KR20210101494A - Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same - Google Patents

Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same Download PDF

Info

Publication number
KR20210101494A
KR20210101494A KR1020200015546A KR20200015546A KR20210101494A KR 20210101494 A KR20210101494 A KR 20210101494A KR 1020200015546 A KR1020200015546 A KR 1020200015546A KR 20200015546 A KR20200015546 A KR 20200015546A KR 20210101494 A KR20210101494 A KR 20210101494A
Authority
KR
South Korea
Prior art keywords
perovskite
solvent
film
solution
present
Prior art date
Application number
KR1020200015546A
Other languages
Korean (ko)
Inventor
서장원
양태열
방수미
전남중
신성식
박혜진
송슬기
김영윤
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020200015546A priority Critical patent/KR20210101494A/en
Priority to PCT/KR2020/017143 priority patent/WO2021162215A1/en
Publication of KR20210101494A publication Critical patent/KR20210101494A/en
Priority to KR1020220065445A priority patent/KR20220078544A/en
Priority to KR1020240048079A priority patent/KR20240054240A/en

Links

Images

Classifications

    • H01L51/005
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L51/0001
    • H01L51/4213
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a perovskite solution, a manufacturing method of a perovskite film using the same, and a manufacturing method of a perovskite solar cell using the same. In detail, the present invention provides the perovskite solution comprising a perovskite compound and dimethylsulfone as a solvent, the manufacturing method of the perovskite film using the same, and the manufacturing method of the perovskite solar cell using the same.

Description

페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법{Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same}Perovskite solution, method for manufacturing a perovskite film using the same, and a method for manufacturing a perovskite solar cell using the same

본 발명은 페로브스카이트 용액, 이를 이용하는 페로브스카이트 막의 제조방법 및 이를 이용하는 페로브스카이트 태양전지의 제조방법에 관한 것으로, 상세하게는 특정한 용매를 포함하는 페로브스카이트 용액, 이를 이용하는 페로브스카이트 막의 제조방법 및 이를 이용하는 페로브스카이트 태양전지의 제조방법에 관한 것이다.The present invention relates to a perovskite solution, a method for manufacturing a perovskite film using the same, and a method for manufacturing a perovskite solar cell using the same, and more particularly, to a perovskite solution containing a specific solvent, using the same It relates to a method for manufacturing a perovskite film and a method for manufacturing a perovskite solar cell using the same.

최근 재생 가능한 에너지원에 대한 연구가 활발히 진행되고 있으며, 이중 태양광으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. Recently, research on renewable energy sources is being actively conducted, and among them, interest in solar cells that directly change electrical energy from sunlight is increasing.

태양전지란 태양광으로부터 광 에너지를 흡수하여 전자와 정공을 발생시키는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다.The solar cell refers to a cell that generates current-voltage using the photovoltaic effect of absorbing light energy from sunlight to generate electrons and holes.

즉, 태양전지는 상대적으로 큰 밴드갭을 갖는 흡수층을 포함하는 단일접합 태양전지와 상대적으로 밴드갭이 작은 흡수층을 포함하는 단일접합 태양전지가 중간층(또는 접합층, 터널 접합층, inter-layer 라고도 한다)을 매개로 하여 터널 접합된다.That is, in the solar cell, a single junction solar cell including an absorber layer having a relatively large band gap and a single junction solar cell including an absorber layer having a relatively small band gap are interlayer (or junction layer, tunnel junction layer, inter-layer). Tunnel junctions are carried out through the

이에 따라 상대적으로 큰 밴드갭을 가지는 흡수층을 포함하는 단일접합 태양전지를 페로브스카이트(perovskite) 태양전지로 사용하는 페로브스카이트/결정질 실리콘 텐덤 태양전지는 30% 이상의 높은 광전 변환 효율을 달성할 수 있어 많은 주목을 받고 있다.Accordingly, a perovskite/crystalline silicon tandem solar cell using a single junction solar cell including an absorber layer having a relatively large bandgap as a perovskite solar cell achieves a high photoelectric conversion efficiency of 30% or more. It can get a lot of attention.

페로브스카이트 태양전지는 음극, 전자 수송층, 페로브스카이트층(광활성층), 정공 수송층 및 양극을 포함하는 층 구조를 갖는다.The perovskite solar cell has a layer structure including a cathode, an electron transport layer, a perovskite layer (photoactive layer), a hole transport layer, and an anode.

그러나 높은 광전 변환 효율을 가짐에도 불구하고 페로브스카이트 태양전지는 음극과 전자 수송층으로 사용된 ITO, FTO 및 TiO2 등의 금속산화물이 강성(rigidity)으로서, 깨지기 쉽고 유연성이 낮아 롤-투-롤(roll-to-roll) 공정 등에 의한 연속적인 생산이 어렵다. 또한, TiO2을 음극 상에 박막으로 형성하기 위해서는 약 500℃의 높은 열처리 온도와 열처리 설비가 필요함에 따라 금속산화물을 기반으로 하는 종래의 페로브스카이트 태양전지는 고온 열처리 및 비유연성 등으로 제조비용 및 생산성 등이 떨어지는 문제점이 있다.However, in spite of having high photoelectric conversion efficiency, perovskite solar cells are fragile and have low flexibility due to the rigidity of metal oxides such as ITO, FTO and TiO2 used as anode and electron transport layer roll-to-roll Continuous production by (roll-to-roll) process or the like is difficult. In addition, in order to form TiO2 as a thin film on the anode, a high heat treatment temperature of about 500° C. and heat treatment facilities are required, so the conventional perovskite solar cells based on metal oxides have high manufacturing costs due to high temperature heat treatment and inflexibility. And there is a problem that productivity and the like fall.

더구나 TiO2 등의 금속산화물을 기반으로 하는 페로브스카이트 태양전지는 공기에 대한 안정성이 낮아 공기 중에서 장기간 노출될 경우 열화가 발생되어 성능이 급격하게 저하되는 문제점을 가진다.In addition, perovskite solar cells based on metal oxides such as TiO2 have low stability to air, so that when exposed to air for a long period of time, deterioration occurs and performance is rapidly reduced.

이러한 문제점에도 불구하고, 페로브스카이트 태양전지는 유기태양전지와 같이 용액 공정이 가능하기 때문에 대면적 및 플랙서블 소자로의 다양한 활용이 가능한 장점을 가지고 있어, 여전히 많은 주목을 받고 있다.Despite these problems, the perovskite solar cell has the advantage of being able to be used in a wide range of applications as a large-area and flexible device because solution processing is possible like an organic solar cell, and thus it is still attracting a lot of attention.

상기에 언급한 바와 같은 문제점을 극복하는 동시에 높은 광전 변환 효율을 유지할 수 있는 페로브스카이트 태양전지에 대한 연구가 필요한 실정이다.There is a need for research on a perovskite solar cell capable of overcoming the above-mentioned problems while maintaining high photoelectric conversion efficiency.

특히 페로브스카이트 태양전지에서 고효율을 달성하기 위한 핵심 기술이 균일한 페로브스카이트 막의 제조에 기인함으로 균일한 페로브스카이트 막을 제조하기 위한 기술개발이 절실하다.In particular, since the core technology for achieving high efficiency in a perovskite solar cell is due to the production of a uniform perovskite film, there is an urgent need to develop a technology for manufacturing a uniform perovskite film.

대한민국공개공보 제10-2018-0099577호Republic of Korea Publication No. 10-2018-0099577

본 발명은 상기와 같은 문제점을 극복하고자, 안정성이 우수하며, 결정크기가 크고 균일한 양질의 페로브스카이트 막을 제조할 수 있으며, 경제적으로 저렴하고, 친환경적인 페로브스카이트 용액을 제공한다.In order to overcome the above problems, the present invention provides a perovskite solution having excellent stability, having a large crystal size and producing a uniform, high-quality perovskite film, economically inexpensive, and environmentally friendly.

또한 본 발명은 본 발명의 페로브스카이트 용액을 이용하는 페로브스카이트 막의 제조방법을 제공한다.The present invention also provides a method for producing a perovskite membrane using the perovskite solution of the present invention.

또한 본 발명은 우수한 광전변환효율 및 안정성이 우수한 페로브스카이트 태양전지의 제조방법을 제공한다.In addition, the present invention provides a method of manufacturing a perovskite solar cell having excellent photoelectric conversion efficiency and stability.

본 발명은 특정한 용매를 포함하는 페로브스카이트 용액을 제공하는 것으로, 본 발명의 페로브스카이트 용액은,The present invention provides a perovskite solution containing a specific solvent, the perovskite solution of the present invention,

페로브스카이트 화합물; 및 perovskite compounds; and

용매로 디메틸술폰을 포함한다.Dimethylsulfone is included as a solvent.

본 발명의 일 실시예에 따른 용매는 감마-부티로락톤을 더 포함하는 혼합용매일 수 있다.The solvent according to an embodiment of the present invention may be a mixed solvent further comprising gamma-butyrolactone.

바람직하게 본 발명의 일 실시예에 따른 혼합용매는 디메틸술폰과 감마-부티로락톤의 혼합용매로 디메틸술폰과 감마-부티로락톤은 몰비가 1: 3 내지 9일 수 있다.Preferably, the mixed solvent according to an embodiment of the present invention is a mixed solvent of dimethyl sulfone and gamma-butyrolactone, and the molar ratio of dimethyl sulfone and gamma-butyrolactone may be 1: 3 to 9.

바람직하게 본 발명의 일 실시예에 따른 페로브스카이트 전구체에 의해 제조된 페로브스카이트 화합물은 하기 화학식 1로 표시될 수 있다.Preferably, the perovskite compound prepared by the perovskite precursor according to an embodiment of the present invention may be represented by the following formula (1).

[화학식 1][Formula 1]

(R-NH3 +)1-x(

Figure pat00001
)xMXa 3-yXb y (R-NH 3 + ) 1-x (
Figure pat00001
) x MX a 3-y X b y

(화학식 1에서, R은 C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이며, (In Formula 1, R is a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group,

R1 내지 R5는 서로 독립적으로, 수소, C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이고, M은 2가의 금속 이온이며, Xa는 브롬 이온이고, Xb는 요오드 이온이며, x는 0≤x≤1인 실수이며, y는 0 내지 3의 정수이다.)R 1 to R 5 are each independently hydrogen, a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group, M is a divalent metal ion, X a is a bromine ion, X b is an iodine ion, x is a real number with 0≤x≤1, and y is an integer from 0 to 3.)

또한 본 발명은 본 발명의 페로브스카이트 용액을 이용하는 페로브스카이트 막의 제조방법을 제공하는 것으로, 본 발명의 페로브스카이트 막의 제조방법은, The present invention also provides a method for producing a perovskite film using the perovskite solution of the present invention, the method for producing a perovskite film of the present invention,

페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;

기재 상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계; 및preparing a thin film by coating the perovskite solution on a substrate; and

상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계;를 포함한다.and treating the thin film with a non-solvent to prepare a perovskite film.

본 발명의 일 실시예에 따른 용매는 감마-부티로락톤, 2-부톡시에탄올, 2-프로폭시에탄올, 아세토니트릴, 디하이드로레보그루코세논, 디메틸카보네이트, 에틸렌카보네이트, 디메틸폼아마이드(DMF) 및 프로필렌카보네이트에서 선택되는 하나 또는 둘 이상의 용매를 더 포함하는 혼합용매일 수 있다.The solvent according to an embodiment of the present invention is gamma-butyrolactone, 2-butoxyethanol, 2-propoxyethanol, acetonitrile, dihydrolevo glucoxenone, dimethyl carbonate, ethylene carbonate, dimethylformamide (DMF) And it may be a mixed solvent further comprising one or two or more solvents selected from propylene carbonate.

바람직하게 본 발명의 일 실시예에 따른 페로브스카이트 용액은 디메틸술폰과 감마-부티로락톤의 혼합용매로 디메틸술폰과 감마-부티로락톤의 몰비가 1: 3 내지 9일 수 있다.Preferably, the perovskite solution according to an embodiment of the present invention is a mixed solvent of dimethyl sulfone and gamma-butyrolactone, and the molar ratio of dimethyl sulfone and gamma-butyrolactone may be 1: 3 to 9.

본 발명의 일 실시예에 따른 비용매는 에틸아세테이트, 아니솔, tert-부탄올, 부틸아세테이트, 2-메틸아니솔, tert-펜탄올 및 tert-헥산올에서 선택되는 하나 또는 둘 이상일 수 있다.The non-solvent according to an embodiment of the present invention may be one or two or more selected from ethyl acetate, anisole, tert-butanol, butyl acetate, 2-methylanisole, tert-pentanol, and tert-hexanol.

바람직하게 본 발명의 일 실시예에 따른 페로브스카이트 화합물은 상기 화학식 1일 수 있다.Preferably, the perovskite compound according to an embodiment of the present invention may be of Formula 1 above.

본 발명의 일 실시예에 따른 페로브스카이트 막의 제조방법은 페로브스카이트 막을 100 내지 180℃에서 1 내지 80분동안 열처리하는 단계를 더 포함할 수 있다.The method of manufacturing a perovskite film according to an embodiment of the present invention may further include heat-treating the perovskite film at 100 to 180° C. for 1 to 80 minutes.

또한 본 발명은 본 발명의 페로브스카이트 용액을 이용하는 페로브스카이트태양전지의 제조방법을 제공하는 것으로, 본 발명의 페로브스카이트 태양전지의 제조방법은,In addition, the present invention provides a method for manufacturing a perovskite solar cell using the perovskite solution of the present invention, the method for manufacturing a perovskite solar cell of the present invention,

페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;

제1 전극상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계; preparing a thin film by coating the perovskite solution on the first electrode;

상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계; 및 preparing a perovskite film by treating the thin film with a non-solvent; and

상기 페로브스카이트 막상에 제2 전극을 형성하는 단계를 포함한다.and forming a second electrode on the perovskite film.

본 발명의 페로브스카이트 용액은 특정용매인 디메틸술폰을 사용함으로써 페로브스카이트 화합물의 용해도가 높아 용해도 조절이 가능함으로써 페로브스카이트 화합물 결정의 밀도 및 크기를 조절할 수 있다.The perovskite solution of the present invention can control the density and size of the perovskite compound crystals by using a specific solvent, dimethylsulfone, because the solubility of the perovskite compound is high and the solubility can be controlled.

또한 본 발명의 페로브스카이트 용액은 페로브스카이트 화합물 결정의 크기가 크고 균일하여 광전 변환 효율 및 안정성이 향상된 페로브스카이트 막의 제조가 가능하다.In addition, since the perovskite solution of the present invention has a large and uniform perovskite compound crystal, it is possible to prepare a perovskite film with improved photoelectric conversion efficiency and stability.

또한 본 발명의 페로브스카이트 용액에 사용되는 디메틸술폰 용매는 종래의디메틸술폭사이드와 대비하여 값이 저렴하고 무해하며, 무취로 친환경적이고 경제적이다.In addition, the dimethyl sulfone solvent used in the perovskite solution of the present invention is inexpensive and harmless compared to the conventional dimethyl sulfoxide, and is odorless, environmentally friendly and economical.

따라서 본 발명의 페로브스카이트 용액을 이용하는 페로브스카이트 막의 제조방법 및 페로브스카이트 태양전지의 제조방법은 용액공정으로 친환경적인 작업환경에서 극히 향상된 광전변환효율 및 안정성을 갖는 페로브스카이트 막 및 페로브스카이트 태양전지를 제조할 수 있다.Therefore, the method of manufacturing a perovskite film using the perovskite solution of the present invention and the method of manufacturing a perovskite solar cell are solution processes, and perovskite having extremely improved photoelectric conversion efficiency and stability in an environment-friendly working environment. Membrane and perovskite solar cells can be fabricated.

도 1은 본 발명의 실시예 1 및 비교예 1의 페로브스카이트 용액으로 제조된 페로브스카이트 막의 SEM사진이다.1 is a SEM photograph of a perovskite film prepared with the perovskite solution of Example 1 and Comparative Example 1 of the present invention.

이하 본 발명의 페로브스카이트 용액, 이를 이용하는 페로브스카이트 막의 제조방법 및 이를 이용하는 페로브스카이트 태양전지의 제조방법에 대하여 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the perovskite solution of the present invention, a method for manufacturing a perovskite film using the same, and a method for manufacturing a perovskite solar cell using the same will be described in detail, but if there is no other definition in the technical and scientific terms used at this time , has a meaning commonly understood by those of ordinary skill in the art to which this invention belongs, and descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention in the following description will be omitted.

본 명세서에서 사용된 용어 "알킬"은 (탄소수가 특별히 한정되지 않은 경우) 탄소수 1 내지 20, 바람직하게 탄소수 1 내지 15, 보다 바람직하게 탄소수 1 내지 10, 보다 좋기로는 탄소수 1 내지 7, 더욱 좋기로는 탄소수 1 내지 4를 가진 포화된 직쇄상 또는 분지상의 비-고리(cyclic) 탄화수소를 의미한다. "저급 알킬"은 탄소수가 1 내지 4인 직쇄상 또는 분지상 알킬을 의미한다. 대표적인 포화 직쇄상 알킬은 -메틸, -에틸, -n-프로필, -n-부틸, -n-펜틸, -n-헥실, -n-헵틸, -n-옥틸, -n-노닐 과 -n-데실을 포함하고, 반면에 포화 분지상 알킬은 -이소프로필, -sec-부틸, -이소부틸, -tert-부틸, 이소펜틸, 2-메틸헥실, 3-메틸부틸, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5- 메틸헥실, 2,3-디메틸부틸, 2,3-디메틸펜틸, 2,4-디메틸펜틸, 2,3-디메틸헥실, 2,4-디메틸헥실, 2,5-디메틸헥실, 2,2-디메틸펜틸, 2,2-디메틸헥실, 3,3-디메틸펜틸, 3,3-디메틸헥실, 4,4-디메틸헥실, 2-에틸펜틸, 3-에틸펜틸, 2-데틸헥실, 3-에틸헥실, 4-에틸헥실, 2-메틸-2-에틸펜틸, 2-메틸-3-에틸펜틸, 2-메틸-4-에틸펜틸, 2-메틸-2-에틸헥실, 2-메틸-3-에틸헥실, 2-메틸-4-에틸헥실, 2,2-디에틸펜틸, 3,3-디에틸헥실, 2,2-디에틸헥실, 및 3,3-디에틸헥실을 포함한다.As used herein, the term "alkyl" (when the number of carbon atoms is not particularly limited) has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, more preferably 1 to 7 carbon atoms, even more preferably Rho means a saturated straight-chain or branched acyclic hydrocarbon having 1 to 4 carbon atoms. "Lower alkyl" means straight-chain or branched alkyl having 1 to 4 carbon atoms. Representative saturated straight chain alkyls are -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n- contains decyl, whereas saturated branched alkyl is -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, isopentyl, 2-methylhexyl, 3-methylbutyl, 2-methylpentyl, 3- Methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5- Methylhexyl, 2,3-dimethylbutyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2-dimethyl pentyl, 2,2-dimethylhexyl, 3,3-dimethylpentyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylpentyl, 3-ethylpentyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl-2-ethylpentyl, 2-methyl-3-ethylpentyl, 2-methyl-4-ethylpentyl, 2-methyl-2-ethylhexyl, 2-methyl-3-ethylhexyl, 2-methyl-4-ethylhexyl, 2,2-diethylpentyl, 3,3-diethylhexyl, 2,2-diethylhexyl, and 3,3-diethylhexyl.

본 명세서에서 "C1-C6"와 같이 기재될 경우 이는 탄소수가 1 내지 6개임을 의미한다. 예를 들어, C1-C6알킬은 탄소수가 1 내지 6인 알킬을 의미한다.When described as "C1-C6" in the present specification, it means that the number of carbon atoms is 1 to 6 carbon atoms. For example, C 1 -C 6 alkyl means alkyl having 1 to 6 carbon atoms.

본 명세서에서 사용된 용어 "할로겐" 및 "할로"는 플루오린, 클로린, 브로민 또는 아이오딘을 의미한다.As used herein, the terms “halogen” and “halo” refer to fluorine, chlorine, bromine or iodine.

본 명세서에 사용된 용어 "시클로알킬(cycloalkyl)"은 탄소 및 수소 원자를 가지며 탄소-탄소 다중 결합을 가지지 않는 모노시클릭 또는 폴리시클릭 포화 고리(ring)를 의미한다. 시클로알킬 그룹의 예는 (C3-C10)시클로알킬(예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 및 시클로헵틸)을 포함하나 이에 한정되는 것은 아니다. 시클로알킬 그룹은 선택적으로 치환될 수 있다. 일 실시예에서, 시클로알킬 그룹은 모노시클릭 또는 바이시클릭 링(고리)이다.As used herein, the term “cycloalkyl” refers to a monocyclic or polycyclic saturated ring having carbon and hydrogen atoms and no carbon-carbon multiple bonds. Examples of cycloalkyl groups include, but are not limited to, (C3-C10)cycloalkyl (eg, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl). Cycloalkyl groups may be optionally substituted. In one embodiment, the cycloalkyl group is a monocyclic or bicyclic ring (ring).

본 명세서에서 사용된 용어 "아릴"은 6 내지 12의 고리 원자를 함유하는 탄소고리 방향족 그룹을 의미한다. 대표적인 예는 페닐, 톨일(tolyl), 자이릴(xylyl), 나프틸, 테트라하이드로나프틸, 안트라세닐(anthracenyl), 플루오레닐(fluorenyl), 인데닐(indenyl), 아주레닐(azulenyl) 등을 포함하나 이에 한정되는 것은 아니다. 탄소고리 방향족 그룹은 선택적으로 치환될 수 있다.As used herein, the term "aryl" refers to a carbocyclic aromatic group containing 6 to 12 ring atoms. Representative examples include phenyl, tolyl, xylyl, naphthyl, tetrahydronaphthyl, anthracenyl, fluorenyl, indenyl, azulenyl, etc. including, but not limited to. Carbocyclic aromatic groups may be optionally substituted.

본 발명은 특정한 용매인 디메틸술폰을 포함하는 페로브스카이트 용액을 제공한다.The present invention provides a perovskite solution comprising a specific solvent, dimethylsulfone.

본 발명의 페로브스카이트 용액은,The perovskite solution of the present invention,

페로브스카이트 화합물; 및 perovskite compounds; and

용매로 디메틸술폰;을 포함한다.and dimethyl sulfone as a solvent.

본 발명의 일 실시예에 따른 페로브스카이트 용액은 특정한 용매인 디메틸술폰을 포함함으로써 높은 용해도를 가져 페로브스카이트 화합물의 용해도를 조절함으로써 결정의 크기가 크고 균일한 페로브스카이트 막을 제조할 수 있으며, 종래의 용매인 DMSO 등과 대비해 페로브스카이트 화합물과의 결합이 약해 용이하게 용매제거가 가능해 양질의 페로브스카이트 막을 제조할 수 있다.The perovskite solution according to an embodiment of the present invention has high solubility by including dimethylsulfone, a specific solvent, so that the crystal size is large and a uniform perovskite film is prepared by controlling the solubility of the perovskite compound. Compared with DMSO, which is a conventional solvent, the bond with the perovskite compound is weak, and the solvent can be easily removed, so that a high-quality perovskite membrane can be prepared.

또한 본 발명의 페로브스카이트 용액은 상온에서 파우더형태인 고체로 존재하는 디메틸술폰을 용매로 포함함으로써 페로브스카이트 막 형성 후 용매의 제거가 매우 용이하다. 따라서 종래의 상온에서 고체인 디메틸설폭사이드(DMSO)와 대비하여 보다 향상된 페로브스카이트 막 및 페로브스카이트 태양전지의 제조가 가능하다.In addition, the perovskite solution of the present invention contains dimethyl sulfone, which is present as a solid in powder form at room temperature, as a solvent, so that it is very easy to remove the solvent after forming the perovskite film. Therefore, it is possible to prepare a more improved perovskite film and perovskite solar cell compared to the conventional dimethyl sulfoxide (DMSO), which is a solid at room temperature.

더불어 본 발명의 일 실시예에 따른 디메틸술폰(DMS)은 무취로 값이 저렴하고 유해도가 낮아 종래의 디메틸설폭사이드(DMSO) 등과 대비하여 보다 친환경적이며, 경제적이다.In addition, dimethyl sulfone (DMS) according to an embodiment of the present invention is odorless, inexpensive, and has low toxicity, so it is more eco-friendly and economical compared to conventional dimethyl sulfoxide (DMSO).

바람직하게 본 발명의 일 실시예에 따른 용매는 감마-부티로락톤, 2-부톡시에탄올, 2-프로폭시에탄올, 아세토니트릴, 디하이드로레보그루코세논, 디메틸카보네이트, 에틸렌카보네이트, 디메틸폼아마이드 및 프로필렌카보네이트에서 선택되는 하나 또는 둘 이상의 용매를 더 포함하는 혼합용매일 수 있으며, 보다 바람직하게 혼합용매는 디메틸술폰과 감마-부티로락톤의 혼합용매일 수 있다.Preferably, the solvent according to an embodiment of the present invention is gamma-butyrolactone, 2-butoxyethanol, 2-propoxyethanol, acetonitrile, dihydrolevo glucoxenone, dimethyl carbonate, ethylene carbonate, dimethylformamide and It may be a mixed solvent further comprising one or two or more solvents selected from propylene carbonate, and more preferably, the mixed solvent may be a mixed solvent of dimethyl sulfone and gamma-butyrolactone.

바람직하게 디메틸술폰과 감마-부티로락톤의 몰비가 1: 3 내지 9이며, 우수한 광전 변환 효율을 가지는 동시에 높은 열안정성을 가지기위한 측면에서 보다 바람직하게 1: 4 내지 8일 수 있다.Preferably, the molar ratio of dimethyl sulfone and gamma-butyrolactone is 1: 3 to 9, and more preferably 1: 4 to 8 in terms of having excellent photoelectric conversion efficiency and high thermal stability.

본 발명의 일 실시예에 따른 페로브스카이트 용액은 디메틸술폰과 감마-부티로락톤의 혼합용매를 사용함으로서 페르보스카이트 결정입자가 크고 균일한 페로브스카이트 막을 제조할 수 있으며, 제조된 페로브스카이트 박막은 열안정성 및 내구성이 우수하고 나아가 친환경적이고 경제적이다.The perovskite solution according to an embodiment of the present invention uses a mixed solvent of dimethyl sulfone and gamma-butyrolactone, so that a perovskite film having large and uniform perovskite crystal grains can be prepared. The lobskite thin film has excellent thermal stability and durability, and furthermore, it is eco-friendly and economical.

본 발명의 일 실시예에 따른 비용매는 에틸아세테이트, 아니솔, tert-부탄올, 부틸아세테이트, 2-메틸아니솔, tert-펜탄올 및 tert-헥산올 에서 선택되는 하나 또는 둘 이상일 수 있으며, 페로브스카이트 결정 입자크기가 크고 균일한 페로브스카이트 막을 제조하기 위한 측면에서 아니솔, 에틸아세테아트, tert-부탄올, tert-펜탄올 및 부틸아세테이트에서 선택되는 하나 또는 둘 이상일 수 있다. The non-solvent according to an embodiment of the present invention may be one or two or more selected from ethyl acetate, anisole, tert-butanol, butyl acetate, 2-methylanisole, tert-pentanol and tert-hexanol, and perovs In terms of producing a perovskite film having a large and uniform skyte crystal grain size, it may be one or two or more selected from anisole, ethyl acetate, tert-butanol, tert-pentanol and butyl acetate.

본 발명의 일 실시예에 따른 페로브스카이트 막의 제조방법은 페로브스카이트 용액의 용매로 디메틸술폰 및 비용매로 제어된 특정한 용매의 조합을 사용함으로써 보다 향상된 특성을 가지는 페로브스카이트 막을 제조할 수 있다.The method for producing a perovskite film according to an embodiment of the present invention is to prepare a perovskite film having more improved properties by using a combination of a specific solvent controlled with dimethylsulfone and a non-solvent as a solvent of the perovskite solution. can do.

본 발명의 일 실시예에 따른 페로브스카이트 화합물과 혼합용매는 질량비가 10: 90 내지 90: 10일 수 있으며, 보다 우수한 용해도 및 밀도를 가지기위한 측면에서 보다 바람직하게는 30: 70 내지 70: 30일 수 있다.The mass ratio of the perovskite compound and the mixed solvent according to an embodiment of the present invention may be 10: 90 to 90: 10, and more preferably 30: 70 to 70: It can be 30 days.

본 발명의 일 실시예에 따른 페로브스카이트 화합물은 페로브스카이트 구조를 형성할 수 있는 화합물이라면 모두 가능하다.The perovskite compound according to an embodiment of the present invention may be any compound capable of forming a perovskite structure.

일례로, 일례로 1가의 유기 양이온, 2가의 금속 양이온 및 할로겐 음이온을 함유하며, 페로브스카이트 구조를 갖는 화합물을 의미한다.For example, it refers to a compound containing a monovalent organic cation, a divalent metal cation and a halogen anion as an example, and having a perovskite structure.

구체적인 일례로 본 발명의 페로브스카이트 구조를 갖는 화합물은 하기 화학식 11 내지 12를 만족하는 페로브스카이트 화합물에서 선택되는 하나 또는 둘 이상의 물질일 수 있다.As a specific example, the compound having a perovskite structure of the present invention may be one or two or more materials selected from perovskite compounds satisfying the following Chemical Formulas 11 to 12.

[화학식 11][Formula 11]

AMX3 AMX 3

(화학식 11에서 A는 1가의 유기 암모늄 이온 또는 Cs+이며, M은 2가의 금속 이온이며, X는 할로겐 이온이다.)(In Formula 11, A is a monovalent organic ammonium ion or Cs+, M is a divalent metal ion, and X is a halogen ion.)

[화학식 12][Formula 12]

A2MX4 A 2 MX 4

(화학식 12에서 A는 1가의 유기 암모늄 이온 또는 Cs+이며, M은 2가의 금속 이온이며, X는 할로겐 이온이다.)(In Formula 12, A is a monovalent organic ammonium ion or Cs+, M is a divalent metal ion, and X is a halogen ion.)

이때, M은 페로브스카이트 구조에서 단위셀(unit cell)의 중심에 위치하며, X는 단위셀의 각 면 중심에 위치하여, M을 중심으로 옥타헤드론(octahedron) 구조를 형성하며, A는 단위셀의 각 코너(corner)에 위치할 수 있다.In this case, M is located at the center of the unit cell in the perovskite structure, and X is located at the center of each side of the unit cell to form an octahedron structure with M as the center, A may be located at each corner of the unit cell.

상세하게, 페로브스카이트 화합물은 서로 독립적으로, 하기 화학식 13 내지 16을 만족하는 화합물에서 하나 또는 둘 이상 선택될 수 있다.In detail, the perovskite compound may be each independently selected from one or two or more compounds satisfying the following Chemical Formulas 13 to 16.

[화학식 13][Formula 13]

(R11-NH3 +)MX3 (R 11 -NH 3 + )MX 3

(화학식 13에서 R11은 C1-C20의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 하나 또는 둘 이상 선택된 금속 이온이며, X는 Cl-, Br- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 이온이다.)(In Formula 13, R 11 is C1-C20 alkyl, C3-C20 cycloalkyl, or C6-C20 aryl, and M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and one or more metal ions selected from Yb 2+ , X is one or two from Cl - , Br - and I - These are the selected halogen ions.)

[화학식 14][Formula 14]

(R11-NH3 +)2MX4 (R 11 -NH 3 + ) 2 MX 4

(화학식 14에서 R11은 C1-C20의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 하나 또는 둘 이상 선택된 금속 이온이며, X는 Cl-, Br- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 이온이다.)(In Formula 14, R 11 is C1-C20 alkyl, C3-C20 cycloalkyl, or C6-C20 aryl, and M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and one or more metal ions selected from Yb 2+ , X is one or two from Cl - , Br - and I - These are the selected halogen ions.)

[화학식 15][Formula 15]

(R12-C3H3N2 +-R13)MX3 (R 12 -C 3 H 3 N 2 + -R 13 )MX 3

(화학식 15에서 R12는 C1-C20의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, R13은 수소 또는 C1-C24의 알킬이며, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 하나 또는 둘 이상 선택된 금속 이온이며, X는 Cl-, Br- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 이온이다.)(In Formula 15, R 12 is C1-C20 alkyl, C3-C20 cycloalkyl or C6-C20 aryl, R 13 is hydrogen or C1-C24 alkyl, M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2+ are one or more metal ions selected from, and X is one or more halogen ions selected from Cl - , Br - and I -.)

[화학식16][Formula 16]

(R12-C3H3N2 +-R3)2MX4 (R 12 -C 3 H 3 N 2 + -R 3 ) 2 MX 4

(화학식 16에서 R12는 C1-C20의 알킬, C3-C20의 시클로알킬 또는 C6-C20의 아릴이며, R13은 수소 또는 C1-C20의 알킬이며, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 하나 또는 둘 이상 선택된 금속 이온이며, X는 Cl-, Br- 및 I-에서 하나 또는 둘 이상 선택된 할로겐 이온이다.)(In Formula 16, R 12 is C1-C20 alkyl, C3-C20 cycloalkyl, or C6-C20 aryl, R 13 is hydrogen or C1-C20 alkyl, M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2+ are one or more metal ions selected from, and X is one or more halogen ions selected from Cl - , Br - and I -.)

일례로, 페로브스카이트 구조의 화합물은 AMXa xXb y 혹은 A2MXa xXb y(0<x<3인 실수, 0<y<3인 실수, x+y=3이며, Xa와 Xb는 서로 상이한 할로겐이온)일 수 있다.For example, the compound of the perovskite structure is AMX a x X b y or A 2 MX a x X b y (real number 0 < x < 3, real number 0 < y < 3, x + y = 3, X a and X b may be different halogen ions).

일례로, 화학식 13 또는 화학식 14에서 R1은 C1-C10의 알킬, 좋게는 C1-C7 알킬, 보다 좋게는 메틸일 수 있다. 구체적인 일례로, 페로브스카이트 구조의 화합물은 CH3NH3PbIxCly(0≤x≤3인 실수, 0≤y≤3인 실수 및 x+y=3), CH3NH3PbIxBry(0≤x≤3인 실수, 0≤y≤3인 실수 및 x+y=3), CH3NH3PbClxBry(0≤x≤3인 실수, 0≤y≤3인 실수 및 x+y=3) 및 CH3NH3PbIxFy(0≤x≤3인 실수, 0≤y≤3인 실수 및 x+y=3)에서 하나 또는 둘 이상 선택될 수 있으며, 또한 (CH3NH3)2PbIxCly(0≤x≤4인 실수, 0≤y≤4인 실수 및 x+y=4), CH3NH3PbIxBry(0≤x≤4인 실수, 0≤y≤4인 실수 및 x+y=4), CH3NH3PbClxBry(0≤x≤4인 실수, 0≤y≤4인 실수 및 x+y=4) 및 CH3NH3PbIxFy(0≤x≤4인 실수, 0≤y≤4인 실수 및 x+y=4)에서 하나 또는 둘 이상 선택될 수 있다. In one example, the general formula 13 or the formula 14 R 1 is alkyl of C1-C10, preferably from C1-C7 alkyl, more preferably from can be a methyl. As a specific example, the compound of the perovskite structure is CH 3 NH 3 PbI x Cl y (real number 0≤x≤3, real number 0≤y≤3, and x+y=3), CH 3 NH 3 PbI x Br y (real with 0≤x≤3, real with 0≤y≤3, and x+y=3), CH 3 NH 3 PbCl x Br y (real with 0≤x≤3, real with 0≤y≤3) and x+y=3) and CH 3 NH 3 PbI x F y (a real number of 0≤x≤3, a real number of 0≤y≤3, and x+y=3) may be selected from, and also (CH 3 NH 3 ) 2 PbI x Cl y (real with 0≤x≤4, real with 0≤y≤4 and x+y=4), CH 3 NH 3 PbI x Br y (with 0≤x≤4) Real, real with 0≤y≤4 and x+y=4), CH 3 NH 3 PbCl x Br y (real with 0≤x≤4, real with 0≤y≤4 and x+y=4) and CH 3 NH 3 PbI x F y (a real number of 0≤x≤4, a real number of 0≤y≤4, and x+y=4) may be selected from one or more than one.

일례로, 화학식 15 또는 화학식 16에서 R12는 C1-C20의 알킬일 수 있고 R13은 수소 또는 C1-C20의 알킬일 수 있으며, 좋게는 R12는 C1-C7알킬일 수 있고 R13은 수소 또는 C1-C7알킬일 수 있으며, 보다 좋게는 R12는 메틸일 수 있고 R13는 수소일 수 있다.For example, in Formula 15 or Formula 16, R 12 may be C1-C20 alkyl and R 13 may be hydrogen or C1-C20 alkyl, preferably R 12 may be C1-C7 alkyl and R 13 is hydrogen or C1-C7-alkyl may be, more preferably from R 12 may be methyl, and R 13 may be hydrogen.

본 발명의 디메틸술폰과 바람직한 조합으로 본 발명의 페로브스카이트 화합물은 하기 화학식 1로 표시될 수 있다.In a preferred combination with the dimethylsulfone of the present invention, the perovskite compound of the present invention may be represented by the following formula (1).

[화학식 1][Formula 1]

(R-NH3 +)1-x(

Figure pat00002
)xMXa (3-y)Xb y (R-NH 3 + ) 1-x (
Figure pat00002
) x MX a (3-y) X b y

(화학식 1에서, R은 C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이며, (In Formula 1, R is a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group,

R1 내지 R5는 서로 독립적으로, 수소, C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이고, M은 2가의 금속 이온이며, Xa는 브롬 이온이고, Xb는 요오드 이온이며, x는 0≤x≤1인 실수이며, y는 0 내지 3의 정수이다.)R 1 to R 5 are each independently hydrogen, a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group, M is a divalent metal ion, X a is a bromine ion, X b is an iodine ion, x is a real number with 0≤x≤1, and y is an integer from 0 to 3.)

바람직하게, 본 발명의 일 실시예에 따른 화학식 1에서 R은 C1-C20의 알킬기이며, R1 내지 R5는 서로 독립적으로, 수소, C1-C20의 알킬기이고, M은 2가의 금속 이온이며, Xa 요오드 이온이고, Xb는 브롬 이온이며, x는 0≤x≤0.3인 실수일 수 있으며, 바람직하게는 R은 C1-C10의 알킬기이며, R1 내지 R5는 서로 독립적으로, 수소, C1-C10의 알킬기이고, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 또는 Yb2+이며, 바람직하게 Pb2+이며, Xa는 요오드 이온이고, Xb는 브롬 이온이며, x는 0≤x≤0.3인 실수일 수 있다.Preferably, in Formula 1 according to an embodiment of the present invention, R is a C1-C20 alkyl group, R 1 to R 5 are each independently hydrogen, a C1-C20 alkyl group, M is a divalent metal ion, X a is an iodine ion, X b is a bromine ion, x may be a real number of 0≤x≤0.3, preferably R is a C1-C10 alkyl group, R 1 to R 5 are each independently hydrogen, C1-C10 alkyl group, M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ or Yb 2+ , preferably Pb 2+ , X a is an iodine ion, X b is a bromine ion, and x may be a real number such that 0≤x≤0.3.

구체적인 일례로 NH2CH=NH2PbIxBry, NH2C(CH3)=NH2PbIxBry, NH2CH2CH2=NH2PbIxBry, 및 NH2CH(CH3)CH2=NH2PbIxBry (0≤x≤3인 정수, 0≤y≤3인 정수 및 x+y=3) 일 수 있다.In a specific example, NH 2 CH=NH 2 PbI x Br y , NH 2 C(CH 3 )=NH 2 PbI x Br y , NH 2 CH 2 CH 2 =NH 2 PbI x Br y , and NH 2 CH(CH 3 ) )CH 2 =NH 2 PbI x Br y (an integer of 0≤x≤3, an integer of 0≤y≤3, and x+y=3).

또한 본 발명은 본 발명의 페로브스카이트 용액을 이용하는 페로브스카이트 막의 제조방법을 제공하는 것으로, 본 발명의 페로브스카이트 막의 제조방법은,The present invention also provides a method for producing a perovskite film using the perovskite solution of the present invention, the method for producing a perovskite film of the present invention,

페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;

기재 상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계; 및preparing a thin film by coating the perovskite solution on a substrate; and

상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계;를 포함한다.and treating the thin film with a non-solvent to prepare a perovskite film.

본 발명의 일 실시예에 따른 페로브스카이트 막의 제조방법은 특정한 용매인 디메틸술폰을 포함하는 페로브스카이트 용액을 사용함으로써 용해도가 높고 용해도의 조절이 가능하여 밀도가 높은 페로브스카이트 막의 제조가 가능하다.The method for producing a perovskite membrane according to an embodiment of the present invention uses a perovskite solution containing a specific solvent, dimethylsulfone, to have high solubility and control the solubility of a high-density perovskite membrane is possible

따라서 본 발명의 특정용매인 디메틸술폰을 포함하는 페로브스카이트 용액을 사용하여 제조되는 페로브스카이트 막은 광전 변환 효율 및 열안정성이 우수하며, 향상된 수명특성을 가진다.Therefore, the perovskite film prepared by using the perovskite solution containing dimethyl sulfone as a specific solvent of the present invention has excellent photoelectric conversion efficiency and thermal stability, and has improved lifespan characteristics.

뿐만 아니라 본 발명의 페로브스카이트 막의 제조방법은 종래에 사용되는 용매인 DMSO 등 대신에 보다 친환경적인 용매인 DMS를 필수용매로 사용함으로써 광전 변환 효율이 동등하거나 보다 우수하며, 안정성이 극히 향상된 페로브스카이트 태양전지를 제조할 수 있을 뿐만 아니라 가격이 저렴하여 매우 경제적이며 친환경적이다.In addition, the method for producing a perovskite film of the present invention uses DMS, an eco-friendly solvent, as an essential solvent instead of DMSO, which is a conventionally used solvent, so that the photoelectric conversion efficiency is equal or superior, and stability is extremely improved. It is very economical and eco-friendly because it is possible to manufacture lobskite solar cells and the price is low.

본 발명의 일 실시예에 따른 용매는 감마-부티로락톤, 2-부톡시에탄올, 2-프로폭시에탄올, 아세토니트릴, 디하이드로레보그루코세논, 디메틸카보네이트, 에틸렌카보네이트 및 프로필렌카보네이트에서 선택되는 하나 또는 둘 이상의 용매를 더 포함하는 혼합용매일 수 있으며, 바람직하게 감마-부티로락톤, 아세토니트릴, 2-프로폭시에탄올, 디하이드로레보그루코세논 또는 이들의 혼합물일 수 있다.The solvent according to an embodiment of the present invention is one selected from gamma-butyrolactone, 2-butoxyethanol, 2-propoxyethanol, acetonitrile, dihydrolevo glucoxenone, dimethyl carbonate, ethylene carbonate, and propylene carbonate. Or it may be a mixed solvent further comprising two or more solvents, preferably gamma-butyrolactone, acetonitrile, 2-propoxyethanol, dihydrolevo glucoxenone, or a mixture thereof.

바람직하게 페로브스카이트 용액은 페로브스카이트 화합물과 혼합용매의 질량비가 10: 90 내지 90 : 10일 수 있으며, 보다 바람직하게는 30 : 70 내지 70 : 30일 수 있다.Preferably, the perovskite solution may have a mass ratio of the perovskite compound and the mixed solvent of 10: 90 to 90: 10, more preferably 30: 70 to 70: 30.

본 발명의 일 실시예에 따른 혼합용매는 디메틸술폰과 감마-부티로락톤의 혼합용매로 디메틸술폰과 감마-부티로락톤의 몰비가 1: 3 내지 9일 수 있으며, 바람직하게 1 : 4 내지 8일 수 있다.The mixed solvent according to an embodiment of the present invention is a mixed solvent of dimethyl sulfone and gamma-butyrolactone, and the molar ratio of dimethyl sulfone and gamma-butyrolactone may be 1: 3 to 9, preferably 1: 4 to 8 can be

본 발명의 일 실시예에 따른 비용매는 아니솔, 에틸아세테이트, tert-부탄올, 부틸아세테이트, 2-메틸아니솔, tert-펜탄올 및 tert-헥산올에서 선택되는 하나 또는 둘 이상일 수 있으며, 보다 입자의 크기가 크고 균일한 페로브스카이트 막을 얻고 제거가 용이한 측면에서 아니솔, 에틸아세테이트, tert-부탄올, tert-펜탄올 및 부틸아세테이트에서 선택되는 하나 또는 둘 이상일 수 있다.The non-solvent according to an embodiment of the present invention may be one or two or more selected from anisole, ethyl acetate, tert-butanol, butyl acetate, 2-methylanisole, tert-pentanol and tert-hexanol, and more particles It may be one or two or more selected from anisole, ethyl acetate, tert-butanol, tert-pentanol and butyl acetate in terms of obtaining a large and uniform perovskite film and easy removal.

본 발명의 일 실시예에 따른 페로브스카이트 태양전지의 제조방법은 비용매로 처리하는 단계 후에 100 내지 180℃에서 1분 내지 80분동안 열처리하는 단계를 더 포함할 수 있으며, 바람직하게 120 내지 150 ℃에서 5분 내지 30분동안 열처리하는 단계를 포함할 수 있다.The method of manufacturing a perovskite solar cell according to an embodiment of the present invention may further include a step of heat treatment at 100 to 180 ° C. for 1 minute to 80 minutes after the step of treating with a non-solvent, preferably 120 to It may include the step of heat-treating at 150 ℃ for 5 minutes to 30 minutes.

본 발명의 일 실시예에 따른 페로브스카이트 태양전지에서 특정용매인 디메틸술폰과 바람직한 조합의 페로브스카이트 화합물은 상기 화학식 1로 표시될 수 있다.In the perovskite solar cell according to an embodiment of the present invention, the perovskite compound in a preferred combination with dimethylsulfone as a specific solvent may be represented by the above formula (1).

본 발명의 일 실시예에 따른 코팅은 100 내지 180 ℃에서 10초 내지 60분동안 수행될 수 있으며, 바람직하게 바람직하게 120 내지 150 ℃에서 10초 내지 30분 동안 수행될 수 있고, 코팅은 스크린 프린팅, 스핀코팅, 바-코팅, 그라비아-코팅, 블레이드 코팅 및 롤-코팅에서 선택되는 하나 또는 둘 이상의 방법으로 수행될 수 있으나, 이에 한정이 있는 것은 아니다.The coating according to an embodiment of the present invention may be carried out at 100 to 180 ° C. for 10 seconds to 60 minutes, preferably at 120 to 150 ° C. for 10 seconds to 30 minutes, and the coating is screen printing. , spin coating, bar-coating, gravure-coating, blade coating, and roll-coating may be performed by one or two or more methods selected from, but not limited thereto.

또한 본 발명은 본 발명의 페로브스카이트 막의 제조방법을 이용하여 페로브스카이트 태양전지의 제조방법을 제공한다.The present invention also provides a method for manufacturing a perovskite solar cell using the method for manufacturing a perovskite film of the present invention.

본 발명의 페로브스카이트 태양전지의 제조방법은,The manufacturing method of the perovskite solar cell of the present invention,

페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;

제1 전극상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계; preparing a thin film by coating the perovskite solution on the first electrode;

상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계; 및 preparing a perovskite film by treating the thin film with a non-solvent; and

상기 페로브스카이트 막상에 제2 전극을 형성하는 단계를 포함한다.and forming a second electrode on the perovskite film.

보다 상세하게 본 발명의 일 실시예에 따른 페로브스카이트 태양전지는 제 1전극, 상기 제 1전극 상에 형성된 전자전달층, 상기 전자전달층 상에 형성된 페로브스카이트 용액으로 제조된 페로브스카이트 막을 포함하는 광흡수층, 상기 광흡수층상에 형성되며, 정공전달층 및 정공전달층 상에 형성된 제 2전극을 포함하는 것일 수 있다.In more detail, the perovskite solar cell according to an embodiment of the present invention includes a first electrode, an electron transport layer formed on the first electrode, and a perovskite solution formed on the electron transport layer. A light absorption layer including a skyte film, formed on the light absorption layer, may include a hole transport layer and a second electrode formed on the hole transport layer.

구체적으로 본 발명의 일 실시예에 따른 제 1전극은 전자전달층과 오믹 접합되는 전도성 전극이면 모두 가능하며, 제 2전극은 정공전달층과 오믹 접합되는 전도성 전극이면 모두 가능하다.Specifically, the first electrode according to an embodiment of the present invention may be any conductive electrode that is ohmically bonded to the electron transport layer, and the second electrode may be any conductive electrode that is ohmically bonded to the hole transport layer.

또한 제 1전극 및 제 2전극은 태양전지에서 전면전극 또는 후면전극의 전극물질로 통상적으로 사용되는 물질이면 사용 가능하다. 비 한정적인 일례로, 제 1전극 및 제 2전극이 후면전극의 전극물질인 경우, 제1전극 및 제 2전극은 금, 은, 백금, 팔라듐, 구리, 알루미늄, 탄소, 황화코발트, 황화구리, 산화니켈 및 이들의 복합물에서 하나 이상 선택된 물질일 수 있다. 비 한정적인 일례로, 제 1전극 및 제 2전극이 투명전극일 경우, 제 1전극 및 제 2전극은 불소 함유 산화주석(FTO; Fouorine doped Tin Oxide), 인듐 함유 산화주석(ITO; Indium doped Tin Oxide), ZnO, CNT(카본 나노튜브), 그래핀(Graphene)과 같은 무기계 전도성 전극일 수 있으며, PEDOT:PSS와 같은 유기계 전도성 전극일 수 있다. 투명 태양전지를 제공하고자 하는 경우, 제 1전극 및 제 2전극이 투명전극인 것이 좋고, 제 1전극 및 제 2전극이 유기계 전도성 전극인 경우, 플렉시블 태양전지나 투명 태양전지를 제공하고자 할 때 보다 좋다. In addition, the first electrode and the second electrode may be used as long as they are materials commonly used as electrode materials for the front electrode or the rear electrode in the solar cell. As a non-limiting example, when the first electrode and the second electrode are electrode materials of the rear electrode, the first electrode and the second electrode are gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide, It may be one or more materials selected from nickel oxide and composites thereof. As a non-limiting example, when the first electrode and the second electrode are transparent electrodes, the first electrode and the second electrode are fluorine-containing tin oxide (FTO), indium-containing tin oxide (ITO; indium doped tin oxide). Oxide), ZnO, CNT (carbon nanotube), may be an inorganic conductive electrode such as graphene (Graphene), may be an organic conductive electrode such as PEDOT:PSS. When providing a transparent solar cell, it is preferable that the first electrode and the second electrode are transparent electrodes, and when the first electrode and the second electrode are organic conductive electrodes, it is better than when providing a flexible solar cell or a transparent solar cell .

제 1전극은 딱딱한(rigid) 기판 또는 유연성(flexible) 기판에 증착 또는 도포를 이용하여 형성될 수 있다. 증착은 물리적 증착(physical vapor deposition) 또는 화학적 증착(chemical vapor deposition)을 이용하여 형성될 수 있으며, 열 증착(thermal evaporation)에 의해 형성될 수 있다. 도포는 전극 물질의 용해액 또는 전극 물질의 분산액을 기판에 도포한 후 건조하거나, 선택적으로 건조된 막을 열처리함으로써 수행될 수 있다. 그러나, 제 1전극 및 제 2전극이 통상의 태양전지에서 전면전극 또는 후면 전극을 형성하는데 사용하는 방법을 이용하여 형성될 수 있음은 물론이다.The first electrode may be formed using deposition or coating on a rigid substrate or a flexible substrate. The deposition may be formed using physical vapor deposition or chemical vapor deposition, and may be formed by thermal evaporation. The application may be performed by applying a solution of an electrode material or a dispersion of an electrode material to a substrate and then drying, or optionally, heat-treating the dried film. However, it goes without saying that the first electrode and the second electrode may be formed using a method used for forming a front electrode or a rear electrode in a conventional solar cell.

본 발명의 제 1전극의 상부에 형성된 전자전달층은 전자 전도성 유기물 층 또는 무기물 층일 수 있다. 전자 전도성 유기물은 통상의 유기 태양전지에서, n형 반도체로 사용되는 유기물일 수 있다. 구체적이며 비 한정적인 일례로, 전자 전도성 유기물은 풀러렌(C60, C70, C74, C76, C78, C82, C95), PCBM([6,6]-phenyl-C61butyric acid methyl ester)) 및 C71-PCBM, C84-PCBM, PC70BM([6,6]-phenyl C70-butyric acid methyl ester)을 포함하는 풀러렌-유도체(Fulleren-derivative), PBI(polybenzimidazole), PTCBI(3,4,9,10-perylenetetracarboxylic bisbenzimidazole), F4-TCNQ(tetra uorotetracyanoquinodimethane) 또는 이들의 혼합물을 포함할 수 있다. 전자전도성 무기물은 통상의 양자점 기반 태양전지 또는 염료 감응형 태양전지에서, 전자 전달을 위해 사용되는 전자전도성 금속산화물일 수 있다. 구체적인 일례로, 전자전도성 금속산화물은 n-형 금속산화물 반도체일 수 있다. n-형 금속산화물 반도체의 비한정적인 일례로, Ti산화물, Zn산화물, In산화물, Sn산화물, W산화물, Nb산화물, Mo산화물, Mg산화물, Ba 산화물, Zr산화물, Sr산화물, Yr산화물, La산화물, V산화물, Al산화물, Y산화물, Sc산화물, Sm산화물, Ga산화물, In산화물 및 SrTi산화물에서 하나 또는 둘 이상 선택된 물질을 들 수 있으며, 이들의 혼합물 또는 이들의 복합체(composite)를 들 수 있다.The electron transport layer formed on the first electrode of the present invention may be an electron conductive organic layer or an inorganic layer. The electron conductive organic material may be an organic material used as an n-type semiconductor in a typical organic solar cell. As a specific and non-limiting example, the electronically conductive organic material is fullerene (C60, C70, C74, C76, C78, C82, C95), PCBM ([6,6]-phenyl-C61butyric acid methyl ester) and C71-PCBM, Fulleren-derivative, including C84-PCBM, PC70BM ([6,6]-phenyl C70-butyric acid methyl ester), PBI (polybenzimidazole), PTCBI (3,4,9,10-perylenetetracarboxylic bisbenzimidazole) , F4-TCNQ (tetra uorotetracyanoquinodimethane) or a mixture thereof. The electron-conducting inorganic material may be an electron-conducting metal oxide used for electron transfer in a conventional quantum dot-based solar cell or a dye-sensitized solar cell. As a specific example, the electron conductive metal oxide may be an n-type metal oxide semiconductor. Non-limiting examples of the n-type metal oxide semiconductor include Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Ba oxide, Zr oxide, Sr oxide, Yr oxide, La One or more materials selected from oxide, V oxide, Al oxide, Y oxide, Sc oxide, Sm oxide, Ga oxide, In oxide and SrTi oxide may be mentioned, and mixtures or composites thereof may be used. have.

본 발명의 일 실시예에 따른 페로브스카이트 태양전지의 정공전달층은 정공전달물질 화합물을 반드시 포함하며, 이를 단독으로 포함할 수 있으며, 정공전달물질 외에 유기 정공전달물질, 무기 정공전달물질 또는 이들의 혼합물을 더 포함할 수 있다. 정공전달물질이 무기 정공전달물질인 경우, 무기 정공전달물질은 정공 전도도를 갖는, 즉, p형 반도체인, 산화물 반도체, 황화물 반도체, 할로겐화물 반도체 또는 이들의 혼합물일 수 있다. 산화물 반도체의 예로는 NiO, CuO, CuAlO2, CuGaO2 등을 들 수 있으며, 황화물 반도체의 예로는 PbS, 할로겐화물 반도체의 예로는 PbI2 등을 들 수 있으나, 이에 한정이 있는 것은 아니다.The hole transport layer of the perovskite solar cell according to an embodiment of the present invention necessarily includes a hole transport material compound, and may include it alone, and in addition to the hole transport material, an organic hole transport material, an inorganic hole transport material, or It may further include a mixture thereof. When the hole transport material is an inorganic hole transport material, the inorganic hole transport material may be an oxide semiconductor, a sulfide semiconductor, a halide semiconductor, or a mixture thereof having hole conductivity, that is, a p-type semiconductor. Examples of the oxide semiconductor include NiO, CuO, CuAlO 2 , and CuGaO 2 , and examples of the sulfide semiconductor include PbS and the example of the halide semiconductor include PbI 2 , but is not limited thereto.

정공전달물질이 유기 정공전달물질인 경우, 단분자 내지 고분자 유기 정공전달물질(정공전도성 유기물)을 포함할 수 있다. 유기 정공전달물질은 무기 반도체 양자점을 염료로 사용하는 통상의 무기 반도체 기반 태양전지에서 사용되는 유기 정공전달물질이면 사용 가능하다. 단분자 내지 저분자 유기 정공전달물질의 비 한정적인 일 예로, 펜타센(pentacene), 쿠마린 6(coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC(zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc(boron subphthalocyanine chloride) 및 N3(cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II))중에서 하나 또는 둘 이상 선택되는 물질을 들 수 있으나, 이에 한정되는 것은 아니다. 물질에 의해 한정되는 것은 아니다.When the hole transport material is an organic hole transport material, it may include a single molecule or a high molecular organic hole transport material (hole conductive organic material). The organic hole transport material can be used as long as it is an organic hole transport material used in conventional inorganic semiconductor-based solar cells using inorganic semiconductor quantum dots as dyes. Non-limiting examples of single to low molecular weight organic hole transport materials include pentacene, coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC (zinc phthalocyanine), CuPC (copper phthalocyanine), TiOPC (titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,Np-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1 ,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc (boron subphthalocyanine chloride) and N3 (cis) -di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)) may include one or two or more selected from the group consisting of, but is not limited thereto. It is not limited by the material.

본 발명의 일 실시예에 따른 정공전달층은 정공전달물질을 이용하여 용액공정으로 형성된 것일 수 있다. 본 발명의 일 실시예에 따라 전행되는 용액공정은 일례로 스크린 프린팅(screen printing), 스핀코팅(Spin coating), 바-코팅(Bar coating), 그라비아-코팅(Gravure coating), 블레이드 코팅(Blade coating) 및 롤-코팅(Roll coating)등을 들 수 있으나, 이에 한정이 있는 것은 아니다.The hole transport layer according to an embodiment of the present invention may be formed by a solution process using a hole transport material. The solution process performed according to an embodiment of the present invention is, for example, screen printing, spin coating, bar-coating, gravure-coating, blade coating. ) and roll-coating (Roll coating), but is not limited thereto.

이하 본 발명의 구체적인 실시예를 예시로 들어 본 발명을 구체적으로 설명하나, 이는 본 발명의 특허청구범위를 한정하고자하는 것을 아니다. Hereinafter, the present invention will be specifically described with reference to specific embodiments of the present invention, but this is not intended to limit the scope of the claims of the present invention.

[실시예 1] 페로브스카이트 용액의 제조[Example 1] Preparation of perovskite solution

250 mL 2구 둥근 플라스크에 DMS:감마-부티로락톤(GBL)(몰비 :1:8) 혼합용매를 첨가하고 여기에 PbI2를 첨가하여 용해시키고 NH2CH=NH2I(=FAI)를 혼합하여, 1.4 M 농도의 (FAPbI3)페로브스카이트 용액을 제조하였다.DMS: gamma-butyrolactone (GBL) (molar ratio: 1:8) mixed solvent was added to a 250 mL two-necked round flask, and PbI 2 was added thereto to dissolve NH 2 CH=NH 2 I (=FAI) By mixing, a 1.4 M (FAPbI 3 ) perovskite solution was prepared.

[실시예 2] 페로브스카이트 용액의 제조[Example 2] Preparation of perovskite solution

실시예 1에서 DMS:감마-부티로락톤(GBL) 대신 DMS:DMF(몰비: 1:8)을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 페로브스카이트 용액을 제조하였다.A perovskite solution was prepared in the same manner as in Example 1 except that DMS:DMF (molar ratio: 1:8) was used instead of DMS:gamma-butyrolactone (GBL) in Example 1.

[비교예 1] 페로브스카이트 용액의 제조[Comparative Example 1] Preparation of perovskite solution

실시예 1에서 DMS:감마-부티로락톤 대신 DMSO:DMF를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 페로브스카이트 용액을 제조하였다.In Example 1, a perovskite solution was prepared in the same manner as in Example 1, except that DMSO:DMF was used instead of DMS:gamma-butyrolactone.

[비교예 2] 페로브스카이트 용액의 제조[Comparative Example 2] Preparation of perovskite solution

실시예 1에서 DMS:감마-부티로락톤 대신 DMSO:감마-부티로락톤를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 페로브스카이트 용액을 제조하였다.A perovskite solution was prepared in the same manner as in Example 1, except that DMSO:gamma-butyrolactone was used instead of DMS:gamma-butyrolactone in Example 1.

[실시예 3]페로브스카이트 태양전지의 제조[Example 3] Preparation of perovskite solar cells

다공성 TiOPorous TiO 22 박막 기판 제조 Thin-film substrate manufacturing

불소 함유 산화주석이 코팅된 유리 기판(FTO; F-doped SnO2, 8 ohms/cm2, Pilkington, 이하 FTO 기판(제1전극))을 25 x 25 mm 크기로 절단한 후, 끝 부분을 에칭하여 부분적으로 FTO를 제거 하였다.A glass substrate coated with fluorine-containing tin oxide (FTO; F-doped SnO 2 , 8 ohms/cm 2 , Pilkington, hereinafter FTO substrate (first electrode)) was cut to a size of 25 x 25 mm, and the tip was etched Thus, the FTO was partially removed.

절단 및 부분 에칭된 FTO 기판 위에 금속산화물 박막으로서 50 nm 두께의 TiO2 치밀막을 분무 열분해법으로 제조하였다. 분무 열분해는 20 mM titanium diisopropoxide bis(acetylacetonate) 용액(Aldrich)을 이용하여 수행되었으며, 450 ℃로 유지된 열판위에 올려진 FTO 기판위에 3초간 분무하고 10초간 정지하는 방법을 되풀이하는 방법으로 두께를 조절하였다.A metal oxide thin film on the cut portion, and etching FTO substrate was prepared a film of 50 nm thick TiO 2 by spray pyrolysis dense. Spray pyrolysis was performed using 20 mM titanium diisopropoxide bis(acetylacetonate) solution (Aldrich), and the thickness was controlled by repeating the method of spraying for 3 seconds on the FTO substrate placed on a hot plate maintained at 450 °C and stopping for 10 seconds. did.

평균 입자크기(직경) 50 nm의 TiO2 분말 (TiO2 기준으로 1 중량%가 용해된 titanium peroxocomplex 수용액을 250℃에서 12시간 수열처리하여 제조)에, 에틸 셀룰로오스(ethyl cellulose)가 10 중량 %로 에틸알콜에 용해된 에틸 셀룰로오스 용액을, TiO2 분말 1g당 5 ml 첨가하고, 테르피놀(terpinol)을 TiO2 분말 1 g당 5 g 첨가하여 혼합한 후, 에틸 알콜을 감압 증류법으로 제거하여 TiO2 페이스트를 제조하였다. TiO 2 powder with an average particle size (diameter) of 50 nm (prepared by hydrothermal treatment of an aqueous titanium peroxocomplex solution in which 1 wt% of TiO 2 is dissolved at 250 ° C for 12 hours), ethyl cellulose is 10 wt % acetate the ethyl cellulose solution in an alcohol, then a solution was added 5 ml per TiO 2 powder 1g, adding the hotel pinol (terpinol) 5 g per 1 g TiO 2 powder, and the ethanol removed by vacuum distillation TiO 2 A paste was prepared.

제조된 TiO2 분말 페이스트에 2-메톡시에탄올을 첨가하여 스핀 코팅용 TiO2 슬러리를 제조하였다. FTO 기판의 TiO2 박막 위에, 스핀 코팅용 TiO2 슬러리를 이용하여 스핀 코팅 방법으로 코팅하고 500℃에서 60 분 동안 열처 리한 후, 60 ℃의 30 mM TiCl4 수용액에 열처리된 기판을 담그고, 30 분 동안 방치한 후, 탈이온수와 에탄올로 세척 및 건조하고 다시 500℃에서 30분 동안 열처리하여 다공성 TiO2 박막(다공성 전자전달체, 두께; 100 nm)을 제조하였다.2-methoxyethanol was added to the prepared TiO 2 powder paste to prepare a TiO 2 slurry for spin coating. On the TiO 2 thin film of the FTO substrate, spin coating method using TiO 2 slurry for spin coating, heat treatment at 500 °C for 60 minutes, immerse the heat-treated substrate in 30 mM TiCl 4 aqueous solution at 60 °C, 30 minutes After leaving for a while, it was washed with deionized water and ethanol, dried, and again heat-treated at 500° C. for 30 minutes to prepare a porous TiO 2 thin film (porous electron transporter, thickness; 100 nm).

페로브스카이트 막의 제조Preparation of Perovskite Membrane

상기에서 제조된 다공성 TiO2 박막 기판(mp-TiO2/bl-TiO2/FTO)을 150℃에서 10분동안 열처리하였다. 열처리된 기판상에 상기 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 페로브스카이트 용액을 1000 rpm으로 10초 동안 코팅하고 다시 5000 rpm으로 20초동안 코팅하여 150℃에서 10분동안 건조하여 페로브스카이트 막을 제조하였다. 여기서 두 번째 스핀코팅단계에서 기재상에 0.3mL의 에틸아세테이트를 dripping하였다.The porous TiO 2 thin-film substrate (mp-TiO 2 / bl- TiO 2 / FTO) were prepared in heat-treated at 150 ℃ for 10 minutes. On the heat-treated substrate, the perovskite solutions prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were coated at 1000 rpm for 10 seconds, then coated at 5000 rpm for 20 seconds, and dried at 150° C. for 10 minutes. Thus, a perovskite film was prepared. Here, 0.3 mL of ethyl acetate was dripped onto the substrate in the second spin coating step.

홀 전도층 형성을 위한 홀 전도층 용액제조Preparation of hole-conducting layer solution for hole-conducting layer formation

홀 전도층을 형성하기위해 Spiro-OMeTAD를 각각 클로로벤젠에 녹여 농도가 89 mg/ml인 정공전도체 용액을 제조하고 여기에 첨가제로 23 ㎕ Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (540 mg/1 ml), 39 ㎕ TBP(4-tert-Butylpyridine), 10 ㎕ FK209(Tris(2-(1H -pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)Tris(bis(trifluoromethylsulfonyl)imide)/acetonitrile (376 mg/1 ml)를 첨가하여 홀전도층 용액를 제조하였다.To form the hole conducting layer, each of Spiro-OMeTAD was dissolved in chlorobenzene to prepare a hole conductor solution with a concentration of 89 mg/ml, and 23 μl Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (Li-TFSI)/acetonitrile ( 540 mg/1 ml), 39 μl TBP(4-tert-Butylpyridine), 10 μl FK209(Tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)Tris(bis( trifluoromethylsulfonyl)imide)/acetonitrile (376 mg/1 ml) was added to prepare a hole conductive layer solution.

[Spiro-OMeTAD][Spiro-OMeTAD]

Figure pat00003
Figure pat00003

무/유기 하이브리드 페로브스카이트 태양전지제조Manufacturing of non/organic hybrid perovskite solar cells

상기에서 제조된 다공성 전극에 상기에서 제조된 페로브스카이트 막이 형성된 복합층상에 상기에서 제조된 홀 전도층 용액을 2000 rpm으로 30초 동안 스핀코팅하여 홀 전도층을 형성하였다. 이후, 홀 전도층의 상부에 고진공(5x10-6 torr 이하)의 열 증착기(thermal evaporator)로 Au를 진공 증착하여, 두께가 70 nm인 Au 전극(제2전극)을 형성하여 Au/Spiro-OMeTAD/(FAPbI3)/(HTM)/mp-TiO2/bl-TiO2/FTO 형태의 태양전지를 제조하였다. 이러한 전극의 활성면적은 0.16 cm2이었다.The hole conducting layer solution prepared above was spin-coated at 2000 rpm for 30 seconds on the composite layer on which the perovskite film prepared above was formed on the prepared porous electrode to form a hole conducting layer. Then, Au/Spiro-OMeTAD was formed by vacuum-depositing Au on the hole conducting layer with a thermal evaporator of high vacuum (5x10 -6 torr or less) to form an Au electrode (second electrode) having a thickness of 70 nm. / (FAPbI 3) / (HTM ) / mp-TiO 2 / bl-TiO 2 / FTO was prepared in the form of solar cells. The active area of these electrodes was 0.16 cm 2 .

제조된 태양전지의 특성은 하기 표 1 및 도 1에 나타내었다.The characteristics of the prepared solar cell are shown in Table 1 and FIG. 1 below.

RR FF 혼합용매
(몰비)
mixed solvent
(molar ratio)
Voc (V) Voc (V) Jsc
(mA/cm2)
Jsc
(mA/cm 2 )
FF (%)FF (%) PCE (%)PCE (%) Voc
(V)
Voc
(V)
Jsc (mA/cm2)Jsc (mA/cm 2 ) FF
(%)
FF
(%)
PCE
(%)
PCE
(%)
실시예 1Example 1 DMS:GBL
(1:8)
DMS:GBL
(1:8)
1.111.11 23.523.5 79.179.1 20.620.6 1.061.06 23.523.5 73.873.8 18.418.4
실시예 2Example 2 DMS:DMF
(1:8)
DMS:DMF
(1:8)
1.121.12 23.623.6 76.376.3 20.120.1 1.091.09 23.523.5 71.271.2 18.218.2
비교예 1Comparative Example 1 DMSO:DMF(1:8)DMSO:DMF(1:8) 1.111.11 23.523.5 79.379.3 20.720.7 1.061.06 23.423.4 74.474.4 18.418.4 비교예 2Comparative Example 2 DMSO:GBL(1:8)DMSO:GBL(1:8) 1.081.08 23.523.5 79.979.9 20.320.3 1.051.05 23.523.5 71.671.6 17.617.6

도 1에서 보이는 바와 같이 본 발명의 실시예 1의 페로브스카이트 용액으로제조된 페로브스카이트 막의 SEM 사진으로부터 비교예 1의 페로브스카이트 용액으로 제조된 페로브스카이트 막과 대비하여 입자의 크기가 크고 균일한 것을 알 수 있다. 또한 표 1에서 보이는 바와 같이 본 발명의 실시예의 용매를 채용한 페로브스카이트 태양전지가 기존의 용매 대비 친환경적인 용매를 사용했음에도 불구하고 유사한 수준의 효율을 가지는 것을 알 수 있다.As shown in Figure 1, from the SEM photograph of the perovskite film prepared with the perovskite solution of Example 1 of the present invention, the particles compared to the perovskite film prepared with the perovskite solution of Comparative Example 1 It can be seen that the size is large and uniform. In addition, as shown in Table 1, it can be seen that the perovskite solar cell employing the solvent of the embodiment of the present invention has a similar level of efficiency despite using an environmentally friendly solvent compared to the conventional solvent.

[실시예 4 내지 6] 페로브스카이트 태양전지의 제조[Examples 4 to 6] Preparation of perovskite solar cells

실시예 3에서 실시예 1의 페로브카이트 용액을 사용하고 페로브스카이트 막 제조시 두 번째 스핀코팅단계에서 기재상에 0.3 mL의 하기 표 2와 같은 비용매를 dripping한 것을 제외하고는 실시예 3과 동일하게 제조하여 페로브스카이트 태양전지를 제조하였으며, 표 2에 그 특성을 나타내었다.In Example 3, the perovkite solution of Example 1 was used, and 0.3 mL of the non-solvent as shown in Table 2 below was dripped onto the substrate in the second spin coating step when preparing the perovskite film. A perovskite solar cell was prepared in the same manner as in 3, and the properties are shown in Table 2.

RR FF 혼합용매
(몰 비)
mixed solvent
(molar ratio)
비용매non-solvent Voc (V) Voc (V) Jsc
(mA/cm2)
Jsc
(mA/cm 2 )
FF (%)FF (%) PCE (%)PCE (%) Voc (V)Voc (V) Jsc (mA/cm2)Jsc (mA/cm 2 ) FF (%)FF (%) PCE (%)PCE (%)
실시예 4Example 4 DMS:GBL(1:8)DMS:GBL(1:8) 디에틸에테르diethyl ether 1.071.07 23.123.1 77.477.4 19.119.1 1.001.00 23.023.0 70.070.0 16.116.1 실시예 5Example 5 DMS:GBL (1:8)DMS:GBL (1:8) 에틸아세테이트ethyl acetate 1.071.07 2424 78.378.3 20.120.1 1.031.03 23.923.9 72.772.7 18.118.1 실시예 6Example 6 DMS:GBL (1:8)DMS:GBL (1:8) 아니솔anisole 1.071.07 23.723.7 77.277.2 19.519.5 1.041.04 23.623.6 71.671.6 17.617.6

표 2에서와 같이 본 발명의 DMS를 포함하는 페로브스카이트 태양전지가 친환경적인 비용매인 에틸아세테이트 및 아니솔에서 보다 우수한 특성을 가지는 것을 알 수 있다.As shown in Table 2, it can be seen that the perovskite solar cell containing DMS of the present invention has better properties than ethyl acetate and anisole, which are environmentally friendly non-solvents.

<태양전지의 내구성 평가><Evaluation of durability of solar cells>

본 발명의 실시예 3 및 비교예 3에서 제조된 페로브스카이트 태양전지의 습도에 대한 내구성을 측정하기위해 온도 21.5℃, 평균 상대습도 53.3%에서 2일동안 유지한 후 광전 변환 효율을 측정하였으며, 그 결과를 하기 표 3에 나타내었다.In order to measure the durability of the perovskite solar cells prepared in Example 3 and Comparative Example 3 of the present invention, the photoelectric conversion efficiency was measured after maintaining at a temperature of 21.5° C. and an average relative humidity of 53.3% for 2 days. , the results are shown in Table 3 below.

용매
(몰비)
menstruum
(molar ratio)
최초first 3일 후3 days later
Voc
(V)
Voc
(V)
Jsc (mA/cm2)Jsc (mA/cm 2 ) FF (%)FF (%) 광전 변환 효율(%)Photoelectric conversion efficiency (%) Voc
(V)
Voc
(V)
Jsc (mA/cm2)Jsc (mA/cm 2 ) FF (%)FF (%) 광전 변환 효율(%)Photoelectric conversion efficiency (%)
실시예 3Example 3 DMS:GBL (1:8)DMS:GBL (1:8) 1.081.08 23.923.9 74.874.8 19.319.3 1.091.09 23.923.9 76.776.7 20.020.0 비교예 2Comparative Example 2 DMSO:GBL (1:8)DMSO:GBL (1:8) 1.101.10 23.823.8 76.176.1 19.919.9 1.101.10 23.923.9 71.171.1 18.718.7

표 3에서 보이는 바와 같이 본 발명의 실시예 3의 페로브스카이트 태양전지의 광전 변환 효율은 시간이 지남에도 큰 변화가 없이 초기값에 대비하여 높은 광전 변환 효율을 유지하였으나, 비교예 2의 광전 변환 효율은 초기 효율 저하가 뚜렷하며 3일 이후 현저하게 감소하는 것을 알 수 있다.As shown in Table 3, the photoelectric conversion efficiency of the perovskite solar cell of Example 3 of the present invention did not change significantly over time and maintained high photoelectric conversion efficiency compared to the initial value, but the photoelectric conversion efficiency of Comparative Example 2 It can be seen that the conversion efficiency is markedly lowered in the initial stage and significantly decreased after 3 days.

Claims (11)

페로브스카이트 화합물; 및
용매로 디메틸술폰;을 포함하는 페로브스카이트 용액.
perovskite compounds; and
Perovskite solution containing; dimethyl sulfone as a solvent.
제 1항에 있어서,
상기 용매는 감마-부티로락톤을 더 포함하는 혼합용매인 페로브스카이트 용액.
The method of claim 1,
The solvent is a perovskite solution that is a mixed solvent further comprising gamma-butyrolactone.
제 2항에 있어서,
상기 혼합용매는 디메틸술폰과 감마-부티로락톤의 몰비가 1: 3 내지 9인 페로브스카이트 용액.
3. The method of claim 2,
The mixed solvent is a perovskite solution in which the molar ratio of dimethylsulfone and gamma-butyrolactone is 1: 3 to 9.
제 1항에 있어서,
상기 페로브스카이트 화합물은 하기 화학식 1로 표시되는 화합물인 페로브스카이트 용액.
[화학식 1]
(R-NH3 +)1-x(
Figure pat00004
)xMXa (3-y)Xb y
(화학식 1에서, R은 C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이며,
R1 내지 R5는 서로 독립적으로, 수소, C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이고, M은 2가의 금속 이온이며, Xa는 브롬 이온이고, Xb는 요오드 이온이며, x는 0≤x≤1인 실수이며, y는 0 내지 3의 정수이다.)
The method of claim 1,
The perovskite compound is a perovskite solution of a compound represented by the following formula (1).
[Formula 1]
(R-NH 3 + ) 1-x (
Figure pat00004
) x MX a (3-y) X b y
(In Formula 1, R is a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group,
R 1 to R 5 are each independently hydrogen, a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group, M is a divalent metal ion, X a is a bromine ion, X b is an iodine ion, x is a real number with 0≤x≤1, and y is an integer from 0 to 3.)
페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;
기재 상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계; 및
상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계;를 포함하는 페로브스카이트 막의 제조방법.
preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;
preparing a thin film by coating the perovskite solution on a substrate; and
Method for producing a perovskite film comprising; preparing a perovskite film by treating the thin film with a non-solvent.
제 5항에 있어서,
상기 용매는 감마-부티로락톤, 2-부톡시에탄올, 2-프로폭시에탄올, 아세토니트릴, 디하이드로레보그루코세논, 디메틸카보네이트, 에틸렌카보네이트, 디메틸폼아마이드 및 프로필렌카보네이트에서 선택되는 하나 또는 둘 이상의 용매를 더 포함하는 혼합용매인 페로브스카이트 막의 제조방법.
6. The method of claim 5,
The solvent is one or two or more selected from gamma-butyrolactone, 2-butoxyethanol, 2-propoxyethanol, acetonitrile, dihydrolevo glucoxenone, dimethyl carbonate, ethylene carbonate, dimethylformamide and propylene carbonate. A method for producing a mixed solvent perovskite membrane further comprising a solvent.
제 6항에 있어서,
상기 혼합용매는 디메틸술폰과 감마-부티로락톤의 혼합용매이며, 디메틸술폰과 감마-부티로락톤의 몰 비가 1 : 3 내지 9인 페로브스카이트 막의 제조방법.
7. The method of claim 6,
The mixed solvent is a mixed solvent of dimethyl sulfone and gamma-butyrolactone, and the molar ratio of dimethyl sulfone and gamma-butyrolactone is 1: 3 to 9.
제 5항에 있어서,
상기 비용매는 에틸아세테이트, 아니솔, tert-부탄올, 에틸아세테이트, 부틸아세테이트, 2-메틸아니솔, tert-펜탄올 및 tert-헥산올에서 선택되는 하나 또는 둘 이상인 페로브스카이트 막의 제조방법.
6. The method of claim 5,
The non-solvent is one or two or more selected from ethyl acetate, anisole, tert-butanol, ethyl acetate, butyl acetate, 2-methylanisole, tert-pentanol and tert-hexanol.
제 5항에 있어서,
상기 페로브스카이트 화합물은 하기 화학식 1로 표시되는 화합물인 페로브스카이트 막의 제조방법.
[화학식 1]
(R-NH3 +)1-x(
Figure pat00005
)xMXa (3-y)Xb y
(화학식 1에서, R은 C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이며,
R1 내지 R5는 서로 독립적으로, 수소, C1-C20의 알킬기, C3-C20의 시클로알킬기 또는 C6-C20의 아릴기이고, M은 2가의 금속 이온이며, Xa는 브롬 이온이고, Xb는 요오드 이온이며, x는 0≤x≤1인 실수이며, y는 0 내지 3의 정수이다.)
6. The method of claim 5,
The perovskite compound is a method for producing a perovskite film, which is a compound represented by the following formula (1).
[Formula 1]
(R-NH 3 + ) 1-x (
Figure pat00005
) x MX a (3-y) X b y
(In Formula 1, R is a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group,
R 1 to R 5 are each independently hydrogen, a C1-C20 alkyl group, a C3-C20 cycloalkyl group, or a C6-C20 aryl group, M is a divalent metal ion, X a is a bromine ion, X b is an iodine ion, x is a real number with 0≤x≤1, and y is an integer from 0 to 3.)
제 5항에 있어서,
상기 페로브스카이트 막을 100 내지 180℃에서 1 내지 80분동안 열처리하는단계를 더 포함하는 페로브스카이트 막의 제조방법.
6. The method of claim 5,
Method for producing a perovskite film further comprising the step of heat-treating the perovskite film at 100 to 180 ℃ for 1 to 80 minutes.
페로브스카이트 화합물을 디메틸술폰을 포함하는 용매에 첨가하여 페로브스카이트 용액을 제조하는 단계;
제1 전극상에 상기 페로브스카이트 용액을 코팅하여 박막을 제조하는 단계;
상기 박막을 비용매로 처리하여 페로브스카이트 막을 제조하는 단계; 및
상기 페로브스카이트 막상에 제2 전극을 형성하는 단계를 포함하는 페로브스카이트 태양전지의 제조방법.
preparing a perovskite solution by adding a perovskite compound to a solvent containing dimethylsulfone;
preparing a thin film by coating the perovskite solution on the first electrode;
preparing a perovskite film by treating the thin film with a non-solvent; and
A method of manufacturing a perovskite solar cell comprising the step of forming a second electrode on the perovskite film.
KR1020200015546A 2020-02-10 2020-02-10 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same KR20210101494A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200015546A KR20210101494A (en) 2020-02-10 2020-02-10 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
PCT/KR2020/017143 WO2021162215A1 (en) 2020-02-10 2020-11-27 Perovskite solution, method for manufacturing perovskite film by using same, and method for manufacturing perovskite solar cell by using same
KR1020220065445A KR20220078544A (en) 2020-02-10 2022-05-27 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
KR1020240048079A KR20240054240A (en) 2020-02-10 2024-04-09 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200015546A KR20210101494A (en) 2020-02-10 2020-02-10 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220065445A Division KR20220078544A (en) 2020-02-10 2022-05-27 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same

Publications (1)

Publication Number Publication Date
KR20210101494A true KR20210101494A (en) 2021-08-19

Family

ID=77291699

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020200015546A KR20210101494A (en) 2020-02-10 2020-02-10 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
KR1020220065445A KR20220078544A (en) 2020-02-10 2022-05-27 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
KR1020240048079A KR20240054240A (en) 2020-02-10 2024-04-09 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020220065445A KR20220078544A (en) 2020-02-10 2022-05-27 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
KR1020240048079A KR20240054240A (en) 2020-02-10 2024-04-09 Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same

Country Status (2)

Country Link
KR (3) KR20210101494A (en)
WO (1) WO2021162215A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122262B (en) * 2021-11-22 2022-12-20 华能新能源股份有限公司 Preparation method of perovskite material and solar cell
CN115369488B (en) * 2022-07-16 2024-03-22 上海大学 Method for treating surface of halide perovskite monocrystal grown by solution method
KR20240040478A (en) * 2022-09-21 2024-03-28 서울대학교산학협력단 Method of manufacturing tandem solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099577A (en) 2018-06-01 2018-09-05 고려대학교 산학협력단 Perovskite compound, preparing method thereof, and solar cell comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530779B1 (en) * 2010-01-28 2019-08-14 Japan Carlit Co., Ltd. Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
AU2014206925A1 (en) * 2013-01-15 2015-07-16 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
KR101492022B1 (en) * 2014-03-11 2015-02-11 한국화학연구원 Solar Cell Having Inorganic―Orgaic Hybrid Perovskites Compound as a Light Harvester
KR20180083888A (en) * 2015-11-12 2018-07-23 광저우 차이나레이 옵토일렉트로닉 머티리얼즈 엘티디. COMPOSITIONS FOR ELECTRONIC DEVICE PRINTING AND APPLICATIONS IN ELECTRONIC DEVICES
KR102085748B1 (en) * 2017-01-26 2020-03-06 울산과학기술원 PN Junction Structure of organic-inorganic hybrid perovskites compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099577A (en) 2018-06-01 2018-09-05 고려대학교 산학협력단 Perovskite compound, preparing method thereof, and solar cell comprising the same

Also Published As

Publication number Publication date
KR20220078544A (en) 2022-06-10
WO2021162215A1 (en) 2021-08-19
KR20240054240A (en) 2024-04-25

Similar Documents

Publication Publication Date Title
Hadadian et al. The role of carbon-based materials in enhancing the stability of perovskite solar cells
Fagiolari et al. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells
Noh et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis
Jena et al. Halide perovskite photovoltaics: background, status, and future prospects
Ahmad et al. Recent progress in cathode interlayer materials for non‐fullerene organic solar cells
Bidikoudi et al. Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells
Watthage et al. Enhanced grain size, photoluminescence, and photoconversion efficiency with cadmium addition during the two-step growth of CH3NH3PbI3
KR20220078544A (en) Perovskite solution, method for producing perovskite film using same and method for manufacturing perovskite solar cell using same
KR102012711B1 (en) perovskite solar cells having high heat resistance
Tombe et al. The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells
Fakharuddin et al. Robust inorganic hole transport materials for organic and perovskite solar cells: insights into materials electronic properties and device performance
KR102028331B1 (en) perovskite solar cells
KR102079941B1 (en) spirobifluorene compound and perovskite solar cells comprising the same
KR101740654B1 (en) Organic/inorganic hybrid perovskite compound, preparing method thereof, and solar cell comprising the same
Shahiduzzaman et al. Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative
Liu et al. High-efficiency perovskite solar cells based on self-assembly n-doped fullerene derivative with excellent thermal stability
KR101559098B1 (en) Core-shell type nanocomposites included fullerene particle using barrier layer of hole transport layer and preparation method thereof, and solar cell comprising the same
Niazi et al. Recent progress on the use of graphene-based nanomaterials in perovskite solar cells
Ali et al. Impact of carbon-based charge transporting layer on the performance of perovskite solar cells
Majeed et al. A novel 3-methylthiophene additive to boost the performance and stability of perovskite solar cells
Mutlu et al. Minimization of metallic Bi0 species to increase the efficiency and stability of Ag3BiI6 solar cells via Cu doping
Wang et al. Over 19% efficiency perovskite solar modules by simultaneously suppressing cation deprotonation and iodide oxidation
KR102541569B1 (en) Perovskite solar cell and manufacturing method thereof
EP4002505B1 (en) Functionalized ionic liquids as stabilizers for perovskite solar cells
KR102520410B1 (en) Perovskite solution comprising an additive, perovskite thin film prepared using the same and perovskite solar cell prepared using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination