KR20210110120A - Photocuring GelMA Hydrogel Bioink Manufacturing Method - Google Patents

Photocuring GelMA Hydrogel Bioink Manufacturing Method Download PDF

Info

Publication number
KR20210110120A
KR20210110120A KR1020200030472A KR20200030472A KR20210110120A KR 20210110120 A KR20210110120 A KR 20210110120A KR 1020200030472 A KR1020200030472 A KR 1020200030472A KR 20200030472 A KR20200030472 A KR 20200030472A KR 20210110120 A KR20210110120 A KR 20210110120A
Authority
KR
South Korea
Prior art keywords
gelma
present
bio
ink
crosslinking
Prior art date
Application number
KR1020200030472A
Other languages
Korean (ko)
Inventor
박운영
엄준성
문상준
Original Assignee
주식회사 에이티스
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이티스, 울산과학기술원 filed Critical 주식회사 에이티스
Publication of KR20210110120A publication Critical patent/KR20210110120A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a photocurable GelMA hydrogel bio-ink manufacturing method and comprises a cell culture medium (Dulbecco's modified eagle medium; DMEM), gelatin methacrylate (GelMA) as a crosslinking agent, a photoinitiator, and VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]. The present invention forms crosslinking very quickly with ultraviolet light and has high cell compatibility. By utilizing the characteristics of the very fast crosslinking, there is a remarkable effect of shortening the 3D bioprinting time, improving the maximum output size, and stably forming a 3D structure.

Description

광경화 GelMA 하이드로젤 바이오잉크 제조방법{Photocuring GelMA Hydrogel Bioink Manufacturing Method}Photocuring GelMA Hydrogel Bioink Manufacturing Method

본발명은 광경화 GelMA 하이드로젤 바이오잉크 제조방법에 관한 것으로, 보다 상세하게는 자외선으로 매우 빠르게 가교결합이 형성되고 높은 세포 적합성을 가지며, 상기 매우 빠른 가교결합의 특성을 활용하여 3차원 바이오 프린팅 시간의 단축, 최대 출력 크기 향상과 3차원 구조물의 안정적인 형성이 가능한 광경화 GelMA 하이드로젤 바이오잉크 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a photocurable GelMA hydrogel bio-ink, and more particularly, it forms a very fast cross-link with ultraviolet light and has high cell compatibility, and utilizes the very fast cross-linking property to take advantage of the 3D bio-printing time. It relates to a method for manufacturing a photocurable GelMA hydrogel bio-ink capable of shortening the speed, improving the maximum output size, and stably forming a three-dimensional structure.

일반적으로 바이오잉크를 사용하는 3D 바이오 프린팅은 살아있는 세포를 포함하여 프린팅되어 인체에 이식가능하며, 원하는 모양으로 만들 수 있는 장점도 있어서 최근 개발이 많아지며, 일례로서 종래기술인 등록특허공보 등록번호 10-1983741호에는 실크 피브로인(Silk Fibroin)과 글리시딜 메타크릴레이트(Glycidyl methacrylate)가 중합된 고분자 중합체; 광개시제; 및 물;을 포함하며, 상기 고분자 중합체는 실크 피브로인을 0.05 ~ 0.35 g/ml 농도로 용해시킨 용액에 141 ~ 705 mM 농도로 글리시딜 메타크릴레이트(Glycidyl methacrylate)를 투입하여 중합시킨 것을 특징으로 하는, 바이오 잉크.가 공개되어 있다.In general, 3D bioprinting using bio-ink is printed including living cells and can be implanted in the human body, and has the advantage that it can be made into a desired shape, so there is a lot of development in recent years. 1983741 discloses a high molecular polymer obtained by polymerizing silk fibroin and glycidyl methacrylate; photoinitiators; and water; wherein the polymer is polymerized by adding glycidyl methacrylate at a concentration of 141 to 705 mM in a solution in which silk fibroin is dissolved at a concentration of 0.05 to 0.35 g/ml. , Bio Ink. has been disclosed.

또한, 등록번호 10-2005737호에는 다음 단계를 포함하는, 3D 바이오 프린터용 바이오 잉크 조성물의 제조 방법: (a) 히알루론산(hyaluronic acid, HA)에 티라민이 결합(conjugate)된 히알루론산 하이드로겔을 제조하는 단계;In addition, registration No. 10-2005737, a method for producing a bio-ink composition for a 3D bio-printer, comprising the following steps: (a) hyaluronic acid hydrogel in which tyramine is conjugated to hyaluronic acid (HA) manufacturing;

(b) 상기 (a) 단계의 히알루론산 하이드로겔에 홍합 접착 단백질 또는 이의 변이체를 혼합하여 코아세르베이트(coacervate)를 형성시키는 단계로서,(b) mixing the mussel adhesive protein or a variant thereof with the hyaluronic acid hydrogel of step (a) to form coacervate,

상기 홍합 접착 단백질 또는 이의 변이체는 서열번호 1, 서열번호 2 및 서열번호 3의 아미노산 서열로 이루어진 군에서 선택된 아미노산 서열로 이루어진 단백질; 또는 상기 군에서 선택된 1 종 이상의 아미노산 서열이 연결된 융합 단백질이고; 및 (c) 상기 (b) 단계의 코아세르베이트(coacervate)를 광반응시켜 광가교 결합시키는 단계.가 공개되어 있다.The mussel adhesion protein or variant thereof may include a protein consisting of an amino acid sequence selected from the group consisting of amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3; or a fusion protein in which one or more amino acid sequences selected from the group are linked; and (c) photoreacting the coacervate of step (b) to photocrosslink it.

그러나 상기 종래기술들은 가교결합 속도가 느려서 3차원 바이오 프린팅 시간이 길어져 비경제적이며 3차원 구조물이 불안정적인 단점이 있었다.However, the prior art has a disadvantage in that the cross-linking rate is slow and the 3D bioprinting time is long, which is uneconomical and the 3D structure is unstable.

따라서 본 발명은 상기와 같은 종래 기술의 문제점을 해소하기 위해 안출된 것으로서 자외선으로 매우 빠르게 가교결합이 형성되고 높은 세포 적합성을 가지며, 인공생체조직 또는 유사생체조직 출력을 목적으로 하는 3차원 바이오 프린터의 출력 재료로서, 배양된 생세포와 혼합되어 출력되고 가교되어, 외형적 구조물을 생성하는 3차원 바이오 프린터용 바이오잉크 제조방법을 제공하고자 하는 것이다. 그리고 매우 빠른 가교결합의 특성을 활용하여 3차원 바이오 프린팅 시간의 단축, 최대 출력 크기 향상과 3차원 구조물의 안정적인 형성이 가능하며, 매우 빠른 광경화 속도를 얻을 수 있는 광경화 GelMA 하이드로젤 바이오잉크 제조방법을 제공하고자 하는 것이다.Therefore, the present invention has been devised to solve the problems of the prior art as described above, and a 3D bioprinter for the purpose of outputting artificial biological tissue or similar biological tissue, which cross-links are formed very quickly with ultraviolet rays, has high cell compatibility, and is An object of the present invention is to provide a bioink manufacturing method for a three-dimensional bioprinter that is mixed with cultured live cells, printed and crosslinked to create an external structure. And by utilizing the characteristics of very fast crosslinking, it is possible to shorten the 3D bioprinting time, improve the maximum output size, and stably form a 3D structure, and manufacture a photocurable GelMA hydrogel bioink that can obtain a very fast photocuring rate We want to provide a way.

본발명은 광경화 GelMA 하이드로젤 바이오잉크 제조방법에 관한 것으로, 세포배양액 (Dulbeco’s Modified Eagle’s Media; DMEM), 가교제인 젤라틴 메타크릴레이트 (Gelatine Methacrylate; GelMA), 광개시제, VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]를 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a photocurable GelMA hydrogel bio-ink, a cell culture medium (Dulbeco's Modified Eagle's Media; DMEM), a crosslinking agent gelatin methacrylate (Gelatin Methacrylate; GelMA), a photoinitiator, VA-086 [ It is characterized in that it contains 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide].

따라서 본 발명은 자외선으로 매우 빠르게 가교결합이 형성되고 높은 세포 적합성을 가지며, 상기 매우 빠른 가교결합의 특성을 활용하여 3차원 바이오 프린팅 시간의 단축, 최대 출력 크기 향상과 3차원 구조물의 안정적인 형성이 가능한 현저한 효과가 있다.Therefore, the present invention is capable of shortening the 3D bioprinting time, improving the maximum output size, and stably forming a 3D structure by utilizing the characteristics of the very fast crosslinking, which are very rapidly crosslinked with ultraviolet light and have high cell compatibility. It has a remarkable effect.

도 1은 본발명의 초고속 광경화 GelMA 하이드로젤 바이오잉크 광경화(가교결합) 설명도
도 2는 본발명의 UV 흡광도 spectrum
도 3은 본발명의 가교시간 측정위한 시료 사진{UV 경화기 (120W, 385 ~ 405nm 범위 조사}
도 4는 본발명의 가교 시간 측정 Brookfield 점도계와 시간별 점도 측정사진
도 5는 본발명의 세포독성시험성적서
도 6은 본발명의 세포독성시험성적서 세포생존율 그래프
도 7은 본발명의 세포생존율 그래프(7 DAY 세포 생존율 (Live/Dead 신호))
도 8은 본발명의 세포생존율 사진(7 DAY 세포 생존율 (Live/Dead 신호))
1 is an explanatory diagram of ultrafast photocuring GelMA hydrogel bioink photocuring (crosslinking) of the present invention
2 is a UV absorbance spectrum of the present invention
Figure 3 is a sample photograph for measuring the crosslinking time of the present invention {UV curing machine (120W, 385 ~ 405nm range irradiation)
4 is a photograph of a Brookfield viscometer measuring the crosslinking time of the present invention and measuring the viscosity over time
5 is a cytotoxicity test report of the present invention
Figure 6 is a cell viability graph of the cytotoxicity test report of the present invention
7 is a graph of cell viability of the present invention (7 DAY cell viability (Live/Dead signal))
8 is a photo of cell viability of the present invention (7 DAY cell viability (Live/Dead signal))

본발명은 광경화 GelMA 하이드로젤 바이오잉크 제조방법에 관한 것으로, 세포배양액 (Dulbeco’s Modified Eagle’s Media; DMEM), 가교제인 젤라틴 메타크릴레이트 (Gelatine Methacrylate; GelMA), 광개시제, VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]를 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a photocurable GelMA hydrogel bio-ink, a cell culture medium (Dulbeco's Modified Eagle's Media; DMEM), a crosslinking agent gelatin methacrylate (Gelatin Methacrylate; GelMA), a photoinitiator, VA-086 [ It is characterized in that it contains 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide].

또한, 상기 초고속 광경화 GelMA 하이드로젤 바이오잉크는 UV-A(320 ~ 400nm) 범위의 자외선을 5 ~ 30초 조사하여 가교결합이 형성되는 것을 특징으로 한다.In addition, the ultrafast photocurable GelMA hydrogel bio-ink is characterized in that cross-links are formed by irradiating UV-A (320-400 nm) ultraviolet rays for 5 to 30 seconds.

또한, 상기 초고속 광경화 GelMA 하이드로젤 바이오잉크는 30 ~ 37℃ 온도에서 액체형태를 띄는 것을 특징으로 한다.In addition, the ultrafast photocurable GelMA hydrogel bio-ink is characterized in that it takes a liquid form at a temperature of 30 ~ 37 ℃.

본발명을 첨부도면에 의해 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings as follows.

도 1은 본발명의 초고속 광경화 GelMA 하이드로젤 바이오잉크 광경화(가교결합) 설명도, 도 2는 본발명의 UV 흡광도 spectrum, 도 3은 본발명의 가교시간 측정위한 시료 사진{UV 경화기 (120W, 385 ~ 405nm 범위 조사}, 도 4는 본발명의 가교 시간 측정 Brookfield 점도계와 시간별 점도 측정사진, 도 5는 본발명의 세포독성시험성적서, 도 6은 본발명의 세포독성시험성적서 세포생존율 그래프, 도 7은 본발명의 세포생존율 그래프(7 DAY 세포 생존율 (Live/Dead 신호))이다. 도 8은 본발명의 세포생존율 사진(7 DAY 세포 생존율 (Live/Dead 신호))이다.1 is an explanatory view of ultrafast photocuring GelMA hydrogel bioink photocuring (crosslinking) of the present invention, FIG. UV absorbance spectrum, Figure 3 is a photograph of a sample for measuring the crosslinking time of the present invention {UV curing machine (120W, irradiation in the range of 385 to 405nm}) The cytotoxicity test report of the present invention, Figure 6 is a cell viability graph of the cytotoxicity test report of the present invention, Figure 7 is a cell viability graph of the present invention (7 DAY cell viability (Live/Dead signal)). Cell viability photo (7 DAY cell viability (Live/Dead signal)).

본발명은 자외선으로 매우 빠르게 가교결합이 형성되고 높은 세포 적합성을 가지는 3차원 바이오 프린터용 바이오잉크이다.The present invention is a bio-ink for a three-dimensional bio-printer that forms cross-links very quickly with ultraviolet light and has high cell compatibility.

인공생체조직 또는 유사생체조직 출력을 목적으로 하는 3차원 바이오 프린터의 출력 재료로서, 배양된 생세포와 혼합되어 출력되고 가교되어, 외형적 구조물을 생성하는 바이오잉크이다. As an output material of a three-dimensional bio-printer for the purpose of printing artificial living tissue or analogous tissue, it is a bio-ink that is mixed with cultured living cells and printed and crosslinked to create an external structure.

매우 빠른 가교결합의 특성을 활용하여 3차원 바이오 프린팅 시간의 단축, 최대 출력 크기 향상과 3차원 구조물의 안정적인 형성이 가능하다. By utilizing the characteristics of very fast crosslinking, it is possible to shorten the 3D bioprinting time, improve the maximum output size, and stably form a 3D structure.

본발명의 3차원 바이오 프린터용 바이오잉크는 30 ~ 37℃ 온도에서 액체형태를 띈다.The bio-ink for a three-dimensional bioprinter of the present invention takes a liquid form at a temperature of 30 to 37°C.

제조방법은 원료들을 UV-A(320 ~ 400nm) 범위의 자외선을 5 ~ 30초 조사하여 가교결합이 형성되게 한다(피크 파장 380nm).The manufacturing method is to irradiate the raw materials with UV-A (320 to 400 nm) ultraviolet rays for 5 to 30 seconds to form cross-links (peak wavelength 380 nm).

본발명의 혼합하고자 하는 생세포의 생존에 필요한 성분조성은 다음과 같다.The components necessary for the survival of the living cells to be mixed according to the present invention are as follows.

세포배양액 (Dulbeco’s Modified Eagle’s Media; DMEM) 을 기초 79 ~ 94.5 w/v%.79 ~ 94.5 w/v% based on cell culture medium (Dulbeco's Modified Eagle's Media; DMEM).

젤라틴 메타크릴레이트 (Gelatine Methacrylate; GelMA) 5 ~ 20 w/v%Gelatin Methacrylate (GelMA) 5 ~ 20 w/v%

광개시제, VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide] 0.5 ~ 1.0 w/v%이다.Photoinitiator, VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide] 0.5 ~ 1.0 w / v%.

Gelatine Methacrylate 가교에 대해 설명하면, Gelatin methacrylate (GelMA) 는 자외선에 의해 경화되는 공학적으로 개질된 젤라틴 유래 단백질 유도체이다. 젤라틴 용액에 methacrylic anhydride 를 반응하여 얻어진다.Regarding gelatin methacrylate crosslinking, Gelatin methacrylate (GelMA) is an engineered gelatin-derived protein derivative that is cured by UV light. It is obtained by reacting methacrylic anhydride with a gelatin solution.

광개시제 (여기서는 VA-086) 의 존재로 광경화가 가속되며 그 반응은 다음 도식으로 표현된다. In the presence of a photoinitiator (here, VA-086), photocuring is accelerated and the reaction is represented by the following scheme.

바이오 잉크는 350 ~ 400nm 파장 범위에서 빛을 흡수해 가교된다. Bio-ink is crosslinked by absorbing light in the wavelength range of 350 to 400 nm.

가교될 때 온도 범위는 25 ~ 35℃, 시간은 5 ~ 30초이다.When crosslinking, the temperature range is 25 to 35° C., and the time is 5 to 30 seconds.

380nm 에서 높은 흡광도를 보였으며, 이 파장의 빛을 조사하여 매우 빠른 광경화 속도를 얻을 수 있다.It showed high absorbance at 380 nm, and a very fast photocuring rate can be obtained by irradiating light of this wavelength.

하기 표 1은 가교결합 실시례표이다.Table 1 below is a crosslinking example table.

GelMAGelMA VA-086VA-086 가교 시간crosslinking time 5%5%

1%


One%
30 s30 s
10%10% 20 s20 s 15%15% 10 s10 s 20%20% 5 s5 s

세포적합성에 대해서, 세포 독성 시험은 도 5는 본발명의 세포독성시험성적서, 도 6 본발명의 세포독성시험성적서 세포생존율 그래프에 도시되어 있다(ISO 10993-5:2009 성적표, 한국분석시험연구원)For cell compatibility, the cytotoxicity test is shown in the cytotoxicity test report of the present invention, Figure 6, the cell viability graph of the cytotoxicity test report of the present invention (ISO 10993-5:2009 report card, Korea Analytical Testing Institute)

7일간 세포 생존율에 대해, 바이오잉크에 생세포를 혼합하고 광가교결합한 뒤, 세포배양액에서 배양해 세표의 Live/Dead 신호를 측정한 결과 For cell viability for 7 days, live cells were mixed with bio-ink, photocrosslinked, and cultured in cell culture medium to measure the Live/Dead signal of cells.

{NIH/3T3 세포{NIH/3T3 cells

세포생존율(%) = (LIVE 신호 세포수)/ (LIVE 신호 세포수)+ (Dead 신호 세포수)}Cell viability (%) = (LIVE signal cell number) / (LIVE signal cell number) + (Dead signal cell number)}

하기 표 2는 7일간 세포생존율 표이다.Table 2 below is a table of cell viability for 7 days.

DayDay 세포 생존율(%)Cell viability (%) 00 98.898.8 33 95.895.8 77 95.095.0

도 1은 바이오잉크 주 성분인 GelMA의 고분자 표현식과 광개시제인 VA-086의 화학식, 그리고 UV 광원이 조사되었을 때 가교되어 만들어지는 경화된 하이드로젤의 고분자 표현식이다. 이러한 화학반응을 통해 바이오잉크의 빠른 광경화를 달성 가능하다.1 is a polymer expression of GelMA, a main component of bio-ink, a chemical formula of VA-086, a photoinitiator, and a polymer expression of a cured hydrogel formed by crosslinking when irradiated with a UV light source. Through this chemical reaction, it is possible to achieve rapid photocuring of bio-ink.

도 2는 바이오잉크의 GelMA 성분 함유량에 따른 UV-가시광선 범위 (파장은 300 ~ 800nm) 에서의 흡광도. GelMA의 함유량에 상관없는 흡광도를 보이는 350~400nm 범위의 흡광도가 광개시제 VA-086의 흡광 범위이며, 이 범위의 UV를 흡수하여 GelMA 고분자를 가교시키는 역할을 하게 된다. 이 때 높은 흡광도를 보이는 380nm 근처의 UV를 조사하여 광개시제가 빠르게 빛을 받아들이고 가교반응을 진행하게 한다.Figure 2 is the absorbance in the UV-visible light range (wavelength 300 ~ 800nm) according to the content of the GelMA component of the bio-ink. The absorbance in the range of 350 to 400 nm, which shows the absorbance regardless of the content of GelMA, is the absorbance range of the photoinitiator VA-086, and absorbs UV in this range to crosslink the GelMA polymer. At this time, by irradiating UV near 380 nm, which shows high absorbance, the photoinitiator quickly accepts the light and proceeds with the crosslinking reaction.

그리고 도 8은 본발명의 세포생존율 사진(7 DAY 세포 생존율 (Live/Dead 신호))이다. 도 8은 바이오잉크와 정상적으로 배양된 생세포 (NIH/3T3)를 혼합하고, 세포 배양 플레이트에 소량을 담은 뒤 UV로 경화시켜 관찰한 샘플의 Live/Dead 신호. 초록색이 Live 신호, 빨간색이 Dead 신호이며 이 이미지에서 각 신호를 계수하여 세포 생존율을 계산한다. 각각 경화시킨 직후, 3일 후, 7일 후에 측정한 이미지이다.And Figure 8 is a cell viability photograph of the present invention (7 DAY cell viability (Live/Dead signal)). 8 is a Live/Dead signal of a sample observed by mixing bio-ink and normally cultured live cells (NIH/3T3), putting a small amount in a cell culture plate, and curing with UV. Green is the Live signal and red is the Dead signal. Cell viability is calculated by counting each signal in this image. These are images measured immediately after curing, after 3 days, and after 7 days, respectively.

따라서 본 발명은 자외선으로 매우 빠르게 가교결합이 형성되고 높은 세포 적합성을 가지며, 상기 매우 빠른 가교결합의 특성을 활용하여 3차원 바이오 프린팅 시간의 단축, 최대 출력 크기 향상과 3차원 구조물의 안정적인 형성이 가능한 현저한 효과가 있다.Therefore, the present invention is capable of shortening the 3D bioprinting time, improving the maximum output size, and stably forming a 3D structure by utilizing the characteristics of the very fast crosslinking, which are very rapidly crosslinked with ultraviolet light and have high cell compatibility. It has a remarkable effect.

Claims (3)

세포배양액 (Dulbeco’s Modified Eagle’s Media; DMEM), 가교제인 젤라틴 메타크릴레이트 (Gelatine Methacrylate; GelMA), 광개시제, VA-086 [2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]를 포함하는 것을 특징으로 하는 광경화 GelMA 하이드로젤 바이오잉크 제조방법Cell culture medium (Dulbeco’s Modified Eagle’s Media; DMEM), crosslinking agent Gelatin Methacrylate (GelMA), photoinitiator, VA-086 [2,2'-Azobis[2-methyl-N-(2-) hydroxyethyl) propionamide], photocurable GelMA hydrogel bio-ink manufacturing method comprising 제1항에 있어서, 상기 초고속 광경화 GelMA 하이드로젤 바이오잉크는 UV-A(320 ~ 400nm) 범위의 자외선을 5 ~ 30초 조사하여 가교결합이 형성되는 것을 특징으로 하는 광경화 GelMA 하이드로젤 바이오잉크 제조방법The photocurable GelMA hydrogel bioink according to claim 1, wherein the ultrafast photocurable GelMA hydrogel bio-ink is crosslinked by irradiating UV-A (320 to 400 nm) ultraviolet rays for 5 to 30 seconds. Manufacturing method 제2항에 있어서, 상기 초고속 광경화 GelMA 하이드로젤 바이오잉크는 30 ~ 37℃ 온도에서 액체형태를 띄는 것을 특징으로 하는 광경화 GelMA 하이드로젤 바이오잉크 제조방법The method according to claim 2, wherein the ultrafast photocurable GelMA hydrogel bio-ink has a liquid form at a temperature of 30 to 37°C.
KR1020200030472A 2020-02-28 2020-03-12 Photocuring GelMA Hydrogel Bioink Manufacturing Method KR20210110120A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200025039 2020-02-28
KR1020200025039 2020-02-28

Publications (1)

Publication Number Publication Date
KR20210110120A true KR20210110120A (en) 2021-09-07

Family

ID=77797449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200030472A KR20210110120A (en) 2020-02-28 2020-03-12 Photocuring GelMA Hydrogel Bioink Manufacturing Method

Country Status (1)

Country Link
KR (1) KR20210110120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230106823A (en) 2022-01-07 2023-07-14 충남대학교산학협력단 Manufacturing method for bioink composition for 3D bioprinting using chitosan derivatives of high degree of substitution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230106823A (en) 2022-01-07 2023-07-14 충남대학교산학협력단 Manufacturing method for bioink composition for 3D bioprinting using chitosan derivatives of high degree of substitution

Similar Documents

Publication Publication Date Title
Lim et al. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs
Kumar et al. Stereolithography 3D bioprinting
Huh et al. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting
Zennifer et al. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives
Han et al. Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach
CN109942752B (en) Modified carboxymethyl cellulose biocompatible composite hydrogel precursor solution, composite hydrogel and application thereof
KR101983741B1 (en) Bio-ink and manufacturing method thereof
AU2015349988A1 (en) Well-defined degradable poly(propylene fumarate) polymers and scalable methods for the synthesis thereof
CN106474560B (en) A kind of hydrogel material and the preparation method and application thereof for 3D biometric print
CN113713179A (en) High-comprehensive-performance photocuring biological 3D printing composite hydrogel and preparation method and application thereof
Berg et al. Synthesis of photopolymerizable hydrophilic macromers and evaluation of their applicability as reactive resin components for the fabrication of three‐dimensionally structured hydrogel matrices by 2‐photon‐polymerization
Schuster et al. Gelatin‐based photopolymers for bone replacement materials
CN109846718B (en) Gutta-percha point composite material and DLP printing application thereof
CN109749634B (en) Rapid encapsulating tablet based on photocuring and preparation method and application thereof
US11597915B2 (en) Material and method for producing cell receiving scaffold
Bardakova et al. Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation
Ma et al. Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting
CN112835268A (en) Bio-based water-soluble negative photoresist and application thereof in femtosecond laser direct writing processing method
KR20210110120A (en) Photocuring GelMA Hydrogel Bioink Manufacturing Method
CN109851727B (en) Thixotropic photocuring hydrogel and preparation method and application thereof
Bilici et al. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting
Elkhoury et al. Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators
Zanon et al. Bioderived dyes-mediated vat photopolymerization 3D printing of chitosan hydrogels for tissue engineering
CN109111555B (en) Preparation method of efficient biocompatible free radical photopolymerization visible light initiation system
Lu et al. Photocurable epsilon-poly-L-lysine for digital light processing 3D printing

Legal Events

Date Code Title Description
E601 Decision to refuse application