KR20210103243A - Thin film encapsulation for all solid-state batteries and method for fabricating the same - Google Patents

Thin film encapsulation for all solid-state batteries and method for fabricating the same Download PDF

Info

Publication number
KR20210103243A
KR20210103243A KR1020200017743A KR20200017743A KR20210103243A KR 20210103243 A KR20210103243 A KR 20210103243A KR 1020200017743 A KR1020200017743 A KR 1020200017743A KR 20200017743 A KR20200017743 A KR 20200017743A KR 20210103243 A KR20210103243 A KR 20210103243A
Authority
KR
South Korea
Prior art keywords
thin film
layer
film encapsulation
silicon nitride
sinx
Prior art date
Application number
KR1020200017743A
Other languages
Korean (ko)
Other versions
KR102322343B1 (en
Inventor
최지원
최원국
이현석
임근용
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020200017743A priority Critical patent/KR102322343B1/en
Publication of KR20210103243A publication Critical patent/KR20210103243A/en
Application granted granted Critical
Publication of KR102322343B1 publication Critical patent/KR102322343B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

In the present specification, provided is a hybrid thin film encapsulation which comprises an organic material layer comprising parylene, and an inorganic layer stacked on the organic material layer. According to the present invention, oxygen and moisture permeation can be prevented.

Description

전고상 박막 이차전지용 박막봉지 및 제조방법 {THIN FILM ENCAPSULATION FOR ALL SOLID-STATE BATTERIES AND METHOD FOR FABRICATING THE SAME}Thin-film encapsulation and manufacturing method for all-solid-state thin-film secondary batteries {THIN FILM ENCAPSULATION FOR ALL SOLID-STATE BATTERIES AND METHOD FOR FABRICATING THE SAME}

본 명세서에는 전고상 박막 이차전지를 패키징하기 위한 박막형 박막봉지로서, 하이브리드 형태의 박막봉지에 관하여 개시된다.In the present specification, as a thin film-type thin film encapsulation for packaging an all-solid-state thin film secondary battery, it is disclosed with respect to a hybrid type thin film encapsulation.

박막 이차전지는 전지의 구성 요소들을 박막형태의 기판 상에 얇게 구현한 재충전이 가능한 전지를 말한다. 박막 전지는 0.1 mm 이하의 매우 얇은 두께로 양극, 전해질 및 음극의 구현이 가능하므로, 박형 전자기기의 전원으로 사용되기에 적합하다. 그러나, 박막 이차전지는 매우 얇은 두께에 비하여 봉지제의 두께가 더 두껍거나 박막 형태의 박막봉지를 만드는데 어려움이 있었다.A thin-film secondary battery refers to a rechargeable battery in which battery components are thinly implemented on a thin-film substrate. The thin film battery has a very thin thickness of 0.1 mm or less and can implement a positive electrode, an electrolyte, and a negative electrode, so it is suitable for use as a power source for thin electronic devices. However, in the thin film secondary battery, the thickness of the encapsulant is thicker or it is difficult to encapsulate the thin film in the form of a thin film compared to the very thin thickness.

또한, 현재 전고상 박막전지를 위한 박막봉지에 대한 특허는 전무한 상태이다. 특허문헌 1의 박막 전지용 박막봉지에 관한 특허의 경우, 금속 층과 질화물 층을 교대로 15층이상 증착하여 산소 및 대기중 수분을 차단하였으나 다층박막의 균일한 증착조건 제어의 어려움과 공정의 복잡함이 존재한다. In addition, there are currently no patents for thin film encapsulation for all-solid-state thin film batteries. In the case of the patent on thin film encapsulation for thin film cells in Patent Document 1, 15 or more metal layers and nitride layers were alternately deposited to block oxygen and moisture in the atmosphere, but the difficulty in controlling the uniform deposition conditions of the multilayer thin film and the complexity of the process exist.

따라서, 박막 이차전지의 매우 얇은 두께를 유지하면서도 우수한 WVTR 및 장수명 특성을 갖는 패키징에 대한 필요성이 있다.Accordingly, there is a need for packaging having excellent WVTR and long lifespan characteristics while maintaining a very thin thickness of the thin film secondary battery.

US 8518581 B2US 8518581 B2

본 발명의 일 측면은, 박막 이차전지가 매우 얇은 두께로 구현이 가능한 반면, 패키징은 파우치 타입 혹은 하우징 타입으로 생산되어, 박막 이차전지보다 패키징의 두께 및 크기가 더 크기 때문에 박막전지의 장점을 살린 초소형 에너지 저장장치로의 적용이 어려운 문제점을 해결하고자 한다.In one aspect of the present invention, while the thin film secondary battery can be implemented with a very thin thickness, the packaging is produced in a pouch type or a housing type, and since the thickness and size of the packaging is larger than that of the thin film secondary battery, the advantages of the thin film battery are utilized. An attempt is made to solve a problem that is difficult to apply to an ultra-small energy storage device.

또한 본 발명의 일 측면은, 유기물 박막이 높은 water vapor transmission rate(WVTR) 특성을 갖기 때문에 다층막 제작이 불가피 하고, 무기물 박막이 종래의 기술에서 금속 층과 질화물 층을 교대로 반복적으로 증착하면서 그 과정에서 핀홀과 같은 결함 등에 취약한 문제점을 해결하고자 한다.In addition, in one aspect of the present invention, since the organic thin film has a high water vapor transmission rate (WVTR) characteristic, the production of a multilayer film is unavoidable, and the inorganic thin film alternately deposits a metal layer and a nitride layer in the prior art while repeatedly depositing the process. to solve problems that are vulnerable to defects such as pinholes in

전술한 목적을 달성하기 위하여 본 발명의 일 구현예에서, 파릴렌(Parylene)을 포함하는 유기물층; 및 상기 유기물층 상에 적층된 무기물층;을 포함하는, 하이브리드 박막 봉지가 제공된다.In one embodiment of the present invention in order to achieve the above object, an organic material layer containing parylene (Parylene); and an inorganic material layer laminated on the organic material layer; including, a hybrid thin film encapsulation is provided.

예시적인 구현예에서, 상기 유기물층은 1 내지 10 ㎛의 두께를 가질 수 있다.In an exemplary embodiment, the organic material layer may have a thickness of 1 to 10 μm.

예시적인 구현예에서, 상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층 중 하나 이상을 포함하는 적층 구조를 가질 수 있다.In an exemplary embodiment, the inorganic material layer may have a stacked structure including at least one of a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer.

예시적인 구현예에서, 상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층이 순차적으로 적층된 구조를 가질 수 있다.In an exemplary embodiment, the inorganic material layer may have a structure in which a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer are sequentially stacked.

예시적인 구현예에서, 상기 질화규소(SiNx)층은 100 내지 800 nm 두께를 갖고, 상기 질화산화규소(SiNxOy)층은 3 내지 8 nm 두께를 갖고, 상기 산화규소(SiOy)층은 50 내지 200 nm 두께를 가질 수 있다.In an exemplary embodiment, the silicon nitride (SiNx) layer has a thickness of 100 to 800 nm, the silicon nitride oxide (SiNxOy) layer has a thickness of 3 to 8 nm, and the silicon oxide (SiOy) layer has a thickness of 50 to 200 nm may have a thickness.

예시적인 구현예에서, 상기 하이브리드 박막 봉지의 두께는 10 ㎛ 미만일 수 있다.In an exemplary embodiment, the thickness of the hybrid thin film encapsulation may be less than 10 μm.

본 발명의 다른 구현예에서, 전기화학 소자; 및 상기 전기화학 소자 상에 적층된, 전술한 하이브리드 박막 봉지;를 포함하며, 상기 하이브리드 박막 봉지는 파릴렌(Parylene)을 포함하는 유기물층 및 상기 유기물층 상에 적층된 무기물층을 포함하는, 이차 전지가 제공된다.In another embodiment of the present invention, an electrochemical device; and the above-described hybrid thin film encapsulation layered on the electrochemical device, wherein the hybrid thin film encapsulation includes an organic material layer containing parylene and an inorganic material layer stacked on the organic material layer, a secondary battery comprising: is provided

예시적인 구현예에서, 상기 이차 전지는 전고상 박막 이차전지일 수 있다.In an exemplary embodiment, the secondary battery may be an all-solid-state thin film secondary battery.

본 발명의 다른 구현예에서, 전기화학 소자 상에 파릴렌(Parylene)을 포함하는 유기물층을 형성하는 단계; 및 상기 유기물층 상에 무기물층을 형성하는 단계;를 포함하는, 하이브리드 박막 봉지 제조방법이 제공된다.In another embodiment of the present invention, forming an organic material layer containing parylene (Parylene) on the electrochemical device; and forming an inorganic layer on the organic layer.

예시적인 구현예에서, 상기 무기물층 형성 단계는, 질화규소(SiNx)층을 증착하는 단계; 질화규소(SiNx)층 상에 SiO2 졸(silica sol)을 코팅하는 단계; 및 SiO2 졸을 열처리하여 산화규소(SiOy)층, 및 질화규소(SiNx)층과 산화규소(SiOy)층의 사이에 질화산화규소(SiNxOy)층을 형성하는 단계;를 포함할 수 있다.In an exemplary embodiment, the forming of the inorganic material layer may include depositing a silicon nitride (SiNx) layer; Coating a SiO 2 sol (silica sol) on a silicon nitride (SiNx) layer; and heat-treating the SiO 2 sol to form a silicon oxide (SiOy) layer and a silicon nitride oxide (SiNxOy) layer between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer.

예시적인 구현예에서, 상기 질화산화규소(SiNxOy)층은 질화규소(SiNx)층과 산화규소(SiOy)층의 계면에 SiNx과 SiOy의 고상확산에 의하여 형성될 수 있다.In an exemplary embodiment, the silicon nitride oxide (SiNxOy) layer may be formed by solid-state diffusion of SiNx and SiOy at the interface between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer.

이에 본 발명의 일 구현예에 따른 전고상 박막 이차전지용 박막봉지는 유기물층 및 무기물층을 포함하는 유무기 하이브리드 형태의 박막형 박막봉지를 적용하여 산소 및 투습을 방지할 수 있다. 이를 통하여, 수십 마이크로 이내로 전고상 박막 이차전지 및 박막봉지가 제작이 가능하며 그에 따라 다양한 초소형 디바이스 및 다양한 형태로 적용이 가능할 것이다.Accordingly, the thin film encapsulation for an all-solid-state thin film secondary battery according to an embodiment of the present invention can prevent oxygen and moisture permeation by applying an organic-inorganic hybrid thin film encapsulation including an organic material layer and an inorganic material layer. Through this, all-solid-state thin-film secondary batteries and thin-film encapsulation can be manufactured within tens of micrometers, and accordingly, various micro-devices and various forms will be possible.

도 1은 본 발명의 실시예에 따른 전고상 박막 이차전지의 구조를 개략적으로 나타내는 단면도를 도시한다.
도 2는 본 발명의 실시예에 따른 전고상 박막 이차전지용 박막봉지의 단면 구조를 나타낸다.
도 3a는 본 발명의 실시예에 따른 전고상 박막 이차전지용 박막봉지의 단면 SEM 이미지를 도시한다.
도 3b는 본 발명의 실시예에 따른 전고상 박막 이차전지용 박막봉지의 단면 TEM 이미지를 도시한다.
도 4a 및 4b는 전고상 박막 이차전지용 박막봉지에서 유기물층의 유무에 따른 Li전극의 산화 정도를 나타내며, 각각 파릴렌 유기물층이 없는 경우(도 4a)와 파릴렌 유기물층이 있는 경우(도 4b)를 도시한다.
도 5a는 박막봉지를 하지않은 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다.
도 5b는 유기물층(parylene)으로만 박막봉지한 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다.
도 5c는 본 발명의 실시예 2에 따른 하이브리드 박막봉지로 봉지한 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다.
도 6a 및 도 6b는 본 발명의 실시예 2에 따른 하이브리드 박막봉지로 봉지한 전고상 박막 이차전지의 대기 분위기에서 충·방전 특성을 측정한 결과를 나타낸다.
1 is a cross-sectional view schematically showing the structure of an all-solid-state thin film secondary battery according to an embodiment of the present invention.
2 shows a cross-sectional structure of a thin film encapsulation for an all-solid-state thin film secondary battery according to an embodiment of the present invention.
3A shows a cross-sectional SEM image of a thin film encapsulation for an all-solid-state thin film secondary battery according to an embodiment of the present invention.
3b shows a cross-sectional TEM image of a thin film encapsulation for an all-solid-state thin film secondary battery according to an embodiment of the present invention.
4a and 4b show the oxidation degree of the Li electrode according to the presence or absence of an organic material layer in a thin film encapsulation for an all-solid-state thin film secondary battery, respectively, showing the case in which there is no parylene organic material layer (Fig. 4a) and the case in which the parylene organic material layer is present (Fig. 4b). do.
Figure 5a shows the results of the charge-discharge graph according to time of the all-solid-state thin-film secondary battery without thin-film encapsulation.
FIG. 5B shows the results of charging and discharging graphs according to time of an all-solid-state thin-film secondary battery encapsulated with only an organic material layer (parylene).
FIG. 5c shows the results of charging and discharging graphs according to time of the all-solid-state thin film secondary battery encapsulated with the hybrid thin film encapsulation according to Example 2 of the present invention.
6A and 6B show the results of measuring the charging and discharging characteristics of the all-solid-state thin film secondary battery encapsulated with the hybrid thin film encapsulation according to Example 2 of the present invention in an atmospheric atmosphere.

이하, 본 발명의 실시예들을 보다 상세하게 설명하고자 한다. Hereinafter, embodiments of the present invention will be described in more detail.

본문에 개시되어 있는 본 발명의 실시예들은 단지 설명을 위한 목적으로 예시된 것으로서, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다. The embodiments of the present invention disclosed in the text are illustrated for the purpose of explanation only, and the embodiments of the present invention may be embodied in various forms and should not be construed as being limited to the embodiments described in the text. .

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들은 본 발명을 특정한 개시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다. The present invention is not intended to limit the present invention to a specific disclosed form, but is not intended to limit the present invention to a specific disclosed form, as various changes may be made and may have various forms, and all changes, equivalents or substitutes included in the spirit and scope of the present invention should be understood as including

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

하이브리드 박막 봉지Hybrid thin film encapsulation

이에 본 발명자들은 전술한 바와 같은 문제점을 해결하기 위하여, 본 발명의 일 구현예에서, 파릴렌(Parylene)을 포함하는 유기물층; 및 상기 유기물층 상에 적층된 무기물층;을 포함하는, 하이브리드 박막 봉지를 제공하였다. Accordingly, the present inventors, in one embodiment of the present invention, in order to solve the problems as described above, an organic material layer containing parylene (Parylene); and an inorganic material layer laminated on the organic material layer; including, a hybrid thin film encapsulation.

본 발명의 구현예에 따른 전고상 박막 이차전지용 하이브리드 박막봉지는 전고상 박막 이차전지를 봉지하여 외부 환경과 격리시키는 역할을 하며, 특히 외부의 수분 및 산소가 전고상 박막 이차전지 내부로 침투하는 것을 방지하는 역할을 할 수 있다. The hybrid thin film encapsulation for an all-solid-state thin-film secondary battery according to an embodiment of the present invention serves to encapsulate the all-solid-state thin-film secondary battery and isolate it from the external environment. may play a role in preventing

일 구현예에서, 파릴렌(Parylene)을 포함하는 유기물층은 SiO2 졸(silica sol) 용액 딥코팅 공정시 핀홀과 같은 결함으로 전고상 박막 이차전지가 SiO2 졸 용액에 산화되는 것을 방지할 수 있다.In one embodiment, the organic material layer containing parylene may prevent oxidation of the all-solid-state thin film secondary battery to the SiO 2 sol solution due to defects such as pinholes during the SiO 2 sol solution dip coating process. .

일 구현예에서, 상기 유기물층은 1 내지 10 ㎛의 두께, 바람직하게 2 내지 6 ㎛의 두께를 가질 수 있다. 상기 유기물층의 두께가 1 ㎛ 미만인 경우 딥코팅 공정시 산화될 수 있고, 두께가 10 ㎛ 초과인 경우 무기물 층이 균일하게 코팅되지 않아 WVTR 특성이 감소될 수 있다.In one embodiment, the organic material layer may have a thickness of 1 to 10 μm, preferably 2 to 6 μm. When the thickness of the organic material layer is less than 1 μm, it may be oxidized during the dip coating process, and when the thickness is more than 10 μm, the inorganic layer is not uniformly coated, and WVTR characteristics may be reduced.

일 구현예에서, 상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층 중 하나 이상을 포함하는 적층 구조를 가질 수 있다. 예를 들어, 상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층이 순차적으로 적층된 구조를 가질 수 있다. 여기서, 무기물층은 산소투과 및 투습방지 등의 역할을 할 수 있으며, 특히 질화산화규소(SiNxOy)층은 산소투과 및 투습방지에 결정적 역할을 할 수 있다.In an embodiment, the inorganic material layer may have a stacked structure including at least one of a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer. For example, the inorganic material layer may have a structure in which a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer are sequentially stacked. Here, the inorganic layer may play a role such as oxygen permeation and moisture permeation prevention, and in particular, a silicon nitride oxide (SiNxOy) layer may play a decisive role in oxygen permeation and moisture permeation prevention.

다만, 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 또는 산화규소(SiOy)층 등을 포함하는 무기물층 만을 적용하는 경우 SiO2 졸(silica sol) 용액 딥코팅 공정시 핀홀과 같은 결함이 발생할 수 있다. 또한 도 4에 나타낸 바와 같이 유기물층으로서 파릴렌 박막이 없는 샘플에서는 Li전극이 산화되면서 박리되어 손상을 입은 것을 볼 수 있다.However, when only an inorganic material layer including a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, or a silicon oxide (SiOy) layer is applied, defects such as pinholes occur during the SiO 2 sol solution dip coating process. can occur In addition, as shown in FIG. 4 , in the sample without the parylene thin film as the organic material layer, it can be seen that the Li electrode was peeled off while being oxidized and damaged.

따라서, 본 발명의 일 구현예에 따른 하이브리드 박막 봉지는 파릴렌(Parylene)을 포함하는 유기물층; 및 상기 유기물층 상에 적층된 무기물층;을 포함하여 우수한 성능을 가질 수 있으며, 그에 따라 다양한 초소형 디바이스 및 다양한 형태로 적용이 가능하다.Accordingly, the hybrid thin film encapsulation according to an embodiment of the present invention includes an organic material layer including Parylene; and an inorganic material layer laminated on the organic material layer.

일 구현예에서, 상기 질화규소(SiNx)층은 100 내지 800 nm의 두께, 바람직하게 300 내지 500 nm의 두께를 가질 수 있고, 상기 질화산화규소(SiNxOy)층은 3 내지 8 nm의 두께를 갖고, 상기 산화규소(SiOy)층은 50 내지 200 nm의 두께, 바람직하게 85 내지 120 nm의 두께를 가질 수 있다. 상기 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층의 두께가 전술한 범위 내인 경우, 가장 우수한 WVTR 특성을 나타낼 수 있다. In one embodiment, the silicon nitride (SiNx) layer may have a thickness of 100 to 800 nm, preferably 300 to 500 nm, and the silicon nitride oxide (SiNxOy) layer has a thickness of 3 to 8 nm, The silicon oxide (SiOy) layer may have a thickness of 50 to 200 nm, preferably 85 to 120 nm. When the thickness of the silicon nitride (SiNx) layer, the silicon nitride oxide (SiNxOy) layer, and the silicon oxide (SiOy) layer is within the above-mentioned range, the best WVTR characteristic may be exhibited.

일 구현예에서, 상기 하이브리드 박막 봉지의 두께는 15 ㎛ 미만일 수 있다. 하이브리드 박막 봉지의 두께가 15 ㎛ 초과인 경우 공정 시 크랙 등이 형성될 수 있으며, 박막 봉지로써 장점이 사라지게 된다. In one embodiment, the thickness of the hybrid thin film encapsulation may be less than 15 μm. When the thickness of the hybrid thin film encapsulation exceeds 15 μm, cracks may be formed during the process, and the advantages of thin film encapsulation disappear.

박막 이차전지thin film secondary battery

본 발명의 다른 구현예에서, 전기화학 소자; 및 상기 전기화학 소자 상에 적층된, 전술한 하이브리드 박막 봉지;를 포함하며, 상기 하이브리드 박막 봉지는 파릴렌(Parylene)을 포함하는 유기물층 및 상기 유기물층 상에 적층된 무기물층을 포함하는, 이차 전지가 제공된다.In another embodiment of the present invention, an electrochemical device; and the above-described hybrid thin film encapsulation layered on the electrochemical device, wherein the hybrid thin film encapsulation includes an organic material layer containing parylene and an inorganic material layer stacked on the organic material layer, a secondary battery comprising: is provided

일 구현예에서, 상기 이차 전지는 전고상 박막 이차전지일 수 있으며, 예를 들어 도 1과 같은 구조의 전고상 박막 이차전지일 수 있다. 본 발명의 구현예의 하이브리드 박막 봉지에서 적용되는 전고상 박막 이차전지에는 크게 제한이 없으며, 구체적으로 아래와 같을 수 있다:In one embodiment, the secondary battery may be an all-solid-state thin-film secondary battery, for example, an all-solid-state thin-film secondary battery having the structure shown in FIG. 1 . The all-solid-state thin film secondary battery applied in the hybrid thin film encapsulation of the embodiment of the present invention is not particularly limited, and may be specifically as follows:

예를 들어, 본 발명에서 전고상 박막 이차전지는 기판상에 형성된 양극활물질, 음극활물질, 고체전해질, 집전체로 이루어진 구조를 포함할 수 있다. For example, in the present invention, the all-solid-state thin film secondary battery may include a structure including a positive electrode active material, a negative electrode active material, a solid electrolyte, and a current collector formed on a substrate.

일 구현예에서, 상기 기판은 polyimide, PET, PEN과 같은 폴리머 소재와 glass 또는 마이카를 박리한 형태로 된 유연기판을 포함할 수 있다.In an embodiment, the substrate may include a flexible substrate in which a polymer material such as polyimide, PET, or PEN and glass or mica are peeled off.

일 구현예에서, 상기 양극활물질은 LiCoO2, LiMnO2, LiNiO2, LiNixMnyCo1 -x- yO2, LiFePO4, LiMnPO4, LiNiPO4, LiFe1 - xMnxPO4, LiMn2O4 등의 이차전지용 양극활물질을 포함할 수 있다. 또한 상기 음극활물질은 Li, Si, Si-Al, SiNx, Li4Ti5O12, 그라파이트(graphite), 탄소 나노튜브, 또는 그래핀 등의 이차전지용 음극활물질을 포함할 수 있다.In one embodiment, the positive electrode active material is LiCoO 2, LiMnO 2, LiNiO 2 , LiNi x Mn y Co 1 -x- y O 2, LiFePO 4, LiMnPO 4, LiNiPO 4, LiFe 1 - x Mn x PO 4, LiMn It may include a cathode active material for secondary batteries, such as 2 O 4 . In addition, the negative active material may include an anode active material for a secondary battery such as Li, Si, Si-Al, SiN x , Li 4 Ti 5 O 12 , graphite, carbon nanotubes, or graphene.

일 구현예에서, 상기 고체전해질은 LiPON, LiBON, 또는 LiLaTiO3 등 이차전지용 고체전해질을 포함할 수 있다.In one embodiment, the solid electrolyte may include a solid electrolyte for a secondary battery, such as LiPON, LiBON, or LiLaTiO 3 .

일 구현예에서, 상기 집전체는 Pt, Al, Cu, Ni, 또는 Ni-Cr 등으로 구성되는 박막을 포함할 수 있다. In one embodiment, the current collector may include a thin film made of Pt, Al, Cu, Ni, or Ni-Cr.

일 구현예에서, 상기 박막전지는 양극 물질, 전해질, 또는 음극 물질을 포함하는 적층 유연박막전지일 수 있다.In one embodiment, the thin film battery may be a laminated flexible thin film battery including a positive electrode material, an electrolyte, or a negative electrode material.

한편, 상기 전고상 박막 이차전지는 전술한 바와 같이 전류집전체, 음극, 고체전해질, 양극, 및 전류집전체 박막들이 평면기판 상에 순차적으로 적층된 구조를 가질수 있는데, 여기서 상기 구성물질은 예컨대 스퍼터링과 같은 증착 공정을 통하여 형성될 수 있다. 또한 상기 구정 물질은 PLD, ALD, evaporator, E-beam, spin-coater, spray-deposition, CVD, PECVD 등과 같은 다른 박막 증착 장비를 사용하여 증착될 수 있으며, 여기에 제한되는 것은 아니다.Meanwhile, the all-solid-state thin film secondary battery may have a structure in which a current collector, a negative electrode, a solid electrolyte, a positive electrode, and a current collector thin films are sequentially stacked on a flat substrate as described above, wherein the constituent material is, for example, sputtering It may be formed through a deposition process such as In addition, the spheroid material may be deposited using other thin film deposition equipment such as PLD, ALD, evaporator, E-beam, spin-coater, spray-deposition, CVD, PECVD, and the like, but is not limited thereto.

일 구현예에서, 본 발명에 따른 하이브리드 박막봉지는 양극재, 음극재, 고체전해질, 집전체 등의 구성물질 증착공정이 완료된 전고상 박막 이차전지가 준비된 상태에서 상기 전고상 박막 이차전지를 모두 봉지하는 형태를 가질 수 있다.In one embodiment, the hybrid thin film encapsulation according to the present invention encapsulates all of the all-solid-state thin-film secondary batteries in a state in which the all-solid-state thin-film secondary battery in which the deposition process of constituent materials such as cathode material, anode material, solid electrolyte, and current collector has been completed is prepared may have the form

예를 들어, 전고상 박막 이차전지 상에 파릴렌, SiNx, SiNxOy, 및 SiOy가 순차적으로 적층된 4중층 구조로 적층된 박막봉지를 제시한다. SiNx 박막 상에 SiO2 졸(silica sol)이 코팅되고, 열처리를 통해 SiO2 졸이 SiOy 박막으로 변환됨과 함께 SiNx 박막과 SiOy 박막의 계면에 SiNxOy 박막이 형성됨을 유도함으로써 본 발명의 구현예에 따른 하이브리드 박막봉지의 제조가 가능하다.For example, a thin film encapsulation in which parylene, SiNx, SiNxOy, and SiOy are sequentially stacked on an all-solid-state thin film secondary battery in a quadruple-layer structure is presented. SiO 2 sol (silica sol) is coated on the SiNx thin film, and the SiO 2 sol is converted into a SiOy thin film through heat treatment, and the SiNxOy thin film is formed at the interface between the SiNx thin film and the SiOy thin film. It is possible to manufacture a hybrid thin film encapsulation.

하이브리드 박막 봉지 제조 방법Hybrid thin film encapsulation method

본 발명의 다른 구현예에서, 전기화학 소자 상에 파릴렌(Parylene)을 포함하는 유기물층을 형성하는 단계; 및 상기 유기물층 상에 무기물층을 형성하는 단계;를 포함하는, 하이브리드 박막 봉지 제조방법이 제공된다.In another embodiment of the present invention, forming an organic material layer containing parylene (Parylene) on the electrochemical device; and forming an inorganic layer on the organic layer.

일 구현예에서, 상기 무기물층 형성 단계는, 질화규소(SiNx)층을 증착하는 단계; 질화규소(SiNx)층 상에 SiO2 졸(silica sol)을 코팅하는 단계; 및 SiO2 졸을 열처리하여 산화규소(SiOy)층, 및 질화규소(SiNx)층과 산화규소(SiOy)층의 사이에 질화산화규소(SiNxOy)층을 형성하는 단계;를 포함할 수 있다.In an embodiment, the forming of the inorganic material layer may include depositing a silicon nitride (SiNx) layer; coating a SiO 2 sol (silica sol) on a silicon nitride (SiNx) layer; and heat-treating the SiO 2 sol to form a silicon oxide (SiOy) layer and a silicon nitride oxide (SiNxOy) layer between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer.

일 구현예에서, 상기 질화산화규소(SiNxOy)층은 질화규소(SiNx)층과 산화규소(SiOy)층의 계면에 SiNx과 SiOy의 고상확산에 의하여 형성될 수 있다. 구체적으로, 상기 고상 확산에 의하여 SiNx 박막과 SiOy 박막의 계면에 형성된 SiNxOy 박막은 치밀한 조직구조를 구비하여, 박막봉지의 산소투과 및 투습방지에 결정적인 역할을 할 수 있다.In an embodiment, the silicon nitride oxide (SiNxOy) layer may be formed by solid-state diffusion of SiNx and SiOy at the interface between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer. Specifically, the SiNxOy thin film formed at the interface between the SiNx thin film and the SiOy thin film by the solid-state diffusion has a dense tissue structure, and can play a decisive role in preventing oxygen permeation and moisture permeation of the thin film encapsulation.

한편, SiOy 박막은 SiO2 졸(silica sol)이 열처리에 의해 변환된 것이며, SiNxOy 박막은 열처리시 SiNx와 SiOy의 고상확산에 의해 형성될 수 있다.On the other hand, the SiOy thin film is SiO 2 sol (silica sol) is converted by heat treatment, the SiNxOy thin film may be formed by solid-state diffusion of SiNx and SiOy during heat treatment.

일 구현예에서, 질화산화규소(SiNxOy)층은 열처리에 의한 고상 확산을 통하여 형성될 수 있으며, 구체적으로 대기 분위기에서 열처리될 수 있다.In an embodiment, the silicon nitride oxide (SiNxOy) layer may be formed through solid-phase diffusion by heat treatment, and specifically may be heat-treated in an atmospheric atmosphere.

예를 들어, 상기 질화산화규소(SiNxOy)층은 80 내지 160 ℃의 온도로 열처리되어 형성될 수 있으며, 바람직하게 100 내지 140 ℃의 온도로 열처리될 수 있다. 또한, 상기 질화산화규소(SiNxOy)층은 5 시간 내지 15 시간동안 열처리되어 형성될 수 있으며, 바람직하게 8 시간 내지 12 시간동안 열처리될 수 있다. 열처리를 전술한 온도 및/또는 시간 범위로 하는 경우 형성된 SiNxOy 박막은 치밀한 조직구조를 구비하여, 박막봉지의 산소투과 및 투습방지에 결정적인 역할을 할 수 있다.For example, the silicon nitride oxide (SiNxOy) layer may be formed by heat treatment at a temperature of 80 to 160 °C, preferably at a temperature of 100 to 140 °C. In addition, the silicon nitride oxide (SiNxOy) layer may be formed by heat treatment for 5 hours to 15 hours, and preferably, heat treatment for 8 hours to 12 hours. When the heat treatment is performed in the above-described temperature and/or time range, the formed SiNxOy thin film has a dense tissue structure, and can play a decisive role in preventing oxygen permeation and moisture permeation of the thin film encapsulation.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예들에 의해 제한되는 것으로 해석되지 않는 것은 당 업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 전 고상 박막 이차전지 제조Example 1: Preparation of all-solid-state thin film secondary battery

양극 전류집전체 박막으로는 백금을 사용하였으며 DC스퍼터를 통하여 증착한다. 그 위에 양극박막은 스퍼터링 방법을 이용하여 LiMPO4 (M=Fe, Ni 등)박막을 증착한 후 LiPON 등의 고체전해질을 스퍼터링 방법을 이용하여 증착한다. Li, SiNx 또는 Li4Ti5O12 등의 음극 박막을 고체전해질 위에 증착한 후 마지막으로 음극 전류집전체를 DC스퍼터를 사용하여 증착한다. 그 세부내용은 아래와 같다.Platinum was used as the anode current collector thin film, and it was deposited through DC sputtering. On the anode thin film, a LiMPO 4 (M=Fe, Ni, etc.) thin film is deposited using a sputtering method, and then a solid electrolyte such as LiPON is deposited using a sputtering method. A cathode thin film such as Li, SiNx or Li 4 Ti 5 O 12 is deposited on the solid electrolyte, and finally, a cathode current collector is deposited using DC sputtering. The details are as follows.

LiFePO4 조성의 단일상 타겟을 RF 마그네트론 스퍼터링 (Samwon Vacuum, Korea)을 사용하여, 백금이 증착된 폴리이미드 기판에 성막 하였다. 성막하기 전의 초기 진공도는 5Х10-6 mTorr 이하였으며, 성막 중에는 40 mTorr의 압력에서 박막을 제조하였다. 성막시의 출력은 예비 실험을 통하여 최적 조건으로 도출된 160 W(4" target, 2 W/㎠)로 고정하였다. 박막의 결정화를 위해 기판의 온도를 상온으로 고정한 후 박막을 제조하여, 분위기 조절이 가능한 전기로에서 3% H2/(Ar+H2)를 분당 800 cc 속도로 주입하면서 환원분위기에서 열처리를 하였다. 이때 열처리온도는 400℃이며 승온속도 3 ℃/min으로 2 시간 동안 열처리를 하였으며, 분위기로에서 열처리 후 결정화가 이루어진다. A single-phase target having a composition of LiFePO 4 was formed on a polyimide substrate on which platinum was deposited using RF magnetron sputtering (Samwon Vacuum, Korea). The initial vacuum degree before film formation was 5Х10 -6 mTorr or less, and a thin film was manufactured at a pressure of 40 mTorr during film formation. The output at the time of film formation was fixed at 160 W (4" target, 2 W/cm2), which was derived as an optimal condition through preliminary experiments. For the crystallization of the thin film, the temperature of the substrate was fixed at room temperature, and then the thin film was manufactured, and the atmosphere was controlled. Heat treatment was performed in a reducing atmosphere while injecting 3% H 2 /(Ar+H 2 ) at a rate of 800 cc/min in an electric furnace capable of this. At this time, the heat treatment temperature was 400° C. and the heat treatment was performed for 2 hours at a temperature increase rate of 3° C./min. , crystallization takes place after heat treatment in an atmosphere furnace.

고체전해질은 Li3PO4 타겟을 이용하였으며, RF 마그네트론 스퍼터링을 사용하여 반응성 스퍼터링을 통해 상온에서 LiPON 박막을 성막한다. As the solid electrolyte, a Li 3 PO 4 target was used, and a LiPON thin film was formed at room temperature through reactive sputtering using RF magnetron sputtering.

음극은 Li 금속 또는 SiNx를 각각 열증착(thermal or e-beam evaporator)과 스퍼터를 사용하여 상온에서 증착한다. For the cathode, Li metal or SiNx is deposited at room temperature using thermal or e-beam evaporator and sputtering, respectively.

음극 전류집전체 박막으로는 구리 박막을 상온에서 DC 스퍼터를 사용하여 증착한다.As the cathode current collector thin film, a copper thin film is deposited using DC sputtering at room temperature.

실시예 2: 하이브리드 박막 봉지 적용Example 2: Hybrid thin film encapsulation application

Parylene 박막은 열증착(thermal evaporator)을 사용하여 증착하였다. 실시예 1의 전고상 박막 이차전지 위에 parylene소스를 1차 150℃ 2차 600℃로 가열하여 기화시켜 고분자 박막을 형성하였다. 그런 뒤, SiNx 박막 증착을 위하여 PECVD 챔버 내에 전고상 박막 이차전지를 장착시킨 상태에서, 챔버 내에 SiH4, NH3, N2 기체를 각각 25, 100, 380 sccm으로 주입한 후, 400W의 RF power를 인가함과 함께 430 mTorr의 공정압력을 8분간 유지시켜 parylene이 증착된 전고상 박막 이차전지위에 약 400nm 두께의 SiNx을 형성하였다.The parylene thin film was deposited using a thermal evaporator. On the all-solid-state thin-film secondary battery of Example 1, the parylene source was heated to 150° C. and secondary to 600° C. to vaporize to form a polymer thin film. Then, in a state in which an all-solid-state thin film secondary battery is mounted in a PECVD chamber for SiNx thin film deposition, SiH 4 , NH 3 , N 2 gas is injected into the chamber at 25, 100, and 380 sccm, respectively, and RF power of 400W was applied and the process pressure of 430 mTorr was maintained for 8 minutes to form SiNx with a thickness of about 400 nm on the all-solid-state thin film secondary battery on which parylene was deposited.

이어, N2 분위기에서 SiO2 졸을 딥코팅하고 오븐에서 120 ℃의 온도로 10시간 열처리하였다. SiO2 졸의 딥코팅시, 인출속도를 0.5mm/s, 1mm/s, 3mm/s, 5mm/s로 달리하여 SiO2 졸이 각각 약 40nm, 약 85nm, 약 117nm, 약 225nm의 두께로 코팅되도록 하였다.Then, in an N 2 atmosphere, SiO 2 sol was dip-coated and heat-treated in an oven at a temperature of 120° C. for 10 hours. During dip coating of SiO 2 sol, the extraction speed is varied to 0.5 mm/s, 1 mm/s, 3 mm/s, and 5 mm/s, so that the SiO 2 sol is coated with a thickness of about 40 nm, about 85 nm, about 117 nm, and about 225 nm, respectively. made to be

도 3a SEM 사진에 나타낸 바와 같이 약 100nm의 SiOy 박막이 형성되어 있음을 확인할 수 있으며, 도 3b의 TEM 사진을 참조하면 SiNx 박막과 SiOy 박막의 계면에 약 4~5nm 두께의 SiNxOy 박막이 형성되었음이 확인되었다.As shown in the SEM picture of FIG. 3a, it can be confirmed that a SiOy thin film of about 100 nm is formed, and referring to the TEM picture of FIG. Confirmed.

따라서, 실시예 2의 전고상 박막 이차전지용 박막봉지는 도 2에 나타낸 바와 Parylene, SiNx, SiNxOy, SiOy가 순차적으로 적층된 4중층 구조의 박막이 적층되어 구비되는 것을 확인할 수 있다.Therefore, it can be confirmed that the thin film encapsulation for an all-solid-state thin film secondary battery of Example 2 is provided by stacking a four-layered thin film in which Parylene, SiNx, SiNxOy, and SiOy are sequentially stacked as shown in FIG. 2 .

비교예 1: Parylene 박막 봉지 적용Comparative Example 1: Parylene thin film encapsulation application

Parylene 박막은 열증착(thermal evaporator)을 사용하여 증착하였다. 실시예 1의 전고상 박막 이차전지 위에 parylene소스를 1차 150℃ 2차 600℃로 가열하여 기화시켜 고분자 박막을 형성하였다. 이렇게 제조된 전고상 박막 이차전지는 유기물 박막(파릴렌) 만으로 봉지되었다.The parylene thin film was deposited using a thermal evaporator. On the all-solid-state thin-film secondary battery of Example 1, the parylene source was heated to 150° C. and secondary to 600° C. to vaporize to form a polymer thin film. The all-solid-state thin-film secondary battery thus prepared was sealed only with an organic thin film (parylene).

실험예 1: 충방전 테스트Experimental Example 1: Charge/discharge test

실시예 및 비교예에 따른 박막 봉지를 적용한 전 고상 박막 이차전지의 시간에 따른 충방전 테스트를 수행하였다. 모든 샘플은 대기중에서 측정을 하였다.A charge/discharge test according to time of the all-solid-state thin film secondary battery to which the thin film encapsulation according to Examples and Comparative Examples was applied was performed. All samples were measured in air.

도 5a는 실시예 1의 박막봉지를 하지않은 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다. 충전10분 후 Li 애노드 산화의 영향으로 급격하게 포텐셜이 증가하다가 개방 회로(open circuit)가 된 것을 확인하였다.5A shows the results of the charge-discharge graph according to time of the all-solid-state thin-film secondary battery without thin-film encapsulation of Example 1. FIG. After 10 minutes of charging, it was confirmed that the potential rapidly increased under the influence of oxidation of the Li anode, and then an open circuit was formed.

도 5b는 비교예 1의 유기물층(parylene)으로만 박막봉지한 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다. 약 6시간동안 첫 싸이클의 충전은 정상적으로 진행되었으나 방전을 하는중 Li의 산화가 진행되었으며 전압의 플럭스를 관찰할 수 있었다. 2번째 싸이클부터는 3.4V에서 전압 플래토(voltage plateau)도 관찰 할 수 없었으며, 급격한 전압 상승과 전압강하를 확인하였다. 3 싸이클에서는 Li 산화의 영향이 더욱 커져서 voltage flux는 더욱 커졌다. 또한 Li의 완전한 산화로 더 이상 측정할 수 없었다. parylene없이 SiNx, SiNxOy, SiOy 를 이용한 박막봉지 샘플의 경우 박막봉지 공정직후 전지가 손상되어 충방전을 진행할 수 없었다.FIG. 5b shows the results of charging and discharging graphs according to time of the all-solid-state thin film secondary battery encapsulated only with the organic material layer (parylene) of Comparative Example 1. FIG. For about 6 hours, charging proceeded normally in the first cycle, but oxidation of Li proceeded during discharging, and the voltage flux could be observed. From the second cycle, a voltage plateau at 3.4V could not be observed, and a sudden voltage rise and voltage drop were confirmed. In the 3rd cycle, the effect of Li oxidation was greater and the voltage flux became greater. Also, the complete oxidation of Li could no longer be measured. In the case of the thin film encapsulation sample using SiNx, SiNxOy, and SiOy without parylene, the battery was damaged immediately after the thin film encapsulation process, so charging and discharging could not proceed.

도 5c는 실시예 2의 하이브리드 박막봉지로 봉지한 전고상 박막 이차전지의 시간에 따른 충방전 그래프로 나타낸 결과를 나타낸다. 약 30시간 동안 3싸이클 이상 충방전을 진행하였을 때 안정적으로 충방전이 진행되는 것을 확인하였으며, 이에 본원 발명의 구현예에 따른 하이브리드 박막봉지의 장기간 안정성을 확인할 수 있었다.FIG. 5c shows the results of charging and discharging graphs according to time of the all-solid-state thin film secondary battery encapsulated with the hybrid thin film encapsulation of Example 2. FIG. It was confirmed that charging and discharging were stably performed when charging and discharging was performed for 3 or more cycles for about 30 hours, and thus, the long-term stability of the hybrid thin film encapsulation according to the embodiment of the present invention was confirmed.

실험예 2: 장시간 안정성 테스트Experimental Example 2: Long-term stability test

본 발명에서 구현한 전고상 박막 이차전지용 박막봉지의 안정성을 확인하기 위하여 대기중에서 전고상 박막 이차전지의 충·방전 특성을 측정하였다. In order to confirm the stability of the thin film encapsulation for the all-solid-state thin-film secondary battery implemented in the present invention, the charging and discharging characteristics of the all-solid-state thin-film secondary battery were measured in the atmosphere.

도 6a에 나타낸 바와 같이 대기중에서 장시간 노출되었음에도 안정적으로 전지가 구동하는 것을 확인하였으며, electrochemical impedance spectroscopy로 분석한 결과를 도 6b에 나타낸 바와 같이 1cycle 후 390ohm, 2cycle 후 410ohm으로 약간 증가하나 10cycle 후 310 ohm으로 저항이 감소하고 50-100cycle후 330ohm 정도의 포화(saturation)값을 유지하는 준안정적 상태가 확인됨으로써 전극과 전해질 모두 안정적으로 존재하는 것을 확인하였다. As shown in Fig. 6a, it was confirmed that the battery was stably driven even when exposed to the air for a long time. As shown in Fig. 6b, the result of electrochemical impedance spectroscopy analysis showed a slight increase to 390 ohm after 1 cycle and 410 ohm after 2 cycles, but slightly increased to 310 ohm after 10 cycles. As a result, the resistance decreased and a metastable state maintaining a saturation value of about 330 ohm after 50-100 cycles was confirmed, confirming that both the electrode and the electrolyte were stably present.

앞에서 설명된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the protection scope of the present invention as long as they are apparent to those of ordinary skill in the art.

Claims (13)

파릴렌(Parylene)을 포함하는 유기물층; 및
상기 유기물층 상에 적층된 무기물층;을 포함하는, 하이브리드 박막 봉지.
an organic material layer containing parylene; and
A hybrid thin film encapsulation comprising; an inorganic material layer laminated on the organic material layer.
제1항에 있어서,
상기 유기물층은 1 내지 10 ㎛ 두께를 갖는 것을 특징으로 하는, 하이브리드 박막 봉지.
According to claim 1,
The organic layer is characterized in that having a thickness of 1 to 10 ㎛, hybrid thin film encapsulation.
제1항에 있어서,
상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층 중 하나 이상을 포함하는 적층 구조를 갖는 것을 특징으로 하는, 하이브리드 박막 봉지.
According to claim 1,
The inorganic material layer is a hybrid thin film encapsulation, characterized in that it has a stacked structure including at least one of a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer.
제3항에 있어서,
상기 무기물층은 질화규소(SiNx)층, 질화산화규소(SiNxOy)층, 및 산화규소(SiOy)층이 순차적으로 적층된 구조를 갖는 것을 특징으로 하는, 하이브리드 박막 봉지.
4. The method of claim 3,
The inorganic material layer is a hybrid thin film encapsulation, characterized in that it has a structure in which a silicon nitride (SiNx) layer, a silicon nitride oxide (SiNxOy) layer, and a silicon oxide (SiOy) layer are sequentially stacked.
제3항에 있어서,
상기 질화규소(SiNx)층은 100 내지 800 nm 두께를 갖고, 상기 질화산화규소(SiNxOy)층은 3 내지 8 nm 두께를 갖고, 상기 산화규소(SiOy)층은 50 내지 200 nm 두께를 갖는 것을 특징으로 하는, 하이브리드 박막 봉지.
4. The method of claim 3,
The silicon nitride (SiNx) layer has a thickness of 100 to 800 nm, the silicon nitride oxide (SiNxOy) layer has a thickness of 3 to 8 nm, and the silicon oxide (SiOy) layer has a thickness of 50 to 200 nm. which is a hybrid thin film encapsulation.
제1항에 있어서,
상기 하이브리드 박막 봉지의 두께는 10 ㎛ 미만인 것을 특징으로 하는, 하이브리드 박막 봉지.
According to claim 1,
The hybrid thin film encapsulation has a thickness of less than 10 μm, characterized in that the hybrid thin film encapsulation.
전기화학 소자; 및
상기 전기화학 소자 상에 적층된, 제1항 내지 제6항 중 어느 한 항의 하이브리드 박막 봉지;를 포함하며,
상기 하이브리드 박막 봉지는 파릴렌(Parylene)을 포함하는 유기물층 및 상기 유기물층 상에 적층된 무기물층을 포함하는, 이차 전지.
electrochemical devices; and
A hybrid thin film encapsulation of any one of claims 1 to 6, which is laminated on the electrochemical device.
The hybrid thin film encapsulation comprises an organic material layer containing parylene and an inorganic material layer stacked on the organic material layer, a secondary battery.
제7항에 있어서.
상기 이차 전지는 전고상 박막 이차전지인 것을 특징으로 하는, 이차전지.
8. The method of claim 7 .
The secondary battery is an all-solid-state thin film secondary battery, characterized in that the secondary battery.
전기화학 소자 상에 파릴렌(Parylene)을 포함하는 유기물층을 형성하는 단계; 및
상기 유기물층 상에 무기물층을 형성하는 단계;를 포함하는, 하이브리드 박막 봉지 제조방법.
forming an organic material layer including parylene on the electrochemical device; and
A hybrid thin film encapsulation manufacturing method comprising; forming an inorganic layer on the organic layer.
제9항에 있어서,
상기 무기물층 형성 단계는,
질화규소(SiNx)층을 증착하는 단계;
질화규소(SiNx)층 상에 SiO2 졸(silica sol)을 코팅하는 단계; 및
SiO2 졸을 열처리하여 산화규소(SiOy)층, 및 질화규소(SiNx)층과 산화규소(SiOy)층의 사이에 질화산화규소(SiNxOy)층을 형성하는 단계;를 포함하는 것을 특징으로 하는, 하이브리드 박막 봉지 제조방법.
10. The method of claim 9,
The inorganic material layer forming step,
depositing a silicon nitride (SiNx) layer;
Coating a SiO 2 sol (silica sol) on a silicon nitride (SiNx) layer; and
SiO 2 Heat treatment of the sol to form a silicon oxide (SiOy) layer, and a silicon nitride oxide (SiNxOy) layer between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer; characterized in that it comprises a, hybrid A method for manufacturing a thin film encapsulation.
제9항에 있어서,
상기 질화산화규소(SiNxOy)층은 질화규소(SiNx)층과 산화규소(SiOy)층의 계면에 SiNx과 SiOy의 고상확산에 의하여 형성되는 것을 특징으로 하는, 하이브리드 박막 봉지 제조방법.
10. The method of claim 9,
The silicon nitride oxide (SiNxOy) layer is a hybrid thin film encapsulation manufacturing method, characterized in that it is formed by solid-state diffusion of SiNx and SiOy at the interface between the silicon nitride (SiNx) layer and the silicon oxide (SiOy) layer.
제9항에 있어서,
상기 질화산화규소(SiNxOy)층은 80 내지 160 ℃의 온도로 열처리되어 형성되는 것을 특징으로 하는, 하이브리드 박막 봉지 제조방법.
10. The method of claim 9,
The silicon nitride oxide (SiNxOy) layer is a hybrid thin film encapsulation manufacturing method, characterized in that it is formed by heat treatment at a temperature of 80 to 160 ℃.
제9항에 있어서,
상기 질화산화규소(SiNxOy)층은 5 시간 내지 15 시간동안 열처리되어 형성되는 것을 특징으로 하는, 하이브리드 박막 봉지 제조방법.
10. The method of claim 9,
The silicon nitride oxide (SiNxOy) layer is a hybrid thin film encapsulation manufacturing method, characterized in that it is formed by heat treatment for 5 to 15 hours.
KR1020200017743A 2020-02-13 2020-02-13 Thin film encapsulation for all solid-state batteries and method for fabricating the same KR102322343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200017743A KR102322343B1 (en) 2020-02-13 2020-02-13 Thin film encapsulation for all solid-state batteries and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200017743A KR102322343B1 (en) 2020-02-13 2020-02-13 Thin film encapsulation for all solid-state batteries and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20210103243A true KR20210103243A (en) 2021-08-23
KR102322343B1 KR102322343B1 (en) 2021-11-09

Family

ID=77499420

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200017743A KR102322343B1 (en) 2020-02-13 2020-02-13 Thin film encapsulation for all solid-state batteries and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR102322343B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561004A (en) * 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries
US20020071989A1 (en) * 2000-12-08 2002-06-13 Verma Surrenda K. Packaging systems and methods for thin film solid state batteries
JP2011517022A (en) * 2008-04-03 2011-05-26 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical cell and method for producing the same
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
EP2868770A1 (en) * 2013-10-29 2015-05-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for encapsulating a sensitive device and method for manufacturing said device
WO2019002768A1 (en) * 2017-06-29 2019-01-03 I-Ten Encapsulation system for electronic components and batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561004A (en) * 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries
US20020071989A1 (en) * 2000-12-08 2002-06-13 Verma Surrenda K. Packaging systems and methods for thin film solid state batteries
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
JP2011517022A (en) * 2008-04-03 2011-05-26 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical cell and method for producing the same
EP2868770A1 (en) * 2013-10-29 2015-05-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for encapsulating a sensitive device and method for manufacturing said device
WO2019002768A1 (en) * 2017-06-29 2019-01-03 I-Ten Encapsulation system for electronic components and batteries

Also Published As

Publication number Publication date
KR102322343B1 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP7414709B2 (en) LI ion battery without olefin separator
US7510582B2 (en) Method of fabricating thin film battery with annealed substrate
Neudecker et al. “Lithium‐Free” thin‐film battery with in situ plated Li anode
JP2013512547A (en) Lithium ion battery and method for producing lithium ion battery
JP2022009041A (en) Electrode assemblies
WO2002042516A2 (en) Sputter deposition of lithium phosphorous oxynitride material
US20100129717A1 (en) Microbattery on a substrate with monolithic packaging
TW201008012A (en) Thin film batteries and methods for manufacturing same
CN102668190A (en) Solid electrolyte cell and cathode active material
JP7142770B2 (en) Ceramic coating on battery separator
JP2019530138A (en) Method for making an electrode assembly
CN112736277A (en) Solid electrolyte-lithium negative electrode complex, method for producing same, and all-solid-state lithium secondary battery
US20230170581A1 (en) Ultra-thin ceramic coating on separator for batteries
JP2010073402A (en) Method for manufacturing negative electrode for lithium secondary battery
CN110660960B (en) Battery and preparation method thereof
KR101979349B1 (en) Lithium metal electrode and method of manufacturing the same, and secondary battery including the same
KR101200306B1 (en) Thin film battery having improved anode characteristics and method of manufacturing the same
KR102322343B1 (en) Thin film encapsulation for all solid-state batteries and method for fabricating the same
Noh et al. Protection effect of ZrO2 coating layer on LiCoO2 thin film fabricated by DC magnetron sputtering
KR20040095848A (en) Thin negative electrode for lithium secondary battery and manufacturing method thereof
CN116995307A (en) Method for modifying interface of all-solid-state thin-film lithium ion battery by piezoelectric material transition layer and all-solid-state thin-film lithium ion battery
CN113991170A (en) All-solid-state battery
JP2002298847A (en) Positive electrode active material for nonaqueous electrolyte battery, and method for manufacturing the same
WO2010089839A1 (en) Solid thin-film secondary battery and method for manufacturing solid thin-film secondary battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant