KR20210103155A - Method for manufacturing ceramic sintered body - Google Patents

Method for manufacturing ceramic sintered body Download PDF

Info

Publication number
KR20210103155A
KR20210103155A KR1020200017541A KR20200017541A KR20210103155A KR 20210103155 A KR20210103155 A KR 20210103155A KR 1020200017541 A KR1020200017541 A KR 1020200017541A KR 20200017541 A KR20200017541 A KR 20200017541A KR 20210103155 A KR20210103155 A KR 20210103155A
Authority
KR
South Korea
Prior art keywords
slurry
sintered body
ceramic sintered
manufacturing
ceramic
Prior art date
Application number
KR1020200017541A
Other languages
Korean (ko)
Other versions
KR102356364B1 (en
Inventor
주경
이기복
Original Assignee
(주)삼양세라텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)삼양세라텍 filed Critical (주)삼양세라텍
Priority to KR1020200017541A priority Critical patent/KR102356364B1/en
Publication of KR20210103155A publication Critical patent/KR20210103155A/en
Application granted granted Critical
Publication of KR102356364B1 publication Critical patent/KR102356364B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting

Abstract

The present invention relates to a ceramic sintered body, comprising: a first step of preparing slurry by mixing ceramic powder, a sintering aid, fluid silicone, and a curing agent; a second step of forming the slurry into a predetermined specific shape; a third step of curing the molded slurry; and a fourth step of sintering the cured slurry. The mixing ratio of each material of the slurry is set to 5 to 10 parts by weight of the sintering aid, 9 to 81 parts by weight of the fluid silicone, and 1 to 9 parts by weight of the curing agent with respect to 100 parts by weight of the ceramic powder. Using the method for manufacturing a ceramic sintered body enables manufacturing of the ceramic sintered body according to the characteristics and use of the product since the shape of the ceramic sintered body can be formed by various methods including plastic processing. Also, the time and cost required for manufacturing the ceramic sintered body can be reduced.

Description

세라믹 소결체 제조방법 {METHOD FOR MANUFACTURING CERAMIC SINTERED BODY}Method for manufacturing ceramic sintered body {METHOD FOR MANUFACTURING CERAMIC SINTERED BODY}

본 발명은 세라믹 소결체를 제조하는 방법에 관한 것으로, 더 상세하게는 세라믹 분말과 유동성 실리콘을 혼합하여 슬립을 제조함으로써 상기 슬립을 다양한 방식으로 성형할 수 있는 세라믹 소결체 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a ceramic sintered body, and more particularly, to a ceramic sintered body manufacturing method capable of forming the slip in various ways by preparing a slip by mixing ceramic powder and fluid silicon.

세라믹 소결체는 금속에 비하여 내열성, 내식성, 내마모성이 우수하며, 비중이 낮고, 화학적 안정성이 우수하여 기계 구조용 재료 등 그 응용범위기 매우 넓다. 그러나 세라믹 소결체는 경도가 매우 높기 때문에 복잡한 형상의 제품의 가공에 있어 가공비용이 높을 뿐만 아니라, 제한된 형상의 세라믹 제품만 제조가 가능하고, 성형 및 소결공정에 많은 비용이 소요되어 제품의 최종가격이 매우 높아진다는 단점이 있다.Ceramic sintered body has excellent heat resistance, corrosion resistance, and abrasion resistance compared to metals, has a low specific gravity, and has excellent chemical stability, so its application range is very wide, such as materials for mechanical structures. However, because the ceramic sintered body has very high hardness, the processing cost is high in the processing of products with complex shapes, and only ceramic products with limited shapes can be manufactured. The downside is that it is very high.

그럼에도 불구하고 세라믹 소결체는 고온, 고속 환경하에서 높은 내구성을 가지므로 요구가 증대되고 있는바, 세라믹 소결에 적합한 알루미나, 지르코니아, 질화규소, 탄화규소와 같은 파인 세라믹스가 각광을 받게 되었다.Nevertheless, since the ceramic sintered body has high durability under high-temperature and high-speed environments, the demand is increasing, and fine ceramics such as alumina, zirconia, silicon nitride, and silicon carbide suitable for ceramic sintering have been in the spotlight.

특히, 복잡하게 형태화된 3차원의 세라믹 부품은 광범위한 공업적 용도에 필수적인 구조적 및 전자적 구성 요소이다. 이러한 세라믹 부품의 특징은 강도, 인성, 전기저항성, 내마모성, 내열성 등이 우수하다. 그러나 이러한 세라믹은 낮은 제품 수율, 가공시간 및 고자본 장비의 지출 등으로 기인하는 비용이 발생한다는 문제점을 안고 있다. In particular, intricately shaped three-dimensional ceramic components are essential structural and electronic components for a wide range of industrial applications. The characteristics of these ceramic parts are excellent in strength, toughness, electrical resistance, abrasion resistance, heat resistance, and the like. However, these ceramics have problems in that costs are incurred due to low product yield, processing time, and expenditure of high capital equipment.

상기 복잡하게 형태화된 3차원의 세라믹 부품은 일반적으로 일축가압 성형, 정수압 성형, 주입 성형, 슬립캐스팅 등 다양한 성형 방법을 이용하여 다양한 형태로 제조할 수 있다.The complex three-dimensional ceramic parts can be manufactured in various shapes using various molding methods, such as uniaxial pressure molding, hydrostatic pressure molding, injection molding, and slip casting.

일축 가압 성형은 세라믹 분말을 압축하여 성형하는 방법으로 복잡한 형상의 성형체 제조 시 불균일한 성형 밀도 차이에 의해 소결 시 소결체의 변형을 제어하기 어렵다는 문제점이 있을 뿐만 아니라, 그 형상이나 크기에 제한이 있다는 문제점이 있다.Uniaxial pressure molding is a method of compressing and molding ceramic powder, and there is a problem in that it is difficult to control the deformation of the sintered body during sintering due to the non-uniform difference in molding density when manufacturing a molded body having a complex shape, and there is a problem that the shape or size is limited. There is this.

정수압 성형은 세라믹 분말을 러버 몰드에 넣고, 압력 매체유를 통하여 성형체를 제조하는 방법으로 균일한 성형 밀도를 가지는 성형체를 제조할 수 있으나, 고가의 정수압 성형 장비와 대량생산에 어려움이 있어 제조원가가 높다는 문제점이 있다.Hydrostatic molding is a method of putting ceramic powder in a rubber mold and manufacturing a molded body through pressure medium oil. It is possible to manufacture a molded body having a uniform molding density, but the manufacturing cost is high due to expensive hydrostatic molding equipment and difficulties in mass production. There is a problem.

슬립캐스팅 방법은 세라믹 분말을 증류수에 분산시켜 슬러리 제조 후 제조된 슬러리를 석고형 몰드에 주입하여 성형하는 방법으로서, 석고형 몰드의 모세관현상을 이용하여 성형체 내부와 외부 간 입도 분리 현상을 이용하여 성형체를 제조한다. 슬립캐스팅 방법은 상기 일축가압성형과 정수압 성형에 비해 복잡한 형상의 성형체 제조가 용이하나, 성형시간이 매우 길고, 석고몰드의 수명도 짧을 뿐만 아니라, 성형체의 취급강도가 매우 낮아 탈형 및 건조공정에서 불량률이 높게 발생하는 문제점이 있다. The slip casting method is a method of dispersing ceramic powder in distilled water to prepare a slurry and then injecting the prepared slurry into a gypsum mold to form a molded body using the capillary phenomenon of the gypsum mold. do. In the slip casting method, it is easy to manufacture a molded body with a complicated shape compared to the uniaxial pressure molding and hydrostatic pressure molding, but the molding time is very long, the life of the gypsum mold is short, and the handling strength of the molded body is very low, so the defect rate in the demolding and drying process is very low. There is a problem with this high occurrence.

이외에서 겔캐스팅, 주입성형 등의 다양한 성형 방법이 있으나, 복잡한 형상 구현, 성형체의 크기, 소결체의 물성, 고가의 공정비용 등 한계가 있어 제품으로서의 적용에 한계가 있다는 문제점을 안고 있다.In addition, there are various molding methods such as gel casting and injection molding, but there are limitations such as implementation of a complex shape, size of a molded body, physical properties of a sintered body, and high process cost, so there is a problem that there is a limit to its application as a product.

한편, 제품을 성형하는 방법 중 공정이 간단하고 생산성이 빠른 방법으로는 소성가공법이 있는데, 세라믹 분말은 연성을 가지지 아니한다는 특성이 있으므로 현재까지는 세라믹 소결체를 소성가공 방법으로 성형하는 것이 제안된바 없다.On the other hand, among the methods for molding products, there is a plastic working method, which has a simple process and high productivity. However, since ceramic powder has a characteristic that it does not have ductility, it has not been proposed to form a ceramic sintered body by a plastic working method so far. .

KR 10-1559243 B1KR 10-1559243 B1

본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 소성가공법을 포함한 다양한 방법으로 세라믹 소결체의 형상을 형성할 수 있는 세라믹 소결체 제조방법을 제공하는데 목적이 있다.The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a method for manufacturing a ceramic sintered body capable of forming the shape of the ceramic sintered body by various methods including a plastic working method.

상기와 같은 목적을 달성하기 위한 본 발명에 의한 세라믹 소결체 제조방법은, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제를 혼합하여 슬러리를 제조하는 제1 단계; 상기 슬러리를 사전에 설정된 특정 형상으로 성형하는 제2 단계; 성형이 완료된 슬러리를 경화시키는 제3 단계; 경화된 슬러리를 소결시키는 제4 단계;를 포함한다.A method for manufacturing a ceramic sintered body according to the present invention for achieving the above object includes a first step of preparing a slurry by mixing a ceramic powder, a sintering aid, a flowable silicone, and a curing agent; a second step of forming the slurry into a predetermined specific shape; A third step of curing the molded slurry; and a fourth step of sintering the cured slurry.

상기 슬러리의 각 재료 혼합비율은, 상기 세라믹 분말 100중량부에 대하여, 상기 소결조제 5~10중량부, 상기 유동성 실리콘 9~81중량부 및 상기 경화제 1~9중량부로 설정된다.Each material mixing ratio of the slurry is set to 5 to 10 parts by weight of the sintering aid, 9 to 81 parts by weight of the flowable silicone, and 1 to 9 parts by weight of the curing agent with respect to 100 parts by weight of the ceramic powder.

상기 세라믹 분말은 질화규소분말을 포함하고, 상기 소결조제는 알루미나와 이트리아를 포함하도록 구성된다.The ceramic powder includes silicon nitride powder, and the sintering aid is configured to include alumina and yttria.

상기 유동성 실리콘은, 액상 실리콘 또는 실리콘 폼으로 설정된다.The flowable silicone is set to be liquid silicone or silicone foam.

상기 제1 단계는, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제의 혼합물에 용매를 추가로 혼합하도록 구성된다.The first step is configured to further mix a solvent into the mixture of the ceramic powder, the sintering aid, the flowable silicone, and the curing agent.

상기 제1 단계는, 진공 분위기에서 각 재료들을 혼합하여 상기 슬러리에 형성된 기포를 제거하도록 구성된다.The first step is configured to remove air bubbles formed in the slurry by mixing the respective materials in a vacuum atmosphere.

상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 시트 형태로 가공하는 과정과, 시트 형태의 슬러리를 가압하여 소성가공하는 과정으로 이루어진다.The second step includes a process of processing the slurry prepared in the first step into a sheet form, and a process of plastic working by pressing the sheet-shaped slurry.

상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 시트 형태로 가공하는 과정과, 시트 형태의 슬러리를 금형 상에 안착시킨 후 상기 슬러리와 금형을 진공포장지로 진공포장하는 과정과, 진공포장된 슬러리와 금형을 정수압프레스에 넣어 압력매체유로 가압하는 과정으로 이루어진다.The second step is a process of processing the slurry prepared in the first step into a sheet form, a process of vacuum packaging the slurry and the mold with a vacuum packaging paper after placing the sheet-shaped slurry on a mold, and vacuum packaging The slurry and mold are put into a hydrostatic press and pressurized with pressure medium oil.

상기 제1 단계는, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제의 혼합물에 용매를 추가로 혼합하도록 구성되고, 상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 주입성형 금형에 주입하여 성형하도록 이루어진다.The first step is configured to further mix a solvent into a mixture of ceramic powder, sintering aid, fluid silicone and curing agent, and the second step is molding by injecting the slurry prepared in the first step into an injection mold. made to do

본 발명에 의한 세라믹 소결체 제조방법을 이용하면, 소성가공법을 포함한 다양한 방법으로 세라믹 소결체의 형상을 형성할 수 있으므로 제품의 특성 및 용도에 맞춰 세라믹 소결체를 제작할 수 있고, 세라믹 소결체를 제조하는데 소요되는 시간과 비용을 절감할 수 있다는 장점이 있다.If the ceramic sintered body manufacturing method according to the present invention is used, the shape of the ceramic sintered body can be formed by various methods including the plastic working method, so that the ceramic sintered body can be manufactured according to the characteristics and use of the product, and the time required for manufacturing the ceramic sintered body and cost savings.

도 1은 본 발명에 의한 세라믹 소결체 제조방법의 순서도이다.
도 2 내지 도 4는 본 발명에 의한 세라믹 소결체 제조방법 제1 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.
도 5 내지 도 8은 본 발명에 의한 세라믹 소결체 제조방법 제2 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.
도 9 내지 도 11은 본 발명에 의한 세라믹 소결체 제조방법 제3 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.
1 is a flowchart of a method for manufacturing a ceramic sintered body according to the present invention.
2 to 4 sequentially illustrate a process of manufacturing a ceramic sintered body according to a first embodiment of the method for manufacturing a ceramic sintered body according to the present invention.
5 to 8 sequentially illustrate a process of manufacturing a ceramic sintered body according to a second embodiment of the method for manufacturing a ceramic sintered body according to the present invention.
9 to 11 sequentially illustrate a process of manufacturing a ceramic sintered body according to a third embodiment of the method for manufacturing a ceramic sintered body according to the present invention.

이하 첨부된 도면을 참조하여 본 발명에 의한 세라믹 소결체 제조방법의 실시예를 상세히 설명한다.Hereinafter, an embodiment of a method for manufacturing a ceramic sintered body according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 의한 세라믹 소결체 제조방법의 순서도이다.1 is a flowchart of a method for manufacturing a ceramic sintered body according to the present invention.

세라믹 분말은 내열성과 내식성, 내마모성, 화학적 안정성이 우수하다는 특성이 있어 매우 다양한 분야에서 부품 재료로 활용되고 있다. 이때 세라믹 분말은 연성이나 소성이 없으므로 상기 세라믹 분말을 고온 고압으로 압축시키는 방식이나, 상기 세라믹 분말을 물과 혼합시킨 후 금형에 주입하여 성형하는 방법 등만이 활용되고 있을 뿐, 딥드로잉 등과 같은 소성가공은 불가하다는 한계가 있었다.Ceramic powder has excellent properties such as heat resistance, corrosion resistance, abrasion resistance, and chemical stability, so it is being used as a component material in a wide variety of fields. At this time, since the ceramic powder has no ductility or plasticity, only the method of compressing the ceramic powder at high temperature and high pressure, or the method of mixing the ceramic powder with water and then injecting it into a mold for molding, etc. are used. There was a limitation that processing was impossible.

본 발명에 의한 세라믹 소결체 제조방법은 세라믹 분말을 압축성형이나 주조성형 방식뿐만 아니라 소성가공 방식으로도 성형할 수 있도록 한다는 점에 구성상의 가장 큰 특징이 있다.The method for manufacturing a ceramic sintered body according to the present invention has the greatest characteristic in its configuration in that it allows the ceramic powder to be molded not only by compression molding or casting molding but also by plastic working method.

즉, 본 발명에 의한 세라믹 소결체 제조방법은, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제를 혼합하여 슬러리를 제조하는 제1 단계와, 상기 슬러리를 사전에 설정된 특정 형상으로 성형하는 제2 단계와, 성형이 완료된 슬러리를 경화시키는 제3 단계와, 경화된 슬러리를 소결시키는 제4 단계를 포함하도록 구성된다. 이때 상기 소결조제는 분체의 소결밀도를 높이기 위해 사용되는 첨가제이고 상기 경화제는 슬러리의 경화를 돕기 위헤 사용되는 첨가제인데, 이와 같이 소결조제와 경화제는 종래의 슬러리에도 실질적으로 동일하게 적용되고 있는바 상기 소결조제와 경화제에 대한 상세한 설명은 생략한다.That is, the method for manufacturing a ceramic sintered body according to the present invention comprises a first step of preparing a slurry by mixing ceramic powder, a sintering aid, a fluid silicone and a curing agent, and a second step of molding the slurry into a predetermined specific shape; It is configured to include a third step of curing the molded slurry and a fourth step of sintering the cured slurry. At this time, the sintering aid is an additive used to increase the sintering density of the powder, and the curing agent is an additive used to help the curing of the slurry. Detailed descriptions of the sintering aid and the curing agent will be omitted.

상기 언급한 바와 같이 본 발명에 의한 세라믹 소결체 제조방법은, 슬러리에 유동성을 갖는 실리콘을 혼합시킴으로써 상기 슬러리를 가압하여 변형시킬 수 있다는 장점 즉, 소성가공 방식으로 제품 성형을 할 수 있다는 장점이 있다. 물론, 상기 슬러리에 다량의 용매를 추가하여 슬러리의 유동성을 높임으로써, 상기 슬러리를 금형 내부에 주입시키는 캐스팅 방식으로도 제품을 성형할 수도 있다.As mentioned above, the method for manufacturing a ceramic sintered body according to the present invention has the advantage that the slurry can be deformed by pressurizing the slurry by mixing silicon having fluidity, that is, the product can be molded by a plastic working method. Of course, by adding a large amount of solvent to the slurry to increase the fluidity of the slurry, the product may be molded by a casting method in which the slurry is injected into a mold.

상기 슬러리에 포함되는 유동성 실리콘의 비율이 너무 낮으면 슬러리의 연성이 떨어져 소성가공이 불가하게 되고, 상기 유동성 실리콘의 비율이 너무 높으면 세라믹 분말이 가지고 있는 내열성, 내식성, 내마모성, 화학적 안정성 등이 떨어질 우려가 있다. 따라서 상기 슬러리의 각 재료 혼합비율은, 상기 세라믹 분말 100중량부에 대하여, 상기 소결조제 5~10중량부, 상기 유동성 실리콘 9~81중량부 및 상기 경화제 1~9중량부로 설정됨이 바람직하다.If the ratio of the flowable silicone contained in the slurry is too low, the ductility of the slurry decreases, making plastic processing impossible. If the ratio of the flowable silicone is too high, the heat resistance, corrosion resistance, abrasion resistance, chemical stability, etc. there is Therefore, the mixing ratio of each material of the slurry is preferably set to 5 to 10 parts by weight of the sintering aid, 9 to 81 parts by weight of the flowable silicone, and 1 to 9 parts by weight of the curing agent with respect to 100 parts by weight of the ceramic powder.

한편, 상기 슬러리에 기포가 포함되어 있으면 최종 제품의 강성이 저하될 뿐만 아니라, 경화 및 소결과정에서 상기 기포가 외부로 배출되는 경우 제품 불량이 유발될 수 있다. 따라서 슬러리를 제작할 때에는, 진공 분위기에서 각 재료들 즉, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제를 30분 내지 120분 동단 혼합함으로써, 상기 슬러리 내부에 존재하고 있던 기포가 외부로 배출되어 제거되도록 함이 바람직하다.On the other hand, when bubbles are included in the slurry, not only the rigidity of the final product is reduced, but also when the bubbles are discharged to the outside during curing and sintering, product defects may be caused. Therefore, when preparing the slurry, each material, that is, the ceramic powder, the sintering aid, the fluid silicone, and the curing agent is mixed in a vacuum atmosphere for 30 to 120 minutes, so that the air bubbles present in the slurry are discharged to the outside and removed. This is preferable.

이하 첨부된 도면을 참조하여 본 발명에 의한 세라믹 소결체 제조방법의 실시예를 설명하도록 한다.Hereinafter, an embodiment of a method for manufacturing a ceramic sintered body according to the present invention will be described with reference to the accompanying drawings.

[실시예 1][Example 1]

도 2 내지 도 4는 본 발명에 의한 세라믹 소결체 제조방법 제1 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.2 to 4 sequentially illustrate a process of manufacturing a ceramic sintered body according to a first embodiment of the method for manufacturing a ceramic sintered body according to the present invention.

세라믹 분말로서 질화규소분말(CS-HI01, 1㎛, Combustion Synthesis) 9.3kg과, 소결조제로서 알루미나(AM-20, 5.2㎛, Sumitomo) 0.25kg 및 이트리아(HWY-01, 0.4㎛) 0.45kg과, 유동성 실리콘으로서 액상 실리콘(3900A, 시영테크) 4.3kg과, 경화제(3900B, 시영테크) 0.48kg을 플래너트리 믹서에 넣고, 진공분위기하에서 1시간동안 혼합하여 탈포된 페이스트 상태로 만들어준다. 이때 본 실시예에서는 상기 유동성 실리콘으로서 액상 실리콘을 사용하는 경우만을 설명하고 있으나, 상기 액상 실리콘은 실리콘 폼과 같이 유동성을 갖는 실리콘 재료라면 어떠한 재료로도 대체될 수 있다. 또한, 본 실시예에 언급된 바와 같이 상기 세라믹 분말이 질화규소분말로 적용되는 경우, 상기 소결조제는 알루미나와 이트리아를 포함한 혼합물로 적용됨이 바람직하다. 즉, 상기 소결조제는 세라믹 분말의 종류에 따라 적절하게 선택되어야 할 것이다.Silicon nitride powder (CS-HI01, 1㎛, Combustion Synthesis) 9.3kg as ceramic powder, alumina (AM-20, 5.2㎛, Sumitomo) 0.25kg and yttria (HWY-01, 0.4㎛) 0.45kg as sintering aid , As liquid silicone, 4.3 kg of liquid silicone (3900A, Siyoung Tech) and 0.48 kg of curing agent (3900B, Siyoung Tech) are put in a planetary mixer, and mixed for 1 hour in a vacuum atmosphere to make a defoamed paste. In this embodiment, only the case of using liquid silicone as the flowable silicone is described, but the liquid silicone may be replaced with any material as long as it is a silicone material having flowability such as silicone foam. In addition, as mentioned in this embodiment, when the ceramic powder is applied as a silicon nitride powder, the sintering aid is preferably applied as a mixture including alumina and yttria. That is, the sintering aid should be appropriately selected according to the type of ceramic powder.

상기 페이스트 상태인 슬러리를 폴리에틸렌 필름 사이에 넣고 프레스를 이용하여 20톤의 압력을 10분 동안 가함으로써, 직경 150㎜, 두께 5㎜의 슬러리 시트를 제조한다.A slurry sheet having a diameter of 150 mm and a thickness of 5 mm is prepared by putting the slurry in the paste state between polyethylene films and applying a pressure of 20 tons for 10 minutes using a press.

슬러리 시트의 제조가 완료되면, 도 2에 도시된 바와 같이 프레스 다이(110)와 시트홀더(120) 사이에 슬러리 시트(1)를 안착시킨 후, 도 3에 도시된 바와 같이 펀치(130)로 상기 슬러리 시트(1)를 가압함으로써 상기 슬러리 시트(1)를 특정 형상으로 형성한다. 슬러리 시트(1)의 형상 변경이 완료되면, 상기 슬러리 시트(1)를 프레스 다이(110)와 시트 홀더(120) 사이로부터 인출시켜 성형체(10) 제작을 완료한다.When the preparation of the slurry sheet is completed, the slurry sheet 1 is seated between the press die 110 and the sheet holder 120 as shown in FIG. 2 , and then, as shown in FIG. By pressing the slurry sheet 1, the slurry sheet 1 is formed into a specific shape. When the shape change of the slurry sheet 1 is completed, the slurry sheet 1 is pulled out from between the press die 110 and the sheet holder 120 to complete the production of the molded body 10 .

본 실시예와 같이 딥드로잉 성형기를 이용하면, 상기 슬러리 시트(1)를 직경 100㎜ 높이 50㎜ 두께 5㎜의 도가니 형태 성형체(10)로 성형할 수 있게 된다. 성형이 완료되면 상기 성형체(10)를 85℃ 건조 열풍기에 넣고 1 시간동안 경화시키며, 상기 성형체(10)의 경화가 완료되면 상기 성형체(10)를 진공소결로에 넣고 질화분위기하에서 1,750℃의 온도로 3시간 소결을 실시하여 도가니 형상의 세라믹 소결체의 제조를 완료한다.If the deep drawing molding machine is used as in this embodiment, the slurry sheet 1 can be molded into a crucible shaped body 10 having a diameter of 100 mm, a height of 50 mm, and a thickness of 5 mm. When the molding is completed, the molded body 10 is put in a drying hot air blower at 85° C. and cured for 1 hour. When the curing of the molded body 10 is completed, the molded body 10 is placed in a vacuum sintering furnace and a temperature of 1,750° C. under a nitriding atmosphere. The furnace is sintered for 3 hours to complete the manufacture of the crucible-shaped ceramic sintered body.

상기 언급한 바와 같이 딥드로잉 성형방식으로 제조된 도가니 형상의 세라믹 소결체는, 밀도 3.19g/㎤, 굴곡강도 550MPa, 경도 1,600kgf/㎟으로 일반적인 질화규소 특성을 가지고 있음을 확인할 수 있었다.As mentioned above, it was confirmed that the crucible-shaped ceramic sintered body manufactured by the deep drawing molding method had general silicon nitride characteristics with a density of 3.19 g/cm 3 , a flexural strength of 550 MPa, and a hardness of 1,600 kgf/mm 2 .

[실시예 2][Example 2]

도 5 내지 도 8은 본 발명에 의한 세라믹 소결체 제조방법 제2 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.5 to 8 sequentially illustrate a process of manufacturing a ceramic sintered body according to a second embodiment of the method for manufacturing a ceramic sintered body according to the present invention.

세라믹 분말로서 질화규소분말(CS-HI01, 1㎛, Combustion Synthesis) 9.3kg과, 소결조제로서 알루미나(AM-20, 5.2㎛, Sumitomo) 0.25kg 및 이트리아(HWY-01, 0.4㎛) 0.45kg과, 유동성 실리콘으로서 액상 실리콘(3900A, 시영테크) 4.3kg과, 경화제(3900B, 시영테크) 0.48kg를 플래너트리 믹서에 넣고, 진공분위기하에서 1시간동안 혼합하여 탈포된 페이스트 상태로 만들어준다.Silicon nitride powder (CS-HI01, 1㎛, Combustion Synthesis) 9.3kg as ceramic powder, alumina (AM-20, 5.2㎛, Sumitomo) 0.25kg and yttria (HWY-01, 0.4㎛) 0.45kg as sintering aid , Liquid silicone (3900A, Siyoung Tech) 4.3 kg and curing agent (3900B, Siyoung Tech) 0.48 kg as fluid silicone are put in a planetary mixer, and mixed for 1 hour in a vacuum atmosphere to make a defoamed paste.

상기 페이스트 상태인 슬러리를 폴리에틸렌 필름 사이에 넣고 프레스를 이용하여 20ton/㎡의 압력을 10분 동안 가함으로써, 직경 150㎜, 두께 5㎜의 슬러리 시트를 제조한다.By putting the slurry in the paste state between polyethylene films and applying a pressure of 20 ton/m 2 for 10 minutes using a press, a slurry sheet having a diameter of 150 mm and a thickness of 5 mm is prepared.

슬러리 시트의 제조가 완료되면, 도 5에 도시된 바와 같이 상기 슬러리 시트(1)를 금형(210)에 올려 놓은 후, 도 6에 도시된 바와 같이 진공포장지(220)로 진공포장을 실시한다. 진공포장이 완료되면 도 7에 도시된 바와 같이 정수압프레스(230)에 넣고 도어(240)를 닫은 후, 압력매체유(250)를 1,000kgf/㎠ ~ 1,500kgf/㎠까지 가압함으로써, 가로100㎜, 세로 100㎜, 두께 5㎜의 곡면 형상의 성형체(10)를 제조한다. 성형이 완료된 성형체(10)는 도 8에 도시된 바와 같이 금형(210)으로부터 분리시킨 후, 85℃ 건조 열풍기에 넣고 1시간동안 경화시킨다.When the production of the slurry sheet is completed, as shown in FIG. 5 , the slurry sheet 1 is placed on the mold 210 , and then vacuum packaging is performed with a vacuum wrapping paper 220 as shown in FIG. 6 . When the vacuum packaging is completed, as shown in FIG. 7, put it in the hydrostatic press 230, close the door 240, and pressurize the pressure medium oil 250 to 1,000kgf/cm2 ~ 1,500kgf/cm2, so that the horizontal 100mm , to manufacture a curved molded body 10 having a length of 100 mm and a thickness of 5 mm. As shown in FIG. 8 , the molded body 10 is separated from the mold 210 , and then placed in a drying hot air dryer at 85° C. and cured for 1 hour.

성형체(10)의 경화가 완료되면, 상기 성형체(10)를 진공소결로에 넣고 질화분위기하에서 1,750℃에서 3시간 소결을 실시하여 곡면 형상의 세라믹 소결체 제조를 완료한다. 본 실시예와 같은 성형방식을 이용한 세라믹 소결체는 밀도 3.20g/㎤, 굴곡강도 600MPa, 경도 1,700kgf/㎟이으로 가장 우수한 물성을 확보할 수 있었다.When the hardening of the compact 10 is completed, the compact 10 is placed in a vacuum sintering furnace and sintered at 1,750° C. for 3 hours in a nitriding atmosphere to complete the manufacture of the curved ceramic sintered compact. The ceramic sintered body using the molding method as in this example has a density of 3.20 g/cm 3 , a flexural strength of 600 MPa, and a hardness of 1,700 kgf/mm 2 to secure the best physical properties.

[실시예 3][Example 3]

도 9 내지 도 11은 본 발명에 의한 세라믹 소결체 제조방법 제3 실시예에 따라 세라믹 소결체를 제조하는 과정을 순차적으로 도시한다.9 to 11 sequentially illustrate a process of manufacturing a ceramic sintered body according to a third embodiment of the method for manufacturing a ceramic sintered body according to the present invention.

본 발명에 의한 세라믹 소결체 제조방법은 소성가공 방식이 아니라 금형 내부로 슬러리를 주입하는 캐스팅 방식으로도 적용될 수 있다.The method for manufacturing a ceramic sintered body according to the present invention can be applied not only to the plastic working method, but also to the casting method in which the slurry is injected into the mold.

세라믹 분말로서 질화규소분말(CS-HI01, 1㎛, Combustion Synthesis) 9.3kg과, 소결조제로서 알루미나(AM-20, 5.2㎛, Sumitomo) 0.25kg 및 이트리아(HWY-01, 0.4㎛) 0.45kg과, 유동성 실리콘으로서 액상 실리콘(3900A, 시영테크) 4.3kg과, 경화제(3900B, 시영테크) 0.48kg와 용매인 톨루엔 5kg을 플래너트리 믹서에 넣고, 진공분위기하에서 1시간 동안 혼합하여 탈포된 페이스트 상태로 만들어준다. 이때 상기 용매는 액상 실리콘을 녹일 수 있다면 톨루엔 등 여러가지 물질로 적용될 수 있다.Silicon nitride powder (CS-HI01, 1㎛, Combustion Synthesis) 9.3kg as ceramic powder, alumina (AM-20, 5.2㎛, Sumitomo) 0.25kg and yttria (HWY-01, 0.4㎛) 0.45kg as sintering aid , liquid silicone (3900A, Siyoung Tech) 4.3 kg, hardener (3900B, Siyoung Tech) 0.48 kg and solvent toluene 5 kg in a planetary mixer, mixed for 1 hour in a vacuum atmosphere to form a defoamed paste makes it In this case, the solvent may be applied to various materials such as toluene as long as it can dissolve liquid silicon.

상기 언급한 바와 같이 질화규소분말과 알루미나, 이트리아, 액상 실리콘, 경화제뿐만 아니라 용매까지 혼합하여 슬러리를 제조하는 경우, 상기 슬러리는 점성을 갖는 유체와 같이 유동성이 매우 높은 상태가 된다.As mentioned above, when a slurry is prepared by mixing silicon nitride powder with alumina, yttria, liquid silicone, and a curing agent as well as a solvent, the slurry has a very high fluidity like a viscous fluid.

이와 같이 유동성이 높은 슬러리의 제작이 완료되면, 도 9에 도시된 바와 같이 캐비티금형(310)과 코어금형(320)을 제작하여 형합시킨 후, 도 10에 도시된 바와 같이 사출장치(330)를 이용하여 슬러리를 캐비티금형(310)의 주입구(312)로 주입한다. 이때 상기 사출장치(330)는 슬러리를 5kgf/㎠ ~ 20kgf/㎠의 압력으로 주입구(312)에 주입하는데, 상기 주입구(312)는 캐비티금형(310)과 코어금형(320) 사이의 피팅라인(340)과 연통되어 있으므로 상기 슬러리는 피팅라인(340)을 따라 주입된다.When the production of the slurry with high fluidity as described above is completed, the cavity mold 310 and the core mold 320 are manufactured and molded as shown in FIG. 9, and then the injection device 330 is installed as shown in FIG. The slurry is injected into the injection hole 312 of the cavity mold 310 using At this time, the injection device 330 injects the slurry into the inlet 312 at a pressure of 5 kgf/cm 2 to 20 kgf/cm 2 , and the inlet 312 is a fitting line between the cavity mold 310 and the core mold 320 ( 340), so that the slurry is injected along the fitting line 340.

피팅라인(340)을 따라 주입된 슬러리는 직경 100㎜ 높이 100㎜ 두께 5㎜의 도가니 형태로 성형한다. 성형이 완료된 성형체(10)는 도 11에 도시된 바와 같이 캐비티금형(310)과 코어금형(320)으로부터 탈형되어 85℃ 건조 열풍기에 인인된 후 1시간동안 경화된다.The slurry injected along the fitting line 340 is molded into a crucible having a diameter of 100 mm, a height of 100 mm, and a thickness of 5 mm. As shown in FIG. 11 , the molded body 10 that has been molded is demolded from the cavity mold 310 and the core mold 320 , and is then hardened for 1 hour after being drawn in a hot air dryer at 85° C.

상기 성형체(10)의 경화가 완료되면, 상기 성형체(10)를 진공소결로에 넣은 후 질화분위기하에서 1,750℃의 온도로 3시간 소결을 실시하여 도가니 형상의 세라믹 소결체 제조를 완료한다.When the curing of the compact 10 is completed, the compact 10 is placed in a vacuum sintering furnace and sintered at a temperature of 1,750° C. under a nitriding atmosphere for 3 hours to complete the production of a crucible-shaped ceramic sintered compact.

상기 주입성형 성형방식으로 제조된 세라믹 소결체는 밀도 3.18g/㎤, 굴곡강도 500MPa, 경도 1,500kgf/㎟으로 딥드로잉 소결체에 비해 강성은 약간 떨어지나, 제품의 용도에는 크게 영향을 미치지 않음을 확인할 수 있었다. The ceramic sintered body produced by the injection molding method had a density of 3.18 g/cm 3 , a flexural strength of 500 MPa, and a hardness of 1,500 kgf/mm 2 . .

상기 언급한 바와 같이 본 발명에 의한 세라믹 소결체 제조방법을 이용하면, 슬러리의 농도를 변경함으로써 딥드로잉 방식이나 일축가압성형, 정수압성형, 주입성형, 캐스팅성형 등 다양한 방식으로 세라믹 소결체를 제조할 수 있으므로, 매우 다양한 종류의 부품으로 활용이 가능해지고 제조공정의 단순화 및 제조원가 절감을 달성할 수 있게 된다는 장점이 있다.As mentioned above, if the ceramic sintered body manufacturing method according to the present invention is used, the ceramic sintered body can be manufactured in various ways such as a deep drawing method, uniaxial pressure molding, hydrostatic pressure molding, injection molding, casting molding, etc. by changing the concentration of the slurry. , it has the advantage that it can be used with a wide variety of parts, and it is possible to achieve simplification of the manufacturing process and reduction of manufacturing cost.

이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although the present invention has been described in detail using preferred embodiments, the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

1 : 슬러리 10 : 성형체
110 : 프레스 다이 120 : 시트 홀더
130 : 펀치 210 : 금형
220 : 진공포장지 230 : 정수압프레스
240 : 도어 250 : 압력매체유
310 : 캐비티금형 312 : 주입구
320 : 코어금형 330 : 피팅라인
1: slurry 10: molded body
110: press die 120: sheet holder
130: punch 210: mold
220: vacuum packaging paper 230: hydrostatic press
240: door 250: pressure medium oil
310: cavity mold 312: injection hole
320: core mold 330: fitting line

Claims (9)

세라믹 분말과 소결조제와 유동성 실리콘과 경화제를 혼합하여 슬러리를 제조하는 제1 단계;
상기 슬러리를 사전에 설정된 특정 형상으로 성형하는 제2 단계;
성형이 완료된 슬러리를 경화시키는 제3 단계; 및
경화된 슬러리를 소결시키는 제4 단계;
를 포함하는 것을 특징으로 하는 세라믹 소결체 제조방법.
A first step of preparing a slurry by mixing the ceramic powder, the sintering aid, the flowable silicone, and the curing agent;
a second step of forming the slurry into a predetermined specific shape;
A third step of curing the molded slurry; and
a fourth step of sintering the cured slurry;
A method of manufacturing a ceramic sintered body comprising a.
청구항 1에 있어서,
상기 제1 단계는,
상기 세라믹 분말 100중량부에 대하여, 상기 소결조제 5~10중량부, 상기 유동성 실리콘 9~81중량부 및 상기 경화제 1~9중량부를 혼합하는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The first step is
With respect to 100 parts by weight of the ceramic powder, 5 to 10 parts by weight of the sintering aid, 9 to 81 parts by weight of the flowable silicone and 1 to 9 parts by weight of the curing agent are mixed.
청구항 1에 있어서,
상기 세라믹 분말은 질화규소분말을 포함하고, 상기 소결조제는 알루미나와 이트리아를 포함하는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The ceramic powder comprises silicon nitride powder, and the sintering aid comprises alumina and yttria.
청구항 1에 있어서,
상기 유동성 실리콘은, 액상 실리콘 또는 실리콘 폼인 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The flowable silicon is a ceramic sintered body manufacturing method, characterized in that the liquid silicon or silicon foam.
청구항 1에 있어서,
상기 제1 단계는, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제의 혼합물에 용매를 추가로 혼합하도록 구성되는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The first step is a ceramic sintered body manufacturing method, characterized in that it is configured to further mix a solvent to the mixture of the ceramic powder, the sintering aid, the flowable silicone and the curing agent.
청구항 1에 있어서,
상기 제1 단계는, 진공 분위기에서 각 재료들을 혼합하여 상기 슬러리에 형성된 기포를 제거하도록 구성되는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The first step is a ceramic sintered body manufacturing method, characterized in that configured to remove the bubbles formed in the slurry by mixing the respective materials in a vacuum atmosphere.
청구항 1에 있어서,
상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 시트 형태로 가공하는 과정과, 시트 형태의 슬러리를 가압하여 소성가공하는 과정으로 이루어지는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The second step is a method of manufacturing a ceramic sintered body, characterized in that it comprises a process of processing the slurry prepared in the first step into a sheet form, and a process of plastic working by pressing the sheet-shaped slurry.
청구항 1에 있어서,
상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 시트 형태로 가공하는 과정과, 시트 형태의 슬러리를 금형 상에 안착시킨 후 상기 슬러리와 금형을 진공포장지로 진공포장하는 과정과, 진공포장된 슬러리와 금형을 정수압프레스에 넣어 압력매체유로 가압하는 과정으로 이루어지는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The second step is a process of processing the slurry prepared in the first step into a sheet form, a process of vacuum packaging the slurry and the mold with a vacuum packaging paper after the slurry in the sheet form is seated on a mold, and vacuum packaging A method of manufacturing a ceramic sintered body, characterized in that it consists of a process of putting the slurry and the mold into a hydrostatic press and pressurizing it with a pressure medium oil.
청구항 1에 있어서,
상기 제1 단계는, 세라믹 분말과 소결조제와 유동성 실리콘과 경화제의 혼합물에 용매를 추가로 혼합하도록 구성되고,
상기 제2 단계는, 상기 제1 단계에서 제조된 슬러리를 주입성형 금형에 주입하여 성형하도록 이루어지는 것을 특징으로 하는 세라믹 소결체 제조방법.
The method according to claim 1,
The first step is configured to further mix a solvent in the mixture of the ceramic powder, the sintering aid, the flowable silicone and the curing agent,
The second step is a method for manufacturing a ceramic sintered body, characterized in that the slurry prepared in the first step is injected into an injection mold to be molded.
KR1020200017541A 2020-02-13 2020-02-13 Method for manufacturing ceramic sintered body KR102356364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200017541A KR102356364B1 (en) 2020-02-13 2020-02-13 Method for manufacturing ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200017541A KR102356364B1 (en) 2020-02-13 2020-02-13 Method for manufacturing ceramic sintered body

Publications (2)

Publication Number Publication Date
KR20210103155A true KR20210103155A (en) 2021-08-23
KR102356364B1 KR102356364B1 (en) 2022-01-27

Family

ID=77499524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200017541A KR102356364B1 (en) 2020-02-13 2020-02-13 Method for manufacturing ceramic sintered body

Country Status (1)

Country Link
KR (1) KR102356364B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960001428A (en) * 1994-06-17 1996-01-25 김태구 Automotive engine cooling structure
JP2007261925A (en) * 2006-03-30 2007-10-11 Toray Ind Inc Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
KR20150071770A (en) * 2013-12-18 2015-06-29 (주)삼양세라텍 Heat radiating sheet containg boron nitride and namufacturing method thereof
KR101559243B1 (en) 2014-03-31 2015-10-15 강릉원주대학교산학협력단 Ceramic composition, ceramic sinter and manufacturing method thereof
JP2019081704A (en) * 2017-10-27 2019-05-30 日本碍子株式会社 Manufacturing method of oriented ceramic sintered body and flat sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960001428A (en) * 1994-06-17 1996-01-25 김태구 Automotive engine cooling structure
JP2007261925A (en) * 2006-03-30 2007-10-11 Toray Ind Inc Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
KR20150071770A (en) * 2013-12-18 2015-06-29 (주)삼양세라텍 Heat radiating sheet containg boron nitride and namufacturing method thereof
KR101559243B1 (en) 2014-03-31 2015-10-15 강릉원주대학교산학협력단 Ceramic composition, ceramic sinter and manufacturing method thereof
JP2019081704A (en) * 2017-10-27 2019-05-30 日本碍子株式会社 Manufacturing method of oriented ceramic sintered body and flat sheet

Also Published As

Publication number Publication date
KR102356364B1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
Zhou et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes
Gilissen et al. Gelcasting, a near net shape technique
US4552329A (en) Carbon fiber-reinforced gypsum models and forming molds
Tu et al. SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
Rueschhoff et al. Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering
JP4726403B2 (en) Method for producing three-dimensional structure and method for producing ceramic sintered body
CN107914333A (en) The method that zirconia ceramics cell phone rear cover is made using gel injection molding and forming technology
KR102356364B1 (en) Method for manufacturing ceramic sintered body
CN108000684A (en) A kind of adhesive for powder injection forming preparation method and applications
Olhero et al. Microfabrication of high aspect ratio BST pillar arrays by epoxy gel casting from aqueous suspensions with added water soluble epoxy resin
RU2647543C1 (en) Method of manufacturing a molding punch
JPS6124358B2 (en)
CN112745128A (en) Method for producing ceramic preform
JP5792507B2 (en) Manufacturing method of cement molding
WO2023068189A1 (en) Ceramic article production method
US20170129135A1 (en) Injection molding of aqueous suspensions of high-temperature ceramics
TWI716271B (en) Ceramic green body and method for fabricating the same
JP3224645B2 (en) Ceramics molding method
JPS58189302A (en) Molding of powder
JP3420786B2 (en) Manufacturing method of molded body
KR20010077622A (en) Forming of Ceramics Using Agar
JPH06227854A (en) Production of formed ceramic article
JPH10317007A (en) Method for compacting green compact
JPH08108415A (en) Ceramic molding method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant