchor is x i a , the positive node vector is x i p , and the negative node vector is x i n , the anchor node vector ( x i a ) and the positive node are in the common space. vector can be calculated as (x i p) the distance (s p i) is the cosine similarity (cosine similarity) using a function (CS) s i p = CS (x i a, x i p) between. And the distance (s i n ) between the node vector of the anchor (x i a ) and the node vector of the negative (x i n ) is also used using the cosine similarity function (CS) to s i n = CS(x i a , x i ) n ) can be calculated.
일예로 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)는 도 9의 (a)와 같이 0.2로 계산되는 반면, 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n)는 0.6으로 계산될 수 있다.The anchor and the positive node to the example vector (x i a, x i p ) , while the distance (s i p) between the computed to be 0.2 as shown in Figure 9 (a), an anchor and a negative node vector (x i a, x The distance (s i n ) between i n ) may be calculated as 0.6.
그리고 학습부(800)는 계산된 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)와 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n)의 비에 따라 손실을 계산하여 역전파 함으로써, 벡터 관계 모델링부(400)와 관계 모델 업데이트부(500)를 학습시킬 수 있다. And the learning unit 800 calculates the distance (s i p ) between the calculated anchor and the positive node vector (x i a , x i p ) and the distance between the anchor and the negative node vector (x i a , x i n ) ( s i n is calculated by the loss according to the ratio of the back propagation), it is possible to learn the relationship
다만, 단순히 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)와 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n)의 비로만 손실을 계산하여 역전파하는 경우, 학습 후 공통 공간에서 앵커로부터의 거리를 기반으로 포지티브와 네거티브를 구분하는 경계가 선형으로 나타나게 되어 얼굴 인식 결과가 매우 민감하게 변화하게 되는 경우가 발생한다. 즉 인가된 얼굴 이미지의 작은 변화에도 포지티브와 네거티브가 변경되어 판별하게 되는 경우가 발생할 수 있다.However, simply the ratio of the distance (s i n) between an anchor and the positive node vector (x i a, x i p) the distance between the (s i p) and the anchor and a negative node vector (x i a, x i n) In the case of backpropagation by calculating the loss, the boundary that separates the positive and the negative based on the distance from the anchor in the common space after learning appears linearly, resulting in a very sensitive change in the face recognition result. That is, even a small change in the applied face image may cause a positive and negative change to be discriminated.
이에 본 실시예에 따른 학습부(800)는 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)와 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n)의 비에 마진(m)을 추가로 적용하여, 수학식 5에 따라 손실(Ltripletconditional)을 계산한다.The
여기서 []+ 는 양의 값만을 취하는 포지티브 함수이다.where [] + is a positive function that takes only positive values.
이와 같이 학습부(800)가 마진(m)을 추가로 적용하면, 도 9의 (b)에 도시된 바와 같이, 마진의 크기에 따라 공통 공간에서 포지티브 영역과 네거티브 영역이 사이에 마진 영역이 생성되어 포지티브와 네거티브를 명확하게 구분할 수 있게 되며, 이로 인해 얼굴 인식 민감도를 둔화시킬 수 있다. 즉 강건한 얼굴 인식을 수행할 수 있도록 한다.In this way, when the
도 10는 마진 적용 학습 여부에 따라 공통 공간에 투영된 특징 벡터의 변화를 나타낸다.10 shows a change in a feature vector projected to a common space according to whether or not a margin-applied learning is performed.
도 10에서 (a)는 학습부(800)가 마진(m)을 적용하지 않고 학습을 수행한 경우, 공통 공간에 투영된 앵커와 포지티브 및 네거티브의 노드 벡터(xi a, xi p, xi n)를 나타내고, (b)는 마진(m)을 적용하여 학습을 수행한 경우, 공통 공간에 투영된 앵커와 포지티브 및 네거티브의 노드 벡터(xi a, xi p, xi n)를 나타낸다.In FIG. 10 (a), when the
(a)와 (b)를 비교하면, 마진(m)을 적용하지 않은 경우에 비해 마진(m)을 적용하여 학습을 수행한 경우, 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)는 더 가까워지는데 반해, 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n)는 더욱 멀어짐을 알 수 있다. 즉 얼굴 인식 장치가 더욱 효율적으로 학습되어 정확하게 얼굴 인식을 수행할 수 있게 됨을 알 수 있다.Comparing (a) and (b), compared to the case where the margin (m) is not applied, when learning is performed by applying the margin (m), between the anchor and the positive node vector (x i a , x i p ) the distance (s p i) is the distance (s i n) between contrast makin closer to, an anchor node and a negative vector (x i a, x i n) it can be seen further more apart. That is, it can be seen that the face recognition apparatus is more efficiently learned to accurately perform face recognition.
도 11은 본 발명의 일 실시예에 따른 이종 얼굴 인식 방법을 나타내고, 도 12는 도 11의 관계 그래프 모델 업데이트 단계를 상세하게 나타낸 도면이다.11 is a diagram illustrating a heterogeneous face recognition method according to an embodiment of the present invention, and FIG. 12 is a diagram illustrating in detail an update step of the relation graph model of FIG. 11 .
도 11 및 도 12를 참조하면, 본 실시예에 따른 이종 얼굴 인식 방법은 우선 도메인에 무관하게 다양한 방식으로 획득된 얼굴 이미지를 획득한다(S10). 그리고 획득된 얼굴 이미지를 기지정된 방식으로 다수의 영역으로 구분하고, 구분된 각 영역의 패턴을 추정하여 요소별 특징 벡터를 추출하여 특징맵을 획득한다(S20).11 and 12 , the heterogeneous face recognition method according to the present embodiment first acquires face images obtained in various ways regardless of a domain ( S10 ). Then, the obtained face image is divided into a plurality of regions in a predetermined manner, a pattern of each divided region is estimated, and a feature vector is extracted for each element to obtain a feature map (S20).
특징맵이 획득되면, 특징맵의 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산한다(S30). 그리고 다수의 특징 벡터 각각에 대해 계산된 위치와 상대적 거리를 대응하는 특징 벡터에 결합한다(S40).When the feature map is obtained, the position and relative distance of each of the plurality of feature vectors of the feature map are calculated (S30). Then, the calculated positions and relative distances for each of the plurality of feature vectors are combined with the corresponding feature vectors (S40).
이후 위치와 상대적 거리가 결합된 특징맵의 다수의 특징 벡터가 가상의 공통 공간 상의 다수의 노드 벡터로 간주하고, 다수의 노드 벡터 사이의 관계가 에지로 표현하는 관계 그래프 모델을 획득한다(S50). 관계 그래프 모델 획득 단계(S50)는 우선 특징맵의 다수의 특징 벡터 각각을 공통 공간에 투영하여 대응하는 노드 벡터(ni)로 설정하여 관계 그래프 모델을 생성한다(S51). 그리고 설정된 다수의 노드 벡터(ni t)를 서로 연결하여 다수의 노드 벡터(ni t) 사이의 관계를 나타내는 다수의 에지(ei,j t)를 수학식 2에 따라 설정하고, 설정된 다수의 에지(ei,j t)를 기반으로 관계를 전파하여 연결된 다수의 노드 벡터(ni t+1)의 다음 상태를 수학식 3에 따라 계산하여 전파한다(S52). 그리고 관계 전파를 종료할지 여부를 판별한다(S53). 만일 관계 전파를 종료하지 않는 것으로 판별되면, 다음 상태의 노드 벡터(ni t+1)를 다시 다수의 에지(ei,j t+1)로 전파하고, 관계 전파된 다수의 에지(ei,j t+1)를 통해 다시 다음 상태의 노드 벡터(ni t+2)를 획득하는 관계 전파를 반복 수행한다(S52). Thereafter, a plurality of feature vectors of the feature map in which positions and relative distances are combined are regarded as a plurality of node vectors on a virtual common space, and a relationship graph model in which the relationships between the plurality of node vectors are expressed as edges (S50) . In the relation graph model acquisition step (S50), each of a plurality of feature vectors of the feature map is projected into a common space and set as a corresponding node vector (n i ) to generate a relation graph model (S51). And by connecting a plurality of set node vectors (n i t ) to each other, a plurality of edges (e i,j t ) representing the relationship between the plurality of node vectors (n i t ) are set according to
관계 전파가 기지정된 횟수로 수행되어 관계 전파를 종료하면, 관계 전파되어 획득된 관계 그래프 모델에서 의미적으로 중요한 노드 벡터(ni t+1)에 주의가 집중되도록 미리 학습된 패턴 추정 방식에 따라 요소 가중치(wi)를 획득하고, 획득된 요소 가중치(wi)를 관계 그래프 모델의 각 노드 벡터(ni t+1)에 가중하여 관계 그래프 모델을 업데이트 한다(S60).When the relationship propagation is performed a predetermined number of times to terminate the relationship propagation, according to the pre-learned pattern estimation method to focus attention on the semantically important node vector (n i t+1 ) in the relationship graph model obtained by the relationship propagation The element weight w i is obtained, and the relation graph model is updated by weighting the obtained element weight w i on each node vector n i t+1 of the relation graph model ( S60 ).
도 12를 참조하면, 관계 그래프 모델 업데이트 단계(S60)는 우선 관계 그래프 모델의 다수의 노드 벡터(ni t+1)의 대표값을 기지정된 방식으로 계산하여, 계산된 대표값으로 구성되는 대표 그래프 모델을 획득한다(S61). 여기서 노드 벡터(ni t+1)의 대표값은 일예로 노드 벡터(ni t+1) 원소의 평균값으로 획득될 수 있다. Referring to FIG. 12 , the relation graph model update step ( S60 ) first calculates representative values of a plurality of node vectors (n i t+1 ) of the relation graph model in a predetermined manner, and a representative composed of the calculated representative values. A graph model is obtained (S61). The representative value of the node vector (n i t + 1) may be obtained as an average value vector of the node (n i t + 1) elements as an example.
대표 그래프 모델이 획득되면, 미리 학습된 패턴 추정 방식에 따라 대표 그래프 모델을 인코딩하여 중요도 벡터를 획득한다(S62). 그리고 중요도 벡터를 미리 학습된 패턴 복구 방식에 따라 디코딩하여 관계 그래프 모델의 각 노드 벡터(ni t+1)의 중요도에 따른 가중치(wi)를 노드로 갖는 가중치 관계 모델 그래프를 획득한다(S63). 가중치 관계 모델 그래프가 획득되면, 관계 그래프 모델의 다수의 노드 벡터(ni t+1) 각각에 가중치 관계 모델 그래프의 대응하는 노드의 가중치(wi)를 가중하여 보정 관계 모델 그래프를 획득한다(S64).When the representative graph model is obtained, the importance vector is obtained by encoding the representative graph model according to the pre-learned pattern estimation method (S62). Then, the importance vector is decoded according to the pre-learned pattern recovery method to obtain a weighted relationship model graph having a weight (w i ) according to the importance of each node vector (n i t+1) of the relationship graph model as a node (S63) ). When the weight relationship model graph is obtained, a correction relationship model graph is obtained by weighting the weight (w i ) of the corresponding node of the weight relationship model graph to each of a plurality of node vectors (n i t+1 ) of the relationship graph model ( S64).
다시 도 11을 참조하면, 얼굴 인식 장치가 학습되어야 하는지 판별한다(S70). 만일 이미 학습된 것으로 판별되면, 보정 관계 모델 그래프를 얼굴 특징 데이터베이스(700)에 다수의 대상자에 대한 식별자와 맵핑되어 미리 저장된 보정 관계 모델 그래프인 다수의 기준 관계 그래프 모델과 유사도 비교한다(S81). 그리고 기지정된 기준 유사도 이상의 유사도를 갖는 유사 기준 관계 그래프 모델이 탐색되는지 판별한다(S82). 만일 유사 기준 관계 그래프 모델이 탐색되면, 탐색된 기준 관계 그래프 모델에 맵핑된 식별자를 출력하여 얼굴 인식을 수행한다(S83). 그러나 유사 기준 관계 그래프 모델이 탐색되지 않으면, 대응하는 얼굴 이미지를 탐색하지 못한 것으로 판별하여 얼굴 인식 실패를 출력한다(S84).Referring back to FIG. 11 , it is determined whether the face recognition apparatus needs to be trained ( S70 ). If it is determined that it has already been learned, the correction relation model graph is mapped with identifiers for a plurality of subjects in the
한편, 얼굴 인식 장치가 학습되어야 하는 것으로 판별되면, 학습을 수행한다(S90). 학습을 수행하는 단계(S90)에서는 우선 얼굴 이미지의 기준이 되는 대상자의 얼굴 이미지인 앵커와 상기 앵커와 동일한 대상자에 대한 얼굴 이미지인 포지티브 및 앵커와 상이한 대상자에 대한 얼굴 이미지인 네거티브 각각에 대한 보정 관계 모델 그래프를 획득하여 저장한다(S91). 그리고 획득된 공통 공간 상의 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)와 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n) 각각을 유사도에 기반하여 계산한다(S92). 이후 계산된 앵커와 포지티브 노드 벡터(xi a, xi p) 사이의 거리(si p)와 앵커와 네거티브 노드 벡터(xi a, xi n) 사이의 거리(si n) 사이의 비를 기반으로 손실을 계산하고 역전파하여 얼굴 인식 장치에 대한 학습을 수행한다(S93). 이때 얼굴 인식 장치의 얼굴 인식 민감도를 둔화시켜 강건한 얼굴 인식을 수행할 수 있도록, 마진(m)을 추가로 적용하여, 수학식 5와 같이 손실(Ltripletconditional)을 계산할 수 있다.On the other hand, if it is determined that the face recognition device needs to be learned, learning is performed (S90). In the learning step (S90), first, the anchor, which is the face image of the subject, which is the reference of the face image, the positive which is the face image for the same subject as the anchor, and the negative which is the face image for the subject different from the anchor, respectively, correction relation The model graph is acquired and stored (S91). And on the acquired common space anchor and the positive node vector distance between (x i a, x i p ) the distance between the (s i p) and the anchor and a negative node vector (x i a, x i n ) (s i n ) are calculated based on the degree of similarity (S92). The distance between the calculated anchor and the positive node vector (x i a , x i p ) (s i p ) and the distance between the anchor and the negative node vector (x i a , x i n ) (s i n ) A loss is calculated based on the ratio and backpropagated to learn about the face recognition device (S93). In this case, a loss (L tripletconditional ) may be calculated as in Equation (5) by additionally applying a margin (m) to perform robust face recognition by slowing the face recognition sensitivity of the face recognition apparatus.
본 발명에 따른 방법은 컴퓨터에서 실행시키기 위한 매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다. 여기서 컴퓨터 판독가능 매체는 컴퓨터에 의해 액세스 될 수 있는 임의의 가용 매체일 수 있고, 또한 컴퓨터 저장 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함하며, ROM(판독 전용 메모리), RAM(랜덤 액세스 메모리), CD(컴팩트 디스크)-ROM, DVD(디지털 비디오 디스크)-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등을 포함할 수 있다.The method according to the present invention may be implemented as a computer program stored in a medium for execution by a computer. Here, the computer-readable medium may be any available medium that can be accessed by a computer, and may include all computer storage media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, and read dedicated memory), RAM (Random Access Memory), CD (Compact Disk)-ROM, DVD (Digital Video Disk)-ROM, magnetic tape, floppy disk, optical data storage, and the like.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiment shown in the drawings, which is merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Accordingly, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.
100: 이종 이미지 획득부
200: 요소 특징 추출부
300: 벡터 위치 및 거리 계산부
400: 벡터 관계 모델링부
500: 관계 모델 업데이트부
510: 대표값 계산부
520: 인코더
530: 디코더
540: 업데이트부
600: 얼굴 인식부
700: 얼굴 특징 데이터베이스
800: 학습부100: heterogeneous image acquisition unit 200: element feature extraction unit
300: vector position and distance calculation unit 400: vector relationship modeling unit
500: Relational model update unit 510: Representative value calculation unit
520: encoder 530: decoder
540: update unit 600: face recognition unit
700: facial feature database 800: learning unit
Claims (18)
상기 특징맵에서 상기 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산하여 대응하는 특징 벡터에 결합하는 벡터 위치 및 거리 계산부;
위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 가상의 공통 공간 상의 다수의 노드 벡터로 간주하고, 다수의 노드 벡터 사이의 관계가 에지로 표현하는 관계 그래프 모델을 획득하는 벡터 관계 모델링부;
미리 학습된 패턴 추정 방식에 따라 관계 그래프 모델의 상기 다수의 노드 벡터 각각의 의미적 중요도에 따른 가중치를 획득하고, 상기 다수의 노드 벡터 각각에 획득된 가중치를 가중하여 보정 관계 그래프 모델을 획득하는 관계 모델 업데이트부; 및
상기 보정 관계 그래프 모델을 대상자가 맵핑되어 미리 저장된 보정 관계 모델 그래프인 다수의 기준 관계 그래프 모델과 유사도 비교하여, 획득된 얼굴 이미지의 대상자를 인식하는 얼굴 인식부를 포함하는 이종 얼굴 인식 장치.Element that divides the acquired face image regardless of the domain indicating the acquisition method into a plurality of regions according to a pre-learned pattern estimation method, and obtains a feature map composed of a plurality of feature vectors by estimating the pattern of each divided region feature extraction unit;
a vector position and distance calculator for calculating a position and a relative distance of each of the plurality of feature vectors in the feature map and combining them with a corresponding feature vector;
a vector relationship modeling unit that considers each of a plurality of feature vectors in which a position and a relative distance are combined as a plurality of node vectors on a virtual common space, and obtains a relationship graph model in which the relationship between the plurality of node vectors is expressed as an edge;
A relation in which a weight according to the semantic importance of each of the plurality of node vectors of the relationship graph model is obtained according to a pre-learned pattern estimation method, and a correction relationship graph model is obtained by weighting the obtained weights to each of the plurality of node vectors model update unit; and
and a face recognition unit for recognizing the subject of the obtained face image by comparing the similarity between the correction relation graph model and a plurality of reference relation graph models that are pre-stored correction relation model graphs to which the subject is mapped.
위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 다수의 노드 벡터로서 가상의 공통 공간 상에 투영하고, 상기 다수의 노드 벡터에 따라 상기 다수의 노드 벡터 사이의 관계를 나타내는 다수의 에지를 학습에 의해 획득되는 관계 가중치를 기반으로 설정하여 상기 관계 그래프 모델을 생성하는 이종 얼굴 인식 장치.According to claim 1, wherein the vector relationship modeling unit
Each of a plurality of feature vectors combined with a position and a relative distance is projected on a virtual common space as a plurality of node vectors, and a plurality of edges representing relationships between the plurality of node vectors according to the plurality of node vectors are studied. A heterogeneous face recognition device for generating the relation graph model by setting it based on the relation weight obtained by the
설정된 다수의 에지에 따라 각 에지에 연결된 노드 벡터로 관계를 전파하여 다수의 노드 벡터를 다음 상태로 업데이트하고, 업데이트된 노드 벡터의 상태에 따라 다시 에지를 업데이트하는 관계 전파를 기지정된 횟수로 반복 수행하는 이종 얼굴 인식 장치.The method of claim 2, wherein the vector relationship modeling unit
According to the number of set edges, the relationship propagation of updating the multiple node vectors to the next state by propagating the relationship to the node vector connected to each edge, and updating the edge again according to the state of the updated node vector is repeated a predetermined number of times. a heterogeneous face recognition device.
현재 상태(t)의 전체 D개의 노드 벡터 중 i번째 노드 벡터(ni t)로부터 j번째 노드 벡터(ni t) 방향으로 연결되는 현재 상태의 에지(ei,j t)를 수학식
(여기서 σ는 활성화 함수이고, We T 는 관계 가중치의 전치 행렬이다.)
에 따라 획득하고,
i번째 노드 벡터(ni t)에 연결된 현재 상태의 다수의 에지(ek,i t)로부터 다음 상태의 노드 벡터(ni t+1)를 수학식
에 따라 획득하는 이종 얼굴 인식 장치.The method of claim 3, wherein the vector relationship modeling unit
The edge (e i,j t ) of the current state connected in the direction from the i-th node vector (n i t ) to the j-th node vector (n i t ) among all D node vectors of the current state (t) is expressed by the equation
(Where σ is the activation function, and W e T is the transpose matrix of relation weights.)
obtained according to
the i-th node, then the state vector of the node vector (n i t + 1) from a plurality of the edges of the current status (e k, t i) connected to the (n i t) Equation
A heterogeneous face recognition device acquired according to
기지정된 방식으로 상기 다수의 노드 벡터 각각의 대표값을 획득하여 대표값으로 표현된 대표 그래프 모델을 획득하는 대표값 계산부;
미리 학습된 패턴 추정 방식에 따라 상기 대표 그래프 모델을 인코딩하여 상기 관계 그래프 모델의 다수의 노드 벡터 각각의 중요도를 나타내는 중요도 벡터를 획득하는 인코더;
상기 중요도 벡터를 인가받아 미리 학습된 패턴 복구 방식에 따라 디코딩하여 상기 관계 그래프 모델의 각 노드 벡터의 중요도에 따른 가중치를 노드로 갖는 가중치 관계 모델 그래프를 획득하는 디코더; 및
상기 관계 그래프 모델의 다수의 노드 벡터 각각에 상기 가중치 관계 모델 그래프의 대응하는 노드의 가중치를 가중하여 상기 보정 관계 모델 그래프를 획득하는 업데이트부를 포함하는 이종 얼굴 인식 장치.The method of claim 2, wherein the relationship model update unit
a representative value calculator for obtaining a representative value of each of the plurality of node vectors in a predetermined manner to obtain a representative graph model expressed as a representative value;
an encoder that encodes the representative graph model according to a pre-learned pattern estimation method to obtain an importance vector indicating the importance of each of a plurality of node vectors of the relation graph model;
a decoder that receives the importance vector and decodes it according to a pre-learned pattern recovery method to obtain a weight relation model graph having a weight according to the importance of each node vector of the relation graph model as a node; and
and an updater configured to obtain the correction relation model graph by weighting a weight of a corresponding node of the weight relation model graph to each of the plurality of node vectors of the relation graph model.
상기 벡터 관계 모델링부와 상기 관계 모델 업데이트부를 학습시키기 위한 학습부를 더 포함하고,
상기 학습부는
학습 데이터로서 인가되는 얼굴 이미지의 기준이 되는 대상자의 얼굴 이미지인 앵커와 상기 앵커와 동일한 대상자에 대한 다른 도메인의 얼굴 이미지인 포지티브 및 앵커와 상이한 대상자에 대한 얼굴 이미지인 네거티브 각각에 대한 보정 관계 모델 그래프를 획득하고, 상기 공통 공간 상에서 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리를 유사도에 기반하여 계산하며, 계산된 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리 사이의 비를 기반으로 손실을 계산하고 역전파하는 이종 얼굴 인식 장치.The method of claim 5, wherein the heterogeneous face recognition device comprises:
Further comprising a learning unit for learning the vector relation modeling unit and the relation model update unit,
the learning unit
Correction relationship model graph for each of the anchor, which is the face image of the subject, which is the standard of the face image applied as training data, the positive, which is the face image of another domain for the same subject as the anchor, and the negative, which is the face image of the subject, which is different from the anchor. obtains, and calculates the distance between the anchor and each of the positive node vectors in the common space and the distance between the anchor and the negative node vector respectively, based on the similarity, the calculated anchor and the positive A heterogeneous face recognition device that calculates and backpropagates a loss based on a ratio between the distance between each corresponding multiple node vector and the distance between the anchor and each negative node vector.
앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si p)와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si n) 사이의 비에 기지정된 마진(m)을 추가로 적용하여, 수학식
(여기서 []+ 는 양의 값만을 취하는 포지티브 함수이다.)
에 따라 손실(Ltripletconditional)을 계산하는 이종 얼굴 인식 장치.The method of claim 6, wherein the learning unit
A margin (m) specified in the ratio between the distance (s i p ) between the anchor and each corresponding number of node vectors of the positive and the distance ( s i n ) between the anchor and the corresponding plurality of node vectors of each negative In addition, by applying the formula
(Where [] + is a positive function that takes only positive values.)
A heterogeneous face recognition device that computes the loss (L tripletconditional ) according to
상기 다수의 기준 관계 그래프 모델이 대상자의 식별자에 맵핑되어 저장되는 얼굴 특징 데이터베이스를 더 포함하고,
상기 얼굴 인식부는
상기 보정 관계 그래프 모델과 기지정된 기준 유사도 이상의 유사도를 갖는 기준 관계 그래프 모델이 탐색되면, 탐색된 기준 관계 그래프 모델에 맵핑된 식별자를 얼굴 인식 결과로 출력하는 이종 얼굴 인식 장치.According to claim 1, wherein the heterogeneous face recognition device
Further comprising a facial feature database in which the plurality of reference relationship graph models are mapped to the identifier of the subject and stored,
The face recognition unit
When a reference relationship graph model having a similarity greater than or equal to a predetermined reference similarity is found with the correction relationship graph model, an identifier mapped to the searched reference relationship graph model is output as a face recognition result.
도메인에 따라 컬러 이미지, 적외선 이미지, 열적외선 이미지 또는 스케치 이미지 중 하나를 인가받아 대상자를 인식하는 이종 얼굴 인식 장치.According to claim 1, wherein the heterogeneous face recognition device
A heterogeneous face recognition device that recognizes a subject by receiving one of a color image, an infrared image, a thermal infrared image, or a sketch image according to a domain.
획득되는 방식을 나타내는 도메인에 무관하게 획득된 얼굴 이미지를 미리 학습된 패턴 추정 방식에 따라 다수의 영역으로 구분하고, 구분된 각 영역의 패턴을 추정하여 다수의 특징 벡터로 구성된 특징맵을 획득하는 단계;
상기 특징맵에서 상기 다수의 특징 벡터 각각의 위치와 상대적 거리를 계산하여 대응하는 특징 벡터에 결합하는 단계;
위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 가상의 공통 공간 상의 다수의 노드 벡터로 간주하고, 다수의 노드 벡터 사이의 관계가 에지로 표현하는 관계 그래프 모델을 획득하는 단계;
미리 학습된 패턴 추정 방식에 따라 관계 그래프 모델의 상기 다수의 노드 벡터 각각의 의미적 중요도에 따른 가중치를 획득하고, 상기 다수의 노드 벡터 각각에 획득된 가중치를 가중하여 보정 관계 그래프 모델을 획득하는 단계; 및
상기 보정 관계 그래프 모델을 대상자가 맵핑되어 미리 저장된 보정 관계 모델 그래프인 다수의 기준 관계 그래프 모델과 유사도 비교하여, 획득된 얼굴 이미지의 대상자를 인식하는 단계를 포함하는 이종 얼굴 인식 방법.In the heterogeneous face recognition method of a heterogeneous face recognition device,
Classifying the acquired face image irrespective of the domain indicating the acquisition method into a plurality of regions according to a pre-learned pattern estimation method, and estimating the pattern of each divided region to obtain a feature map composed of a plurality of feature vectors ;
calculating a position and a relative distance of each of the plurality of feature vectors in the feature map and combining them with a corresponding feature vector;
obtaining a relationship graph model in which each of a plurality of feature vectors combined with a position and a relative distance is regarded as a plurality of node vectors on a virtual common space, and relationships between the plurality of node vectors are expressed as edges;
Obtaining a weight according to the semantic importance of each of the plurality of node vectors of a relationship graph model according to a pre-learned pattern estimation method, and obtaining a corrected relationship graph model by weighting the obtained weights on each of the plurality of node vectors ; and
and recognizing the subject of the obtained face image by comparing the correction relation graph model with a plurality of reference relation graph models that are pre-stored correction relation model graphs to which the subject is mapped.
위치와 상대적 거리가 결합된 다수의 특징 벡터 각각을 다수의 노드 벡터로서 가상의 공통 공간 상에 투영하는 단계; 및
상기 다수의 노드 벡터에 따라 상기 다수의 노드 벡터 사이의 관계를 나타내는 다수의 에지를 학습에 의해 획득되는 관계 가중치를 기반으로 설정하여 상기 관계 그래프 모델을 생성하는 단계를 포함하는 이종 얼굴 인식 방법.The method of claim 10, wherein the obtaining of the relation graph model comprises:
Projecting each of a plurality of feature vectors combined with a position and a relative distance as a plurality of node vectors on a virtual common space; and
and generating the relationship graph model by setting a plurality of edges representing relationships between the plurality of node vectors according to the plurality of node vectors based on a relationship weight obtained by learning.
기지정된 횟수로 반복하여 설정된 다수의 에지에 따라 각 에지에 연결된 노드 벡터로 관계를 전파하여 다수의 노드 벡터를 다음 상태로 업데이트하고, 업데이트된 노드 벡터의 상태에 따라 다시 에지로 관계 전파하는 단계를 더 포함하는 이종 얼굴 인식 방법.12. The method of claim 11, wherein obtaining the relationship graph model comprises:
Repeating a predetermined number of times and propagating the relationship to the node vector connected to each edge according to the set multiple edges, updating the multiple node vectors to the next state, and propagating the relationship back to the edge according to the state of the updated node vector. A heterogeneous face recognition method further comprising.
현재 상태(t)의 전체 D개의 노드 벡터 중 i번째 노드 벡터(ni t)로부터 j번째 노드 벡터(ni t) 방향으로 연결되는 현재 상태의 에지(ei,j t)를 수학식
(여기서 σ는 활성화 함수이고, We T 는 관계 가중치의 전치 행렬이다.)
에 따라 획득하는 단계; 및
i번째 노드 벡터(ni t)에 연결된 현재 상태의 다수의 에지(ek,i t)로부터 다음 상태의 노드 벡터(ni t+1)를 수학식
에 따라 획득하는 단계를 포함하는 이종 얼굴 인식 방법.13. The method of claim 12, wherein propagating the relationship comprises:
The edge (e i,j t ) of the current state connected in the direction from the i-th node vector (n i t ) to the j-th node vector (n i t ) among all D node vectors of the current state (t) is expressed by the equation
(Where σ is the activation function, and W e T is the transpose matrix of relation weights.)
obtaining according to; and
the i-th node, then the state vector of the node vector (n i t + 1) from a plurality of the edges of the current status (e k, t i) connected to the (n i t) Equation
A heterogeneous face recognition method comprising acquiring according to
기지정된 방식으로 상기 다수의 노드 벡터 각각의 대표값을 획득하여 대표값으로 표현된 대표 그래프 모델을 획득하는 단계;
미리 학습된 패턴 추정 방식에 따라 상기 대표 그래프 모델을 인코딩하여 상기 관계 그래프 모델의 다수의 노드 벡터 각각의 중요도를 나타내는 중요도 벡터를 획득하는 단계;
상기 중요도 벡터를 인가받아 미리 학습된 패턴 복구 방식에 따라 디코딩하여 상기 관계 그래프 모델의 각 노드 벡터의 중요도에 따른 가중치를 노드로 갖는 가중치 관계 모델 그래프를 획득하는 단계; 및
상기 관계 그래프 모델의 다수의 노드 벡터 각각에 상기 가중치 관계 모델 그래프의 대응하는 노드의 가중치를 가중하여 상기 보정 관계 모델 그래프를 획득하는 단계를 포함하는 이종 얼굴 인식 방법.The method of claim 11, wherein the obtaining of the correction relationship graph model comprises:
obtaining a representative graph model expressed as a representative value by obtaining a representative value of each of the plurality of node vectors in a predetermined manner;
encoding the representative graph model according to a pre-learned pattern estimation method to obtain an importance vector indicating the importance of each of a plurality of node vectors of the relation graph model;
receiving the importance vector and decoding it according to a pre-learned pattern recovery method to obtain a weight relationship model graph having a weight according to the importance of each node vector of the relationship graph model as a node; and
and obtaining the correction relation model graph by weighting the weight of the corresponding node of the weight relation model graph to each of the plurality of node vectors of the relation graph model.
학습 단계를 더 포함하고,
상기 학습 단계는
학습 데이터로서 인가되는 얼굴 이미지의 기준이 되는 대상자의 얼굴 이미지인 앵커와 상기 앵커와 동일한 대상자에 대한 다른 도메인의 얼굴 이미지인 포지티브 및 앵커와 상이한 대상자에 대한 얼굴 이미지인 네거티브 각각에 대한 보정 관계 모델 그래프를 획득하는 단계;
상기 공통 공간 상에서 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리를 유사도에 기반하여 계산하는 단계; 및
계산된 앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리 사이의 비를 기반으로 손실을 계산하고 역전파하는 단계를 포함하는 이종 얼굴 인식 방법.15. The method of claim 14, wherein the heterogeneous face recognition method
further comprising a learning step,
The learning step is
Correction relationship model graph for each of the anchor, which is the face image of the subject, which is the standard of the face image applied as training data, the positive, which is the face image of another domain for the same subject as the anchor, and the negative, which is the face image of the subject, which is different from the anchor. obtaining a;
calculating a distance between an anchor and a corresponding plurality of node vectors of each positive and a distance between an anchor and a corresponding plurality of node vectors of each negative on the common space based on the similarity; and
A heterogeneous face comprising the steps of calculating and backpropagating a loss based on the ratio between the calculated distance between the anchor and each corresponding multiple node vector of the positive and the distance between the anchor and the corresponding multiple node vector of each negative Recognition method.
앵커와 포지티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si p)와 앵커와 네거티브 각각의 대응하는 다수의 노드 벡터 사이의 거리(si n) 사이의 비에 기지정된 마진(m)을 추가로 적용하여, 수학식
(여기서 []+ 는 양의 값만을 취하는 포지티브 함수이다.)
에 따라 손실(Ltripletconditional)을 계산하는 이종 얼굴 인식 방법.16. The method of claim 15, wherein the step of backpropagating
A margin (m) specified in the ratio between the distance (s i p ) between the anchor and each corresponding number of node vectors of the positive and the distance ( s i n ) between the anchor and the corresponding plurality of node vectors of each negative In addition, by applying the formula
(Where [] + is a positive function that takes only positive values.)
A heterogeneous face recognition method that computes the loss (L tripletconditional ) according to
얼굴 이미지의 대상자의 식별자에 맵핑되어 저장된 상기 다수의 기준 관계 그래프 모델 중 상기 보정 관계 그래프 모델과 기지정된 기준 유사도 이상의 유사도를 갖는 기준 관계 그래프 모델이 탐색하는 단계;
기준 유사도 이상의 유사도를 갖는 기준 관계 그래프 모델이 탐색되면, 탐색된 기준 관계 그래프 모델에 맵핑된 식별자를 얼굴 인식 결과로 출력하는 단계를 포함하는 이종 얼굴 인식 방법.The method of claim 10, wherein recognizing the subject comprises:
searching for a reference relationship graph model having a similarity greater than or equal to a predetermined reference similarity to the correction relationship graph model among the plurality of reference relationship graph models that are mapped to the identifier of the subject of the face image and stored;
When a reference relationship graph model having a similarity greater than or equal to the reference similarity is found, outputting an identifier mapped to the searched reference relationship graph model as a face recognition result.
도메인에 따라 컬러 이미지, 적외선 이미지, 열적외선 이미지 또는 스케치 이미지 중 하나를 인가받아 대상자를 인식하는 이종 얼굴 인식 방법.11. The method of claim 10, wherein the heterogeneous face recognition method
A heterogeneous face recognition method that recognizes a subject by receiving one of a color image, an infrared image, a thermal infrared image, or a sketch image according to a domain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/005235 WO2021182670A1 (en) | 2020-03-10 | 2020-04-21 | Heterogeneous face recognition device and method based on extracting relationships between elements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200029460 | 2020-03-10 | ||
KR20200029460 | 2020-03-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210114308A true KR20210114308A (en) | 2021-09-23 |
KR102356438B1 KR102356438B1 (en) | 2022-01-27 |
Family
ID=77926472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200038715A KR102356438B1 (en) | 2020-03-10 | 2020-03-31 | Apparatus and method for recognizing heterogeneous faces based on relationship between component |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102356438B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102375587B1 (en) * | 2021-11-15 | 2022-03-18 | 주식회사 버츄어라이브 | Method and apparauts for suggestion and composition of hair image |
KR102521246B1 (en) * | 2023-01-30 | 2023-04-14 | 주식회사 그래파이 | Edge-based transaction fraud detection method and apparatus for performing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101727833B1 (en) * | 2015-11-20 | 2017-04-19 | 단국대학교 산학협력단 | Apparatus and method for constructing composite feature vector based on discriminant analysis for face recognition |
KR20170134508A (en) * | 2015-03-20 | 2017-12-06 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | Relevance Score Assignment to Artificial Neural Networks |
KR20170140519A (en) | 2016-06-13 | 2017-12-21 | 한국전자통신연구원 | System and method for recognizing pose invariant face |
-
2020
- 2020-03-31 KR KR1020200038715A patent/KR102356438B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170134508A (en) * | 2015-03-20 | 2017-12-06 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | Relevance Score Assignment to Artificial Neural Networks |
KR101727833B1 (en) * | 2015-11-20 | 2017-04-19 | 단국대학교 산학협력단 | Apparatus and method for constructing composite feature vector based on discriminant analysis for face recognition |
KR20170140519A (en) | 2016-06-13 | 2017-12-21 | 한국전자통신연구원 | System and method for recognizing pose invariant face |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102375587B1 (en) * | 2021-11-15 | 2022-03-18 | 주식회사 버츄어라이브 | Method and apparauts for suggestion and composition of hair image |
KR102521246B1 (en) * | 2023-01-30 | 2023-04-14 | 주식회사 그래파이 | Edge-based transaction fraud detection method and apparatus for performing the same |
Also Published As
Publication number | Publication date |
---|---|
KR102356438B1 (en) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arietta et al. | City forensics: Using visual elements to predict non-visual city attributes | |
CN111666588B (en) | Emotion differential privacy protection method based on generation countermeasure network | |
CN111368672A (en) | Construction method and device for genetic disease facial recognition model | |
CN113705290A (en) | Image processing method, image processing device, computer equipment and storage medium | |
WO2021243947A1 (en) | Object re-identification method and apparatus, and terminal and storage medium | |
KR102356438B1 (en) | Apparatus and method for recognizing heterogeneous faces based on relationship between component | |
CN112116684A (en) | Image processing method, device, equipment and computer readable storage medium | |
CN112446322B (en) | Eyeball characteristic detection method, device, equipment and computer readable storage medium | |
CN113033507B (en) | Scene recognition method and device, computer equipment and storage medium | |
CN115050064A (en) | Face living body detection method, device, equipment and medium | |
KR102325250B1 (en) | companion animal identification system and method therefor | |
CN113705596A (en) | Image recognition method and device, computer equipment and storage medium | |
JP2004054957A (en) | Method of representing data distribution, method of representing data element, descriptor of data element, method of collating or classifying query data element, device set to execute the method, computer program, and computer readable storage medium | |
CN114494543A (en) | Action generation method and related device, electronic equipment and storage medium | |
CN118133839A (en) | Graph and text retrieval method and system based on semantic information reasoning and cross-modal interaction | |
CN112101154B (en) | Video classification method, apparatus, computer device and storage medium | |
WO2021182670A1 (en) | Heterogeneous face recognition device and method based on extracting relationships between elements | |
CN114519897B (en) | Human face living body detection method based on color space fusion and cyclic neural network | |
KR102540290B1 (en) | Apparatus and Method for Person Re-Identification based on Heterogeneous Sensor Camera | |
TWI780563B (en) | Image positioning model acquisition method, terminal and computer-readable storage medium | |
CN112364946B (en) | Training method of image determination model, and method, device and equipment for image determination | |
KR100621883B1 (en) | An adaptive realtime face detecting method based on training | |
CN113887353A (en) | Visible light-infrared pedestrian re-identification method and system | |
CN118427395B (en) | Content retrieval method, apparatus, device, storage medium, and program product | |
CN118015694B (en) | Visible light-infrared cross-mode pedestrian image retrieval method based on partition perception network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |