KR20210109020A - 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적 - Google Patents

무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적 Download PDF

Info

Publication number
KR20210109020A
KR20210109020A KR1020217024259A KR20217024259A KR20210109020A KR 20210109020 A KR20210109020 A KR 20210109020A KR 1020217024259 A KR1020217024259 A KR 1020217024259A KR 20217024259 A KR20217024259 A KR 20217024259A KR 20210109020 A KR20210109020 A KR 20210109020A
Authority
KR
South Korea
Prior art keywords
signal
csi
tracking
rrm
circuitry
Prior art date
Application number
KR1020217024259A
Other languages
English (en)
Other versions
KR102488489B1 (ko
Inventor
지에 쿠이
지빈 유
치밍 리
양 탕
후아 리
Original Assignee
애플 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애플 인크. filed Critical 애플 인크.
Publication of KR20210109020A publication Critical patent/KR20210109020A/ko
Application granted granted Critical
Publication of KR102488489B1 publication Critical patent/KR102488489B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Abstract

사용자 장비(UE)가 무선 측정을 수행하게 허용하는 시스템 및 방법이 개시된다. 방법은 UE의 추적을 위해 채널-상태 정보 기준 신호(CSI-RS)의 특성을 구성한다. 또한, 무선 리소스 관리(RRM) 테스팅을 수행하기 위한 시스템 및 방법이 개시된다. 테스팅은, 추적을 위한 CSI-RS의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 설정하는 것; 또는 추적을 위한 CSI-RS의 네거티브 전력 오프셋 값을 RRM 기준 신호의 동기화 신호(SS)로 설정하는 것; 또는 추적을 위한 CSI-RS의 포지티브 전력 오프셋 값을 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로 설정하는 것을 포함할 수 있다.

Description

무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적
관련 출원의 상호 참조
본 출원은 2019년 2월 4일자로 출원된 미국 가출원 제62/800,957호의 35 U.S.C. § 119(e) 하의 우선권을 주장하며, 이에 의해, 그 가출원은 그 전체가 참조로 포함된다.
다양한 실시예들은 일반적으로 무선 통신들의 분야에 관한 것일 수 있다.
본 개시내용의 일부 실시예들은 UE-UE 가교결합 간섭(crosslink interference, CLI)을 측정 및/또는 리포팅하기 위한 장치들 및 방법들을 포함한다.
일부 실시예들에서, 시스템 및 방법은 사용자 장비(UE)가 무선 측정을 수행하게 허용한다. 방법은, 추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로; 추적을 위한 CSI-RS의 주기성을 RRM 기준 신호의 주기성 특성보다 긴 값으로; 또는 추적을 위한 CSI-RS의 대역폭을 RRM 기준 신호의 대역폭 특성과 동일한 값으로 설정함으로써, UE의 추적을 위해 CSI-RS의 특성을 구성한다. 일부 실시예들에서, RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함한다. 이어서, 무선 측정이 구성된 CSI-RS를 사용하여 수행된다. 일부 실시예들에서, BR 테스팅 신호의 제1 전력 레벨은 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨을 결정하도록 설정된다. 일부 실시예들에서, 특성을 추적하기 위해 하나 초과의 CSI-RS를 설정하는 것이 설정된다.
일부 실시예들에서, 시스템 및 방법은 무선 리소스 관리(RRM) 테스팅을 수행한다. 테스팅은, 추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 설정하는 것 - 다른 RRM 기준 신호는 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 또는 추적을 위한 CSI-RS의 네거티브 전력 오프셋 값을 RRM 기준 신호의 동기화 신호(SS)로 설정하는 것; 또는 추적을 위한 CSI-RS의 포지티브 전력 오프셋 값을 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로 설정하는 것을 포함할 수 있다. 일부 실시예들에서, 포지티브 전력 오프셋은 물리적 다운링크 공유 채널(PDSCH)이 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 설정된다. 일부 실시예들에서, 추적을 위한 CSI-RS는 SS 주기성 또는 동기화 신호 블록(SSB)-기반 측정 타이밍 구성 주기성보다 긴 주기성을 갖도록 구성된다. 일부 실시예들에서, 네거티브 전력 오프셋은 SS가 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 설정된다.
일부 실시예들에서, 사용자 장비(UE)는 무선 측정을 수행한다. UE는 무선 프론트 엔드 회로부 및 무선 프론트 엔드 회로부에 커플링된 프로세싱 회로부를 포함할 수 있으며, 여기서 프로세싱 회로부는 RRM을 조정하기 위해 채널-상태 정보 기준 신호(CSI-RS)의 특성을 구성한다. 일부 실시예들에서, 프로세싱 회로부는 추적을 위한 CSI-RS의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로 설정한다. 대안적으로, 일부 실시예들에서, 프로세싱 회로부는 추적을 위한 CSI-RS의 주기성을 RRM 기준 신호의 주기성 특성보다 긴 값으로 설정한다. 대안적으로, 일부 실시예들에서, 프로세싱 회로부는 추적을 위한 CSI-RS의 대역폭을 RRM 기준 신호의 대역폭 특성과 동일한 값으로 설정한다. 일부 실시예들에서, RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함한다. 일부 실시예들에서, 프로세싱 회로부는 구성된 CSI-RS를 사용하여 무선 측정을 수행한다. 일부 실시예들에서, BR 테스팅 신호의 전력 레벨을 설정하는 것은 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨을 결정하는 것을 포함한다. 일부 실시예들에서, 특성을 추적하기 위해 하나 초과의 CSI-RS를 설정한다.
도 1은 일부 실시예들에 따른 예시적인 시스템 아키텍처를 예시한다.
도 2는 일부 실시예들에 따른 다른 예시적인 시스템 아키텍처를 예시한다.
도 3은 일부 실시예들에 따른 다른 예시적인 시스템 아키텍처를 예시한다.
도 4는 일부 실시예들에 따른 예시적인 인프라구조 장비의 블록도를 예시한다.
도 5는 일부 실시예들에 따른 예시적인 플랫폼의 블록도를 예시한다.
도 6은 일부 실시예들에 따른 기저대역 회로부 및 프론트 엔드 모듈들의 블록도를 예시한다.
도 7은 일부 실시예들에 따른, 무선 통신 디바이스에서 구현될 수 있는 예시적인 프로토콜 기능들의 블록도를 예시한다.
도 8은 일부 실시예들에 따른 코어 네트워크의 컴포넌트들을 예시한다.
도 9는 일부 실시예들에 따른, 네트워크 기능 가상화(NFV)를 지원하기 위한 컴포넌트들을 예시하는 블록도이다.
도 10은 다양한 실시예들을 구현하는 데 이용될 수 있는 예시적인 컴퓨터 시스템의 블록도를 예시한다.
도 11은 일부 실시예들에 따른, 사용자 장비(UE)가 무선 측정을 수행하게 허용하기 위한 방법을 예시한다.
도 12는 일부 실시예들에 따른, 무선 리소스 관리(RRM) 테스팅을 수행하기 위한 방법을 예시한다.
다양한 실시예들은 일반적으로 무선 통신들의 분야에 관한 것일 수 있다.
이하의 상세한 설명은 첨부 도면들을 참조한다. 동일한 또는 유사한 요소들을 식별하기 위해 상이한 도면들에서 동일한 참조 번호들이 사용될 수 있다. 이하의 설명에서, 제한이 아닌 설명의 목적들을 위해, 다양한 실시예들의 다양한 양태들의 철저한 이해를 제공하기 위해, 특정 구조들, 아키텍처들, 인터페이스들, 기법들 등과 같은 특정 세부사항들이 기재된다. 그러나, 다양한 실시예들의 다양한 양태들이 이들 특정 세부사항들을 벗어나는 다른 예들에서 실시될 수 있다는 것이 본 개시내용의 이익을 갖는 당업자들에게 명백할 것이다. 소정의 경우들에서, 불필요한 세부사항으로 다양한 실시예들의 설명을 모호하게 하지 않기 위해 잘 알려진 디바이스들, 회로들, 및 방법들의 설명은 생략된다. 본 명세서의 목적들을 위해, 어구 "A 또는 B"는 (A), (B), 또는 (A 및 B)를 의미한다.
본 개시내용은 무선 리소스 관리(RRM) 테스팅에서의 추적을 위한 채널-상태 정보 기준 신호(CSI-RS) - 추적 기준 신호(TRS) - 의 구성에 관한 것이다. 무선 리소스 관리(RRM) 테스팅에서, 사용자 장비(UE)는 RRM 측정 또는 평가를 행하기 위해, 구성된 RRM 기준 신호를 사용할 것으로 예상된다. RRM 측정 또는 평가를 위해, 타겟 RRM 테스팅 기준 신호로부터의 추적을 위해 CSI-RS(예를 들어, 추적 기준 신호[TRS])를 구별하는 것이 필요하다. 예를 들어, 무선 링크 모니터링(RLM) 테스팅에서, UE는 RLM 평가를 수행하기 위해 RLM 기준 신호(RLM-RS)로서 CSI-RS1을 이용하여 구성된다. 또한, UE는 추적을 위해 CSI-RS2를 이용하여 구성될 수 있으며, 이는 RLM을 행하기 위해 CSI-RS1만을 사용하도록 UE에게 요구하는 데 사용된다. 이것은 추적을 위해 CSI-RS에 대한 RRM 테스팅에 전용 구성을 추가함으로써 달성될 수 있다.
실시예 1:
일부 실시예들에서, RRM 테스팅은 3개의 대안적인 방식들로 달성될 수 있다. 먼저, 추적을 위한 CSI-RS는 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 레벨-1 기준 신호 수신 전력(L1-RSRP) 측정 리포팅) 테스팅을 위해 다른 기준 신호들의 전력보다 작은 전력을 갖도록 구성된다.
대안적으로, RRM 테스팅에서, SS(동기화 신호)에 대한 추적을 위한 CSI-RS의 전력 오프셋은 네거티브 값을 이용하여 구성되며, 예를 들어 SS는 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖는다.
여전히 대안적으로, RRM 테스팅에서, CSI-RS에 대한 PDSCH(물리적 다운링크 공유 채널)의 전력 오프셋이 추적을 위해 사용될 수 있고, 포지티브 값을 이용하여 구성되며, 예를 들어 PDSCH는 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖는다.
A.3.16.1 FR1에 대한 추적을 위한 CSI-RS의 구성
A.3.16.1.1 FDD(주파수 분할 듀플렉스)
[표 A]
Figure pct00001
[표 A]
Figure pct00002
A.3.16.1.2 TDD(시분할 듀플렉스)
[표 A]
Figure pct00003
[표 A]
Figure pct00004
A.3.16.2 FR2에 대한 추적을 위한 CSI-RS의 구성
A.3.16.2.1 TDD
[표 A]
Figure pct00005
실시예 2:
일부 다른 실시예들에서, RRM 테스팅은 3개의 추가의 대안적인 방식들로 달성될 수 있다. 먼저, 추적을 위한 CSI-RS는 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 L1-RSRP 측정 리포팅) 테스팅을 위해 다른 기준 신호들보다 긴 주기성으로 구성되거나; 또는
또는 RRM 테스팅은 추적을 위해 CSI-RS를 사용할 수 있으며, 그 CSI-RS는 모든 경우들에 대해 큰 주기성, 예를 들어 80 ms로 구성된다.
대안적으로, RRM 테스팅은 추적을 위해 CSI-RS를 사용할 수 있으며, 그 CSI-RS는 SS 주기성 또는 SSB-기반 측정 타이밍 구성(SMTC) 주기성보다 긴 주기성으로 구성된다.
그리고 여전히 대안적으로, RRM 테스팅은 추적을 위해 CSI-RS를 사용할 수 있으며, 그 CSI-RS는 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 L1-RSRP 측정 리포팅)을 위한 CSI-RS의 주기성보다 긴 주기성으로 구성된다.
실시예 3:
일부 실시예들에서, RRM 테스팅은 추적을 위해 CSI-RS의 대역폭을 사용할 수 있으며, 그 CSI-RS는 활성 BWP(대역폭 부분)의 대역폭과 동일하게 구성된다.
시스템들 및 구현예들
도 1은 다양한 실시예들에 따른, 네트워크의 시스템(100)의 예시적인 아키텍처를 예시한다. 다음의 설명은 3GPP 기술 규격들에 의해 제공되는 바와 같은 LTE 시스템 표준들 및 5G 또는 NR 시스템 표준들과 함께 동작하는 예시적인 시스템(100)에 대해 제공된다. 그러나, 예시적인 실시예들은 이와 관련하여 제한되지 않으며, 설명된 실시예들은 본 명세서에 설명된 원리들로부터 이익을 얻는 다른 네트워크들, 예컨대 미래의 3GPP 시스템들(예를 들어, 6세대 (6G) 시스템들), IEEE 802.16 프로토콜들(예를 들어, WMAN, WiMAX 등) 등에 적용될 수 있다.
도 1에 의해 도시된 바와 같이, 시스템(100)은 UE(101a) 및 UE(101b)(집합적으로 "UE들(101)" 또는 "UE(101)"로 지칭됨)를 포함한다. 이러한 예에서, UE들(101)은 스마트폰들(예를 들어, 하나 이상의 셀룰러 네트워크들에 연결가능한 핸드헬드 터치스크린 모바일 컴퓨팅 디바이스들)로서 예시되지만, 또한 임의의 모바일 또는 비-모바일 컴퓨팅 디바이스, 예컨대, 소비자 전자 디바이스들, 셀룰러 폰들, 스마트폰들, 피처 폰들, 태블릿 컴퓨터들, 웨어러블 컴퓨터 디바이스(wearable computer device)들, PDA(personal digital assistant)들, 페이저(pager)들, 무선 핸드셋들, 데스크톱 컴퓨터들, 랩톱 컴퓨터들, IVI(in-vehicle infotainment), ICE(in-car entertainment) 디바이스들, IC(Instrument Cluster), HUD(head-up display) 디바이스들, OBD(onboard diagnostic) 디바이스들, DME(dashtop mobile equipment), MDT(mobile data terminal)들, EEMS(Electronic Engine Management System), ECU(electronic/engine control unit)들, ECM(electronic/engine control module)들, 임베디드 시스템들, 마이크로제어기들, 제어 모듈들, EMS(engine management systems), 네트워킹된 또는 "스마트" 기기들, MTC 디바이스들, M2M, IoT 디바이스들 등을 포함할 수 있다.
UE들(101)은 RAN(110)과 연결되도록, 예를 들어 그와 통신가능하게 커플링되도록 구성될 수 있다. 실시예들에서, RAN(110)은 NG RAN 또는 5G RAN, E-UTRAN, 또는 레거시(legacy) RAN, 예컨대, UTRAN 또는 GERAN일 수 있다. 본 명세서에서 사용되는 바와 같이, 용어 "NG RAN" 등은 NR 또는 5G 시스템(100)에서 동작하는 RAN(110)을 지칭할 수 있고, 용어 "E-UTRAN" 등은 LTE 또는 4G 시스템(100)에서 동작하는 RAN(110)을 지칭할 수 있다. UE들(101)은, 각각, 연결들(또는 채널들)(103 및 104)을 이용하며, 이 연결들 각각은 물리적 통신 인터페이스 또는 계층(아래에서 더 상세히 논의됨)을 포함한다.
이러한 예에서, 연결들(103 및 104)은 통신 커플링을 가능하게 하기 위한 에어 인터페이스로서 예시되어 있으며, 셀룰러 통신 프로토콜들, 예컨대, GSM 프로토콜, CDMA 네트워크 프로토콜, PTT 프로토콜, POC 프로토콜, UMTS 프로토콜, 3GPP LTE 프로토콜, 5G 프로토콜, NR 프로토콜, 및/또는 본 명세서에서 논의된 다른 통신 프로토콜들 중 임의의 것과 부합할 수 있다. 실시예들에서, UE들(101)은 ProSe 인터페이스(105)를 통해 통신 데이터를 직접 교환할 수 있다. ProSe 인터페이스(105)는 대안적으로 SL 인터페이스(105)로 지칭될 수 있고, PSCCH, PSSCH, PSDCH, 및 PSBCH를 포함하지만 이로 제한되지 않는 하나 이상의 논리 채널들을 포함할 수 있다.
UE(101b)는 연결(107)을 통해 AP(106)(또한 "WLAN 노드(106)", "WLAN(106)", "WLAN 종단(106)", "WT(106)" 등으로 지칭됨)에 액세스하도록 구성되는 것으로 도시되어 있다. 연결(107)은, 임의의 IEEE 802.11 프로토콜과 부합하는 연결과 같은 로컬 무선 연결을 포함할 수 있으며, 여기서 AP(106)는 Wi-Fi®(wireless fidelity) 라우터를 포함할 것이다. 이러한 예에서, AP(106)는 무선 시스템의 코어 네트워크에 연결되지 않으면서 인터넷에 연결되는 것으로 도시되어 있다(아래에서 더 상세히 설명됨). 다양한 실시예들에서, UE(101b), RAN(110), 및 AP(106)는 LWA 동작 및/또는 LWIP 동작을 이용하도록 구성될 수 있다. LWA 동작은, UE(101b)가 LTE 및 WLAN의 무선 리소스들을 이용하기 위해 RAN 노드(111a-b)에 의해 구성되는 RRC_CONNECTED에 있는 것을 수반할 수 있다. LWIP 동작은, UE(101b)가 연결(107)을 통해 전송되는 패킷들(예를 들어, IP 패킷들)을 인증하고 암호화하기 위해 IPsec 프로토콜 터널링을 통해 WLAN 무선 리소스들(예를 들어, 연결(107))을 사용하는 것을 수반할 수 있다. IPsec 터널링은 원래의 IP 패킷들 전체를 캡슐화하고 새로운 패킷 헤더를 추가하며, 그에 의해 IP 패킷들의 원래의 헤더를 보호하는 것을 포함할 수 있다.
RAN(110)은 연결들(103, 104)을 가능하게 하는 하나 이상의 AN 노드들 또는 RAN 노드들(111a, 111b)(집합적으로 "RAN 노드들(111)" 또는 "RAN 노드(111)"로 지칭됨)을 포함할 수 있다. 본 명세서에서 사용되는 바와 같이, 용어들 "액세스 노드", "액세스 포인트" 등은 네트워크와 하나 이상의 사용자들 사이의 데이터 및/또는 음성 연결을 위한 무선 기저대역 기능들을 제공하는 장비를 설명할 수 있다. 이러한 액세스 노드들은 BS, gNB들, RAN 노드들, eNB들, NodeB들, RSU들, TRxP들 또는 TRP들 등으로 지칭될 수 있고, 지리적 영역(예를 들어, 셀) 내의 커버리지를 제공하는 지상 스테이션들(예를 들어, 지상 액세스 포인트들) 또는 위성 스테이션들을 포함할 수 있다. 본 명세서에서 사용되는 바와 같이, 용어 "NG RAN 노드" 등은 NR 또는 5G 시스템(100)(예를 들어, gNB)에서 동작하는 RAN 노드(111)를 지칭할 수 있고, 용어 "E-UTRAN 노드" 등은 LTE 또는 4G 시스템(100)(예를 들어, eNB)에서 동작하는 RAN 노드(111)를 지칭할 수 있다. 다양한 실시예들에 따르면, RAN 노드들(111)(예를 들어, 11a, 11b)은 매크로셀 기지국과 같은 전용 물리적 디바이스, 및/또는 매크로셀들에 비해 더 작은 커버리지 영역들, 더 작은 사용자 수용량, 또는 더 높은 대역폭을 갖는 펨토셀들, 피코셀들 또는 다른 유사 셀들을 제공하기 위한 저전력(low power, LP) 기지국 중 하나 이상으로서 구현될 수 있다.
일부 실시예들에서, RAN 노드들(111)의 전부 또는 부분들은 가상 네트워크의 일부로서 서버 컴퓨터들 상에서 실행되는 하나 이상의 소프트웨어 엔티티들로서 구현될 수 있으며, 이는 CRAN 및/또는 vBBUP(virtual baseband unit pool)로 지칭될 수 있다. 이들 실시예들에서, CRAN 또는 vBBUP는 RAN 기능 분할, 예컨대 RRC 및 PDCP 계층들이 CRAN/vBBUP에 의해 동작되고 다른 L2 프로토콜 엔티티들이 개별 RAN 노드들(111)에 의해 동작되는 PDCP 분할; RRC, PDCP, RLC, 및 MAC 계층들이 CRAN/vBBUP에 의해 동작되고, PHY 계층이 개별 RAN 노드들(111)에 의해 동작되는 MAC/PHY 분할; 또는 RRC, PDCP, RLC, MAC 계층 및 PHY 계층의 상위 부분들이 CRAN/vBBUP에 의해 동작되고 PHY 계층의 하위 부분들이 개별 RAN 노드들(111)에 의해 동작되는 "하위 PHY" 분할을 구현할 수 있다. 이러한 가상화된 프레임워크는 RAN 노드들(111)의 프리드-업(freed-up) 프로세서 코어들이 다른 가상화된 애플리케이션들을 수행하게 허용한다. 일부 구현예들에서, 개별 RAN 노드(111)는 개별 F1 인터페이스들(도 1에 의해 도시되지 않음)을 통해 gNB-CU에 연결되는 개별 gNB-DU들을 표현할 수 있다. 이들 구현예들에서, gNB-DU들은 하나 이상의 원격 무선 헤드(radio head)들 또는 RFEM들을 포함할 수 있고(예를 들어, 도 4 참조), gNB-CU는 RAN(110)(도시되지 않음)에 위치된 서버에 의해 또는 CRAN/vBBUP와 유사한 방식으로 서버 풀(server pool)에 의해 동작될 수 있다. 부가적으로 또는 대안적으로, RAN 노드들(111) 중 하나 이상은 차세대 eNB들(ng-eNB들)일 수 있으며, 이는 E-UTRA 사용자 평면 및 제어 평면 프로토콜 종단부들을 UE들(101)을 향해 제공하고 NG 인터페이스(아래에서 논의됨)를 통해 5GC(예를 들어, 도 3의 CN(320))에 연결되는 RAN 노드들이다.
V2X 시나리오들에서, RAN 노드들(111) 중 하나 이상은 RSU들이거나 이들로서 역할할 수 있다. 용어 "노변 유닛(Road Side Unit)" 또는 "RSU"는 V2X 통신들에 사용되는 임의의 운송 인프라구조 엔티티를 지칭할 수 있다. RSU는 적합한 RAN 노드 또는 정지식(stationary)(또는 비교적 정지식) UE에서 또는 그에 의해 구현될 수 있으며, 여기서 UE에서 또는 그에 의해 구현되는 RSU는 "UE-형 RSU"로 지칭될 수 있고, eNB에서 또는 그에 의해 구현되는 RSU는 "eNB-형 RSU"로 지칭될 수 있고, gNB에서 또는 그에 의해 구현되는 RSU는 "gNB-형 RSU"로 지칭될 수 있는 등등이다. 일 예에서, RSU는 통과 차량 UE들(101)(vUE들(101))에 대한 연결 지원을 제공하는, 노변 상에 위치된 무선 주파수 회로부와 커플링된 컴퓨팅 디바이스이다. RSU는 교차로 맵 지오메트리, 교통 통계들, 매체들은 물론 진행 중인 차량 및 보행자 통행을 감지 및 제어하기 위한 애플리케이션들/소프트웨어를 저장하기 위한 내부 데이터 저장 회로부를 또한 포함할 수 있다. RSU는, 충돌 회피, 교통 경고들 등과 같은, 고속 이벤트들에 대해 요구되는 초저 레이턴시(very low latency) 통신들을 제공하기 위해 5.9 ㎓ DSRC(Direct Short Range Communications) 대역에서 동작할 수 있다. 부가적으로 또는 대안적으로, RSU는 셀룰러 V2X 대역에서 동작하여 전술된 낮은 레이턴시 통신들뿐만 아니라 다른 셀룰러 통신 서비스들을 제공할 수 있다. 부가적으로 또는 대안적으로, RSU는 Wi-Fi 핫스팟(2.4 ㎓ 대역)으로서 동작할 수 있고 그리고/또는 하나 이상의 셀룰러 네트워크들에 대한 연결을 제공하여 업링크 및 다운링크 통신들을 제공할 수 있다. 컴퓨팅 디바이스(들) 및 RSU의 무선 주파수 회로부의 일부 또는 전부는 실외 설치에 적합한 내후성 인클로저(weatherproof enclosure) 내에 패키징될 수 있고, 유선 연결(예를 들어, 이더넷)을 트래픽 신호 제어기 및/또는 백홀 네트워크에 제공하기 위한 네트워크 인터페이스 제어기를 포함할 수 있다.
RAN 노드들(111) 중 임의의 것은 에어 인터페이스 프로토콜을 종단할 수 있고, UE들(101)에 대한 제1 접촉 포인트일 수 있다. 일부 실시예들에서, RAN 노드들(111) 중 임의의 것은 무선 베어러(bearer) 관리, 업링크 및 다운링크 동적 무선 리소스 관리 및 데이터 패킷 스케줄링, 및 이동성 관리와 같은 무선 네트워크 제어기(RNC) 기능들을 포함하지만 이들로 제한되지 않는 RAN(110)에 대한 다양한 논리적 기능들을 이행할 수 있다.
실시예들에서, UE들(101)은 OFDMA 통신 기법(예를 들어, 다운링크 통신들의 경우) 또는 SC-FDMA 통신 기법(예를 들어, 업링크 및 ProSe 또는 사이드링크 통신들의 경우)과 같은, 그러나 이로 제한되지 않는, 다양한 통신 기법들에 따라 멀티캐리어 통신 채널을 통해 서로 또는 RAN 노드들(111) 중 임의의 것과 OFDM 통신 신호들을 사용하여 통신하도록 구성될 수 있지만, 실시예들의 범위가 이러한 점에서 제한되지 않는다. OFDM 신호들은 복수의 직교 서브캐리어들을 포함할 수 있다.
일부 실시예들에서, 다운링크 리소스 그리드가 RAN 노드들(111) 중 임의의 것으로부터 UE들(101)로의 다운링크 송신들을 위해 사용될 수 있는 반면, 업링크 송신들은 유사한 기법들을 이용할 수 있다. 그리드는, 리소스 그리드 또는 시간-주파수 리소스 그리드로 지칭되는 시간-주파수 그리드일 수 있으며, 이는 각각의 슬롯 내의 다운링크에서의 물리적 리소스이다. 그러한 시간-주파수 평면 표현은 OFDM 시스템들에 대해 통상적인 관행이며, 이는 무선 리소스 할당에 대해 그것을 직관적으로 만든다. 리소스 그리드의 각각의 열(column) 및 각각의 행(row)은 하나의 OFDM 심볼 및 하나의 OFDM 서브캐리어에 각각 대응한다. 시간 도메인에서의 리소스 그리드의 지속기간은 무선 프레임 내의 하나의 슬롯에 대응한다. 리소스 그리드에서의 최소 시간-주파수 유닛은 리소스 요소로 표기된다. 각각의 리소스 그리드는 다수의 리소스 블록들을 포함하는데, 이들은 리소스 요소들에 대한 소정의 물리적 채널들의 맵핑을 설명한다. 각각의 리소스 블록은 리소스 요소들의 집합체를 포함하고; 주파수 도메인에서, 이것은 현재 할당될 수 있는 최소량의 리소스들을 표현할 수 있다. 그러한 리소스 블록들을 사용하여 전달되는 여러 개의 상이한 물리적 다운링크 채널들이 존재한다.
다양한 실시예들에 따르면, UE들(101) 및 RAN 노드들(111)은 면허 매체("면허 스펙트럼" 및/또는 "면허 대역"으로 또한 지칭됨) 및 비면허 공유 매체("비면허 스펙트럼" 및/또는 "비면허 대역"으로 또한 지칭됨)를 통해 데이터를 통신(예를 들어, 데이터를 송신 및 수신)한다. 면허 스펙트럼은 대략 400 ㎒ 내지 대략 3.8 ㎓의 주파수 범위에서 동작하는 채널들을 포함할 수 있는 반면, 비면허 스펙트럼은 5 ㎓ 대역을 포함할 수 있다.
비면허 스펙트럼에서 동작하기 위해, UE들(101) 및 RAN 노드들(111)은 LAA, eLAA, 및/또는 feLAA 메커니즘들을 사용하여 동작할 수 있다. 이러한 구현예들에서, UE들(101) 및 RAN 노드들(111)은 비면허 스펙트럼에서 송신하기 전에 비면허 스펙트럼 내의 하나 이상의 채널들이 이용 가능하지 않거나 다른 방식으로 점유되는지를 결정하기 위해 하나 이상의 알려진 매체 감지 동작들 및/또는 캐리어 감지 동작들을 수행할 수 있다. 매체/캐리어 감지 동작들은 LBT(listen-before-talk) 프로토콜에 따라 수행될 수 있다.
LBT는 장비(예를 들어, UE들(101), RAN 노드들(111) 등)가 매체(예를 들어, 채널 또는 캐리어 주파수)를 감지하고 매체가 유휴 상태로 감지될 때(또는 매체 내의 특정 채널이 점유되지 않은 것으로 감지될 때) 송신하는 메커니즘이다. 매체 감지 동작은, 채널이 점유되거나 클리어(clear)한지 여부를 결정하기 위해 채널 상의 다른 신호들의 존재 또는 부재를 결정하도록 적어도 ED를 이용하는 CCA를 포함할 수 있다. 이러한 LBT 메커니즘은 셀룰러/LAA 네트워크들이 비면허 스펙트럼 내의 현재의 시스템들 및 다른 LAA 네트워크들과 공존하게 허용한다. ED는 일정 시간 기간 동안 의도된 송신 대역에 걸친 RF 에너지를 감지하는 것 및 감지된 RF 에너지를 미리 정의된 또는 구성된 임계치와 비교하는 것을 포함할 수 있다.
전형적으로, 5 ㎓ 대역 내의 현재의 시스템들은 IEEE 802.11 기술들에 기초한 WLAN들이다. WLAN은 CSMA/CA로 불리는 경합 기반 채널 액세스 메커니즘을 이용한다. 여기서, WLAN 노드(예를 들면, UE(101), AP(106) 등과 같은 이동국(MS))가 송신하려고 의도할 때, WLAN 노드는 송신 이전에 CCA를 먼저 수행할 수 있다. 부가적으로, 하나 초과의 WLAN 노드가 채널을 유휴 상태로 감지하고 동시에 송신하는 상황들에서 충돌들을 피하기 위해 백오프 메커니즘이 사용된다. 백오프 메커니즘은 CWS 내에서 랜덤하게 도출되는 카운터일 수 있으며, 이 카운터는 충돌의 발생 시에 지수적으로 증가되고 송신이 성공할 때 최솟값으로 리셋된다. LAA를 위해 설계된 LBT 메커니즘은 WLAN의 CSMA/CA와 다소 유사하다. 일부 구현예들에서, PDSCH 또는 PUSCH 송신들을 각각 포함하는 DL 또는 UL 송신 버스트(burst)들에 대한 LBT 절차는, X개 및 Y개의 ECCA 슬롯들 사이에서 길이가 가변적인 LAA 경합 윈도를 가질 수 있으며, 여기서 X 및 Y는 LAA를 위한 CWS들에 대한 최솟값 및 최댓값이다. 일 예에서, LAA 송신을 위한 최소 CWS는 9 마이크로초(μs)일 수 있지만; CWS 및 MCOT(예를 들어, 송신 버스트)의 크기는 정부 규제 요건들에 기초할 수 있다.
LAA 메커니즘들은 LTE-어드밴스드 시스템들의 CA 기술들에 내장된다. CA에서, 각각의 어그리게이션된 캐리어는 CC로 지칭된다. CC는 1.4, 3, 5, 10, 15 또는 20 ㎒의 대역폭을 가질 수 있고, 최대 5개의 CC들이 어그리게이션될 수 있고, 따라서 최대 어그리게이션된 대역폭은 100 ㎒이다. FDD 시스템들에서, 어그리게이션된 캐리어들의 수는 DL 및 UL에 대해 상이할 수 있는데, 여기서 UL CC들의 수는 DL 컴포넌트 캐리어들의 수 이하이다. 일부 경우들에서, 개별 CC들은 다른 CC들과는 상이한 대역폭을 가질 수 있다. TDD 시스템들에서, CC들의 수뿐만 아니라 각각의 CC의 대역폭들은 통상적으로 DL 및 UL에 대해 동일하다.
CA는 개별 CC들을 제공하기 위한 개별 서빙 셀들을 또한 포함한다. 예를 들어, 상이한 주파수 대역들 상의 CC들이 상이한 경로 손실을 경험할 것이기 때문에, 서빙 셀들의 커버리지가 상이할 수 있다. 1차 서비스 셀 또는 PCell은 UL 및 DL 둘 모두에 대한 PCC를 제공할 수 있고, RRC 및 NAS 관련 활동들을 처리할 수 있다. 다른 서빙 셀들은 SCell들로 지칭되고, 각각의 SCell은 UL 및 DL 둘 모두에 대한 개별 SCC를 제공할 수 있다. SCC들은 요구에 따라 추가되고 제거될 수 있는 반면, PCC를 변경하는 것은 UE(101)가 핸드오버를 겪을 것을 요구할 수 있다. LAA, eLAA, 및 feLAA에서, SCell들 중 일부 또는 전부는 비면허 스펙트럼에서 동작할 수 있고("LAA SCell들"로 지칭됨), LAA SCell들은 면허 스펙트럼에서 동작하는 PCell에 의해 보조된다. UE가 하나 초과의 LAA SCell로 구성될 때, UE는 동일한 서브프레임 내에서 상이한 PUSCH 시작 포지션들을 표시하는 UL 승인들을 구성된 LAA SCell들 상에서 수신할 수 있다.
PDSCH는 사용자 데이터 및 상위 계층 시그널링을 UE들(101)에 전달한다. PDCCH는, 무엇보다도, PDSCH 채널에 관련된 전송 포맷 및 리소스 할당들에 관한 정보를 전달한다. 그것은 또한 업링크 공유 채널에 관련된 전송 포맷, 리소스 할당, 및 HARQ 정보에 관해 UE들(101)에 통지할 수 있다. 전형적으로, 다운링크 스케줄링(셀 내의 UE(101b)에 제어 및 공유 채널 리소스 블록들을 할당하는 것)은 UE들(101) 중 임의의 것으로부터 피드백되는 채널 품질 정보에 기초하여 RAN 노드들(111) 중 임의의 것에서 수행될 수 있다. 다운링크 리소스 할당 정보는 UE들(101) 각각에 대해 사용되는 (예를 들어, 그에 할당되는) PDCCH 상에서 전송될 수 있다.
PDCCH는 CCE들을 사용하여 제어 정보를 전달한다. 리소스 요소들에 맵핑되기 전에, PDCCH 복소값 심볼들은 먼저 쿼드러플릿(quadruplet)들로 조직화될 수 있으며, 이들은 이어서 레이트 매칭(rate matching)을 위해 서브-블록 인터리버(sub-block interleaver)를 사용하여 치환될 수 있다. 각각의 PDCCH는 이러한 CCE들 중 하나 이상을 사용하여 송신될 수 있으며, 여기서 각각의 CCE는 REG들로 알려진 4개의 물리적 리소스 요소들의 9개의 세트들에 대응할 수 있다. 4개의 직교 위상 시프트 키잉(QPSK) 심볼들이 각각의 REG에 맵핑될 수 있다. PDCCH는, DCI의 크기 및 채널 조건에 의존하여, 하나 이상의 CCE들을 사용하여 송신될 수 있다. 상이한 수들의 CCE들(예를 들어, 어그리게이션 레벨, L = 1, 2, 4, 또는 8)로 LTE에서 정의된 4개 이상의 상이한 PDCCH 포맷들이 존재할 수 있다.
일부 실시예들은 위에서 설명된 개념들의 확장인, 제어 채널 정보를 위한 리소스 할당에 대한 개념들을 사용할 수 있다. 예를 들어, 일부 실시예들은 제어 정보 송신을 위해 PDSCH 리소스들을 사용하는 EPDCCH를 이용할 수 있다. EPDCCH는 하나 이상의 ECCE들을 사용하여 송신될 수 있다. 위와 유사하게, 각각의 ECCE는 EREG들로 알려진 4개의 물리적 리소스 요소들의 9개의 세트들에 대응할 수 있다. ECCE는 일부 상황들에서 다른 수의 EREG들을 가질 수 있다.
RAN 노드들(111)은 인터페이스(112)를 통해 서로 통신하도록 구성될 수 있다. 시스템(100)이 LTE 시스템인 실시예들에서(예를 들어, CN(120)이 도 2에서와 같은 EPC(220)일 때), 인터페이스(112)는 X2 인터페이스(112)일 수 있다. X2 인터페이스는 EPC(120)에 연결되는 2개 이상의 RAN 노드들(111)(예를 들어, 2개 이상의 eNB들 등) 사이에, 그리고/또는 EPC(120)에 연결하는 2개의 eNB들 사이에 정의될 수 있다. 일부 구현예들에서, X2 인터페이스는 X2 사용자 평면 인터페이스(X2-U) 및 X2 제어 평면 인터페이스(X2-C)를 포함할 수 있다. X2-U는 X2 인터페이스를 통해 전달되는 사용자 데이터 패킷들에 대한 흐름 제어 메커니즘들을 제공할 수 있고, eNB들 사이의 사용자 데이터의 전달에 관한 정보를 통신하는 데 사용될 수 있다. 예를 들어, X2-U는 MeNB로부터 SeNB에 전달되는 사용자 데이터에 대한 특정 시퀀스 번호 정보; 사용자 데이터에 대한 SeNB로부터 UE(101)로의 PDCP PDU들의 성공적인 순차적 전달(in sequence delivery)에 관한 정보; UE(101)에 전달되지 않은 PDCP PDU들의 정보; 사용자 데이터를 UE에 송신하기 위한 SeNB에서의 현재 최소의 원하는 버퍼 크기에 관한 정보 등을 제공할 수 있다. X2-C는, 소스로부터 타겟 eNB들로의 컨텍스트 전달들, 사용자 평면 전송 제어 등을 포함하는 LTE-내(intra-LTE) 액세스 이동성 기능; 부하 관리 기능; 뿐만 아니라 셀 간(inter-cell) 간섭 조정 기능성을 제공할 수 있다.
시스템(100)이 5G 또는 NR 시스템인 실시예들에서(예를 들어, CN(120)이 도 3에서와 같은 5GC(320)일 때), 인터페이스(112)는 Xn 인터페이스(112)일 수 있다. Xn 인터페이스는 5GC(120)에 연결되는 2개 이상의 RAN 노드들(111)(예를 들어, 2개 이상의 gNB들 등) 사이, 5GC(120)에 연결되는 RAN 노드(111)(예를 들어, gNB)와 eNB 사이, 및/또는 5GC(120)에 연결되는 2개의 eNB들 사이에서 정의된다. 일부 구현예들에서, Xn 인터페이스는 Xn 사용자 평면(Xn-U) 인터페이스 및 Xn 제어 평면(Xn-C) 인터페이스를 포함할 수 있다. Xn-U는 사용자 평면 PDU들의 보장되지 않는 전달을 제공하고 데이터 포워딩(forwarding) 및 흐름 제어 기능성을 지원/제공할 수 있다. Xn-C는 관리 및 에러 처리 기능, Xn-C 인터페이스를 관리하기 위한 기능; 하나 이상의 RAN 노드들(111) 사이의 연결 모드에 대한 UE 이동성을 관리하는 기능을 포함하는 연결 모드(예를 들어, CM-CONNECTED)에서의 UE(101)에 대한 이동성 지원을 제공할 수 있다. 이동성 지원은 오래된(소스) 서빙 RAN 노드(111)로부터 새로운(타겟) 서빙 RAN 노드(111)로의 컨텍스트 전송; 및 오래된(소스) 서빙 RAN 노드(111)와 새로운(타겟) 서빙 RAN 노드(111) 사이의 사용자 평면 터널들의 제어를 포함할 수 있다. Xn-U의 프로토콜 스택은 인터넷 프로토콜(IP) 전송 계층 상에 구축된 전송 네트워크 계층, 및 사용자 평면 PDU들을 반송하기 위한 UDP 및/또는 IP 계층(들)의 상단 상의 GTP-U 계층을 포함할 수 있다. Xn-C 프로토콜 스택은 애플리케이션 계층 시그널링 프로토콜(Xn 애플리케이션 프로토콜(Xn-AP)로 지칭됨) 및 SCTP 상에 구축된 전송 네트워크 계층을 포함할 수 있다. SCTP는 IP 계층의 상단 상에 있을 수 있고, 애플리케이션 계층 메시지들의 보장된 전달을 제공할 수 있다. 전송 IP 계층에서, 포인트-투-포인트 송신은 시그널링 PDU들을 전달하는 데 사용된다. 다른 구현예들에서, Xn-U 프로토콜 스택 및/또는 Xn-C 프로토콜 스택은 본 명세서에 도시되고 설명된 사용자 평면 및/또는 제어 평면 프로토콜 스택(들)과 동일하거나 유사할 수 있다.
RAN(110)은 코어 네트워크, 이러한 실시예에서는 코어 네트워크(CN)(120)에 통신가능하게 커플링되는 것으로 도시된다. CN(120)은, RAN(110)을 통해 CN(120)에 연결된 고객들/가입자들(예를 들어, UE들(101)의 사용자들)에게 다양한 데이터 및 전기통신 서비스들을 제공하도록 구성된 복수의 네트워크 요소들(122)을 포함할 수 있다. CN(120)의 컴포넌트들은 머신 판독가능 또는 컴퓨터 판독가능 매체(예를 들어, 비일시적 머신 판독가능 저장 매체)로부터 명령어들을 판독 및 실행하기 위한 컴포넌트들을 포함하는 하나의 물리적 노드 또는 별개의 물리적 노드들에서 구현될 수 있다. 일부 실시예들에서, NFV는 하나 이상의 컴퓨터 판독가능 저장 매체들에 저장된 실행가능한 명령어들을 통해 위에서 설명된 네트워크 노드 기능들 중 임의의 것 또는 전부를 가상화하기 위해 이용될 수 있다(아래에서 더 상세히 설명됨). CN(120)의 논리적 인스턴스화(logical instantiation)는 네트워크 슬라이스(slice)로 지칭될 수 있고, CN(120)의 일부의 논리적 인스턴스화는 네트워크 서브슬라이스로 지칭될 수 있다. NFV 아키텍처들 및 인프라구조들은, 산업-표준 서버 하드웨어, 저장 하드웨어, 또는 스위치들의 조합을 포함하는 물리적 리소스 상으로, 대안적으로는 사설 하드웨어에 의해 수행되는 하나 이상의 네트워크 기능들을 가상화하기 위해 사용될 수 있다. 다시 말하면, NFV 시스템들은 하나 이상의 EPC 컴포넌트들/기능들의 가상 또는 재구성가능한 구현들을 실행하기 위해 사용될 수 있다.
일반적으로, 애플리케이션 서버(130)는 코어 네트워크와의 IP 베어러 리소스들(예를 들어, UMTS PS 도메인, LTE PS 데이터 서비스들 등)을 사용하는 애플리케이션들을 제공하는 요소일 수 있다. 애플리케이션 서버(130)는 또한 EPC(120)를 통해 UE들(101)에 대한 하나 이상의 통신 서비스들(예를 들어, VoIP 세션들, PTT 세션들, 그룹 통신 세션들, 소셜 네트워킹 서비스들 등)을 지원하도록 구성될 수 있다.
실시예들에서, CN(120)은 5GC("5GC(120)" 등으로 지칭됨)일 수 있고, RAN(110)은 NG 인터페이스(113)를 통해 CN(120)과 연결될 수 있다. 실시예들에서, NG 인터페이스(113)는 2개의 부분들, 즉, RAN 노드들(111)과 UPF 사이에서 트래픽 데이터를 전달하는 NG 사용자 평면(NG-U) 인터페이스(114), 및 RAN 노드들(111)과 액세스 및 이동성 관리 기능(AMF)들 사이의 시그널링 인터페이스인 S1 제어 평면(NG-C) 인터페이스(115)로 분할될 수 있다). CN(120)이 5GC(120)인 실시예들은 도 3과 관련하여 더 상세히 논의된다.
실시예들에서, CN(120)은 5G CN("5GC(120)" 등으로 지칭됨)일 수 있는 반면, 다른 실시예들에서, CN(120)은 EPC일 수 있다. CN(120)이 EPC("EPC(120)" 등으로 지칭됨)인 경우, RAN(110)은 S1 인터페이스(113)를 통해 CN(120)과 연결될 수 있다. 실시예들에서, S1 인터페이스(113)는 2개의 부분들, 즉, RAN 노드들(111)과 S-GW 사이에서 트래픽 데이터를 전달하는 S1 사용자 평면(S1-U) 인터페이스(114), 및 RAN 노드들(111)과 MME들 사이의 시그널링 인터페이스인 S1-MME 인터페이스(115)로 분할될 수 있다. CN(120)이 EPC(120)인 예시적인 아키텍처가 도 2에 의해 도시된다.
도 2는 다양한 실시예들에 따른, 제1 CN(220)을 포함하는 시스템(200)의 예시적인 아키텍처를 예시한다. 이러한 예에서, 시스템(200)은, CN(220)이 도 1의 CN(120)에 대응하는 EPC(220)인 LTE 표준을 구현할 수 있다. 부가적으로, UE(201)는 도 1의 UE들(101)과 동일하거나 유사할 수 있고, 이벌브드 UTRAN(E-UTRAN)(210)은 도 1의 RAN(110)과 동일하거나 유사한 RAN(예를 들어, 차세대(NG) RAN)일 수 있는데, 이는 이전에 논의된 RAN 노드들(111)을 포함할 수 있다. CN(220)은 MME들(221), S-GW(222), P-GW(223), HSS(224), 및 SGSN(225)을 포함할 수 있다.
MME들(221)은 기능적으로 레거시 SGSN의 제어 평면과 유사할 수 있고, UE(201)의 현재 위치를 추적하기 위한 MM 기능들을 구현할 수 있다. MME들(221)은 게이트웨이 선택 및 추적 영역 리스트 관리와 같은 액세스에서의 이동성 양태들을 관리하기 위한 다양한 MM 절차들을 수행할 수 있다. MM(E-UTRAN 시스템들에서 "EPS MM" 또는 "EMM"으로 또한 지칭됨)은, UE(201)의 현재 위치에 대한 지식을 유지하고, 사용자 아이덴티티 기밀성을 제공하고 그리고/또는, 사용자들/가입자들에게 다른 유사 서비스들을 수행하는 데 사용되는 모든 적용가능한 절차들, 방법들, 데이터 저장 등을 지칭할 수 있다. 각각의 UE(201) 및 MME(221)는 MM 또는 EMM 서브계층을 포함할 수 있고, MM 컨텍스트는, 부착 절차(attach procedure)가 성공적으로 완료될 때, UE(201) 및 MME(221) 내에 확립될 수 있다. MM 컨텍스트는 UE(201)의 MM 관련 정보를 저장하는 데이터 구조 또는 데이터베이스 객체일 수 있다. MME들(221)은 S6a 기준 포인트를 통해 HSS(224)와 커플링되고, S3 기준 포인트를 통해 SGSN(225)과 커플링되고, S11 기준 포인트를 통해 S-GW(222)와 커플링될 수 있다.
SGSN(225)은 개별 UE(201)의 위치를 추적하고 보안 기능들을 수행함으로써 UE(201)를 서빙하는 노드일 수 있다. 부가적으로, SGSN(225)은 2G/3G와 E-UTRAN 3GPP 액세스 네트워크들 사이의 이동성을 위한 EPC 노드-간 시그널링; MME들(221)에 의해 특정된 바와 같은 PDN 및 S-GW 선택; MME들(221)에 의해 특정된 바와 같은 UE(201) 시간 구역 함수들의 처리; 및 E-UTRAN 3GPP 액세스 네트워크로의 핸드오버들에 대한 MME 선택을 수행할 수 있다. MME들(221)과 SGSN(225) 사이의 S3 기준 포인트는 유휴 및/또는 활성 상태들의 3GPP-간 액세스 네트워크 이동성에 대한 사용자 및 베어러 정보 교환을 가능하게 할 수 있다.
HSS(224)는 통신 세션들에 대한 네트워크 엔티티들의 처리를 지원하기 위해 가입 관련 정보를 포함하는, 네트워크 사용자들에 대한 데이터베이스를 포함할 수 있다. EPC(220)는, 모바일 가입자들의 수, 장비의 용량, 네트워크의 조직화 등에 의존하여, 하나 또는 수 개의 HSS들(224)을 포함할 수 있다. 예를 들어, HSS(224)는 라우팅/로밍, 인증, 인가, 네이밍/어드레싱 분석(naming/addressing resolution), 위치 의존성들 등에 대한 지원을 제공할 수 있다. HSS(224)와 MME들(221) 사이의 S6a 기준 포인트는 HSS(224)와 MME들(221) 사이의 EPC(220)에 대한 사용자 액세스를 인증/인가하기 위한 가입 및 인증 데이터의 전송을 가능하게 할 수 있다.
S-GW(222)는 RAN(210)을 향해 S1 인터페이스(113)(도 2 내의 "S1-U")를 종단할 수 있고, RAN(210)과 EPC(220) 사이에서 데이터 패킷들을 라우팅한다. 부가적으로, S-GW(222)는 RAN-간 노드 핸드오버들을 위한 로컬 이동성 앵커 포인트(local mobility anchor point)일 수 있고, 또한 3GPP-간 이동성을 위한 앵커를 제공할 수 있다. 다른 임무들은 합법적 인터셉트(lawful intercept), 과금, 및 일부 정책 시행을 포함할 수 있다. S-GW(222)와 MME들(221) 사이의 S11 기준 포인트는 MME들(221)과 S-GW(222) 사이의 제어 평면을 제공할 수 있다. S-GW(222)는 S5 기준 포인트를 통해 P-GW(223)와 커플링될 수 있다.
P-GW(223)는 PDN(230)을 향해 SGi 인터페이스를 종단할 수 있다. P-GW(223)는 IP 인터페이스(125)(예를 들어, 도 1 참조)를 통해 EPC(220)와, 애플리케이션 서버(130)(대안적으로 "AF"로 지칭됨)를 포함하는 네트워크와 같은 외부 네트워크들 사이에서 데이터 패킷들을 라우팅할 수 있다. 실시예들에서, P-GW(223)는 IP 통신 인터페이스(125)(예를 들어, 도 1 참조)를 통해 애플리케이션 서버(도 1의 애플리케이션 서버(130) 또는 도 2의 PDN(230))에 통신가능하게 커플링될 수 있다. P-GW(223)와 S-GW(222) 사이의 S5 기준 포인트는 P-GW(223)와 S-GW(222) 사이의 사용자 평면 터널링 및 터널 관리를 제공할 수 있다. S5 기준 포인트는 또한, UE(201) 이동성으로 인해, 그리고 S-GW(222)가 요구되는 PDN 연결을 위해 비-병치된(non-collocated) P-GW(223)에 연결할 필요가 있다면, S-GW(222) 재배치(relocation)를 위해 사용될 수 있다. P-GW(223)는, 정책 시행 및 과금 데이터 수집을 위한 노드(예를 들어, PCEF(도시되지 않음))를 더 포함할 수 있다. 부가적으로, P-GW(223)와 패킷 데이터 네트워크(PDN)(230) 사이의 SGi 기준 포인트는, 예를 들어, IMS 서비스들의 프로비전(provision)을 위한 오퍼레이터(operator) 외부 공개, 사설 PDN, 또는 오퍼레이터-내 패킷 데이터 네트워크일 수 있다. P-GW(223)는 Gx 기준 포인트를 통해 PCRF(226)와 커플링될 수 있다.
PCRF(226)는 EPC(220)의 정책 및 과금 제어 요소이다. 비-로밍 시나리오에서, UE(201)의 IP-CAN(Internet Protocol Connectivity Access Network) 세션과 연관된 HPLMN(Home Public Land Mobile Network)에 단일 PCRF(226)가 있을 수 있다. 트래픽의 로컬 브레이크아웃(local breakout)을 갖는 로밍 시나리오에서, UE(201)의 IP-CAN 세션과 연관된 2개의 PCRF들, 즉 HPLMN 내의 H-PCRF(Home PCRF) 및 VPLMN(Visited Public Land Mobile Network) 내의 V-PCRF(Visited PCRF)가 있을 수 있다. PCRF(226)는 P-GW(223)를 통해 애플리케이션 서버(230)에 통신가능하게 커플링될 수 있다. 애플리케이션 서버(230)는 새로운 서비스 흐름을 표시하고 적절한 QoS 및 과금 파라미터들을 선택하도록 PCRF(226)에 시그널링할 수 있다. PCRF(226)는 이러한 규칙을 적절한 TFT 및 QCI와 함께 PCEF(도시되지 않음)에 프로비전할 수 있으며, PCEF는 애플리케이션 서버(230)에 의해 특정된 바와 같이 QoS 및 과금을 시작한다. PCRF(226)와 P-GW(223) 사이의 Gx 기준 포인트는 PCRF(226)로부터 P-GW(223) 내의 PCEF로의 QoS 정책 및 과금 규칙들의 전송을 허용할 수 있다. Rx 기준 포인트가 PDN(230)(또는 "AF(230)")과 PCRF(226) 사이에 존재할 수 있다.
도 3은 다양한 실시예들에 따른 제2 CN(320)을 포함하는 시스템(300)의 아키텍처를 예시한다. 시스템(300)은 이전에 논의된 UE들(101) 및 UE(201)와 동일하거나 유사할 수 있는 UE(301); 이전에 논의된 RAN(110) 및 RAN(210)과 동일하거나 유사할 수 있는 그리고 이전에 논의된 RAN 노드들(111)을 포함할 수 있는 (R)AN(310); 및 예를 들어, 오퍼레이터 서비스들, 인터넷 액세스, 또는 제3자 서비스들일 수 있는 DN(303); 및 5GC(320)를 포함하는 것으로 도시되어 있다. 5GC(320)는 AUSF(322); AMF(321); SMF(324); NEF(323); PCF(326); NRF(325); UDM(327); AF(328); UPF(302); 및 NSSF(329)를 포함할 수 있다.
UPF(302)는 RAT-내 및 RAT-간 이동성에 대한 앵커 포인트, DN(303)에 대한 상호연결의 외부 PDU 세션 포인트, 및 다중-홈(multi-homed) PDU 세션을 지원하기 위한 분기 포인트로서 작용할 수 있다. UPF(302)는 또한, 패킷 라우팅 및 포워딩을 수행하고, 패킷 검사를 수행하고, 정책 규칙들의 사용자 평면 부분을 시행하고, 패킷들(UP 집합체)을 합법적으로 인터셉트하고, 트래픽 사용 리포팅을 수행하고, 사용자 평면에 대한 QoS 처리(예를 들어, 패킷 필터링, 게이팅(gating), UL/DL 레이트 시행)를 수행하고, 업링크 트래픽 검증(예를 들어, SDF로부터 QoS로의 흐름 맵핑)을 수행하고, 업링크 및 다운링크 내의 레벨 패킷 마킹을 전송하고, 다운링크 패킷 버퍼링 및 다운링크 데이터 통지 트리거링을 수행할 수 있다. UPF(302)는 데이터 네트워크로 트래픽 흐름들을 라우팅하는 것을 지원하기 위한 업링크 분류기를 포함할 수 있다. DN(303)은 다양한 네트워크 오퍼레이터 서비스들, 인터넷 액세스, 또는 제3자 서비스들을 표현할 수 있다. DN(303)은 이전에 논의된 애플리케이션 서버(130)를 포함할 수 있거나 그와 유사할 수 있다. UPF(302)는 SMF(324)와 UPF(302) 사이의 N4 기준 포인트를 통해 SMF(324)와 상호작용할 수 있다.
AUSF(322)는 UE(301)의 인증을 위한 데이터를 저장하고, 인증 관련 기능을 처리할 수 있다. AUSF(322)는 다양한 액세스 유형들을 위한 공통 인증 프레임워크를 용이하게 할 수 있다. AUSF(322)는 AMF(321)와 AUSF(322) 사이의 N12 기준 포인트를 통해 AMF(321)와 통신할 수 있고; UDM(327)과 AUSF(322) 사이의 N13 기준 포인트를 통해 UDM(327)과 통신할 수 있다. 부가적으로, AUSF(322)는 Nausf 서비스 기반 인터페이스를 나타낼 수 있다.
AMF(321)는 등록 관리(예를 들어, UE(301) 등을 등록하기 위함), 연결 관리, 접근성 관리, 이동성 관리, 및 AMF-관련 이벤트들의 합법적 인터셉션, 및 액세스 인증 및 인가를 담당할 수 있다. AMF(321)는 AMF(321)와 SMF(324) 사이의 N11 기준 포인트에 대한 종단 포인트일 수 있다. AMF(321)는 UE(301)와 SMF(324) 사이의 SM 메시지들에 대한 전송을 제공하고, SM 메시지들을 라우팅하기 위한 투명한 pro9로서 작용할 수 있다. AMF(321)는 또한, UE(301)와 SMSF(도 3에 의해 도시되지 않음) 사이의 SMS 메시지들에 대한 전송을 제공할 수 있다. AMF(321)는, AUSF(322) 및 UE(301)와의 상호작용, UE(301) 인증 프로세스의 결과로서 확립되었던 중간 키의 수신을 포함할 수 있는 SEAF로서 작용할 수 있다. USIM 기반 인증이 사용되는 경우, AMF(321)는 AUSF(322)로부터 보안 자료를 검색할 수 있다. AMF(321)는 또한, SCM 기능을 포함할 수 있으며, 이는 그것이 액세스-네트워크 특정 키들을 도출하기 위해 사용하는 키를 SEA로부터 수신한다. 더욱이, AMF(321)는 RAN CP 인터페이스의 종단 포인트일 수 있으며, 이는 (R)AN(310)과 AMF(321) 사이의 N2 기준 포인트일 수 있거나 이를 포함할 수 있고; AMF(321)는 NAS (N1) 시그널링의 종단 포인트일 수 있고, NAS 암호화 및 무결성 보호를 수행할 수 있다.
AMF(321)는 또한, N3 IWF 인터페이스를 통해 UE(301)와의 NAS 시그널링을 지원할 수 있다. N3IWF는 신뢰되지 않은 엔티티들에 대한 액세스를 제공하기 위해 사용될 수 있다. N3IWF는 제어 평면을 위한 (R)AN(310)과 AMF(321) 사이의 N2 인터페이스에 대한 종단 포인트일 수 있고, 사용자 평면을 위한 (R)AN(310)과 UPF(302) 사이의 N3 기준 포인트에 대한 종단 포인트일 수 있다. 그러므로, AMF(321)는 PDU 세션들 및 QoS에 대한 SMF(324) 및 AMF(321)로부터의 N2 시그널링을 처리하고, IPSec 및 N3 터널링을 위한 패킷들을 캡슐화/캡슐화해제하고, 업링크에서 N3 사용자 평면 패킷들을 마킹하며, N2를 통해 수신된 그러한 마킹과 연관된 QoS 요건들을 고려하여 N3 패킷 마킹에 대응하는 QoS를 시행할 수 있다. N3IWF는 또한, UE(301)와 AMF(321) 사이의 N1 기준 포인트를 통해 UE(301)와 AMF(321) 사이에서 업링크 및 다운링크 제어 평면 NAS 시그널링을 중계하고, UE(301)와 UPF(302) 사이에서 업링크 및 다운링크 사용자 평면 패킷들을 중계할 수 있다. N3IWF는 또한, UE(301)와의 IPsec 터널 확립을 위한 메커니즘들을 제공한다. AMF(321)는 Namf 서비스 기반 인터페이스를 나타낼 수 있고, 2개의 AMF들(321) 사이의 N14 기준 포인트 및 AMF(321)와 5G-EIR(도 3에 의해 도시되지 않음) 사이의 N17 기준 포인트에 대한 종단 포인트일 수 있다.
UE(301)는 네트워크 서비스들을 수신하기 위해 AMF(321)에 등록할 필요가 있을 수 있다. RM은 네트워크(예를 들어, AMF(321))에 UE(301)를 등록하거나 등록해제하고 네트워크(예를 들어, AMF(321)) 내에 UE 컨텍스트를 확립하는 데 사용된다. UE(301)는 RM-REGISTERED 상태 또는 RM-DEREGISTERED 상태에서 동작할 수 있다. RM-DEREGISTERED 상태에서, UE(301)는 네트워크에 등록되어 있지 않고, AMF(321) 내의 UE 컨텍스트는 UE(301)에 대한 유효한 위치 또는 라우팅 정보를 유지하고 있지 않으므로, UE(301)는 AMF(321)에 의해 접근가능하지 않다. RM-REGISTERED 상태에서, UE(301)는 네트워크에 등록되어 있고, AMF(321) 내의 UE 컨텍스트는 UE(301)에 대한 유효한 위치 또는 라우팅 정보를 유지하고 있을 수 있으므로, UE(301)는 AMF(321)에 의해 접근가능하다. RM-REGISTERED 상태에서, UE(301)는, 무엇보다도, 이동성 등록 업데이트 절차들을 수행하고, (예를 들어, UE(301)가 여전히 활성이라는 것을 네트워크에 통지하기 위해) 주기적 업데이트 타이머의 만료에 의해 트리거링되는 주기적 등록 업데이트 절차들을 수행하고, UE 능력 정보를 업데이트하거나 또는 네트워크와 프로토콜 파라미터들을 재협상하기 위해 등록 업데이트 절차를 수행할 수 있다.
AMF(321)는 UE(301)에 대한 하나 이상의 RM 컨텍스트들을 저장할 수 있으며, 여기서 각각의 RM 컨텍스트는 네트워크에 대한 특정 액세스와 연관된다. RM 컨텍스트는, 그 중에서도, 액세스 유형당 등록 상태 및 주기적 업데이트 타이머를 표시하거나 저장하는 데이터 구조, 데이터베이스 객체 등일 수 있다. AMF(321)는 또한, 이전에 논의된 (E)MM 컨텍스트와 동일하거나 유사할 수 있는 5GC MM 컨텍스트를 저장할 수 있다. 다양한 실시예들에서, AMF(321)는 연관된 MM 컨텍스트 또는 RM 컨텍스트에 UE(301)의 CE 모드 B 제한 파라미터를 저장할 수 있다. AMF(321)는 또한, 필요할 때, UE 컨텍스트(및/또는 MM/RM 컨텍스트)에 이미 저장되어 있는 UE의 사용 설정 파라미터로부터 값을 도출할 수 있다.
CM은 N1 인터페이스를 통한 UE(301)와 AMF(321) 사이의 시그널링 연결을 확립하고 해제하는 데 사용될 수 있다. 시그널링 연결은 UE(301)와 CN(320) 사이의 NAS 시그널링 교환을 가능하게 하는 데 사용되고, UE와 AN 사이의 시그널링 연결(예를 들어, 비-3GPP 액세스를 위한 RRC 연결 또는 UE-N3IWF 연결) 및 AN(예를 들어, RAN(310))과 AMF(321) 사이의 UE(301)에 대한 N2 연결 둘 모두를 포함한다. UE(301)는 2개의 CM 상태들, 즉, CM-IDLE 모드 또는 CM-CONNECTED 모드 중 하나에서 동작할 수 있다. UE(301)가 CM-IDLE 상태/모드에서 동작하고 있을 때, UE(301)는 N1 인터페이스를 통해 AMF(321)와의 확립된 NAS 시그널링 연결을 갖지 않을 수 있고, UE(301)에 대한 (R)AN(310) 시그널링 연결(예를 들어, N2 및/또는 N3 연결들)이 있을 수 있다. UE(301)가 CM-CONNECTED 상태/모드에서 동작하고 있을 때, UE(301)는 N1 인터페이스를 통한 AMF(321)와의 확립된 NAS 시그널링 연결을 가질 수 있고, UE(301)에 대한 (R)AN(310) 시그널링 연결(예를 들어, N2 및/또는 N3 연결들)이 있을 수 있다. (R)AN(310)과 AMF(321) 사이의 N2 연결의 확립은 UE(301)가 CM-IDLE 모드로부터 CM-CONNECTED 모드로 전환하게 할 수 있고, UE(301)는 (R)AN(310)과 AMF(321) 사이의 N2 시그널링이 해제될 때 CM-CONNECTED 모드로부터 CM-IDLE 모드로 전환할 수 있다.
SMF(324)는 SM(예를 들어, UPF와 AN 노드 사이의 터널 유지를 포함하는, 세션 확립, 수정 및 해제); UE IP 어드레스 할당 및 관리(선택적인 인가를 포함함); UP 기능의 선택 및 제어; 트래픽을 적절한 목적지로 라우팅하기 위한 UPF에서의 트래픽 조향을 구성하는 것; 정책 제어 기능들을 향한 인터페이스들의 종단; 정책 시행 및 QoS의 일부를 제어하는 것; 합법적 인터셉트(SM 이벤트들 및 LI 시스템으로의 인터페이스에 대한 것임); NAS 메시지들의 SM 부분들의 종단; 다운링크 데이터 통지; N2에 걸쳐 AMF를 통해 AN으로 전송된 AN 특정 SM 정보의 개시; 및 세션의 SSC 모드의 결정을 담당할 수 있다. SM은 PDU 세션의 관리를 지칭할 수 있고, PDU 세션 또는 "세션"은 UE(301)와, 데이터 네트워크 명칭(Data Network Name, DNN)에 의해 식별되는 데이터 네트워크(DN)(303) 사이의 PDU들의 교환을 제공하거나 가능하게 하는 PDU 연결 서비스를 지칭할 수 있다. PDU 세션들은, UE(301)와 SMF(324) 사이의 N1 기준 포인트를 통해 교환되는 NAS SM 시그널링을 사용하여, UE(301) 요청에 따라 확립되고, UE(301) 및 5GC(320) 요청에 따라 수정되고, UE(301) 및 5GC(320) 요청에 따라 해제될 수 있다. 애플리케이션 서버로부터의 요청에 따라, 5GC(320)는 UE(301) 내의 특정 애플리케이션을 트리거링할 수 있다. 트리거 메시지의 수신에 응답하여, UE(301)는 트리거 메시지(또는 트리거 메시지의 관련 부분들/정보)를 UE(301) 내의 하나 이상의 식별된 애플리케이션들로 전달할 수 있다. UE(301) 내의 식별된 애플리케이션(들)은 특정 DNN에 대한 PDU 세션을 확립할 수 있다. SMF(324)는 UE(301) 요청들이 UE(301)와 연관된 사용자 가입 정보에 부합하는지 여부를 확인할 수 있다. 이와 관련하여, SMF(324)는 UDM(327)으로부터 SMF(324) 레벨 가입 데이터에 대한 업데이트 통지들을 검색하고 그리고/또는 수신할 것을 요청할 수 있다.
SMF(324)는 하기의 로밍 기능을 포함할 수 있다: QoS SLA들(VPLMN)을 적용하기 위한 로컬 시행의 처리; 과금 데이터 수집 및 과금 인터페이스(VPLMN); 합법적 인터셉트(SM 이벤트들 및 LI 시스템으로의 인터페이스에 대한 VPLMN 내의 것임); 및 외부 DN에 의한 PDU 세션 인가/인증을 위한 시그널링의 전송을 위한 외부 DN과의 상호작용에 대한 지원. 2개의 SMF들(324) 사이의 N16 기준 포인트가 시스템(300)에 포함될 수 있으며, 이는 로밍 시나리오들에서 방문 네트워크 내의 다른 SMF(324)와 홈 네트워크 내의 SMF(324) 사이에 있을 수 있다. 부가적으로, SMF(324)는 Nsmf 서비스 기반 인터페이스를 나타낼 수 있다.
NEF(323)는 제3자, 내부 노출/재노출, 애플리케이션 기능들(예를 들어, AF(328)), 에지 컴퓨팅 또는 포그(fog) 컴퓨팅 시스템들 등에 대해 3GPP 네트워크 기능들에 의해 제공되는 서비스들 및 능력들을 안전하게 노출시키기 위한 수단을 제공할 수 있다. 그러한 실시예들에서, NEF(323)는 AF들을 인증, 인가, 및/또는 스로틀링(throttle)할 수 있다. NEF(323)는 또한, AF(328)와 교환되는 정보 및 내부 네트워크 기능들과 교환되는 정보를 변환할 수 있다. 예를 들어, NEF(323)는 AF-서비스-식별자 및 내부 5GC 정보 사이에서 변환할 수 있다. NEF(323)는 또한, 다른 네트워크 기능들의 노출된 능력들에 기초하여 다른 네트워크 기능(NF)들로부터 정보를 수신할 수 있다. 이러한 정보는 구조화된 데이터로서 NEF(323)에, 또는 표준화된 인터페이스들을 사용하여 데이터 저장 NF에 저장될 수 있다. 이어서, 저장된 정보는 NEF(323)에 의해 다른 NF들 및 AF들에 재노출되고 그리고/또는 분석들과 같은 다른 목적들을 위해 사용될 수 있다. 부가적으로, NEF(323)는 Nnef 서비스 기반 인터페이스를 나타낼 수 있다.
NRF(325)는 서비스 탐색 기능들을 지원하고, NF 인스턴스들로부터 NF 탐색 요청들을 수신하며, 탐색된 NF 인스턴스들의 정보를 NF 인스턴스들에 제공할 수 있다. NRF(325)는 또한, 이용가능한 NF 인스턴스들의 정보 및 그들의 지원되는 서비스들을 유지한다. 본 명세서에서 사용되는 바와 같이, 용어들 "인스턴스화하다(instantiate)", "인스턴스화(instantiation)" 등은 인스턴스의 생성을 지칭할 수 있고, "인스턴스"는, 예를 들어, 프로그램 코드의 실행 동안 발생될 수 있는, 객체의 구체적 발생(concrete occurrence)을 지칭할 수 있다. 부가적으로, NRF(325)는 Nnrf 서비스 기반 인터페이스를 나타낼 수 있다.
PCF(326)는 제어 평면 기능(들)에 정책 규칙들을 제공하여 이들을 강제할 수 있고, 또한, 네트워크 거동을 관리하기 위해 통합 정책 프레임워크를 지원할 수 있다. PCF(326)는 또한, UDM(327)의 UDR에서의 정책 결정들에 관련있는 가입 정보에 액세스하기 위해 FE를 구현할 수 있다. PCF(326)는 PCF(326)와 AMF(321) 사이의 N15 기준 포인트를 통해 AMF(321)와 통신할 수 있고, 이는 로밍 시나리오들의 경우에 방문 네트워크 내의 PCF(326) 및 AMF(321)를 포함할 수 있다. PCF(326)는 PCF(326)와 AF(328) 사이의 N5 기준 포인트를 통해 AF(328)와; 그리고, PCF(326)와 SMF(324) 사이의 N7 기준 포인트를 통해 SMF(324)와 통신할 수 있다. 시스템(300) 및/또는 CN(320)은 또한, (홈 네트워크 내의) PCF(326)와 방문 네트워크 내의 PCF(326) 사이에 N24 기준 포인트를 포함할 수 있다. 부가적으로, PCF(326)는 Npcf 서비스 기반 인터페이스를 나타낼 수 있다.
UDM(327)은 통신 세션들의 네트워크 엔티티들의 처리를 지원하기 위해 가입 관련 정보를 처리할 수 있고, UE(301)의 가입 데이터를 저장할 수 있다. 예를 들어, 가입 데이터는 UDM(327)과 AMF 사이의 N8 기준 포인트를 통해 UDM(327)과 AMF(321) 사이에서 통신될 수 있다. UDM(327)은 2개의 부분들, 즉, 애플리케이션 FE 및 UDR을 포함할 수 있다(FE 및 UDR은 도 3에 의해 도시되지 않음). UDR은 UDM(327) 및 PCF(326)를 위한 가입 데이터 및 정책 데이터, 및/또는 NEF(323)를 위한 노출 및 애플리케이션 데이터(애플리케이션 검출을 위한 PFD들, 다수의 UE들(301)에 대한 애플리케이션 요청 정보를 포함함)에 대한 구조화된 데이터를 저장할 수 있다. Nudr 서비스-기반 인터페이스는, UDM(327), PCF(326), 및 NEF(323)가 저장된 데이터의 특정 세트에 액세스하게 허용할 뿐만 아니라, 판독, 업데이트(예를 들어, 추가, 수정), 삭제하게 허용하고, UDR 내의 관련 데이터 변화들의 통지에 가입하게 허용하기 위해, UDR(221)에 의해 나타내어질 수 있다. UDM은 UDM-FE를 포함할 수 있는데, 이는 크리덴셜(credential)들, 위치 관리, 가입 관리 등을 프로세싱하는 것을 담당한다. 여러 개의 상이한 프론트 엔드들이 상이한 트랜잭션들에서 동일한 사용자를 서빙할 수 있다. UDM-FE는 UDR에 저장된 가입 정보에 액세스하고, 인증 크리덴셜 프로세싱, 사용자 식별 처리, 액세스 인가, 등록/이동성 관리, 및 가입 관리를 수행한다. UDR은 UDM(327)과 SMF(324) 사이의 N10 기준 포인트를 통해 SMF(324)와 상호작용할 수 있다. UDM(327)은 또한, SMS 관리를 지원할 수 있으며, 여기서 SMS-FE는 이전에 논의된 바와 유사한 애플리케이션 로직을 구현한다. 부가적으로, UDM(327)은 Nudm 서비스 기반 인터페이스를 나타낼 수 있다.
AF(328)는 트래픽 라우팅에 대한 애플리케이션 영향을 제공하고, NCE에 대한 액세스를 제공하며, 정책 제어를 위해 정책 프레임워크와 상호작용할 수 있다. NCE는, 5GC(320) 및 AF(328)가 NEF(323)를 통해 서로 정보를 제공하게 허용하는 메커니즘일 수 있으며, 이는 에지 컴퓨팅 구현들에 사용될 수 있다. 그러한 구현예들에서, 네트워크 오퍼레이터 및 제3자 서비스들은 전송 네트워크 상의 감소된 엔드-투-엔드(end-to-end) 레이턴시 및 부하를 통한 효율적인 서비스 전달을 달성하기 위해 UE(301) 액세스 부착 포인트에 가깝게 호스팅될 수 있다. 에지 컴퓨팅 구현들에 대해, 5GC는 UE(301)에 가까운 UPF(302)를 선택할 수 있고, N6 인터페이스를 통해 UPF(302)로부터 DN(303)으로의 트래픽 조향을 실행할 수 있다. 이는 UE 가입 데이터, UE 위치, 및 AF(328)에 의해 제공되는 정보에 기초할 수 있다. 이러한 방식으로, AF(328)는 UPF (재)선택 및 트래픽 라우팅에 영향을 줄 수 있다. 오퍼레이터 배치에 기초하여, AF(328)가 신뢰된 엔티티인 것으로 간주될 때, 네트워크 오퍼레이터는 AF(328)가 관련있는 NF들과 직접 상호작용하게 할 수 있다. 부가적으로, AF(328)는 Naf 서비스 기반 인터페이스를 나타낼 수 있다.
NSSF(329)는 UE(301)를 서빙하는 네트워크 슬라이스 인스턴스들의 세트를 선택할 수 있다. NSSF(329)는 또한, 필요할 경우, 허용된 NSSAI 및 가입된 S-NSSAI들로의 맵핑을 결정할 수 있다. NSSF(329)는 또한, 적합한 구성에 기초하여 그리고 가능하게는 NRF(325)에 질의함으로써 UE(301)를 서빙하는 데 사용될 AMF 세트 또는 후보 AMF(들)(321)의 리스트를 결정할 수 있다. UE(301)에 대한 네트워크 슬라이스 인스턴스들의 세트의 선택은 UE(301)가 NSSF(329)와 상호작용함으로써 등록되는 AMF(321)에 의해 트리거링될 수 있으며, 이는 AMF(321)의 변화를 유발할 수 있다. NSSF(329)는 AMF(321)와 NSSF(329) 사이의 N22 기준 포인트를 통해 AMF(321)와 상호작용할 수 있고; N31 기준 포인트(도 3에 의해 도시되지 않음)를 통해 방문 네트워크 내의 다른 NSSF(329)와 통신할 수 있다. 부가적으로, NSSF(329)는 Nnssf 서비스 기반 인터페이스를 나타낼 수 있다.
이전에 논의된 바와 같이, CN(320)은, SMS 가입 확인 및 검증, 및 SMS-GMSC/IWMSC/SMS 라우터와 같은 다른 엔티티들로부터 UE(301)로 그리고 UE(301)로부터 다른 엔티티들로 SM 메시지들을 중계하는 것을 담당할 수 있는 SMSF를 포함할 수 있다. SMS는 또한, UE(301)가 SMS 전송을 위해 이용가능한 통지 절차를 위해 AMF(321) 및 UDM(327)과 상호작용할 수 있다(예를 들어, UE를 접근가능하지 않은 플래그로 설정하고, UE(301)가 SMS를 위해 이용가능할 때를 UDM(327)에 통지함).
CN(120)은 또한, 데이터 저장 시스템/아키텍처, 5G-EIR, SEPP 등과 같은, 도 3에 의해 도시되지 않은 다른 요소들을 포함할 수 있다. 데이터 저장 시스템은 SDSF, UDSF 등을 포함할 수 있다. 임의의 NF는 임의의 NF와 UDSF(도 3에 의해 도시되지 않음) 사이의 N18 기준 포인트를 통해 UDSF(예를 들어, UE 컨텍스트들) 내로/로부터 구조화되지 않은 데이터를 저장하고 검색할 수 있다. 개별 NF들은 그들 개개의 구조화되지 않은 데이터를 저장하기 위해 UDSF를 공유할 수 있거나, 또는 개별 NF들은 개별 NF들에 또는 그 부근에 위치된 그들 자신의 UDSF를 각각 가질 수 있다. 부가적으로, UDSF는 Nudsf 서비스 기반 인터페이스(도 3에 의해 도시되지 않음)를 나타낼 수 있다. 5G-EIR은, 특정 장비/엔티티들이 네트워크로부터 블랙리스트에 올라가 있는지 여부를 결정하기 위해 PEI의 상태를 확인하는 NF일 수 있고; SEPP는 토폴로지 은폐, 메시지 필터링, 및 PLMN-간 제어 평면 인터페이스들 상의 감시를 수행하는 불투명 pro9일 수 있다.
부가적으로, NF들 내의 NF 서비스들 사이에 더 많은 기준 포인트들 및/또는 서비스 기반 인터페이스들이 있을 수 있지만; 이들 인터페이스들 및 기준 포인트들은 명확성을 위해 도 3에서 생략되었다. 일 예에서, CN(320)은, CN(320)과 CN(220) 사이의 상호연동(interworking)을 가능하게 하기 위해 MME(예를 들어, MME(221))와 AMF(321) 사이의 CN-간 인터페이스인 Nx 인터페이스를 포함할 수 있다. 다른 예시적인 인터페이스들/기준 포인트들은 5G-EIR에 의해 나타내지는 N5g-EIR 서비스 기반 인터페이스, 방문 네트워크 내의 NRF와 홈 네트워크 내의 NRF 사이의 N27 기준 포인트; 및 방문 네트워크 내의 NSSF와 홈 네트워크 내의 NSSF 사이의 N31 기준 포인트를 포함할 수 있다.
도 4는 다양한 실시예들에 따른 인프라구조 장비(400)의 일 예를 예시한다. 인프라구조 장비(400)(또는 "시스템(400)")는 기지국, 무선 헤드, 이전에 도시되고 설명된 RAN 노드들(111) 및/또는 AP(106)와 같은 RAN 노드, 애플리케이션 서버(들)(130), 및/또는 본 명세서에서 논의되는 임의의 다른 요소/디바이스로서 구현될 수 있다. 다른 예들에서, 시스템(400)은 UE에서 또는 UE에 의해 구현될 수 있다.
시스템(400)은 애플리케이션 회로부(405), 기저대역 회로부(410), 하나 이상의 무선 프론트 엔드 모듈(RFEM)들(415), 메모리 회로부(420), 전력 관리 집적 회로부(power management integrated circuitry, PMIC)(425), 전력 티(tee) 회로부(430), 네트워크 제어기 회로부(435), 네트워크 인터페이스 연결기(440), 위성 포지셔닝 회로부(445), 및 사용자 인터페이스(450)를 포함한다. 일부 실시예들에서, 디바이스(400)는, 예를 들어, 메모리/저장소, 디스플레이, 카메라, 센서, 또는 입력/출력(I/O) 인터페이스와 같은 부가적인 요소들을 포함할 수 있다. 다른 실시예들에서, 아래에서 설명되는 컴포넌트들은 하나 초과의 디바이스에 포함될 수 있다. 예를 들어, 상기 회로부들은 CRAN, vBBU, 또는 다른 유사한 구현들을 위해 하나 초과의 디바이스에 별개로 포함될 수 있다.
애플리케이션 회로부(405)는, 하나 이상의 프로세서들(또는 프로세서 코어들), 캐시 메모리, 및 LDO(low drop-out voltage regulator)들, 인터럽트 제어기들, 직렬 인터페이스들, 예컨대 SPI, I2C, 또는 범용 프로그래밍가능 직렬 인터페이스 모듈, RTC(real time clock), 간격 및 감시(watchdog) 타이머들을 포함하는 타이머-카운터들, 범용 입력/출력(I/O 또는 IO), SD(Secure Digital) MMC(MultiMediaCard) 또는 유사물과 같은 메모리 카드 제어기들, USB(Universal Serial Bus) 인터페이스들, MIPI(Mobile Industry Processor Interface) 인터페이스들, 및 JTAG(Joint Test Access Group) 테스트 액세스 포트들 중 하나 이상과 같은, 그러나 이들로 제한되지 않는 회로부를 포함한다. 애플리케이션 회로부(405)의 프로세서들(또는 코어들)은 메모리/저장 요소들과 커플링되거나 이들을 포함할 수 있고, 메모리/저장소에 저장된 명령어들을 실행시켜서 다양한 애플리케이션들 또는 운영 체제들이 시스템(400) 상에서 실행될 수 있게 하도록 구성될 수 있다. 일부 구현예들에서, 메모리/저장 요소들은 DRAM, SRAM, EPROM, EEPROM, 플래시 메모리, 솔리드 스테이트 메모리와 같은 임의의 적합한 휘발성 및/또는 비휘발성 메모리, 및/또는 본 명세서에서 논의되는 것들과 같은 임의의 다른 유형의 메모리 디바이스 기술을 포함할 수 있는 온 칩 메모리 회로부일 수 있다.
애플리케이션 회로부(405)의 프로세서(들)는, 예를 들어, 하나 이상의 CPU(processor core)들, 하나 이상의 애플리케이션 프로세서들, 하나 이상의 GPU(graphics processing unit)들, 하나 이상의 RISC(reduced instruction set computing) 프로세서들, 하나 이상의 ARM(Acorn RISC Machine) 프로세서들, 하나 이상의 CISC(complex instruction set computing) 프로세서들, 하나 이상의 DSP(digital signal processor)들, 하나 이상의 FPGA들, 하나 이상의 PLD들, 하나 이상의 ASIC들, 하나 이상의 마이크로프로세서들 또는 제어기들, 또는 이들의 임의의 적합한 조합을 포함할 수 있다. 일부 실시예들에서, 애플리케이션 회로부(405)는 본 명세서에서의 다양한 실시예들에 따라 동작하는 특수 목적 프로세서/제어기일 수 있거나, 이를 포함할 수 있다. 예들로서, 애플리케이션 회로부(405)의 프로세서(들)는 하나 이상의 Intel Pentium®, Core®, 또는 Xeon® 프로세서(들); AMD(Advanced Micro Devices) Ryzen® 프로세서(들), APU(Accelerated Processing Unit)들, 또는 Epyc® 프로세서들; ARM Holdings, Ltd.로부터 라이선싱된 ARM 기반 프로세서(들), 예컨대, ARM Cortex-A 계열의 프로세서들 및 Cavium(TM), Inc.에 의해 제공되는 ThunderX2®; MIPS Technologies, Inc.로부터의 MIPS 기반 설계, 예컨대, MIPS Warrior P-클래스 프로세서들; 등을 포함할 수 있다. 일부 실시예들에서, 시스템(400)은 애플리케이션 회로부(405)를 이용하지 않을 수 있고, 그 대신에, 예를 들어, EPC 또는 5GC로부터 수신되는 IP 데이터를 프로세싱하기 위한 특수 목적 프로세서/제어기를 포함할 수 있다.
일부 구현예들에서, 애플리케이션 회로부(405)는 마이크로프로세서들, 프로그래밍가능 프로세싱 디바이스들 등일 수 있는 하나 이상의 하드웨어 가속기들을 포함할 수 있다. 하나 이상의 하드웨어 가속기들은, 예를 들어, 컴퓨터 비전(computer vision, CV) 및/또는 딥 러닝(deep learning, DL) 가속기들을 포함할 수 있다. 예들로서, 프로그래밍가능 프로세싱 디바이스들은 하나 이상의 FPD(field-programmable device)들, 예컨대, FPGA(field-programmable gate array)들 등; PLD(programmable logic device)들, 예컨대, CPLD(complex PLD)들, HCPLD(high-capacity PLD)들 등; ASIC들, 예컨대, 구조화된 ASIC들 등; PSoC(programmable SoC)들; 등일 수 있다. 그러한 구현예들에서, 애플리케이션 회로부(405)의 회로부는 로직 블록들 또는 로직 구조(logic fabric), 및 본 명세서에서 논의되는 다양한 실시예들의 절차들, 방법들, 기능들 등과 같은 다양한 기능들을 수행하도록 프로그래밍될 수 있는 다른 상호연결된 리소스들을 포함할 수 있다. 그러한 실시예들에서, 애플리케이션 회로부(405)의 회로부는 로직 블록들, 로직 구조, 데이터 등을 룩업 테이블(look-up-table, LUT)들 등에 저장하기 위해 사용되는 메모리 셀들(예를 들어, EPROM(erasable programmable read-only memory), EEPROM(electrically erasable programmable read-only memory), 플래시 메모리, 정적 메모리(예를 들어, SRAM(static random access memory), 안티-퓨즈(anti-fuse)들 등))을 포함할 수 있다.
기저대역 회로부(410)는, 예를 들어, 하나 이상의 집적 회로들을 포함하는 솔더 다운 기판, 메인 회로 보드에 솔더링되는 단일 패키징된 집적 회로, 또는 2개 이상의 집적 회로들을 포함하는 멀티 칩 모듈로서 구현될 수 있다. 기저대역 회로부(410)의 다양한 하드웨어 전자 요소들은 도 6과 관련하여 아래에서 논의된다.
사용자 인터페이스 회로부(450)는 시스템(400)과의 사용자 상호작용을 가능하게 하도록 설계된 하나 이상의 사용자 인터페이스들 또는 시스템(400)과의 주변 컴포넌트 상호작용을 가능하게 하도록 설계된 주변 컴포넌트 인터페이스들을 포함할 수 있다. 사용자 인터페이스들은 하나 이상의 물리적 또는 가상 버튼들(예를 들어, 리셋 버튼), 하나 이상의 표시자들(예를 들어, LED(light emitting diode)들), 물리적 키보드 또는 키패드, 마우스, 터치패드, 터치스크린, 스피커들 또는 다른 오디오 방출 디바이스들, 마이크로폰들, 프린터, 스캐너, 헤드셋, 디스플레이 스크린 또는 디스플레이 디바이스 등을 포함할 수 있지만, 이들로 제한되지 않는다. 주변 컴포넌트 인터페이스들은 비휘발성 메모리 포트, USB(universal serial bus) 포트, 오디오 잭(jack), 전력 공급 인터페이스 등을 포함할 수 있지만, 이들로 제한되지 않는다.
무선 프론트 엔드 모듈(RFEM)들(415)은 밀리미터파(mmWave) RFEM 및 하나 이상의 서브-mmWave RFIC(radio frequency integrated circuit)들을 포함할 수 있다. 일부 구현예들에서, 하나 이상의 서브-mmWave RFIC들은 mmWave RFEM으로부터 물리적으로 분리될 수 있다. RFIC들은 하나 이상의 안테나들 또는 안테나 어레이들(예를 들어, 아래의 도 6의 안테나 어레이(611) 참조)에 대한 연결들을 포함할 수 있고, RFEM은 다수의 안테나들에 연결될 수 있다. 대안적인 구현예들에서, mmWave 및 서브-mmWave 무선 기능들 둘 모두는 mmWave 안테나들 및 서브-mmWave 둘 모두를 통합하는 동일한 물리적 RFEM(415)에서 구현될 수 있다.
메모리 회로부(420)는 DRAM(dynamic random access memory) 및/또는 SDRAM(synchronous dynamic random access memory)을 포함하는 휘발성 메모리, 및 고속 전기 소거가능 메모리(일반적으로, 플래시 메모리로 지칭됨), PRAM(phase change random access memory), MRAM(magnetoresistive random access memory) 등을 포함하는 비휘발성 메모리(nonvolatile memory, NVM) 중 하나 이상을 포함할 수 있고, Intel® 및 Micron®로부터의 3차원(3D) XPOINT(cross-point) 메모리들을 포함할 수 있다. 메모리 회로부(420)는 솔더 다운 패키징된 집적 회로들, 소켓형 메모리 모듈들 및 플러그인(plug-in) 메모리 카드들 중 하나 이상으로서 구현될 수 있다.
PMIC(425)는 전압 조절기들, 서지(surge) 보호기들, 전력 알람 검출 회로부, 및 배터리 또는 커패시터와 같은 하나 이상의 백업 전원들을 포함할 수 있다. 전력 경보 검출 회로부는 전압 저하(brown out)(과소 전압) 및 서지(과전압) 조건들 중 하나 이상을 검출할 수 있다. 전력 티 회로부(430)는 단일 케이블을 사용하여 인프라구조 장비(400)에 전력 공급 및 데이터 연결 둘 모두를 제공하기 위해 네트워크 케이블로부터 인출되는 전기 전력을 제공할 수 있다.
네트워크 제어기 회로부(435)는 이더넷, GRE 터널들을 통한 이더넷, MPLS(Multiprotocol Label Switching)를 통한 이더넷, 또는 일부 다른 적합한 프로토콜과 같은 표준 네트워크 인터페이스 프로토콜을 사용하여 네트워크에 대한 연결을 제공할 수 있다. 네트워크 연결은 전기(일반적으로, "구리 상호연결"로 지칭됨), 광학, 또는 무선일 수 있는 물리적 연결부를 사용하여 네트워크 인터페이스 연결기(440)를 통해 인프라구조 장비(400)에/로부터 제공될 수 있다. 네트워크 제어기 회로부(435)는 전술된 프로토콜들 중 하나 이상을 사용하여 통신하기 위한 하나 이상의 전용 프로세서들 및/또는 FPGA들을 포함할 수 있다. 일부 구현예들에서, 네트워크 제어기 회로부(435)는 동일하거나 상이한 프로토콜들을 사용하여 다른 네트워크들에 대한 연결을 제공하기 위해 다수의 제어기들을 포함할 수 있다.
포지셔닝 회로부(445)는 GNSS(global navigation satellite system)의 포지셔닝 네트워크에 의해 송신/브로드캐스팅되는 신호들을 수신 및 디코딩하기 위한 회로부를 포함한다. 내비게이션 위성 성상도(navigation satellite constellation)들(또는 GNSS)의 예들은 미국의 GPS(Global Positioning System), 러시아의 GLONASS(Global Navigation System), 유럽 연합의 갈릴레오(Galileo) 시스템, 중국의 베이더우(BeiDou) 내비게이션 위성 시스템, 지역 내비게이션 시스템 또는 GNSS 증강 시스템(예를 들어, NAVIC(Navigation with Indian Constellation), 일본의 QZSS(Quasi-Zenith Satellite System), 프랑스의 DORIS(Doppler Orbitography and Radio-positioning Integrated by Satellite) 등) 등을 포함한다. 포지셔닝 회로부(445)는 내비게이션 위성 성상도 노드들과 같은 포지셔닝 네트워크의 컴포넌트들과 통신하기 위해, 다양한 하드웨어 요소들(예를 들어, OTA 통신들을 용이하게 하기 위한 스위치들, 필터들, 증폭기들, 안테나 요소들 등과 같은 하드웨어 디바이스들을 포함함)을 포함한다. 일부 실시예들에서, 포지셔닝 회로부(445)는 마스터 타이밍 클록을 사용하여 GNSS 보조 없이 포지션 추적/추정을 수행하는 Micro-PNT(Micro-Technology for Positioning, Navigation, and Timing) IC를 포함할 수 있다. 포지셔닝 회로부(445)는 또한 포지셔닝 네트워크의 노드들 및 컴포넌트들과 통신하기 위해, 기저대역 회로부(410) 및/또는 RFEM들(415)의 일부이거나 그와 상호작용할 수 있다. 포지셔닝 회로부(445)는 또한 포지션 데이터 및/또는 시간 데이터를 애플리케이션 회로부(405)에 제공할 수 있으며, 이는 데이터를 사용하여 다양한 인프라구조(예를 들어, RAN 노드들(111) 등)와 동작들을 동기화하는 등을 할 수 있다.
도 4에 의해 도시된 컴포넌트들은, ISA(industry standard architecture), EISA(extended ISA), PCI(peripheral component interconnect), PCIx(peripheral component interconnect extended), PCIe(PCI express), 또는 임의의 수의 다른 기술들과 같은 임의의 수의 버스 및/또는 상호연결(IX) 기술들을 포함할 수 있는 인터페이스 회로부를 사용하여 서로 통신할 수 있다. 버스/IX는, 예를 들어, SoC 기반 시스템에서 사용되는 독점적 버스일 수 있다. 다른 것들 중에서, I2C 인터페이스, SPI 인터페이스, 포인트-투-포인트 인터페이스들, 및 전력 버스와 같은 다른 버스/IX 시스템들이 포함될 수 있다.
도 5는 다양한 실시예들에 따른 플랫폼(500)(또는 "디바이스(500)")의 일 예를 예시한다. 실시예들에서, 컴퓨터 플랫폼(500)은 본 명세서에서 논의되는 UE들(101, 201, 301), 애플리케이션 서버들(130), 및/또는 임의의 다른 요소/디바이스로서 사용하기에 적합할 수 있다. 플랫폼(500)은 이 예에 도시된 컴포넌트들의 임의의 조합들을 포함할 수 있다. 플랫폼(500)의 컴포넌트들은 컴퓨터 플랫폼(500)에 적응된 집적 회로(IC)들, 그의 일부들, 이산적인 전자 디바이스들, 또는 다른 모듈들, 로직, 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 조합으로서, 또는 달리 더 큰 시스템의 섀시(chassis) 내에 통합된 컴포넌트들로서 구현될 수 있다. 도 5의 블록도는 컴퓨터 플랫폼(500)의 컴포넌트들의 높은 레벨 뷰(view)를 도시하도록 의도된다. 그러나, 도시된 컴포넌트들 중 일부는 생략될 수 있고, 부가적인 컴포넌트들이 존재할 수 있고, 도시된 컴포넌트들의 상이한 배열이 다른 구현예들에서 발생할 수 있다.
애플리케이션 회로부(505)는 하나 이상의 프로세서들(또는 프로세서 코어들), 캐시 메모리, 및 LDO들, 인터럽트 제어기들, 직렬 인터페이스들, 예컨대 SPI, I2C 또는 범용 프로그래밍가능 직렬 인터페이스 모듈, RTC, 간격 및 감시 타이머들을 포함하는 타이머-카운터들, 범용 I/O, SD MMC 또는 유사물과 같은 메모리 카드 제어기들, USB 인터페이스들, MIPI 인터페이스들, 및 JTAG 테스트 액세스 포트들 중 하나 이상과 같은, 그러나 이들로 제한되지 않는 회로부를 포함한다. 애플리케이션 회로부(505)의 프로세서들(또는 코어들)은 메모리/저장 요소들과 커플링되거나 이들을 포함할 수 있고, 메모리/저장소에 저장된 명령어들을 실행시켜서 다양한 애플리케이션들 또는 운영 체제들이 시스템(500) 상에서 실행될 수 있게 하도록 구성될 수 있다. 일부 구현예들에서, 메모리/저장 요소들은 DRAM, SRAM, EPROM, EEPROM, 플래시 메모리, 솔리드 스테이트 메모리와 같은 임의의 적합한 휘발성 및/또는 비휘발성 메모리, 및/또는 본 명세서에서 논의되는 것들과 같은 임의의 다른 유형의 메모리 디바이스 기술을 포함할 수 있는 온 칩 메모리 회로부일 수 있다.
애플리케이션 회로부(405)의 프로세서(들)는, 예를 들어, 하나 이상의 프로세서 코어들, 하나 이상의 애플리케이션 프로세서들, 하나 이상의 GPU들, 하나 이상의 RISC 프로세서들, 하나 이상의 ARM 프로세서들, 하나 이상의 CISC 프로세서들, 하나 이상의 DSP, 하나 이상의 FPGA들, 하나 이상의 PLD들, 하나 이상의 ASIC들, 하나 이상의 마이크로프로세서들 또는 제어기들, 멀티스레드형 프로세서, 초저전압 프로세서, 임베디드 프로세서, 일부 다른 알려진 프로세싱 요소, 또는 이들의 임의의 적합한 조합을 포함할 수 있다. 일부 실시예들에서, 애플리케이션 회로부(405)는 본 명세서에서의 다양한 실시예들에 따라 동작하는 특수 목적 프로세서/제어기일 수 있거나, 이를 포함할 수 있다.
예들로서, 애플리케이션 회로부(505)의 프로세서(들)는 Intel® Architecture Core™ 기반 프로세서, 예컨대 Quark™, Atom™, i3, i5, i7, 또는 MCU-클래스 프로세서, 또는 미국 캘리포니아주 산타 클라라 소재의 Intel® Corporation으로부터 입수가능한 다른 그러한 프로세서를 포함할 수 있다. 애플리케이션 회로부(505)의 프로세서들은 또한 AMD(Advanced Micro Devices) Ryzen® 프로세서(들) 또는 APU(Accelerated Processing Unit)들; Apple® Inc.로부터의 A5-A9 프로세서(들), Qualcomm® Technologies, Inc.로부터의 Snapdragon™ 프로세서(들), Texas Instruments, Inc.® OMAP™(Open Multimedia Applications Platform) 프로세서(들); MIPS Technologies, Inc.로부터의 MIPS 기반 설계, 예컨대, MIPS Warrior M-클래스, Warrior I-클래스, 및 Warrior P-클래스 프로세서들; ARM Holdings, Ltd.로부터 라이선싱된 ARM-기반 설계, 예컨대, ARM Cortex-A, Cortex-R, 및 Cortex-M 계열의 프로세서들; 등 중 하나 이상일 수 있다. 일부 구현예들에서, 애플리케이션 회로부(505)는 Intel® Corporation으로부터의 Edison™ 또는 Galileo™ SoC(system on a chip) 보드들과 같은, 애플리케이션 회로부(505) 및 다른 컴포넌트들이 단일 집적 회로 또는 단일 패키지에 형성된 SoC의 일부일 수 있다.
부가적으로 또는 대안적으로, 애플리케이션 회로부(505)는 하나 이상의 FPD(field-programmable device)들, 예컨대, FPGA들 등; PLD(programmable logic device)들, 예컨대, CPLD(complex PLD)들, HCPLD(high-capacity PLD)들 등; ASIC들, 예컨대, 구조화된 ASIC들 등; PSoC(programmable SoC)들; 등과 같은, 그러나 이에 제한되지 않는 회로부를 포함할 수 있다. 그러한 실시예들에서, 애플리케이션 회로부(505)의 회로부는 로직 블록들 또는 로직 구조, 및 본 명세서에서 논의되는 다양한 실시예들의 절차들, 방법들, 기능들 등과 같은 다양한 기능들을 수행하도록 프로그래밍될 수 있는 다른 상호연결된 리소스들을 포함할 수 있다. 그러한 실시예들에서, 애플리케이션 회로부(505)의 회로부는 로직 블록들, 로직 구조, 데이터 등을 룩업 테이블(LUT)들 등에 저장하기 위해 사용되는 메모리 셀들(예를 들어, EPROM(erasable programmable read-only memory), EEPROM(electrically erasable programmable read-only memory), 플래시 메모리, 정적 메모리(예를 들어, SRAM(static random access memory), 안티-퓨즈들 등))을 포함할 수 있다.
기저대역 회로부(510)는, 예를 들어, 하나 이상의 집적 회로들을 포함하는 솔더 다운 기판, 메인 회로 보드에 솔더링되는 단일 패키징된 집적 회로, 또는 2개 이상의 집적 회로들을 포함하는 멀티 칩 모듈로서 구현될 수 있다. 기저대역 회로부(510)의 다양한 하드웨어 전자 요소들은 도 6과 관련하여 아래에서 논의된다.
RFEM들(515)은 밀리미터파(mmWave) RFEM 및 하나 이상의 서브-mmWave RFIC(radio frequency integrated circuit)들을 포함할 수 있다. 일부 구현예들에서, 하나 이상의 서브-mmWave RFIC들은 mmWave RFEM으로부터 물리적으로 분리될 수 있다. RFIC들은 하나 이상의 안테나들 또는 안테나 어레이들(예를 들어, 아래의 도 6의 안테나 어레이(611) 참조)에 대한 연결들을 포함할 수 있고, RFEM은 다수의 안테나들에 연결될 수 있다. 대안적인 구현예들에서, mmWave 및 서브-mmWave 무선 기능들 둘 모두는 mmWave 안테나들 및 서브-mmWave 둘 모두를 통합하는 동일한 물리적 RFEM(515)에서 구현될 수 있다.
메모리 회로부(520)는 주어진 양의 시스템 메모리를 제공하는 데 사용되는 임의의 수 및 유형의 메모리 디바이스들을 포함할 수 있다. 예들로서, 메모리 회로부(520)는 RAM(random access memory), DRAM(dynamic RAM) 및/또는 SDRAM(synchronous dynamic RAM)을 포함하는 휘발성 메모리 및 고속 전기 소거가능 메모리(일반적으로, 플래시 메모리로 지칭됨), PRAM(phase change random access memory), MRAM(magnetoresistive random access memory) 등을 포함하는 비휘발성 메모리(NVM) 중 하나 이상을 포함할 수 있다. 메모리 회로부(520)는 JEDEC(Joint Electron Devices Engineering Council) LPDDR(low power double data rate)-기반 설계, 예컨대 LPDDR2, LPDDR3, LPDDR4 등에 따라 개발될 수 있다. 메모리 회로부(520)는 솔더 다운 패키징 집적 회로들, SDP(single die package), DDP(dual die package) 또는 Q17P(quad die package), 소켓형 메모리 모듈들, DIMM(dual inline memory module)들(microDIMM들 또는 MiniDIMM들을 포함함) 중 하나 이상으로 구현될 수 있고 그리고/또는, BGA(ball grid array)를 통해 마더보드 상에 솔더링될 수 있다. 저전력 구현예들에서, 메모리 회로부(520)는 애플리케이션 회로부(505)와 연관된 온 다이 메모리(on-die memory) 또는 레지스터들일 수 있다. 데이터, 애플리케이션들, 운영 체제들 등과 같은 정보의 영구적인 저장을 제공하기 위해, 메모리 회로부(520)는 하나 이상의 대량 저장 디바이스들을 포함할 수 있으며, 이는, 무엇보다도, 특히, SSDD(solid state disk drive), HDD(hard disk drive), 마이크로 HDD, 저항 변화 메모리들, 상변화 메모리들, 홀로그래픽 메모리들, 또는 화학적 메모리들을 포함할 수 있다. 예를 들어, 컴퓨터 플랫폼(500)은 Intel® 및 Micron®로부터의 3차원(3D) XPOINT(cross-point) 메모리들을 포함할 수 있다.
착탈식 메모리 회로부(523)는 휴대용 데이터 저장 디바이스들을 플랫폼(500)과 커플링하는 데 사용되는 디바이스들, 회로부, 인클로저들/하우징들, 포트들, 또는 리셉터클(receptacle)들 등을 포함할 수 있다. 이들 휴대용 데이터 저장 디바이스들은 대량 저장 목적을 위해 사용될 수 있고, 예를 들어 플래시 메모리 카드들(예를 들어, SD(Secure Digital) 카드들, 마이크로SD 카드들, xD 픽처 카드들 등), 및 USB 플래시 드라이브들, 광학 디스크들, 외부 HDD들 등을 포함할 수 있다.
플랫폼(500)은 또한, 외부 디바이스들을 플랫폼(500)과 연결시키는 데 사용되는 인터페이스 회로부(도시되지 않음)를 포함할 수 있다. 인터페이스 회로부를 통해 플랫폼(500)에 연결된 외부 디바이스들은 센서 회로부(521) 및 EMC(electro-mechanical component)들(522)뿐만 아니라, 착탈식 메모리 회로부(523)에 커플링된 착탈식 메모리 디바이스들을 포함한다.
센서 회로부(521)는 그의 환경에서 이벤트들 또는 변화들을 검출하고 검출된 이벤트들에 관한 정보(센서 데이터)를 일부 다른 디바이스, 모듈, 서브시스템 등으로 전송하는 것이 목적인 디바이스들, 모듈들, 또는 서브시스템들을 포함한다. 그러한 센서들의 예들은, 그 중에서도, 가속도계들, 자이로스코프들, 및/또는 자력계들을 포함하는 IMU(inertia measurement unit)들; 3-축 가속도계들, 3-축 자이로스코프들, 및/또는 자력계들을 포함하는 MEMS(microelectromechanical systems) 또는 NEMS(nanoelectromechanical systems); 레벨 센서들; 흐름 센서들; 온도 센서들(예를 들어, 서미스터(thermistor)들); 압력 센서들; 기압 센서들; 중력계들; 고도계들; 이미지 캡처 디바이스들(예를 들어, 카메라들 또는 렌즈리스 애퍼처(lensless aperture)들); LiDAR(light detection and ranging) 센서들; 근접 센서들(예를 들어, 적외선 방사선 검출기 등), 깊이 센서들, 주변 광 센서들, 초음파 트랜시버들; 마이크로폰들 또는 다른 유사한 오디오 캡처 디바이스들; 등을 포함한다.
EMC들(522)은 플랫폼(500)이 그의 상태, 위치, 및/또는 배향을 변경하거나 메커니즘 또는 (서브)시스템을 이동 또는 제어할 수 있게 하는 것이 목적인 디바이스들, 모듈들, 또는 서브시스템들을 포함한다. 부가적으로, EMC들(522)은 EMC들(522)의 현재 상태를 표시하기 위해 메시지들/시그널링을 생성하여 플랫폼(500)의 다른 컴포넌트들에 전송하도록 구성될 수 있다. EMC들(522)의 예들은 하나 이상의 전력 스위치들, EMR(electromechanical relay)들 및/또는 SSR(solid state relay)들을 포함하는 중계기들, 액추에이터들(예를 들어, 밸브 액추에이터들 등), 가청음 생성기, 시각적 경고 디바이스, 모터들(예를 들어, DC 모터들, 스테퍼 모터들 등), 휠들, 스러스터(thruster)들, 프로펠러들, 클로(claw)들, 클램프들, 후크들, 및/또는 다른 유사한 전기-기계적 컴포넌트들을 포함한다. 실시예들에서, 플랫폼(500)은 하나 이상의 캡처된 이벤트들 및/또는 서비스 제공자 및/또는 다양한 클라이언트들로부터 수신된 명령어들 또는 제어 신호들에 기초하여 하나 이상의 EMC들(522)을 동작시키도록 구성된다.
일부 구현예들에서, 인터페이스 회로부는 플랫폼(500)을 포지셔닝 회로부(545)와 연결시킬 수 있다. 포지셔닝 회로부(545)는 GNSS의 포지셔닝 네트워크에 의해 송신/브로드캐스팅되는 신호들을 수신 및 디코딩하기 위한 회로부를 포함한다. 내비게이션 위성 성상도들(또는 GNSS)의 예들은 미국의 GPS, 러시아의 GLONASS, 유럽 연합의 갈릴레오 시스템, 중국의 베이더우 내비게이션 위성 시스템, 지역 내비게이션 시스템 또는 GNSS 증강 시스템(예를 들어, NAVIC, 일본의 QZSS, 프랑스의 DORIS 등) 등을 포함한다. 포지셔닝 회로부(545)는 내비게이션 위성 성상도 노드들과 같은 포지셔닝 네트워크의 컴포넌트들과 통신하기 위해, 다양한 하드웨어 요소들(예를 들어, OTA 통신들을 용이하게 하기 위한 스위치들, 필터들, 증폭기들, 안테나 요소들 등과 같은 하드웨어 디바이스들을 포함함)을 포함한다. 일부 실시예들에서, 포지셔닝 회로부(545)는 마스터 타이밍 클록을 사용하여 GNSS 보조 없이 위치 추적/추정을 수행하는 Micro-PNT IC를 포함할 수 있다. 포지셔닝 회로부(545)는 또한 포지셔닝 네트워크의 노드들 및 컴포넌트들과 통신하기 위해, 기저대역 회로부(410) 및/또는 RFEM들(515)의 일부이거나 그와 상호작용할 수 있다. 포지셔닝 회로부(545)는 또한 위치 데이터 및/또는 시간 데이터를 애플리케이션 회로부(505)에 제공할 수 있으며, 이는 데이터를 사용하여 턴-바이-턴(turn-by-turn) 내비게이션 애플리케이션들 등을 위해 다양한 인프라구조(예를 들어, 무선 기지국들)와 동작들을 동기화할 수 있다.
일부 구현예들에서, 인터페이스 회로부는 플랫폼(500)을 NFC(Near-Field Communication) 회로부(540)와 연결시킬 수 있다. NFC 회로부(540)는 RFID(radio frequency identification) 표준들에 기초하여 비접촉식 단거리 통신들을 제공하도록 구성되며, 여기서 NFC 회로부(540)와 플랫폼(500) 외부의 NFC-인에이블형 디바이스들(예를 들어, "NFC 터치포인트") 사이의 통신을 가능하게 하기 위해 자기장 유도가 사용된다. NFC 회로부(540)는 안테나 요소와 커플링된 NFC 제어기 및 NFC 제어기와 커플링된 프로세서를 포함한다. NFC 제어기는 NFC 제어기 펌웨어 및 NFC 스택을 실행함으로써 NFC 회로부(540)에 NFC 기능들을 제공하는 칩/IC일 수 있다. NFC 스택은 NFC 제어기를 제어하기 위해 프로세서에 의해 실행될 수 있고, NFC 제어기 펌웨어는 단거리 RF 신호들을 방출하도록 안테나 요소를 제어하기 위해 NFC 제어기에 의해 실행될 수 있다. RF 신호들은, 저장된 데이터를 NFC 회로부(540)로 송신하거나, 또는 플랫폼(500)에 근접한 다른 활성 NFC 디바이스(예를 들어, 스마트폰 또는 NFC-인에이블형 POS 단말)와 NFC 회로부(540) 사이의 데이터 전송을 개시하기 위해 수동 NFC 태그(예를 들어, 스티커 또는 손목밴드에 임베딩된 마이크로칩)에 전력공급할 수 있다.
드라이버 회로부(546)는 플랫폼(500)에 임베딩되거나, 플랫폼(500)에 부착되거나, 또는 그렇지 않으면 플랫폼(500)과 통신가능하게 커플링된 특정 디바이스들을 제어하도록 동작하는 소프트웨어 및 하드웨어 요소들을 포함할 수 있다. 드라이버 회로부(546)는, 플랫폼(500)의 다른 컴포넌트들이 플랫폼(500) 내에 존재하거나 그에 연결될 수 있는 다양한 입력/출력(I/O) 디바이스들과 상호작용하거나 그들을 제어하게 허용하는 개별 드라이버들을 포함할 수 있다. 예를 들어, 드라이버 회로부(546)는 디스플레이 디바이스에 대한 액세스를 제어 및 허용하기 위한 디스플레이 드라이버, 플랫폼(500)의 터치스크린 인터페이스에 대한 액세스를 제어 및 허용하기 위한 터치스크린 드라이버, 센서 회로부(521)의 센서 판독들을 획득하고 센서 회로부(521)에 대한 액세스를 제어 및 허용하기 위한 센서 드라이버들, EMC들(522)의 액추에이터 포지션들을 획득하고 그리고/또는 EMC들(522)에 대한 액세스를 제어 및 허용하기 위한 EMC 드라이버들, 임베디드 이미지 캡처 디바이스에 대한 액세스를 제어 및 허용하기 위한 카메라 드라이버, 하나 이상의 오디오 디바이스들에 대한 액세스를 제어 및 허용하기 위한 오디오 드라이버들을 포함할 수 있다.
전력 관리 집적 회로부(PMIC)(525)(또한 "전력 관리 회로부(525)"로 지칭됨)는 플랫폼(500)의 다양한 컴포넌트들에 제공되는 전력을 관리할 수 있다. 특히, 기저대역 회로부(510)에 관련하여, PMIC(525)는 전원 선택, 전압 스케일링, 배터리 충전, 또는 DC-DC 변환을 제어할 수 있다. PMIC(525)는, 플랫폼(500)이 배터리(530)에 의해 전력공급받을 수 있을 때, 예를 들어 디바이스가 UE(101, 201, 301)에 포함될 때 종종 포함될 수 있다.
일부 실시예들에서, PMIC(525)는 플랫폼(500)의 다양한 전력 절약 메커니즘들을 제어할 수 있거나, 또는 그렇지 않으면 이들의 일부일 수 있다. 예를 들어, 플랫폼(500)이, 그 플랫폼이 트래픽을 곧 수신할 것으로 예상함에 따라 그 플랫폼이 RAN 노드에 여전히 연결되어 있는 RRC_Connected 상태에 있다면, 그 플랫폼은 일정 기간의 비활동 이후에 DRX(Discontinuous Reception Mode)라고 알려진 상태에 진입할 수 있다. 이러한 상태 동안, 플랫폼(500)은 짧은 시간 간격들 동안 전원 차단되고, 그에 따라 전력을 절약할 수 있다. 연장된 시간 기간 동안 데이터 트래픽 활동이 없다면, 플랫폼(500)은, 플랫폼이 네트워크로부터 연결해제되고 채널 품질 피드백, 핸드오버 등과 같은 동작들을 수행하지 않는 RRC_Idle 상태로 전환될 수 있다. 플랫폼(500)은 초저전력(very low power state) 상태로 되고, 플랫폼이 다시 네트워크를 리스닝하기 위해 주기적으로 웨이크업하고 이어서 다시 전원 차단되는 페이징을 수행한다. 플랫폼(500)은 이러한 상태에서 데이터를 수신하지 않을 수 있고; 데이터를 수신하기 위해, 플랫폼은 다시 RRC_Connected 상태로 전환할 수 있다. 부가적인 전력 절약 모드는, 디바이스가 페이징 간격(몇 초 내지 수 시간의 범위에 있음)보다 긴 기간들 동안 네트워크에 이용가능하지 않게 허용할 수 있다. 이러한 시간 동안, 디바이스는 네트워크에 접근불가(unreachable)하고 완전히 전원 차단될 수 있다. 이러한 시간 동안 전송되는 임의의 데이터는 큰 지연을 초래하며, 지연이 용인가능하다고 가정된다.
배터리(530)는 플랫폼(500)에 전력을 공급할 수 있지만, 일부 예들에서, 플랫폼(500)은 고정된 위치에 배치되어 장착될 수 있고, 전기 그리드에 커플링된 전력 공급부를 가질 수 있다. 배터리(530)는 리튬 이온 배터리, 금속-공기 배터리, 예컨대, 아연-공기 배터리, 알루미늄-공기 배터리, 리튬-공기 배터리 등일 수 있다. V2X 애플리케이션들에서와 같은 일부 구현예들에서, 배터리(530)는 전형적인 납산(lead-acid) 자동차 배터리일 수 있다.
일부 구현예들에서, 배터리(530)는 배터리 관리 시스템(Battery Management System, BMS) 또는 배터리 모니터링 집적 회로부를 포함하거나 또는 그와 커플링된 "스마트 배터리"일 수 있다. BMS는 배터리(530)의 충전 상태(state of charge, SoCh)를 추적하기 위해 플랫폼(500)에 포함될 수 있다. BMS는 배터리(530)의 건강 상태(state of health, SoH) 및 기능 상태(state of function, SoF)와 같은, 실패 예측들을 제공하기 위한, 배터리(530)의 다른 파라미터들을 모니터링하는 데 사용될 수 있다. BMS는 배터리(530)의 정보를 애플리케이션 회로부(505) 또는 플랫폼(500)의 다른 컴포넌트들에 통신할 수 있다. BMS는 또한, 애플리케이션 회로부(505)가 배터리(530)의 전압 또는 배터리(530)로부터의 전류 흐름을 직접 모니터링하게 허용하는 아날로그-디지털(analog-to-digital, ADC) 변환기를 포함할 수 있다. 송신 주파수, 네트워크 동작, 감지 주파수 등과 같은 배터리 파라미터들은 플랫폼(500)이 수행할 수 있는 액션들을 결정하는 데 사용될 수 있다.
전력 블록, 또는 전기 그리드에 커플링된 다른 전력 공급부는 BMS와 커플링되어 배터리(530)를 충전할 수 있다. 일부 예들에서, 전력 블록(530)은, 예를 들어 컴퓨터 플랫폼(500) 내의 루프 안테나를 통해 무선으로 전력을 획득하기 위해 무선 전력 수신기로 대체될 수 있다. 이러한 예들에서, 무선 배터리 충전 회로가 BMS에 포함될 수 있다. 선택된 특정 충전 회로들은 배터리(530)의 크기, 및 이에 따라 요구되는 전류에 의존할 수 있다. 충전은, 무엇보다도, 에어퓨얼 얼라이언스(Airfuel Alliance)에 의해 공표된 에어퓨얼(Airfuel) 표준, 무선 전력 컨소시엄(Wireless Power Consortium)에 의해 공표된 Qi 무선 충전 표준, 또는 무선 전력 연합(Alliance for Wireless Power)에 의해 공표된 리젠스(Rezence) 충전 표준을 사용하여 수행될 수 있다.
사용자 인터페이스 회로부(550)는 플랫폼(500) 내에 존재하거나 그에 연결된 다양한 입력/출력(I/O) 디바이스들을 포함하고, 플랫폼(500)과의 사용자 상호작용을 가능하게 하도록 설계된 하나 이상의 사용자 인터페이스들 및/또는 플랫폼(500)과의 주변 컴포넌트 상호작용을 가능하게 하도록 설계된 주변 컴포넌트 인터페이스들을 포함한다. 사용자 인터페이스 회로부(550)는 입력 디바이스 회로부 및 출력 디바이스 회로부를 포함한다. 입력 디바이스 회로부는, 그 중에서도, 하나 이상의 물리적 또는 가상 버튼들(예를 들어, 리셋 버튼), 물리적 키보드, 키패드, 마우스, 터치패드, 터치스크린, 마이크로폰들, 스캐너, 헤드셋 등을 포함하는 입력을 수용하기 위한 임의의 물리적 또는 가상 수단을 포함한다. 출력 디바이스 회로부는 정보, 예컨대 센서 판독들, 액추에이터 위치(들), 또는 다른 유사한 정보를 나타내거나 그렇지 않으면 정보를 전달하기 위한 임의의 물리적 또는 가상 수단을 포함한다. 출력 디바이스 회로부는, 그 중에서도, 하나 이상의 간단한 시각적 출력부들/표시자들(예를 들어, 이진 상태 표시자들(예를 들어, LED(light emitting diode)들)) 및 다문자 시각적 출력부들, 또는 디스플레이 디바이스들 또는 터치스크린들(예를 들어, LCD(Liquid Crystal Displays), LED 디스플레이들, 양자 점 디스플레이들, 프로젝터들 등)과 같은 더 복합한 출력부들을 포함하는 임의의 수의 오디오 또는 시각적 디스플레이 및/또는 이들의 조합들을 포함할 수 있고, 이때 문자들, 그래픽들, 멀티미디어 객체들 등의 출력부는 플랫폼(500)의 동작으로부터 발생되거나 생성된다. 출력 디바이스 회로부는 스피커들 또는 다른 오디오 방출 디바이스들, 프린터(들) 등을 또한 포함할 수 있다. 일부 실시예들에서, 센서 회로부(521)는 입력 디바이스 회로부(예를 들어, 이미지 캡처 디바이스, 모션 캡처 디바이스 등)로서 사용될 수 있고, 하나 이상의 EMC들은 출력 디바이스 회로부(예를 들어, 햅틱 피드백을 제공하기 위한 액추에이터 등)로서 사용될 수 있다. 다른 예에서, 안테나 요소와 커플링된 NFC 제어기 및 프로세싱 디바이스를 포함하는 NFC 회로부는 전자 태그들을 판독하고 그리고/또는 다른 NFC-인에이블형 디바이스와 연결하기 위해 포함될 수 있다. 주변 컴포넌트 인터페이스들은, 비휘발성 메모리 포트, USB 포트, 오디오 잭, 전력 공급부 인터페이스 등을 포함할 수 있지만, 이에 제한되지는 않는다.
도시되지 않지만, 플랫폼(500)의 컴포넌트들은 ISA, EISA, PCI, PCIx, PCIe, TTP(Time-Trigger Protocol) 시스템, 플렉스레이 시스템(FlexRay system), 또는 임의의 수의 다른 기술들을 포함한 임의의 수의 기술들을 포함할 수 있는 적합한 버스 또는 상호연결(IX) 기술을 사용하여 서로 통신할 수 있다. 버스/IX는, 예를 들어, SoC 기반 시스템에서 사용되는 독점적 버스/IX일 수 있다. 다른 버스/IX 시스템들, 예컨대, 무엇보다도, I2C 인터페이스, SPI 인터페이스, 포인트 투 포인트 인터페이스들, 및 전력 버스가 포함될 수 있다.
도 6은 다양한 실시예들에 따른, 기저대역 회로부(610) 및 무선 프론트 엔드 모듈들(RFEM)(615)의 예시적인 컴포넌트들을 예시한다. 기저대역 회로부(610)는 도 4 및 도 5의 기저대역 회로부(410, 510)에 각각 대응한다. RFEM(615)은 도 4 및 도 5의 RFEM(415, 515)에 각각 대응한다. 도시된 바와 같이, RFEM들(615)은 적어도 도시된 바와 같이 함께 커플링된 RF(Radio Frequency) 회로부(606), 프론트 엔드 모듈(FEM) 회로부(608), 안테나 어레이(611)를 포함할 수 있다.
기저대역 회로부(610)는 RF 회로부(606)를 통해 하나 이상의 무선 네트워크들과의 통신을 가능하게 하는 다양한 무선/네트워크 프로토콜 및 무선 제어 기능들을 수행하도록 구성된 회로부 및/또는 제어 로직을 포함한다. 무선 제어 기능들은 신호 변조/복조, 인코딩/디코딩, 무선 주파수 시프트 등을 포함할 수 있지만, 이들로 제한되지 않는다. 일부 실시예들에서, 기저대역 회로부(610)의 변조/복조 회로부는 고속 푸리에 변환(Fast-Fourier Transform, FFT), 프리코딩, 또는 성상도 맵핑/디맵핑 기능을 포함할 수 있다. 일부 실시예들에서, 기저대역 회로부(610)의 인코딩/디코딩 회로부는 콘볼루션, 테일바이팅 콘볼루션, 터보, 비터비(Viterbi), 또는 저밀도 패리티 검사(LDPC) 인코더/디코더 기능을 포함할 수 있다. 변조/복조 및 인코더/디코더 기능의 실시예들은 이러한 예들로 제한되지 않고, 다른 실시예들에서는, 다른 적합한 기능을 포함할 수 있다. 기저대역 회로부(610)는 RF 회로부(606)의 수신 신호 경로로부터 수신되는 기저대역 신호들을 프로세싱하고 RF 회로부(606)의 송신 신호 경로에 대한 기저대역 신호들을 생성하도록 구성된다. 기저대역 회로부(610)는 기저대역 신호들의 생성 및 프로세싱을 위해 그리고 RF 회로부(606)의 동작들을 제어하기 위해 애플리케이션 회로부(405/505)(도 4 및 도 5 참조)와 인터페이싱하도록 구성된다. 기저대역 회로부(610)는 다양한 무선 제어 기능들을 처리할 수 있다.
전술된 회로부 및/또는 기저대역 회로부(610)의 제어 로직은 하나 이상의 단일 또는 멀티-코어 프로세서들을 포함할 수 있다. 예를 들어, 하나 이상의 프로세서들은 3G 기저대역 프로세서(604A), 4G/LTE 기저대역 프로세서(604B), 5G/NR 기저대역 프로세서(604C), 또는 다른 기존의 세대들, 개발 중인 또는 향후 개발될 세대들(예를 들어, 6세대(6G) 등)에 대한 일부 다른 기저대역 프로세서(들)(604D)를 포함할 수 있다. 다른 실시예들에서, 기저대역 프로세서들(604A 내지 604D)의 기능 중 일부 또는 전부는, 메모리(604G)에 저장되고 CPU(Central Processing Unit)(604E)를 통해 실행되는 모듈들에 포함될 수 있다. 다른 실시예들에서, 기저대역 프로세서들(604A 내지 604D)의 기능 중 일부 또는 전부는 개개의 메모리 셀들에 저장된 적절한 비트 스트림들 또는 로직 블록들이 로딩된 하드웨어 가속기들(예를 들어, FPGA들, ASIC들 등)로서 제공될 수 있다. 다양한 실시예들에서, 메모리(604G)는 실시간 OS(RTOS)의 프로그램 코드를 저장할 수 있으며, 이는 CPU(604E)(또는 다른 기저대역 프로세서)에 의해 실행될 때, CPU(604E)(또는 다른 기저대역 프로세서)로 하여금 기저대역 회로부(610)의 리소스들을 관리하게 하고, 작업들을 스케줄링하게 하는 등을 행하게 한다. RTOS의 예들은 Enea®에 의해 제공된 OSE™(Operating System Embedded), Mentor Graphics®에 의해 제공된 Nucleus RTOS™, Mentor Graphics®에 의해 제공된 VRTX(Versatile Real-Time Executive), Express Logic®에 의해 제공된 ThreadX™, FreeRTOS, Qualcomm®에 의해 제공된 REX OS, Open Kernel (OK) Labs®에 의해 제공된 OKL4, 또는 본 명세서에 논의된 것들과 같은 임의의 다른 적합한 RTOS를 포함할 수 있다. 부가적으로, 기저대역 회로부(610)는 하나 이상의 오디오 DSP(digital signal processor)(들)(604F)를 포함한다. 오디오 DSP(들)(604F)는 압축/압축해제 및 에코 제거를 위한 요소들을 포함하고, 다른 실시예들에서 다른 적합한 프로세싱 요소들을 포함할 수 있다.
일부 실시예들에서, 프로세서들(604A 내지 604E) 각각은 메모리(604G)로/로부터 데이터를 전송/수신하기 위한 개개의 메모리 인터페이스들을 포함한다. 기저대역 회로부(610)는 다른 회로부들/디바이스들에 통신가능하게 커플링하기 위한 하나 이상의 인터페이스들, 예컨대, 기저대역 회로부(610) 외부의 메모리로/로부터 데이터를 전송/수신하기 위한 인터페이스; 도 4 내지 도 6의 애플리케이션 회로부(405/505)로/로부터 데이터를 전송/수신하기 위한 애플리케이션 회로부 인터페이스; 도 6의 RF 회로부(606)로/로부터 데이터를 전송/수신하기 위한 RF 회로부 인터페이스; 하나 이상의 무선 하드웨어 요소들(예를 들어, NFC(Near Field Communication) 컴포넌트들, Bluetooth®/저전력(Low Energy) Bluetooth® 컴포넌트들, Wi-Fi® 컴포넌트들 등)로/로부터 데이터를 전송/수신하기 위한 무선 하드웨어 연결 인터페이스; 및 PMIC(525)로/로부터 전력 또는 제어 신호들을 전송/수신하기 위한 전력 관리 인터페이스를 더 포함할 수 있다.
(위에서 설명된 실시예들과 조합될 수 있는) 대안적인 실시예들에서, 기저대역 회로부(610)는 하나 이상의 디지털 기저대역 시스템들을 포함하고, 이들은 상호연결 서브시스템을 통해 서로 커플링되고 CPU 서브시스템, 오디오 서브시스템, 및 인터페이스 서브시스템에 커플링된다. 디지털 기저대역 서브시스템들은 또한 다른 상호연결 서브시스템을 통해 디지털 기저대역 인터페이스 및 혼합 신호 기저대역 서브시스템에 커플링될 수 있다. 상호연결 서브시스템들 각각은 버스 시스템, 포인트-투-포인트 연결들, NOC(network-on-chip) 구조들, 및/또는 본 명세서에서 논의되는 것들과 같은 일부 다른 적합한 버스 또는 상호연결 기술을 포함할 수 있다. 오디오 서브시스템은 DSP 회로부, 버퍼 메모리, 프로그램 메모리, 음성 프로세싱 가속기 회로부, 아날로그-디지털 및 디지털-아날로그 변환기 회로부와 같은 데이터 변환기 회로부, 증폭기들 및 필터들 중 하나 이상을 포함하는 아날로그 회로부, 및/또는 다른 유사한 컴포넌트들을 포함할 수 있다. 본 개시내용의 일 양태에서, 기저대역 회로부(610)는 디지털 기저대역 회로부 및/또는 무선 주파수 회로부(예를 들어, 무선 프론트 엔드 모듈들(615))에 대한 제어 기능들을 제공하기 위해 제어 회로부(도시되지 않음)의 하나 이상의 인스턴스들을 갖는 프로토콜 프로세싱 회로부를 포함할 수 있다.
도 6에 의해 도시되지 않았지만, 일부 실시예들에서, 기저대역 회로부(610)는 하나 이상의 무선 통신 프로토콜들(예를 들어, "멀티-프로토콜 기저대역 프로세서" 또는 "프로토콜 프로세싱 회로부") 및 개별 프로세싱 디바이스(들)를 동작시켜 PHY 계층 기능들을 구현하는 개별 프로세싱 디바이스(들)를 포함한다. 이러한 실시예들에서, PHY 계층 기능들은 전술한 무선 제어 기능들을 포함한다. 이러한 실시예들에서, 프로토콜 프로세싱 회로부는 하나 이상의 무선 통신 프로토콜들의 다양한 프로토콜 계층들/엔티티들을 동작시키거나 구현한다. 제1 예에서, 프로토콜 프로세싱 회로부는, 기저대역 회로부(610) 및/또는 RF 회로부(606)가 mmWave 통신 회로부 또는 일부 다른 적합한 셀룰러 통신 회로부의 일부일 때, LTE 프로토콜 엔티티들 및/또는 5G/NR 프로토콜 엔티티들을 동작시킬 수 있다. 제1 예에서, 프로토콜 프로세싱 회로부는 MAC, RLC, PDCP, SDAP, RRC, 및 NAS 기능들을 동작시킬 것이다. 제2 예에서, 프로토콜 프로세싱 회로부는 기저대역 회로부(610) 및/또는 RF 회로부(606)가 Wi-Fi 통신 시스템의 일부일 때 하나 이상의 IEEE 기반 프로토콜들을 동작시킬 수 있다. 제2 예에서, 프로토콜 프로세싱 회로부는 Wi-Fi MAC 및 LLC(logical link control) 기능들을 동작시킬 것이다. 프로토콜 프로세싱 회로부는 프로토콜 기능들을 동작시키기 위한 프로그램 코드 및 데이터를 저장하기 위한 하나 이상의 메모리 구조들(예를 들어, 604G)뿐만 아니라, 프로그램 코드를 실행하고 데이터를 사용하여 다양한 동작들을 수행하기 위한 하나 이상의 프로세싱 코어들을 포함할 수 있다. 기저대역 회로부(610)는 또한 하나 초과의 무선 프로토콜에 대한 무선 통신들을 지원할 수 있다.
본 명세서에서 논의된 기저대역 회로부(610)의 다양한 하드웨어 요소들은, 예를 들어, 하나 이상의 집적 회로들(IC들)을 포함하는 솔더 다운 기판, 메인 회로 보드에 솔더링되는 단일 패키징된 IC, 또는 2개 이상의 IC들을 포함하는 멀티 칩 모듈로서 구현될 수 있다. 일 예에서, 기저대역 회로부(610)의 컴포넌트들은 단일 칩 또는 칩셋에서 적합하게 조합되거나, 또는 동일한 회로 보드 상에 배치될 수 있다. 다른 예에서, 기저대역 회로부(610) 및 RF 회로부(606)의 구성 컴포넌트들 중 일부 또는 전부는, 예를 들어, SoC(system on a chip) 또는 SiP(System-in-Package)와 같이 함께 구현될 수 있다. 다른 예에서, 기저대역 회로부(610)의 구성 컴포넌트들 중 일부 또는 전부는, RF 회로부(606)(또는 RF 회로부(606)의 다수의 인스턴스들)와 통신가능하게 커플링된 별개의 SoC로서 구현될 수 있다. 또 다른 예에서, 기저대역 회로부(610) 및 애플리케이션 회로부(405/505)의 구성 컴포넌트들 중 일부 또는 전부는 동일한 회로 보드(예를 들어, "멀티-칩 패키지")에 장착된 개별 SoC들로서 함께 구현될 수 있다.
일부 실시예들에서, 기저대역 회로부(610)는 하나 이상의 무선 기술들과 호환가능한 통신을 제공할 수 있다. 예를 들어, 일부 실시예들에서, 기저대역 회로부(610)는 E-UTRAN 또는 다른 WMAN, WLAN, WPAN과의 통신을 지원할 수 있다. 기저대역 회로부(610)가 하나 초과의 무선 프로토콜의 무선 통신들을 지원하도록 구성되는 실시예들은 다중 모드 기저대역 회로부로 지칭될 수 있다.
RF 회로부(606)는 비-솔리드 매체(non-solid medium)를 통한 변조된 전자기 방사선을 사용하여 무선 네트워크들과의 통신을 가능하게 할 수 있다. 다양한 실시예들에서, RF 회로부(606)는 무선 네트워크와의 통신을 용이하게 하기 위해 스위치들, 필터들, 증폭기들 등을 포함할 수 있다. RF 회로부(606)는, FEM 회로부(608)로부터 수신되는 RF 신호들을 하향 변환하고 기저대역 신호들을 기저대역 회로부(610)에 제공하기 위한 회로부를 포함할 수 있는 수신 신호 경로를 포함할 수 있다. RF 회로부(606)는 또한, 기저대역 회로부(610)에 의해 제공되는 기저대역 신호들을 상향 변환하고 RF 출력 신호들을 송신을 위해 FEM 회로부(608)에 제공하기 위한 회로부를 포함할 수 있는 송신 신호 경로를 포함할 수 있다.
일부 실시예들에서, RF 회로부(606)의 수신 신호 경로는 믹서 회로부(606a), 증폭기 회로부(606b) 및 필터 회로부(606c)를 포함할 수 있다. 일부 실시예들에서, RF 회로부(606)의 송신 신호 경로는 필터 회로부(606c) 및 믹서 회로부(606a)를 포함할 수 있다. RF 회로부(606)는 수신 신호 경로 및 송신 신호 경로의 믹서 회로부(606a)에 의한 사용을 위해 주파수를 합성하기 위한 합성기 회로부(606d)를 또한 포함할 수 있다. 일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a)는 합성기 회로부(606d)에 의해 제공되는 합성된 주파수에 기초하여 FEM 회로부(608)로부터 수신되는 RF 신호들을 하향 변환하도록 구성될 수 있다. 증폭기 회로부(606b)는 하향 변환된 신호들을 증폭시키도록 구성될 수 있고, 필터 회로부(606c)는 출력 기저대역 신호들을 생성하기 위해 하향 변환된 신호들로부터 원하지 않는 신호들을 제거하도록 구성된 LPF(low-pass filter) 또는 BPF(band-pass filter)일 수 있다. 출력 기저대역 신호들은 추가적인 프로세싱을 위해 기저대역 회로부(610)에 제공될 수 있다. 일부 실시예들에서, 출력 기저대역 신호들은 제로-주파수 기저대역 신호들일 수 있지만, 이것은 요건이 아니다. 일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a)는 수동 믹서(passive mixer)들을 포함할 수 있지만, 실시예들의 범위가 이러한 점에서 제한되지 않는다.
일부 실시예들에서, 송신 신호 경로의 믹서 회로부(606a)는 FEM 회로부(608)에 대한 RF 출력 신호들을 생성하기 위해 합성기 회로부(606d)에 의해 제공되는 합성된 주파수에 기초하여 입력 기저대역 신호들을 상향 변환하도록 구성될 수 있다. 기저대역 신호들은 기저대역 회로부(610)에 의해 제공될 수 있고, 필터 회로부(606c)에 의해 필터링될 수 있다.
일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a) 및 송신 신호 경로의 믹서 회로부(606a)는, 각각, 2개 이상의 믹서들을 포함할 수 있고, 직교 하향 변환 및 상향 변환을 위해 배열될 수 있다. 일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a) 및 송신 신호 경로의 믹서 회로부(606a)는 2개 이상의 믹서들을 포함할 수 있고 이미지 제거(image rejection)(예를 들어, 하틀리 이미지 제거(Hartley image rejection))를 위해 배열될 수 있다. 일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a) 및 송신 신호 경로의 믹서 회로부(606a)는, 각각, 직접 하향 변환 및 직접 상향 변환을 위해 배열될 수 있다. 일부 실시예들에서, 수신 신호 경로의 믹서 회로부(606a) 및 송신 신호 경로의 믹서 회로부(606a)는 슈퍼-헤테로다인(super-heterodyne) 동작을 위해 구성될 수 있다.
일부 실시예들에서, 출력 기저대역 신호들 및 입력 기저대역 신호들은 아날로그 기저대역 신호들일 수 있지만, 실시예들의 범위는 이러한 점에서 제한되지 않는다. 일부 대안적인 실시예들에서, 출력 기저대역 신호들 및 입력 기저대역 신호들은 디지털 기저대역 신호들일 수 있다. 이러한 대안적인 실시예들에서, RF 회로부(606)는 ADC(analog-to-digital converter) 및 DAC(digital-to-analog converter) 회로부를 포함할 수 있고, 기저대역 회로부(610)는 RF 회로부(606)와 통신하기 위한 디지털 기저대역 인터페이스를 포함할 수 있다.
일부 듀얼 모드 실시예들에서, 각각의 스펙트럼에 대한 신호들을 프로세싱하기 위해 개별 무선 IC 회로부가 제공될 수 있지만, 실시예들의 범주는 이러한 점에서 제한되지 않는다.
일부 실시예들에서, 합성기 회로부(606d)는 프랙셔널-N 합성기(fractional-N synthesizer) 또는 프랙셔널 N/N+1 합성기일 수 있지만, 다른 유형들의 주파수 합성기들이 적합할 수 있으므로 실시예들의 범주가 이러한 점에서 제한되지 않는다. 예를 들어, 합성기 회로부(606d)는 델타-시그마 합성기, 주파수 체배기(frequency multiplier), 또는 주파수 분주기(frequency divider)를 갖는 위상 고정 루프를 포함하는 합성기일 수 있다.
합성기 회로부(606d)는 주파수 입력 및 분주기 제어 입력에 기초하여 RF 회로부(606)의 믹서 회로부(606a)에 의한 사용을 위해 출력 주파수를 합성하도록 구성될 수 있다. 일부 실시예들에서, 합성기 회로부(606d)는 프랙셔널 N/N+1 합성기일 수 있다.
일부 실시예들에서, 주파수 입력은 VCO(voltage controlled oscillator)에 의해 제공될 수 있지만, 그것은 요건이 아니다. 분주기 제어 입력은 원하는 출력 주파수에 따라 기저대역 회로부(610) 또는 애플리케이션 회로부(405/505) 중 어느 하나에 의해 제공될 수 있다. 일부 실시예들에서, 분주기 제어 입력(예를 들어, N)은 애플리케이션 회로부(405/505)에 의해 표시되는 채널에 기초하여 룩업 테이블로부터 결정될 수 있다.
RF 회로부(606)의 합성기 회로부(606d)는 분주기, DLL(delay-locked loop), 멀티플렉서 및 위상 누산기(phase accumulator)를 포함할 수 있다. 일부 실시예들에서, 분주기는 DMD(dual modulus divider)일 수 있고, 위상 누산기는 DPA(digital phase accumulator)일 수 있다. 일부 실시예들에서, DMD는 프랙셔널 분주비를 제공하기 위해 (예를 들어, 캐리아웃(carry out)에 기초하여) N 또는 N+1 중 어느 하나에 의해 입력 신호를 분주하도록 구성될 수 있다. 일부 예시적인 실시예들에서, DLL은 캐스케이딩되고(cascaded) 튜닝가능한 지연 요소들의 세트, 위상 검출기, 전하 펌프, 및 D형 플립 플롭을 포함할 수 있다. 이러한 실시예들에서, 지연 요소들은 VCO 주기를 Nd개의 동등한 위상 패킷들로 나누도록 구성될 수 있고, 여기서 Nd는 지연 라인에 있는 지연 요소들의 수이다. 이러한 방식으로, DLL은 지연 라인을 통한 총 지연이 하나의 VCO 사이클이도록 보장하는 데 도움을 주기 위해 네거티브 피드백을 제공한다.
일부 실시예들에서, 합성기 회로부(606d)는 출력 주파수로서 캐리어 주파수를 생성하도록 구성될 수 있는 반면, 다른 실시예들에서, 출력 주파수는 캐리어 주파수의 배수(예를 들어, 캐리어 주파수의 2배, 캐리어 주파수의 4배)일 수 있고, 서로에 대해 다수의 상이한 위상들을 갖는 캐리어 주파수에서 다수의 신호들을 생성하기 위해 직교 생성기 및 분주기 회로부와 함께 사용될 수 있다. 일부 실시예들에서, 출력 주파수는 LO 주파수(fLO)일 수 있다. 일부 실시예들에서, RF 회로부(606)는 IQ/폴라 변환기(IQ/polar converter)를 포함할 수 있다.
FEM 회로부(608)는 수신 신호 경로를 포함할 수 있으며, 그 수신 신호 경로는 안테나 어레이(611)로부터 수신되는 RF 신호들에 대해 동작하고 수신된 신호들을 증폭시키며 수신된 신호들의 증폭된 버전들을 추가적인 프로세싱을 위해 RF 회로부(606)에 제공하도록 구성된 회로부를 포함할 수 있다. FEM 회로부(608)는 또한 송신 신호 경로를 포함할 수 있으며, 그 송신 신호 경로는 안테나 어레이(611)의 안테나 요소들 중 하나 이상에 의한 송신을 위해 RF 회로부(606)에 의해 제공되는 송신을 위한 신호들을 증폭시키도록 구성된 회로부를 포함할 수 있다. 다양한 실시예들에서, 송신 또는 수신 신호 경로들을 통한 증폭은 RF 회로부(606)에서만, FEM 회로부(608)에서만, 또는 RF 회로부(606) 및 FEM 회로부(608) 둘 모두에서 행해질 수 있다.
일부 실시예들에서, FEM 회로부(608)는 송신 모드와 수신 모드 동작 사이에서 스위칭하기 위한 TX/RX 스위치를 포함할 수 있다. FEM 회로부(608)는 수신 신호 경로 및 송신 신호 경로를 포함할 수 있다. FEM 회로부(608)의 수신 신호 경로는 수신된 RF 신호들을 증폭시키고 증폭된 수신된 RF 신호들을 출력으로서 (예를 들어, RF 회로부(606)에) 제공하기 위한 LNA를 포함할 수 있다. FEM 회로부(608)의 송신 신호 경로는 (예를 들어, RF 회로부(606)에 의해 제공되는) 입력 RF 신호들을 증폭시키기 위한 PA(power amplifier), 및 안테나 어레이(611)의 하나 이상의 안테나 요소들에 의한 후속 송신을 위해 RF 신호들을 생성하기 위한 하나 이상의 필터들을 포함할 수 있다.
안테나 어레이(611)는 하나 이상의 안테나 요소들을 포함하며, 이들 각각은 전기 신호들을 공기를 통해 진행하는 무선 파들로 변환하고 수신된 무선 파들을 전기 신호들로 변환하도록 구성된다. 예를 들어, 기저대역 회로부(610)에 의해 제공되는 디지털 기저대역 신호들은 하나 이상의 안테나 요소들(도시되지 않음)을 포함하는 안테나 어레이(611)의 안테나 요소들을 통해 증폭되고 송신될 아날로그 RF 신호들(예를 들어, 변조된 파형)로 변환된다. 안테나 요소들은 전방향성, 방향성, 또는 이들의 조합일 수 있다. 안테나 요소들은 본 명세서에서 알려져 있고 그리고/또는 논의되는 바와 같이 다수의 배열들로 형성될 수 있다. 안테나 어레이(611)는 하나 이상의 인쇄 회로 보드들의 표면 상에 제조되는 마이크로스트립(microstrip) 안테나들 또는 인쇄 안테나들을 포함할 수 있다. 안테나 어레이(611)는 다양한 형상들로 금속 포일(foil)의 패치(예를 들어, 패치 안테나)로서 형성될 수 있고, 금속 송신 라인들 등을 사용하여 RF 회로부(606) 및/또는 FEM 회로부(608)와 커플링될 수 있다.
애플리케이션 회로부(405/505)의 프로세서들 및 기저대역 회로부(610)의 프로세서들은 프로토콜 스택의 하나 이상의 인스턴스들의 요소들을 실행하는 데 사용될 수 있다. 예를 들어, 기저대역 회로부(610)의 프로세서들은, 단독으로 또는 조합하여, 계층 3, 계층 2, 또는 계층 1 기능을 실행하는 데 사용될 수 있는 반면, 애플리케이션 회로부(405/505)의 프로세서들은 이러한 계층들로부터 수신되는 데이터(예를 들어, 패킷 데이터)를 이용하고 계층 4(예를 들어, TCP 및 UDP 계층들) 기능을 추가로 실행할 수 있다. 본 명세서에서 언급되는 바와 같이, 계층 3은 아래에서 더 상세히 설명되는 RRC 계층을 포함할 수 있다. 본 명세서에서 언급되는 바와 같이, 계층 2는 아래에서 더 상세히 설명되는 MAC 계층, RLC 계층 및 PDCP 계층을 포함할 수 있다. 본 명세서에서 언급되는 바와 같이, 계층 1은 아래에서 더 상세히 설명되는 UE/RAN 노드의 PHY 계층을 포함할 수 있다.
도 7은 다양한 실시예들에 따른, 무선 통신 디바이스에서 구현될 수 있는 다양한 프로토콜 기능들을 예시한다. 특히, 도 7은 다양한 프로토콜 계층들/엔티티들 사이의 상호연결들을 보여주는 배열(700)을 포함한다. 도 7의 하기의 설명은 5G/NR 시스템 표준들 및 LTE 시스템 표준들과 관련하여 동작하는 다양한 프로토콜 계층들/엔티티들에 대해 제공되지만, 도 7의 양태들 중 일부 또는 전부는 다른 무선 통신 네트워크 시스템들에 또한 적용가능할 수 있다.
배열(700)의 프로토콜 계층들은, 예시되어 있지 않은 다른 상위 계층 기능들 이외에, PHY(710), MAC(720), RLC(730), PDCP(740), SDAP(747), RRC(755), 및 NAS 계층(757) 중 하나 이상을 포함할 수 있다. 프로토콜 계층들은 2개 이상의 프로토콜 계층들 사이의 통신을 제공할 수 있는 하나 이상의 서비스 액세스 포인트들(예를 들어, 도 7의 아이템들(759, 756, 750, 749, 745, 735, 725, 715))을 포함할 수 있다.
PHY(710)는 하나 이상의 다른 통신 디바이스들로부터 수신되거나 그들로 송신될 수 있는 물리적 계층 신호들(705)을 송신 및 수신할 수 있다. 물리적 계층 신호들(705)은 본 명세서에서 논의되는 것들과 같은 하나 이상의 물리적 채널들을 포함할 수 있다. PHY(710)는 링크 적응 또는 적응적 변조 및 코딩(adaptive modulation and coding, AMC), 전력 제어, (예를 들어, 초기 동기화 및 핸드오버 목적들을 위한) 셀 검색, 및 RRC(755)와 같은 상위 계층들에 의해 사용되는 다른 측정들을 추가로 수행할 수 있다. PHY(710)는 전송 채널들에 대한 에러 검출, 전송 채널들의 순방향 에러 정정(forward error correction, FEC) 코딩/디코딩, 물리적 채널들의 변조/복조, 인터리빙(interleaving), 레이트 매칭, 물리적 채널들에 대한 맵핑, 및 MIMO 안테나 프로세싱을 또한 추가로 수행할 수 있다. 실시예들에서, PHY(710)의 인스턴스는 하나 이상의 PHY-SAP(715)를 통해 MAC(720)의 인스턴스로부터의 요청들을 프로세싱하고 표시들을 MAC(720)의 인스턴스에 제공할 수 있다. 일부 실시예들에 따르면, PHY-SAP(715)를 통해 통신되는 요청들 및 표시들은 하나 이상의 전송 채널들을 포함할 수 있다.
MAC(720)의 인스턴스(들)는 하나 이상의 MAC-SAP들(725)을 통해 RLC(730)의 인스턴스로부터의 요청들을 프로세싱하고 표시들을 RLC(730)의 인스턴스에 제공할 수 있다. MAC-SAP(725)를 통해 통신되는 이러한 요청들 및 표시들은 하나 이상의 논리 채널들을 포함할 수 있다. MAC(720)는 논리 채널들과 전송 채널들 사이의 맵핑, 하나 이상의 논리 채널들로부터의 MAC SDU들을 전송 채널들을 통해 PHY(710)로 전달될 TB들 상으로 멀티플렉싱하는 것, MAC SDU들을 전송 채널들을 통해 PHY(710)로부터 전달되는 TB들로부터의 하나 이상의 논리 채널들로 디멀티플렉싱하는 것, MAC SDU들을 TB들 상으로 멀티플렉싱하는 것, 스케줄링 정보 리포팅, HARQ를 통한 에러 정정, 및 논리 채널 우선순위화를 수행할 수 있다.
RLC(730)의 인스턴스(들)는 하나 이상의 RLC-SAP(radio link control service access points)(735)를 통해 PDCP(740)의 인스턴스로부터의 요청들을 프로세싱하고 표시들을 PDCP(740)의 인스턴스에 제공할 수 있다. RLC-SAP(735)를 통해 통신되는 이러한 요청들 및 표시들은 하나 이상의 RLC 채널들을 포함할 수 있다. RLC(730)는 투명 모드(Transparent Mode, TM), 미확인응답 모드(Unacknowledged Mode, UM), 및 확인응답 모드(Acknowledged Mode, AM)를 포함하는 복수의 동작 모드들에서 동작할 수 있다. RLC(730)는 상위 계층 PDU(protocol data unit)들의 전송, AM 데이터 전송들에 대한 ARQ(automatic repeat request)를 통한 에러 정정, 및 UM 및 AM 데이터 전송들을 위한 RLC SDU들의 연접, 세그먼트화 및 재조립을 실행할 수 있다. RLC(730)는 또한, AM 데이터 전송들을 위한 RLC 데이터 PDU들의 재세그먼트화를 실행하고, UM 및 AM 데이터 전송들을 위해 RLC 데이터 PDU들을 재순서화하고, UM 및 AM 데이터 전송들을 위해 복제 데이터를 검출하고, UM 및 AM 데이터 전송들을 위한 RLC SDU들을 폐기하고, AM 데이터 전송들에 대한 프로토콜 에러들을 검출하고, RLC 재확립을 수행할 수 있다.
PDCP(740)의 인스턴스(들)는 하나 이상의 PDCP-SAP(packet data convergence protocol service access points)(745)를 통해 SDAP(747)의 인스턴스(들) 및/또는 RRC(755)의 인스턴스(들)로부터의 요청들을 프로세싱하고 표시들을 SDAP(747)의 인스턴스(들) 및/또는 RRC(755)의 인스턴스(들)에 제공할 수 있다. PDCP-SAP(745)를 통해 통신되는 이러한 요청들 및 표시들은 하나 이상의 무선 베어러들을 포함할 수 있다. PDCP(740)는 IP 데이터의 헤더 압축 및 압축해제를 실행하고, PDCP 시퀀스 번호(Sequence Number, SN)들을 유지하고, 하위 계층들의 재확립에서 상위 계층 PDU들의 시퀀스-내 전달을 수행하고, RLC AM 상에 맵핑된 무선 베어러들에 대한 하위 계층들의 재확립에서 하위 계층 SDU들의 복제들을 제거하고, 제어 평면 데이터를 암호화 및 암호해독하고, 제어 평면 데이터의 무결성 보호 및 무결성 검증을 수행하고, 데이터의 타이머 기반 폐기를 제어하고, 보안 동작들(예를 들어, 암호화, 암호해독, 무결성 보호, 무결성 검증 등)을 수행할 수 있다.
SDAP(747)의 인스턴스(들)는 하나 이상의 SDAP-SAP(749)를 통해 하나 이상의 상위 계층 프로토콜 엔티티들로부터의 요청들을 프로세싱하고 표시들을 하나 이상의 상위 계층 프로토콜 엔티티들에 제공할 수 있다. SDAP-SAP(749)를 통해 통신되는 이러한 요청들 및 표시들은 하나 이상의 QoS 흐름들을 포함할 수 있다. SDAP(747)는 QoS 흐름들을 DRB들에 맵핑할 수 있고, 그 반대의 경우도 가능하며, 또한 DL 및 UL 패킷들 내에 QFI들을 마킹할 수 있다. 단일 SDAP 엔티티(747)는 개별 PDU 세션을 위해 구성될 수 있다. UL 방향에서, NG-RAN(110)은 2개의 상이한 방식들, 즉, 반사 맵핑 또는 명시적 맵핑으로 DRB(들)로의 QoS 흐름들의 맵핑을 제어할 수 있다. 반사 맵핑의 경우, UE(101)의 SDAP(747)는 각각의 DRB에 대한 DL 패킷들의 QFI들을 모니터링할 수 있고, UL 방향으로 흐르는 패킷들에 대해 동일한 맵핑을 적용할 수 있다. DRB의 경우, UE(101)의 SDAP(747)는 QoS 흐름 ID(들)에 대응하는 QoS 흐름(들)에 속하는 UL 패킷들 및 그 DRB에 대해 DL 패킷들에서 관찰된 PDU 세션을 맵핑할 수 있다. 반사 맵핑을 가능하게 하기 위해, NG-RAN(310)은 Uu 인터페이스를 통해 DL 패킷들을 QoS 흐름 ID로 마킹할 수 있다. 명시적 맵핑은, RRC(755)가 DRB 맵핑 규칙에 대한 명시적 QoS 흐름을 갖는 SDAP(747)를 구성하는 것을 수반할 수 있으며, DRB 맵핑 규칙은 저장되어 SDAP(747)에 의해 준수될 수 있다. 실시예들에서, SDAP(747)는 NR 구현예들에서만 사용될 수 있고, LTE 구현예들에서는 사용되지 않을 수 있다.
RRC(755)는, 하나 이상의 M-SAP(management service access points)를 통해, PHY(710), MAC(720), RLC(730), PDCP(740) 및 SDAP(747)의 하나 이상의 인스턴스들을 포함할 수 있는 하나 이상의 프로토콜 계층들의 양태들을 구성할 수 있다. 실시예들에서, RRC(755)의 인스턴스는 하나 이상의 RRC-SAP들(756)을 통해 하나 이상의 NAS 엔티티들(757)로부터의 요청들을 프로세싱하고 표시들을 하나 이상의 NAS 엔티티들(757)에 제공할 수 있다. RRC(755)의 메인 서비스들 및 기능들은 (예를 들어, NAS에 관련된 SIB들 또는 MIB들에 포함되는) 시스템 정보의 브로드캐스트, 액세스 계층(access stratum, AS)에 관련된 시스템 정보의 브로드캐스트, UE(101)와 RAN(110) 사이의 RRC 연결의 페이징, 확립, 유지보수 및 해제(예를 들어, RRC 연결 페이징, RRC 연결 확립, RRC 연결 수정, 및 RRC 연결 해제), 포인트-투-포인트 무선 베어러들의 확립, 구성, 유지보수 및 해제, 키 관리를 포함하는 보안 기능들, RAT-간 이동성, 및 UE 측정 리포팅을 위한 측정 구성을 포함할 수 있다. MIB들 및 SIB들은 하나 이상의 IE들을 포함할 수 있고, 이들은 각각 개별 데이터 필드들 또는 데이터 구조들을 포함할 수 있다.
NAS(757)는 UE(101)와 AMF(321) 사이의 제어 평면의 최고 계층을 형성할 수 있다. NAS(757)는 UE들(101)의 이동성, 및 LTE 시스템들 내의 P-GW와 UE(101) 사이의 IP 연결을 확립 및 유지하기 위한 세션 관리 절차들을 지원할 수 있다.
다양한 실시예들에 따르면, 배열(700)의 하나 이상의 프로토콜 엔티티들은 전술된 디바이스들 사이의 제어 평면 또는 사용자 평면 통신 프로토콜 스택에 사용되기 위해, NR 구현예들에서는 UE들(101), RAN 노드들(111), AMF(321)에서, 또는 LTE 구현예들에서는 MME(221), NR 구현예들에서는 UPF(302) 또는 LTE 구현예들에서는 S-GW(222) 및 P-GW(223)에서 구현될 수 있는 등의 식이다. 그러한 실시예들에서, UE(101), gNB(111), AMF(321) 등 중 하나 이상에서 구현될 수 있는 하나 이상의 프로토콜 엔티티들은, 그러한 통신을 수행하기 위해 개개의 하위 계층 프로토콜 엔티티들의 서비스들을 사용하여, 다른 디바이스에서 또는 그 상에서 구현될 수 있는 개개의 피어(peer) 프로토콜 엔티티와 통신할 수 있다. 일부 실시예들에서, gNB(111)의 gNB-CU는 하나 이상의 gNB-DU들의 동작을 제어하는 gNB의 RRC(755), SDAP(747), 및 PDCP(740)를 호스팅할 수 있고, gNB(111)의 gNB-DU들은 각각 gNB(111)의 RLC(730), MAC(720), 및 PHY(710)를 호스팅할 수 있다.
제1 예에서, 제어 평면 프로토콜 스택은, 최고 계층으로부터 최저 계층까지의 순서로, NAS(757), RRC(755), PDCP(740), RLC(730), MAC(720), 및 PHY(710)를 포함할 수 있다. 이러한 예에서, IP 계층(761), SCTP(762), 및 애플리케이션 계층 시그널링 프로토콜(application layer signaling protocol)(AP)(763)을 포함하는 상위 계층들(760)이 NAS(757)의 상단 상에 구축될 수 있다.
NR 구현예들에서, AP(763)는 NG-RAN 노드(111)와 AMF(321) 사이에 정의된 NG 인터페이스(113)에 대한 NG 애플리케이션 프로토콜 계층(NGAP 또는 NG-AP)(763)일 수 있거나, 또는 AP(763)는 2개 이상의 RAN 노드들(111) 사이에 정의된 Xn 인터페이스(112)에 대한 Xn 애플리케이션 프로토콜 계층(XnAP 또는 Xn-AP)(763)일 수 있다.
NG-AP(763)는 NG 인터페이스(113)의 기능들을 지원할 수 있고, EP(Elementary Procedure)들을 포함할 수 있다. NG-AP EP는 NG-RAN 노드(111)와 AMF(321) 사이의 상호작용의 유닛일 수 있다. NG-AP(763) 서비스들은 2개의 그룹들, 즉, UE-연관된 서비스들(예를 들어, UE(101)에 관련된 서비스들) 및 비-UE-연관된 서비스들(예를 들어, NG-RAN 노드(111)와 AMF(321) 사이의 전체 NG 인터페이스 인스턴스에 관련된 서비스들)을 포함할 수 있다. 이러한 서비스들은, 특정 페이징 영역에 수반된 NG-RAN 노드들(111)로의 페이징 요청들의 전송을 위한 페이징 기능; AMF(321)가 AMF(321) 및 NG-RAN 노드(111) 내에 UE 컨텍스트를 확립, 수정, 및/또는 해제하게 허용하기 위한 UE 컨텍스트 관리 기능; NG-RAN 내의 이동성을 지원하기 위한 시스템-내 HO들 및 EPS 시스템들로부터의/EPS 시스템들로의 이동성을 지원하기 위한 시스템-간 HO들에 대한, ECM-CONNECTED 모드의 UE들(101)에 대한 이동성 기능; UE(101)와 AMF(321) 사이에서 NAS 메시지들을 전송 또는 재라우팅하기 위한 NAS 시그널링 전송 기능; AMF(321)와 UE(101) 사이의 연관을 결정하기 위한 NAS 노드 선택 기능; NG 인터페이스를 셋업하고 NG 인터페이스를 통해 에러들에 대해 모니터링하기 위한 NG 인터페이스 관리 기능(들); NG 인터페이스를 통해 경고 메시지들을 전달하거나 경고 메시지들의 진행 중인 브로드캐스트를 취소하는 수단을 제공하기 위한 경고 메시지 송신 기능; CN(120)을 통해 2개의 RAN 노드들(111) 사이에서 RAN 구성 정보(예를 들어, SON 정보, 성능 측정(performance measurement, PM) 데이터 등)를 요청하고 전송하기 위한 구성 전송 기능; 및/또는 다른 유사한 기능들을 포함하지만 이들로 제한되지 않는 기능들을 포함할 수 있다.
XnAP(763)는 Xn 인터페이스(112)의 기능들을 지원할 수 있고, XnAP 기반 이동성 절차들 및 XnAP 글로벌 절차들을 포함할 수 있다. XnAP 기반 이동성 절차들은 NG RAN(111)(또는 E-UTRAN(210)) 내의 UE 이동성을 처리하기 위해 사용되는 절차들, 예컨대, 핸드오버 준비 및 취소 절차들, SN 상태 전송 절차들, UE 컨텍스트 검색 및 UE 컨텍스트 해제 절차들, RAN 페이징 절차들, 이중 연결 관련 절차들 등을 포함할 수 있다. XnAP 글로벌 절차들은 특정 UE(101)에 관련되지 않은 절차들, 예컨대, Xn 인터페이스 셋업 및 리셋 절차들, NG-RAN 업데이트 절차들, 셀 활성화 절차들 등을 포함할 수 있다.
LTE 구현예들에서, AP(763)는 E-UTRAN 노드(111)와 MME 사이에 정의된 S1 인터페이스(113)에 대한 S1 애플리케이션 프로토콜 계층(S1 Application Protocol layer, S1-AP)(763)일 수 있거나, 또는 AP(763)는 2개 이상의 E-UTRAN 노드들(111) 사이에 정의된 X2 인터페이스(112)에 대한 X2 애플리케이션 프로토콜 계층(X2AP 또는 X2-AP)(763)일 수 있다.
S1 애플리케이션 프로토콜 계층(S1-AP)(763)은 S1 인터페이스의 기능들을 지원할 수 있고, 이전에 논의된 NG-AP와 유사하게, S1-AP는 S1-AP EP들을 포함할 수 있다. S1-AP EP는 LTE CN(120) 내의 MME(221)와 E-UTRAN 노드(111) 사이의 상호작용의 유닛일 수 있다. S1-AP(763) 서비스들은 2개의 그룹들, 즉, UE-연관된 서비스들 및 비 UE-연관된 서비스들을 포함할 수 있다. 이러한 서비스들은 E-UTRAN 무선 액세스 베어러(E-RAB) 관리, UE 능력 표시, 이동성, NAS 시그널링 전송, RAN 정보 관리(RIM), 및 구성 전송을 포함하지만 이에 제한되지 않는 기능들을 수행한다.
X2AP(763)는 X2 인터페이스(112)의 기능들을 지원할 수 있고, X2AP 기반 이동성 절차들 및 X2AP 글로벌 절차들을 포함할 수 있다. X2AP 기반 이동성 절차들은 E-UTRAN(120) 내의 UE 이동성을 처리하기 위해 사용되는 절차들, 예컨대, 핸드오버 준비 및 취소 절차들, SN 상태 전송 절차들, UE 컨텍스트 검색 및 UE 컨텍스트 해제 절차들, RAN 페이징 절차들, 이중 연결 관련 절차들 등을 포함할 수 있다. X2AP 글로벌 절차들은 특정 UE(101)에 관련되지 않은 절차들, 예컨대, X2 인터페이스 셋업 및 리셋 절차들, 부하 표시 절차들, 에러 표시 절차들, 셀 활성화 절차들 등을 포함할 수 있다.
SCTP 계층(대안적으로 SCTP/IP 계층으로 지칭됨)(762)은 애플리케이션 계층 메시지들(예를 들어, NR 구현예들에서의 NGAP 또는 XnAP 메시지들, 또는 LTE 구현예들에서의 S1-AP 또는 X2AP 메시지들)의 보장된 전달을 제공할 수 있다. SCTP(762)는 IP(761)에 의해 지원되는 IP 프로토콜에 부분적으로 기초하여 RAN 노드(111)와 AMF(321)/MME(221) 사이의 시그널링 메시지들의 신뢰성 있는 전달을 보장할 수 있다. 인터넷 프로토콜(IP) 계층(761)은 패킷 어드레싱 및 라우팅 기능을 수행하는 데 사용될 수 있다. 일부 구현예들에서, IP 계층(761)은 PDU들을 전달하고 운반하기 위해 포인트-투-포인트 송신을 사용할 수 있다. 이와 관련하여, RAN 노드(111)는 정보를 교환하기 위해 MME/AMF와의 L2 및 L1 계층 통신 링크들(예를 들어, 유선 또는 무선)을 포함할 수 있다.
제2 예에서, 사용자 평면 프로토콜 스택은, 최고 계층으로부터 최저 계층까지의 순서로, SDAP(747), PDCP(740), RLC(730), MAC(720), 및 PHY(710)를 포함할 수 있다. 사용자 평면 프로토콜 스택은 NR 구현예들에서의 UE(101), RAN 노드(111), 및 UPF(302) 사이의 또는 LTE 구현예들에서의 S-GW(222)와 P-GW(223) 사이의 통신을 위해 사용될 수 있다. 이러한 예에서, 상위 계층들(751)은 SDAP(747)의 상단 상에 구축될 수 있고, 사용자 데이터그램 프로토콜(UDP) 및 IP 보안 계층(UDP/IP)(752), GTP-U(GPRS(General Packet Radio Service) Tunneling Protocol for the user plane layer) 계층(753), 및 사용자 평면 PDU 계층(UP PDU)(763)을 포함할 수 있다.
전송 네트워크 계층(754)(또한 "전송 계층"으로 지칭됨)은 IP 전송 상에 구축될 수 있고, GTP-U 계층(753)은 UDP/IP 계층(752)(UDP 계층 및 IP 계층을 포함함)의 상단 상에서 사용되어 사용자 평면 PDU(UP-PDU)들을 전달할 수 있다. IP 계층(또한 "인터넷 계층"으로 지칭됨)은 패킷 어드레싱 및 라우팅 기능을 수행하는 데 사용될 수 있다. IP 계층은, 예를 들어, IPv4, IPv6, 또는 PPP 포맷들 중 임의의 것의 사용자 데이터 패킷들에 IP 어드레스들을 할당할 수 있다.
GTP-U 계층(753)은 GPRS 코어 네트워크 내에서 그리고 무선 액세스 네트워크와 코어 네트워크 사이에서 사용자 데이터를 전달하기 위해 사용될 수 있다. 전달되는 사용자 데이터는 예를 들어 IPv4, IPv6, 또는 PPP 포맷들 중 임의의 것의 패킷들일 수 있다. UDP/IP(752)는 데이터 무결성을 위한 체크섬들, 소스 및 목적지에서 상이한 기능들에 어드레싱하기 위한 포트 번호들, 및 선택된 데이터 흐름들에 대한 암호화 및 인증을 제공할 수 있다. RAN 노드(111) 및 S-GW(222)는 L1 계층(예를 들어, PHY(710)), L2 계층(예를 들어, MAC(720), RLC(730), PDCP(740), 및/또는 SDAP(747)), UDP/IP 계층(752), 및 GTP-U 계층(753)을 포함하는 프로토콜 스택을 통해 사용자 평면 데이터를 교환하기 위해 S1-U 인터페이스를 이용할 수 있다. S-GW(222) 및 P-GW(223)는 L1 계층, L2 계층, UDP/IP 계층(752) 및 GTP-U 계층(753)을 포함하는 프로토콜 스택을 통해 사용자 평면 데이터를 교환하기 위해 S5/S8a 인터페이스를 이용할 수 있다. 이전에 논의된 바와 같이, NAS 프로토콜들은 UE(101)의 이동성, 및 UE(101)와 P-GW(223) 사이의 IP 연결을 확립 및 유지하기 위한 세션 관리 절차들을 지원할 수 있다.
게다가, 도 7에 의해 도시되지 않았지만, 애플리케이션 계층은 AP(763) 및/또는 전송 네트워크 계층(754) 위에 존재할 수 있다. 애플리케이션 계층은 UE(101), RAN 노드(111), 또는 다른 네트워크 요소의 사용자가, 예를 들어, 각각 애플리케이션 회로부(405) 또는 애플리케이션 회로부(505)에 의해 실행되고 있는 소프트웨어 애플리케이션들과 상호작용하는 계층일 수 있다. 애플리케이션 계층은 또한, 기저대역 회로부(610)와 같은 UE(101) 또는 RAN 노드(111)의 통신 시스템들과 상호작용하기 위한 소프트웨어 애플리케이션들에 대한 하나 이상의 인터페이스들을 제공할 수 있다. 일부 구현예들에서, IP 계층 및/또는 애플리케이션 계층은 OSI(Open Systems Interconnection) 모델의 계층 5 내지 계층 7(예를 들어, OSI 계층 7 - 애플리케이션 계층, OSI 계층 6 - 프리젠테이션 계층(presentation layer), 및 OSI 계층 5 - 세션 계층) 또는 그의 일부들과 동일하거나 유사한 기능을 제공할 수 있다.
도 8은 다양한 실시예들에 따른 코어 네트워크의 컴포넌트들을 예시한다. CN(120)의 컴포넌트들은 머신 판독가능 또는 컴퓨터 판독가능 매체(예를 들어, 비일시적 머신 판독가능 저장 매체)로부터 명령어들을 판독 및 실행하기 위한 컴포넌트들을 포함하는 하나의 물리적 노드 또는 별개의 물리적 노드들에서 구현될 수 있다. 실시예들에서, CN(220)의 컴포넌트들은 CN(120)의 컴포넌트들과 관련하여 본 명세서에서 논의된 바와 동일하거나 유사한 방식으로 구현될 수 있다. 일부 실시예들에서, NFV는 하나 이상의 컴퓨터 판독가능 저장 매체들에 저장된 실행가능한 명령어들을 통해 위에서 설명된 네트워크 노드 기능들 중 임의의 것 또는 전부를 가상화하기 위해 이용된다(아래에서 더 상세히 설명됨). CN(120)의 논리적 인스턴스화는 네트워크 슬라이스(801)로 지칭될 수 있고, CN(120)의 개별 논리적 인스턴스화들은 특정 네트워크 능력들 및 네트워크 특성들을 제공할 수 있다. CN(120)의 일부의 논리적 인스턴스화는 네트워크 서브슬라이스(802)로 지칭될 수 있다(예를 들어, 네트워크 서브슬라이스(802)는 P-GW(223) 및 PCRF(226)를 포함하는 것으로 도시되어 있다).
본 명세서에서 사용되는 바와 같이, 용어들 "인스턴스화하다", "인스턴스화" 등은 인스턴스의 생성을 지칭할 수 있고, "인스턴스"는, 예를 들어, 프로그램 코드의 실행 동안 발생될 수 있는, 객체의 구체적 발생을 지칭할 수 있다. 네트워크 인스턴스는 도메인을 식별하는 정보를 지칭할 수 있으며, 이는 상이한 IP 도메인들 또는 중첩 IP 어드레스들의 경우에 트래픽 검출 및 라우팅을 위해 사용될 수 있다. 네트워크 슬라이스 인스턴스는 네트워크 슬라이스를 배치하는 데 요구되는 네트워크 기능(NF)들의 인스턴스들 및 리소스들(예를 들어, 연산, 저장, 및 네트워킹 리소스들)의 세트를 지칭할 수 있다.
5G 시스템들(예를 들어, 도 2 참조)과 관련하여, 네트워크 슬라이스는 항상 RAN 부분 및 CN 부분을 포함한다. 네트워크 슬라이싱의 지원은 상이한 슬라이스들에 대한 트래픽이 상이한 PDU 세션들에 의해 처리된다는 원리에 의존한다. 네트워크는 스케줄링에 의해 그리고 또한 상이한 L1/L2 구성들을 제공함으로써 상이한 네트워크 슬라이스들을 실현할 수 있다. UE(201)는 적절한 RRC 메시지 내의 네트워크 슬라이스 선택을 위한 보조 정보를, 그것이 NAS에 의해 제공되었다면 제공한다. 네트워크가 많은 수의 슬라이스들을 지원할 수 있지만, UE는 8개 초과의 슬라이스들을 동시에 지원할 필요가 없다.
네트워크 슬라이스는 CN(220) 제어 평면 및 사용자 평면 NF들, 서빙 PLMN 내의 NG-RAN들(210), 및 서빙 PLMN 내의 N3IWF 기능들을 포함할 수 있다. 개별 네트워크 슬라이스들은 상이한 S-NSSAI를 가질 수 있고 그리고/또는 상이한 SST들을 가질 수 있다. NSSAI는 하나 이상의 S-NSSAI들을 포함하고, 각각의 네트워크 슬라이스는 S-NSSAI에 의해 고유하게 식별된다. 네트워크 슬라이스들은 지원되는 특징들 및 네트워크 기능들의 최적화들에 대해 상이할 수 있고, 그리고/또는 다수의 네트워크 슬라이스 인스턴스들은 동일한 서비스/특징들을 전달할 수 있지만, UE들(201)의 상이한 그룹들(예를 들어, 기업 사용자들)에 대해 전달할 수 있다. 예를 들어, 개별 네트워크 슬라이스들은 상이한 커미트된(committed) 서비스(들)를 전달할 수 있고 그리고/또는 특정 고객 또는 기업에 전용될 수 있다. 이러한 예에서, 각각의 네트워크 슬라이스는 동일한 SST를 갖지만 상이한 슬라이스 차별요소(differentiator)들을 갖는 상이한 S-NSSAI들을 가질 수 있다. 부가적으로, 단일 UE는 5G AN을 통해 동시에 하나 이상의 네트워크 슬라이스 인스턴스들로 서빙되고, 8개의 상이한 S-NSSAI들과 연관될 수 있다. 게다가, 개별 UE(201)를 서빙하는 AMF(221) 인스턴스는 그 UE를 서빙하는 네트워크 슬라이스 인스턴스들 각각에 속할 수 있다.
NG-RAN(210)에서의 네트워크 슬라이싱은 RAN 슬라이스 인식을 수반한다. RAN 슬라이스 인식은 미리 구성된 상이한 네트워크 슬라이스들에 대한 트래픽의 구별된 처리를 포함한다. NG-RAN(210)에서의 슬라이스 인식은 PDU 세션 리소스 정보를 포함하는 모든 시그널링에서 PDU 세션에 대응하는 S-NSSAI를 표시함으로써 PDU 세션 레벨에서 도입된다. NG-RAN(210)이 NG-RAN 기능들(예를 들어, 각각의 슬라이스를 포함하는 네트워크 기능들의 세트)의 관점들에서 슬라이스 인에이블을 어떻게 지원하는지는 구현 종속적이다. NG-RAN(210)은 UE(201) 또는 5GC(220)에 의해 제공되는 보조 정보를 사용하여 네트워크 슬라이스의 RAN 부분을 선택하며, 이는 PLMN 내의 미리 구성된 네트워크 슬라이스들 중 하나 이상을 명확하게 식별한다. NG-RAN(210)은 또한, SLA들에 따라 슬라이스들 사이의 리소스 관리 및 정책 시행을 지원한다. 단일의 NG-RAN 노드는 다수의 슬라이스들을 지원할 수 있고, NG-RAN(210)은 또한 제위치의 SLA에 대한 적절한 RRM 정책을 각각의 지원되는 슬라이스에 적용할 수 있다. NG-RAN(210)은 또한 슬라이스 내에서의 QoS 구별을 지원할 수 있다.
또한, NG-RAN(210)은 이용가능하다면, 초기 부착 동안 AMF(221)의 선택을 위해 UE 보조 정보를 사용할 수 있다. NG-RAN(210)은 초기 NAS를 AMF(221)로 라우팅하기 위해 보조 정보를 사용한다. NG-RAN(210)이 보조 정보를 사용하여 AMF(221)를 선택할 수 없거나 또는 UE(201)가 어떠한 그러한 정보도 제공하지 않으면, NG-RAN(210)은 AMF들(221)의 풀 중에 있을 수 있는 디폴트 AMF(221)에 NAS 시그널링을 전송한다. 후속 액세스들을 위해, UE(201)는, 온도 ID가 유효한 한, NG-RAN(210)이 NAS 메시지를 적절한 AMF(221)로 라우팅할 수 있게 하기 위해, 5GC(220)에 의해 UE(201)에 할당된 온도 ID를 제공한다. NG-RAN(210)은 임시 ID와 연관된 AMF(221)를 인식하고 이에 도달할 수 있다. 그렇지 않으면, 초기 부착을 위한 방법이 적용된다.
NG-RAN(210)은 슬라이스들 사이의 리소스 격리를 지원한다. NG-RAN(210) 리소스 격리는, 하나의 슬라이스가 다른 슬라이스에 대한 서비스 레벨 합의를 깬다면(break), 공유 리소스들의 부족을 회피해야 하는 RRM 정책들 및 보호 메커니즘들에 의해 달성될 수 있다. 일부 구현예들에서, NG-RAN(210) 리소스들을 특정한 슬라이스에 완전히 전용하는 것이 가능하다. NG-RAN(210)이 리소스 격리를 어떻게 지원하는지는 구현 종속적이다.
일부 슬라이스들은 네트워크의 일부에서만 이용가능할 수 있다. 그의 이웃들의 셀들에서 지원되는 슬라이스들의 NG-RAN(210)에서의 인식은 연결 모드에서 주파수-간 이동성에 유익할 수 있다. 슬라이스 이용가능성은 UE의 등록 영역 내에서 변화되지 않을 수 있다. NG-RAN(210) 및 5GC(220)는 주어진 영역에서 이용가능할 수 있거나 이용가능하지 않을 수 있는 슬라이스에 대한 서비스 요청을 처리하는 것을 담당한다. 슬라이스에 대한 액세스의 승인 또는 거부는, 슬라이스에 대한 지원, 리소스들의 이용가능성, NG-RAN(210)에 의한 요청된 서비스의 지원과 같은 인자들에 의존할 수 있다.
UE(201)는 다수의 네트워크 슬라이스들과 동시에 연관될 수 있다. UE(201)가 다수의 슬라이스들과 동시에 연관되는 경우, 단지 하나의 시그널링 연결만이 유지되며, 주파수-내 셀 재선택을 위해, UE(201)는 최상의 셀에 캠핑 온(camp on)하려고 시도한다. 주파수-간 셀 재선택을 위해, 전용 우선순위들은 UE(201)가 캠핑 온하는 주파수를 제어하는 데 사용될 수 있다. 5GC(220)는 UE(201)가 네트워크 슬라이스에 액세스할 권리들을 갖는다는 것을 확인할 것이다. 초기 컨텍스트 셋업 요청 메시지를 수신하기 전에, NG-RAN(210)은 UE(201)가 액세스하라고 요청하고 있는 특정 슬라이스의 인식에 기초하여, 일부 임시/로컬 정책들을 적용하도록 허용될 수 있다. 초기 컨텍스트 셋업 동안, NG-RAN(210)은 리소스들이 요청되고 있는 슬라이스를 통지받는다.
NFV 아키텍처들 및 인프라구조들은, 산업-표준 서버 하드웨어, 저장 하드웨어, 또는 스위치들의 조합을 포함하는 물리적 리소스 상으로, 대안적으로는 사유 하드웨어(proprietary hardware)에 의해 수행되는 하나 이상의 NF들을 가상화하기 위해 사용될 수 있다. 다시 말하면, NFV 시스템들은 하나 이상의 EPC 컴포넌트들/기능들의 가상 또는 재구성가능한 구현들을 실행하기 위해 사용될 수 있다.
도 9는 NFV를 지원하기 위한 시스템(900)의, 일부 예시적인 실시예들에 따른 컴포넌트들을 예시하는 블록도이다. 시스템(900)은 VIM(902), NFVI(904), VNFM(906), VNF들(908), EM(910), NFVO(912), 및 NM(914)을 포함하는 것으로 예시되어 있다.
VIM(902)은 NFVI(904)의 리소스들을 관리한다. NFVI(904)는 시스템(900)을 실행하기 위해 사용되는 물리적 또는 가상 리소스들 및 애플리케이션들(하이퍼바이저(hypervisor)들을 포함함)을 포함할 수 있다. VIM(902)은 NFVI(904)를 이용하여 가상 리소스들의 수명 사이클(예를 들어, 하나 이상의 물리적 리소스들과 연관된 VM들의 생성, 유지보수, 및 해체)을 관리하고, VM 인스턴스들을 추적하고, VM 인스턴스들 및 연관된 물리적 리소스들의 성능, 결함 및 보안을 추적하고, VM 인스턴스들 및 연관된 물리적 리소스들을 다른 관리 시스템들에 노출시킬 수 있다.
VNFM(906)은 VNF들(908)을 관리할 수 있다. VNF들(908)은 EPC 컴포넌트들/기능들을 실행하기 위해 사용될 수 있다. VNFM(906)은 VNF들(908)의 수명 사이클을 관리하고, VNF들(908)의 가상 양태들의 성능, 결함 및 보안을 추적할 수 있다. EM(910)은 VNF들(908)의 기능적 양태들의 성능, 결함 및 보안을 추적할 수 있다. VNFM(906) 및 EM(910)으로부터의 추적 데이터는, 예를 들어, VIM(902) 또는 NFVI(904)에 의해 사용되는 PM 데이터를 포함할 수 있다. VNFM(906) 및 EM(910) 둘 모두는 시스템(900)의 VNF들의 양을 확장/축소할 수 있다.
NFVO(912)는 요청된 서비스를 제공하기 위해(예를 들어, EPC 기능, 컴포넌트 또는 슬라이스를 실행하기 위해) NFVI(904)의 리소스들을 조정, 인가, 해제 및 참여시킬 수 있다. NM(914)은 네트워크의 관리를 위한 책임을 갖는 최종 사용자 기능들의 패키지를 제공할 수 있으며, 이는 VNF들, 비-가상화된 네트워크 기능들, 또는 둘 모두를 갖는 네트워크 요소들을 포함할 수 있다(VNF들의 관리는 EM(910)을 통해 발생할 수 있음).
도 10은 일부 예시적인 실시예들에 따른, 머신 판독가능 또는 컴퓨터 판독가능 매체(예를 들어, 비일시적 머신 판독가능 저장 매체)로부터 명령어들을 판독할 수 있고 본 명세서에서 논의되는 방법들 중 임의의 하나 이상의 방법들을 수행할 수 있는 컴포넌트들을 예시하는 블록도이다. 구체적으로, 도 10은 하나 이상의 프로세서들(또는 프로세서 코어들)(1010), 하나 이상의 메모리/저장 디바이스들(1020), 및 하나 이상의 통신 리소스들(1030)을 포함하는 하드웨어 리소스들(1000)의 도식적 표현을 도시하며, 이들은 각각 버스(1040)를 통해 통신가능하게 커플링될 수 있다. 노드 가상화(예를 들어, NFV)가 이용되는 실시예들의 경우, 하나 이상의 네트워크 슬라이스들/서브슬라이스들이 하드웨어 리소스들(1000)을 이용하기 위한 실행 환경을 제공하기 위해 하이퍼바이저(1002)가 실행될 수 있다.
프로세서들(1010)은, 예를 들어, 프로세서(1012) 및 프로세서(1014)를 포함할 수 있다. 프로세서(들)(1010)는, 예를 들어, CPU(central processing unit), RISC(reduced instruction set computing) 프로세서, CISC(complex instruction set computing) 프로세서, GPU(graphics processing unit), DSP, 예컨대 기저대역 프로세서, ASIC, FPGA, RFIC(radio-frequency integrated circuit), 다른 프로세서(본 명세서에 논의된 것들을 포함함), 또는 이들의 임의의 적합한 조합일 수 있다.
메모리/저장 디바이스들(1020)은 메인 메모리, 디스크 저장소, 또는 이들의 임의의 적합한 조합을 포함할 수 있다. 메모리/저장 디바이스들(1020)은 DRAM(dynamic random access memory), SRAM(static random access memory), EPROM(erasable programmable read-only memory), EEPROM(electrically erasable programmable read-only memory), 플래시 메모리, 솔리드 스테이트 스토리지 등과 같은 임의의 유형의 휘발성 또는 비휘발성 메모리를 포함할 수 있지만, 이들로 제한되지 않는다.
통신 리소스들(1030)은 네트워크(1008)를 통해 하나 이상의 주변 디바이스들(1004) 또는 하나 이상의 데이터베이스들(1006)과 통신하기 위한 상호연결 또는 네트워크 인터페이스 컴포넌트들 또는 다른 적합한 디바이스들을 포함할 수 있다. 예를 들어, 통신 리소스들(1030)은 (예를 들어, USB를 통해 커플링하기 위한) 유선 통신 컴포넌트들, 셀룰러 통신 컴포넌트들, NFC 컴포넌트들, Bluetooth®(또는 저전력 Bluetooth®) 컴포넌트들, Wi-Fi® 컴포넌트들, 및 다른 통신 컴포넌트들을 포함할 수 있다. 명령어들(1050)은 프로세서들(1010) 중 적어도 임의의 프로세서로 하여금 본 명세서에서 논의되는 방법들 중 임의의 하나 이상의 방법들을 수행하게 하기 위한 소프트웨어, 프로그램, 애플리케이션, 애플릿, 앱, 또는 다른 실행가능 코드를 포함할 수 있다. 명령어들(1050)은 프로세서들(1010)(예를 들어, 프로세서의 캐시 메모리 내의 것), 메모리/저장 디바이스들(1020), 또는 이들의 임의의 적합한 조합 중 적어도 하나 내에, 전체적으로 또는 부분적으로, 존재할 수 있다. 더욱이, 명령어들(1050)의 임의의 부분은 주변 디바이스들(1004) 또는 데이터베이스들(1006)의 임의의 조합으로부터 하드웨어 리소스들(1000)로 전송될 수 있다. 따라서, 프로세서들(1010)의 메모리, 메모리/저장 디바이스들(1020), 주변 디바이스들(1004), 및 데이터베이스들(1006)은 컴퓨터 판독가능 및 머신 판독가능 매체들의 예들이다.
예시적인 절차들
일부 실시예들에서, 도 1 내지 도 10 또는 본 명세서의 일부 다른 도면의 전자 디바이스(들), 네트워크(들), 시스템(들), 칩(들) 또는 컴포넌트(들), 또는 이들의 일부들 또는 구현예들은 본 명세서에 설명된 바와 같은 하나 이상의 프로세스들, 기법들, 또는 방법들, 또는 이들의 일부들을 수행하도록 구성될 수 있다. 하나의 그러한 프로세스, 시스템 및 방법은 도 11에 예시된 바와 같이 사용자 장비(UE)가 무선 측정을 수행하게 허용한다. 방법(1100)이 예시된다. 방법은, 1104에 도시된 바와 같이 추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로; 1106에 도시된 바와 같이 추적을 위한 CSI-RS의 주기성을 RRM 기준 신호의 주기성 특성보다 긴 값으로; 또는 1108에 도시된 바와 같이 추적을 위한 CSI-RS의 대역폭을 RRM 기준 신호의 대역폭 특성과 동일한 값으로 설정함으로써, 1102에서 UE의 추적을 위해 CSI-RS의 특성을 구성한다. 일부 실시예들에서, RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함한다. 이어서, 1110에 도시된 바와 같이, 무선 측정이 구성된 CSI-RS를 사용하여 수행된다. 일부 실시예들에서, BR 테스팅 신호의 제1 전력 레벨은 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨을 결정하도록 설정된다. 일부 실시예들에서, 특성을 추적하기 위해 하나 초과의 CSI-RS를 설정하는 것이 설정된다.
다른 실시예에서, 도 12에 예시된 바와 같이, 시스템 및 방법은 무선 리소스 관리(RRM) 테스팅을 수행한다. 테스팅(1200)은, 1202에 도시된 바와 같이, 추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 설정하는 것 - 다른 RRM 기준 신호는 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 또는 1204에 도시된 바와 같이, 추적을 위한 CSI-RS의 네거티브 전력 오프셋 값을 RRM 기준 신호의 동기화 신호(SS)로 설정하는 것; 또는 1206에 도시된 바와 같이, 추적을 위한 CSI-RS의 포지티브 전력 오프셋 값을 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로 설정하는 것을 포함할 수 있다. 일부 실시예들에서, 포지티브 전력 오프셋은 물리적 다운링크 공유 채널(PDSCH)이 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 설정된다. 일부 실시예들에서, 추적을 위한 CSI-RS는 SS 주기성 또는 동기화 신호 블록(SSB)-기반 측정 타이밍 구성 주기성보다 긴 주기성을 갖도록 구성된다. 일부 실시예들에서, 네거티브 전력 오프셋은 SS가 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 설정된다.
도 11 및 도 12의 기능들 또는 프로세스들은 하나 이상의 애플리케이션 회로부(405 또는 505), 기저대역 회로부(410 또는 510), 및/또는 프로세서들(1014)에 의해 적어도 부분적으로 수행될 수 있다.
하나 이상의 실시예들에 대해, 선행 도면들 중 하나 이상에 기재된 컴포넌트(들), 디바이스(들), 시스템(들), 또는 이들의 부분들 중 적어도 하나는 아래의 실시예 섹션에 기재되는 바와 같은 하나 이상의 동작들, 기법들, 프로세스들, 및/또는 방법들을 수행하도록 구성될 수 있다. 예를 들어, 선행 도면들 중 하나 이상과 관련하여 위에서 설명된 바와 같은 기저대역 회로부는 아래에 기재되는 실시예들 중 하나 이상에 따라 동작하도록 구성될 수 있다. 다른 실시예에 대해, 선행 도면들 중 하나 이상과 관련하여 위에서 설명된 바와 같은 UE, 기지국, 네트워크 요소 등과 연관된 회로부는 아래의 실시예 섹션에 기재되는 실시예들 중 하나 이상에 따라 동작하도록 구성될 수 있다. 또 다른 실시예에 대해, 장치는 아래에 기재되는 실시예들 중 하나 이상에 따라 동작하도록 구성될 수 있다. 하나 이상의 실시예에 대해, 장치는 실시예 섹션에서 아래에 기재되는 실시예들 중 하나 이상에 따라 동작하기 위한 수단을 포함할 수 있다.
실시예들
실시예 1은 다음을 포함할 수 있다: RRM 테스팅에서, 추적을 위한 CSI-RS가 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 L1-RSRP 측정 리포팅) 테스팅을 위해 다른 기준 신호들의 전력보다 작은 전력으로 구성되는 것; 또는
RRM 테스팅에서, SS(동기화 신호)에 대한 추적을 위한 CSI-RS의 전력 오프셋이 네거티브 값을 이용하여 구성되며, 예를 들어 SS가 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖는 것; 또는
RRM 테스팅에서, 추적을 위한 CSI-RS에 대한 PDSCH의 전력 오프셋이 포지티브 값을 이용하여 구성되며, 예를 들어, PDSCH가 추적을 위한 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖는 것.
실시예 2는 다음을 포함할 수 있다: RRM 테스팅에서, 추적을 위한 CSI-RS가 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 L1-RSRP 측정 리포팅) 테스팅을 위해 다른 기준 신호들보다 긴 주기성으로 구성되는 것; 또는
RRM 테스팅에서, 추적을 위한 CSI-RS가 모든 경우들에 대해 큰 주기성, 예를 들어 80 ms로 구성되는 것; 또는
RRM 테스팅에서, 추적을 위한 CSI-RS가 SS 주기성 또는 SMTC 주기성보다 긴 주기성으로 구성되는 것; 또는
RRM 테스팅에서, 추적을 위한 CSI-RS가 RRM 측정 또는 RLM 또는 BFD(빔 실패 검출) 또는 CBD(후보 빔 검출) 또는 BR(빔 리포팅, 예를 들어 L1-RSRP 측정 리포팅)을 위한 CSI-RS의 주기성보다 긴 주기성으로 구성되는 것.
실시예 3은, 모든 RRM 테스팅에서, 추적을 위한 CSI-RS의 대역폭이 활성 BWP(대역폭 부분)의 대역폭과 동일하게 구성되는 것을 포함할 수 있다.
실시예 4는 실시예 1 내지 실시예 3 중 임의의 실시예에서 설명되거나 그에 관련된 방법, 또는 본 명세서에 설명된 임의의 다른 방법 또는 프로세스의 하나 이상의 요소들을 수행하기 위한 수단을 포함하는 장치를 포함할 수 있다.
실시예 5는 명령어들을 포함하는 하나 이상의 비일시적 컴퓨터 판독가능 매체들을 포함할 수 있으며, 그 명령어들은, 전자 디바이스로 하여금, 전자 디바이스의 하나 이상의 프로세서들에 의한 명령어들의 실행 시에, 실시예 1 내지 실시예 3 중 임의의 실시예에서 설명되거나 그에 관련된 방법, 또는 본 명세서에 설명된 임의의 다른 방법 또는 프로세스의 하나 이상의 요소들을 수행하게 한다.
실시예 6은 실시예 1 내지 실시예 3 중 임의의 실시예에서 설명되거나 그에 관련된 방법, 또는 본 명세서에 설명된 임의의 다른 방법 또는 프로세스의 하나 이상의 요소들을 수행하기 위한 로직, 모듈들, 또는 회로부를 포함하는 장치를 포함할 수 있다.
실시예 7은 실시예 1 내지 실시예 3 중 임의의 실시예, 또는 그의 일부들 또는 부분들에서 설명되거나 그에 관련된 바와 같은 방법, 기법, 또는 프로세스를 포함할 수 있다.
실시예 8은 하나 이상의 프로세서들, 및 명령어들을 포함하는 하나 이상의 컴퓨터 판독가능 매체들을 포함하는 장치를 포함할 수 있으며, 그 명령어들은, 하나 이상의 프로세서들에 의해 실행될 때, 하나 이상의 프로세서들로 하여금, 실시예 1 내지 실시예 3 중 임의의 실시예, 또는 그의 일부들에서 설명되거나 그에 관련된 바와 같은 방법, 기법들, 또는 프로세스를 수행하게 한다.
실시예 9는 실시예 1 내지 실시예 3 중 임의의 실시예, 또는 그의 일부들 또는 부분들에서 설명되거나 그에 관련된 바와 같은 신호를 포함할 수 있다.
실시예 10은 본 명세서에 도시되고 설명된 바와 같은 무선 네트워크 내의 신호를 포함할 수 있다.
실시예 11는 본 명세서에 도시되고 설명된 바와 같은 무선 네트워크에서 통신하는 방법을 포함할 수 있다.
실시예 12는 본 명세서에 도시되고 설명된 바와 같은 무선 통신을 제공하기 위한 시스템을 포함할 수 있다.
실시예 13은 본 명세서에 도시되고 설명된 바와 같은 무선 통신을 제공하기 위한 디바이스를 포함할 수 있다.
위에서 설명된 실시예들 중 임의의 것은 달리 명확하게 나타내지 않으면, 임의의 다른 실시예(또는 실시예들의 조합)와 조합될 수 있다. 하나 이상의 구현예들의 전술한 설명은 예시 및 설명을 제공하지만, 총망라하거나 실시예들의 범위를 개시된 정확한 형태로 제한하는 것으로 의도되지 않는다. 수정들 및 변형들이 위의 교시들을 고려하여 가능하거나 또는 다양한 실시예들의 실시로부터 획득될 수 있다.
약어
본 명세서의 목적들을 위해, 다음의 약어들은 본 명세서에서 논의되는 예들 및 실시예들에 적용될 수 있지만, 제한하는 것으로 의도되지 않는다.
3GPP 3세대 파트너십 프로젝트(Third Generation Partnership Project)
4G 4세대(Fourth Generation)
5G 5세대(Fifth Generation)
5GC 5G 코어 네트워크(5G Core network)
ACK 확인응답(Acknowledgement)
AF 애플리케이션 기능(Application Function)
AM 확인응답 모드(Acknowledged Mode)
AMBR 총 최대 비트 레이트(Aggregate Maximum Bit Rate)
AMF 액세스 및 이동성 관리 기능(Access and Mobility Management Function)
AN 액세스 네트워크(Access Network)
ANR 자동 이웃 관계(Automatic Neighbour Relation)
AP 애플리케이션 프로토콜(Application Protocol), 안테나 포트(Antenna Port), 액세스 포인트(Access Point)
API 애플리케이션 프로그래밍 인터페이스(Application Programming Interface)
APN 액세스 포인트 이름(Access Point Name)
ARP 할당 및 유지 우선순위(Allocation and Retention Priority)
ARQ 자동 반복 요청(Automatic Repeat Request)
AS 액세스 계층(Access Stratum)
ASN.1 추상 구문 표기법 1(Abstract Syntax Notation One)
AUSF 인증 서버 기능(Authentication Server Function)
AWGN 가산 백색 가우시안 잡음(Additive White Gaussian Noise)
BCH 브로드캐스트 채널(Broadcast Channel)
BER 비트 에러 레이트(Bit Error Ratio)
BFD 빔 실패 검출(Beam Failure Detection)
BLER 블록 에러 레이트(Block Error Rate)
BPSK 이진 위상 시프트 키잉(Binary Phase Shift Keying)
BRAS 광대역 원격 액세스 서버(Broadband Remote Access Server)
BSS 비즈니스 지원 시스템(Business Support System)
BS 기지국(Base Station)
BSR 버퍼 상태 리포트(Buffer Status Report)
BW 대역폭(Bandwidth)
BWP 대역폭 부분(Bandwidth Part)
C-RNTI 셀 무선 네트워크 임시 아이덴티티(Cell Radio Network Temporary Identity)
CA 캐리어 어그리게이션(Carrier Aggregation), 인증 기관(Certification Authority)
CAPEX 설비 투자비(CAPital EXpenditure)
CBRA 경합 기반 랜덤 액세스(Contention Based Random Access)
CC 컴포넌트 캐리어(Component Carrier), 국가 코드(Country Code), 암호화 체크섬(Cryptographic Checksum)
CCA 클리어 채널 평가(Clear Channel Assessment)
CCE 제어 채널 요소(Control Channel Element)
CCCH 공통 제어 채널(Common Control Channel)
CE 커버리지 향상(Coverage Enhancement)
CDM 콘텐츠 전달 네트워크(Content Delivery Network)
CDMA 코드 분할 다중 액세스(Code-Division Multiple Access)
CFRA 비경합 랜덤 액세스(Contention Free Random Access)
CG 셀 그룹(Cell Group)
CI 셀 아이덴티티(Cell Identity)
CID 셀-ID(Cell-ID)(예를 들어, 포지셔닝 방법)
CIM 공통 정보 모델(Common Information Model)
CIR 캐리어 대 간섭 비(Carrier to Interference Ratio)
CK 암호화 키(Cipher Key)
CM 연결 관리(Connection Management), 조건부 필수(Conditional Mandatory)
CMAS 상업적 모바일 경보 서비스(Commercial Mobile Alert Service)
CMD 커맨드(Command)
CMS 클라우드 관리 시스템(Cloud Management System)
CO 조건부 선택적(Conditional Optional)
CoMP 조정된 멀티-포인트(Coordinated Multi-Point)
CORESET 제어 리소스 세트(Control Resource Set)
COTS 상업적 기성품(Commercial Off-The-Shelf)
CP 제어 평면(Control Plane), 순환 프리픽스(Cyclic Prefix), 연결 포인트(Connection Point)
CPD 연결 포인트 디스크립터(Connection Point Descriptor)
CPE 고객 구내 장비(Customer Premise Equipment)
CPICH 공통 파일럿 채널(Common Pilot Channel)
CQI 채널 품질 표시자(Channel Quality Indicator)
CPU CSI 프로세싱 유닛(CSI processing unit), 중앙 프로세싱 유닛(Central Processing Unit)
C/R 커맨드/응답 필드 비트(Command/Response field bit)
CRAN 클라우드 무선 액세스 네트워크(Cloud Radio Access Network), 클라우드 RAN(Cloud RAN)
CRB 공통 리소스 블록(Common Resource Block)
CRC 순환 중복 검사(Cyclic Redundancy Check)
CRI 채널-상태 정보 리소스 표시자(Channel-State Information Resource Indicator), CSI-RS 리소스 표시자(CSI-RS Resource Indicator)
C-RNTI 셀 RNTI(Cell RNTI)
CS 회선 교환(Circuit Switched)
CSAR 클라우드 서비스 아카이브(Cloud Service Archive)
CSI 채널-상태 정보(Channel-State Information)
CSI-IM CSI 간섭 측정(CSI Interference Measurement)
CSI-RS CSI 기준 신호(CSI Reference Signal)
CSI-RSRP CSI 기준 신호 수신 전력(CSI reference signal received power)
CSI-RSRQ CSI 기준 신호 수신 품질(CSI reference signal received quality)
CSI-SINR CSI 신호 대 잡음 및 간섭 비(CSI signal-to-noise and interference ratio)
CSMA 캐리어 감지 다중 액세스(Carrier Sense Multiple Access)
CSMA/CA 충돌 회피를 갖는 CSMA(CSMA with collision avoidance)
CSS 공통 탐색 공간(Common Search Space), 셀 특정 탐색 공간(Cell-specific Search Space)
CTS 클리어-투-센드(Clear-to-Send)
CW 코드워드(Codeword)
CWS 경쟁 윈도 크기(Contention Window Size)
D2D 디바이스-투-디바이스(Device-to-Device)
DC 이중 연결(Dual Connectivity), 직류(Direct Current)
DCI 다운링크 제어 정보(Downlink Control Information)
DF 배치 플레이버(Deployment Flavour)
DL 다운링크(Downlink)
DMTF 분산 관리 태스크 포스(Distributed Management Task Force)
DPDK 데이터 평면 개발 키트(Data Plane Development Kit)
DM-RS, DMRS 복조 기준 신호(DMRS Demodulation Reference Signal)
DN 데이터 네트워크(Data network)
DRB 데이터 무선 베어러(Data Radio Bearer)
DRS 발견 기준 신호(Discovery Reference Signal)
DRX 불연속 수신(Discontinuous Reception)
DSL 도메인 특정 언어(Domain Specific Language) 디지털 가입자 라인(Digital Subscriber Line)
DSLAM DSL 액세스 멀티플렉서(DSL Access Multiplexer)
DwPTS 다운링크 파일럿 시간 슬롯(Downlink Pilot Time Slot)
E-LAN 이더넷 로컬 영역 네트워크(Ethernet Local Area Network)
E2E 엔드-투-엔드(End-to-End)
ECCA 확장된 클리어 채널 평가(extended clear channel assessment), 확장된 CCA(extended CCA)
ECCE 향상된 제어 채널 요소(Enhanced Control Channel Element), 향상된 CCE(Enhanced CCE)
ED 에너지 검출(Energy Detection)
EDGE GSM 에볼루션을 위한 향상된 데이터레이트들(Enhanced Datarates for GSM Evolution)(GSM 에볼루션)
EGMF 노출 통제 관리 기능(Exposure Governance Management Function)
EGPRS 향상된 GPRS(Enhanced GPRS)
EIR 장비 아이덴티티 레지스터(Equipment Identity Register)
eLAA 향상된 면허 보조 액세스(enhanced Licensed Assisted Access), 향상된 LAA(enhanced LAA)
EM 요소 관리자(Element Manager)
eMBB 향상된 모바일 브로드밴드(Enhanced Mobile Broadband)
EMS 요소 관리 시스템(Element Management System)
eNB 이벌브드 NodeB(evolved NodeB), E-UTRAN Node B
EN-DC E-UTRA-NR 이중 연결(E-UTRA-NR Dual Connectivity)
EPC 이벌브드 패킷 코어(Evolved Packet Core)
EPDCCH 향상된 PDCCH(enhanced PDCCH), 향상된 물리적 다운링크 제어 채널(enhanced Physical Downlink Control Cannel)
EPRE 리소스 요소당 에너지(Energy per resource element)
EPS 이벌브드 패킷 시스템(Evolved Packet System)
EREG 향상된 REG(enhanced REG), 향상된 리소스 요소 그룹(enhanced resource element groups)
ETSI 유럽 원격통신 표준 기관(European Telecommunications Standards Institute)
ETWS 지진 및 쓰나미 경고 시스템(Earthquake and Tsunami Warning System)
eUICC 임베디드 UICC(embedded UICC), 임베디드 범용 집적 회로 카드(embedded Universal Integrated Circuit Card)
E-UTRA 이벌브드 UTRA(Evolved UTRAN)
E-UTRAN 이벌브드 UTRAN(Evolved UTRAN)
EV2X 향상된 V2X(Enhanced V2X)
F1AP F1 애플리케이션 프로토콜(F1 Application Protocol)
F1-C F1 제어 평면 인터페이스(F1 Control plane interface)
F1-U F1 사용자 평면 인터페이스(F1 User plane interface)
FACCH 고속 연관 제어 채널(Fast Associated Control CHannel)
FACCH/F 고속 연관 제어 채널/풀 레이트(Fast Associated Control Channel/Full rate)
FACCH/H 고속 연관 제어 채널/하프 레이트(Fast Associated Control Channel/Half rate)
FACH 순방향 액세스 채널(Forward Access Channel)
FAUSCH 고속 업링크 시그널링 채널(Fast Uplink Signalling Channel)
FB 기능 블록(Functional Block)
FBI 피드백 정보(Feedback Information)
FCC 연방 통신 위원회(Federal Communications Commission)
FCCH 주파수 정정 채널(Frequency Correction CHannel)
FDD 주파수 분할 듀플렉스(Frequency Division Duplex)
FDM 주파수 분할 멀티플렉스(Frequency Division Multiplex)
FDMA 주파수 분할 다중 액세스(Frequency Division Multiple Access)
FE 프론트 엔드(Front End)
FEC 순방향 에러 정정(Forward Error Correction)
FFS 추가 연구 대상(For Further Study)
FFT 고속 푸리에 변환(Fast Fourier Transformation)
feLAA 더욱 향상된 면허 지원 액세스(further enhanced Licensed Assisted Access), 더욱 향상된 LAA(further enhanced LAA)
FN 프레임 번호(Frame Number)
FPGA 필드-프로그래밍가능 게이트 어레이(Field-Programmable Gate Array)
FR 주파수 범위(Frequency Range)
G-RNTI GERAN 무선 네트워크 임시 아이덴티티(GERAN Radio Network Temporary Identity)
GERAN GSM EDGE RAN, GSM EDGE 무선 액세스 네트워크(GSM EDGE Radio Access Network)
GGSN 게이트웨이 GPRS 지원 노드(Gateway GPRS Support Node)
GLONASS GLObal'naya NAvigatsionnaya Sputnikovaya Sistema (영어: 글로벌 내비게이션 위성 시스템(Global Navigation Satellite System))
gNB 차세대 NodeB(Next Generation NodeB)
gNB-CU gNB-중앙집중 유닛(gNB-centralized unit), 차세대 NodeB 중앙집중 유닛(Next Generation NodeB centralized unit)
gNB-DU gNB-분산 유닛(gNB-distributed unit), 차세대 NodeB 분산 유닛(Next Generation NodeB distributed unit)
GNSS 글로벌 내비게이션 위성 시스템(Global Navigation Satellite System)
GPRS 범용 패킷 무선 서비스(General Packet Radio Service)
GSM 모바일 통신들을 위한 글로벌 시스템(Global System for Mobile Communications), Groupe
Figure pct00006
Mobile
GTP GPRS 터널링 프로토콜(GPRS Tunneling Protocol)
GTP-U 사용자 평면에 대한 GPRS 터널링 프로토콜(GPRS Tunnelling Protocol for User Plane)
GTS (WUS에 관련된) 슬립 신호로의 진행(Go To Sleep Signal (related to WUS))
GUMMEI 글로벌 고유 MME 식별자(Globally Unique MME Identifier)
GUTI 글로벌 고유 임시 UE 아이덴티티(Globally Unique Temporary UE Identity)
HARQ 하이브리드 ARQ(Hybrid ARQ), 하이브리드 자동 반복 요청(Hybrid Automatic Repeat Request)
HANDO, HO 핸드오버(Handover)
HFN 하이퍼프레임 번호(HyperFrame Number)
HHO 하드 핸드오버(Hard Handover)
HLR 홈 위치 레지스터(Home Location Register)
HN 홈 네트워크(Home Network)
HO 핸드오버(Handover)
HPLMN 홈 공용 지상 모바일 네트워크(Home Public Land Mobile Network)
HSDPA 고속 다운링크 패킷 액세스(High Speed Downlink Packet Access)
HSN 홉핑 시퀀스 번호(Hopping Sequence Number)
HSPA 고속 패킷 액세스(High Speed Packet Access)
HSS 홈 가입자 서버(Home Subscriber Server)
HSUPA 고속 업링크 패킷 액세스(High Speed Uplink Packet Access)
HTTP 하이퍼 텍스트 전송 프로토콜(Hyper Text Transfer Protocol)
HTTPS 하이퍼 텍스트 전송 프로토콜 보안(Hyper Text Transfer Protocol Secure) (https는 SSL, 즉 포트 443을 통한 http/1.1임)
I-Block 정보 블록(Information Block)
ICCID 집적 회로 카드 ID(Integrated Circuit Card Identification)
ICIC 셀 간 간섭 조정(Inter-Cell Interference Coordination)
ID 아이덴티티(Identity), 식별자(identifier)
IDFT 이산 푸리에 역변환(Inverse Discrete Fourier Transform)
IE 정보 요소(Information element)
IBE 대역 내 방출(In-Band Emission)
IEEE 전기 전자 기술자 협회(Institute of Electrical and Electronics Engineers)
IEI 정보 요소 식별자(Information Element Identifier)
IEIDL 정보 요소 식별자 데이터 길이(Information Element Identifier Data Length)
IETF 인터넷 엔지니어링 태스크 포스(Internet Engineering Task Force)
IF 인프라구조(Infrastructure)
IM 간섭 측정(Interference Measurement), 상호변조(Intermodulation), IP 멀티미디어(IP Multimedia)
IMC IMS 크리덴셜(IMS Credential)들
IMEI 국제 모바일 장비 아이덴티티(International Mobile Equipment Identity)
IMGI 국제 모바일 그룹 아이덴티티(International mobile group identity)
IMPI IP 멀티미디어 사설 아이덴티티(IP Multimedia Private Identity)
IMPU IP 멀티미디어 공용 아이덴티티(IP Multimedia PUblic identity)
IMS IP 멀티미디어 서브시스템(IP Multimedia Subsystem)
IMSI 국제 모바일 가입자 아이덴티티(International Mobile Subscriber Identity)
IoT 사물 인터넷(Internet of Things)
IP 인터넷 프로토콜(Internet Protocol)
Ipsec IP 보안(IP Security), 인터넷 프로토콜 보안(Internet Protocol Security)
IP-CAN IP-연결 액세스 네트워크(IP-Connectivity Access Network)
IP-M IP 멀티캐스트(IP Multicast)
IPv4 인터넷 프로토콜 버전 4(Internet Protocol Version 4)
IPv6 인터넷 프로토콜 버전 6(Internet Protocol Version 6)
IR 적외선(Infrared)
IS 동기 상태(In Sync)
IRP 통합 기준 포인트(Integration Reference Point)
ISDN 통합 서비스 디지털 네트워크(Integrated Services Digital Network)
ISIM IM 서비스 아이덴티티 모듈(IM Services Identity Module)
ISO 국제 표준화 기구(International Organisation for Standardisation)
ISP 인터넷 서비스 제공자(Internet Service Provider)
IWF 상호연동-기능(Interworking-Function)
I-WLAN 상호연동 WLAN(Interworking WLAN)
K 콘볼루셔널 코드의 제한 길이(Constraint length of the convolutional code), USIM 개별 키(USIM Individual key)
kB 킬로바이트(Kilobyte)(1000 바이트)
kbps 초당 킬로비트(kilo-bits per second)
Kc 암호화 키(Ciphering key)
Ki 개별 가입자 인증 키(Individual subscriber authentication key)
KPI 주요 성과 지표(Key Performance Indicator)
KQI 주요 품질 지표(Key Quality Indicator)
KSI 키 세트 식별자(Key Set Identifier)
ksps 초당 킬로심볼(kilo-symbols per second)
KVM 커널 가상 머신(Kernel Virtual Machine)
L1 계층 1(Layer 1) (물리적 계층)
L1-RSRP 계층 1 기준 신호 수신 전력(Layer 1 reference signal received power)
L2 계층 2(Layer 2) (데이터 링크 계층)
L3 계층 3(Layer 3) (네트워크 계층)
LAA 면허 보조 액세스(Licensed Assisted Access)
LAN 로컬 영역 네트워크(Local Area Network)
LBT 리슨 비포 토크(Listen Before Talk)
LCM 수명 주기 관리(LifeCycle Management)
LCR 저속 칩 속도(Low Chip Rate)
LCS 위치 서비스(Location Service)들
LCID 논리 채널 ID(Logical Channel ID)
LI 계층 표시자(Layer Indicator)
LLC 논리 링크 제어(Logical Link Control), 하위 계층 호환성(Low Layer Compatibility)
LPLMN 로컬 PLMN(Local PLMN)
LPP LTE 포지셔닝 프로토콜(LTE Positioning Protocol)
LSB 최하위 비트(Least Significant Bit)
LTE 롱텀 에볼루션(Long Term Evolution)
LWA LTE-WLAN 어그리게이션(LTE-WLAN aggregation)
LWIP IPSec 터널을 사용한 LTE/WLAN 무선 레벨 통합(LTE/WLAN Radio Level Integration with IPsec Tunnel)
LTE 롱 텀 에볼루션(Long Term Evolution)
M2M 머신-투-머신(Machine-to-Machine)
MAC 매체 액세스 제어(Medium Access Control)(프로토콜 계층화 컨텍스트)
MAC 메시지 인증 코드(Message authentication code)(보안/암호화 컨텍스트)
MAC-A 인증 및 키 합의를 위해 사용되는 MAC(MAC used for authentication and key agreement) (TSG T WG3 맥락)
MAC-I 시그널링 메시지들의 데이터 무결성을 위해 사용되는 MAC(MAC used for data integrity of signalling messages) (TSG T WG3 맥락)
MANO 관리 및 오케스트레이션(Management and Orchestration)
MBMS 멀티미디어 브로드캐스트 및 멀티캐스트 서비스(Multimedia Broadcast and Multicast Service)
MBSFN 멀티미디어 브로드캐스트 멀티캐스트 서비스 단일 주파수 네트워크(Multimedia Broadcast multicast service Single Frequency Network)
MCC 모바일 국가 코드(Mobile Country Code)
MCG 마스터 셀 그룹(Master Cell Group)
MCOT 최대 채널 점유 시간(Maximum Channel Occupancy Time)
MCS 변조 및 코딩 방식(Modulation and coding scheme)
MDAF 관리 데이터 분석 기능(Management Data Analytics Function)
MDAS 관리 데이터 분석 서비스(Management Data Analytics Service)
MDT 드라이브 테스트 최소화(Minimization of Drive Tests)
ME 모바일 장비(Mobile Equipment)
MeNB 마스터 eNB(master eNB)
MER 메시지 에러 비율(Message Error Ratio)
MGL 측정 갭 길이(Measurement Gap Length)
MGRP 측정 갭 반복 주기(Measurement Gap Repetition Period)
MIB 마스터 정보 블록(Master Information Block), 관리 정보 베이스(Management Information Base)
MIMO 다중 입력 다중 출력(Multiple Input Multiple Output)
MLC 모바일 위치 센터(Mobile Location Centre)
MM 이동성 관리(Mobility Management)
MME 이동성 관리 엔티티(Mobility Management Entity)
MN 마스터 노드(Master Node)
MO 측정 객체(Measurement Object), 모바일 발신(Mobile Originated)
MPBCH MTC 물리적 브로드캐스트 채널(MTC Physical Broadcast CHannel)
MPDCCH MTC 물리적 다운링크 제어 채널(MTC Physical Downlink Control CHannel)
MPDSCH MTC 물리적 다운링크 공유 채널(MTC Physical Downlink Shared CHannel)
MPRACH MTC 물리적 랜덤 액세스 채널(MTC Physical Random Access CHannel)
MPUSCH MTC 물리적 업링크 공유 채널(MTC Physical Uplink Shared Channel)
MPLS 멀티프로토콜 라벨 스위칭(MultiProtocol Label Switching)
MS 모바일 스테이션(Mobile Station)
MSB 최상위 비트(Most Significant Bit)
MSC 모바일 스위칭 센터(Mobile Switching Centre)
MSI 최소 시스템 정보(Minimum System Information), MCH 스케줄링 정보(MCH Scheduling Information)
MSID 모바일 스테이션 식별자(Mobile Station Identifier)
MSIN 모바일 스테이션 식별 번호(Mobile Station Identification Number)
MSISDN 모바일 가입자 ISDN 번호(Mobile Subscriber ISDN Number)
MT 모바일 종착(Mobile Terminated), 모바일 종단(Mobile Termination)
MTC 머신-유형 통신(Machine-Type Communication)들
mMTC 대규모 MTC(massive MTC), 대규모 사물 통신(massive Machine-Type Communications)
MU-MIMO 다중 사용자 MIMO(Multi User MIMO)
MWUS MTC 웨이크업 신호(MTC wake-up signal), MTC WUS
NACK 부정 확인응답(Negative Acknowledgement)
NAI 네트워크 액세스 식별자(Network Access Identifier)
NAS 비액세스 층(Non-Access Stratum), 비액세스 층 계층(Non-Access Stratum layer)
NCT 네트워크 연결 토폴로지(Network Connectivity Topology)
NEC 네트워크 능력 노출(Network Capability Exposure)
NE-DC NR-E-UTRA 이중 연결(NR-E-UTRA Dual Connectivity)
NEF 네트워크 노출 기능(Network Exposure Function)
NF 네트워크 기능(Network Function)
NFP 네트워크 포워딩 경로(Network Forwarding Path)
NFPD 네트워크 포워딩 경로 디스크립터(Network Forwarding Path Descriptor)
NFV 네트워크 기능 가상화(Network Functions Virtualization)
NFVI NFV 인프라구조(NFV Infrastructure)
NFVO NFV 오케스트레이터(NFV Orchestrator)
NG 차세대(Next Generation), 차세대(Next Gen)
NGEN-DC NG-RAN E-UTRA-NR 이중 연결(NG-RAN E-UTRA-NR Dual Connectivity)
NM 네트워크 관리자(Network Manager)
NMS 네트워크 관리 시스템(Network Management System)
N-PoP 네트워크 거점(Network Point of Presence)
NMIB, N-MIB 협대역 MIB(Narrowband MIB)
NPBCH 협대역 물리적 브로드캐스트 채널(Narrowband Physical Broadcast CHannel)
NPDCCH 협대역 물리적 다운링크 제어 채널(Narrowband Physical Downlink Control CHannel)
NPDSCH 협대역 물리적 다운링크 공유 채널(Narrowband Physical Downlink Shared CHannel)
NPRACH 협대역 물리적 랜덤 액세스 채널(Narrowband Physical Random Access CHannel)
NPUSCH 협대역 물리적 업링크 공유 채널(Narrowband Physical Uplink Shared CHannel)
NPSS 협대역 1차 동기화 신호(Narrowband Primary Synchronization Signal)
NSSS 협대역 2차 동기화 신호(Narrowband Secondary Synchronization Signal)
NR 뉴 무선(New Radio), 이웃 관계(Neighbour Relation)
NRF NF 보관소 기능(NF Repository Function)
NRS 협대역 기준 신호(Narrowband Reference Signal)
NS 네트워크 서비스(Network Service)
NSA 비독립형 동작 모드(Non-Standalone operation mode)
NSD 네트워크 서비스 디스크립터(Network Service Descriptor)
NSR 네트워크 서비스 레코드(Network Service Record)
NSSAI '네트워크 슬라이스 선택 보조 정보(Network Slice Selection Assistance Information)
S-NNSAI 단일-NSSAI(Single-NSSAI)
NSSF 네트워크 슬라이스 선택 기능(Network Slice Selection Function)
NW 네트워크(Network)
NWUS 협대역 웨이크업 신호(Narrowband wake-up signal), 협대역 WUS(Narrowband WUS)
NZP 영이 아닌 전력(Non-Zero Power)
O&M 운영 및 유지보수(Operation and Maintenance)
ODU2 광학 채널 데이터 유닛 - 유형 2(Optical channel Data Unit - type 2)
OFDM 직교 주파수 분할 멀티플렉싱(Orthogonal Frequency Division Multiplexing)
OFDMA 직교 주파수 분할 다중 액세스(Orthogonal Frequency Division Multiple Access)
OOB 대역 외(Out-of-band)
OOS 비동기 상태(Out of Sync)
OPEX 운영 비용(OPerating EXpense)
OSI 다른 시스템 정보(Other System Information)
OSS 운영 지원 시스템(Operations Support System)
OTA 오버 디 에어(over-the-air)
PAPR 피크 대 평균 전력 비(Peak-to-Average Power Ratio)
PAR 피크 대 평균 비(Peak to Average Ratio)
PBCH 물리적 브로드캐스트 채널(Physical Broadcast Channel)
PC 전력 제어(Power Control), 개인용 컴퓨터(Personal Computer)
PCC 1차 컴포넌트 캐리어(Primary Component Carrier), 1차 CC(Primary CC)
PCell 1차 셀(Primary Cell)
PCI 물리적 셀 ID(Physical Cell ID), 물리적 셀 아이덴티티(Physical Cell Identity)
PCEF 정책 및 과금 시행 기능(Policy and Charging Enforcement Function)
PCF 정책 제어 기능(Policy Control Function)
PCRF 정책 제어 및 과금 규칙 기능(Policy Control and Charging Rules Function)
PDCP 패킷 데이터 수렴 프로토콜(Packet Data Convergence Protocol), 패킷 데이터 수렴 프로토콜 계층(Packet Data Convergence Protocol layer)
PDCCH 물리적 다운링크 제어 채널(Physical Downlink Control Channel)
PDCP 패킷 데이터 수렴 프로토콜(Packet Data Convergence Protocol)
PDN 패킷 데이터 네트워크(Packet Data Network), 공용 데이터 네트워크(Public Data Network)
PDSCH 물리적 다운링크 공유 채널(Physical Downlink Shared Channel)
PDU 프로토콜 데이터 유닛(Protocol Data Unit)
PEI 영구적 장비 식별자(Permanent Equipment Identifiers)
PFD 패킷 흐름 설명(Packet Flow Description)
P-GW PDN 게이트웨이(PDN Gateway)
PHICH 물리적 하이브리드-ARQ 표시자 채널(Physical hybrid-ARQ indicator channel)
PHY 물리적 계층(Physical layer)
PLMN 공용 지상 모바일 네트워크(Public Land Mobile Network)
PIN 개인 식별 번호(Personal Identification Number)
PM 성능 측정(Performance Measurement)
PMI 프리코딩 행렬 표시자(Precoding Matrix Indicator)
PNF 물리 네트워크 기능(Physical Network Function)
PNFD 물리 네트워크 기능 디스크립터(Physical Network Function Descriptor)
PNFR 물리 네트워크 기능 레코드(Physical Network Function Record)
POC 셀룰러를 통한 PTT(PTT over Cellular)
PP, PTP 포인트-투-포인트(Point-to-Point)
PPP 포인트-투-포인트 프로토콜(Point-to-Point Protocol)
PRACH 물리적 RACH(Physical RACH)
PRB 물리적 리소스 블록(Physical resource block)
PRG 물리적 리소스 블록 그룹(Physical resource block group)
ProSe 근접 서비스(Proximity Services), 근접 기반 서비스(Proximity-Based Service)
PRS 포지셔닝 기준 신호(Positioning Reference Signal)
PRR 패킷 수신 무선기기(Packet Reception Radio)
PS 패킷 서비스(Packet Services)
PSBCH 물리적 사이드링크 브로드캐스트 채널(Physical Sidelink Broadcast Channel)
PSDCH 물리적 사이드링크 다운링크 채널(Physical Sidelink Downlink Channel)
PSCCH 물리적 사이드링크 제어 채널(Physical Sidelink Control Channel)
PSSCH 물리적 사이드링크 공유 채널(Physical Sidelink Shared Channel)
PSCell 1차 SCell(Primary SCell)
PSS 1차 동기화 신호(Primary Synchronization Signal)
PSTN 공중 교환 전화 네트워크(Public Switched Telephone Network)
PT-RS 위상-추적 기준 신호(Phase-tracking reference signal)
PTT 푸시-투-토크(Push-to-Talk)
PUCCH 물리적 업링크 제어 채널(Physical Uplink Control Channel)
PUSCH 물리적 업링크 공유 채널(Physical Uplink Shared Channel)
QAM 직교 진폭 변조(Quadrature Amplitude Modulation)
QCI 식별자의 QoS 클래스(QoS class of identifier)
QCL 준 공동-위치(Quasi co-location)
QFI QoS 흐름 ID(QoS Flow ID), QoS 흐름 식별자(QoS Flow Identifier)
QoS 서비스 품질(Quality of Service)
QPSK 직교(4상) 위상 시프트 키잉(Quadrature (Quaternary) Phase Shift Keying)
QZSS 준-천정 위성 시스템(Quasi-Zenith Satellite System)
RA-RNTI 랜덤 액세스 RNTI(Random Access RNTI)
RAB 무선 액세스 베어러(Radio Access Bearer), 랜덤 액세스 버스트(Random Access Burst)
RACH 랜덤 액세스 채널(Random Access Channel)
RADIUS 원격 인증 다이얼인 사용자 서비스(Remote Authentication Dial In User Service)
RAN 무선 액세스 네트워크(Radio Access Network)
RAND 랜덤 번호(RANDom number)(인증을 위해 사용됨)
RAR 랜덤 액세스 응답(Random Access Response)
RAT 무선 액세스 기술(Radio Access Technology)
RAU 라우팅 영역 업데이트(Routing Area Update)
RB 리소스 블록(Resource block), 무선 베어러(Radio Bearer)
RBG 리소스 블록 그룹(Resource block group)
REG 리소스 요소 그룹(Resource Element Group)
Rel 릴리즈(Release)
REQ 요청(REQuest)
RF 무선 주파수(Radio Frequency)
RI 랭크 표시자(Rank Indicator)
RIV 리소스 표시자 값(Resource indicator value)
RL 무선 링크(Radio Link)
RLC 무선 링크 제어(Radio Link Control), 무선 링크 제어 계층(Radio Link Control layer)
RLC AM RLC 확인응답 모드(RLC Acknowledged Mode)
RLC UM RLC 비확인응답 모드(RLC Unacknowledged Mode)
RLF 무선 링크 실패(Radio Link Failure)
RLM 무선 링크 모니터링(Radio Link Monitoring)
RLM-RS RLM에 대한 기준 신호(Reference Signal for RLM)
RM 등록 관리(Registration Management)
RMC 기준 측정 채널(Reference Measurement Channel)
RMSI 잔여 MSI(Remaining MSI), 잔여 최소 시스템 정보(Remaining Minimum System Information)
RN 중계 노드(Relay Node)
RNC 무선 네트워크 제어기(Radio Network Controller)
RNL 무선 네트워크 계층(Radio Network Layer)
RNTI 무선 네트워크 임시 식별자(Radio Network Temporary Identifier)
ROHC 견고한 헤더 압축(RObust Header Compression)
RRC 무선 리소스 제어(Radio Resource Control), 무선 리소스 제어 계층(Radio Resource Control layer)
RRM 무선 리소스 관리(Radio Resource Management)
RS 기준 신호(Reference Signal)
RSRP 기준 신호 수신 전력(Reference Signal Received Power)
RSRQ 기준 신호 수신 품질(Reference Signal Received Quality)
RSSI 수신 신호 강도 표시자(Received Signal Strength Indicator)
RSU 노변 유닛(Road Side Unit)
RSTD 기준 신호 시간 차이(Reference Signal Time difference)
RTP 실시간 프로토콜(Real Time Protocol)
RTS 전송 준비 완료(Ready-To-Send)
RTT 왕복 시간(Round Trip Time)
Rx 수신(Reception), 수신(Receiving), 수신기(Receiver)
S1AP S1 애플리케이션 프로토콜(S1 Application Protocol)
S1-MME 제어 평면에 대한 S1(S1 for the control plane)
S1-U 사용자 평면에 대한 S1(S1 for the user plane)
S-GW 서빙 게이트웨이(Serving Gateway)
S-RNTI SRNC 무선 네트워크 임시 아이덴티티(SRNC Radio Network Temporary Identity)
S-TMSI SAE 임시 모바일 스테이션 식별자(SAE Temporary Mobile Station Identifier)
SA 독립형 동작 모드(Standalone operation mode)
SAE 시스템 아키텍처 에볼루션(System Architecture Evolution)
SAP 서비스 액세스 포인트(Service Access Point)
SAPD 서비스 액세스 포인트 디스크립터(Service Access Point Descriptor)
SAPI 서비스 액세스 포인트 식별자(Service Access Point Identifier)
SCC 2차 컴포넌트 캐리어(Secondary Component Carrier), 2차 CC(Secondary CC)
SCell 2차 셀(Secondary Cell)
SC-FDMA 단일 캐리어 주파수 분할 다중 액세스(Single Carrier Frequency Division Multiple Access)
SCG 2차 셀 그룹(Secondary Cell Group)
SCM 보안 컨텍스트 관리(Security Context Management)
SCS 서브캐리어 간격(Subcarrier Spacing)
SCTP 스트림 제어 전송 프로토콜(Stream Control Transmission Protocol)
SDAP 서비스 데이터 적응 프로토콜(Service Data Adaptation Protocol), 서비스 데이터 적응 프로토콜 계층(Service Data Adaptation Protocol layer)
SDL 보충 다운링크(Supplementary Downlink)
SDNF 구조화된 데이터 저장 네트워크 기능(Structured Data Storage Network Function)
SDP 서비스 발견 프로토콜(Service Discovery Protocol) (Bluetooth 관련)
SDSF 구조화된 데이터 저장 기능(Structured Data Storage Function)
SDU 서비스 데이터 유닛(Service Data Unit)
SEAF 보안 앵커 기능(Security Anchor Function)
SeNB 2차 eNB(secondary eNB)
SEPP 보안 에지 보호 프록시(Security Edge Protection Proxy)
SFI 슬롯 포맷 표시(Slot format indication)
SFTD 공간-주파수 시간 다이버시티(Space-Frequency Time Diversity), SFN와 프레임 타이밍 차이(SFN and frame timing difference)
SFN 시스템 프레임 번호(System Frame Number)
SgNB 2차 gNB(Secondary gNB)
SGSN 서빙 GPRS 지원 노드(Serving GPRS Support Node)
S-GW 서빙 게이트웨이(Serving Gateway)
SI 시스템 정보(System Information)
SI-RNTI 시스템 정보 RNTI(System Information RNTI)
SIB 시스템 정보 블록(System Information Block)
SIM 가입자 아이덴티티 모듈(Subscriber Identity Module)
SIP 세션 개시 프로토콜(Session Initiated Protocol)
SiP 시스템 인 패키지(System in Package)
SL 사이드링크(Sidelink)
SLA 서비스 레벨 협의(Service Level Agreement)
SM 세션 관리(Session Management)
SMF 세션 관리 기능(Session Management Function)
SMS 단문 메시지 서비스(Short Message Service)
SMSF SMS 기능(SMS Function)
SMTC SSB 기반 측정 타이밍 구성(SSB-based Measurement Timing Configuration)
SN 2차 노드(Secondary Node), 시퀀스 번호(Sequence Number)
SoC 시스템 온 칩(System on Chip)
SON 자체-조직화 네트워크(Self-Organizing Network)
SpCell 특수 셀(Special Cell)
SP-CSI-RNTI 반영구적 CSI RNTI(Semi-Persistent CSI RNTI)
SPS 반영구적 스케줄링(Semi-Persistent Scheduling)
SQN 시퀀스 번호(Sequence number)
SR 스케줄링 요청(Scheduling Request)
SRB 시그널링 무선 베어러(Signalling Radio Bearer)
SRS 사운딩 기준 신호(Sounding Reference Signal)
SS 동기화 신호(Synchronization Signal)
SSB 동기화 신호 블록(Synchronization Signal Block), SS/PBCH 블록(SS/PBCH Block)
SSBRI SS/PBCH 블록 리소스 표시자(SS/PBCH Block Resource Indicator), 동기화 신호 블록 리소스 표시자(Synchronization Signal Block Resource Indicator)
SSC 세션 및 서비스 연속성(Session and Service Continuity)
SS-RSRP 동기화 신호 기반 기준 신호 수신 전력(Synchronization Signal based Reference Signal Received Power)
SS-RSRQ 동기화 신호 기반 기준 신호 수신 품질(Synchronization Signal based Reference Signal Received Quality)
SS-SINR 동기화 신호 기반 신호 대 잡음 및 간섭 비(Synchronization Signal based Signal to Noise and Interference Ratio)
SSS 2차 동기화 신호(Secondary Synchronization Signal)
SSSG 탐색 공간 세트 그룹(Search Space Set Group)
SSSIF 검색 공간 세트 표시자(Search Space Set Indicator)
SST 슬라이스/서비스 유형(Slice/Service Types)
SU-MIMO 단일 사용자 MIMO(Single User MIMO)
SUL 보충 업링크(Supplementary Uplink)
TA 타이밍 전진(Timing Advance), 추적 영역(Tracking Area)
TAC 추적 영역 코드(Tracking Area Code)
TAG 타이밍 전진 그룹(Timing Advance Group)
TAU 추적 영역 업데이트(Tracking Area Update)
TB 전송 블록(Transport Block)
TBS 전송 블록 크기(Transport Block Size)
TBD 추후 정의(To Be Defined)
TCI 송신 구성 표시자(Transmission Configuration Indicator)
TCP 송신 통신 프로토콜(Transmission Communication Protocol)
TDD 시분할 듀플렉스(Time Division Duplex)
TDM 시분할 멀티플렉싱(Time Division Multiplexing)
TDMA 시분할 다중 액세스(Time Division Multiple Access)
TE 단말 장비(Terminal Equipment)
TEID 터널 엔드 포인트 식별자(Tunnel End Point Identifier)
TFT 트래픽 흐름 템플릿(Traffic Flow Template)
TMSI 임시 모바일 가입자 아이덴티티(Temporary Mobile Subscriber Identity)
TNL 전송 네트워크 계층(Transport Network Layer)
TPC 송신 전력 제어(Transmit Power Control)
TPMI 송신된 프리코딩 행렬 표시자(Transmitted Precoding Matrix Indicator)
TR 기술 리포트(Technical Report)
TRP, TRxP 송신 수신 포인트(Transmission Reception Point)
TRS 추적 기준 신호(Tracking Reference Signal)
TRx 트랜시버(Transceiver)
TS 기술 규격(Technical Specifications), 기술 표준(Technical Standard)
TTI 송신 시간 간격(Transmission Time Interval)
Tx 송신(Transmission), 송신(Transmitting), 송신기(Transmitter)
U-RNTI UTRAN 무선 네트워크 임시 아이덴티티(UTRAN Radio Network Temporary Identity)
UART 범용 비동기식 수신기 및 송신기(Universal Asynchronous Receiver and Transmitter)
UCI 업링크 제어 정보(Uplink Control Information)
UE 사용자 장비(User Equipment)
UDM 통합 데이터 관리(Unified Data Management)
UDP 사용자 데이터그램 프로토콜(User Datagram Protocol)
UDSF 구조화되지 않은 데이터 저장 네트워크 기능(Unstructured Data Storage Network Function)
UICC 범용 집적 회로 카드(Universal Integrated Circuit Card)
UL 업링크(Uplink)
UM 비확인응답 모드(Unacknowledged Mode)
UML 통합 모델링 언어(Unified Modelling Language)
UMTS 범용 모바일 원격통신 시스템(Universal Mobile Telecommunications System)
UP 사용자 평면(User Plane)
UPF 사용자 평면 기능(User Plane Function)
URI 통합 리소스 식별자(Uniform Resource Identifier)
URL 통합 리소스 로케이터(Uniform Resource Locator)
URLLC 초고신뢰 및 저지연(Ultra-Reliable and Low Latency)
USB 범용 직렬 버스(Universal Serial Bus)
USIM 범용 가입자 아이덴티티 모듈(Universal Subscriber Identity Module)
USS UE 특정 탐색 공간(UE-specific search space)
UTRA UMTS 지상 무선 액세스(UMTS Terrestrial Radio Access)
UTRAN 범용 지상 무선 액세스 네트워크(Universal Terrestrial Radio Access Network)
UwPTS 업링크 파일럿 시간 슬롯(Uplink Pilot Time Slot)
V2I 차량-인프라구조(Vehicle-to-Infrastruction)
V2P 차량-보행자(Vehicle-to-Pedestrian)
V2V 차량-차량(Vehicle-to-Vehicle)
V2X 차량-모든 것(Vehicle-to-everything)
VIM 가상화된 인프라구조 관리자(Virtualized Infrastructure Manager)
VL 가상 링크(Virtual Link)
VLAN 가상 LAN(Virtual LAN), 가상 로컬 영역 네트워크(Virtual Local Area Network)
VM 가상 머신(Virtual Machine)
VNF 가상화된 네트워크 기능(Virtualized Network Function)
VNFFG VNF 포워딩 그래프(VNF Forwarding Graph)
VNFFGD VNF 포워딩 그래프 디스크립터(VNF Forwarding Graph Descriptor)
VNFM VNF 관리자(VNF Manager)
VoIP 보이스 오버 IP(Voice-over-IP), 보이스 오버 인터넷 프로토콜(Voice-over-Internet Protocol)
VPLMN 방문 공용 지상 모바일 네트워크(Visited Public Land Mobile Network)
VPN 가상 사설 네트워크(Virtual Private Network)
VRB 가상 리소스 블록(Virtual Resource Block)
WiMAX 마이크로파 액세스를 위한 전세계적 상호운용성(Worldwide Interoperability for Microwave Access)
WLAN 무선 로컬 영역 네트워크(Wireless Local Area Network)
WMAN 무선 도시권 네트워크(Wireless Metropolitan Area Network)
WPAN 무선 개인 영역 네트워크(Wireless Personal Area Network)
X2-C X2-제어 평면(X2-Control plane)
X2-U X2-사용자 평면(X2-User plane)
XML 확장 마크업 언어(eXtensible Markup Language)
XRES 예상되는 사용자 응답(EXpected user RESponse)
XOR 배타적 OR(eXclusive OR)
ZC 자도프-추(Zadoff-Chu)
ZP 제로 전력(Zero Power)
용어
본 명세서의 목적들을 위해, 다음의 용어들 및 정의들은 본 명세서에서 논의된 예들 및 실시예들에 적용가능하다.
본 명세서에서 사용되는 바와 같은 용어 "회로부"는 설명된 기능을 제공하도록 구성된 전자 회로, 논리 회로, 프로세서(공유, 전용, 또는 그룹) 및/또는 메모리(공유, 전용, 또는 그룹), ASIC(Application Specific Integrated Circuit), FPD(field-programmable device)(예를 들어, FPGA(field-programmable gate array), PLD(programmable logic device), CPLD(complex PLD), HCPLD(high-capacity PLD), 구조화된 ASIC, 또는 프로그래밍가능 SoC), DSP(digital signal processor)들 등과 같은 하드웨어 컴포넌트들을 지칭하거나, 이들의 일부이거나, 이들을 포함한다. 일부 실시예들에서, 회로부는 설명된 기능 중 적어도 일부를 제공하기 위해 하나 이상의 소프트웨어 또는 펌웨어 프로그램들을 실행할 수 있다. 용어 "회로부"는 또한 하나 이상의 하드웨어 요소들(또는 전기 또는 전자 시스템에서 사용되는 회로들의 조합)과 프로그램 코드의 기능을 수행하는 데 사용되는 그 프로그램 코드의 조합을 지칭할 수 있다. 이러한 실시예들에서, 하드웨어 요소들과 프로그램 코드의 조합은 특정 유형의 회로부로 지칭될 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "프로세서 회로부"는 산술적 또는 논리적 동작들의 시퀀스를 순차적으로 그리고 자동으로 수행하는 것, 디지털 데이터를 기록하는 것, 저장하는 것, 및/또는 전송하는 것을 할 수 있는 회로부를 지칭하거나, 그의 일부이거나, 이를 포함한다. 용어 "프로세서 회로부"는, 프로그램 코드, 소프트웨어 모듈들, 및/또는 기능적 프로세스들과 같은, 컴퓨터 실행가능 명령어들을 실행하거나 그렇지 않으면 동작시킬 수 있는 하나 이상의 애플리케이션 프로세서들, 하나 이상의 기저대역 프로세서들, 물리적 CPU(central processing unit), 단일-코어 프로세서, 듀얼-코어 프로세서, 트리플(triple)-코어 프로세서, 쿼드(quad)-코어 프로세서, 및/또는 임의의 다른 디바이스를 지칭할 수 있다. 용어들 "애플리케이션 회로부" 및/또는 "기저대역 회로부"는 "프로세서 회로부"와 동의어로 간주될 수 있고, "프로세서 회로부"라고 지칭될 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "인터페이스 회로부"는 2개 이상의 컴포넌트들 또는 디바이스들 사이에서의 정보의 교환을 가능하게 하는 회로부를 지칭하거나, 그의 일부이거나, 이를 포함한다. 용어 "인터페이스 회로부"는 하나 이상의 하드웨어 인터페이스들, 예를 들어, 버스들, I/O 인터페이스들, 주변 컴포넌트 인터페이스들, 네트워크 인터페이스 카드들 등을 지칭할 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "사용자 장비" 또는 "UE"는 무선 통신 능력들을 갖는 디바이스를 지칭하며, 통신 네트워크에서 네트워크 리소스들의 원격 사용자를 설명할 수 있다. 용어 "사용자 장비" 또는 "UE"는 클라이언트, 모바일, 모바일 디바이스, 모바일 단말, 사용자 단말, 모바일 유닛, 모바일 스테이션, 모바일 사용자, 가입자, 사용자, 원격 스테이션, 액세스 에이전트, 사용자 에이전트, 수신기, 무선 장비, 재구성가능 무선 장비, 재구성가능 모바일 디바이스 등과 동의어로 간주될 수 있고, 그들로 지칭될 수 있다. 더욱이, 용어 "사용자 장비" 또는 "UE"는 임의의 유형의 무선/유선 디바이스, 또는 무선 통신 인터페이스를 포함하는 임의의 컴퓨팅 디바이스를 포함할 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "네트워크 요소"는 유선 또는 무선 통신 네트워크 서비스들을 제공하는 데 사용되는 물리적 또는 가상화된 장비 및/또는 인프라구조를 지칭한다. 용어 "네트워크 요소"는 네트워킹된 컴퓨터, 네트워킹 하드웨어, 네트워크 장비, 네트워크 노드, 라우터, 스위치, 허브, 브리지, 무선 네트워크 제어기, RAN 디바이스, RAN 노드, 게이트웨이, 서버, 가상화된 VNF, NFVI 등과 동의어로 간주될 수 있고, 그리고/또는 그들로 지칭될 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "컴퓨터 시스템"은 임의의 유형의 상호연결된 전자 디바이스들, 컴퓨터 디바이스들, 또는 이들의 컴포넌트들을 지칭한다. 부가적으로, 용어 "컴퓨터 시스템" 및/또는 "시스템"은 서로 통신가능하게 커플링된 컴퓨터의 다양한 컴포넌트들을 지칭할 수 있다. 더욱이, 용어 "컴퓨터 시스템" 및/또는 "시스템"은 서로 통신가능하게 커플링되고 컴퓨팅 및/또는 네트워킹 리소스들을 공유하도록 구성된 다수의 컴퓨터 디바이스들 및/또는 다수의 컴퓨팅 시스템들을 지칭할 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "어플라이언스(appliance)", "컴퓨터 어플라이언스" 등은 특정 컴퓨팅 리소스를 제공하도록 특별히 설계된 프로그램 코드(예를 들어, 소프트웨어 또는 펌웨어)를 갖는 컴퓨터 디바이스 또는 컴퓨터 시스템을 지칭한다. "가상 어플라이언스"는 컴퓨터 어플라이언스를 가상화 또는 에뮬레이팅(emulate)하거나 또는 그렇지 않으면 특정 컴퓨팅 리소스를 제공하기 위해 전용되는 하이퍼바이저-장착 디바이스에 의해 구현될 가상 머신 이미지이다.
본 명세서에서 사용되는 바와 같이, 용어 "리소스"는 물리적 또는 가상 디바이스, 컴퓨팅 환경 내의 물리적 또는 가상 컴포넌트, 및/또는 컴퓨터 디바이스들, 기계적 디바이스들과 같은 특정 디바이스 내의 물리적 또는 가상 컴포넌트, 메모리 공간, 프로세서/CPU 시간, 프로세서/CPU 사용량, 프로세서 및 가속기 부하들, 하드웨어 시간 또는 사용량, 전기 전력, 입력/출력 동작들, 포트들 또는 네트워크 소켓들, 채널/링크 할당, 처리량, 메모리 사용량, 저장, 네트워크, 데이터베이스 및 애플리케이션들, 작업부하 유닛들 등을 지칭한다. "하드웨어 리소스"는 물리적 하드웨어 요소(들)에 의해 제공되는 연산, 저장, 및/또는 네트워크 리소스들을 지칭할 수 있다. "가상화된 리소스"는 가상화 인프라구조에 의해 애플리케이션, 디바이스, 시스템 등에 제공되는 연산, 저장, 및/또는 네트워크 리소스들을 지칭할 수 있다. 용어 "네트워크 리소스" 또는 "통신 리소스"는 통신 네트워크를 통해 컴퓨터 디바이스들/시스템들에 의해 액세스가능한 리소스들을 지칭할 수 있다. 용어 "시스템 리소스들"은 서비스들을 제공하기 위한 임의의 종류의 공유 엔티티들을 지칭할 수 있고, 컴퓨팅 및/또는 네트워크 리소스들을 포함할 수 있다. 시스템 리소스들은, 그러한 시스템 리소스들이 단일 호스트 또는 다수의 호스트들 상에 존재하고 명확하게 식별가능한 서버를 통해 액세스가능한 한 세트의 코히런트(coherent) 기능들, 네트워크 데이터 객체들 또는 서비스들로 간주될 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "채널"은 데이터 또는 데이터 스트림을 통신하는 데 사용되는, 유형적(tangible) 또는 무형적(intangible) 중 어느 하나인, 임의의 송신 매체를 지칭한다. 용어 "채널"은 "통신 채널", "데이터 통신 채널", "송신 채널", "데이터 송신 채널", "액세스 채널", "데이터 액세스 채널", "링크", "데이터 링크", "캐리어", "무선 주파수 캐리어", 및/또는 데이터가 통신되는 경로 또는 매체를 나타내는 임의의 다른 유사한 용어와 동의어이고 그리고/또는 이들과 동등할 수 있다. 부가적으로, 본 명세서에서 사용되는 바와 같이, 용어 "링크"는 정보를 송신 및 수신하려는 목적을 위한 RAT를 통한 2개의 디바이스들 사이의 연결을 지칭한다.
본 명세서에서 사용되는 바와 같이, 용어들 "인스턴스화하다", "인스턴스화" 등은 인스턴스의 생성을 지칭한다. "인스턴스"는 또한, 예를 들어 프로그램 코드의 실행 동안 발생할 수 있는 객체의 구체적 발생을 지칭한다.
용어들 "커플링된", "통신 가능하게 커플링된"은, 이들의 파생어들과 함께, 본 명세서에서 사용된다. 용어 "커플링된"은 2개 이상의 요소들이 서로 직접 물리적으로 또는 전기적으로 접촉하는 것을 의미할 수 있고, 2개 이상의 요소들이 서로 간접적으로 접촉하지만 여전히 서로 협력하거나 상호작용하는 것을 의미할 수 있고, 그리고/또는 하나 이상의 다른 요소들이 서로 커플링된다고 하는 요소들 사이에 커플링 또는 연결되는 것을 의미할 수 있다. 용어 "직접 커플링된"은 2개 이상의 요소들이 서로 직접 접촉하는 것을 의미할 수 있다. 용어 "통신가능하게 커플링된"은 2개 이상의 요소들이 와이어 또는 다른 상호연결 연결부를 통해, 무선 통신 채널 또는 잉크를 통해 등을 포함하는 통신 수단에 의해 서로 접촉할 수 있다는 것을 의미할 수 있다.
용어 "정보 요소"는 하나 이상의 필드들을 포함하는 구조적 요소를 지칭한다. 용어 "필드"는 정보 요소의 개별 콘텐츠들, 또는 콘텐츠를 포함하는 데이터 요소를 지칭한다.
용어 "SMTC"는 SSB-MeasurementTimingConfiguration에 의해 구성된 SSB-기반 측정 타이밍 구성을 지칭한다.
용어 "SSB"는 SS/PBCH 블록을 지칭한다.
용어 "1차 셀"은 1차 주파수 상에서 동작하는 MCG 셀을 지칭하며, 여기서 UE는 초기 연결 확립 절차를 수행하거나 연결 재확립 절차를 개시한다.
용어 "1차 SCG 셀"은 DC 동작을 위한 동기화 절차를 이용하여 재구성을 수행할 때 UE가 랜덤 액세스를 수행하는 SCG 셀을 지칭한다.
용어 "2차 셀"은 CA를 이용하여 구성된 UE에 대한 특수 셀의 상단 상에 부가적인 무선 리소스들을 제공하는 셀을 지칭한다.
용어 "2차 셀 그룹"은, DC를 이용하여 구성된 UE에 대한 PSCell 및 0개 이상의 2차 셀들을 포함하는 서빙 셀들의 서브세트를 지칭한다.
용어 "서빙 셀"은, 1차 셀을 포함하여 오직 하나의 서빙 셀만이 존재하는, CA/DC를 이용하여 구성되지 않은 RRC_CONNECTED에 있는 UE에 대한 1차 셀을 지칭한다.
용어 "서빙 셀" 또는 "서빙 셀들"은 CA/를 이용하여 구성된 RRC_CONNECTED에 있는 UE에 대한 특수 셀(들) 및 모든 2차 셀들을 포함하는 셀들의 세트를 지칭한다.
용어 "특수 셀"은 DC 동작을 위한 MCG의 PCell 또는 SCG의 PSCell을 지칭하며; 그렇지 않으면, 용어 "특수 셀"은 Pcell을 지칭한다.

Claims (20)

  1. 사용자 장비(UE)가 무선 측정을 수행하게 허용하는 방법으로서,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로,
    추적을 위한 상기 CSI-RS의 주기성을 상기 RRM 기준 신호의 주기성 특성보다 긴 값으로, 또는
    추적을 위한 상기 CSI-RS의 대역폭을 상기 RRM 기준 신호의 대역폭 특성과 동일한 값으로
    설정함으로써 상기 UE의 추적을 위해 상기 CSI-RS의 특성을 구성하는 단계 - 상기 RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(beam failure detection, BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 및
    상기 구성된 CSI-RS를 사용하여 무선 측정을 수행하는 단계를 포함하는, 사용자 장비가 무선 측정을 수행하게 허용하는 방법.
  2. 제1항에 있어서,
    상기 BR 테스팅 신호의 상기 제1 전력 레벨을 설정하는 것은 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨을 결정하는 것을 포함하는, 사용자 장비가 무선 측정을 수행하게 허용하는 방법.
  3. 제1항에 있어서,
    특성을 추적하기 위해 하나 초과의 CSI-RS를 설정하는 단계를 더 포함하는, 사용자 장비가 무선 측정을 수행하게 허용하는 방법.
  4. 무선 리소스 관리(radio resource management, RRM) 테스팅을 위한 방법으로서,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 설정하는 단계 - 상기 다른 RRM 기준 신호는 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 또는
    추적을 위한 상기 CSI-RS의 네거티브 전력 오프셋 값을 상기 RRM 기준 신호의 동기화 신호(SS)로 설정하는 단계, 또는
    추적을 위한 상기 CSI-RS의 포지티브 전력 오프셋 값을 상기 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로 설정하는 단계를 포함하는, 무선 리소스 관리 테스팅을 위한 방법.
  5. 제4항에 있어서,
    물리적 다운링크 공유 채널(PDSCH)이 추적을 위한 상기 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 상기 포지티브 전력 오프셋을 설정하는, 무선 리소스 관리 테스팅을 위한 방법.
  6. 제4항에 있어서,
    추적을 위한 상기 CSI-RS는 SS 주기성 또는 동기화 신호 블록(SSB)-기반 측정 타이밍 구성 주기성보다 긴 주기성을 갖도록 구성되는, 무선 리소스 관리 테스팅을 위한 방법.
  7. 제4항에 있어서,
    상기 SS가 추적을 위한 상기 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 상기 네거티브 전력 오프셋을 설정하는, 무선 리소스 관리 테스팅을 위한 방법.
  8. 무선 측정을 수행하기 위한 사용자 장비(UE)로서,
    무선 프론트 엔드 회로부; 및
    상기 무선 프론트 엔드 회로부에 커플링된 프로세싱 회로부를 포함하며, 상기 프로세싱 회로부는,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로,
    추적을 위한 상기 CSI-RS의 주기성을 상기 RRM 기준 신호의 주기성 특성보다 긴 값으로, 또는
    추적을 위한 상기 CSI-RS의 대역폭을 상기 RRM 기준 신호의 대역폭 특성과 동일한 값으로 설정함으로써 상기 RRM을 조정하기 위해 상기 CSI-RS의 특성을 구성하고,
    상기 RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함하고;
    상기 프로세싱 회로부는 상기 구성된 CSI-RS를 사용하여 무선 측정을 수행하는, 무선 측정을 수행하기 위한 사용자 장비.
  9. 제8항에 있어서,
    상기 BR 테스팅 신호의 상기 전력 레벨을 설정하는 것은 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨을 결정하는 것을 포함하는, 무선 측정을 수행하기 위한 사용자 장비.
  10. 제8항에 있어서,
    특성을 추적하기 위해 하나 초과의 CSI-RS를 설정하는 것을 더 포함하는, 무선 측정을 수행하기 위한 사용자 장비.
  11. 무선 리소스 관리(RRM) 테스팅을 위한 시스템으로서,
    무선 프론트 엔드 회로부; 및
    상기 무선 프론트 엔드 회로부에 커플링된 프로세싱 회로부를 포함하며, 상기 프로세싱 회로부는,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 - 상기 다른 RRM 기준 신호는 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 또는
    추적을 위한 상기 CSI-RS의 네거티브 전력 오프셋 값을 상기 RRM 기준 신호의 동기화 신호(SS)로, 또는
    추적을 위한 상기 CSI-RS의 포지티브 전력 오프셋 값을 상기 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로
    설정하도록 구성되는, 무선 리소스 관리 테스팅을 위한 시스템.
  12. 제11항에 있어서,
    물리적 다운링크 공유 채널(PDSCH)이 추적을 위한 상기 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 상기 포지티브 전력 오프셋을 설정하는, 무선 리소스 관리 테스팅을 위한 시스템.
  13. 제11항에 있어서,
    추적을 위한 상기 CSI-RS는 SS 주기성 또는 동기화 신호 블록(SSB)-기반 측정 타이밍 구성 주기성보다 긴 주기성을 갖도록 구성되는, 무선 리소스 관리 테스팅을 위한 시스템.
  14. 제11항에 있어서,
    상기 SS가 추적을 위한 상기 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 상기 네거티브 전력 오프셋을 설정하는, 무선 리소스 관리 테스팅을 위한 시스템.
  15. 사용자 장비(UE)가 무선 측정을 수행하게 허용하기 위한 비일시적 컴퓨터 판독가능 디바이스로서,
    상기 컴퓨터-판독가능 디바이스는, 적어도 하나의 컴퓨팅 디바이스에 의해 실행될 때, 상기 적어도 하나의 컴퓨팅 디바이스로 하여금 동작들을 수행하게 하는 명령어들이 저장되어 있으며,
    상기 동작들은,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 RRM 기준 신호의 전력 레벨 특성보다 작은 값으로,
    추적을 위한 상기 CSI-RS의 주기성을 상기 RRM 기준 신호의 주기성 특성보다 긴 값으로, 또는
    추적을 위한 상기 CSI-RS의 대역폭을 상기 RRM 기준 신호의 대역폭 특성과 동일한 값으로
    설정함으로써 상기 UE의 추적을 위해 상기 CSI-RS의 특성을 구성하는 것 - 상기 RRM 기준 신호들은 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 및
    상기 구성된 CSI-RS를 사용하여 무선 측정을 수행하는 것을 포함하는, 비일시적 컴퓨터 판독가능 디바이스.
  16. 제15항에 있어서,
    상기 적어도 하나의 컴퓨팅 디바이스로 하여금, 추가로, 상기 BR 테스팅 신호의 상기 제1 전력 레벨을 레벨-1 기준 신호 수신 전력(RSRP) 측정 리포팅 신호의 전력 레벨로 설정하게 하는, 비일시적 컴퓨터 판독가능 디바이스.
  17. 제15항에 있어서,
    상기 적어도 하나의 컴퓨팅 디바이스로 하여금, 추가로, 특성을 추적하기 위해 하나 초과의 CSI-RS를 설정하게 하는, 비일시적 컴퓨터 판독가능 디바이스.
  18. 무선 리소스 관리(RRM) 테스팅을 위한 비일시적 컴퓨터 판독가능 디바이스로서,
    상기 컴퓨터-판독가능 디바이스는, 적어도 하나의 컴퓨팅 디바이스에 의해 실행될 때, 상기 적어도 하나의 컴퓨팅 디바이스로 하여금 동작들을 수행하게 하는 명령어들이 저장되어 있으며,
    상기 동작들은,
    추적을 위한 채널-상태 정보 기준 신호(CSI-RS)의 전력 레벨을 다른 RRM 기준 신호의 전력 레벨보다 작은 값으로 설정하는 것 - 상기 다른 RRM 기준 신호는 RRM 측정 신호, 무선 링크 모니터링 신호(RLM), 빔 실패 검출(BFD) 신호, 후보 빔 검출(CBD) 신호, 또는 빔 리포팅(BR) 테스팅 신호 중 하나를 포함함 -; 또는
    추적을 위한 상기 CSI-RS의 네거티브 전력 오프셋 값을 상기 RRM 기준 신호의 동기화 신호(SS)로 설정하는 것, 또는
    추적을 위한 상기 CSI-RS의 포지티브 전력 오프셋 값을 상기 RRM 기준 신호의 물리적 다운링크 공유 채널(PDSCH)로 설정하는 것을 포함하는, 비일시적 컴퓨터 판독가능 디바이스.
  19. 제18항에 있어서,
    상기 적어도 하나의 컴퓨팅 디바이스로 하여금, 추가로, 물리적 다운링크 공유 채널(PDSCH)이 추적을 위한 상기 CSI-RS의 EPRE(리소스 요소당 에너지)보다 높은 EPRE를 갖도록 상기 포지티브 전력 오프셋을 설정하게 하는, 비일시적 컴퓨터 판독가능 디바이스.
  20. 제18항에 있어서,
    상기 적어도 하나의 컴퓨팅 디바이스로 하여금, 추가로, SS 주기성 또는 동기화 신호 블록(SSB)-기반 측정 타이밍 구성 주기성보다 긴 주기성을 갖도록 추적을 위한 상기 CSI-RS를 설정하게 하는, 비일시적 컴퓨터 판독가능 디바이스.
KR1020217024259A 2019-02-04 2020-02-04 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적 KR102488489B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962800957P 2019-02-04 2019-02-04
US62/800,957 2019-02-04
PCT/US2020/016611 WO2020163357A1 (en) 2019-02-04 2020-02-04 Tracking reference signal setup in radio resource management testing

Publications (2)

Publication Number Publication Date
KR20210109020A true KR20210109020A (ko) 2021-09-03
KR102488489B1 KR102488489B1 (ko) 2023-01-12

Family

ID=69740845

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217024259A KR102488489B1 (ko) 2019-02-04 2020-02-04 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적

Country Status (4)

Country Link
US (1) US20220104147A1 (ko)
KR (1) KR102488489B1 (ko)
CN (1) CN113678516A (ko)
WO (1) WO2020163357A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758426B2 (en) * 2020-09-01 2023-09-12 Qualcomm Incorporated Adapting search, measurement, and loop tracking periodicities in new radio communications
KR20230088687A (ko) * 2020-10-16 2023-06-20 지티이 코포레이션 측정을 위한 새로운 구성
WO2022082663A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Parallel beam management in new band combinations
WO2022126546A1 (zh) * 2020-12-17 2022-06-23 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2022178820A1 (zh) * 2021-02-26 2022-09-01 北京小米移动软件有限公司 寻呼早期指示指示方法、装置、通信设备和存储介质
US20230088966A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Power Efficient Beam Recovery Procedures
CN114884836A (zh) * 2022-04-28 2022-08-09 济南浪潮数据技术有限公司 一种虚拟机高可用方法、装置及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087972A (ko) * 2012-01-30 2013-08-07 주식회사 팬택 협력형 다중 셀 통신시스템에서 rrm측정 방법 및 그 송수신 포인트, 그 단말
US20180323845A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Method for Beam Management for Wireless Communication System with Beamforming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126099A1 (ko) * 2015-02-05 2016-08-11 엘지전자(주) 무선 통신 시스템에서 csi를 피드백하기 위한 방법 및 이를 위한 장치
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087972A (ko) * 2012-01-30 2013-08-07 주식회사 팬택 협력형 다중 셀 통신시스템에서 rrm측정 방법 및 그 송수신 포인트, 그 단말
US20180323845A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Method for Beam Management for Wireless Communication System with Beamforming

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1900512* *
3GPP R2-1819115* *

Also Published As

Publication number Publication date
KR102488489B1 (ko) 2023-01-12
WO2020163357A1 (en) 2020-08-13
US20220104147A1 (en) 2022-03-31
CN113678516A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
KR102533687B1 (ko) Ue 보조 피드백을 위한 시그널링 메커니즘에 대한 시스템 및 방법들
US20220070855A1 (en) Systems and methods for control signaling of uplink transmission for multiple antenna panels
KR20210154251A (ko) 비허가 스펙트럼 상에서 동작하는 뉴 라디오(nr) 시스템들에 대한 업링크 lbt 실패들을 핸들링하는 장치 및 방법
KR20210111308A (ko) 단일 다운링크 제어 정보(dci) 다중 송신 수신 포인트(trp) 송신에 대한 복조 기준 신호(dmrs) 표시
US20220103973A1 (en) Location services (lcs) client in a next generation (ng) radio access network (ran)
KR20210094071A (ko) 임계치 모니터링을 위한 방법 및 시스템
US20220095332A1 (en) Low-latency uplink scheduling requests
WO2020163291A1 (en) Cross-link interference (cli) measurement reporting
US11855763B2 (en) Information exchange for network coordination of UE-to-UE cross-link interference measurement
KR102488489B1 (ko) 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적
KR102621587B1 (ko) 다운링크 수신 신호 충돌 회피
KR102578749B1 (ko) 혼합된 뉴머롤로지들을 갖는 주파수 도메인 다중화된(fdmed) dl 채널들로 인한 인터-캐리어 간섭(ici)의 완화
US20220104277A1 (en) Random Access Reception and Message 3 Transmission for New Radio (NR) Based Satellite Communication
US20220166580A1 (en) On the frame structure design for single carrier waveform
KR20210100718A (ko) 멀티-송신/수신(trp) 송신을 위한 시스템들 및 방법들
US11889501B2 (en) System and method for DL transmission with low peak-to-average-power (PAPR)
US11838973B2 (en) Split protocol data unit (PDU) session indication for multi-rat dual connectivity (MR-DC) with 5GC
US11799564B2 (en) Method for initialization seed generation for PN sequences in remote interference management
KR20210114440A (ko) 다수의 공간 계층들에 대한 타입 ii csi 보고 방법
KR20210115030A (ko) 고속 시나리오를 위한 무선 네트워크에서의 2차 셀(scell) 활성화
US20220086742A1 (en) Service request procedures in information centric networking for next generation cellular networks
US20220052803A1 (en) Resource allocation for multi-trp urllc

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant