KR20210103981A - Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof - Google Patents

Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof Download PDF

Info

Publication number
KR20210103981A
KR20210103981A KR1020210019947A KR20210019947A KR20210103981A KR 20210103981 A KR20210103981 A KR 20210103981A KR 1020210019947 A KR1020210019947 A KR 1020210019947A KR 20210019947 A KR20210019947 A KR 20210019947A KR 20210103981 A KR20210103981 A KR 20210103981A
Authority
KR
South Korea
Prior art keywords
liver
derived
liver tissue
organoids
decellularized
Prior art date
Application number
KR1020210019947A
Other languages
Korean (ko)
Inventor
조승우
김수겸
최이선
배수한
한대훈
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of KR20210103981A publication Critical patent/KR20210103981A/en
Priority to KR1020240068623A priority Critical patent/KR20240078647A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0671Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/23Gastro-intestinal tract cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a scaffold for culturing and transplanting liver organoids using liver extracellular matrix (LEM). Since liver toxicity is an important indicator that must be analyzed in drug development and drug evaluation, an advanced liver organoid-based in vitro model platform significantly increases a success rate of drug development.

Description

간 오가노이드 배양 및 이식을 위한 탈세포 간 조직 유래 지지체 및 이의 제조방법{LIVER EXTRACELLULAR MATRIX-DERIVED SCAFFOLD FOR CULTURE AND TRANSPLANTATION OF LIVER ORGANOID AND PREPARING METHOD THEREOF}Decellularized liver tissue-derived scaffold for liver organoid culture and transplantation, and method for manufacturing the same

본 발명은 간 오가노이드 배양 및 이식을 위한 탈세포 간 조직 유래 지지체 및 이의 제조방법에 관한 것이다.The present invention relates to a scaffold derived from decellularized liver tissue for culturing and transplanting liver organoids and a method for preparing the same.

최근 각광받고 있는 오가노이드는 신약 스크리닝, 약물 독성 평가, 질환 모델링, 세포 치료제, 조직공학 등 다양한 임상적 적용이 가능한 조직 유사체로서 전 세계적으로 급격하게 성장하고 있는 기술이다. 오가노이드는 삼차원 구조체 내에 인체의 특정 장기 및 조직을 구성하는 다양한 세포로 이루어져 있을 뿐만 아니라 그들 간의 상호 작용을 구현할 수 있기 때문에 세포주 모델이나 동물 모델과 같은 기존에 주로 이용되던 약물 평가 모델과 비교해서 훨씬 정확한 체외 모델 플랫폼으로 적용이 가능하다.Organoids, which have recently been in the spotlight, are a rapidly growing technology around the world as a tissue analogue that can be used for various clinical applications such as drug screening, drug toxicity evaluation, disease modeling, cell therapy, and tissue engineering. Organoids are not only composed of various cells constituting specific organs and tissues of the human body within a three-dimensional structure, but also can implement interactions between them. It can be applied as an accurate in vitro model platform.

장기 별로 다양한 오가노이드 종류가 존재하는데 이를 연구하는 전 세계 수많은 연구팀에서 현재까지 오가노이드를 배양하기 위해 배양 지지체로서 공통적으로 매트리젤 (Matrigel) 제품을 이용하고 있다. 하지만 매트리젤은 쥐의 육종암 조직에서 추출한 성분이기 때문에, 제품의 품질을 균일하게 유지하기 어려우며 고가이고 동물성 감염균 및 바이러스 전이 등 안전성 측면에서 문제가 있어 오가노이드 배양 시스템으로서 매트리젤은 해결해야 하는 많은 문제점을 가지고 있다. 특히, 암 조직 유래의 소재로서 특정 조직 오가노이드 배양을 위해 필요한 최적의 조직 특이적 미세환경을 제공해 주지 못한다. 매트리젤을 대체하기 위한 고분자 기반 하이드로젤 개발 연구가 일부 진행되어 왔으나 아직까지 매트리젤을 대체할만한 수준의 소재는 보고된 바 없다.There are various types of organoids for each organ, and many research teams around the world researching them have commonly used Matrigel products as a culture support for culturing organoids. However, since Matrigel is a component extracted from rat sarcoma tissue, it is difficult to maintain uniform product quality, is expensive, and there are problems in terms of safety such as animal infectious bacteria and virus transfer. I have a problem. In particular, as a material derived from cancer tissue, it does not provide an optimal tissue-specific microenvironment necessary for culturing specific tissue organoids. Although some studies have been conducted on the development of polymer-based hydrogels to replace Matrigel, no material has been reported that can replace Matrigel.

간 오가노이드는 간 조직에서 성체줄기세포를 추출하여 배양하거나 인간 유도만능줄기세포 또는 배아줄기세포와 같은 전분화능줄기세포를 간세포로 분화시킨 후 배양하는 방법으로 제작한다. 매트리젤이 생체 내 복합적인 간 조직 특이적 미세환경을 구현하지 못하기 때문에 간 오가노이드 분화 효율 및 기능에 있어 개선이 필요한 상황이다. 따라서 보다 성숙하고 기능적인 간 오가노이드를 제작하기 위한 배양 시스템의 개발이 절실히 요구되고 있다.Liver organoids are produced by extracting and culturing adult stem cells from liver tissue or by culturing pluripotent stem cells such as human induced pluripotent stem cells or embryonic stem cells after differentiation into hepatocytes. Since Matrigel cannot implement a complex liver tissue-specific microenvironment in vivo, there is a need for improvement in liver organoid differentiation efficiency and function. Therefore, the development of a culture system for producing more mature and functional liver organoids is urgently required.

또한, 간 섬유화, 간염, 간경화 및 간암 등 대량의 세포 손실 및 간기능 저하가 발생하는 난치성 간 질환은 약물로 치료가 어렵기 때문에 본질적으로 간 조직을 재생시킬 수 있는 치료 기술이 필요한 실정이다. 간 오가노이드는 실제 간 조직에 존재하는 줄기세포를 포함한 다양한 간 조직 구성 세포들을 포함하고 있기 때문에 오가노이드 기반 간 조직공학 및 세포 치료 기술이 크게 각광받고 있다. 하지만 오가노이드와 같은 크기가 큰 조직 유사체를 이식할 때 질환 부위 내 오가노이드의 효율적인 이식 및 생착에 도움을 줄 수 있는 지지체의 개발도 요구되는 상황이다.In addition, intractable liver diseases, such as liver fibrosis, hepatitis, liver cirrhosis, and liver cancer, in which a large amount of cell loss and liver function deterioration occur are difficult to treat with drugs, so a treatment technology capable of essentially regenerating liver tissue is required. Since liver organoids contain various liver tissue constituent cells, including stem cells, which exist in actual liver tissue, organoid-based liver tissue engineering and cell therapy technologies are in the spotlight. However, when transplanting large-sized tissue analogs such as organoids, the development of scaffolds that can help the efficient transplantation and engraftment of organoids within the diseased site is also required.

이러한 현재 당면한 간 오가노이드 배양 및 이식에 있어 기술적 문제를 해결하기 위해 본 발명에서는 간 조직으로부터 탈세포 과정을 거쳐 간 조직 유래 탈세포 지지체를 제작하였고, 이를 간 오가노이드 배양에 이용하는 새로운 플랫폼을 제시한다. 개발된 탈세포 간 조직 유래 하이드로젤 지지체는 간 조직 특이적 다양한 세포외기질 및 성장인자들이 풍부하게 함유되어 있어 매트리젤을 사용했을 때와 비교하여 간 오가노이드의 분화, 성숙도, 기능성을 증진시켰다. 나아가 탈세포 간 조직 유래 하이드로젤은 간 오가노이드의 생체 내로의 효율적인 이식을 가능하게 하는 이식용 지지체로 가능성을 보여준다.In order to solve the technical problems in liver organoid culture and transplantation currently facing, in the present invention, a liver tissue-derived decellularization scaffold was prepared through a decellularization process from liver tissue, and a new platform used for culturing liver organoids is presented. . The developed decellularized liver tissue-derived hydrogel scaffold contains a variety of liver tissue-specific extracellular matrix and growth factors, and thus the differentiation, maturity, and functionality of liver organoids were enhanced compared to when using Matrigel. Furthermore, decellularized liver tissue-derived hydrogels show promise as a scaffold for transplantation that enables efficient transplantation of liver organoids into the living body.

대한민국 공개특허공보 제10-2017-0143465호Republic of Korea Patent Publication No. 10-2017-0143465

본 발명은 간 조직을 탈세포화 하여 세포 성분은 모두 제거하고 간 특이적 세포외기질 성분은 보존된 탈세포 간 조직을 제작하고 이를 기반으로 하는 삼차원 하이드로젤을 간 오가노이드 배양에 적용하기 위한 것이다. The present invention is to decellularize liver tissue to remove all cellular components and to prepare decellularized liver tissue in which liver-specific extracellular matrix components are preserved, and to apply a three-dimensional hydrogel based on this to liver organoid culture.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. When a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

달리 정의되지 않는 한, 분자 생물학, 미생물학, 단백질 정제, 단백질 공학, 및 DNA 서열 분석 및 당업자의 능력 범위 안에서 재조합 DNA 분야에서 흔히 사용되는 통상적인 기술에 의해 수행될 수 있다. 상기 기술들은 당업자에게 알려져 있고, 많은 표준화된 교재 및 참고저서에 기술되어 있다.Unless otherwise defined, molecular biology, microbiology, protein purification, protein engineering, and DNA sequencing may be performed by conventional techniques commonly used in the art of recombinant DNA and within the abilities of those skilled in the art. Such techniques are known to those skilled in the art and are described in many standardized textbooks and reference books.

본 명세서에 달리 정의되어 있지 않으면, 사용된 모든 기술 및 과학 용어는 당업계에 통상의 기술자가 통상적으로 이해하는 바와 같은 의미를 가진다.Unless defined otherwise herein, all technical and scientific terms used have the same meaning as commonly understood by one of ordinary skill in the art.

본 명세서에 포함되는 용어를 포함하는 다양한 과학적 사전이 잘 알려져 있고, 당업계에서 이용가능하다. 본 명세서에 설명된 것과 유사 또는 등가인 임의의 방법 및 물질이 본원의 실행 또는 시험에 사용되는 것으로 발견되나, 몇몇 방법 및 물질이 설명되어 있다. 당업자가 사용하는 맥락에 따라, 다양하게 사용될 수 있기 때문에, 특정 방법학, 프로토콜 및 시약으로 본 발명이 제한되는 것은 아니다. 이하 본 발명을 더욱 상세히 설명한다.Various scientific dictionaries containing the terms contained herein are well known and available in the art. Although any methods and materials similar or equivalent to those described herein are found to be used in the practice or testing herein, several methods and materials are described. The present invention is not limited to specific methods, protocols, and reagents, as it may be used in various ways depending on the context used by those skilled in the art. Hereinafter, the present invention will be described in more detail.

본 발명의 일 양상은 탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)을 포함한 지지체 조성물을 제공한다. One aspect of the present invention provides a support composition comprising a decellularized liver tissue-derived extracellular matrix (Liver Extracellular Matrix; LEM).

상기 “세포외기질(extracellular matrix)”은 포유류 및 다세포 생물(multicellular organisms)에서 발견된 조직의 탈세포화를 통해 제조된 세포 성장용 자연 지지체를 의미한다. 상기 세포외기질은 투석 또는 가교화를 통해 더 처리할 수 있다.The “extracellular matrix” refers to a natural scaffold for cell growth prepared through decellularization of tissues found in mammals and multicellular organisms. The extracellular matrix can be further processed through dialysis or crosslinking.

상기 세포외기질은 콜라겐(collagens), 엘라스틴(elastins), 라미닌(laminins), 글리코스아미노글리칸 (glycosaminoglycans), 프로테오글리칸(proteoglycans), 항균제(antimicrobials), 화학유인물질(chemoattractants), 시토카인 (cytokines), 및 성장 인자에 제한되지 않는, 구조형 및 비구조형 생체 분자(biomolecules)의 혼합물일 수 있다.The extracellular matrix is collagen, elastin, laminins, glycosaminoglycans, proteoglycans, antimicrobials, chemoattractants, cytokines , and a mixture of structural and non-structural biomolecules, but not limited to growth factors.

상기 세포외기질은 포유 동물에 있어서 다양한 형태로서 약 90%의 콜라겐을 포함할 수 있다. 다양한 생체 조직에서 유래한 세포외기질은 각각의 조직에 필요한 고유 역할 때문에 전체 구조체 및 조성이 상이할 수 있다. The extracellular matrix may contain about 90% collagen in various forms in mammals. The extracellular matrix derived from various living tissues may have a different overall structure and composition due to the unique role required for each tissue.

상기 “유래(derive)", "유래된(derived)"은 유용한 방법에 의해 언급한 원천으로부터 수득한 성분을 의미한다.As used herein, “derived” or “derived” means an ingredient obtained from the source mentioned by any useful method.

또한, 본 발명의 일 구체예로, 상기 탈세포 간 조직 유래 세포외기질은 0.01 내지 10 mg/mL, 구체적으로 0.5 내지 9 mg/mL 더욱 구제척으로 1 mg/mL 내지 8 mg/mL, 가장 구체적으로는 2, 4, 6 또는 8 mg/mL, 최적화된 구체예로는 4 또는 6 mg/mL로 포함하는 것일 수 있다. 상기 범위 외의 농도로 포함될 경우, 본 발명이 목적하는 효과를 얻을 수 없거나, 제조 또는 활용에 있어서 부적합할 수 있다. In addition, in one embodiment of the present invention, the decellularized liver tissue-derived extracellular matrix is 0.01 to 10 mg/mL, specifically 0.5 to 9 mg/mL, more specifically, 1 mg/mL to 8 mg/mL, most Specifically, it may contain 2, 4, 6 or 8 mg/mL, and an optimized embodiment may include 4 or 6 mg/mL. When included in a concentration outside of the above range, the desired effect of the present invention may not be obtained, or may be unsuitable for manufacturing or utilization.

본 발명의 일 구체예로, 상기 조성물은 0.1 내지 10 Hz 기준 탄성계수가 20 내지 100 Pa일 수 있고, 상기 조성물이 상기 범위의 탄성계수를 가짐으로써 안정적인 고분자 네트워크를 형성할 수 있다.In one embodiment of the present invention, the composition may have an elastic modulus based on 0.1 to 10 Hz of 20 to 100 Pa, and the composition may form a stable polymer network by having an elastic modulus in the above range.

상기 지지체 조성물은 탈세포화하여 수득한 간 조직 매트릭스 조성물을 기반으로 제조한 3차원 하이드로젤을 포함하며, 간 오가노이드 배양에 효과적으로 활용될 수 있다.The support composition includes a three-dimensional hydrogel prepared based on the liver tissue matrix composition obtained by decellularization, and can be effectively utilized for culturing liver organoids.

상기 탈세포화된 간 조직은 실제 조직 특이적 세포외기질 성분을 포함하므로 해당 조직의 물리적, 기계적, 생화학적 환경을 제공할 수 있으며, 간 조직 세포로의 분화 및 조직 특이적 기능성을 증진시키는데 매우 효율적이다.Since the decellularized liver tissue contains an actual tissue-specific extracellular matrix component, it is possible to provide a physical, mechanical, and biochemical environment of the corresponding tissue, and is very efficient in promoting differentiation into liver tissue cells and tissue-specific functionality. am.

상기 “오가노이드(organoid)”는 조직 또는 전분화능줄기세포에서 유래된 세포를 3D 형태로 배양하여 인공장기와 같은 형태로 제작한 초소형 생체기관을 의미한다.The “organoid” refers to a micro-organism produced in the form of an artificial organ by culturing cells derived from tissues or pluripotent stem cells in a 3D form.

상기 오가노이드는 줄기세포에서 발생하고 생체 내 상태와 유사한 방식으로 자가-조직화(또는 자가-패턴화)하는 장기 특이적 세포를 포함한 삼차원 조직 유사체로서 제한된 요소(Ex. growth factor) 패터닝에 의해 특정 조직으로 발달할 수 있다.The organoids are three-dimensional tissue analogs including organ-specific cells that arise from stem cells and self-organize (or self-pattern) in a manner similar to the in vivo state, and are limited to specific tissues by patterning of factors (Ex. growth factor). can develop into

상기 오가노이드는 세포의 본래 생리학적 특성을 가지며, 세포 혼합물(한정된 세포 유형뿐만 아니라 잔존 줄기 세포, 근접 생리학적 니치(physiological niche)를 모두 포함) 원래의 상태를 모방하는 해부학적 구조를 가질 수 있다. 상기 오가노이드는 3차원 배양 방법을 통해 세포와 세포의 기능이 더욱 잘 배열되고, 기능성을 가지는 기관 같은 형태와 조직 특이적 기능을 가질 수 있다.The organoid has the intrinsic physiological properties of the cell, and may have an anatomical structure that mimics the original state of a cell mixture (including both residual stem cells, proximal physiological niche as well as defined cell types). . The organoid may have a shape and tissue-specific function, such as an organ, in which cells and cell functions are better arranged through a three-dimensional culture method, and have functionality.

본 발명의 다른 일 양상은 (a) 분리된 간 조직을 탈세포화하여 탈세포된 간 조직을 제조하는 단계; (b) 상기 탈세포된 간 조직을 건조하여 탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)을 제조하는 단계; 및 (c) 상기 건조된 탈세포 간 조직 유래 세포외기질을 겔화(gelation)하는 단계; 를 포함하는 지지체 조성물 제조방법을 제공한다. Another aspect of the present invention comprises the steps of (a) decellularizing the isolated liver tissue to prepare a decellularized liver tissue; (b) drying the decellularized liver tissue to prepare a decellularized liver tissue-derived extracellular matrix (Liver Extracellular Matrix; LEM); and (c) gelling the dried decellularized liver tissue-derived extracellular matrix; It provides a method for preparing a support composition comprising a.

상기 (a) 단계는 분리된 간 조직을 탈세포화하여 탈세포된 간 조직을 제조하는 단계이다.Step (a) is a step of preparing a decellularized liver tissue by decellularizing the isolated liver tissue.

본 발명의 일 구체예에서, 상기 (a) 단계에서 분리된 간 조직은 탈세포 전에 세절하는 단계를 더 포함할 수 있다. 본 발명은 탈세포 전에 간 조직을 세절하는 단계를 포함하여, 탈세포 공정이 더 효율적이고 완전한 세포 제거가 가능하다. 상기 분리된 간 조직의 세절 방법은 공지의 방법 (기구)과 크기로 이루어질 수 있다. In one embodiment of the present invention, the liver tissue isolated in step (a) may further include the step of mincing before decellularization. In the present invention, the decellularization process is more efficient and complete cell removal is possible, including the step of mincing the liver tissue before decellularization. The method for mincing the isolated liver tissue may be made of a known method (device) and size.

본 발명의 일 구체예에서, 상기 (a) 단계에서 상기 간 조직을 탈세포화 용액에서 교반시키는 것일 수 있다. In one embodiment of the present invention, the liver tissue in step (a) may be stirred in a decellularization solution.

상기 탈세포화 용액은 간 조직에서 세포를 제거하기 위한 다양한 성분을 포함할 수 있고, 예컨대, 고장성 식염수(hypertonic saline), 과산화 아세트산(peracetic acid), 트리톤-X(Triton-X), SDS 또는 기타 세제 성분을 포함할 수 있으나, 본 발명의 일 구체예에서 상기 탈세포화 용액은 0.1 내지 5%의 Triton X-100 및 0.01 내지 0.5% 수산화 암모늄, 더욱 구체적으로는 1% Triton X-100 및 0.1% 수산화 암모늄(ammonium hydroxide)을 포함하는 것일 수 있다. 상기와 같은 탈세포화 용액을 사용함으로써, 기존의 공정에 비하여 완화된 조건에서 탈세포를 진행함으로써 제조된 지지체 내 DNA를 효과적으로 제거함과 동시에 간 조직 내의 다양한 단백질들이 더 많이 보존될 수 있다. The decellularization solution may contain various components for removing cells from liver tissue, for example, hypertonic saline, peracetic acid, Triton-X, SDS or others. A detergent component may be included, but in one embodiment of the present invention the decellularization solution comprises 0.1 to 5% Triton X-100 and 0.01 to 0.5% ammonium hydroxide, more specifically 1% Triton X-100 and 0.1% It may be one containing ammonium hydroxide. By using the decellularization solution as described above, it is possible to effectively remove the DNA in the scaffold prepared by decellularization under a more relaxed condition compared to the conventional process, and at the same time preserve more various proteins in the liver tissue.

상기 교반은 24 내지 72시간, 더욱 구체적으로 36 내지 60시간, 가장 구체적으로는 40 내지 56시간, 일 예시로 48시간 동안 이루어지는 것일 수 있고, 이러한 교반 (탈세포) 과정을 통해 간 조직 세포가 95 내지 99.9%, 더욱 구체적으로 96 내지 98%, 가장 구체적으로는 97.18%가 제거된 것일 수 있다. 상기 범위 외의 시간 또는 간 조직 세포 제거 수준으로 탈세포가 이루어질 경우 제조된 지지체 조성물의 품질이 저하되거나 공정 경제성이 떨어지는 문제점이 있다. The stirring may be made for 24 to 72 hours, more specifically 36 to 60 hours, most specifically 40 to 56 hours, for example, 48 hours, and through this stirring (decellularization) process, liver tissue cells are 95 to 99.9%, more specifically 96 to 98%, and most specifically 97.18% may be removed. When decellularization is performed at a time or liver tissue cell removal level outside the above range, there is a problem in that the quality of the prepared support composition is deteriorated or the process economics is deteriorated.

상기 (b) 단계는 상기 탈세포된 간 조직을 건조하여 탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)을 제조하는 단계이다. Step (b) is a step of preparing a decellularized liver tissue-derived extracellular matrix (Liver Extracellular Matrix; LEM) by drying the decellularized liver tissue.

상기 탈세포된 간 조직을 건조하는 방법은 공지의 방법으로 수행될 수 있으며, 자연건조 또는 동결 건조될 수 있고, 멸균을 위해 건조 후 전자 빔 또는 감마 방사선에 의해 에틸렌 옥사이드 가스 또는 초임계 이산화탄소에 노출시킬 수 있다. The method of drying the decellularized liver tissue may be performed by a known method, may be naturally dried or freeze-dried, and after drying for sterilization, exposure to ethylene oxide gas or supercritical carbon dioxide by electron beam or gamma radiation can do it

본 발명의 일 구체예에서, 상기 (b) 단계 이후, 탈세포 간 조직 유래 세포외기질은 0.01 내지 10 mg/mL, 구체적으로 0.5 내지 9mg/mL 더욱 구제척으로 1mg/mL 내지 8mg/mL, 가장 구체적으로는 2, 4, 6 또는 8mg/mL, 최적화된 구체예로는 4 또는 6mg/mL로 포함하는 것일 수 있다. 상기 범위 외의 농도로 포함될 경우, 본 발명이 목적하는 효과를 얻을 수 없거나, 제조 또는 활용에 있어서 부적합할 수 있다. In one embodiment of the present invention, after step (b), the extracellular matrix derived from decellularized liver tissue is 0.01 to 10 mg/mL, specifically 0.5 to 9 mg/mL, more specifically, 1 mg/mL to 8 mg/mL, Most specifically, it may contain 2, 4, 6 or 8 mg/mL, and an optimized embodiment may include 4 or 6 mg/mL. When included in a concentration outside of the above range, the desired effect of the present invention may not be obtained, or may be unsuitable for manufacturing or utilization.

상기 건조된 세포외기질은 박리(tearing), 제분(milling), 절단, 분쇄 및 전단 단계를 포함하는 방법에 의해 세분될 수 있다. 상기 세분된 세포외기질은 냉동 상태 또는 냉동 건조 상태에서, 분쇄 또는 제분과 같은 방법에 의해 분말 형상으로 가공될 수 있다.The dried extracellular matrix may be subdivided by a method comprising the steps of tearing, milling, cutting, grinding and shearing. The subdivided extracellular matrix may be processed into a powder form by a method such as pulverization or milling in a frozen state or freeze-dried state.

상기 (c) 단계는 상기 건조된 탈세포 간 조직 유래 세포외기질을 겔화(gelation)하는 단계이다. The step (c) is a step of gelation of the dried decellularized liver tissue-derived extracellular matrix.

상기 겔화를 통해 탈세포 간 조직 유래 세포외기질을 가교시켜 3차원 하이드로젤 형태의 지지체를 제작할 수 있고, 겔화된 지지체는 실험, 스크리닝 뿐만 아니라 오가노이드 배양과 관련된 분야에서 다양하게 활용될 수 있다.Through the gelation, a three-dimensional hydrogel-type scaffold can be produced by crosslinking the extracellular matrix derived from decellularized liver tissue, and the gelled scaffold can be used in various fields related to experiments and screening as well as organoid culture.

상기 “하이드로젤”은 졸-겔 상변이를 통해 물을 분산매로 하는 액체가 굳어 유동성을 상실하고 다공성 구조를 이루는 물질로서, 3차원 망목 구조와 미결정 구조를 갖는 친수성 고분자가 물을 함유하여 팽창함으로써 형성될 수 있다.The "hydrogel" is a material that loses fluidity and forms a porous structure by solidifying a liquid using water as a dispersion medium through a sol-gel phase change. can be formed.

상기 겔화는 탈세포 간 조직 유래 세포외기질을 산성 용액에서 펩신 또는 트립신과 같은 단백질 분해 효소로 용액화하고, 10X PBS와 1 M NaOH를 이용하여 중성 pH와 1X PBS 버퍼의 전해질 상태로 맞추고 37℃의 온도에서 30분 동안 이루어지는 것일 수 있다. The gelation is performed by dissolving the extracellular matrix derived from decellularized liver tissue in an acidic solution with a proteolytic enzyme such as pepsin or trypsin, using 10X PBS and 1 M NaOH to adjust the neutral pH and electrolyte state of 1X PBS buffer to 37 ° C. It may be made for 30 minutes at a temperature of

본 발명의 다른 일 양상은 상기 지지체 조성물 또는 상기 제조방법에 의해 제조된 지지체 조성물에서 간 오가노이드를 배양하는 방법을 제공한다. Another aspect of the present invention provides a method of culturing liver organoids in the support composition or the support composition prepared by the production method.

기존의 매트리젤 기반 배양 시스템은 동물 암조직 유래의 추출물로서 배치 간의 차이가 크고 실제 간의 환경을 모사해주지 못하고, 간 오가노이드로 분화, 발달되는 효율이 미흡한 반면, 상기 지지체 조성물은 간 조직 유사 환경을 조성할 수 있으므로 간 오가노이드 배양에 있어서 적합하다.The existing Matrigel-based culture system as an extract derived from animal cancer tissue has a large difference between batches and does not mimic the actual liver environment, and the efficiency of differentiation and development into liver organoids is insufficient. Since it can be formulated, it is suitable for culturing liver organoids.

상기 배양은 적합한 조건에서 세포를 유지 및 성장시키는 과정을 의미하며, 적합한 조건은 예컨대, 세포가 유지되는 온도, 영양소 가용성, 대기 CO2 함량 및 세포 밀도를 의미할 수 있다.The culture refers to a process of maintaining and growing cells under suitable conditions, and suitable conditions may refer to, for example, a temperature at which cells are maintained, nutrient availability, atmospheric CO2 content, and cell density.

서로 다른 유형의 세포를 유지, 증식, 확대 및 분화시키기 위한 적절한 배양 조건은 당해 기술분야에 공지되어 있고, 문서화 되어있다. 상기 오가노이드 형성에 적합한 조건은 세포 분화 및 다세포 구조의 형성을 용이하게 하거나 허용하는 조건일 수 있다.Appropriate culture conditions for maintaining, proliferating, expanding and differentiating different types of cells are known and documented in the art. Conditions suitable for the formation of the organoid may be conditions that facilitate or allow cell differentiation and formation of multicellular structures.

본 발명에서 개발된 탈세포 간 조직 유래 인공 지지체는 기존의 대표적인 오가노이드 배양용 지지체인 매트리젤이 가지고 있는 한계를 극복한 새로운 간 오가노이드 배양 지지체로서 개발되어, 간 오가노이드 기반의 대규모 신약 스크리닝 플랫폼이나 조직 재생을 위한 세포 치료제 등 다양한 전임상, 임상 연구의 요소 기술로 활용되어 산업적, 경제적 측면에서 고부가가치를 창출하고 의료 신산업의 발전을 도모할 수 있을 것으로 기대된다. The decellularized liver tissue-derived scaffold developed in the present invention was developed as a new liver organoid culture scaffold that overcomes the limitations of Matrigel, a representative organoid culture support, and is a liver organoid-based large-scale drug screening platform. However, it is expected to be used as a component technology for various preclinical and clinical studies, such as cell therapy for tissue regeneration, to create high added value in industrial and economic terms and to promote the development of new medical industries.

본 발명에서 개발한 탈세포 간 조직 유래 지지체를 이용하면 기존 배양 방식과 비교하여 고도화된 간 오가노이드를 제작할 수 있으므로 기존의 약물 테스트를 위한 체외 모델을 뛰어넘는 경제적이면서도 더욱 정확한 플랫폼으로 활용될 수 있다. 신약 개발 및 약물 평가에 있어 간 독성은 필수적으로 분석해야 하는 중요한 지표이므로 고도화된 간 오가노이드 기반의 체외 모델 플랫폼은 신약 개발 성공율을 크게 높이고 비용 및 소요 시간을 크게 줄여 의료 산업 발전에 크게 기여할 수 있을 것으로 기대한다.By using the decellularized liver tissue-derived scaffold developed in the present invention, it is possible to produce advanced liver organoids compared to the existing culture method, so it can be used as an economical and more accurate platform that goes beyond the existing in vitro model for drug testing. . Since liver toxicity is an important indicator that must be analyzed in drug development and drug evaluation, an advanced liver organoid-based in vitro model platform can greatly increase the success rate of new drug development and significantly reduce costs and lead times, thereby greatly contributing to the development of the medical industry. expect that

탈세포 간 조직 유래 인공 매트릭스 지지체는 다양한 난치성 간 질환 (간경화, 간 섬유증, 비알콜성 간염 등)을 체외에서 구현하고 그 기전을 밝히는 질병 모델링 연구 및 이식 치료 플랫폼 구축 등 다양한 분야에서 광범위하게 이용 가능할 것으로 기대된다. 이러한 난치성 간 질환은 최근 유병률이 크게 증가하여 많은 연구가 필요한 상황이므로 연구용 시약으로서도 수익 창출이 가능하다.Decellularized liver tissue-derived artificial matrix scaffolds can be widely used in various fields, such as disease modeling research that implements various intractable liver diseases (liver cirrhosis, liver fibrosis, nonalcoholic hepatitis, etc.) in vitro and reveals the mechanism, and establishment of a transplant treatment platform is expected to Since the prevalence of such intractable liver disease has increased significantly in recent years, many studies are required, so it is possible to generate profits as a research reagent.

본 발명에서 개발된 인공 지지체는 조직 줄기세포 유래 간 오가노이드 뿐 아니라 간암 오가노이드 배양에도 적용이 가능하므로 난치성 질환 및 암 환자 맞춤형 질환 모델 구축에 기여하여 정밀의학 플랫폼 기술로서도 활용될 수 있으며 최근 급증하는 정밀의학 시장의 규모를 고려하면 막대한 부가가치 창출이 가능할 것으로 기대된다.The artificial scaffold developed in the present invention can be applied not only to tissue stem cell-derived liver organoids but also to liver cancer organoid culture. Considering the size of the precision medicine market, it is expected to create enormous added value.

종합적으로 위에서 기술했듯이 간 오가노이드의 응용을 위해서는 기본적으로 매트리젤 이라는 배양용 지지체가 필수적으로 요구된다. 매트리젤과 비교하여 본 발명에서 개발된 인공 지지체는 배양 시스템으로서 매트리젤 이상의 기능성을 보여주며 보다 안전하고 비용적인 측면에서도 매우 유리한 장점을 가지고 있음이 검증된다. 따라서 이러한 매트리젤 대체 효과만으로도 막대한 경제적 수익 창출이 예측된다.Overall, as described above, for the application of liver organoids, a support for culture called Matrigel is essentially required. Compared to Matrigel, the artificial scaffold developed in the present invention is verified to have a very advantageous advantage in terms of safety and cost, showing more functionality than Matrigel as a culture system. Therefore, it is predicted that huge economic profits will be created only by the replacement effect of Matrigel.

도 1은 간 오가노이드 배양을 위한 탈세포 간 조직 유래 지지체 (Liver Extracellular Matrix; LEM) 제작을 나타낸 것이다.
도 2는 간 오가노이드 배양을 위한 탈세포 간 조직 유래 지지체 (LEM)를 분석한 것이다.
도 3은 탈세포 간 조직 유래 지지체(LEM)의 농도에 따른 물성을 분석한 것이다.
도 4 및 5는 탈세포 간 조직 유래 지지체(LEM)의 단백체를 분석한 것이다.
도 6은 탈세포 간 조직 유래 하이드로젤 지지체의 농도에 따른 간 오가노이드(담관세포 유래 간 오가노이드 - Cholangiocyte-derived liver organoid; CLO) 배양 및 농도 선정을 나타낸 것이다.
도 7은 탈세포 간 조직 유래 하이드로젤 지지체의 LEM 농도에 따른 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 분화능 차이를 분석한 것이다.
도 8은 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 간 오가노이드(담관세포 유래 간 오가노이드, CLO)를 분석한 것이다.
도 9는 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 기능성을 분석한 것이다.
도 10은 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 장기 배양을 나타낸 것이다.
도 11 내지 13은 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 인간 간 오가노이드(인간 담관세포 유래 간 오가노이드 - hCLO)를 배양 및 분석한 것이다.
도 14는 탈세포 간 조직 유래 하이드로젤 지지체의 농도 별 간 오가노이드(간세포 유래 간 오가노이드 - Hepatocyte-derived liver organoid; HLO) 배양 및 최적 농도를 선정한 것이다.
도 15는 탈세포 간 조직 유래 하이드로젤 지지체(LEM)와 기존의 배양 지지체(MAT)에서 형성된 간 오가노이드(HLO)의 성장을 비교한 것이다.
도 16은 탈세포 간 조직 유래 하이드로젤 지지체(LEM)에서 배양된 간세포 유래 간 오가노이드(HLO)를 분석한 것이다.
도 17은 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 인간 유도만능줄기세포(Human-induced Pluripotent Stem Cell; hiPSC) 유래 간 오가노이드 배양을 나타낸 것이다.
도 18은 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 인간 유도만능줄기세포 유래 간 오가노이드(hiPSC-LO)를 분석한 것이다.
도 19는 탈세포 간 조직 유래 하이드로젤 지지체(LEM)에서 배양된 간 오가노이드(CLO)를 이용한 간 섬유증 모델을 제작한 것이다.
도 20은 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 간 오가노이드(hCLO)를 이용한 간 섬유증 모델을 제작한 것이다.
도 21는 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간 오가노이드 생체 내 이식을 나타낸 것이다.
도 22 및 23은 탈세포 간 조직 유래 하이드로젤의 장기보관 가능성을 검증한 것이다.
도 24는 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간암 오가노이드 배양한 결과이다.
도 25 및 26은 간 조직 탈세포 프로토콜 비교를 통한 본 발명의 탈세포 간 조직 유래 지지체의 우수성 검증 결과이다.
도 27은 간 조직 탈세포 프로토콜 비교를 통한 본 발명의 탈세포 간 조직 유래 지지체의 우수성 검증 결과 (오가노이드 배양 실험)이다.
도 28은 탈세포 간 조직 유래 하이드로젤 지지체의 종간 비교 분석한 결과이다 (돼지 vs. 인간).
도 29는 인간 및 돼지 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 인간 간 오가노이드(인간 담관세포 유래 간 오가노이드 - hCLO) 비교 결과이다.
1 shows the production of a decellularized liver tissue-derived scaffold (Liver Extracellular Matrix; LEM) for culturing liver organoids.
2 is an analysis of the decellularized liver tissue-derived scaffold (LEM) for culturing liver organoids.
3 is an analysis of physical properties according to the concentration of the decellularized liver tissue-derived scaffold (LEM).
4 and 5 are analysis of the proteomic of the decellularized liver tissue-derived scaffold (LEM).
6 shows the selection of the culture and concentration of liver organoids (cholangiocyte-derived liver organoid; CLO) according to the concentration of the decellularized liver tissue-derived hydrogel scaffold.
7 is an analysis of the difference in the differentiation ability of liver organoids (cholangiocyte-derived liver organoids, CLO) according to the LEM concentration of the decellularized liver tissue-derived hydrogel scaffold.
8 is an analysis of liver organoids (cholangiocyte-derived liver organoids, CLO) cultured on decellularized liver tissue-derived hydrogel scaffolds.
9 is an analysis of the functionality of liver organoids (cholangiocyte-derived liver organoids, CLO) cultured on decellularized liver tissue-derived hydrogel scaffolds.
10 shows a long-term culture of liver organoids (cholangiocyte-derived liver organoids, CLO) using decellularized liver tissue-derived hydrogel scaffolds.
11 to 13 show the culture and analysis of human liver organoids (human bile duct cell-derived liver organoid-hCLO) using a hydrogel scaffold derived from decellularized liver tissue.
Figure 14 shows the selection of the optimal concentration and culture of liver organoids (hepatocyte-derived liver organoid-Hepatocyte-derived liver organoid; HLO) according to the concentration of the decellularized liver tissue-derived hydrogel scaffold.
15 is a comparison of the growth of liver organoids (HLO) formed on a decellularized liver tissue-derived hydrogel scaffold (LEM) and a conventional culture scaffold (MAT).
16 is an analysis of hepatocyte-derived liver organoids (HLO) cultured on decellularized liver tissue-derived hydrogel scaffolds (LEMs).
17 shows the culture of human-induced pluripotent stem cells (hiPSC)-derived liver organoids using a hydrogel scaffold derived from decellularized liver tissue.
18 is an analysis of human induced pluripotent stem cell-derived liver organoids (hiPSC-LO) cultured on a decellularized liver tissue-derived hydrogel scaffold.
19 illustrates a liver fibrosis model using liver organoids (CLO) cultured on a decellularized liver tissue-derived hydrogel scaffold (LEM).
20 is a liver fibrosis model using liver organoids (hCLO) cultured on a hydrogel scaffold derived from decellularized liver tissue.
21 shows transplantation of liver organoids in vivo using decellularized liver tissue-derived hydrogel scaffolds.
22 and 23 verify the long-term storage possibility of decellularized liver tissue-derived hydrogels.
24 is a result of culturing liver cancer organoids using a hydrogel scaffold derived from decellularized liver tissue.
25 and 26 are results of verifying the superiority of the decellularized liver tissue-derived scaffold of the present invention through comparison of liver tissue decellularization protocols.
27 is a result of verifying the superiority of the decellularized liver tissue-derived scaffold of the present invention through comparison of liver tissue decellularization protocols (organoid culture experiment).
28 is a result of cross-species comparative analysis of decellularized liver tissue-derived hydrogel scaffolds (pig vs. human).
29 is a comparison result of human liver organoids (human bile duct cell-derived liver organoid-hCLO) cultured on a hydrogel scaffold derived from human and porcine decellularized liver tissue.

본 발명에서는 간 조직을 탈세포화 하여 세포 성분은 모두 제거하고 간 특이적 세포외기질 성분은 보존된 탈세포 간 조직을 제작하고 이를 기반으로 하는 삼차원 하이드로젤을 간 오가노이드 배양에 적용하였다.In the present invention, the liver tissue was decellularized to remove all cellular components and the liver-specific extracellular matrix component was preserved, and a three-dimensional hydrogel was applied to the liver organoid culture.

본 발명에서 개발된 탈세포 간 조직 유래 지지체는 세포항원이 제거된 순수 세포외기질 성분으로만 구성되어 있기 때문에 이식 시 조직의 염증 반응 및 면역 거부 반응을 야기하지 않고 생체적합성이 매우 우수하다. 제작이 용이하고 제조 단가가 낮아 매트리젤과 비교했을 때 경제성이 높고 안전한 배양 및 이식 소재로 적용될 수 있다. Since the decellularized liver tissue-derived scaffold developed in the present invention is composed only of pure extracellular matrix components from which cellular antigens have been removed, it does not cause an inflammatory response and immune rejection of the tissue during transplantation and has excellent biocompatibility. Compared to Matrigel, it is easy to manufacture and has a low manufacturing cost, so it can be applied as a safe culture and transplant material.

실제로 단백질체 분석을 통해 탈세포 간 조직 유래 지지체는 간 조직 특이적인 다양한 세포외기질 및 인자들을 함유하고 있는 것을 확인하였다. 제작된 탈세포 간 조직 유래 하이드로젤 지지체 안에서 줄기세포 유래 간 오가노이드가 발생하고 성장할 수 있음을 확인하였고 탈세포 간 조직 지지체의 다양한 농도를 시험하여 간 오가노이드 배양에 최적화된 하이드로젤 농도 조건을 선별하였다.In fact, through proteomic analysis, it was confirmed that the scaffolds derived from decellularized liver tissue contained various extracellular matrix and factors specific to liver tissue. It was confirmed that stem cell-derived liver organoids can be generated and grown in the prepared decellularized liver tissue-derived hydrogel scaffold, and various concentrations of the decellularized liver tissue scaffold were tested to select a hydrogel concentration condition optimized for liver organoid culture. did.

개발된 탈세포 간 조직 유래 지지체에서 배양된 간 오가노이드를 대조군인 매트리젤에서 배양된 오가노이드와 비교하였을 때 분화 능력 및 간 기능성(알부민 분비, 시토크롬 활성, 요소 합성 등)이 비슷하게 유지되거나 향상된 것을 확인하였다. 이를 통해 탈세포 간 조직 유래 지지체가 간 오가노이드 배양을 위해 기존 매트리젤을 대체할 수 있음이 검증되었다.When comparing liver organoids cultured on the developed decellularized liver tissue-derived scaffold with organoids cultured in Matrigel, a control group, the differentiation ability and liver function (albumin secretion, cytochrome activity, urea synthesis, etc.) were similarly maintained or improved. Confirmed. Through this, it was verified that the decellularized liver tissue-derived scaffold could replace the existing Matrigel for culturing liver organoids.

이러한 일련의 결과를 통해 본 발명에서 개발된 지지체에서 배양된 간 오가노이드가 기존의 매트릭스(매트리젤)에서 배양된 오가노이드 보다 간 조직의 구성 및 기능을 실제와 유사하게 더욱 잘 구현할 수 있음을 확인하였다.Through this series of results, it was confirmed that the liver organoids cultured on the scaffold developed in the present invention can better implement the structure and function of the liver tissue more closely than the organoids cultured on the existing matrix (Matrigel). did.

본 발명에서 마우스 모델에서 간 손상을 유발하고 탈세포 간 조직 유래 하이드로젤 지지체를 이용하여 간 오가노이드를 이식하였을 때 손상된 부위에 오가노이드가 생착이 되어 효율적인 이식이 가능함을 확인하였고 간 오가노이드의 이식용 제재로서의 활용 가능성까지 확인하였다.In the present invention, when liver damage was induced in the mouse model and liver organoids were transplanted using decellularized liver tissue-derived hydrogel scaffolds, it was confirmed that the organoids were engrafted in the damaged area and efficient transplantation was possible. Possibility of use as a solvent was also confirmed.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

실시예 1: 탈세포 간 조직 유래 세포외기질을 포함한 지지체 조성물의 제조Example 1: Preparation of scaffold composition containing extracellular matrix derived from decellularized liver tissue

탈세포 간 조직 유래 세포외기질을 포함한 지지체 조성물을 다음과 같이 제조하였다 (도 1 (A) 참고).A scaffold composition including an extracellular matrix derived from decellularized liver tissue was prepared as follows (refer to FIG. 1 (A)).

실시예 1-1. 탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)의 제조 Example 1-1. Preparation of Liver Extracellular Matrix (LEM) derived from decellularized liver tissue

돼지 간 조직 분리하고 세절하여 준비하였고, 상기 간 조직을 1% Triton X-100 및 0.1% 수산화 암모늄(ammonium hydroxide)과 함께 교반하여 간 조직의 세포만을 제거하여 탈세포 간 조직을 제조하였다. Pig liver tissue was isolated and minced, and the liver tissue was stirred with 1% Triton X-100 and 0.1% ammonium hydroxide to remove only the cells of the liver tissue to prepare a decellularized liver tissue.

이후, 탈세포 간 조직을 동결건조, 분쇄하여 탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)을 제조하였다. Thereafter, the decellularized liver tissue was lyophilized and pulverized to prepare a Liver Extracellular Matrix (LEM) derived from the decellularized liver tissue.

실시예 1-2. 지지체 조성물의 제조Example 1-2. Preparation of the support composition

상기 탈세포 간 조직 유래 세포외기질 10 mg을 4 mg/ml 펩신 용액 (펩신 파우더 4 mg를 0.02 M HCl 1 ml에 녹인 용액)에 48시간 동안 용해시킨다. 10X PBS와 1 M NaOH를 이용하여 중성 pH와 1X PBS 버퍼의 전해질 상태로 균일하게 섞은 후 37℃의 온도에서 30분 동안 겔화(gelation)시켜 하이드로젤 형태의 지지체 조성물을 제조하였다 (도 1 (B)). 10 mg of the decellularized liver tissue-derived extracellular matrix is dissolved in a 4 mg/ml pepsin solution (a solution of 4 mg of pepsin powder in 1 ml of 0.02 M HCl) for 48 hours. After uniformly mixing in an electrolyte state of neutral pH and 1X PBS buffer using 10X PBS and 1 M NaOH, gelation was performed at 37° C. for 30 minutes to prepare a hydrogel-type support composition (FIG. 1 (B) )).

실험예 1: 탈세포 간 조직 유래 세포외기질 (LEM)의 분석Experimental Example 1: Analysis of decellularized liver tissue-derived extracellular matrix (LEM)

실시예 1-1.의 탈세포 간 조직 유래 세포외기질을 아래와 같이 분석하였다. The extracellular matrix derived from the decellularized liver tissue of Example 1-1 was analyzed as follows.

실험예 1-1. 탈세포 간 조직 유래 세포외기질의 특성분석Experimental Example 1-1. Characterization of extracellular matrix derived from decellularized liver tissue

실시예 1-1.의 탈세포 간 조직 유래 세포외기질의 특성을 분석하였다.The characteristics of the extracellular matrix derived from the decellularized liver tissue of Example 1-1 were analyzed.

구체적으로, 탈세포 간 조직 지지체와 탈세포 과정을 거치지 않은 간 조직으로부터 DNA를 추출하여 정량비교를 진행하고, 지지체 내의 GAG 함량은 콘드로이틴 설페이트(chondroitin sulfate)와 디메틸 메틸렌블루(dimethylmethylene blue)의 염료결합분석방법을 이용하여 측정하였다 (도 2 (A)).Specifically, DNA is extracted from the decellularized liver tissue scaffold and the liver tissue that has not undergone the decellularization process for quantitative comparison, and the GAG content in the scaffold is a dye binding of chondroitin sulfate and dimethyl methylene blue. It was measured using an analytical method (FIG. 2 (A)).

H&E 염색의 경우, 탈세포 간 조직 지지체와 탈세포 과정을 거치지 않은 조직을 얇게 절단하여 헤마톡실린(hematoxylin)에 의해 세포핵을 염색하고 에오신(eosin)을 통해 세포질을 염색하여 탈세포 과정을 거친 간 조직 지지체 내의 세포핵 제거정도를 분석하였다 (도 2 (B)).In the case of H&E staining, the decellularized liver tissue scaffold and the tissue that has not undergone the decellularization process are cut thinly, the nucleus is stained with hematoxylin, and the cytoplasm is stained with eosin to the liver that has undergone the decellularization process. The degree of cell nuclei removal in the tissue scaffold was analyzed (FIG. 2 (B)).

탈세포 간 조직 지지체를 농도별로 제작하고, 전자빔을 주사하여 상을 형성하는 주사전자현미경을 통해 하이드로젤 내부 구조를 분석하였다 (도 2(C)).The decellularized liver tissue scaffold was prepared by concentration, and the internal structure of the hydrogel was analyzed through a scanning electron microscope to form an image by scanning an electron beam (FIG. 2(C)).

탈세포 간 조직 지지체의 탈세포 과정 전후 DNA 정량 비교를 통해 탈세포 과정에 의해 세포성분이 대부분 제거됨을 확인하였다. 대표적인 세포외기질 성분 중 하나인 Glycosaminoglycan (GAG)에 대한 정량 분석을 통해 탈세포 간 조직 내에 GAG가 잘 보존되어 남아있는 것을 확인하였다 (도 2 (A)).It was confirmed that most of the cellular components were removed by the decellularization process through quantitative comparison of DNA before and after the decellularization process of the decellularized tissue scaffold. Through quantitative analysis of Glycosaminoglycan (GAG), one of the representative extracellular matrix components, it was confirmed that GAG remained well preserved in the decellularized liver tissue (FIG. 2 (A)).

H&E 염색을 실시하여 제작한 탈세포 간 조직 매트릭스의 구조는 잘 유지되고 세포 성분은 모두 제거되었음을 확인하였다 (도 2 (B)). It was confirmed that the structure of the decellularized liver tissue matrix prepared by performing H&E staining was well maintained and all cellular components were removed (FIG. 2 (B)).

주사전자현미경(Scanning electron microscopy; SEM)을 이용한 분석을 통해 농도별로 제작한 탈세포 간 조직 유래 하이드로젤 지지체가 나노섬유 다발 형태의 내부 구조를 가지고 있음을 확인하였으며 (도 2 (C)) 따라서 간 오가노이드의 배양에 적합한 삼차원 미세환경을 제공해 줄 수 있음을 확인하였다. Through analysis using scanning electron microscopy (SEM), it was confirmed that the decellularized liver tissue-derived hydrogel scaffolds prepared for each concentration had an internal structure in the form of a nanofiber bundle (Fig. 2 (C)). It was confirmed that a three-dimensional microenvironment suitable for culturing organoids can be provided.

실험예 1-2. 탈세포 간 조직 세포외기질의 농도별 물성 분석Experimental Example 1-2. Analysis of physical properties by concentration of extracellular matrix in decellularized liver tissue

탈세포 간 조직 유래 지지체의 농도별 물성 차이를 알아보기 위해 4가지 농도조건 (2, 4, 6, 8 mg/ml)에서 하이드로젤 형성을 유도한 후 유변학 분석을 통해 기계적 물성을 측정하였다. In order to investigate the difference in the physical properties of the decellularized tissue-derived scaffold by concentration, hydrogel formation was induced in four concentration conditions (2, 4, 6, 8 mg/ml), and then the mechanical properties were measured through rheological analysis.

그 결과, 도 3에서 확인되는 바와 같이, LEM 지지체 모든 농도 조건에서 storage modulus (G') 값이 loss modulus (G'') 값 보다 일관되게 높음을 확인함으로써 하이드로젤 내 가교를 통해 안정적인 고분자 네트워크가 형성됨을 확인하였다. LEM 농도가 증가할수록 물성도 커지는 것을 확인하였고 대조군 매트리젤(MAT) 그룹에 비해서는 전체적으로 물성이 낮은 것을 확인하였다. 고농도 (8 mg/ml) LEM 하이드로젤은 매트리젤과 유사한 물성 수치를 가졌다. As a result, as confirmed in FIG. 3, it was confirmed that the storage modulus (G') value was consistently higher than the loss modulus (G'') value in all concentration conditions of the LEM support, thereby providing a stable polymer network through crosslinking in the hydrogel. formation was confirmed. It was confirmed that the physical properties increased as the LEM concentration increased, and it was confirmed that the overall physical properties were lower than that of the control matrigel (MAT) group. High concentration (8 mg/ml) LEM hydrogel had similar physical properties to Matrigel.

실험예 1-3. 탈세포 간 조직 유래 세포외기질의 단백체 분석Experimental Example 1-3. Proteomic analysis of extracellular matrix derived from decellularized liver tissue

탈세포 간 조직 유래 지지체의 구성성분들을 파악하기 위해 질량분석기를 이용한 단백체 분석(Proteomics)을 실시하여 간 조직 특이적인 다양한 세포외기질 (Collagens, ECM Glycoproteins, Proteoglycans) 및 성장인자 단백질들이 LEM에 포함되어 있는 것을 확인하였다.In order to identify the components of the decellularized liver tissue-derived scaffold, proteomics using a mass spectrometer was performed, and various extracellular matrix (Collagens, ECM Glycoproteins, Proteoglycans) and growth factor proteins specific to liver tissue were included in the LEM. confirmed that there is.

그 결과 도 4에서 확인되는 바와 같이, 기존 상용화된 지지체인 매트리젤(MAT)은 ECM Glycoproteins이 대부분인 반면, 탈세포 간 조직 매트릭스(LEM)는 Collagens과 ECM Glycoproteins이 가장 많고 Proteoglycans와 ECM regulators 순으로 다양한 성분으로 구성되어 있음을 확인하였다. Top 10 세포외기질 (ECM) 단백질들 중 LEM에 특이적으로 존재하는 Biglycan (BGN), Lumican (LUM), Asporin (ASPN)은 간 조직 발달 시 ECM remodeling에 관여하는 주요 단백질이며 PRELP는 정상적인 간세포 구조를 유지하는데 중요한 역할을 하는 단백질로 알려져 있다.. 이를 통해 제작된 탈세포 간 조직 유래 세포외기질(LEM) 지지체가 매트리젤에 비해 간 구조, 발달, 기능에 있어 중요한 역할을 담당하는 실제 간 조직에 존재하는 다양한 세포외기질 단백질들을 포함하고 있음을 확인하였다. As a result, as confirmed in FIG. 4, the existing commercially available support, Matrigel (MAT), contains most of the ECM Glycoproteins, whereas the decellularized liver tissue matrix (LEM) has the most Collagens and ECM Glycoproteins, and various proteoglycans and ECM regulators in the order. It was confirmed that it was composed of ingredients. Among the Top 10 extracellular matrix (ECM) proteins, Biglycan (BGN), Lumican (LUM), and Asporin (ASPN), which are specifically present in LEM, are major proteins involved in ECM remodeling during liver tissue development, and PRELP is a normal hepatocyte structure. It is known as a protein that plays an important role in maintaining It was confirmed that it contains various extracellular matrix proteins present in

또한, 도 5에서 확인되는 바와 같이, 매트리젤(MAT)과 탈세포 간 조직 유래 지지체(LEM)에서 간 조직에서 많이 발현된다고 알려진 단백질들을 검출하여 비교해 보았을 때, 매트리젤보다 LEM에서 간 조직과 관련된 matrisome 및 non-matrisome 단백질들이 훨씬 더 많이 검출되었다 (도 5 (a)). In addition, as confirmed in FIG. 5, when compared with the detection and comparison of proteins known to be highly expressed in liver tissue in Matrigel (MAT) and decellularized liver tissue-derived scaffold (LEM), it is related to liver tissue in LEM rather than Matrigel. Matrisome and non-matrisome proteins were detected much more (Fig. 5 (a)).

각 매트릭스에 포함된 세포외기질(ECM)을 제외한 단백질 성분들의 기능을 알아보기 위해 유전자 온톨로지(Gene Ontology) 분석을 진행했을 때, 매트리젤에 포함된 non-matrisome 성분들은 peptide나 amide의 생합성 및 대사와 관련된 기능을 주로 담당하는 것에 비해 본 발명에서 제작된 LEM 지지체에 포함된 non-matrisome 성분들은 저분자, 각종 유기산 및 세포대사와 관련된 역할에 주로 관여하는 것을 확인하였다 (도 5 (b)). When gene ontology analysis was performed to investigate the functions of protein components except for the extracellular matrix (ECM) contained in each matrix, the non-matrisome components included in Matrigel were biosynthesis and metabolism of peptide or amide. It was confirmed that the non-matrisome components included in the LEM scaffold prepared in the present invention were mainly involved in roles related to small molecules, various organic acids and cellular metabolism, while mainly responsible for the functions related to the LEM (Fig. 5 (b)).

즉, LEM 지지체에 포함된 ECM 이외 non-matrisome 단백질 성분들은 간세포의 중요한 기능인 유기산대사 및 각종 세포대사 능력이 증진된 기능성 높은 간 오가노이드 형성에 중요한 역할을 할 것으로 판단된다.In other words, non-matrisome protein components other than ECM included in the LEM scaffold are expected to play an important role in the formation of highly functional liver organoids with enhanced organic acid metabolism and various cellular metabolic abilities, which are important functions of hepatocytes.

실험예 2: 탈세포 간 조직 유래 세포외기질을 포함한 지지체 조성물의 분석Experimental Example 2: Analysis of scaffold composition including extracellular matrix derived from decellularized liver tissue

실험예 2-1. 탈세포 간 조직 유래 하이드로젤 지지체의 농도에 따른 간 오가노이드(담관세포 유래 간 오가노이드 - Cholangiocyte-derived liver organoid; CLO) 배양 및 농도 선정Experimental Example 2-1. Culture and concentration selection of liver organoids (cholangiocyte-derived liver organoid; CLO) according to the concentration of decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 조직 유래 LEM 농도별로 하이드로젤을 제작하여 간 오가노이드(CLO)를 배양하고 형성 효율을 비교하여 오가노이드 배양에 적절한 농도 조건을 선별하였다. 상용화된 배양 지지체인 매트리젤은 대조군으로 이용하였다. 간 오가노이드는 쥐의 간 조직에서 추출한 담관세포를 이용하여 제작하였다. A hydrogel was prepared for each LEM concentration derived from decellularized liver tissue, and liver organoids (CLO) were cultured, and the concentration conditions suitable for organoid culture were selected by comparing the formation efficiency. A commercially available culture support, Matrigel, was used as a control. Liver organoids were prepared using bile duct cells extracted from rat liver tissue.

도 6에 나타난 바와 같이, 간 오가노이드 배양을 위해 탈세포 간 조직 유래 LEM 하이드로젤을 다양한 LEM 농도 조건에서 적용했을 때 모든 농도 조건(2, 4, 6, 8 mg/ml)에서 대조군인 매트리젤(MAT)에서와 유사한 형태의 간 오가노이드가 잘 형성되는 것을 확인하였다 (도 6 (A)). 배양 7일차에 탈세포 간 조직 유래 LEM 하이드로젤 지지체의 농도에 따른 간 오가노이드 형성 효율을 비교했을 때 4 mg/ml 및 6 mg/ml 조건에서 가장 형성 효율이 높음을 확인하였다 (도 6 (B)).As shown in FIG. 6 , when LEM hydrogel derived from decellularized liver tissue was applied at various LEM concentration conditions for liver organoid culture, Matrigel as a control in all concentration conditions (2, 4, 6, 8 mg/ml) It was confirmed that hepatic organoids similar to those in (MAT) were well formed (Fig. 6 (A)). When comparing the liver organoid formation efficiency according to the concentration of the decellularized liver tissue-derived LEM hydrogel support on the 7th day of culture, it was confirmed that the formation efficiency was highest in the conditions of 4 mg/ml and 6 mg/ml (Fig. 6 (B) )).

실험예 2-2. 탈세포 간 조직 유래 하이드로젤 지지체의 LEM 농도에 따른 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 분화능 차이 분석 Experimental Example 2-2. Analysis of the difference in differentiation capacity of liver organoids (hepatic organoids derived from bile duct cells, CLO) according to LEM concentration of decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 조직 유래 LEM 하이드로젤 지지체를 농도별로 제작하여 마우스 간 오가노이드 배양에 적용하고, 각 농도 조건에서 7일간 배양된 오가노이드의 분화 관련 유전자 발현을 정량적 PCR (qPCR) 방법으로 비교 분석하였다. 상용화된 배양 지지체인 매트리젤(MAT)을 대조군으로 이용하였다. Decellularized liver tissue-derived LEM hydrogel scaffolds were prepared by concentration and applied to mouse liver organoid culture, and the differentiation-related gene expression of organoids cultured for 7 days at each concentration condition was compared and analyzed by quantitative PCR (qPCR) method. A commercially available culture support, Matrigel (MAT) was used as a control.

도 7에 나타난 바와 같이, LEM 농도 조건 별로 유전자 발현을 비교하였을 때, 줄기세포능(stemness)과 관련된 유전자(LGR5)는 LEM 하이드로젤에서 배양된 간 오가노이드에서 약간씩 감소하지만 간 분화 관련 마커(Krt19, Krt18, Hnf4a, Hnf1b, Foxa3)들은 발현이 증가하는 경향을 보였다. LEM 농도 조건 중에서 6 mg/ml 농도의 LEM 하이드로젤이 매트리젤과 간 오가노이드 형성 효율이 크게 차이가 나지 않고, 간 분화 마커의 발현은 더 증가하는 것을 고려하여 LEM 하이드로젤 농도는 6 mg/ml LEM 조건으로 결정하여 이후에 간 오가노이드 실험에 적용하였다. As shown in Figure 7, when comparing gene expression by LEM concentration conditions, the gene (LGR5) related to stem cell ability (stemness) is slightly decreased in liver organoids cultured in LEM hydrogel, but hepatic differentiation-related marker ( Krt19, Krt18, Hnf4a, Hnf1b, Foxa3) showed a tendency to increase expression. Considering that LEM hydrogel at 6 mg/ml concentration did not differ significantly from Matrigel in liver organoid formation efficiency and the expression of liver differentiation markers was further increased, the LEM hydrogel concentration was 6 mg/ml under LEM concentration conditions. It was determined by LEM conditions and subsequently applied to liver organoid experiments.

실험예 2-3. 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 분석Experimental Example 2-3. Analysis of liver organoids cultured on decellularized liver tissue-derived hydrogel scaffolds (cholangiocyte-derived liver organoids, CLO)

오가노이드 배양에 가장 널리 이용되는 매트리젤과 탈세포 간 조직 유래 LEM 하이드로젤 (6 mg/ml) 지지체에서 배양된 간 오가노이드의 면역염색을 진행하였다. 간 오가노이드는 쥐의 간 조직에서 추출한 담관세포를 이용하여 제작하였고 배양 7일차에 면역염색을 통해 비교하였다. Immunostaining of liver organoids cultured on Matrigel, which is most widely used for organoid culture, and LEM hydrogel (6 mg/ml) support derived from decellularized liver tissue was performed. Liver organoids were prepared using bile duct cells extracted from rat liver tissue and compared by immunostaining on the 7th day of culture.

도 8에 나타난 바와 같이, 간 특이적 마커에 대한 면역염색을 통해 대조군 매트리젤(Matrigel)에서 배양된 간 오가노이드와 비교하여 보았을 때, 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 배양된 CLO 타입 간 오가노이드에서도 매트리젤 그룹과 유사한 수준으로 간 조직 특이적 마커들이 잘 발현되는 것을 확인하였다. * KRT19 (cholangiocyte marker), ECAD (cell-cell junction marker), SOX9 (cholangiocyte progenitor marker), Ki67 (proliferative cell marker), ALB (mature hepatocyte marker)As shown in FIG. 8 , when compared with liver organoids cultured in control Matrigel through immunostaining for liver-specific markers, CLO-type liver cultured on LEM hydrogel support derived from decellularized liver tissue. In organoids, it was confirmed that liver tissue-specific markers were well expressed at a level similar to that of the Matrigel group. * KRT19 (cholangiocyte marker), ECAD (cell-cell junction marker), SOX9 (cholangiocyte progenitor marker), Ki67 (proliferative cell marker), ALB (mature hepatocyte marker)

실험예 2-4. 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 기능성 분석Experimental Example 2-4. Functional analysis of liver organoids (cholangiocyte-derived liver organoids, CLO) cultured on decellularized liver tissue-derived hydrogel scaffolds

담관세포 유래 간 오가노이드를 배양하고, 7일차에 간 기능성 평가를 진행하였다. 상용화된 배양 지지체인 매트리젤을 대조군으로 적용하였으며 LEM 하이드로젤은 6 mg/ml 농도로 적용하였다. Liver organoids derived from bile duct cells were cultured, and liver function was evaluated on the 7th day. A commercially available culture support, Matrigel, was applied as a control, and LEM hydrogel was applied at a concentration of 6 mg/ml.

도 9에 나타난 바와 같이, Glycogen과 같은 다당류의 저장능력을 분석하는 PAS 염색을 통해 LEM 하이드로젤에서 배양된 간 오가노이드가 대조군(MAT) 그룹과 유사한 수준의 다당류 저장능을 가짐을 알 수 있었다 (도 9 (A)). 다양한 간 기능 분석(알부민 분비, 요소합성능력, 시토크롬 활성)을 진행해 보았을 때, LEM 하이드로젤에서 배양된 CLO 타입 간 오가노이드가 매트리젤에서 배양된 간 오가노이드와 유사한 기능성을 보여주는 것을 확인하였다 (도 9 (B)). As shown in Figure 9, through PAS staining to analyze the storage capacity of polysaccharides such as glycogen, it was confirmed that liver organoids cultured in LEM hydrogel had a polysaccharide storage capacity similar to that of the control (MAT) group ( Fig. 9 (A)). When various liver function analyzes (albumin secretion, urea synthesis ability, cytochrome activity) were performed, it was confirmed that CLO-type liver organoids cultured in LEM hydrogel showed similar functionality to liver organoids cultured in Matrigel (Fig. 9 (B)).

실험예 2-5. 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간 오가노이드(담관세포 유래 간 오가노이드, CLO) 장기 배양Experimental Example 2-5. Long-term culture of liver organoids (cholangiocyte-derived liver organoids, CLO) using decellularized liver tissue-derived hydrogel scaffolds

앞서 확립한 탈세포 간 조직 유래 LEM 하이드로젤 지지체 내에서 마우스 담관세포 유래 간 오가노이드 장기 배양을 시도하고 간 특이적 분화 마커 분석하였다. 매트리젤 그룹은 대조군으로 이용하였다. A long-term culture of mouse bile duct cell-derived liver organoids was attempted in the LEM hydrogel scaffold derived from decellularized liver tissue previously established, and liver-specific differentiation markers were analyzed. The Matrigel group was used as a control group.

도 10에 나타난 바와 같이, LEM 하이드로젤 내에서 계대 배양을 지속하면서 1달 동안 배양했을 때 간 오가노이드 형태 이미지를 살펴보면, 매트리젤에서 배양된 간 오가노이드와 모양 및 크기도 유사한 수준으로 배양되는 것을 확인하였다 (도 10(A)). 간 오가노이드를 1달 이상 장기배양 하였을 때에도 매트리젤 기반 오가노이드 보다 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 배양된 간 오가노이드에서 간 분화 마커 발현이 증가하는 것을 확인하였고 장기간 배양할수록 LEM 하이드로젤에서는 오가노이드 분화가 더욱 증진되는 것을 알 수 있었다 (도 10 (B)). As shown in Figure 10, looking at the image of liver organoids when cultured for 1 month while continuing subculture in LEM hydrogel, the shape and size of liver organoids cultured in Matrigel are also cultured at a similar level. was confirmed (FIG. 10(A)). Even when liver organoids were cultured for more than 1 month, it was confirmed that hepatic differentiation marker expression increased in liver organoids cultured on LEM hydrogel support derived from decellularized liver tissue than in Matrigel-based organoids. It was found that organoid differentiation was further enhanced (FIG. 10 (B)).

실험예 2-6. 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 인간 간 오가노이드(인간 담관세포 유래 간 오가노이드 - hCLO) 배양 및 분석Experimental Example 2-6. Culture and analysis of human liver organoids (human cholangiocyte-derived liver organoid - hCLO) using decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 조직 유래 LEM 하이드로젤 지지체(6 mg/ml)를 이용하여 인간 간 조직 유래의 간 오가노이드의 배양이 가능한지 확인하였다. 간의 담관세포를 분리하여 인간 담관세포 유래 간 오가노이드를 배양하고 대조군으로 매트리젤을 사용하였다. It was confirmed whether culturing of liver organoids derived from human liver tissue was possible using the decellularized liver tissue-derived LEM hydrogel scaffold (6 mg/ml). Hepatic bile duct cells were isolated and human bile duct cell-derived liver organoids were cultured, and Matrigel was used as a control.

도 11에 나타난 바와 같이, 매트리젤(MAT)과 유사하게 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서도 인간 유래 간 오가노이드가 잘 형성되고 50일 이상 장기간 계대 배양이 가능함을 확인하였다 (도 11(A)). 배양 7일차에 정량적 PCR 분석을 통해 간 조직 마커 발현을 분석하였을 때, LEM 하이드로젤에서 배양된 간 오가노이드에서의 줄기세포능(stemness)과 관련된 LGR5 유전자 및 간 분화 관련 마커 유전자(HNF4A, SOX9, FOXA2)의 발현이 매트리젤에서 배양된 오가노이드와 비슷하거나 약간 증가하는 경향을 보였다 (도 11 (B)). As shown in FIG. 11 , it was confirmed that, similar to Matrigel (MAT), human-derived liver organoids were well formed on the decellularized liver tissue-derived LEM hydrogel scaffold, and long-term subculture for more than 50 days was possible (FIG. 11(A) )). When the expression of liver tissue markers was analyzed through quantitative PCR analysis on the 7th day of culture, the LGR5 gene and hepatic differentiation-related marker genes (HNF4A, SOX9, FOXA2) expression showed a similar or slightly increased tendency compared to organoids cultured in Matrigel (FIG. 11 (B)).

또한, 탈세포 간 조직 유래 LEM 하이드로젤 지지체를 농도별로 제작하여 인간 간 오가노이드 배양에 적용하고, 각 농도 조건에서 14일간 배양된 오가노이드의 분화 관련 유전자 발현을 정량적 PCR (qPCR) 방법으로 비교 분석하였다. 상용화된 배양 지지체인 매트리젤(MAT)을 대조군으로 이용하였다. In addition, LEM hydrogel scaffolds derived from decellularized liver tissue were prepared by concentration and applied to human liver organoid culture, and the expression of differentiation-related genes in organoids cultured for 14 days at each concentration condition was compared and analyzed by quantitative PCR (qPCR) method. did. A commercially available culture support, Matrigel (MAT) was used as a control.

그 결과, 도 12에서 확인되는 바와 같이 LEM 농도 조건 별로 유전자 발현을 비교하였을 때, 줄기세포능(stemness)과 관련된 유전자(LGR5)와 간 분화 관련 마커(SOX9, HNF4A, KRT19, FOXA2)들 모두 LEM 하이드로젤과 매트리젤 (MAT) 그룹에서 큰 차이없이 비슷한 발현량을 나타내는 것을 확인하였다. LEM 농도 조건 중에서 6 mg/ml 농도의 하이드로젤이 간 오가노이드 형성 효율도 좋고, KRT19와 HNF4A 분화 마커의 발현도 약간 증가하는 것을 고려하여 LEM 하이드로젤 농도는 6 mg/ml LEM 조건으로 결정하여 이후에 간 오가노이드 실험에 적용하였다.As a result, as confirmed in FIG. 12 , when gene expression was compared for each LEM concentration condition, stem cell ability (stemness) related genes (LGR5) and liver differentiation related markers (SOX9, HNF4A, KRT19, FOXA2) all LEM It was confirmed that the hydrogel and matrigel (MAT) groups showed similar expression levels without significant difference. Considering that the 6 mg/ml concentration of the hydrogel has good liver organoid formation efficiency among the LEM concentration conditions and the expression of KRT19 and HNF4A differentiation markers also slightly increases, the LEM hydrogel concentration was determined under the 6 mg/ml LEM condition and then was applied to the liver organoid experiment.

그리고, 매트리젤(MAT)과 탈세포 간 조직 유래 LEM 하이드로젤 (6 mg/ml) 지지체에서 배양된 간 오가노이드의 면역염색을 진행하였다. 간 오가노이드는 인간 간 조직에서 추출한 담관세포를 이용하여 제작하였고 배양 14일차에 면역염색을 통해 비교하였다. Then, immunostaining of liver organoids cultured on matrigel (MAT) and decellularized liver tissue-derived LEM hydrogel (6 mg/ml) support was performed. Liver organoids were prepared using bile duct cells extracted from human liver tissue and compared by immunostaining on the 14th day of culture.

간 특이적 마커에 대한 면역염색을 통해 대조군 매트리젤(MAT)에서 배양된 간 오가노이드와 비교하여 보았을 때, 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 배양된 간 오가노이드에서도 매트리젤 그룹과 유사한 수준으로 간 조직 특이적 마커들이 잘 발현되는 것을 확인하였다 (도 13 (A)).When compared with liver organoids cultured in control Matrigel (MAT) through immunostaining for liver-specific markers, liver organoids cultured on LEM hydrogel support derived from decellularized liver tissue had similar levels to that of the Matrigel group. It was confirmed that the liver tissue-specific markers were well expressed (FIG. 13 (A)).

간 기능 분석(요소합성능력, 알부민 분비)을 진행해 보았을 때, LEM 하이드로젤에서 배양된 인간 간 오가노이드가 매트리젤에서 배양된 간 오가노이드와 유사하거나 약간 높은 기능성을 보여주는 것을 확인하였다 (도 13 (B)).When liver function analysis (urea synthesis ability, albumin secretion) was performed, it was confirmed that human liver organoids cultured in LEM hydrogel showed similar or slightly higher functionality to liver organoids cultured in Matrigel (Fig. 13 (Fig. B)).

* KRT19 (cholangiocyte marker), ECAD (cell-cell junction marker), SOX9 (cholangiocyte progenitor marker), Ki67 (proliferative cell marker), F-actin (filamentous actin marker)* KRT19 (cholangiocyte marker), ECAD (cell-cell junction marker), SOX9 (cholangiocyte progenitor marker), Ki67 (proliferative cell marker), F-actin (filamentous actin marker)

실험예 2-7. 탈세포 간 조직 유래 하이드로젤 지지체의 농도 별 간 오가노이드(간세포 유래 간 오가노이드 - Hepatocyte-derived liver organoid; HLO) 배양 및 최적 농도 선정Experimental Example 2-7. Culturing and optimal concentration of liver organoids (hepatocyte-derived liver organoid; HLO) by concentration of decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 지지체의 농도별로 하이드로젤을 제작하여 간 오가노이드를 배양하고 형성 효율, 유전자 발현을 비교 분석하였다. 상용화된 배양 지지체인 매트리젤은 대조군으로 이용하였다. 간 오가노이드는 마우스 간 조직을 관류(perfusion)하여 추출한 순수 간세포(hepatocyte)를 이용하여 제작하였다. A hydrogel was prepared for each concentration of the decellularized liver scaffold, and liver organoids were cultured, and the formation efficiency and gene expression were comparatively analyzed. A commercially available culture support, Matrigel, was used as a control. Liver organoids were prepared using pure hepatocytes extracted by perfusion of mouse liver tissue.

그 결과 도 14에 나타난 바와 같이, 탈세포 LEM 하이드로젤 지지체 내에서 간세포 유래 간 오가노이드를 14일간 배양했을 때 대조군 그룹(MAT)과 유사한 모양의 간 오가노이드가 형성되는 것을 확인하였다 (도 14 (A)). 탈세포 지지체 농도에 따른 간 오가노이드 형성 효율을 배양 7일차에 대조군 그룹(MAT)과 비교하였다 (도 14(B)). 정량적 PCR 분석을 통해 농도별로 제작된 LEM 하이드로젤에서 배양된 오가노이드의 간 조직 마커 발현을 분석하였을 때, 탈세포 LEM 지지체 그룹에서 간 분화 마커(Krt18, Hnf4a, Cdh1)가 더 증가하는 경향을 보이는 것을 확인하였다 (도 14 (C)). 4 mg/ml 농도에서 형성 효율도 안정적이고, 간 분화 마커의 발현량은 증가하는 것으로 보아 적합한 조건으로 판단하고 이후 HLO 배양을 위해서는 4 mg/ml 농도를 적용하였다. As a result, as shown in FIG. 14, when hepatocyte-derived liver organoids were cultured in the decellularized LEM hydrogel support for 14 days, it was confirmed that liver organoids with a shape similar to that of the control group (MAT) were formed (FIG. 14 ( A)). The liver organoid formation efficiency according to the decellularization scaffold concentration was compared with the control group (MAT) on the 7th day of culture (Fig. 14(B)). When the liver tissue marker expression of organoids cultured in LEM hydrogels prepared by concentration through quantitative PCR analysis was analyzed, the liver differentiation markers (Krt18, Hnf4a, Cdh1) tended to further increase in the decellularized LEM support group. was confirmed (FIG. 14 (C)). The formation efficiency was also stable at the concentration of 4 mg/ml, and the expression level of the hepatic differentiation marker was judged to be an appropriate condition, and then a concentration of 4 mg/ml was applied for HLO culture.

실험예 2-8. 탈세포 간 조직 유래 하이드로젤 지지체(LEM)와 기존의 배양 지지체(MAT)에서 형성된 간 오가노이드(HLO)의 성장 비교Experimental Example 2-8. Comparison of growth of liver organoids (HLO) formed on decellularized liver tissue-derived hydrogel scaffolds (LEM) and conventional culture scaffolds (MAT)

간 오가노이드는 마우스 간 조직을 관류(perfusion)하여 추출한 순수 간세포(hepatocyte)를 이용하여 제작하였고, 탈세포 LEM 지지체 (4 mg/ml)와 상용화된 배양 지지체인 매트리젤에 배양하여 오가노이드의 성장속도를 비교하였다. Liver organoids were prepared using pure hepatocytes extracted by perfusion of mouse liver tissue, and the growth of organoids by culturing on decellularized LEM support (4 mg/ml) and a commercially available culture support, Matrigel. The speed was compared.

그 결과, 도 15에 나타난 바와 같이, 오가노이드 배양에 가장 널리 이용되는 매트리젤과 탈세포 간 조직 유래 LEM 하이드로젤 (4 mg/ml) 지지체에서 자라는 마우스 간세포 유래 간 오가노이드를 비교했을 때, 각 지지체에서 형성된 간 오가노이드가 모두 계속 크기가 커지면서 계대 배양까지 잘 되는 것을 확인하였다.As a result, as shown in FIG. 15 , when comparing Matrigel, which is most widely used for organoid culture, and LEM hydrogel (4 mg/ml) support derived from decellularized liver tissue, liver organoids derived from mouse hepatocytes were compared. It was confirmed that all of the liver organoids formed on the support continued to increase in size and were well up to subculture.

실험예 2-9. 탈세포 간 조직 유래 하이드로젤 지지체(LEM)에서 배양된 간세포 유래 간 오가노이드(HLO) 분석Experimental Example 2-9. Analysis of hepatocyte-derived liver organoids (HLO) cultured on decellularized liver tissue-derived hydrogel scaffolds (LEMs)

탈세포 간 지지체 하이드로젤(4 mg/ml)을 이용하여 20일동안 간 오가노이드를 배양하고 면역염색 분석 및 간 기능성 비교 분석을 실시하였다. 상용화된 배양 지지체인 매트리젤을 대조군으로 이용하였다. 간 오가노이드는 쥐의 간 조직을 관류(perfusion)하여 추출한 순수 간세포(hepatocyte)를 이용하여 제작하였다. Liver organoids were cultured for 20 days using decellularized liver scaffold hydrogel (4 mg/ml), and immunostaining analysis and liver functional comparison analysis were performed. A commercially available culture support, Matrigel, was used as a control. Liver organoids were prepared using hepatocytes extracted by perfusion of rat liver tissue.

도 16에 나타난 바와 같이, 대조군 매트리젤(MAT)에서 배양된 오가노이드와 면역염색을 통해 다양한 마커 발현을 비교하여 보았을 때 탈세포 LEM 지지체 그룹에서도 간 조직 특이적 마커들이 잘 발현되는 것을 확인하였다 (도 16(A)). As shown in FIG. 16, when comparing the expression of various markers through immunostaining with organoids cultured in control matrigel (MAT), it was confirmed that liver tissue-specific markers were well expressed even in the decellularized LEM support group ( Fig. 16(A)).

* ALB(hepatocyte marker), ECAD(tight junction marker), F-actin(cytoskeleton marker)* ALB (hepatocyte marker), ECAD (tight junction marker), F-actin (cytoskeleton marker)

Glycogen과 같은 다당류의 저장능력을 확인하는 PAS (Periodic Acid Schiff) 염색을 통해 두 그룹 모두 glycogen 저장 능력을 확인하였다 (도 16 (B)). 요소 합성능력과 알부민 분비량을 비교해 보았을 때, 탈세포 LEM 지지체 그룹에서 대조군 그룹(MAT)에 비해 기능성이 증가한 것을 확인하였다 (도 16 (C)). Both groups confirmed the glycogen storage capacity through PAS (Periodic Acid Schiff) staining, which confirms the storage capacity of polysaccharides such as glycogen (FIG. 16 (B)). When comparing the urea synthesis ability and the albumin secretion, it was confirmed that the functionality was increased in the decellularized LEM support group compared to the control group (MAT) (FIG. 16 (C)).

실험예 3: 탈세포 간 조직 유래 하이드로젤 지지체의 활용가능성 확인Experimental Example 3: Confirmation of applicability of decellularized liver tissue-derived hydrogel scaffolds

실험예 3-1. 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 인간 유도만능줄기세포(Human-induced Pluripotent Stem Cell; hiPSC) 유래 간 오가노이드 배양Experimental Example 3-1. Human-induced Pluripotent Stem Cell (hiPSC)-derived liver organoid culture using a decellularized liver tissue-derived hydrogel scaffold

인간 유도만능줄기세포로부터 간 오가노이드 형성을 위해 적합한 하이드로젤 물성을 조절하기 위해 LEM:배양액 = 1:1 (v/v) 조성으로 혼합하여 하이드로젤 층을 만들고 그 위에 간 오가노이드 형성에 필요한 세포(인간 유도만능줄기세포 유래 간 내배엽 세포, 혈관내피세포, 중간엽줄기세포)를 도포하였다. 72시간 내 세포들이 자가 조직화를 통해 간 오가노이드로 형성되었다. 탈세포 간 지지체 하이드로젤(LEM) 상에서 배양된 간 오가노이드의 면역염색을 통해 단백질 발현을 비교 분석하였다. 상용화된 배양 지지체인 매트리젤(MAT)은 대조군으로 이용하였다. In order to control the properties of hydrogel suitable for the formation of liver organoids from human induced pluripotent stem cells, a hydrogel layer is made by mixing LEM: culture solution = 1:1 (v/v) composition, and cells necessary for liver organoid formation are formed thereon. (Human induced pluripotent stem cell-derived liver endoderm cells, vascular endothelial cells, mesenchymal stem cells) were applied. Within 72 hours, cells formed into liver organoids through self-organization. Protein expression was comparatively analyzed through immunostaining of liver organoids cultured on decellularized liver scaffold hydrogel (LEM). A commercially available culture support, Matrigel (MAT), was used as a control.

도 17에 나타난 바와 같이, 유도만능줄기세포 유래 간 내배엽 세포(hepatic endoderm)+혈관세포(endothelial cell)+중간엽 줄기세포(mesenchymal stem cell)를 매트리젤(MAT)과 탈세포 간 조직 유래 하이드로젤(LEM) 층에서 배양했을 때, 시간에 따라 세포들이 뭉치면서 두 그룹 모두 72시간 내에 3차원의 오가노이드로 형성이 되는 것을 확인하였다 (도 17 (A)). 면역염색을 진행하였을 때, 간 관련 마커들(ALB, AFP)과 혈관세포 마커(CD31)가 두 그룹 모두에서 잘 발현 되는 것을 확인하였다 (도 17 (B)). 17, induced pluripotent stem cell-derived liver endoderm cells (hepatic endoderm) + vascular cells (endothelial cells) + mesenchymal stem cells (mesenchymal stem cells) Matrigel (MAT) and decellularized liver tissue-derived hydrogel When cultured in the (LEM) layer, it was confirmed that both groups were formed into three-dimensional organoids within 72 hours as cells aggregated over time (FIG. 17 (A)). When immunostaining was performed, it was confirmed that liver-related markers (ALB, AFP) and vascular cell marker (CD31) were well expressed in both groups (FIG. 17 (B)).

* ALB(mature hepatocyte marker), AFP(early hepatocyte marker), CD31(vascular endothelial marker). * ALB (mature hepatocyte marker), AFP (early hepatocyte marker), CD31 (vascular endothelial marker).

실험예 3-2. 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 인간 유도만능줄기세포 유래 간 오가노이드(hiPSC-LO) 분석Experimental Example 3-2. Analysis of human induced pluripotent stem cell-derived liver organoids (hiPSC-LO) cultured on decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 지지체 하이드로젤을 이용하여 7일간 인간 유도만능줄기세포 유래 간 오가노이드를 배양하고 기능성 및 유전자 발현을 비교 분석하였다. 상용화된 배양지지체인 매트리젤(MAT)은 대조군으로 이용하였다. 간 오가노이드는 인간 유도만능줄기세포 유래 간 내배엽 세포와 혈관내피세포, 중간엽줄기세포의 자가 조직화를 통해 제작되었다. Human induced pluripotent stem cell-derived liver organoids were cultured for 7 days using a decellularized liver scaffold hydrogel, and functional and gene expression were compared and analyzed. A commercially available culture support, Matrigel (MAT), was used as a control. Liver organoids were produced through the self-organization of human induced pluripotent stem cells-derived hepatic endoderm cells, vascular endothelial cells, and mesenchymal stem cells.

도 18에 나타난 바와 같이, 간 기능성 관련 PAS 염색을 진행하였을 때, 매트리젤 그룹과 LEM 하이드로젤 그룹 모두에서 글리코겐 저장이 잘 되는 것을 확인하였다. 요소 합성능력의 경우 탈세포 매트릭스에서 배양된 오가노이드에서 더 높게 나타남을 확인하였다(도 18(A)). 정량적 PCR 분석을 통해 간 조직 마커 발현을 분석하였을 때, LEM 하이드로젤에서 배양된 간 오가노이드의 전분화능(pluripotency) 관련 마커인 OCT4 유전자의 발현은 조금 감소하나 간 분화 관련 마커 유전자(SOX17, HNF4A)와 혈관 관련 마커 유전자(PECAM1, CD34)의 발현은 매트리젤에서 배양된 오가노이드 보다 증가하는 경향을 보였다 (도 18 (B)). As shown in FIG. 18 , when PAS staining related to liver function was performed, it was confirmed that glycogen storage was good in both the Matrigel group and the LEM hydrogel group. It was confirmed that the urea synthesis ability was higher in organoids cultured in decellular matrix (FIG. 18(A)). When the expression of liver tissue markers was analyzed through quantitative PCR analysis, the expression of OCT4 gene, a pluripotency-related marker, of liver organoids cultured in LEM hydrogel decreased slightly, but hepatic differentiation-related marker genes (SOX17, HNF4A) and blood vessel-related marker genes (PECAM1, CD34) showed a tendency to increase compared to organoids cultured in Matrigel (FIG. 18 (B)).

실험예 3-3. 탈세포 간 조직 유래 하이드로젤 지지체(LEM)에서 배양된 간 오가노이드(CLO)를 이용한 간 섬유증 모델 제작Experimental Example 3-3. Construction of a liver fibrosis model using liver organoids (CLO) cultured on decellularized liver tissue-derived hydrogel scaffolds (LEMs)

탈세포 간 조직 유래 지지체 기반 간 오가노이드를 이용한 질병 모델링을 위해 TGF-beta를 농도별로 스크리닝하고 간 섬유증 유발 가능성을 확인하였다. 7일동안 배양한 마우스 담관세포 유래 간 오가노이드(CLO)를 이용하여 모델을 유발하였다. 간 섬유증 모델을 제작하기 위해 TGF-β를 농도별로 48시간 동안 처리하고 오가노이드를 관찰하였다. For disease modeling using decellularized liver tissue-derived scaffold-based liver organoids, TGF-beta was screened for each concentration and the possibility of inducing liver fibrosis was confirmed. The model was induced using liver organoids (CLO) derived from mouse bile duct cells cultured for 7 days. To construct a liver fibrosis model, TGF-β was treated for 48 hours at different concentrations and organoids were observed.

도 19에 나타난 바와 같이, TGF-β 처리를 안해준 간 오가노이드와 달리, 처리해준 간 오가노이드는 모두 형태가 변하고 성장이 잘 일어나지 않은 것을 확인하였다 (Scale bars =100 μm) (도 19 (A)). 간 섬유화를 확인하기 위해 SMA(Smooth Muscle Actin)와 COL1A1을 염색하여 주변에 축적된 세포외기질(ECM)을 확인하였다 (Scale bars =100 μm) (도 19 (B)). 정량적 PCR 분석을 실시하여 4 ng/ml TGF-β를 처리한 그룹에서 간 섬유증 마커 발현이 가장 높게 나타난 것을 확인하였다 (도 19 (C)). TGF-β를 처리하지 않은 정상적인 조건에서는 대조군 매트리젤 그룹보다 탈세포 간 조직 유래 지지체 그룹에서 간 섬유증 마커(Col1a1)의 발현은 감소하고 담관세포마커(Krt19)의 발현은 증가하였다. 하지만 탈세포 간 조직 유래 지지체에서 배양된 간 오가노이드에 TGF-β 처리를 통해 섬유화를 유발하였을 때, 섬유증 마커의 발현은 크게 증가하고 담관세포마커의 발현은 현저하게 감소한 것을 확인하였다 (도 19 (D)). 본 실험을 통해, 탈세포 간 조직 유래 세포외기질 지지체에서 배양된 간 오가노이드를 이용한 섬유증 모델의 제작 가능성을 확인하였다. As shown in FIG. 19, it was confirmed that, unlike liver organoids that were not treated with TGF-β, all of the treated liver organoids changed their shape and did not grow well (Scale bars = 100 μm) (FIG. 19 (A) ). To confirm liver fibrosis, SMA (Smooth Muscle Actin) and COL1A1 were stained to confirm the accumulated extracellular matrix (ECM) (Scale bars = 100 μm) (FIG. 19 (B)). Quantitative PCR analysis was performed to confirm that the highest expression of the liver fibrosis marker in the group treated with 4 ng/ml TGF-β ( FIG. 19 (C)). Under normal conditions not treated with TGF-β, the expression of the liver fibrosis marker (Col1a1) decreased and the expression of the cholangiocarcinoma marker (Krt19) increased in the decellularized liver tissue-derived scaffold group than in the control matrix group. However, when fibrosis was induced through TGF-β treatment in liver organoids cultured in decellularized liver tissue-derived scaffolds, it was confirmed that the expression of the fibrosis marker was greatly increased and the expression of the bile duct cell marker was significantly decreased (Fig. 19 (Fig. D)). Through this experiment, the possibility of constructing a fibrosis model using liver organoids cultured on an extracellular matrix derived from decellularized liver tissue was confirmed.

한편, 탈세포 간 조직 유래 지지체에서 배양된 인간 담관세포 유래 간 오가노이드(hCLO)를 이용한 질병 모델링을 위해, TGF-β를 농도별로 테스트한 후 가장 적합한 농도(80 ng/ml)를 처리하여 간 섬유증 유발 가능성을 확인하였다. On the other hand, for disease modeling using human bile duct cell-derived liver organoids (hCLO) cultured on decellularized liver tissue-derived scaffolds, TGF-β was tested for each concentration and then treated with the most appropriate concentration (80 ng/ml) to treat the liver. The possibility of inducing fibrosis was confirmed.

도 20에 나타난 바와 같이, 간 섬유증 모델을 제작하기 위해 TGF-β를 농도별로 처리하고 3일 후 같은 오가노이드를 관찰하였다. 처리를 안해준 간 오가노이드는 3일간 성장을 한 것을 확인하였으나, 처리해준 간 오가노이드는 모두 형태가 변하고 성장이 잘 일어나지 않은 것을 확인하였다 (도 20(A)). 간 섬유화 모델을 검증하기 위해 SMA(Smooth Muscle Actin)를 염색하여 주변에 축적된 세포외기질(ECM)을 확인하였다. 본 실험을 통해, 탈세포 간 지지체에서 배양된 간 오가노이드를 이용하여 인간 간 섬유증 모델의 제작 가능성을 확인하였다 (도 20 (B)). As shown in FIG. 20 , the same organoids were observed after 3 days of treatment with TGF-β by concentration in order to construct a liver fibrosis model. It was confirmed that the liver organoids that were not treated had growth for 3 days, but it was confirmed that all of the liver organoids treated were changed in shape and did not grow well (FIG. 20(A)). To verify the liver fibrosis model, SMA (Smooth Muscle Actin) was stained to confirm the accumulated extracellular matrix (ECM). Through this experiment, the possibility of constructing a human liver fibrosis model using liver organoids cultured on a decellularized liver scaffold was confirmed (FIG. 20 (B)).

실험예 3-4. 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간 오가노이드 생체 내 이식Experimental Example 3-4. Liver organoid transplantation using decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 조직 유래 LEM 하이드로젤 지지체를 간 오가노이드 이식용 소재로서 활용하기 위한 동물 실험을 수행하고 조직학 분석을 진행하였다. 간 오가노이드를 마우스 간 독성 손상 모델의 간 조직 내에 효율적으로 전달하고 생착시키기 위해 LEM 하이드로젤을 이용하여 간 오가노이드를 이식하였다. 이식 시 주사가 용이한 LEM 하이드로젤 점도를 맞추기 위해 LEM 하이드로젤은 1:10 (v/v) = LEM: 배양액 조성으로 혼합하여 사용하였다. Animal experiments were performed to utilize the LEM hydrogel scaffold derived from decellularized liver tissue as a material for liver organoid transplantation, and histological analysis was performed. In order to efficiently deliver and engraft the liver organoids in the liver tissue of the mouse liver toxicity injury model, the liver organoids were transplanted using LEM hydrogel. In order to adjust the viscosity of the LEM hydrogel, which is easy to inject during transplantation, the LEM hydrogel was mixed with a composition of 1:10 (v/v) = LEM: culture solution.

도 21에 나타난 바와 같이 아세트아미노펜(Acetaminophen)을 복강 주사하여(24시간) 간 손상 모델을 유발하고 H&E 조직학 분석을 통해 손상모델을 검증하였다 (도 21(A)). 마우스 간 손상 모델에 DiI 형광시약으로 표지된 담관세포 유래 간 오가노이드(CLO)를 이식하였다. 이식용 지지체로서 매트리젤과 탈세포 LEM 하이드로젤을 이용하여 간 오가노이드를 이식하고, 생착 여부를 이식 하루 뒤 형광 발현을 통해 관찰하였다. 손상 부위에 이식된 간 오가노이드가 잘 생존하고 간 조직 내 존재하는 것을 확인하여 LEM 하이드로젤의 오가노이드 이식을 위한 생체소재로서의 가능성을 확인하였다 (도 21 (B)).As shown in FIG. 21, a liver injury model was induced by intraperitoneal injection of acetaminophen (Acetaminophen) (24 hours), and the injury model was verified through H&E histological analysis (FIG. 21(A)). A hepatic organoid (CLO) derived from bile duct cells labeled with DiI fluorescence reagent was transplanted into a mouse liver injury model. Hepatic organoids were transplanted using Matrigel and decellularized LEM hydrogel as a support for transplantation, and engraftment was observed through fluorescence expression one day after transplantation. The potential of LEM hydrogel as a biomaterial for organoid transplantation was confirmed by confirming that the liver organoids transplanted to the damaged site survived well and were present in the liver tissue (FIG. 21 (B)).

실험예 3-5. 탈세포 간 조직 유래 하이드로젤의 장기보관 가능성 검증Experimental Example 3-5. Verification of long-term storage potential of decellularized liver tissue-derived hydrogels

탈세포 간 조직 유래 LEM 하이드로젤을 -80 ℃ 냉동 조건에서 장기간 보관한 뒤, 이를 마우스 담관세포 유래 간 오가노이드(CLO) 배양에 이용하였다. 대조군으로는 매트리젤을 이용하였다. After long-term storage of decellularized liver tissue-derived LEM hydrogels in -80 °C freezing conditions, it was used for culturing mouse bile duct cell-derived liver organoids (CLO). As a control, Matrigel was used.

그 결과 도 22에서 확인되는 바와 같이 대조군 매트리젤과 오가노이드 배양 직전에 새롭게 준비한 LEM 하이드로젤, -80 ℃ 냉동에서 장기간 보관한 LEM 하이드로젤을 이용하여 간 오가노이드를 배양했을 때, 모든 그룹에서 오가노이드가 잘 형성되는 것을 확인하였다 (도 22 (A)).As a result, as shown in FIG. 22, when the liver organoids were cultured using the control matrigel, the LEM hydrogel newly prepared just before the organoid culture, and the LEM hydrogel stored for a long time at -80 ° C. It was confirmed that the noid was well formed (FIG. 22 (A)).

간 오가노이드 배양 직전에 제작한 매트리젤 및 LEM 하이드로젤과 비교하여 1달 또는 2달동안 냉동 보관된 LEM 용액으로 제작한 하이드로젤에서도 간 오가노이드가 잘 배양되며 간 분화 마커 모두 매트리젤 그룹에 비해서는 증가하며 탈세포 LEM 하이드로젤 간에는 큰 차이없이 비슷한 발현량을 나타내는 것을 확인하였다 (도 22(B)).Compared to Matrigel and LEM hydrogels prepared just before hepatic organoid culture, hepatic organoids were well cultured in hydrogels prepared with LEM solution stored frozen for 1 month or 2 months, and all of the liver differentiation markers were compared to the Matrigel group. increases and it was confirmed that the decellularized LEM hydrogels exhibited similar expression levels without significant difference (FIG. 22(B)).

또한, 탈세포 간 조직 유래 LEM 하이드로젤을 4 ℃ 냉장 조건에서 장기간 보관한 뒤, 이를 인간 담관세포 유래 간 오가노이드(hCLO) 배양에 이용하였다. 대조군으로는 매트리젤을 이용하였다. In addition, the decellularized liver tissue-derived LEM hydrogels were stored for a long time at 4°C under refrigerated conditions, and then used for human bile duct cell-derived liver organoid (hCLO) culture. As a control, Matrigel was used.

그 결과, 도 23에서 확인되는 바와 같이 배양 직전에 제작한 매트리젤 및 LEM 하이드로젤과 비교하여 2달 동안 냉장 보관된 LEM 용액으로 제작한 하이드로젤에서도 인간 간 오가노이드가 잘 배양되며 줄기세포능 마커와 간 분화 마커 모두 큰 차이없이 비슷하거나 높은 발현량을 나타내는 것을 확인하였다 (도 23 (A)).As a result, as shown in FIG. 23, human liver organoids were well cultured in the hydrogel prepared with the LEM solution stored refrigerated for 2 months compared to the Matrigel and LEM hydrogel prepared just before culture, and the stem cell ability marker It was confirmed that both and liver differentiation markers showed similar or high expression levels without significant difference (FIG. 23 (A)).

간 기능 분석(요소합성능력, 알부민 분비)을 진행해 보았을 때, 장기보관된 LEM 하이드로젤에서도 인간 간 오가노이드가 간 기능성을 잘 유지하며 매트리젤 그룹에서 배양된 간 오가노이드와 유사하거나 약간 높은 기능성을 보여주는 것을 확인하였다 (도 23 (B)).When liver function analysis (urea synthesis ability, albumin secretion) was conducted, human liver organoids maintained liver function well even in LEM hydrogels stored for a long time, and showed similar or slightly higher functionality to liver organoids cultured in the Matrigel group. It was confirmed that it was shown (FIG. 23 (B)).

이를 통해 탈세포 간 조직 유래 LEM 하이드로젤 지지체가 용액 상태로 2달 이상 4 ℃ 냉장 보관되어도 변성없이 안정성을 잘 유지하며, 간 오가노이드 배양에 사용될 수 있음을 확인하였다.Through this, it was confirmed that the decellularized liver tissue-derived LEM hydrogel support maintains stability without denaturation even when stored in a solution state at 4° C. for more than 2 months, and can be used for culturing liver organoids.

실험예 3-6. 탈세포 간 조직 유래 하이드로젤 지지체를 이용한 간암 오가노이드 배양Experimental Example 3-6. Cultivation of liver cancer organoids using decellularized liver tissue-derived hydrogel scaffolds

탈세포 간 조직 유래 LEM 하이드로젤 지지체를 이용하여 인간 간암 오가노이드 배양 가능성을 확인하였다. 정상 간 조직 유래 인간 간 오가노이드와 간암(Hepatocellular Carcinoma, HCC) 환자 조직 유래 간 오가노이드를 매트리젤과 탈세포 간 조직 유래 LEM 하이드로젤에서 20일간 배양한 뒤 이를 분석하였다. The possibility of culturing human liver cancer organoids was confirmed using a LEM hydrogel scaffold derived from decellularized liver tissue. Human liver organoids derived from normal liver tissue and liver organoids derived from hepatocellular carcinoma (HCC) patient tissue were cultured in Matrigel and LEM hydrogel derived from decellularized liver tissue for 20 days, and then analyzed.

그 결과 도 24에서 확인되는 바와 같이, 정상 간 오가노이드와 간암 오가노이드 모두 매트리젤 그룹과 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 유사하게 형성됨을 확인하였다 (도 24 (A)). 매트리젤에서 배양된 간암 오가노이드와 LEM 하이드로젤에서 배양된 간암 오가노이드의 면역염색을 실시하여 두 그룹 모두에서 간암 관련 마커(SMA, AFP) 단백질이 염색된 것을 확인하였다 (도 24 (B)). 탈세포 간 조직 유래 LEM 하이드로젤에서 배양된 정상 간 오가노이드와 간암 오가노이드의 유전자 발현을 qPCR 분석을 통해 비교해 보았을 때, 간암 오가노이드에서 줄기세포능(stemness) 관련된 LGR5 발현량은 감소하고 염증반응 관련된 TNFa, HES1의 발현과 간암 관련 AFP, PLIN2 마커의 발현은 증가한 것을 확인하였다 (도 24 (C)).As a result, as shown in FIG. 24 , it was confirmed that both normal liver organoids and liver cancer organoids were similarly formed in the Matrigel group and the LEM hydrogel scaffold derived from decellularized liver tissue ( FIG. 24 (A)). Immunostaining of liver cancer organoids cultured in Matrigel and liver cancer organoids cultured in LEM hydrogel was performed, and it was confirmed that liver cancer-related markers (SMA, AFP) proteins were stained in both groups (FIG. 24 (B)) . When the gene expression of normal liver organoids and liver cancer organoids cultured in decellularized liver tissue-derived LEM hydrogels was compared through qPCR analysis, stemness-related LGR5 expression levels in liver cancer organoids decreased and inflammatory response was observed. It was confirmed that the expression of related TNFa and HES1 and the expression of liver cancer-related AFP and PLIN2 markers were increased (FIG. 24 (C)).

이를 통해 탈세포 간 조직 유래 LEM 하이드로젤 지지체가 정상 간 오가노이드 뿐만 아니라 간암 오가노이드의 배양에도 적용 가능함을 확인함으로써 간암 체외 모델 구축을 위한 배양 플랫폼으로서 활용될 수 있는 가능성을 확인하였다. Through this, it was confirmed that the decellularized liver tissue-derived LEM hydrogel scaffold can be applied to the culture of liver cancer organoids as well as normal liver organoids.

실험예 3-7. 간 조직 탈세포 프로토콜 비교를 통한 본 발명에서 구축된 탈세포 간 조직 유래 지지체의 우수성 검증 Experimental Example 3-7. Verification of superiority of the decellularized liver tissue-derived scaffold constructed in the present invention through comparison of liver tissue decellularization protocols

본 연구에서 개발한 탈세포 방법(Protocol 1)과 기존 문헌에 보고된 바 있는 탈세포 방법(Protocol 2)을 비교하였다. Protocol 2 방법은 4% sodium deoxycholate를 4시간 처리한 후 DNase Ⅰ(3시간)을 이용하여 DNA를 제거하였고 본 연구에서 개발한 탈세포 방법은 조직 내 단백질 손상을 줄이기 위해 더 완화된 조건인 1% Triton X-100과 0.1% ammonium hydroxide를 혼합한 용액만을 사용하여 탈세포를 유도하였다. The decellularization method (Protocol 1) developed in this study and the decellularization method (Protocol 2) previously reported in the literature were compared. In the Protocol 2 method, DNA was removed using DNase I (3 hours) after treatment with 4% sodium deoxycholate for 4 hours. Decellularization was induced using only a solution of Triton X-100 and 0.1% ammonium hydroxide.

그 결과, 도 25에서 확인되는 바와 같이, H&E 조직학 분석결과, 두 방법 모두 세포는 잘 제거하였으나 프로토콜 1로 처리된 조직에서 ECM 성분들이 더 많이 보존됨을 확인하였다 (도 25 (A)).As a result, as shown in FIG. 25 , as a result of H&E histology analysis, it was confirmed that cells were well removed in both methods, but more ECM components were preserved in the tissue treated with protocol 1 ( FIG. 25 (A)).

탈세포 공정 후 DNA는 두 프로토콜로 처리된 조직에서 모두 크게 감소하였으나 GAG 정량 분석을 통해 프로토콜 2로 처리된 조직에 남아있는 GAG 성분이 프로토콜 1로 처리된 조직에서 보다 현저하게 적은 것을 확인하였다. 각 프로토콜로 제작된 탈세포 간 조직 유래 하이드로젤의 기계적 물성(elastic modulus)을 측정했을 때 프로토콜 2를 통해 탈세포된 조직에서 유래된 하이드로젤의 물성이 더 낮은 것을 확인하였다(도 25 (B)). After the decellularization process, DNA was significantly reduced in the tissues treated with both protocols, but GAG quantitative analysis confirmed that the remaining GAG components in the tissues treated with the protocol 2 were significantly less than in the tissues treated with the protocol 1. When the mechanical properties (elastic modulus) of the decellularized liver tissue-derived hydrogel prepared by each protocol were measured, it was confirmed that the hydrogel derived from the decellularized tissue through protocol 2 had lower physical properties (Fig. 25 (B)). ).

이러한 결과를 통해 프로토콜 1이 효율적인 탈세포화를 유도할 수 있을 뿐만 아니라 세포외기질 (ECM) 손상을 줄일 수 있는 보다 효율적인 방식임을 알 수 있다.These results suggest that protocol 1 is a more efficient way to not only induce efficient decellularization, but also reduce extracellular matrix (ECM) damage.

또한, 본 발명에서 구축한 탈세포 방법(Protocol 1)과 기존에 많이 사용하는 탈세포 방법(Protocol 3)을 비교하였다. Protocol 3은 본 발명에서 구축한 탈세포 방법을 적용한 이후 3% sodium dodecyl sulfate 시약을 추가적으로 24시간 처리하였다. In addition, the decellularization method constructed in the present invention (Protocol 1) was compared with the conventionally used decellularization method (Protocol 3). In Protocol 3, 3% sodium dodecyl sulfate reagent was additionally treated for 24 hours after the decellularization method constructed in the present invention was applied.

그 결과, 도 26에서 확인되는 바와 같이, H&E 조직학 분석하였을 때 두 방법 모두 세포는 잘 제거하였으나 프로토콜 1로 처리된 조직에서 ECM 성분들이 더 많이 보존됨을 확인하였다 (도 26 (A)).As a result, as confirmed in FIG. 26 , it was confirmed that cells were well removed in both methods when analyzed by H&E histology, but more ECM components were preserved in the tissue treated with protocol 1 ( FIG. 26 (A)).

탈세포 공정 후 DNA는 두 프로토콜로 처리된 조직에서 모두 크게 감소하였으나 GAG 정량 분석을 통해 프로토콜 3으로 처리된 조직에 남아있는 GAG 성분이 프로토콜 1로 처리된 조직에서 보다 현저하게 적은 것을 확인하였다. 각 프로토콜로 제작된 탈세포 간 조직 유래 하이드로젤의 기계적 물성(elastic modulus)을 측정했을 때 두 프로토콜을 통해 제작된 하이드로젤의 물성은 큰 차이가 없음을 확인하였다 (도 26 (B)).After the decellularization process, DNA was significantly reduced in the tissues treated with both protocols, but through GAG quantitative analysis, it was confirmed that the GAG component remaining in the tissues treated with the protocol 3 was significantly less than in the tissues treated with the protocol 1. When the mechanical properties (elastic modulus) of the decellularized liver tissue-derived hydrogel produced by each protocol were measured, it was confirmed that there was no significant difference in the physical properties of the hydrogel produced through the two protocols (FIG. 26 (B)).

각 탈세포 프로토콜로 제작된 간 조직 유래 LEM 지지체의 단백체 분석(proteomics)을 실시하였을 때, Protocol 1로 제작된 LEM 지지체에서 간 조직 특이적인 Collagen α1 (XVIII)과 Kininogen 1 단백질이 함유되어 있으며 세포외기질 단백질 수도 더 많이 검출됨을 확인하였다 (도 26 (C)). When proteomics of the liver tissue-derived LEM scaffolds prepared with each decellularization protocol were performed, the LEM scaffolds prepared with Protocol 1 contained liver tissue-specific Collagen α1 (XVIII) and Kininogen 1 proteins, and It was confirmed that more substrate proteins were also detected (FIG. 26 (C)).

따라서 프로토콜 1이 프로토콜 3과 비교하여 간 조직 특이적 세포외기질 성분의 손상을 줄일 수 있는 보다 효율적인 탈세포 공정을 유도할 수 있음을 확인하였다.Therefore, it was confirmed that protocol 1 can induce a more efficient decellularization process that can reduce damage to liver tissue-specific extracellular matrix components compared to protocol 3.

실험예 3-8. 간 조직 탈세포 프로토콜 비교를 통한 본 발명에서 구축된 탈세포 간 조직 유래 지지체의 우수성 검증 (오가노이드 배양 실험)Experimental Example 3-8. Verification of superiority of the decellularized liver tissue-derived scaffold constructed in the present invention through comparison of liver tissue decellularization protocol (organoid culture experiment)

본 발명에서 구축한 탈세포 방법(Protocol 1)과 기존문헌에 보고된 바 있는 탈세포 방법(Protocol 2), 기존에 많이 사용하는 탈세포 방법(Protocol 3)으로 제작된 탈세포 간 조직 유래 하이드로젤을 이용하여 마우스 담관세포 유래 간 오가노이드(CLO)를 배양하고 비교하였다. The decellularization method (Protocol 1) constructed in the present invention, the decellularization method (Protocol 2) previously reported in the literature, and the decellularized liver tissue-derived hydrogel produced by the decellularization method (Protocol 3) commonly used in the past was used to culture and compare mouse bile duct cell-derived liver organoids (CLO).

Protocol 1, 2, 3으로 제작된 탈세포 간 조직 유래 LEM 하이드로젤에서 모두 간 오가노이드가 잘 형성됨을 확인하였다 (Day 7) (도 27 (A)). 각 프로토콜로 제작된 LEM 하이드로젤에서 배양된 간 오가노이드를 7일차에 정량적 PCR (qPCR) 방법을 통해 유전자 발현을 비교하였을 때, 줄기세포능(Lgr5) 마커 발현과 간 분화 마커(Afp, Foxa3)의 발현이 프로토콜 1에 비해 프로토콜 2,3 방법으로 제작된 하이드로젤 내에서 배양된 간 오가노이드에서 유의미하게 감소하는 것을 확인하였다 (도 27 (B)). 기존 배양 지지체인 매트리젤(MAT)과 각 탈세포 프로토콜로 제작된 LEM 하이드로젤에서 간 오가노이드의 형성효율을 비교했을 때, 프로토콜 1 그룹에서는 약간 감소하지만 프로토콜 2 및 3으로 제작된 하이드로젤에서 간 오가노이드 형성효율이 유의미하게 감소하는 것을 확인하였다 (도 27 (C)).It was confirmed that liver organoids were well formed in all of the LEM hydrogels derived from decellularized liver tissue prepared by Protocols 1, 2, and 3 (Day 7) (Fig. 27 (A)). When comparing the gene expression of liver organoids cultured in LEM hydrogels prepared by each protocol through quantitative PCR (qPCR) on day 7, the expression of stem cell capacity (Lgr5) markers and liver differentiation markers (Afp, Foxa3) It was confirmed that the expression of was significantly decreased in the liver organoids cultured in the hydrogel prepared by the protocol 2 and 3 method compared to protocol 1 (Fig. 27 (B)). When we compared the formation efficiency of liver organoids in Matrigel (MAT), a conventional culture support, and LEM hydrogels prepared by each decellularization protocol, it decreased slightly in the protocol 1 group, but in the hydrogels prepared by protocols 2 and 3, the liver It was confirmed that the organoid formation efficiency was significantly decreased (FIG. 27 (C)).

이러한 결과를 통해 프로토콜 1로 제작된 LEM 하이드로젤이 간 오가노이드 형성에 보다 효율적이며 간 오가노이드의 성장 및 분화에도 더욱 유리한 환경을 제공해 줄 수 있음을 알 수 있다. 즉, 본 발명에서 구축된 프로토콜 1로 제작된 탈세포 간 조직 유래 지지체가 간 오가노이드 배양에 있어 훨씬 우수한 지지체임을 알 수 있다.From these results, it can be seen that the LEM hydrogel produced by protocol 1 is more efficient for the formation of liver organoids and can provide a more favorable environment for the growth and differentiation of liver organoids. That is, it can be seen that the decellularized liver tissue-derived scaffold prepared by Protocol 1 constructed in the present invention is a much superior scaffold for culturing liver organoids.

실험예 3-9. 탈세포 간 조직 유래 하이드로젤 지지체의 종간 비교 분석 (돼지 vs 인간)Experimental Example 3-9. Cross-species comparative analysis of decellularized liver tissue-derived hydrogel scaffolds (porcine vs human)

매트리젤(Matrigel)과 돼지 탈세포 간 조직 유래 하이드로젤 지지체(Porcine LEM)와 함께 인간 간 조직을 탈세포화 하여 제작한 인간 탈세포 간 조직 유래 지지체(Human LEM)의 단백체 분석을 진행하였다. 세 종류 하이드로젤의 단백체 분석 비교를 통해 본 발명에서 개발한 돼지 탈세포 간 조직 유래 하이드로젤의 인간 간 오가노이드 배양 적합성을 검증하였다. The proteomic analysis of the human decellularized liver tissue-derived scaffold (Human LEM) prepared by decellularizing human liver tissue together with Matrigel and porcine LEM derived from porcine liver tissue was performed. The suitability of the human liver organoid culture of the porcine decellularized liver tissue-derived hydrogel developed in the present invention was verified by comparing the proteomic analysis of the three types of hydrogels.

대조군 매트리젤(Matrigel)의 세포외기질 성분은 대부분 ECM glycoproteins으로 구성되어 있으며 그 외 ECM regulators, proteoglycans 순서로 포함되어 있는 것에 비해 돼지 및 인간 탈세포 간 조직 유래 LEM 지지체는 proteoglycans이 가장 많이 함유되어 있으며 collagens와 ECM glycoproteins이 비슷한 수준으로 존재하는 것을 확인하였다. 또한 top 10 ECM 단백질을 확인했을 때, Porcine LEM과 Human LEM에서 대부분 비슷한 성분이 검출되었으며 대조군 매트리젤과는 많이 다름을 확인하였다. 따라서 돼지 탈세포 간 조직 유래 하이드로젤 지지체는 인간 간 조직과 유사한 미세환경을 제공할 수 있으므로 매트리젤 보다 인간 간 오가노이드 배양에 보다 더 적합함을 알 수 있다. 각 배양 매트릭스에만 특이적으로 존재하는 세포외기질 단백질 성분들을 분석했을 때, 인간 간 조직 유래 LEM 지지체에서 가장 많은 ECM 단백질이 검출되었고 대조군 매트리젤보다는 돼지 간 조직 유래 LEM 지지체에서 더 많은 ECM 단백질 성분들이 검출된 것을 확인하였다 (도 28 (A)).The extracellular matrix component of the control Matrigel is mostly composed of ECM glycoproteins, and while other ECM regulators and proteoglycans are included in the order, the LEM scaffold derived from pig and human decellularized liver tissue contains the most proteoglycans. It was confirmed that collagens and ECM glycoproteins were present at similar levels. In addition, when the top 10 ECM proteins were identified, most similar components were detected in Porcine LEM and Human LEM, and it was confirmed that they were significantly different from the control Matrigel. Therefore, it can be seen that the hydrogel scaffold derived from porcine decellularized liver tissue can provide a microenvironment similar to that of human liver tissue, so it is more suitable for human liver organoid culture than Matrigel. When the extracellular matrix protein components present only in each culture matrix were analyzed, the most ECM protein was detected in the human liver tissue-derived LEM scaffold, and more ECM protein components were detected in the pig liver tissue-derived LEM scaffold than the control matrix. It was confirmed that it was detected (FIG. 28 (A)).

각 지지체에 포함된 세포외기질(ECM)을 제외한 non-matrisome 단백질 성분들의 기능을 알아보기 위해 유전자 온톨로지(Gene Ontology) 분석을 진행했을 때, 매트리젤의 non-matrisome 성분은 peptide 및 amide의 생합성 및 대사와 관련된 기능을 주로 담당하는 것에 반해 인간 및 돼지 LEM 지지체의 non-matrisome 성분들은 저분자, 각종 유기산 및 세포대사와 관련된 역할에 주로 관여하는 것을 확인하였다 (도 28 (B)). 즉, 인간 및 돼지 LEM 지지체에 포함된 ECM 이외 non-matrisome 단백질 성분들은 간세포의 중요한 기능인 유기산대사 및 각종 세포대사 능력이 증진된 기능적으로 성숙한 간 오가노이드 형성에 중요한 역할을 할 것으로 판단된다.When gene ontology analysis was performed to investigate the functions of non-matrisome protein components except for the extracellular matrix (ECM) contained in each scaffold, the non-matrisome component of Matrigel was While mainly responsible for metabolic-related functions, it was confirmed that non-matrisome components of human and porcine LEM scaffolds were mainly involved in roles related to small molecules, various organic acids and cellular metabolism (FIG. 28 (B)). That is, non-matrisome protein components other than ECM contained in human and porcine LEM scaffolds are expected to play an important role in the formation of functionally mature liver organoids with enhanced organic acid metabolism and various cellular metabolic abilities, which are important functions of hepatocytes.

실험예 3-10. 인간 및 돼지 탈세포 간 조직 유래 하이드로젤 지지체에서 배양된 인간 간 오가노이드(인간 담관세포 유래 간 오가노이드 - hCLO) 비교Experimental Example 3-10. Comparison of human liver organoids (human cholangiocyte-derived liver organoid - hCLO) cultured on hydrogel scaffolds derived from human and porcine decellularized liver tissue

매트리젤(MAT)과 앞서 제작한 인간 및 돼지 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 인간 간 오가노이드를 배양하였다. 간 오가노이드는 인간 간 조직에서 추출한 담관세포를 이용하여 제작하였고 배양 14일차에 qPCR을 통한 유전자 발현과 요소 합성능력을 비교하였다. Human liver organoids were cultured on Matrigel (MAT) and LEM hydrogel scaffolds derived from human and porcine decellularized liver tissue prepared above. Liver organoids were prepared using bile duct cells extracted from human liver tissue, and gene expression and urea synthesis ability were compared through qPCR on the 14th day of culture.

대조군 매트리젤(MAT)에서 배양된 간 오가노이드와 비교하였을 때, 서로 다른 두 종으로부터 유래한 탈세포 간 조직 유래 LEM 하이드로젤 지지체에서 배양된 간 오가노이드도 매트리젤 그룹과 유사한 수준으로 오가노이드 형성이 잘 되는 것을 확인하였다 (도 29 (A)).Compared with the liver organoids cultured in control Matrigel (MAT), liver organoids cultured on LEM hydrogel scaffolds derived from decellularized liver tissue from two different species also formed organoids at a similar level to that of the Matrigel group. It was confirmed that this works well (FIG. 29 (A)).

각각의 매트릭스에서 배양된 간 오가노이드를 qPCR 분석을 통해 유전자 발현을 비교하였을 때, 줄기세포능(stemness) 관련 마커(LGR5)는 유사한 수준으로 유지되고 분화 마커(KRT19, KRT7, SOX9)는 탈세포 간 조직 LEM 하이드로젤 그룹에서 발현이 증가하는 것을 확인하였다. 간 기능성 분석(요소 합성능력)을 진행했을 때에도 인간 및 돼지 간 조직 유래 LEM 하이드로젤에서 배양된 간 오가노이드가 매트리젤에서 배양된 간 오가노이드와 유사하거나 약간 높은 수준의 기능성을 가지고 있음을 확인하였다 (도 29 (B)).When gene expression of liver organoids cultured in each matrix was compared through qPCR analysis, stemness-related markers (LGR5) were maintained at similar levels, and differentiation markers (KRT19, KRT7, SOX9) were decellularized. It was confirmed that the expression was increased in the liver tissue LEM hydrogel group. Even when liver functional analysis (urea synthesis ability) was performed, it was confirmed that liver organoids cultured in LEM hydrogels derived from human and pig liver tissues had similar or slightly higher levels of functionality to liver organoids cultured in Matrigel. (Fig. 29(B)).

이를 통해 돼지 조직 유래 LEM 지지체가 인간 조직 유래 LEM 지지체와 동등한 성능을 가지며 따라서 매트리젤 및 인간 조직 유래 매트릭스를 대체하여 간 오가노이드 배양에 적용할 수 있음을 알 수 있다.This shows that the pig tissue-derived LEM scaffold has the same performance as the human tissue-derived LEM scaffold, and thus can be applied to liver organoid culture by replacing Matrigel and human tissue-derived matrix.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (10)

탈세포 간 조직 유래 세포외기질 (Liver Extracellular Matrix; LEM)을 포함한 지지체 조성물.
A support composition comprising a Liver Extracellular Matrix (LEM) derived from decellularized liver tissue.
제 1항에 있어서,
상기 탈세포 간 조직 유래 세포외기질은 0.01 내지 10 mg/mL로 포함되는 것인 지지체 조성물.
The method of claim 1,
The support composition that the decellularized liver tissue-derived extracellular matrix is included in an amount of 0.01 to 10 mg/mL.
제1항에 있어서,
상기 조성물은 0.1 내지 10Hz 기준 탄성계수가 20 내지 100Pa인 지지체 조성물.
According to claim 1,
The composition is a support composition having an elastic modulus of 20 to 100 Pa based on 0.1 to 10 Hz.
(a) 분리된 간 조직을 탈세포화하여 탈세포된 간 조직을 제조하는 단계;
(b) 상기 탈세포된 간 조직을 건조하여 탈세포 간 조직 유래 세포외기질(Liver Extracellular Matrix; LEM)을 제조하는 단계; 및
(c) 상기 건조된 탈세포 간 조직 유래 세포외기질을 겔화(gelation)하는 단계; 를 포함하는 지지체 조성물 제조방법.
(a) decellularizing the isolated liver tissue to prepare a decellularized liver tissue;
(b) drying the decellularized liver tissue to prepare a decellularized liver tissue-derived extracellular matrix (Liver Extracellular Matrix; LEM); and
(c) gelling the dried decellularized liver tissue-derived extracellular matrix; A method for preparing a support composition comprising a.
제4항에 있어서,
상기 (a) 단계에서 분리된 간 조직은 탈세포 전에 세절하는 단계를 더 포함하는 지지체 조성물의 제조방법.
5. The method of claim 4,
The method for preparing a support composition further comprising the step of mincing the liver tissue separated in step (a) before decellularization.
제4항에 있어서,
상기 (a) 단계에서 상기 간 조직을 탈세포화 용액에서 교반시키는 지지체 조성물 제조방법.
5. The method of claim 4,
A method for preparing a support composition for stirring the liver tissue in a decellularization solution in step (a).
제6항에 있어서,
상기 탈세포화 용액은 0.1 내지 5%의 Triton X-100 및 0.01 내지 0.5% 수산화 암모늄을 포함하는 것인 지지체 조성물 제조방법.
7. The method of claim 6,
The decellularization solution is a method for preparing a support composition comprising 0.1 to 5% of Triton X-100 and 0.01 to 0.5% of ammonium hydroxide.
제4항에 있어서,
상기 (a) 단계의 탈세포는 간 조직 세포가 95 내지 99.9% 제거된 지지체 조성물 제조방법.
5. The method of claim 4,
The decellularization of step (a) is a method for producing a support composition in which 95 to 99.9% of liver tissue cells are removed.
제4항에 있어서,
상기 (b) 단계 이후, 탈세포 간 조직 유래 세포외기질은 0.01 내지 10 mg/mL 로 포함되도록 조절하는 단계를 더 포함하는 것인 지지체 조성물 제조방법.
5. The method of claim 4,
After the step (b), the method for preparing a support composition further comprising the step of adjusting the extracellular matrix derived from decellularized liver tissue to be included in an amount of 0.01 to 10 mg/mL.
제1항의 지지체 조성물 또는 제4항의 제조방법에 의해 제조된 지지체 조성물에서 간 오가노이드를 배양하는 방법.
A method of culturing liver organoids in the support composition of claim 1 or the support composition prepared by the production method of claim 4.
KR1020210019947A 2020-02-14 2021-02-15 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof KR20210103981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020240068623A KR20240078647A (en) 2020-02-14 2024-05-27 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200018363 2020-02-14
KR1020200018363 2020-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020240068623A Division KR20240078647A (en) 2020-02-14 2024-05-27 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof

Publications (1)

Publication Number Publication Date
KR20210103981A true KR20210103981A (en) 2021-08-24

Family

ID=77506978

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210019947A KR20210103981A (en) 2020-02-14 2021-02-15 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof
KR1020240068623A KR20240078647A (en) 2020-02-14 2024-05-27 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020240068623A KR20240078647A (en) 2020-02-14 2024-05-27 Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof

Country Status (1)

Country Link
KR (2) KR20210103981A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170143465A (en) 2016-06-21 2017-12-29 재단법인 아산사회복지재단 Apparatus for producing decellularized tissue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170143465A (en) 2016-06-21 2017-12-29 재단법인 아산사회복지재단 Apparatus for producing decellularized tissue

Also Published As

Publication number Publication date
KR20240078647A (en) 2024-06-04

Similar Documents

Publication Publication Date Title
Hosseini et al. Current progress in hepatic tissue regeneration by tissue engineering
Brovold et al. Naturally-derived biomaterials for tissue engineering applications
US7384786B2 (en) Aligned scaffolds for improved myocardial regeneration
Yang et al. Recent advancement of decellularization extracellular matrix for tissue engineering and biomedical application
KR20190143830A (en) A composition for culturing brain organoid based on decellularized brain matrix and the method for preparing thereof
CA2627288A1 (en) Acellular bioabsorbable tissue regeneration matrices produced by incubating acellular blood products
Sobreiro-Almeida et al. Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro
CN111281890A (en) Method for transplanting cells from solid tissues
KR20140033057A (en) Cell-synthesized particles
US20200163326A1 (en) Cryopreservation
Panahi et al. Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage
Choi et al. Alginate hydrogel embedding poly (D, L-lactide-co-glycolide) porous scaffold disks for cartilage tissue engineering
KR20220068173A (en) Pancreas extracellular matrix-derived scaffold for culture and transplantation of pancreas organoid and preparing method thereof
Zivari‐Ghader et al. Recent scaffold‐based tissue engineering approaches in premature ovarian failure treatment
US20230067199A1 (en) Organ extracellular matrix-derived scaffold for culture and transplantation of organoid and method of preparing the same
Dewhurst et al. Cell preservation methods and its application to studying rare disease
KR20210103981A (en) Liver extracellular matrix-derived scaffold for culture and transplantation of liver organoid and preparing method thereof
Frimberger et al. The use of tissue engineering and stem cells in bladder regeneration
Liu et al. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations
KR20210103984A (en) Heart extracellular matrix-derived scaffold for culture and transplantation of cardiac organoid and preparing method thereof
KR102582460B1 (en) Lung extracellular matrix-derived scaffold for culture and transplantation of lung organoid and preparing method thereof
KR102578904B1 (en) Stomach extracellular matrix-derived scaffold for culture and transplantation of gastric organoid and preparing method thereof
US20230399624A1 (en) Pancreas extracellular matrix derived scaffold for culture and transplantation of pancreatic organoid and method of preparing the same
US20230340422A1 (en) Adipose extracellular matrix-derived scaffold for culturing organoid and preparing method thereof
EP4261273A1 (en) Scaffold derived from decellularized adipose tissue for culturing organoid, and method for producing same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment
A107 Divisional application of patent