KR20210106045A - The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof - Google Patents

The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof Download PDF

Info

Publication number
KR20210106045A
KR20210106045A KR1020200020248A KR20200020248A KR20210106045A KR 20210106045 A KR20210106045 A KR 20210106045A KR 1020200020248 A KR1020200020248 A KR 1020200020248A KR 20200020248 A KR20200020248 A KR 20200020248A KR 20210106045 A KR20210106045 A KR 20210106045A
Authority
KR
South Korea
Prior art keywords
exhaust gas
channel
reducing agent
concentration
neutralizing agent
Prior art date
Application number
KR1020200020248A
Other languages
Korean (ko)
Other versions
KR102407755B1 (en
Inventor
김학준
김용진
한방우
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020200020248A priority Critical patent/KR102407755B1/en
Priority to PCT/KR2021/002101 priority patent/WO2021167388A2/en
Priority to US17/904,387 priority patent/US11883781B2/en
Publication of KR20210106045A publication Critical patent/KR20210106045A/en
Application granted granted Critical
Publication of KR102407755B1 publication Critical patent/KR102407755B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/022Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by using a liquid curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention relates to an exhaust gas treatment apparatus and method of a multi-stage scrubber, in which a scrubber is configured with two channels capable of individualizing solvent injection, so that a reducing agent and a neutralizing agent do not mix with each other, thereby using only 1.5 to 1.7 times the amount of the reducing agent compared to the theoretical amount in order to maintain the NO_x removal rate of 80% or more, and significantly reduce the generation amount of H_2S.

Description

다단 스크러버의 배기가스 처리 장치 및 방법{THE APPARATUS OF MULTI-STAGE SCRUBBER EXHAUST GAS TREATMENT AND THE METHOD THEREOF}Apparatus and method for treating exhaust gas of a multi-stage scrubber

본 발명은 다단 스크러버의 배기가스 처리 장치 및 방법에 관한 것으로서, 보다 상세하게는 이산화질소가 포함된 배기가스 처리시 환원제의 사용량을 낮추면서 황화수소 발생을 억제할 수 있는 다단 스크러버 배기가스 처리 장치 및 방법에 관한 것이다.The present invention relates to an exhaust gas treatment apparatus and method for a multi-stage scrubber, and more particularly, to a multi-stage scrubber exhaust gas treatment apparatus and method capable of suppressing the generation of hydrogen sulfide while reducing the amount of reducing agent used in the treatment of exhaust gas containing nitrogen dioxide it's about

일반적으로 반도체, LED, LCD 제조공정에서 사용되는 가스는 매우 다양하며, N 성분을 함유한 가스로는 NH3나 NF3와 같은 F-gas 등이 이용되고 있다.In general, gases used in semiconductor, LED, and LCD manufacturing processes are very diverse, and F-gas such as NH3 or NF3 is used as a gas containing an N component.

전자산업 분야의 제조공정에서 사용되는 다양한 가스 성분들은 스크러버 장치(열분해, 연소, 플라즈마 방식)에 의해 처리되고 무해한 성분의 가스만 최종 배출된다. Various gas components used in the manufacturing process in the electronics industry are treated by a scrubber device (pyrolysis, combustion, plasma method), and only harmless gases are finally discharged.

그러나 이러한 방식에 의해서도 완전히 처리되지 못하고 배출될 수 있는 성분이 있는데, 열분해의 경우에는 배기가스 내 산소와 N 성분이 반응한 NOx, 연소에 의한 방식일 경우에는, 산화용 공기 주입으로 인한 NOx, 플라즈마 방식일 경우에는, NH3이나 NF3의 분해에 의한 NOx는 완전히 처리되지 않게 된다.However, there are components that cannot be completely treated by this method and can be discharged. In the case of thermal decomposition, NOx in which oxygen and N components in the exhaust gas react, and in the case of combustion, NOx due to injection of oxidizing air, plasma In the case of corrosion protection, NOx by decomposition of NH3 or NF3 is not completely treated.

이러한 NOx를 처리하기 위해 습식 스크러버장치 등을 사용하여 NOx를 처리한다. 기존 습식 스크러버장치를 이용하는 경우, NOx를 제거하기 위하여 환원제를 투입하게 되는데 환원제 투입에 따른 H2S의 발생이 급격하게 증가하는 문제점이 있었다.In order to treat such NOx, a wet scrubber device or the like is used to treat NOx. In the case of using the existing wet scrubber apparatus, a reducing agent is added to remove NOx, but there is a problem in that the generation of H 2 S according to the reducing agent is rapidly increased.

1. 대한민국 등록특허 제10-1300482호 "매개 금속이온 및 환원제를 사용한 대기오염물질 처리 시스템 및 그 처리 방법"1. Republic of Korea Patent No. 10-1300482 "Air pollutant treatment system and method using medium metal ions and reducing agents" 2. 대한민국 등록특허 제10-1890165호 "폐가스에 포함된 n2o 저감용 스크러버 장치"2. Republic of Korea Patent No. 10-1890165 "Scrubber device for reducing n2o contained in waste gas"

본 발명의 과제는 상술한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 이산화질소를 포함한 배기가스에 환원제와 중화제를 개별적, 순차적으로 적용하여 황화수소 발생을 억제할 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to solve the conventional problems as described above, and a multi-stage scrubber exhaust gas treatment apparatus and method capable of suppressing hydrogen sulfide generation by individually and sequentially applying a reducing agent and a neutralizing agent to an exhaust gas containing nitrogen dioxide aims to provide

또한, 스크러버의 각각의 채널에 환원제와 중화제를 순차적으로 적용함으로써, 황화수소 발생을 억제하면서도 환원제의 사용량을 현저하게 감소시킬 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법을 제공하는 것을 목적으로 한다.In addition, by sequentially applying a reducing agent and a neutralizing agent to each channel of the scrubber, it is an object to provide an exhaust gas treatment apparatus and method of a multi-stage scrubber that can significantly reduce the amount of reducing agent while suppressing the generation of hydrogen sulfide.

또한, 환원제와 중화제가 분사되는 각 채널을 횡방향으로 배치하여 각 채널의 용매가 서로 혼합되지 않을 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an apparatus and method for treating exhaust gas of a multi-stage scrubber in which each channel through which a reducing agent and a neutralizing agent are injected is disposed in a transverse direction so that the solvent of each channel may not be mixed with each other.

상기 과제는, 본 발명에 따라, 다단 스크러버의 배기가스 처리 장치에 있어서, NOx를 포함한 배기가스가 유입되며, 환원제가 분사되는 제1채널; 및, 상기 제1채널의 측면에 위치하여 상기 제1채널을 통과한 배기가스가 유입되며, 상기 환원제와 혼합되지 않도록 중화제가 분사되는 제2채널;을 포함하는 다단 스크러버의 배기가스 처리 장치에 의해 달성될 수 있다.The above object, according to the present invention, in the exhaust gas treatment apparatus of the multi-stage scrubber, the exhaust gas including NOx is introduced, the first channel through which the reducing agent is injected; and a second channel, located on the side of the first channel, through which the exhaust gas passing through the first channel is introduced, and through which the neutralizing agent is injected so as not to be mixed with the reducing agent. can be achieved.

여기서, 상기 제2채널로부터 외부로 배출되는 배기가스의 NOx 농도와 H2S의 농도를 측정하는 가스분석기; 상기 제1채널의 하부에 위치하여 상기 환원제가 저장되는 제1저장조; 상기 제1저장조로 상기 환원제를 공급하도록 설치되는 제1수조; 상기 제1저장조에 저장된 상기 환원제의 ORP를 측정하는 ORP센서; 상기 제2채널의 하부에 위치하여 상기 중화제가 저장되는 제2저장조; 상기 제2저장조로 상기 중화제를 공급하도록 설치되는 제2수조; 상기 제2저장조에 저장된 상기 중화제의 pH를 측정하는 pH센서; 및, 상기 가스분석기의 NOx 농도에 따른 상기 ORP센서의 측정치를 토대로 NOx 제거 효율을 계산하며, 상기 pH센서의 측정치를 토대로 H2S의 농도를 출력하고, 설정된 NOx제거율 기준치 또는 설정된 H2S 발생 농도의 기준치에 따라 상기 환원제 및 상기 중화제의 투입시기와 투입량을 제어하는 제어부;를 포함하는 다단 스크러버의 배기가스 처리 장치에 의해 달성될 수 있다.Here, a gas analyzer for measuring the concentration of NOx and H 2 S of the exhaust gas discharged to the outside from the second channel; a first storage tank positioned under the first channel to store the reducing agent; a first water tank installed to supply the reducing agent to the first storage tank; ORP sensor for measuring the ORP of the reducing agent stored in the first storage tank; a second storage tank positioned below the second channel to store the neutralizing agent; a second water tank installed to supply the neutralizing agent to the second storage tank; a pH sensor for measuring the pH of the neutralizing agent stored in the second storage tank; And, calculates the NOx removal efficiency based on the measured value of the ORP sensor according to the NOx concentration of the gas analyzer , outputs the concentration of H 2 S based on the measured value of the pH sensor, and generates the set NOx removal rate reference value or the set H 2 S It can be achieved by the exhaust gas treatment apparatus of the multi-stage scrubber comprising; a control unit for controlling the input timing and the input amount of the reducing agent and the neutralizing agent according to the reference value of the concentration.

또한, 상기 제어부는 설정된 NOx 제거율보다 계산된 NOx 제거율이 작아지는 경우, 상기 설정된 NOx 제거율보다 크거나 같아지기 위하여 상기 제1수조의 환원제를 상기 제1채널로 공급하도록 제어하는 것이 바람직하다.In addition, when the calculated NOx removal rate is smaller than the set NOx removal rate, the control unit preferably controls to supply the reducing agent of the first water tank to the first channel to be greater than or equal to the set NOx removal rate.

또한, 상기 제어부는 설정된 H2S의 농도보다 측정된 H2S의 농도가 커지는 경우, 상기 설정된 H2S의 농도보다 작거나 같아지기 위하여 상기 제2수조의 중화제를 상기 제2채널로 공급하도록 제어하는 것이 바람직하다.Further, the control unit to the feed to the second channel the neutralizing agent in the second tank to fall, less than or equal to the concentration of the set H 2 S, if greater the concentration of H 2 S measured than the concentration of a predetermined H 2 S It is desirable to control

또한, 방전부와 집진부를 포함하여 상기 제2채널의 후단에 상기 제2채널에서 처리된 배기가스를 제공받도록 설치되는 전기집진부를 더 포함하며, 상기 집진부는 상기 중화제를 이용한 수막으로 형성될 수 있다.In addition, it further includes an electric dust collecting unit installed at the rear end of the second channel including a discharge unit and a dust collecting unit to receive the exhaust gas treated in the second channel, and the dust collecting unit may be formed of a water film using the neutralizing agent. .

또한, 상기 환원제는 일대일의 비율로 혼합된 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)이고, 상기 중화제는 NaOH일 수 있다.In addition, the reducing agent is sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) mixed in a one-to-one ratio, and the neutralizing agent may be NaOH.

또한, 상기 환원제는 Na2S이고, 상기 중화제는 NaOH일 수 있다.In addition, the reducing agent may be Na 2 S, and the neutralizing agent may be NaOH.

상기 다단 스크러버 배기가스 처리장치를 이용한 배기가스 처리 방법은, 제1채널로 유입되는 이산화질소를 포함한 배기가스에 환원제를 분사하여 질소산화물을 제거하는 단계; 및, 상기 제1채널을 통과하여 제2채널로 유입되는 배기가스에 중화제를 분사하여 질소산화물을 제거하는 단계;를 포함하고, 상기 환원제는 설정된 NOx제거율 기준치에 따라 투입시기 및 투입량을 제어하고, 상기 중화제는 설정된 H2S 발생 농도의 기준치에 따라 투입시기 및 투입량을 제어하는 것이 바람직하다.The exhaust gas treatment method using the multi-stage scrubber exhaust gas treatment apparatus includes: removing nitrogen oxides by spraying a reducing agent into the exhaust gas including nitrogen dioxide flowing into a first channel; and, removing nitrogen oxides by spraying a neutralizing agent into the exhaust gas flowing into the second channel through the first channel, wherein the reducing agent controls the input timing and input amount according to the set NOx removal rate reference value, It is preferable to control the input timing and input amount of the neutralizing agent according to the set reference value of the H 2 S generation concentration.

본 발명에 따르면, 이산화질소를 포함한 배기가스에 환원제와 중화제를 개별적, 순차적으로 적용하여 황화수소가 현저하게 저감될 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법이 제공된다.According to the present invention, there is provided an exhaust gas treatment apparatus and method of a multi-stage scrubber in which hydrogen sulfide can be remarkably reduced by individually and sequentially applying a reducing agent and a neutralizing agent to an exhaust gas containing nitrogen dioxide.

또한, 스크러버의 각각의 채널에 환원제와 중화제를 순차적으로 적용함으로써, 황화수소 발생량을 저감시키면서도 환원제의 사용량을 현저하게 감소시킬 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법이 제공된다.In addition, by sequentially applying a reducing agent and a neutralizing agent to each channel of the scrubber, an apparatus and method for treating exhaust gas of a multi-stage scrubber that can significantly reduce the amount of reducing agent while reducing the amount of hydrogen sulfide generated are provided.

또한, 환원제와 중화제가 분사되는 각 채널을 횡방향으로 배치하여 각 채널의 용매가 서로 혼합되지 않을 수 있는 다단 스크러버의 배기가스 처리 장치 및 방법이 제공된다.In addition, there is provided an apparatus and method for treating exhaust gas of a multi-stage scrubber in which each channel through which a reducing agent and a neutralizing agent are injected is disposed in a transverse direction so that the solvent of each channel may not be mixed with each other.

도 1은 본 발명의 제1실시예에 따른 다단 스크러버의 배기가스 처리 장치의 개략도,
도 2는 분당 환원제 총 사용량과 환원제의 혼합비의 관계를 나타낸 그래프이다.
1 is a schematic diagram of an exhaust gas treatment apparatus of a multi-stage scrubber according to a first embodiment of the present invention;
2 is a graph showing the relationship between the total amount of the reducing agent per minute and the mixing ratio of the reducing agent.

설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.Prior to the description, in various embodiments, components having the same configuration are typically described in the first embodiment using the same reference numerals, and in other embodiments, configurations different from those of the first embodiment will be described. do.

이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 다단 스크러버의 배기가스 처리 장치에 대하여 상세하게 설명한다.Hereinafter, an exhaust gas treatment apparatus of a multi-stage scrubber according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 제1실시예에 따른 다단 스크러버의 배기가스 처리 장치의 개략도이다. 도 1을 참조하면, 본 발명의 제1실시예에 따른 다단 스크러버의 배기가스 처리 장치는 오존발생기(10), 제1채널(20)과 제2채널(30)을 포함하는 다단 스크러버, 전기집진부(40), 가스분석기(50) 및 제어부(미도시)를 포함하여 구성된다.1 is a schematic diagram of an exhaust gas treatment apparatus of a multi-stage scrubber according to a first embodiment of the present invention. 1, the exhaust gas treatment apparatus of the multi-stage scrubber according to the first embodiment of the present invention is a multi-stage scrubber including an ozone generator 10, a first channel 20 and a second channel 30, and an electric dust collector (40), is configured to include a gas analyzer 50 and a control unit (not shown).

상기 오존발생기(10)는 유전체 장벽 방전 등을 이용하여 오존(O3)을 발생시키며, 발생된 오존(O3)은 다단 스크러버로 유입되는 배기가스에 주입된다. 오존(O3)을 배기가스에 주입하면 NOX의 주성분인 NO는 아래 화학식과 같이 NO2로 산화된다.The ozone generator 10 generates ozone (O 3 ) by using a dielectric barrier discharge or the like, and the generated ozone (O 3 ) is injected into the exhaust gas flowing into the multi-stage scrubber. When ozone (O 3 ) is injected into the exhaust gas, NO, the main component of NOX, is oxidized to NO 2 as shown in the following chemical formula.

(화학식 1) NO + O3 -----> NO2 + O2 (Formula 1) NO + O 3 -----> NO 2 + O 2

즉, 배기가스는 이산화질소(NO2)를 포함하여 다단 스크러버로 유입된다.That is, the exhaust gas is introduced into the multi-stage scrubber including nitrogen dioxide (NO 2 ).

상기 다단 스크러버는 횡방향으로 배치되는 제1채널(20)과 제2채널(30)을 포함하여 구성된다. 각 채널은 일 방향으로 긴 박스 형태로 형성되고, 각각의 내부 상측에는 스프레이 노즐(22 ,32)이 설치되어 있다.The multi-stage scrubber is configured to include a first channel 20 and a second channel 30 disposed in the transverse direction. Each channel is formed in the form of a long box in one direction, and spray nozzles 22 , 32 are installed on the inner upper side of each.

상기 다단 스크러버는 제1채널(20)과 제2채널(30)을 포함하여 구성된다. 먼저, 상기 제1채널(20)은 측면으로부터 이산화질소를 포함한 배기가스가 유입되는 유입구가 형성되고, 상측에는 제2채널(30)로 배기가스가 배출되는 배출구가 형성된다.The multi-stage scrubber is configured to include a first channel 20 and a second channel 30 . First, the first channel 20 is formed with an inlet through which exhaust gas containing nitrogen dioxide is introduced from the side, and an outlet through which the exhaust gas is discharged through the second channel 30 is formed on the upper side.

상기 제2채널(30)은 상측에 제1채널(20)의 배출구와 연통되는 연통구가 형성되고, 하측에는 전기집진부(40)와 연통되는 배출구가 형성된다.The second channel 30 is formed with a communication port communicating with the outlet of the first channel 20 on the upper side, and the outlet port communicating with the electric dust collecting unit 40 is formed on the lower side.

상기 유입구, 배출구 및 연통구는 채널의 형상에 따라 그 위치가 변경할 수 있다.The positions of the inlet, outlet and communication port may be changed according to the shape of the channel.

상기 제1채널(20)의 하측에는 환원제가 저장되는 제1저장조(21)가 마련되고, 제1스프레이 노즐(31)은 제1저장조(21)에 저장된 중화제를 분사하도록 연결된다. 제2채널(30)에서도 같은 구조로, 제2채널(30)의 하측에는 중화제가 저장되는 제2저장조(31)가 마련되고, 제2스프레이 노즐(32)은 제2저장조(31)에 저장된 중화제를 분사하도록 연결된다.A first reservoir 21 in which a reducing agent is stored is provided below the first channel 20 , and the first spray nozzle 31 is connected to spray the neutralizing agent stored in the first reservoir 21 . With the same structure in the second channel 30 , a second reservoir 31 in which the neutralizing agent is stored is provided on the lower side of the second channel 30 , and the second spray nozzle 32 is stored in the second reservoir 31 . connected to spray the neutralizer.

제1저장조(21)와 제2저장조(31)는 별도로 마련된 제1수조(23)와 제2수조(33)에 연결되어 용액을 공급받도록 설치된다.The first storage tank 21 and the second storage tank 31 are connected to the first water tank 23 and the second water tank 33 provided separately and are installed to receive the solution.

상기 제1수조(23)에는 환원제인 Na2S가 저장되고, 상기 제2수조(33)에는 중화제인 NaOH가 저장된다. Na 2 S as a reducing agent is stored in the first water tank 23 , and NaOH as a neutralizing agent is stored in the second water tank 33 .

또한, 제1저장조(21)에는 환원제의 ORP(Oxidation-Reduction Potential)를 측정하는 ORP센서(23)가 설치되고, 제2저장조(31)에는 중화제의 pH를 측정하는 pH센서(24) 등이 설치된다. In addition, an ORP sensor 23 for measuring ORP (Oxidation-Reduction Potential) of the reducing agent is installed in the first storage tank 21, and a pH sensor 24 for measuring the pH of the neutralizing agent in the second storage tank 31, etc. is installed

상기 ORP센서(23)는 산화환원전위를 센싱하는 장치이고, pH센서(24)는 H2S의 농도를 측정하는 장치이다. 또한, ORP센서(23)와 pH센서(24)의 측정치는 제어부로 전송하도록 설치된다.The ORP sensor 23 is a device for sensing the redox potential, and the pH sensor 24 is a device for measuring the concentration of H 2 S. In addition, the measured values of the ORP sensor 23 and the pH sensor 24 are installed to be transmitted to the control unit.

상기 제1노즐(22)과 제2노즐(32)은 각각의 채널 내부의 상측에 위치하여 제공되는 환원제 및 중화제를 분사하도록 설치된다. 환원제와 중화제는 펌프를 통해각각의 노즐과 저장조 사이에서 순환되며, 배기가스와 반응을 통해 점차 그 양이 감소하므로 해당 수조를 통해 후술하는 제어부에 의해 일정량이 주기적으로 공급될 수 있다.The first nozzle 22 and the second nozzle 32 are installed to spray the reducing agent and the neutralizing agent provided at the upper side inside each channel. The reducing agent and the neutralizing agent are circulated between the respective nozzles and the storage tank through the pump, and their amounts are gradually decreased through the reaction with the exhaust gas, so a predetermined amount may be periodically supplied by the control unit to be described later through the corresponding water tank.

상기 가스분석기(50)는 후술하는 전기집진부(40)를 통과한 배기가스의 NOx 농도와 H2S의 농도를 측정하며, 측정된 측정치는 제어부로 전송하도록 설치된다. The gas analyzer 50 measures the NOx concentration and the H 2 S concentration of the exhaust gas that has passed through the electrostatic precipitation unit 40 to be described later, and the measured values are installed to be transmitted to the control unit.

상기 제어부(미도시)는 NOx 농도를 제공받아 NOx 제거율을 계산하도록 마련되며, 가스분석기(50)로부터 제공되는 H2S의 농도, pH센서(34) 및 ORP센서(24)로부터 제공되는 각각의 측정치를 제공받고, 사전에 설정된 NOx제거율 기준치 또는 사전에 설정된 H2S 발생 농도의 기준치에 따라 각 수조에 저장된 환원제 또는 중화제의 투입시기 및 투입량을 제어할 수 있다.The control unit (not shown) is provided to calculate the NOx removal rate by receiving the NOx concentration, the concentration of H 2 S provided from the gas analyzer 50, each provided from the pH sensor 34 and the ORP sensor 24 The measurement value is provided, and the input timing and input amount of the reducing agent or neutralizing agent stored in each tank can be controlled according to the preset NOx removal rate reference value or the preset H 2 S generation concentration reference value.

가령, 제어부는 설정된 NOx 제거율보다 계산된 NOx 제거율이 작아지는 경우, 설정된 NOx 제거율보다 크거나 같아지기 위하여 제1수조(23)의 환원제를 제1채널(20)로 공급하도록 제어한다.For example, when the calculated NOx removal rate is smaller than the set NOx removal rate, the control unit controls to supply the reducing agent of the first water tank 23 to the first channel 20 to be greater than or equal to the set NOx removal rate.

또한, 제어부는 설정된 H2S의 농도보다 측정된 H2S의 농도가 커지는 경우, 설정된 H2S의 농도보다 작거나 같아지기 위하여 제2수조(33)의 중화제를 제2채널(30)로 공급하도록 제어한다.In addition, the control case increases the concentration of the predetermined H 2 S a H 2 S measured than the concentration of the neutralization agent in the second water tank 33 to become less than or equal to the concentration of a predetermined H 2 S to the second channel 30 control to supply.

한편, 제어부는 ORP센서(24)의 측정치를 통해 NOx 제거율을 계산하며, pH센서(34)의 측정치를 통해 H2S의 농도를 측정하도록 마련된다.On the other hand, the control unit calculates the NOx removal rate through the measured value of the ORP sensor 24, and is provided to measure the concentration of H 2 S through the measured value of the pH sensor (34).

상기 전기집진부(40)는 메인 챔버(20)에서 NOx가 제거된 배기가스를 공급받고, 배출하도록 마련되는 집진부 챔버(41)와, 고전압 방전에 의해 방전하는 방전부(42) 및 방전된 입자를 포집하는 집진부(43)를 포함하여 구성된다.The electrostatic precipitator 40 receives the exhaust gas from which NOx has been removed from the main chamber 20 and receives and discharges the dust collector chamber 41, the discharge unit 42 for discharging by high voltage discharge, and the discharged particles. It is configured to include a dust collecting unit 43 to collect.

여기서, 집진부(43)는 펌프에 의해 순환되는 중화제에 의해 집진부 챔버(41) 벽 내부에 수막을 형성하는 수막형으로 마련된다. 수막형 집진부의 구체적인 구성은 본 출원인이 출원하여 등록된 등록특허 제10-1173496호 또는 등록특허 제1967985호에 개시된 형태로 마련될 수 있다.Here, the dust collecting unit 43 is provided in a water film type that forms a water film inside the wall of the dust collecting unit chamber 41 by a neutralizing agent circulated by a pump. A specific configuration of the water film type dust collecting unit may be provided in the form disclosed in Korean Patent Registration No. 10-1173496 or No. 1967985 registered by the present applicant.

상기 집진부(43)는 중화제에 의해 형성되는 수막으로 구성되므로, 유입된 배기가스 입자 중 산성물질을 포집하여 처리한다.Since the dust collecting part 43 is composed of a water film formed by a neutralizing agent, it collects and treats acidic substances among the introduced exhaust gas particles.

지금부터는 상술한 배기가스의 질소산화물 제거 장치를 이용한 배기가스의 질소산화물 제거 방법에 대하여 설명한다.Hereinafter, a method for removing nitrogen oxides from exhaust gas using the above-described apparatus for removing nitrogen oxides from exhaust gas will be described.

도 2는 도 1의 장치를 이용한 배기가스의 질소산화물 제거 방법의 순서도이다. 도 2를 참조하면, 본 발명에 따른 배기가스의 질소산화물 제거 방법은, 먼저 반도체 등의 공정으로부터 배출되는 배기가스가 제1채널(20) 내로 유입되기 이전에 오존발생기(10)로부터 발생시킨 오존을 배기가스에 주입한다(S10).FIG. 2 is a flowchart of a method for removing nitrogen oxides from exhaust gas using the apparatus of FIG. 1 . Referring to FIG. 2 , in the method for removing nitrogen oxides from exhaust gas according to the present invention, ozone generated from the ozone generator 10 before the exhaust gas discharged from a process such as a semiconductor is introduced into the first channel 20 . is injected into the exhaust gas (S10).

주입된 오존은 상기 (화학식 1)과 같이 배기가스 내부에 포함된 일산화질소와 반응하여 이산화질소로 생성된다.The injected ozone reacts with nitrogen monoxide contained in the exhaust gas as shown in (Formula 1) above to generate nitrogen dioxide.

그리고, 이산화질소를 포함한 배기가스를 제1채널(20) 내로 유입시키고, 제1채널(20)에 설치된 제1노즐(22)에서는 환원제인 Na2S를 분사하면(S20), 분사된 Na2S는 아래 화학식에 따라 각각 배기가스의 이산화질소와 반응한다.And, when the exhaust gas containing nitrogen dioxide is introduced into the first channel 20, and Na 2 S as a reducing agent is injected from the first nozzle 22 installed in the first channel 20 (S20), the injected Na 2 S reacts with nitrogen dioxide in the exhaust gas, respectively, according to the formula below.

(화학식 2) 2NO2 + Na2S -----> N2 + Na2SO4 (Formula 2) 2NO 2 + Na 2 S -----> N 2 + Na 2 SO 4

이때, 환원제인 Na2S가 대부분 소모되면, NO2가 N2로 환원되지 못하고 아래 반응에 의해 질산(HNO3)을 생성한다.At this time, when most of the reducing agent Na 2 S is consumed, NO 2 is not reduced to N 2 and nitric acid (HNO 3 ) is generated by the reaction below.

(화학식 3) NO2 + H2O -----> HNO3 + NO(Formula 3) NO 2 + H 2 O -----> HNO 3 + NO

여기서, 제1채널(20)로 유입되는 이산화질소를 포함하는 배기가스는 Na2S만 반응하게 되며, Na2S와 반응이 끝난 상태의 배기가스는 HNO3를 포함한 상태로 제2채널(30)로 유입된다Here, the first channel and an exhaust gas containing nitrogen dioxide flowing in the unit 20 to respond only Na 2 S, Na 2 S, and the exhaust gas phase reaction is over the second channel 30 in a state including HNO 3 is introduced into

제2채널(30)에서는 제1채널(20)로부터 유입된 배기가스에 제2노즐(32)을 통해 중화제인 NaOH를 분사한다(S30)In the second channel 30, NaOH as a neutralizing agent is injected to the exhaust gas introduced from the first channel 20 through the second nozzle 32 (S30).

중화제인 NaOH는 배기가스의 HNO3와 아래 화학식에 따라 반응하여 HNO3를 중화시킨다.The NaOH neutralizing agent is reacted according to the general formula HNO 3 and the bottom of the exhaust gas to neutralize the HNO 3.

(화학식 4) HNO3 + NaOH -----> NaNO3 + H2O(Formula 4) HNO 3 + NaOH -----> NaNO 3 + H 2 O

상기와 같은 방법으로 제1채널(20)에서는 NO2를 제거하여 NOx제거율을 높이고, 제2채널(30)에서는 HNO3를 제거하여 pH를 제어할 수 있다.In the same way, the first channel 20 removes NO 2 to increase the NOx removal rate, and the second channel 30 removes HNO 3 to control the pH.

이어, 제2채널(30)로부터 배출된 배기가스는 전기집진부(40)로 이동하여 산성물질이 처리된다(S40). 구체적으로, 전기집진부(40)의 집진부 챔버(41) 내부로 유입되는 배기가스 입자는 방전부(41)의 고전압 방전에 의해 방전되며, 방전된 입자 중 산성물질 입자가 중화제에 의해 형성되는 수막형 집진부(42)에 포집된다.Next, the exhaust gas discharged from the second channel 30 moves to the electrostatic precipitator 40 to process the acidic material (S40). Specifically, the exhaust gas particles flowing into the dust collecting chamber 41 of the electric dust collecting unit 40 are discharged by the high voltage discharge of the electric discharge unit 41, and the acid material particles among the discharged particles are formed by a neutralizing agent. It is collected by the dust collector 42 .

그리고, 산성물질이 제거된 배기가스는 장치 외부로 배출되며, 이때 가스분석기(50)를 통해 배출되는 배기가스의 NOx 농도 및 pH 농도 등을 측정한다.Then, the exhaust gas from which the acidic material is removed is discharged to the outside of the device, and at this time, the NOx concentration and the pH concentration of the exhaust gas discharged through the gas analyzer 50 are measured.

한편, 제어부에서는 가스분석기(50)로부터 NOx 농도를 제공받아 NOx 제거율을 계산하며, 사전에 설정된 NOx제거율 기준치 또는 사전에 설정된 H2S 발생 농도의 기준치에 따라 환원제 및 중화제의 투입시기 및 투입량을 제어할 수 있다.On the other hand, the control unit receives the NOx concentration from the gas analyzer 50 to calculate the NOx removal rate, and controls the input timing and input amount of the reducing agent and the neutralizing agent according to the preset NOx removal rate reference value or the preset H 2 S generation concentration reference value. can do.

이때, NOx 제거율은 ORP센서(24)로부터 전송받은 ORP 측정치로부터 계산하며, H2S 발생 농도는 pH센서(34)로부터 전송받은 pH 측정치로부터 측정할 수 있다.In this case, the NOx removal rate is calculated from the ORP measurement value transmitted from the ORP sensor 24 , and the H 2 S generation concentration can be measured from the pH measurement value transmitted from the pH sensor 34 .

상기 방법을 이용하면, 개별적, 순차적 화학반응을 하여 NOx제거율과 황화수소(H2S)의 발생을 현저하게 감소시킴과 동시에 환원제의 사용량을 현저하게 감소시킬 수 있다. Using the above method, it is possible to significantly reduce the NOx removal rate and the generation of hydrogen sulfide (H 2 S) by performing individual and sequential chemical reactions, and at the same time, the amount of the reducing agent used can be significantly reduced.

다음으로, 본 발명의 제2실시예에 따른 다단 스크러버의 배기가스 처리 장치 및 방법에 대하여 설명한다.Next, an apparatus and method for treating exhaust gas of a multi-stage scrubber according to a second embodiment of the present invention will be described.

제2실시예에서는 제1채널(20)에서는 환원제로 일대일의 비율로 혼합된 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)이 분사되고, 제2채널(30)에서는 중화제로 NaOH가 분사된다. 이외, 전체 장치는 상술한 제1실시예와 동일하므로 장치에 대한 설명은 생략한다.In the second embodiment, in the first channel 20, sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) mixed in a one-to-one ratio as a reducing agent are sprayed, and in the second channel 30 , NaOH is sprayed as a neutralizer. Other than that, since the entire device is the same as that of the first embodiment described above, a description of the device is omitted.

제1채널(20)에서 분사되는 환원제는 일대일로 혼합된 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)으로서, 아래 화학식에 따라 각각 배기가스의 이산화질소와 반응한다.The reducing agent injected from the first channel 20 is sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) mixed one-to-one, and reacts with nitrogen dioxide of the exhaust gas according to the following chemical formula, respectively.

(화학식 5)(Formula 5)

2NO2 + 4Na2SO3 →4Na2SO4 + N2 2NO 2 + 4Na 2 SO 3 →4Na 2 SO 4 + N 2

(화학식 6)(Formula 6)

2NO2 + Na2S2O3 + H2O → Na2S2O4 + 2HNO2 + S2NO 2 + Na 2 S 2 O 3 + H 2 O → Na 2 S 2 O 4 + 2HNO 2 + S

여기서, NO2는 Na2S2O4가 생성되면서 제거되고, 부산물로 HNO2가 발생하게 된다.Here, NO 2 is removed while Na 2 S 2 O 4 is generated, and HNO 2 is generated as a by-product.

그리고, 부산물 HNO2를 포함하는 배기가스는 제2채널(30)로 이동하여 아래 화학식 7에서와 같이 NaOH와 반응함으로써 제거된다.And, the exhaust gas containing the by-product HNO 2 is removed by moving to the second channel 30 and reacting with NaOH as shown in Chemical Formula 7 below.

(화학식 7)(Formula 7)

HNO2 + NaOH -----> NaNO2 + H2OHNO 2 + NaOH -----> NaNO 2 + H 2 O

한편, 제어부에서는, 제1실시예에서와 같이, 가스분석기(50)로부터 NOx 농도를 제공받아 NOx 제거율을 계산하며, 사전에 설정된 NOx제거율 기준치 또는 사전에 설정된 H2S 발생 농도의 기준치에 따라 환원제 및 중화제의 투입시기 및 투입량을 제어할 수 있다.On the other hand, in the control unit, as in the first embodiment, receives the NOx concentration from the gas analyzer 50 and calculates the NOx removal rate, and the reducing agent according to the preset NOx removal rate reference value or the preset H 2 S generation concentration reference value And it is possible to control the input timing and amount of the neutralizing agent.

이때, NOx 제거율은 ORP센서(24)로부터 전송받은 ORP 측정치로부터 계산하며, H2S 발생 농도는 pH센서(34)로부터 전송받은 pH 측정치로부터 측정할 수 있다.In this case, the NOx removal rate is calculated from the ORP measurement value transmitted from the ORP sensor 24 , and the H 2 S generation concentration can be measured from the pH measurement value transmitted from the pH sensor 34 .

상기 방법을 이용하면, 개별적, 순차적 화학반응을 하여 NOx제거율과 황화수소(H2S)의 발생을 현저하게 감소시킴과 동시에 환원제의 사용량을 현저하게 감소시킬 수 있다. Using the above method, it is possible to significantly reduce the NOx removal rate and the generation of hydrogen sulfide (H 2 S) by performing individual and sequential chemical reactions, and at the same time, the amount of the reducing agent used can be significantly reduced.

실험예Experimental example

아래 표는 NOx를 포함하는 배기 가스에 적합한 환원제의 사용량을 측정하기 위해 환원제의 종류와 배기가스에 투입되는 물질을 변경하며 실험한 결과표이다.The table below is a table of the results of experiments by changing the type of reducing agent and the material input to the exhaust gas to measure the amount of a reducing agent suitable for exhaust gas containing NOx.

Figure pat00001
Figure pat00001

상기 실험들의 모든 실험 조건은 환원제의 종류와 수산화나트륨(NaOH)의 사용여부 및 배기가스에 포함되는 NOx 및 기타 성분들만 달리하고 배기가스 주입속도 및 농도, 운전시간 등은 동일한 조건으로 실험하였다. 설정된 NOx 제거율(기준치)은 80%, 발생한 H2S농도(기준치)는 0ppm이다.All the experimental conditions of the above experiments were tested under the same conditions as the type of reducing agent, the use of sodium hydroxide (NaOH), NOx and other components included in the exhaust gas, and the exhaust gas injection rate, concentration, and operating time were the same. The set NOx removal rate (standard value) is 80%, and the generated H 2 S concentration (standard value) is 0 ppm.

실험 1Experiment 1

실험 1은 단일 채널을 가진 스크러버에 NOx를 포함한 배기가스를 유입시키고, 환원제로 Na2S를 사용하여 평균 NOx제거율은 67.0%, 발생한 H2S의 농도는 23.7ppm으로 나타났다. 이때, Na2S의 실사용량은 0.58(g/min)으로서 이론사용량 0.23(g/min)의 2.52배가 사용되었다. 실험 1은 평균 NOx 제거율이 67%로서 설정된 NOx 제거율(80%)에 미치지 못하고, H2S의 농도(23.7ppm)는 매우 높게 나타났다.In Experiment 1, exhaust gas containing NOx was introduced into a scrubber having a single channel, and Na 2 S was used as a reducing agent, so that the average NOx removal rate was 67.0% and the concentration of generated H 2 S was 23.7ppm. At this time, the actual usage amount of Na 2 S was 0.58 (g/min), 2.52 times the theoretical usage amount of 0.23 (g/min) was used. Experiment 1 showed that the average NOx removal rate did not reach the NOx removal rate (80%) set as 67%, and the concentration of H 2 S (23.7ppm) was very high.

실험 2Experiment 2

실험 2는 실험 1에서 발생한 H2S를 억제하기 위하여 Na를 가진 NaOH를 Na2S와 함께 사용하여 평균 NOx제거율은 77.9%, 발생한 H2S의 농도는 4.0ppm으로 나타났다. 이때, Na2S의 실사용량은 1.46(g/min)으로서 이론사용량 0.29(g/min)의 5.11배이고, NaOH의 실사용량은 0.12(g/min)으로서 이론사용량 0.26(g/min)의 0.47배가 사용되었다. 실험 2는 실험 1에 비해 평균 NOx제거율이 80%에 근접한 77.9%로 상승하면서 H2S의 농도(4.0ppm)는 낮아졌으나 환원제인 Na2S의 사용량이 2배 이상으로 증가하였다. 여전히 평균 NOx제거율 및 H2S의 농도가 기준치에 미달이며, 환원제 사용량만 증가하였다.Experiment 2 In order to suppress H 2 S using the NaOH with Na with a Na 2 S average NOx removal occurred in experiment 1, the concentration of H 2 S 77.9%, were generated as 4.0ppm. At this time, the actual usage amount of Na 2 S is 1.46 (g/min), which is 5.11 times the theoretical usage amount of 0.29 (g/min), and the actual usage amount of NaOH is 0.12 (g/min), which is 0.47 of the theoretical usage amount 0.26 (g/min). boat was used. In Experiment 2, the average NOx removal rate increased to 77.9%, close to 80%, compared to Experiment 1, and the concentration (4.0 ppm) of H 2 S was lowered, but the amount of Na 2 S as a reducing agent increased more than twice. The average NOx removal rate and the concentration of H 2 S were still below the standard values, and only the amount of the reducing agent was increased.

실험 3Experiment 3

실험 3은 단일 채널을 가진 스크러버에 NOx와 HCl을 포함한 배기가스를 유입시키고, 환원제로 Na2S와 NaOH를 함께 사용하여 평균 NOx제거율 81.0%, 발생한 H2S의 농도는 1.0ppm으로 나타났다. 이때, Na2S의 실사용량은 1.88(g/min)으로서 이론사용량 0.30(g/min)의 6.2배이고, NaOH의 실사용량은 0.30(g/min)으로서 이론사용량 0.50(g/min)의 0.60배가 사용되었다. 실험 3은 반도체 공정의 배기가스에 HCl이 포함되어 있는 것을 가정한 것으로서, 실험 2에 비하여 평균 NOx제거율(81.0%)은 H2S의 농도(1.0ppm)는 낮아졌으나, 여전히 H2S의 농도는 기준치 보다 높을 뿐만 아니라 환원제인 Na2S의 사용량이 증가하였다.In Experiment 3, exhaust gas containing NOx and HCl was introduced into a scrubber having a single channel, and Na 2 S and NaOH were used together as reducing agents, so that the average NOx removal rate was 81.0%, and the concentration of generated H 2 S was 1.0 ppm. At this time, the actual usage amount of Na 2 S is 1.88 (g/min), which is 6.2 times the theoretical usage amount of 0.30 (g/min), and the actual usage amount of NaOH is 0.30 (g/min), 0.60 of the theoretical usage amount 0.50 (g/min). boat was used. Experiment 3 assumes that HCl is included in the exhaust gas of the semiconductor process. Compared to Experiment 2, the average NOx removal rate (81.0%) has a lower H 2 S concentration (1.0 ppm), but still the H 2 S concentration was higher than the reference value, and the amount of Na 2 S, a reducing agent, was increased.

실험 4Experiment 4

실험 4는 단일 채널을 가진 스크러버에 NOx와 SO2를 포함한 배기가스를 유입시키고, 환원제로 Na2S와 NaOH를 함께 사용하여 평균 NOx제거율 82.9%, 발생한 H2S의 농도는 1.8ppm으로 나타났다. 이때, Na2S의 실사용량은 2.17(g/min)으로서 이론사용량 0.37(g/min)의 5.84배이고, NaOH의 실사용량은 0.56(g/min)으로서 이론사용량 0.56(g/min)의 0.71배가 사용되었다. 실험 4는 반도체 공정의 배기가스에 SO2가 포함되어 있는 것을 가정한 것으로서, 실험 3에 비해 평균 NOx제거율(82.9%)은 상승하면서 Na2S의 사용량은 상대적으로 감소하였으나, 여전히 H2S의 농도(1.8ppm)는 기준치보다 높았다. In Experiment 4, exhaust gas containing NOx and SO 2 was introduced into a scrubber having a single channel , and Na 2 S and NaOH were used together as reducing agents, so that the average NOx removal rate was 82.9%, and the concentration of generated H 2 S was 1.8ppm. At this time, the actual amount of Na 2 S used is 2.17 (g/min), which is 5.84 times the theoretical amount of 0.37 (g/min), and the actual amount of NaOH used is 0.56 (g/min), which is 0.71 of the theoretical amount of 0.56 (g/min). boat was used. Experiment 4 assumes that SO 2 is included in the exhaust gas of the semiconductor process. Compared to Experiment 3, the average NOx removal rate (82.9%) increased while the amount of Na 2 S used was relatively decreased, but the amount of H 2 S was still increased. The concentration (1.8ppm) was higher than the reference value.

실험 5Experiment 5

실험 5는 단일 채널을 가진 스크러버에 NOx와 HCl 및 SO2를 포함한 배기가스를 유입시키고, 환원제로 Na2S와 NaOH를 함께 사용하여 평균 NOx제거율 83.0%, H2S의 농도는 1.2ppm으로 나타났다. 이때, Na2S의 실사용량은 2.50(g/min)으로서 이론사용량 0.34(g/min)의 7.25배이고, NaOH의 실사용량은 1.04(g/min)으로서 이론사용량 0.95(g/min)의 1.09배가 사용되었다. 실험 5는 반도체 공정의 배기가스에 HCl 및 SO2가 포함되어 있는 것을 가정한 것으로서, 실험 4에 비해 평균 NOx제거율(83.0%)은 상승하였으나, H2S의 농도(1.2ppm)는 여전히 기준치 보다 높고, Na2S의 사용량은 7.25배로 증가하였다. In Experiment 5, exhaust gas containing NOx, HCl, and SO 2 was introduced into a scrubber having a single channel, and Na 2 S and NaOH were used together as reducing agents, so that the average NOx removal rate was 83.0%, and the concentration of H 2 S was 1.2 ppm. . At this time, the actual usage amount of Na 2 S is 2.50 (g/min), which is 7.25 times the theoretical usage amount of 0.34 (g/min), and the actual usage amount of NaOH is 1.04 (g/min), 1.09 of the theoretical usage amount 0.95 (g/min). boat was used. Experiment 5 assumes that HCl and SO 2 are contained in the exhaust gas of the semiconductor process. Compared to Experiment 4, the average NOx removal rate (83.0%) was increased, but the concentration of H 2 S (1.2ppm) was still higher than the reference value. high, and the amount of Na 2 S used increased by 7.25 times.

실험 6Experiment 6

실험 6은 2채널로 형성된 스크러버에 NOx를 포함한 배기가스를 유입시키고, 제1채널에서만 환원제로 Na2S를 사용하였다. 이때, 평균 NOx제거율은 84.1%, H2S의 농도는 12.2ppm으로 나타났고, Na2S의 실사용량은 0.53(g/min)으로서 이론사용량 0.38(g/min)의 1.40배가 사용되었다. 실험 6은 실험 1에 비해 환원제의 이론 대비 사용량은 낮아지면서 평균 NOx제거율은 84.1%로 적합한 수준으로 상승하였으나, H2S의 농도는 여전히 12.2ppm으로 높은 수준을 유지하였다.In Experiment 6, exhaust gas containing NOx was introduced into a scrubber formed of two channels, and Na 2 S was used as a reducing agent only in the first channel. At this time, the average NOx removal rate was 84.1%, the concentration of H 2 S was 12.2 ppm, and the actual amount of Na 2 S was 0.53 (g/min), which was 1.40 times the theoretical amount of 0.38 (g/min). In Experiment 6, the theoretical amount of reducing agent used was lower than in Experiment 1, and the average NOx removal rate rose to an appropriate level of 84.1%, but the concentration of H 2 S was still maintained at a high level of 12.2 ppm.

실험 7Experiment 7

실험 7은 2채널로 형성된 스크러버에 NOx를 포함한 배기가스를 유입시키고, 제1채널에서는 환원제로 Na2S를 사용하고, 제2채널에서는 중화제인 NaOH를 사용하였다. 이때, 평균 NOx제거율은 82.6%, H2S의 농도는 1.3ppm으로 나타났고, Na2S의 실사용량은 0.49(g/min)으로서 이론사용량 0.29(g/min)의 1.67배이고, NaOH의 실사용량은 0.15(g/min)으로서 이론사용량 0.26(g/min)의 0.58배가 사용되었다. 실험 7은 단일 채널에 Na2S와 NaOH를 함께 사용한 실험 2와 비교하여, 환원제의 이론 대비 사용량을 매우 낮은 수준으로 낮추면서 평균 NOx제거율은 82.6%로 적합한 수준으로 상승하였고, H2S의 농도도 1.3ppm으로 매우 낮은 수준으로 감소하였다.In Experiment 7, exhaust gas containing NOx was introduced into a scrubber formed of two channels, Na 2 S was used as a reducing agent in the first channel, and NaOH as a neutralizer was used in the second channel. At this time, the average NOx removal rate was 82.6%, the concentration of H 2 S was 1.3 ppm, and the actual amount of Na 2 S was 0.49 (g/min), 1.67 times the theoretical amount of 0.29 (g/min), and the actual amount of NaOH. The dose was 0.15 (g/min), which was 0.58 times the theoretical dose of 0.26 (g/min). In Experiment 7, compared to Experiment 2 in which Na 2 S and NaOH were used together in a single channel, the average NOx removal rate was increased to a suitable level to 82.6% while lowering the amount of the reducing agent to a very low level compared to the theoretical level, and the concentration of H 2 S It was reduced to a very low level to 1.3 ppm in FIG.

즉, 2개의 채널에 각각 분리하여 Na2S와 NaOH를 사용하는 것이 환원제 사용량을 현저하게 감소시키면서도 H2S의 농도도 감소시킴을 확인하였다. That is, it was confirmed that the use of Na 2 S and NaOH by separating each of the two channels significantly reduced the amount of reducing agent and also reduced the concentration of H 2 S.

실험 8Experiment 8

실험 8은 단일 채널로 형성된 스크러버에 NOx를 포함한 배기가스를 유입시키고, 환원제로 Na2S2O3을 사용하여 평균 NOx제거율은 77.9%, H2S의 농도는 0ppm으로 나타났다. 이때, Na2S2O3의 실사용량은 80.9(g/min)으로서 이론사용량 1.54(g/min)의 80.9배가 사용되었다. 실험 8은 실험 1~7과 비교하여 H2S의 농도가 0ppm으로서 H2S가 발생하지 않아 가장 이상적인 형태이긴 하나 환원제 사용량이 이론 사용량 대비 80.9배로 나타나는 문제점이 있음을 확인하였다.In Experiment 8, exhaust gas containing NOx was introduced into a scrubber formed of a single channel, and Na 2 S 2 O 3 was used as a reducing agent, so that the average NOx removal rate was 77.9% and the concentration of H 2 S was 0ppm. At this time, the actual usage amount of Na 2 S 2 O 3 was 80.9 (g/min), which was 80.9 times the theoretical usage amount of 1.54 (g/min). Experiment 8 was confirmed that the H 2 S does not occur as the concentration of H 2 S 0ppm compared with experiments 1-7 one ideal form though there is a problem that the reducing agent amount 80.9 times that appears over theoretical amount.

실험 9Experiment 9

실험 9는 단일 채널로 형성된 스크러버에 NOx를 포함한 배기가스를 유입시키고, 환원제로 Na2S2O3을 사용하여 평균 NOx제거율은 69.0%로 나타났고, H2S의 농도는 0ppm으로 나타났다. 이때, Na2S2O3의 실사용량은 57.3(g/min)으로서 이론사용량 1.34(g/min)의 42.7배가 사용되었다. 실험 9는 실험 1~7과 비교하여 H2S의 농도가 0ppm으로서 H2S가 발생하지 않았고, 실험 8과 비교하여 환원제 사용량도 감소하였으나 여전히 환원제 사용량이 이론 사용량 대비 42.7배로서 높게 나타남을 확인하였다.In Experiment 9, exhaust gas containing NOx was introduced into a scrubber formed of a single channel, and Na 2 S 2 O 3 was used as a reducing agent, so that the average NOx removal rate was 69.0%, and the concentration of H 2 S was 0ppm. At this time, the actual usage amount of Na 2 S 2 O 3 was 57.3 (g/min), which was 42.7 times the theoretical usage amount of 1.34 (g/min). In Experiment 9, the concentration of H 2 S was 0 ppm as compared to Experiments 1 to 7, and H 2 S did not occur, and the amount of reducing agent was also reduced compared to Experiment 8, but it was confirmed that the amount of reducing agent was still 42.7 times higher than that of the theoretical amount. did.

혼합비 실험mixing ratio experiment

실험 8과 실험 9의 실험결과를 토대로, 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)은 H2S가 발생하지 않는 것을 확인하였다. 이에 따라, 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)을 혼합하여 환원제로 사용하고, 환원제 사용량을 최소화할 수 있는 최적 혼합비를 찾기 위해 아래와 같은 혼합비 실험을 실시하였다. 실험조건은 배 가스의 유속을 1CMM(m³/min), 일산화질소(NO) 농도 200ppm으로 설정하고, 평균 운전시간 1시간 동안 평균 NOx제거율 90%로 설정하였다.Based on the experimental results of Experiment 8 and Experiment 9, sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) H 2 S was not generated. Accordingly, sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) were mixed and used as a reducing agent, and the following mixing ratio experiment was performed to find the optimal mixing ratio to minimize the amount of reducing agent used. Experimental conditions were set at 1CMM (m³/min), nitrogen monoxide (NO) concentration of 200ppm, and an average NOx removal rate of 90% for an average operating time of 1 hour.

도 3은 분당 환원제 총 사용량과 환원제의 혼합비의 관계를 나타낸 그래프이다. 도 3을 참조하면, 분당 환원제 총 사용량(g/min)은 전체적으로 봤을 때 대략 "U"자 형태의 그래프로 나타나며, 1:1일때 가장 낮은 사용량을 나타내어 1:1의 혼합비가 환원제 사용량을 최소화할 수 있는 최적 혼합비임을 확인하였다.3 is a graph showing the relationship between the total amount of the reducing agent per minute and the mixing ratio of the reducing agent. Referring to FIG. 3, the total amount of reducing agent used per minute (g/min) is shown as an approximately "U"-shaped graph when viewed as a whole. It was confirmed that it is the optimal mixing ratio that can be used.

실험 10Experiment 10

실험 10은 단일 채널을 가진 스크러버에 NOx를 포함한 배기가스를 유입시키고, 환원제로 일대일 비율로 혼합된 Na2SO3 + Na2S2O3를 사용하여 평균 NOx제거율은 82.0%, H2S의 농도는 0ppm으로 나타났다. 이때, 일대일 비율로 혼합된 Na2SO3 + Na2S2O3의 실사용량은 7.90(g/min)으로서 이론사용량 1.45(g/min)의 5.45배가 사용되었다. 실험 10은 실험 1~7과 비교하여 H2S의 농도가 0ppm으로서 H2S가 발생하지 않았고, 실험 8 및 실험 9와 비교하여 환원제 사용량도 1/8 ~ 1/10 수준으로 현저하게 감소하는 것을 확인하였다.Experiment 10 introduced exhaust gas containing NOx into a scrubber with a single channel, and using Na 2 SO 3 + Na 2 S 2 O 3 mixed in a one-to-one ratio as a reducing agent, the average NOx removal rate was 82.0% and that of H 2 S The concentration was found to be 0 ppm. At this time, the actual amount of Na 2 SO 3 + Na 2 S 2 O 3 mixed in a one-to-one ratio was 7.90 (g/min), which was 5.45 times the theoretical amount of 1.45 (g/min). In Experiment 10, the concentration of H 2 S was 0 ppm as compared to Experiments 1 to 7, and H 2 S did not occur, and compared to Experiments 8 and 9, the amount of reducing agent used was also significantly reduced to 1/8 to 1/10 level. confirmed that.

실험 11Experiment 11

실험 11은 2채널로 형성된 스크러버에 NOx를 포함한 배기가스를 유입시키고, 제1채널에서는 환원제로 일대일 비율로 혼합된 Na2SO3 + Na2S2O3를 사용하고, 제2채널에서는 중화제인 NaOH를 사용하였다. 실험 11은 실험 5와 같이 반도체 공정의 배기가스에 HCl 및 SO2가 포함되어 있는 것을 가정하여, 실험 7을 통해 확인한 내용인 2번째 채널에 NaOH를 사용함으로써 H2S 농도 저감 및 환원제 사용량 감소를 확인하고자 한 것이다.In Experiment 11, exhaust gas containing NOx was introduced into a scrubber formed of two channels, and in the first channel, Na 2 SO 3 + Na 2 S 2 O 3 mixed in a one-to-one ratio as a reducing agent was used, and in the second channel, a neutralizing agent was used. NaOH was used. Experiment 11 assumes that HCl and SO 2 are contained in the exhaust gas of the semiconductor process as in Experiment 5. By using NaOH in the second channel, which was confirmed through Experiment 7, the reduction in H 2 S concentration and reduction in the amount of reducing agent was achieved. wanted to check.

실험 11의 결과는 평균 NOx제거율 81.0%, H2S의 농도 0ppm으로 나타났다. 그리고, 일대일 비율로 혼합된 Na2SO3 + Na2S2O3의 실사용량은 7.80(g/min)으로서 이론사용량 1.42(g/min)의 5.5배가 사용되었고, 중화제인 NaOH의 실사용량은 0.98(g/min)으로서 이론사용량 0.92(g/min)의 1.06배가 사용되었다. 결과적으로 실제 반도체 공정 환경에서와 같은 조건을 가지더라도 환원제 사용량을 현저하게 낮추면서도 H2S가 발생되지 않았다.As a result of Experiment 11, the average NOx removal rate was 81.0%, and the concentration of H 2 S was 0 ppm. And, the actual amount of Na 2 SO 3 + Na 2 S 2 O 3 mixed in a one-to-one ratio was 7.80 (g/min), 5.5 times the theoretical amount of 1.42 (g/min), and the actual amount of NaOH as a neutralizing agent was As 0.98 (g/min), 1.06 times the theoretical amount of 0.92 (g/min) was used. As a result, even under the same conditions as in the actual semiconductor process environment, H 2 S was not generated while remarkably lowering the amount of reducing agent used.

상술한 바와 같이 2개의 채널을 가진 다단 스크러버를 마련하고, 제1채널에서는 일대일 비율로 혼합된 Na2SO3 + Na2S2O3를 사용하고, 제2채널에서는 NaOH를 사용하면, NOx제거율을 설정값을 만족시키면서도 H2S가 발생하지 않음과 동시에 환원제 사용량을 현저하게 감소시킬 수 있다.Prepare a multi-stage scrubber having two channels as described above, use Na 2 SO 3 + Na 2 S 2 O 3 mixed in a one-to-one ratio in the first channel, and use NaOH in the second channel, NOx removal rate While satisfying the set value, H 2 S is not generated and the amount of reducing agent used can be significantly reduced.

본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments, but may be implemented in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the present invention claimed in the claims, it is considered within the scope of the description of the claims of the present invention to various extents that can be modified by any person skilled in the art to which the invention pertains.

※도면의 주요 부분에 대한 부호의 설명※
10 : 오존발생기
20 : 제1채널 21 : 제1저장조
22 : 제1스프레이 노즐 23 : 제1수조
24 : ORP센서
30 : 제2채널 31 : 제2저장조
32 : 스프레이 노즐 33 : 제2수조
34 : pH센서
40 : 전기집진부
41 : 집진부 챔버 42 : 방전부
43 : 집진부 50 : 가스분석기
※Explanation of symbols for main parts of the drawing※
10: ozone generator
20: first channel 21: first storage tank
22: first spray nozzle 23: first water tank
24: ORP sensor
30: second channel 31: second storage tank
32: spray nozzle 33: second water tank
34: pH sensor
40: electric dust collector
41: dust collector chamber 42: discharge unit
43: dust collector 50: gas analyzer

Claims (10)

다단 스크러버의 배기가스 처리 장치에 있어서,
NOx를 포함한 배기가스가 유입되며, 환원제가 분사되는 제1채널; 및,
상기 제1채널의 측면에 위치하여 상기 제1채널을 통과한 배기가스가 유입되며, 상기 환원제와 혼합되지 않도록 중화제가 분사되는 제2채널;을 포함하는 다단 스크러버의 배기가스 처리 장치.
In the exhaust gas treatment apparatus of a multi-stage scrubber,
a first channel through which exhaust gas including NOx is introduced and a reducing agent is injected; and,
Exhaust gas treatment apparatus of a multi-stage scrubber comprising a; a second channel located on the side of the first channel, through which the exhaust gas passing through the first channel is introduced, and a neutralizing agent is injected so as not to be mixed with the reducing agent.
제1항에 있어서,
상기 제2채널로부터 외부로 배출되는 배기가스의 NOx 농도와 H2S의 농도를 측정하는 가스분석기;
상기 제1채널의 하부에 위치하여 상기 환원제가 저장되는 제1저장조;
상기 제1저장조로 상기 환원제를 공급하도록 설치되는 제1수조;
상기 제1저장조에 저장된 상기 환원제의 ORP를 측정하는 ORP센서;
상기 제2채널의 하부에 위치하여 상기 중화제가 저장되는 제2저장조;
상기 제2저장조로 상기 중화제를 공급하도록 설치되는 제2수조;
상기 제2저장조에 저장된 상기 중화제의 pH를 측정하는 pH센서; 및,
상기 가스분석기의 NOx 농도에 따른 상기 ORP센서의 측정치를 토대로 NOx 제거 효율을 계산하며, 상기 pH센서의 측정치를 토대로 H2S의 농도를 출력하고, 설정된 NOx제거율 기준치 또는 설정된 H2S 발생 농도의 기준치에 따라 환원제 및 중화제의 투입시기와 투입량을 제어하는 제어부;를 포함하는 다단 스크러버의 배기가스 처리 장치.
According to claim 1,
a gas analyzer for measuring the NOx concentration and the H 2 S concentration of the exhaust gas discharged from the second channel;
a first storage tank positioned under the first channel to store the reducing agent;
a first water tank installed to supply the reducing agent to the first storage tank;
ORP sensor for measuring the ORP of the reducing agent stored in the first storage tank;
a second storage tank positioned below the second channel to store the neutralizing agent;
a second water tank installed to supply the neutralizing agent to the second storage tank;
a pH sensor for measuring the pH of the neutralizing agent stored in the second storage tank; and,
The NOx removal efficiency is calculated based on the measured value of the ORP sensor according to the NOx concentration of the gas analyzer, and the concentration of H 2 S is output based on the measured value of the pH sensor, and the set NOx removal rate reference value or the set H 2 S generation concentration. Exhaust gas treatment apparatus of a multi-stage scrubber comprising a; a control unit for controlling the input timing and input amount of the reducing agent and the neutralizing agent according to the reference value.
제2항에 있어서,
상기 제어부는 설정된 NOx 제거율보다 계산된 NOx 제거율이 작아지는 경우, 상기 설정된 NOx 제거율보다 크거나 같아지기 위하여 상기 제1수조의 환원제를 상기 제1채널로 공급하도록 제어하는 다단 스크러버의 배기가스 처리 장치.
3. The method of claim 2,
When the calculated NOx removal rate is smaller than the set NOx removal rate, the control unit controls to supply the reducing agent of the first water tank to the first channel to be greater than or equal to the set NOx removal rate.
제2항에 있어서,
상기 제어부는 설정된 H2S의 농도보다 측정된 H2S의 농도가 커지는 경우, 상기 설정된 H2S의 농도보다 작거나 같아지기 위하여 상기 제2수조의 중화제를 상기 제2채널로 공급하도록 제어하는 다단 스크러버의 배기가스 처리 장치.
3. The method of claim 2,
If the control unit is the concentration of H 2 S measured than the concentration of a predetermined H 2 S increases, that controls to supply to the second channel the neutralizing agent in the second tank to become less than or equal to the concentration of the set H 2 S Exhaust gas treatment device of multi-stage scrubber.
제1항에 있어서,
방전부와 집진부를 포함하여 상기 제2채널의 후단에 상기 제2채널에서 처리된 배기가스를 제공받도록 설치되는 전기집진부를 더 포함하며,
상기 집진부는 상기 중화제를 이용한 수막으로 형성되는 다단 스크러버의 배기가스 처리 장치.
According to claim 1,
It further includes an electric dust collecting unit installed at the rear end of the second channel, including a discharge unit and a dust collecting unit, to receive the exhaust gas treated in the second channel,
The dust collecting unit is an exhaust gas treatment device of a multi-stage scrubber formed of a water film using the neutralizing agent.
제1항에 있어서,
상기 환원제는 일대일의 비율로 혼합된 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)이고, 상기 중화제는 NaOH인 다단 스크러버의 배기가스 처리 장치.
According to claim 1,
The reducing agent is sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) mixed in a one-to-one ratio, and the neutralizing agent is NaOH.
제1항에 있어서,
상기 환원제는 Na2S이고, 상기 중화제는 NaOH인 다단 스크러버의 배기가스 처리 장치.
According to claim 1,
The reducing agent is Na 2 S, the neutralizing agent is NaOH exhaust gas treatment apparatus of a multi-stage scrubber.
다단 스크러버의 배기가스 처리 방법에 있어서,
제1채널로 유입되는 이산화질소를 포함한 배기가스에 환원제를 분사하여 질소산화물을 제거하는 단계; 및,
상기 제1채널을 통과하여 제2채널로 유입되는 배기가스에 중화제를 분사하여 질소산화물을 제거하는 단계;를 포함하고,
상기 환원제는 설정된 NOx제거율 기준치에 따라 투입시기 및 투입량을 제어하고, 상기 중화제는 설정된 H2S 발생 농도의 기준치에 따라 투입시기 및 투입량을 제어하는 다단 스크러버의 배기가스 처리 방법.
In the exhaust gas treatment method of a multi-stage scrubber,
removing nitrogen oxides by injecting a reducing agent into the exhaust gas containing nitrogen dioxide introduced into the first channel; and,
Including; spraying a neutralizing agent to the exhaust gas flowing into the second channel through the first channel to remove nitrogen oxides;
The reducing agent controls the input timing and input amount according to the set NOx removal rate reference value, and the neutralizing agent controls the input timing and input amount according to the set reference value of the H 2 S generation concentration. Exhaust gas treatment method of a multi-stage scrubber.
제8항에 있어서,
상기 환원제는 일대일의 비율로 혼합된 티오황산나트륨(Na2S2O3)과 아황산나트륨(Na2SO3)인이고, 상기 중화제는 NaOH인 다단 스크러버의 배기가스 처리 방법.
9. The method of claim 8,
The reducing agent is sodium thiosulfate (Na 2 S 2 O 3 ) and sodium sulfite (Na 2 SO 3 ) mixed in a one-to-one ratio, and the neutralizing agent is NaOH.
제8항에 있어서,
상기 환원제는 Na2S이고, 상기 중화제는 NaOH인 다단 스크러버의 배기가스 처리 방법.
9. The method of claim 8,
The reducing agent is Na 2 S, the neutralizing agent is NaOH exhaust gas treatment method of a multi-stage scrubber.
KR1020200020248A 2020-02-19 2020-02-19 The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof KR102407755B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200020248A KR102407755B1 (en) 2020-02-19 2020-02-19 The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof
PCT/KR2021/002101 WO2021167388A2 (en) 2020-02-19 2021-02-19 Apparatus and method for removing nitrogen oxide from exhaust gas
US17/904,387 US11883781B2 (en) 2020-02-19 2021-02-19 Apparatus and method for removing nitrogen oxide from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200020248A KR102407755B1 (en) 2020-02-19 2020-02-19 The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof

Publications (2)

Publication Number Publication Date
KR20210106045A true KR20210106045A (en) 2021-08-30
KR102407755B1 KR102407755B1 (en) 2022-06-14

Family

ID=77502035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200020248A KR102407755B1 (en) 2020-02-19 2020-02-19 The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof

Country Status (1)

Country Link
KR (1) KR102407755B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452788A (en) * 2022-03-17 2022-05-10 江苏桂铭机械有限公司 Sweetener with tail end detects

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268029B1 (en) * 1998-07-10 2000-10-16 홍종두 Method and device for removal of nitrogen oxide using oxidants
KR100702660B1 (en) * 2005-11-24 2007-04-02 신도건공 주식회사 Removal method and equipment of nitrogen oxide by wet oxidation/reduction process
JP5276460B2 (en) * 2009-01-30 2013-08-28 三菱重工業株式会社 Exhaust gas purification device
KR101300482B1 (en) 2010-03-31 2013-09-02 순천대학교 산학협력단 Air Pollutants Removal Apparatus using Mediated Ions and Reductants, And Operation Method Thereof
KR101433071B1 (en) * 2014-04-17 2014-08-25 (주)에스.엠 .엔지니어링 Deodorization apparatus of foul smell gas
KR101696979B1 (en) * 2014-10-31 2017-01-18 한국기계연구원 System for purifying ship emissions and purifying method using threrof
KR101890165B1 (en) 2016-04-29 2018-08-21 (주)명성씨.엠.아이 Scrubber for removing N2O contained in the waste gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268029B1 (en) * 1998-07-10 2000-10-16 홍종두 Method and device for removal of nitrogen oxide using oxidants
KR100702660B1 (en) * 2005-11-24 2007-04-02 신도건공 주식회사 Removal method and equipment of nitrogen oxide by wet oxidation/reduction process
JP5276460B2 (en) * 2009-01-30 2013-08-28 三菱重工業株式会社 Exhaust gas purification device
KR101300482B1 (en) 2010-03-31 2013-09-02 순천대학교 산학협력단 Air Pollutants Removal Apparatus using Mediated Ions and Reductants, And Operation Method Thereof
KR101433071B1 (en) * 2014-04-17 2014-08-25 (주)에스.엠 .엔지니어링 Deodorization apparatus of foul smell gas
KR101696979B1 (en) * 2014-10-31 2017-01-18 한국기계연구원 System for purifying ship emissions and purifying method using threrof
KR101890165B1 (en) 2016-04-29 2018-08-21 (주)명성씨.엠.아이 Scrubber for removing N2O contained in the waste gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452788A (en) * 2022-03-17 2022-05-10 江苏桂铭机械有限公司 Sweetener with tail end detects
CN114452788B (en) * 2022-03-17 2023-02-14 江苏桂铭机械有限公司 Desulfurization equipment with tail end detects

Also Published As

Publication number Publication date
KR102407755B1 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
EP2123344B1 (en) Method and apparatus for processing exhaust gas
AU2003275051B2 (en) Process for reducing the level of NOx in waste gas streams using sodium chlorite
WO2003050039A1 (en) Nox, hg, and so2 removal using ammonia
KR20100104173A (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
Wang et al. Removal of $\hbox {NO} _ {x} $, $\hbox {SO} _ {2} $, and Hg From Simulated Flue Gas by Plasma-Absorption Hybrid System
KR102089599B1 (en) Waste gas treatment device for semiconductor
KR102407762B1 (en) The appartus and method for denitrification of exhaust gas
KR100702660B1 (en) Removal method and equipment of nitrogen oxide by wet oxidation/reduction process
KR102407755B1 (en) The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof
KR100365368B1 (en) Method for treating toxic compounds using non-thermal plasma
KR20170117032A (en) Exhaust gas treatment method and exhaust gas treatment device
JP4446269B2 (en) Dry simultaneous desulfurization denitration equipment
KR100690430B1 (en) A method of efficiently removing dust, sulfur oxides and nitrogen oxides from waste gases
KR20160072919A (en) Method for removing nitrogen oxide, sulfur oxide and mercury from exhaust gas
Głomba et al. Simultaneous removal of NOx, SO2, CO and Hg from flue gas by ozonation. Pilot plant studies
US11883781B2 (en) Apparatus and method for removing nitrogen oxide from exhaust gas
CN105311933B (en) The dry type removal device and dry type minimizing technology of harmful substance in exhaust gas
KR20230026803A (en) Exhaust gas treatment apparatus
KR102601883B1 (en) Apparatus for reducing gas and dust simultaneously
Kordylewski et al. Pilot plant studies on NO x removal via NO ozonation and absorption
KR20120063041A (en) Method for simultaneously removing sulfur dioxide and elemental mercury from the flue gas
KR101624034B1 (en) Dry-type Apparatus and Method for Removing Harmful Substance from Exhaust Gas
KR101097442B1 (en) Treatment apparatus of incineration flue gas
KR20000025341A (en) Method for removing nitrogen oxide by using ozone and ammonia
KR20010044615A (en) Method and system for removing nitrogen oxide using oxidation catalyst

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant