KR20210100584A - 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법 - Google Patents

무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법 Download PDF

Info

Publication number
KR20210100584A
KR20210100584A KR1020210104804A KR20210104804A KR20210100584A KR 20210100584 A KR20210100584 A KR 20210100584A KR 1020210104804 A KR1020210104804 A KR 1020210104804A KR 20210104804 A KR20210104804 A KR 20210104804A KR 20210100584 A KR20210100584 A KR 20210100584A
Authority
KR
South Korea
Prior art keywords
frame
access point
power station
station
low
Prior art date
Application number
KR1020210104804A
Other languages
English (en)
Other versions
KR102378089B1 (ko
Inventor
황성현
김이고르
박승근
김용호
Original Assignee
한국전자통신연구원
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원, 한국교통대학교산학협력단 filed Critical 한국전자통신연구원
Publication of KR20210100584A publication Critical patent/KR20210100584A/ko
Application granted granted Critical
Publication of KR102378089B1 publication Critical patent/KR102378089B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법이 개시된다. PCR 및 WURx를 포함하는 스테이션의 동작 방법은, 웨이크업 상태로 동작하는 상기 WURx는 액세스 포인트로부터 웨이크업 패킷을 수신하는 단계, 상기 웨이크업 패킷이 수신된 경우에 상기 PCR의 동작 상태는 슬립 상태에서 상기 웨이크업 상태로 천이하는 단계, 상기 웨이크업 상태로 동작하는 상기 PCR은 상기 액세스 포인트로부터 데이터 프레임을 수신하는 단계, 및 상기 PCR은 상기 데이터 프레임에 대한 응답을 상기 액세스 포인트에 전송하는 단계를 포함한다.

Description

무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법{OPERATION METHOD OF COMMUNICATION NODE SUPPORTING LOW POWER MODE IN WIRELESS LOCAL AREA NETWORK}
본 발명은 무선랜(wireless local area network, WLAN) 기술에 관한 것으로, 더욱 상세하게는 무선랜에서 저전력 모드로 동작하는 통신 노드를 지원하기 위한 기술에 관한 것이다.
정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 이 중에서 무선랜(wireless local area network, WLAN)은 무선 주파수 기술을 바탕으로 스마트폰(smart phone), 태블릿(tablet) PC, 랩탑 컴퓨터(laptop computer) 등과 같은 휴대형 단말기를 사용하여 가정, 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.
무선랜 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준으로서 개발되고 있다. IEEE 802.11a 표준에 따른 무선랜 기술은 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 방식을 기반으로 동작하며, 5GHz 대역에서 최대 54Mbps의 전송 속도를 제공할 수 있다. IEEE 802.11b 표준에 따른 무선랜 기술은 직접 시퀀스 확산 스펙트럼(direct sequence spread spectrum, DSSS) 방식을 기반으로 동작하며, 2.4GHz 대역에서 최대 11Mbps의 전송 속도를 제공할 수 있다. IEEE 802.11g 표준에 따른 무선랜 기술은 OFDM 방식 또는 DSSS 방식을 기반으로 동작하며, 2.4GHz 대역에서 최대 54Mbps의 전송 속도를 제공할 수 있다.
IEEE 802.11n 표준에 따른 무선랜 기술은 OFDM 방식을 기반으로 2.4GHz 대역과 5GHz 대역에서 동작하며, MIMO(multiple input multiple output)-OFDM 방식이 사용되는 경우 4개의 공간 스트림(spatial stream)들을 통해 최대 300Mbps의 전송 속도를 제공할 수 있다. IEEE 802.11n 표준에 따른 무선랜 기술은 채널 대역폭(channel bandwidth)을 40MHz까지 지원할 수 있으며, 이 경우 최대 600Mbps의 전송 속도를 제공할 수 있다.
이와 같은 무선랜의 보급이 활성화되고 이를 이용한 어플리케이션(application)이 다양화됨에 따라, 기존의 무선랜 기술보다 더 높은 처리율을 지원하는 새로운 무선랜 기술에 대한 필요성이 증가하고 있다. 초고처리율(very high throughput, VHT) 무선랜 기술은 1Gbps 이상의 데이터 처리 속도를 지원하기 위하여 제안된 기술이다. 그 중, IEEE 802.11ac 표준에 따른 무선랜 기술은 6GHz 이하 대역에서 초고처리율 제공하기 위한 기술이고, IEEE 802.11ad 표준에 따른 무선랜 기술은 60GHz 대역에서 초고처리율 제공하기 위한 기술이다. 또한, IEEE 802.11ax 표준에 따른 무선랜 기술은 밀집된 환경에서 주파수 효율의 향상을 목적으로 한다.
무선랜 기술을 지원하는 통신 노드(예를 들어, AP(access point), STA(station) 등)는 배터리에 의존하여 동작하기 때문에, 장시간 동안 동작하기 위해 저전력 동작 방법이 필요할 것이다. 저전력 동작을 지원하기 위해 통신 노드는 저전력 동작을 위한 수신기, IEEE 802.11에 따른 기본 동작을 위한 트랜시버(transceiver) 등을 포함할 수 있다. 예를 들어, 하향링크 신호의 수신 대기 구간에서 저전력 동작을 위한 수신기는 웨이크업 상태(wake-up state)로 동작할 수 있고, IEEE 802.11에 따른 기본 동작을 위한 트랜시버는 슬립(sleep) 상태로 동작할 수 있다.
그러나 저전력 동작을 위한 수신기와 IEEE 802.11에 따른 기본 동작을 위한 트랜시버 간의 통신 프로토콜, 저전력 동작을 위한 수신기와 다른 통신 노드(예를 들어, 다른 통신 노드에 포함된 IEEE 802.11에 따른 기본 동작을 위한 트랜시버) 간의 통신 프로토콜, IEEE 802.11에 따른 기본 동작을 위한 트랜시버와 다른 통신 노드(예를 들어, 다른 통신 노드에 포함된 IEEE 802.11에 따른 기본 동작을 위한 트랜시버) 간의 통신 프로토콜 등이 명확히 정의되어 있지 않으므로, 무선랜에서 프레임의 송수신 실패로 인하여 통신 성능이 저하될 수 있다.
한편, 발명의 배경이 되는 기술은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래 기술이 아닌 내용을 포함할 수 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법들을 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 제1 실시예에 따른 스테이션의 동작 방법은, 상기 스테이션은 PCR 및 WURx를 포함하며, 웨이크업 상태로 동작하는 상기 WURx는 액세스 포인트로부터 웨이크업 패킷을 수신하는 단계, 상기 웨이크업 패킷이 수신된 경우에 상기 PCR의 동작 상태는 슬립 상태에서 상기 웨이크업 상태로 천이하는 단계, 상기 웨이크업 상태로 동작하는 상기 PCR은 상기 액세스 포인트로부터 데이터 프레임을 수신하는 단계, 상기 PCR은 상기 데이터 프레임에 대한 응답을 상기 액세스 포인트에 전송하는 단계, 및 상기 응답이 전송된 후에 상기 RF 트랜시버의 동작 상태는 상기 웨이크업 상태에서 상기 슬립 상태로 천이하는 단계를 포함한다.
여기서, 상기 스테이션의 동작 방법은 상기 웨이크업 패킷이 수신된 후에 상기 웨이크업 상태로 동작하는 상기 PCR은 상기 웨이크업 상태로의 천이 완료를 지시하는 WU-Poll 프레임을 상기 액세스 포인트에 전송하는 단계를 더 포함할 수 있으며, 상기 데이터 프레임은 상기 WU-Poll 프레임의 전송 후에 수신될 수 있다.
여기서, 상기 스테이션의 동작 방법은 상기 웨이크업 패킷이 수신된 후에 상기 웨이크업 상태로 동작하는 상기 PCR은 상기 액세스 포인트로부터 WU-Poll 프레임의 전송을 트리거링하는 트리거 프레임을 수신하는 단계, 및 상기 PCR은 상기 웨이크업 상태로의 천이 완료를 지시하는 상기 WU-Poll 프레임을 상기 액세스 포인트에 전송하는 단계를 더 포함할 수 있으며, 상기 데이터 프레임은 상기 WU-Poll 프레임의 전송 후에 수신될 수 있다.
여기서, 상기 슬립 상태로 천이하는 단계는 상기 PCR은 상기 웨이크업 상태에서 상기 슬립 상태로의 상태 천이 동작의 승인을 요청하는 LP 동작 요청 프레임을 상기 액세스 포인트에 전송하는 단계, 상기 PCR은 상기 LP 동작 요청 프레임에 대한 응답인 상기 상태 천이 동작을 승인하는 LP 동작 응답 프레임을 상기 액세스 포인트로부터 수신하는 단계, 및 상기 LP 동작 응답 프레임이 수신된 경우, 상기 PCR의 동작 상태는 상기 웨이크업 상태에서 상기 슬립 상태로 천이하는 단계를 포함할 수 있다.
여기서, 상기 스테이션은 WUR 모드 또는 노멀 모드로 동작할 수 있으며, 상기 WUR 모드에서 상기 PCR은 상기 슬립 상태로 동작할 수 있고 상기 WURx는 웨이크업 상태로 동작할 수 있고, 상기 노멀 모드에서 상기 PCR은 웨이크업 상태로 동작할 수 있고 상기 WURx는 슬립 상태로 동작할 수 있다.
여기서, 상기 웨이크업 패킷은 레거시 프리앰블 및 WUR PPDU를 포함할 수 있으며, 상기 WUR PPDU는 상기 PCR이 상기 웨이크업 상태로 동작할 것을 요청할 수 있다.
여기서, 상기 WUR PPDU는 WU-Poll 프레임의 전송이 요구되는지를 지시하는 Poll 지시자 및 상기 웨이크업 패킷이 다중 사용자 전송을 위해 사용되는 것인지를 지시하는 MU 지시자를 포함할 수 있다.
여기서, 상기 레거시 프리앰블은 20MHz 대역폭을 통해 수신될 수 있고, 상기 WUR PPDU는 20MHz보다 작은 대역폭을 통해 수신될 수 있다.
여기서, 상기 WUR PPDU는 주파수 축에서 듀플리케이션될 수 있거나, 동일한 정보에 대해서 주파수 대역에서 확장될 수 있다. 또는, 복수의 WUR PPDU들은 주파수 대역에서 다중화될 수 있다.
상기 목적을 달성하기 위한 본 발명의 제2 실시예에 따른 액세스 포인트의 동작 방법은, 상기 액세스 포인트는 PCR 및 WURx를 포함하는 스테이션에 통신 서비스를 제공하며, 상기 스테이션으로 전송될 데이터 유닛이 존재하는 경우, 상기 PCR이 웨이크업 상태로 동작할 것을 요청하는 웨이크업 패킷을 생성하는 단계, 상기 웨이크업 패킷을 상기 WURx에 전송하는 단계, 및 상기 PCR이 상기 웨이크업 상태로 동작하는 것으로 판단된 경우, 상기 데이터 유닛을 포함하는 데이터 프레임을 상기 PCR에 전송하는 단계를 포함한다.
여기서, 상기 웨이크업 패킷에 대한 응답이 요구되는 경우, 상기 데이터 프레임은 상기 스테이션으로부터 상기 PCR이 상기 웨이크업 상태로의 천이 완료를 지시하는 WU-Poll 프레임이 수신된 경우에 전송될 수 있다.
여기서, 상기 웨이크업 패킷은 레거시 프리앰블 및 WUR PPDU를 포함할 수 있으며, 상기 WUR PPDU는 상기 PCR이 상기 웨이크업 상태로 동작할 것을 요청할 수 있다.
여기서, 상기 WUR PPDU는 WU-Poll 프레임의 전송이 요구되는지를 지시하는 Poll 지시자 및 상기 웨이크업 패킷이 다중 사용자 전송을 위해 사용되는 것인지를 지시하는 MU 지시자를 포함할 수 있다.
여기서, 상기 레거시 프리앰블은 20MHz 대역폭을 통해 전송될 수 있고, 상기 WUR PPDU는 20MHz보다 작은 대역폭을 통해 전송될 수 있다.
상기 목적을 달성하기 위한 본 발명의 제3 실시예에 따른 스테이션은 프로세서, 상기 프로세서의 제어에 따라 레거시 신호를 송수신하는 PCR, 상기 프로세서의 제어에 따라 웨이크업 패킷을 수신하는 WURx, 및 상기 프로세서에 의해 실행되는 적어도 하나의 명령이 저장된 메모리를 포함하며, 상기 적어도 하나의 명령은 웨이크업 상태로 동작하는 상기 WURx가 액세스 포인트로부터 웨이크업 패킷을 수신하고, 상기 웨이크업 패킷이 수신된 경우, 상기 PCR의 동작 상태가 슬립 상태에서 상기 웨이크업 상태로 천이하고, 상기 웨이크업 상태로 동작하는 상기 PCR이 상기 액세스 포인트로부터 데이터 프레임을 수신하고, 상기 PCR이 상기 데이터 프레임에 대한 응답을 상기 액세스 포인트에 전송하고, 그리고 상기 응답이 전송된 후에 상기 PCR의 동작 상태가 상기 웨이크업 상태에서 상기 슬립 상태로 천이하도록 실행된다.
여기서, 상기 적어도 하나의 명령은 상기 웨이크업 패킷의 수신 후에 상기 PCR이 상기 웨이크업 상태로의 천이 완료를 지시하는 WU-Poll 프레임을 상기 액세스 포인트에 전송하도록 더 실행될 수 있으며, 상기 데이터 프레임은 상기 WU-Poll 프레임의 전송 후에 수신될 수 있다.
여기서, 상기 적어도 하나의 명령은 상기 웨이크업 패킷의 수신 후에 상기 웨이크업 상태로 동작하는 상기 PCR이 상기 액세스 포인트로부터 WU-Poll 프레임의 전송을 트리거링하는 트리거 프레임을 수신하고, 그리고 상기 PCR이 상기 웨이크업 상태로의 천이 완료를 지시하는 상기 WU-Poll 프레임을 상기 액세스 포인트에 전송하도록 더 실행될 수 있으며, 상기 데이터 프레임은 상기 WU-Poll 프레임의 전송 후에 수신될 수 있다.
여기서, 상기 웨이크업 패킷은 레거시 프리앰블 및 WUR PPDU를 포함할 수 있으며, 상기 WUR PPDU는 상기 PCR이 상기 웨이크업 상태로 동작할 것을 요청할 수 있다.
여기서, 상기 WUR PPDU는 WU-Poll 프레임의 전송이 요구되는지를 지시하는 Poll 지시자 및 상기 웨이크업 패킷이 다중 사용자 전송을 위해 사용되는 것인지를 지시하는 MU 지시자를 포함할 수 있다.
여기서, 상기 레거시 프리앰블은 20MHz 대역폭을 통해 전송될 수 있고, 상기 WUR PPDU는 20MHz보다 작은 대역폭을 통해 전송될 수 있다.
본 발명에 의하면, 무선랜 기반의 통신 시스템에서 통신 노드(예를 들어, 액세스 포인트(access point), 저전력 스테이션(low power station))은 PCR(primary connectivity radio) 및 WUR(wake-up radio)를 포함할 수 있다. WUR은 웨이크업 패킷을 수신할 수 있는 WURx(wake-up receiver) 및 웨이크업 패킷을 전송할 수 있는 WUTx(wake-up transmitter) 중에서 적어도 하나를 포함할 수 있다. 저전력 스테이션은 노멀 모드 또는 WUR 모드로 동작할 수 있다. 노멀 모드에서 저전력 스테이션의 PCR은 웨이크업 상태로 동작할 수 있고, 저전력 스테이션의 WURx는 슬립(sleep) 상태로 동작할 수 있다. WUR 모드에서 저전력 스테이션의 PCR은 슬립 상태로 동작할 수 있고, 저전력 스테이션의 WURx는 웨이크업 상태로 동작할 수 있다.
액세스 포인트와 저전력 스테이션 간의 데이터 송수신 절차에서 저전력 스테이션은 노멀 모드로 동작할 수 있고, 액세스 포인트와 저전력 스테이션 간의 데이터 송수신 절차가 종료된 경우에 저전력 스테이션은 WUR 모드로 동작할 수 있다. 여기서, 액세스 포인트와 저전력 스테이션 간의 데이터 송수신 절차는 지연(latency) 요구사항을 만족하도록 수행될 수 있다.
한편, 무선랜 기반의 통신 시스템에서 저전력 스테이션이 노멀 모드로 동작할 것을 요청하는 웨이크업 패킷이 사용될 수 있다. 웨이크업 패킷은 레거시 프리앰블 및 WUR PPDU(PCLP(physical layer convergence protocol) protocol data unit)를 포함할 수 있고, WUR PPDU는 20MHz보다 작은 대역폭(예를 들어, 4MHz, 8MHz, 16MHz 등)을 통해 전송될 수 있고, 주파수 대역 20MHz 중에서 WUR PPDU가 전송되지 않는 주파수 대역을 통해 더미(dummy) 신호, 데이터 등이 전송될 수 있다. 또는, 주파수 대역 20MHz에서 WUR PPDU는 듀플리케이션(duplication)될 수 있다. 또는, 복수의 WUR PPDU들은 주파수 대역에서 다중화될 수 있거나, WUR PPDU는 동일한 정보에 대해서 주파수 대역에서 확장될 수 있다. 또는, 서로 다른 저전력 스테이션들을 위한 WUR PPDU들이 주파수 대역 20MHz에서 OFDM(orthogonal frequency division multiplexing) 방식으로 전송될 수 있다. 따라서 좁은(narrow) 대역의 신호를 감지하지 못하는 통신 노드도 저전력 스테이션을 위한 웨이크업 패킷(또는, 웨이크업 패킷에 포함된 WUR PPDU)을 감지할 수 있으므로, 저전력 스테이션과 다른 통신 노드 간의 충돌이 방지될 수 있다.
한편, 하나의 웨이크업 패킷은 하나의 저전력 스테이션 또는 복수의 저전력 스테이션들이 노멀 모드로 동작할 것을 요청할 수 있다. 복수의 저전력 스테이션들이 노멀 모드로 동작할 것을 요청하는 웨이크업 패킷이 수신된 경우, 복수의 저전력 스테이션들은 트리거(trigger) 프레임의 수신을 위해 WU-Poll 프레임의 전송을 지연할 수 있다. 액세스 포인트로부터 트리거 프레임이 수신된 경우, 복수의 저전력 스테이션들 각각은 트리거 프레임에 의해 지시되는 자원을 통해 WU-Poll 프레임을 전송할 수 있다. 따라서 WU-Poll 프레임들 간의 충돌이 방지될 수 있다.
한편, 저전력 스테이션은 액세스 포인트로부터 수신된 신호의 품질에 기초하여 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는지를 판단할 수 있다. 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단된 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것을 지시하는 리브(leave) 프레임을 액세스 포인트에 전송할 수 있다. 리브 프레임을 수신한 액세스 포인트는 저전력 스테이션에 데이터 프레임을 전송하지 않을 수 있다. 또한, 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단된 경우, 저전력 스테이션은 다른 액세스 포인트로부터 수신된 신호에 기초하여 통신 가능한 액세스 포인트를 탐색할 수 있으며, 탐색된 액세스 포인트에 접속함으로써 통신을 수행할 수 있다. 따라서 무선랜의 통신 효율이 향상될 수 있다.
한편, 액세스 포인트에 포함된 PCR 및 WUTx 각각은 독립적으로 동작할 수 있다. 예를 들어, 액세스 포인트의 WUTx는 웨이크업 패킷을 저전력 스테이션에 전송할 수 있고, 액세스 포인트의 PCR은 데이터 프레임을 저전력 스테이션에 전송할 수 있다. 데이터 프레임에 대한 응답이 저전력 스테이션으로부터 수신되지 않은 경우, 액세스 포인트의 PCR은 데이터 프레임의 재전송 절차를 수행할 수 있다. WUR 모드로 동작하는 저전력 스테이션은 데이터 프레임을 수신할 수 없기 때문에 데이터 프레임에 대한 응답을 전송하지 못하며, 이 경우에 불필요한 데이터 프레임의 재전송 절차에 의해 채널이 점유될 수 있다. 앞서 설명된 문제점을 해소하기 위해, 액세스 포인트의 RF 트랜시버는 액세스 포인트의 WURx의 동작을 고려하여 동작할 수 있다.
도 1은 무선랜 기반의 통신 시스템의 제1 실시예를 도시한 개념도이다.
도 2는 무선랜 기반의 통신 시스템에 속한 통신 노드의 제1 실시예를 도시한 블록도이다.
도 3은 EDCA에 기초한 통신 노드의 동작 방법의 제1 실시예를 도시한 타이밍도이다.
도 4는 무선랜 기반의 통신 시스템의 제2 실시예를 도시한 개념도이다.
도 5는 무선랜 기반의 통신 시스템에서 저전력 스테이션의 제1 실시예를 도시한 블록도이다.
도 6은 무선랜 기반의 저전력 통신 시스템에서 채널 구성의 제1 실시예를 도시한 개념도이다.
도 7은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제1 실시예를 도시한 타이밍도이다.
도 8은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제1 실시예를 도시한 블록도이다.
도 9는 무선랜 기반의 통신 시스템에서 수신 신호 세기에 대한 제1 실시예를 도시한 개념도이다.
도 10은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 전송 범위를 도시한 개념도이다.
도 11은 무선랜 기반의 통신 시스템에서 수신 신호 세기에 대한 제2 실시예를 도시한 개념도이다.
도 12는 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제2 실시예를 도시한 블록도이다.
도 13은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제3 실시예를 도시한 블록도이다.
도 14는 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제4 실시예를 도시한 블록도이다.
도 15는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제2 실시예를 도시한 타이밍도이다.
도 16은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제3 실시예를 도시한 타이밍도이다.
도 17은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제4 실시예를 도시한 타이밍도이다.
도 18은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제5 실시예를 도시한 타이밍도이다.
도 19는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제6 실시예를 도시한 타이밍도이다.
도 20은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제7 실시예를 도시한 타이밍도이다.
도 21은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제8 실시예를 도시한 타이밍도이다.
도 22는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제9 실시예를 도시한 타이밍도이다.
도 23은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제10 실시예를 도시한 타이밍도이다.
도 24는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제11 실시예를 도시한 타이밍도이다.
도 25는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제12 실시예를 도시한 타이밍도이다.
도 26은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제13 실시예를 도시한 타이밍도이다.
도 27은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제14 실시예를 도시한 타이밍도이다.
도 28은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제15 실시예를 도시한 타이밍도이다.
도 29는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제16 실시예를 도시한 타이밍도이다.
도 30은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제17 실시예를 도시한 타이밍도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
명세서에서 설명되는 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준에 따른 통신 시스템(예를 들어, 무선랜(wireless local area network, WLAN) 기반의 통신 시스템)에 적용될 수 있다. 또한, 명세서에서 설명되는 실시예들은 IEEE 802.11 표준에 따른 통신 시스템뿐만 아니라 다른 통신 시스템에도 적용될 수 있다. 예를 들어, 명세서에서 설명되는 실시예들은 WPAN(wireless personal area network) 기반의 통신 시스템, WBAN(wireless body area network) 기반의 통신 시스템, 4G 통신 시스템(예를 들어, LTE(long term evloution) 기반의 통신 시스템, LTE-A(advanced) 기반의 통신 시스템), 5G 통신 시스템(예를 들어, NR(new radio) 통신 시스템) 등에 적용될 수 있다.
무선랜 기반의 통신 시스템에서 STA(station)은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준에 규정된 매체 접속 제어(medium access control, MAC) 계층의 기능과 무선 매체(medium)에 대한 물리(physical) 계층의 기능을 수행하는 통신 노드를 지시할 수 있다. STA은 AP(access point) STA과 non-AP STA으로 분류될 수 있다. AP STA은 단순히 액세스 포인트로 지칭될 수 있고, non-AP STA은 단순히 스테이션으로 지칭될 수 있다. 또한, 액세스 포인트는 기지국(base station, BS), 노드 B(node B), 고도화 노드 B(evolved node B), 릴레이(relay), RRH(radio remote head), TRP(transmission and reception point) 등으로 지칭될 수 있다. 스테이션은 터미널(terminal), WTRU(wireless transmit/receive unit), UE(user equipment), 디바이스(device) 등으로 지칭될 수 있고, 스마트폰(smart phone), 태블릿(tablet) PC, 랩탑 컴퓨터(laptop computer), 센서(sensor) 디바이스 등일 수 있다.
도 1은 무선랜 기반의 통신 시스템의 제1 실시예를 도시한 개념도이다.
도 1을 참조하면, IEEE 802.11 표준에 따른 무선랜 기반의 통신 시스템은 적어도 하나의 기본 서비스 세트(basic service set, BSS)를 포함할 수 있다. BSS는 통신 노드들(예를 들어, AP#1-2, STA#1-6 등)의 집합을 지시할 수 있다. BSS는 인프라스트럭쳐 BSS(infrastructure BSS)와 독립 BSS(independent BSS, IBSS)로 분류될 수 있다. 여기서, BSS#1-2는 인프라스트럭쳐 BSS일 수 있고, BSS#3은 IBSS일 수 있다.
BSS#1은 스테이션#1, 분배 시스템(distribution system)에 연결된 액세스 포인트#1 등을 포함할 수 있다. 또한, BSS#1은 분배 시스템을 더 포함할 수 있다. BSS#1에서 IEEE 802.11 표준에 기초하여 스테이션#1과 액세스 포인트#1 간의 통신이 수행될 수 있다. BSS#2는 스테이션#2, 스테이션#3, 분배 시스템에 연결된 액세스 포인트#2 등을 포함할 수 있다. 또한, BSS#2는 분배 시스템을 더 포함할 수 있다. BSS#2에서 IEEE 802.11 표준에 기초하여 스테이션#2와 액세스 포인트#2 간의 통신, 스테이션#3과 액세스 포인트#2 간의 통신 등이 수행될 수 있다. BSS#1 또는 BSS#2에서 스테이션들(예를 들어, STA#1-3) 간의 통신은 액세스 포인트(예를 들어, AP#1-2)를 통해 수행될 수 있다. 다만, 스테이션들(예를 들어, STA#1-3) 간에 다이렉트 링크(direct link)가 설정된 경우, 스테이션들(예를 들어, STA#1-3) 간의 직접 통신이 수행될 수 있다.
BSS#3은 애드-혹(ad-hoc) 모드로 동작하는 IBSS일 수 있다. BSS#3에 관리 기능을 수행하는 개체(entity)인 액세스 포인트가 존재하지 않을 수 있다. BSS#3에서 스테이션들(STA#4-6)은 분산된 방식(distributed manner)에 기초하여 관리될 수 있다. BSS#3에서 분배 시스템으로 접속은 허용되지 않으므로, 스테이션들(STA#4-6)은 자기 완비적 네트워크(self-contained network)를 구성할 수 있다.
복수의 BSS들(예를 들어, BSS#1-2)은 분배 시스템을 통해 상호 연결될 수 있다. 분배 시스템을 통하여 연결된 복수의 BSS들은 확장된 서비스 세트(extended service set, ESS)로 지칭될 수 있다. ESS에 포함되는 통신 노드들(예를 들어, AP#1-2, STA#1-3)은 서로 통신할 수 있으며, 동일한 ESS에서 스테이션(예를 들어, STA#1-3)은 끊김 없이 통신하면서 BSS들(예를 들어, BSS#1-2) 간을 이동할 수 있다.
무선랜 기반의 통신 시스템에 속한 통신 노드(예를 들어, 액세스 포인트, 스테이션 등)는 다음과 같이 구성될 수 있다.
도 2는 무선랜 기반의 통신 시스템에 속한 통신 노드의 제1 실시예를 도시한 블록도이다.
도 2를 참조하면, 통신 노드(200)는 베이스밴드(baseband) 프로세서(210), 트랜시버(220), 안테나(230), 메모리(240), 입력 인터페이스 유닛(250), 출력 인터페이스 유닛(260) 등을 포함할 수 있다. 베이스밴드 프로세서(210)는 베이스밴드 관련 신호 처리를 수행할 수 있으며, MAC 프로세서(211) 및 PHY 프로세서(212)를 포함할 수 있다. MAC 프로세서(211)는 IEEE 802.11 표준에 규정된 MAC 계층의 기능들을 수행할 수 있고, PHY 프로세서(212)는 IEEE 802.11 표준에 규정된 PHY 계층의 기능들을 수행할 수 있다.
트랜시버(220)는 송신기(221) 및 수신기(222)를 포함할 수 있다. 안테나(230)는 MIMO(multiple-input multiple-output)를 지원하기 위해 안테나 어레이(array)로 구성될 수 있다. 메모리(240)는 베이스밴드 프로세서(210)에 의해 실행되는 명령(command)들을 저장할 수 있고, ROM(read only memory) 및 RAM(random access memory) 중에서 적어도 하나로 구성될 수 있다. 입력 인터페이스 유닛(250)은 통신 노드(200)의 사용자로부터 정보를 획득할 수 있고, 출력 인터페이스 유닛(260)은 통신 노드(200)의 사용자에게 정보를 제공할 수 있다. 베이스밴드 프로세서(210), RF 트랜시버(220), 메모리(240), 입력 인터페이스 유닛(250) 및 출력 인터페이스 유닛(260)은 버스(bus)를 통해 서로 연결될 수 있다.
한편, 무선랜 기반의 통신 시스템에 속한 통신 노드(예를 들어, 액세스 포인트, 스테이션 등)는 PCF(point coordination function), HCF(hybrid coordination function), HCCA(HCF controlled channel access), DCF(distributed coordination function), EDCA(enhanced distributed channel access) 등에 기초하여 프레임의 송수신 동작을 수행할 수 있다.
무선랜 기반의 통신 시스템에서 프레임은 관리(management) 프레임, 제어(control) 프레임 및 데이터 프레임으로 분류될 수 있다. 관리 프레임은 연결 요청(association request) 프레임, 연결 응답(response) 프레임, 재연결(reassociation) 요청 프레임, 재연결 응답 프레임, 프로브 요청(probe request) 프레임, 프로브 응답 프레임, 비컨(beacon) 프레임, 연결 해제(disassociation) 프레임, 인증(authentication) 프레임, 인증 해제(deauthentication) 프레임, 액션(action) 프레임 등을 포함할 수 있다.
제어 프레임은 ACK(acknowledgement) 프레임, BAR(block ACK request) 프레임, BA(block ACK) 프레임, PS(power saving)-Poll 프레임, RTS(request to send) 프레임, CTS(clear to send) 프레임 등을 포함할 수 있다. 데이터 프레임은 QoS(quality of service) 데이터 프레임 및 비-QoS(non-QoS) 데이터 프레임으로 분류될 수 있다. QoS 데이터 프레임은 QoS에 따른 전송이 요구되는 데이터 프레임을 지시할 수 있고, 비-QoS 데이터 프레임은 QoS에 따른 전송이 요구되지 않는 데이터 프레임을 지시할 수 있다.
도 3은 EDCA에 기초한 통신 노드의 동작 방법의 제1 실시예를 도시한 타이밍도이다.
도 3을 참조하면, 제어 프레임(또는, 관리 프레임)을 전송하고자 하는 통신 노드는 미리 설정된 구간(예를 들어, SIFS(short interframe space), PIFS(PCF IFS)) 동안 채널 상태의 모니터링(monitoring) 동작(예를 들어, 캐리어 센싱(carrier sensing) 동작)을 수행할 수 있고, 미리 설정된 구간(예를 들어, SIFS, PIFS) 동안 채널 상태가 아이들 상태(idle state)로 판단된 경우에 제어 프레임(또는, 관리 프레임)을 전송할 수 있다. 예를 들어, 통신 노드는 SIFS 동안 채널 상태가 아이들 상태로 판단된 경우에 ACK 프레임, BA 프레임, CTS 프레임 등을 전송할 수 있다. 또한, 통신 노드는 PIFS 동안 채널 상태가 아이들 상태로 판단된 경우에 비컨 프레임 등을 전송할 수 있다. 반면, 미리 설정된 구간(예를 들어, SIFS, PIFS) 동안 채널 상태가 비지(busy) 상태로 판단된 경우, 통신 노드는 제어 프레임(또는, 관리 프레임)을 전송하지 않을 수 있다. 여기서, 캐리어 센싱 동작은 CCA(clear channel assessment) 동작을 지시할 수 있다.
비-QoS 데이터 프레임을 전송하고자 하는 통신 노드는 DIFS(DCF IFS) 동안 채널 상태의 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, DIFS 동안 채널 상태가 아이들 상태로 판단된 경우에 랜덤 백오프(random backoff) 절차를 수행할 수 있다. 예를 들어, 통신 노드는 랜덤 백오프 절차에 따른 경쟁 윈도우(contention window) 내에서 백오프 값(예를 들어, 백오프 카운터)를 선택할 수 있고, 선택된 백오프 값에 대응하는 구간(이하 "백오프 구간"이라 함) 동안에 채널 상태의 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 통신 노드는 백오프 구간 동안에 채널 상태가 아이들 상태로 판단된 경우에 비-QoS 데이터 프레임을 전송할 수 있다.
QoS 데이터 프레임을 전송하고자 하는 통신 노드는 AIFS(arbitration IFS) 동안에 채널 상태의 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, AIFS 동안 채널 상태가 아이들 상태로 판단된 경우에 랜덤 백오프 절차를 수행할 수 있다. AIFS는 QoS 데이터 프레임에 포함된 데이터 유닛(예를 들어, PDU(protocol data unit))의 AC(access category)에 따라 설정될 수 있다. 데이터 유닛의 AC는 아래 표 1과 같을 수 있다.
Figure pat00001
AC_BK는 백그라운드(background) 데이터를 지시할 수 있고, AC_BE는 베스트 에퍼트(best effort) 방식으로 전송되는 데이터를 지시할 수 있고, AC_VI는 비디오(video) 데이터를 지시할 수 있고, AC_VO는 보이스(voice) 데이터를 지시할 수 있다. 예를 들어, AC_VO 및 AC_VI 각각에 대응하는 QoS 데이터 프레임을 위한 AIFS의 길이는 DIFS의 길이와 동일하게 설정될 수 있다. AC_BE 및 AC_BK 각각에 대응하는 QoS 데이터 프레임을 위한 AIFS의 길이는 DIFS의 길이보다 길게 설정될 수 있다. 여기서, AC_BK에 대응하는 QoS 데이터 프레임을 위한 AIFS의 길이는 AC_BE에 대응하는 QoS 데이터 프레임을 위한 AIFS의 길이보다 길게 설정될 수 있다.
랜덤 백오프 절차에서 통신 노드는 QoS 데이터 프레임의 AC에 따른 경쟁 윈도우 내에서 백오프 값(예를 들어, 백오프 카운터)를 선택할 수 있다. AC에 따른 경쟁 윈도우는 아래 표 2와 같을 수 있다. CWmin은 경쟁 윈도우의 최소값을 지시할 수 있고, CWmax는 경쟁 윈도우의 최대값을 지시할 수 있고, 경쟁 윈도우의 최소값 및 최대값 각각은 슬롯의 개수로 표현될 수 있다.
Figure pat00002
통신 노드는 백오프 구간 동안에 채널 상태의 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 백오프 구간 동안에 채널 상태가 아이들 상태로 판단된 경우에 QoS 데이터 프레임을 전송할 수 있다.
도 4는 무선랜 기반의 통신 시스템의 제2 실시예를 도시한 개념도이다.
도 4를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트(400), 저전력 동작을 지원하는 스테이션(이하, "저전력 스테이션"이라 함)(411, 412, 413), WUR(wake-up radio) 모드를 지원하지 않는 스테이션(이하, "레거시(legacy) 스테이션"이라 함)(421, 422, 423) 등을 포함할 수 있다. 저전력 스테이션(411, 412, 413) 및 레거시 스테이션(421, 422, 423)은 액세스 포인트(400)의 커버리지(coverage)에 속할 수 있고, 액세스 포인트(400)는 저전력 스테이션(411, 412, 413) 및 레거시 스테이션(421, 422, 423)에 통신 서비스를 제공할 수 있다. 저전력 스테이션#1(411) 및 레거시 스테이션#2(422)는 스마트폰일 수 있고, 저전력 스테이션#2(412), 저전력 스테이션#3(413), 레거시 스테이션#1(421) 및 레거시 스테이션#3(423)은 센서 디바이스일 수 있다.
액세스 포인트(400)는 저전력 스테이션(411, 412, 413) 및 레거시 스테이션(421, 422, 423) 각각이 사용하는 통신 프로토콜을 지원할 수 있다. 저전력 스테이션(411, 412, 413)은 IEEE 802.11ba 표준에 규정된 통신 프로토콜을 사용할 수 있다. 또한, 저전력 스테이션(411, 412, 413)은 IEEE 802.11ba 표준뿐만 아니라 다른 표준(예를 들어, IEEE 802.11a/b/g/n/p/ac/ax/ad/ay 등)에 규정된 통신 프로토콜을 사용할 수 있다. 레거시 스테이션(421, 422, 423)은 IEEE 802.11ba 이외의 표준(예를 들어, IEEE 802.11a/b/g/n/p/ac/ax/ad/ay 등)에 규정된 통신 프로토콜을 사용할 수 있다.
레거시 스테이션(421, 422, 423)은 도 2에 도시된 통신 노드(200)와 동일 또는 유사하게 구성될 수 있고, 저전력 스테이션(411, 412, 413)은 다음과 같이 구성될 수 있다.
도 5는 무선랜 기반의 통신 시스템에서 저전력 스테이션의 제1 실시예를 도시한 블록도이다.
도 5를 참조하면, 저전력 스테이션(500)은 베이스밴드 프로세서(510), PCR(primary connectivity radio)(520), 안테나(530), 메모리(540), 입력 인터페이스 유닛(550), 출력 인터페이스 유닛(560), WURx(wake-up receiver)(570) 등을 포함할 수 있다. 예를 들어, 저전력 스테이션(500)은 도 2의 통신 노드(200)에 비해 WURx(570)를 더 포함할 수 있다. 저전력 스테이션(500)에 포함된 베이스밴드 프로세서(510), PCR(520), 안테나(530), 메모리(540), 입력 인터페이스 유닛(550) 및 출력 인터페이스 유닛(560) 각각의 기능은 도 2의 통신 노드(200)에 포함된 베이스밴드 프로세서(210), RF 트랜시버(220), 안테나(230), 메모리(240), 입력 인터페이스 유닛(250) 및 출력 인터페이스 유닛(260)의 기능과 동일 또는 유사할 수 있다.
WURx(570)는 PCR(520) 내에 위치할 수 있거나, PCR(520)과 독립적으로 구성될 수 있다. WURx(570)와 PCR(520)은 동일한 안테나(530)를 공유할 수 있다. 또는, WURx(570)를 위한 안테나는 PCR(520)을 위한 안테나와 별도로 구성될 수 있다. 예를 들어, 저전력 스테이션(500)은 WURx(570)를 위한 제1 안테나(미도시)와 PCR(520)을 위한 제2 안테나(미도시)를 포함할 수 있다. WURx(570)와 PCR(520) 간의 통신은 프리미티브(primitive) 신호, API(application protocol interface)에 따른 신호 등을 사용하여 수행될 수 있다.
WURx(570)는 좁은 대역(예를 들어, 4MHz, 8MHz, 16MHz 등)에서 동작할 수 있고, WURx(570)를 포함한 저전력 스테이션(500)의 전력 소모량은 1mW 이하일 수 있다. WURx(570)는 OOK(on-off keying) 방식으로 변조된 신호(예를 들어, 웨이크업 패킷)를 수신할 수 있고, 수신된 신호에 대한 복조를 수행함으로써 수신된 신호에 포함된 정보를 확인할 수 있다. PCR(520)은 IEEE 802.11 표준에 규정된 프레임(예를 들어, 제어 프레임, 관리 프레임, 데이터 프레임)을 송수신할 수 있고, 2.4GHz 주파수 대역 및 5GHz 주파수 대역 중 적어도 하나의 대역에서 동작할 수 있다. 또한, PCR(520)은 20MHz 대역폭, 40MHz 대역폭, 80MHz 대역폭, 160MHz 대역폭 등을 지원할 수 있다.
PCR(520) 및 WURx(570) 각각은 웨이크업 상태(wake-up state) 또는 슬립(sleep) 상태로 동작할 수 있다. 웨이크업 상태는 해당 개체(예를 들어, PCR(520), WURx(570))에 전력이 공급되는 상태를 지시할 수 있으며, "온(on) 상태", "활성화(activation) 상태", "인에이블(enable) 상태", "어웨이크(awake) 상태" 등으로 지칭될 수 있다. 슬립 상태는 해당 개체(예를 들어, PCR(520), WURx(570))에 전력이 공급되지 않는 상태 또는 해당 개체(예를 들어, PCR(520), WURx(570))에 최소한의 전력이 공급되는 상태를 지시할 수 있으며, "오프(off) 상태", "비활성화(deactivation) 상태", "디세이블(disable) 상태", "도즈(doze) 상태" 등으로 지칭될 수 있다.
저전력 스테이션(500)은 아래 표 3과 같이 두 가지 모드들을 지원할 수 있다.
Figure pat00003
노멀(normal) 모드에서, 저전력 스테이션(500)의 PCR(520)은 웨이크업 상태로 동작할 수 있고, 저전력 스테이션(500)의 WURx(570)는 슬립 상태로 동작할 수 있다. 예를 들어, 웨이크업 상태로 동작하는 PCR(520)은 다른 통신 노드와 프레임(예를 들어, 레거시 프레임, 레거시 신호)의 송수신 절차를 수행할 수 있다. WUR 모드에서, 저전력 스테이션(500)의 PCR(520)은 슬립 상태로 동작할 수 있고, 저전력 스테이션(500)의 WURx(570)는 웨이크업 상태로 동작할 수 있다. 예를 들어, 웨이크업 상태로 동작하는 WURx(570)는 웨이크업 패킷을 수신하기 위해 채널에 대한 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 여기서, 웨이크업 패킷은 저전력 스테이션(500)이 노멀 모드로 동작할 것을 요청할 수 있다.
다른 통신 노드로부터 웨이크업 패킷이 수신한 경우, WURx(570)는 웨이크업 상태로 동작할 것을 요청하는 웨이크업 지시자를 PCR(520)에 전송할 수 있다. WURx(570)로부터 웨이크업 지시자가 수신된 경우, PCR(520)의 동작 상태는 슬립 상태에서 웨이크업 상태로 천이될 수 있다. 웨이크업 지시자가 PCR(520)에 전송된 경우 또는 PCR(520)의 동작 상태가 슬립 상태에서 웨이크업 상태로 천이된 경우, WURx(570)의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다. 또는, PCR(520)로부터 슬립 상태로 동작할 것을 요청하는 슬립 지시자가 수신된 경우, WURx(570)의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다. 여기서, WUR 모드에서 노멀 모드로의 천이 동작을 위해 필요한 시간은 "모드 천이 시간"으로 지칭될 수 있다. 예를 들어, 모드 천이 시간은 웨이크업 패킷의 수신 시점부터 저전력 스테이션이 노멀 모드로 동작하는 시점까지를 지시할 수 있다.
프레임의 송수신 동작이 완료된 경우, PCR(520)의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다. 이 경우, PCR(520)은 웨이크업 상태로 동작할 것을 요청하는 웨이크업 지시자를 WURx(570)에 전송할 수 있다. PCR(520)로부터 웨이크업 지시자가 수신된 경우, WURx(570)의 동작 상태는 슬립 상태에서 웨이크업 상태로 천이될 수 있다. 웨이크업 지시자가 WURx(570)에 전송된 경우 또는 WURx(570)의 동작 상태가 슬립 상태에서 웨이크업 상태로 천이된 경우, PCR(520)의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다.
또한, 베이스밴드 프로세서(510)(예를 들어, 베이스밴드 프로세서(510)에 포함된 MAC 프로세서(511))는 PCR(520)의 동작 상태에 기초하여 웨이크업 상태 또는 슬립 상태로 동작할 수 있다. 예를 들어, PCR(520)이 웨이크업 상태로 동작하는 경우에 베이스밴드 프로세서(510)(예를 들어, MAC 프로세서(511))도 웨이크업 상태로 동작할 수 있고, PCR(520)이 슬립 상태로 동작하는 경우에 베이스밴드 프로세서(510)(예를 들어, MAC 프로세서(511))도 슬립 상태로 동작할 수 있다. 예를 들어, 웨이크업 상태로 동작하는 PCR(520)로부터 웨이크업 상태로 동작할 것을 요청하는 웨이크업 지시자가 수신된 경우, 베이스밴드 프로세서(510)(예를 들어, MAC 프로세서(511))의 동작 상태는 슬립 상태에서 웨이크업 상태로 천이될 수 있다. 슬립 상태로 동작할 PCR(520)로부터 슬립 상태로 동작할 것을 요청하는 슬립 지시자가 수신된 경우, 베이스밴드 프로세서(510)(예를 들어, MAC 프로세서(511))의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다. 또는, 베이스밴드 프로세서(510)는 PCR(520)의 동작 상태와 무관하게 항상 웨이크업 상태로 동작할 수 있다.
한편, 저전력 동작을 지원하는 액세스 포인트는 앞서 설명된 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 액세스 포인트는 베이스밴드 프로세서(510), PCR(520), 안테나(530), 메모리(540), 입력 인터페이스 유닛(550), 출력 인터페이스 유닛(560), WURx(570) 등을 포함할 수 있다. 또한, 액세스 포인트는 WURx(570) 대신에 WUTx(wake-up transmitter)(미도시)를 포함할 수 있거나, WURx(570)와 WUTx의 기능들을 수행하는 WUR(wake-up radio)를 포함할 수 있다. WUTx는 WURx(570)와 대응하는 동작을 수행할 수 있다. 예를 들어, WUTx는 좁은 대역(예를 들어, 4MHz, 8MHz, 16MHz 등)에서 동작할 수 있다. WUTx는 OOK 방식으로 변조된 신호(예를 들어, 웨이크업 패킷)를 전송할 수 있다. 또한, 저전력 스테이션(500)은 WURx(570)에 대응하는 WUTx를 더 포함할 수 있다.
한편, 무선랜 기반의 통신 시스템에서 통신 노드(예를 들어, 액세스 포인트, 스테이션)의 PCR에 의해 지원되는 주파수 대역은 IEEE 802.11 표준(예를 들어, IEEE 802.11a/b/g/n/p/ac/ad/ax/ay)에 따라 10MHz, 20MHz, 40MHz, 80MHz, 160MHz 등일 수 있다. 또한, PCR에 의해 지원되는 주파수 대역에서 하나의 채널(channel, CH)은 복수의 서브 채널(subchannel, SUB-CH)들을 포함할 수 있다. 여기서, 서브 채널의 개수 및 대역폭은 IEEE 802.11 표준(예를 들어, IEEE 802.11a/b/g/n/p/ac/ad/ax/ay)에 따라 상이할 수 있다. 예를 들어, IEEE 802.11ax 표준을 지원하는 무선랜 기반의 통신 시스템에서, 20MHz 대역폭을 가지는 채널은 서브 채널에 할당된 RU(resource unit)의 크기에 따라 최대 9개의 서브 채널들을 포함할 수 있다.
무선랜 기반의 저전력 통신 시스템에서 채널은 다음과 같이 설정될 수 있다.
도 6은 무선랜 기반의 저전력 통신 시스템에서 채널 구성의 제1 실시예를 도시한 개념도이다.
도 6을 참조하면, 통신 노드(예를 들어, 액세스 포인트, 저전력 스테이션)의 WUR은 20MHz 혹은 20MHz보다 작은 주파수 대역(예를 들어, 4MHz, 8MHz, 16MHz 등)을 지원할 수 있다. 또한, WUR에 의해 사용되는 채널은 복수의 서브 채널들을 포함할 수 있고, 복수의 서브 채널들 각각의 대역폭은 PCR에 의해 지원되는 대역폭보다 작을 수 있다. 예를 들어, 40MHz 주파수 대역은 채널#0 및 채널#1로 구성될 수 있고, 서브 채널의 대역폭이 4MHz인 경우에 채널#0 및 채널#1 각각은 3개 혹은 4개의 서브 채널들을 포함할 수 있다. 여기서, 서브 채널들 사이에는 각 서브 채널을 보호하기 위한 GB(Guard Band)이 위치할 수 있다.
다음으로, 무선랜 기반의 통신 시스템에서 저전력 동작을 지원하는 통신 노드(예를 들어, 액세스 포인트, 스테이션 등)의 동작 방법들이 설명될 것이다. 통신 노드들 중에서 제1 통신 노드에서 수행되는 방법(예를 들어, 프레임의 전송 또는 수신)이 설명되는 경우에도 이에 대응하는 제2 통신 노드는 제1 통신 노드에서 수행되는 방법과 상응하는 방법(예를 들어, 프레임의 수신 또는 전송)을 수행할 수 있다. 즉, 스테이션의 동작이 설명된 경우에 이에 대응하는 액세스 포인트는 스테이션의 동작과 상응하는 동작을 수행할 수 있다. 반대로, 액세스 포인트의 동작이 설명된 경우에 이에 대응하는 스테이션은 액세스 포인트의 동작과 상응하는 동작을 수행할 수 있다.
또한, 송신 통신 노드에서 신호(예를 들어, 프레임)의 전송 시작 시점 및 전송 종료 시점 각각은 수신 통신 노드에서 해당 신호(예를 들어, 해당 프레임)의 수신 시작 시점 및 수신 종료 시점과 동일할 수 있다. 신호(예를 들어, 프레임)의 시작 시점은 전송 시작 시점 또는 수신 시작 시점을 지시할 수 있고, 신호(예를 들어, 프레임)의 종료 시점은 전송 종료 시점 또는 수신 종료 시점을 지시할 수 있다.
■ 액세스 포인트와 저전력 스테이션 간의 접속(access) 절차
액세스 포인트와 저전력 스테이션 간의 접속 절차는 액세스 포인트와 레거시 스테이션 간의 접속 절차와 동일 또는 유사하게 수행될 수 있다. 예를 들어, 접속 절차는 탐색(discovery) 절차(또는, 스캐닝(scanning) 절차), 인증 절차 및 연결 절차를 포함할 수 있다. 탐색 절차에서, 저전력 스테이션은 프로브 요청 프레임을 전송할 수 있고, 프로브 요청 프레임에 대한 응답으로 프로브 응답 프레임을 액세스 포인트로부터 수신할 수 있고, 프로브 응답 프레임에 포함된 정보를 확인할 수 있다. 또는, 저전력 스테이션은 액세스 포인트로부터 비컨 프레임을 수신할 수 있고, 비컨 프레임에 포함된 정보를 확인할 수 있다. 탐색 절차에서 저전력 스테이션은 프로브 응답 프레임 또는 비컨 프레임에 포함된 정보에 기초하여 적어도 하나의 액세스 포인트를 선택할 수 있다.
그 후에, 저전력 스테이션은 탐색 절차에서 선택된 적어도 하나의 액세스 포인트와 인증 절차를 수행할 수 있다. 예를 들어, 저전력 스테이션은 인증 요청 프레임을 액세스 포인트에 전송할 수 있고, 인증 요청 프레임에 대한 응답으로 인증 응답 프레임을 액세스 포인트로부터 수신할 수 있다. 그 후에, 저전력 스테이션은 인증이 완료된 하나의 액세스 포인트와 연결 절차를 수행할 수 있다. 예를 들어, 저전력 스테이션은 연결 요청 프레임을 액세스 포인트에 전송할 수 있고, 연결 요청 프레임에 대한 응답으로 연결 응답 프레임을 액세스 포인트로부터 수신할 수 있다. 액세스 포인트와 저전력 스테이션 간의 연결 절차가 완료된 경우, 액세스 포인트와 저전력 스테이션 간의 접속 절차가 종료될 수 있다.
■ 저전력 동작의 지원 요청 절차
액세스 포인트와 저전력 스테이션 간의 접속 절차가 완료된 후, 저전력 스테이션은 액세스 포인트에 저전력 동작의 지원을 요청할 수 있다. 저전력 동작의 지원 요청 절차는 다음과 같이 수행될 수 있다.
도 7은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제1 실시예를 도시한 타이밍도이다.
도 7을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다.
액세스 포인트와 저전력 스테이션 간의 접속 절차가 완료된 후, 저전력 스테이션은 액세스 포인트에 저전력 동작의 지원을 요청하는 LP(low power) 지원 요청 프레임(701)을 생성할 수 있다. LP 지원 요청 프레임은 IEEE 802.11 표준에 규정된 액션 프레임과 동일 또는 유사하게 구성될 수 있다. LP 지원 요청 프레임(701)은 아래 표 4에 기재된 정보 요소들 중에서 적어도 하나를 포함할 수 있다.
Figure pat00004
주소는 저전력 스테이션의 MAC 주소, ID, AID, PAID 등을 지시할 수 있다. LP 요청 지시자는 1비트의 크기를 가질 수 있다. 예를 들어, "1"로 설정된 LP 요청 지시자는 저전력 동작의 지원을 요청할 수 있다. 후보 자원 정보는 액세스 포인트와 저전력 스테이션 간의 데이터 송수신 절차에서 사용될 후보 자원(예를 들어, 채널, 서브 채널, RU 등)을 지시할 수 있다. 또한, LP 지원 요청 프레임(701)은 저전력 스테이션의 캐퍼빌러티(capability) 정보를 더 포함할 수 있다.
저전력 스테이션(예를 들어, 저전력 스테이션의 PCR)은 캐리어 센싱 구간에서 캐리어 센싱 절차를 수행할 수 있고, 캐리어 센싱 구간 동안에 채널의 상태가 아이들인 경우에 LP 지원 요청 프레임(701)을 액세스 포인트에 전송할 수 있다. 캐리어 센싱 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다.
액세스 포인트는 저전력 스테이션으로부터 LP 지원 요청 프레임(701)을 수신할 수 있고, LP 지원 요청 프레임(701)에 포함된 정보 요소를 확인할 수 있다. 예를 들어, 액세스 포인트는 LP 지원 요청 프레임(701)을 기반으로 저전력 동작의 지원이 요청되는 것을 확인할 수 있고, 저전력 동작의 지원 여부를 결정할 수 있다. 저전력 스테이션을 위한 저전력 동작을 지원하는 것으로 결정된 경우, 액세스 포인트는 LP 지원 요청 프레임(701)에 포함된 후보 자원 정보에 기초하여 저전력 스테이션을 위한 자원을 할당할 수 있다. 예를 들어, 액세스 포인트는 LP 지원 요청 프레임(701)의 후보 자원 정보에 의해 지시되는 자원을 저전력 스테이션을 위한 자원으로 할당할 수 있다. 또는, 액세스 포인트는 LP 지원 요청 프레임(701)의 후보 자원 정보에 의해 지시되는 자원 이외의 자원을 저전력 스테이션을 위한 자원으로 할당할 수 있다.
액세스 포인트는 아래 표 5에 기재된 정보 요소들 중에서 적어도 하나를 포함하는 LP 지원 응답 프레임(702)을 생성할 수 있다.
Figure pat00005
LP 승인 지시자는 1비트의 크기를 가질 수 있다. 예를 들어, "1"로 설정된 LP 승인 지시자는 저전력 동작의 지원이 승인된 것을 지시할 수 있다. 할당된 자원 정보는 LP 지원 요청 프레임(701)에 포함된 후보 자원 정보에 기초하여 할당된 자원을 지시할 수 있다. 할당된 자원 정보에 의해 지시되는 자원은 액세스 포인트와 저전력 스테이션 간의 송수신 절차를 위해 사용될 수 있다.
액세스 포인트는 LP 지원 요청 프레임(701)의 수신 종료 시점으로부터 SIFS 후에 LP 지원 응답 프레임(702)을 저전력 스테이션에 전송할 수 있다. 저전력 스테이션은 액세스 포인트로부터 LP 지원 응답 프레임(702)을 수신할 수 있고, LP 지원 응답 프레임(702)에 포함된 정보 요소들을 확인할 수 있다. 예를 들어, 저전력 스테이션은 LP 지원 응답 프레임(702)에 기초하여 저전력 동작의 지원이 승인된 것으로 판단할 수 있고, LP 지원 응답 프레임(702)의 수신 종료 시점 후에 WUR 모드 또는 노멀 모드로 동작할 수 있다. 즉, 저전력 스테이션은 저전력 동작의 지원이 승인되기 전에 노멀 모드로만 동작할 수 있고, 저전력 동작의 지원이 승인된 후에 WUR 모드 또는 노멀 모드로 동작할 수 있다.
한편, 앞서 설명된 저전력 동작의 지원 요청 절차는 액세스 포인트와 저전력 스테이션 간의 연결 절차에서 수행될 수 있다. 이 경우, 저전력 스테이션은 표 4에 기재된 적어도 하나의 정보 요소를 포함하는 연결 요청 프레임을 액세스 포인트에 전송할 수 있다. 액세스 포인트는 저전력 스테이션으로부터 연결 요청 프레임을 수신할 수 있고, 연결 요청 프레임에 포함된 정보 요소들에 기초하여 저전력 동작의 지원 여부를 결정할 수 있다. 저전력 동작의 지원이 승인된 경우, 액세스 포인트는 저전력 동작의 지원이 승인된 것을 지시하는 연결 응답 프레임을 생성할 수 있고, 연결 응답 프레임을 저전력 스테이션에 전송할 수 있다. 여기서, 연결 응답 프레임은 표 5에 기재된 적어도 하나의 정보 요소를 포함할 수 있다. 저전력 스테이션은 액세스 포인트로부터 연결 응답 프레임을 수신할 수 있고, 연결 응답 프레임에 포함된 정보 요소들을 확인할 수 있다. 연결 응답 프레임에 기초하여 저전력 동작의 지원이 승인된 것으로 판단된 경우, 저전력 스테이션은 연결 응답 프레임의 수신 종료 시점 후에 WUR 모드 또는 노멀 모드로 동작할 수 있다.
웨이크업 패킷의 포맷
무선랜 기반의 통신 시스템에서 WUR 모드로 동작하는 저전력 스테이션을 웨이크업 시키기 위해 웨이크업 패킷이 사용될 수 있다. 웨이크업 패킷은 다음과 같이 구성될 수 있다.
도 8은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제1 실시예를 도시한 블록도이다.
도 8을 참조하면, 웨이크업 패킷(800)은 레거시 프리앰블(810) 및 WUR PPDU(PCLP(physical layer convergence protocol) protocol data unit)(820)를 포함할 수 있다. 또는, 웨이크업 패킷(800)은 레거시 프리앰블(810)을 제외한 WUR PPDU(820)만으로 구성될 수 있다. 이 경우, 웨이크업 패킷(800)은 WUR PPDU(820)일 수 있다. 레거시 프리앰블(810)은 L-STF(legacy short training field)(811), L-LTF(legacy long training field)(812) 및 L-SIG(legacy signal) 필드(813)를 포함할 수 있다. 레거시 프리앰블(810)이 매핑된 주파수 대역의 크기는 20MHz일 수 있다.
WUR PPDU(820)는 WUR 프리앰블(821), MAC 헤더(822), 프레임 바디(body)(823) 및 FCS(frame check sequence) 필드(824)를 포함할 수 있다. WUR PPDU(820)는 OOK 방식에 기초하여 변복조될 수 있다. WUR PPDU(820)가 매핑된 주파수 대역의 크기는 20MHz보다 작을 수 있다. WUR 프리앰블(821)은 WUR-STF, WUR-LTF 및 WUR-SIG 필드를 포함할 수 있다. 또한, WUR 프리앰블(821)은 액세스 포인트와 저전력 스테이션(예를 들어, 저전력 스테이션에 포함된 WURx) 간의 동기를 위해 사용되는 PN(pseudo random) 시퀀스를 포함할 수 있다. 또한, PN 시퀀스는 데이터 전송률 및 대역폭을 지시할 수 있다.
MAC 헤더(822)는 송신기 주소 필드, 수신기 주소 필드를 포함할 수 있다. 예를 들어, MAC 헤더(822)의 송신기 주소 필드는 웨이크업 패킷(800)을 전송한 액세스 포인트의 주소를 지시할 수 있고, MAC 헤더(822)의 수신기 주소 필드는 웨이크업 패킷(800)을 수신할 저전력 스테이션의 주소(예를 들어, MAC 주소, AID, PAID 등)를 지시할 수 있다. 웨이크업 패킷(800)이 브로드캐스트(broadcast) 방식으로 전송되는 경우, MAC 헤더(822)의 수신기 주소 필드는 웨이크업 패킷(800)이 브로드캐스트 방식으로 전송되는 것을 지시할 수 있다. 웨이크업 패킷(800)이 멀티캐스트(multicast) 방식으로 전송되는 경우, MAC 헤더(822)의 수신기 주소 필드는 멀티캐스트 주소(또는, 그룹 주소, 그룹 ID)를 지시할 수 있다.
웨이크업 패킷(800)은 저전력 동작을 위해 필요한 정보 요소를 더 포함할 수 있다. 예를 들어, 웨이크업 패킷(800)의 MAC 헤더(822) 및 프레임 바디(823) 각각은 아래 표 6에 도시된 정보 요소들 중에서 적어도 하나를 포함할 수 있다.
Figure pat00006
Poll 지시자는 1비트의 크기를 가질 수 있다. "0"으로 설정된 Poll 지시자는 WU-Poll 프레임의 전송이 요구되지 않는 것을 지시할 수 있고, "1"로 설정된 Poll 지시자는 WU-Poll 프레임의 전송이 요구되는 것을 지시할 수 있다. MU 지시자는 1비트의 크기를 가질 수 있다. "0"으로 설정된 MU 지시자는 웨이크업 패킷(800)이 단일 사용자 전송을 위해 사용되는 것을 지시할 수 있고, "1"로 설정된 MU 지시자는 웨이크업 패킷(800)이 다중 사용자 전송을 위해 사용되는 것을 지시할 수 있다. 또한, "1"로 설정된 MU 지시자는 다중 사용자 전송을 트리거링하기 위한 트리거 프레임이 전송되는 것을 지시할 수 있다. 한편, 레거시 프리앰블(810)이 매핑된 주파수 대역의 크기는 WUR PPDU(820)가 할당된 주파수 대역의 크기와 다르기 때문에, 레거시 프리앰블(810)의 전송 전력이 WUR PPDU(820)의 전송 전력과 동일하게 설정되는 경우에 아래 문제점들이 발생할 수 있다.
도 9는 무선랜 기반의 통신 시스템에서 수신 신호 세기에 대한 제1 실시예를 도시한 개념도이고, 도 10은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 전송 범위를 도시한 개념도이다.
도 9 및 도 10을 참조하면, 웨이크업 패킷(910)은 도 8에 도시된 웨이크업 패킷(800)과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷(910)은 레거시 프리앰블(911) 및 WUR PPDU(912)를 포함할 수 있다. 레거시 프리앰블(911)은 20MHz 대역폭을 통해 전송될 수 있고, WUR PPDU(912)는 20MHz보다 작은 대역폭을 통해 전송될 수 있다. 레거시 프레임(920)(예를 들어, 레거시 신호)은 IEEE 802.11 표준(예를 들어, IEEE 802.11a/b/g/n/p/ac/ax/ad/ay 표준)에 따라 설정된 프레임일 수 있다.
레거시 프리앰블(911), WUR PPDU(912) 및 레거시 프레임(920) 각각의 전송 전력이 동일하게 설정되는 경우, WUR PPDU(912)의 전송을 위해 설정된 대역폭은 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 전송을 위해 설정된 대역폭보다 작기 때문에, WURx에 의해 20MHz 미만 주파수 대역에서 CCA 동작이 수행되는 경우에 WUR PPDU(912)의 수신 신호 세기는 레거시 프리앰블(911) 및 레거시 프레임(920)의 수신 신호 세기보다 클 수 있다. 따라서 WURx에 의해 측정된 WUR PPDU(912)의 수신 신호 세기는 CCA 임계값 이상이고, 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 수신 신호 세기는 CCA 임계값 미만인 경우가 발생될 수 있다.
이 경우, 수신 통신 노드(예를 들어, 액세스 포인트, 레거시 스테이션, 저전력 스테이션)는 WUR PPDU(912)의 수신 신호 세기가 CCA 임계값 이상이기 때문에 채널 상태가 비지 상태인 것으로 판단할 수 있다. 반면, 수신 통신 노드는 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 수신 신호 세기가 CCA 임계값 미만이기 때문에 채널 상태가 아이들 상태인 것으로 판단할 수 있고, 레거시 프리앰블(911) 및 레거시 프레임(920) 각각이 존재하지 않는 것으로 판단할 수 있다. 따라서 WURx에 의해 측정된 CCA 결과에 기초한 채널 접속 절차가 수행되는 경우, 무선랜 기반의 통신 시스템에서 통신 오류(예를 들어, 프레임 충돌)가 발생할 수 있다.
또한, 레거시 프리앰블(911) 및 WUR PPDU(912) 각각의 전송 전력이 동일하게 설정되는 경우, WUR PPDU(912)의 전송 거리는 레거시 프리앰블(911)의 전송 거리보다 길 수 있다. 따라서 레거시 프리앰블(911)의 전송 범위의 경계(boundary)와 WUR PPDU(912)의 전송 범위의 경계 사이에 위치한 저전력 스테이션은 WUR PPDU(912)를 수신할 수 있고, WUR PPDU(912)가 수신된 경우에 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치한 것으로 판단할 수 있고, WUR 모드에서 노멀 모드로 천이함으로써 레거시 프레임의 송수신 절차를 수행할 수 있다. 그러나 레거시 프리앰블(911)의 전송 범위의 경계와 WUR PPDU(912)의 전송 범위의 경계 사이에 위치한 저전력 스테이션은 액세스 포인트로부터 레거시 프레임을 수신할 수 없으므로, WURx에 의해 측정된 CCA 결과에 기초한 채널 접속 절차가 수행되는 경우에 통신 오류(예를 들어, 프레임 충돌)가 발생할 수 있다.
레거시 프리앰블(811) 및 WUR PPDU(812)의 전송 범위를 동일하게 설정하기 위해, WUR PPDU(812)의 전송 전력은 레거시 프리앰블(811)의 전송 전력보다 작게 설정될 수 있다. 이 경우, 아래 문제들이 발생할 수 있다.
도 11은 무선랜 기반의 통신 시스템에서 수신 신호 세기에 대한 제2 실시예를 도시한 개념도이다.
도 11을 참조하면, WUR PPDU(912)의 전송 전력은 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 전송 전력보다 작게 설정될 수 있다. 이 경우, WUR PPDU(912)의 전송 범위는 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 전송 범위와 동일할 수 있고, WUR PPDU(912)의 수신 신호 세기는 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 수신 신호 세기보다 작을 수 있다. 따라서 WUR PPDU(912)의 수신 신호 세기는 CCA 임계값 미만이고, 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 수신 신호 세기는 CCA 임계값 이상인 경우가 발생할 수 있다.
이 경우, 수신 통신 노드(예를 들어, 액세스 포인트, 레거시 스테이션, 저전력 스테이션)는 레거시 프리앰블(911) 및 레거시 프레임(920) 각각의 수신 신호 세기가 CCA 임계값 이상이기 때문에 채널 상태가 비지 상태인 것으로 판단할 수 있다. 반면, 수신 통신 노드는 WUR PPDU(912)의 수신 신호 세기가 CCA 임계값 미만이기 때문에 채널 상태가 아이들 상태인 것으로 판단할 수 있고, WUR PPDU(912)가 존재하지 않는 것으로 판단할 수 있다. 따라서 무선랜 기반의 통신 시스템에서 통신 오류(예를 들어, 프레임 충돌)가 발생할 수 있다.
앞서 설명된 문제점들을 해소하기 위해, 웨이크업 패킷은 다음과 같이 구성될 수 있다.
도 12는 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제2 실시예를 도시한 블록도이다.
도 12를 참조하면, 웨이크업 패킷(1200)은 레거시 프리앰블(1210) 및 WUR PPDU 영역(1220)을 포함할 수 있다. 레거시 프리앰블(1210) 및 WUR PPDU 영역(1220)이 매핑된 주파수 대역의 크기는 20MHz일 수 있고, 레거시 프리앰블(1210)의 전송 전력은 WUR PPDU 영역(1220)의 전송 전력과 동일하게 설정될 수 있다. 레거시 프리앰블(1210)은 도 8에 도시된 레거시 프리앰블(810)과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 레거시 프리앰블(1210)은 L-STF, L-LTF 및 L-SIG 필드를 포함할 수 있다.
WUR PPDU 영역(1220)은 더미 신호(1221, 1223) 및 WUR PPDU(1222)를 포함할 수 있다. 더미 신호#1(1221) 및 더미 신호#2(1223)의 비트 스트림(bit stream)은 "1"로 설정될 수 있다. WUR PPDU(1222)는 도 8에 도시된 WUR PPDU(820)와 동일 또는 유사하게 구성될 수 있다. 예를 들어, WUR PPDU(1222)는 WUR 프리앰블, MAC 헤더, 프레임 바디 및 FCS 필드를 포함할 수 있다. WUR PPDU 영역(1220)에서 더미 신호(1221, 1223)와 WUR PPDU(1122)는 주파수 분할 다중화(frequency division multiplexing) 방식을 기초로 설정될 수 있다.
또는, WUR PPDU(1222)와 더미 신호(1221, 1223) 사이에 GB(guard band)가 설정될 수 있다. 예를 들어, 더미 신호#1(1221)과 WUR PPDU(1222) 사이에 GB#1이 설정될 수 있고, WUR PPDU(1222)와 더미 신호#2(1223) 사이에 GB#2가 설정될 수 있다.
WUR PPDU(1222)가 매핑된 주파수 대역의 정보(예를 들어, 중심 주파수, 대역폭)는 도 7에 도시된 절차에서 저전력 스테이션으로 시그널링될 수 있다. 예를 들어, WUR PPDU(1222)가 매핑된 주파수 대역의 정보는 도 7의 LP 응답 지원 프레임(702) 또는 연결 응답 프레임에 포함될 수 있다.
도 13은 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제3 실시예를 도시한 블록도이다.
도 13을 참조하면, 웨이크업 패킷(1300)은 레거시 프리앰블(1310) 및 WUR PPDU 영역(1320)을 포함할 수 있다. 레거시 프리앰블(1310) 및 WUR PPDU 영역(1320)이 매핑된 주파수 대역의 크기는 20MHz일 수 있고, 레거시 프리앰블(1310)의 전송 전력은 WUR PPDU 영역(1320)의 전송 전력과 동일하게 설정될 수 있다. 레거시 프리앰블(1310)은 도 8에 도시된 레거시 프리앰블(810)과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 레거시 프리앰블(1310)은 L-STF, L-LTF 및 L-SIG 필드를 포함할 수 있다.
WUR PPDU 영역(1320)은 복수의 WUR PPDU들을 포함할 수 있다. 복수의 WUR PPDU들 각각은 도 8에 도시된 WUR PPDU(820)와 동일 또는 유사하게 구성될 수 있다. 예를 들어, 복수의 WUR PPDU들 각각은 WUR 프리앰블, MAC 헤더, 프레임 바디 및 FCS 필드를 포함할 수 있다. WUR PPDU 영역(1320)의 WUR PPDU는 주파수 대역에서 듀플리케이션(duplication )될 수 있거나, 주파수 대역에서 확장될 수 있다. 또는, 복수의 WUR PPDU는 주파수 대역에서 다중화될 수 있다. 예를 들어, WUR PPDU 영역(1320)은 동일한 3개의 WUR PPDU들을 포함할 수 있으며, 3개의 WUR PPDU들 각각이 매핑된 주파수 대역의 크기는 4MHz일 수 있다. 또는, WUR PPDU 영역(1320)에서 WUR PPDU들 사이에 GB가 설정될 수 있다. 예를 들어, 첫 번째 WUR PPDU와 두 번째 WUR PPDU 사이에 GB#1이 설정될 수 있고, 두 번째 WUR PPDU와 세 번째 WUR PPDU 사이에 GB#2가 설정될 수 있다. 또한 복수의 WUR PPDU들 각각은 서로 다른 통신 노드를 위한 정보를 가질 수 있다. 즉, 복수의 WUR PPDU들은 주파수 대역에서 다중화될 수 있다. 이 경우, 복수의 WUR PPDU들 각각이 전송되는 주파수 대역의 위치를 지시하는 지시자는 웨이크업 패킷 또는 웨이크업 패킷 이전의 프레임 교환 절차를 통해 시그널링될 수 있다.
또는, WUR PPDU는 확장된 대역폭을 통해 전송될 수 있다. 예를 들어, 송신 통신 노드와 수신 통신 노드 간에 4MHz 주파수 대역을 통해 WUR PPDU가 송수신되는 것으로 협의된 경우에도, 송신 통신 노드는 16MHz 또는 20MHz 주파수 대역을 통해 WUR PPDU를 전송할 수 있다. 이 경우, WUR PPDU는 수신 통신 노드가 에너지 검출 방식에 기초한 OOK 복조 동작을 용이하게 수행할 수 있도록 디자인될 수 있다. 또는, WUR PPDU는 주파수 대역에서 GB 없이 구성될 수 있다. 또는, ON 신호 구간에서 대역 외의 주파수 톤에 계수 1 또는 -1이 곱해질 수 있고, OFF 신호 구간에서 대역 외의 주파수 톤에 계수 0이 곱해질 수 있다.
WUR PPDU들이 매핑된 주파수 대역의 정보(예를 들어, 중심 주파수, 대역폭), 듀플리케이션 정보, 다중화된 WUR PPDU들의 유형(예를 들어, WUR PPDU의 주파수 확장 여부, 다중화 및 듀플리케이션 개수, 확장된 대역폭 등)은 도 7에 도시된 절차에서 저전력 스테이션으로 시그널링될 수 있다. 예를 들어, WUR PPDU들이 매핑된 주파수 대역 정보, 듀플리케이션 및 다중화된 WUR PPDU들의 주파수 대역 패턴, 확장된 WUR PPDU 사용 여부 등은 도 7의 LP 응답 지원 프레임(702) 또는 연결 응답 프레임에 포함될 수 있다.
도 14는 무선랜 기반의 통신 시스템에서 웨이크업 패킷의 제4 실시예를 도시한 블록도이다.
도 14를 참조하면, 웨이크업 패킷(1400)은 레거시 프리앰블(1410) 및 WUR PPDU 영역(1420)을 포함할 수 있다. 레거시 프리앰블(1410) 및 WUR PPDU 영역(1420)이 매핑된 주파수 대역의 크기는 20MHz일 수 있고, 레거시 프리앰블(1410)의 전송 전력은 WUR PPDU 영역(1420)의 전송 전력과 동일하게 설정될 수 있다. 레거시 프리앰블(1410)은 도 8에 도시된 레거시 프리앰블(810)과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 레거시 프리앰블(1410)은 L-STF, L-LTF 및 L-SIG 필드를 포함할 수 있다.
WUR PPDU 영역(1420)은 복수의 WUR PPDU들(1421, 1422, 1423)을 포함할 수 있다. 복수의 WUR PPDU들(1421, 1422, 1423) 각각은 도 8에 도시된 WUR PPDU(820)와 동일 또는 유사하게 구성될 수 있다. 예를 들어, 복수의 WUR PPDU들(1421, 1422, 1423) 각각은 WUR 프리앰블, MAC 헤더, 프레임 바디 및 FCS 필드를 포함할 수 있다. 복수의 WUR PPDU들(1421, 1422, 1423) 각각은 OFDM 방식에 기초하여 설정될 수 있다. 예를 들어, 복수의 WUR PPDU들(1421, 1422, 1423) 각각이 매핑된 주파수 대역의 크기는 4MHz일 수 있다. 또는, 복수의 WUR PPDU들(1421, 1422, 1423) 사이에 GB가 설정될 수 있다. 예를 들어, WUR PPDU#1(1421)과 WUR PPDU#2(1422) 사이에 GB#1이 설정될 수 있고, WUR PPDU#2(1422)와 WUR PPDU#3(1423) 사이에 GB#2가 설정될 수 있다.
또한, 복수의 WUR PPDU들(1421, 1422, 1423) 각각은 서로 다른 저전력 스테이션을 위해 설정될 수 있다. 예를 들어, WUR PPDU#1(1421)은 저전력 스테이션#1(예를 들어, 저전력 스테이션#1에 포함된 PCR)의 웨이크업을 요청하는 신호일 수 있고, WUR PPDU#2(1422)는 저전력 스테이션#2(예를 들어, 저전력 스테이션#2에 포함된 PCR)의 웨이크업을 요청하는 신호일 수 있고, WUR PPDU#3(1423)은 저전력 스테이션#3(예를 들어, 저전력 스테이션#3에 포함된 PCR)의 웨이크업을 요청하는 신호일 수 있다.
복수의 WUR PPDU들(1421, 1422, 1423) 각각이 매핑된 주파수 대역의 정보(예를 들어, 중심 주파수, 대역폭)는 도 7에 도시된 절차에서 저전력 스테이션으로 시그널링될 수 있다. 예를 들어, 복수의 WUR PPDU들(1421, 1422, 1423) 각각이 매핑된 주파수 대역 정보를 포함한 웨이크업 패킷의 형태와 관련된 정보는 도 7의 LP 응답 지원 프레임(702) 또는 연결 응답 프레임에 포함될 수 있다.
앞서 설명된 도 12 내지 도 14의 실시예들에서 액세스 포인트의 커버리지 내에 위치한 통신 노드(예를 들어, 다른 액세스 포인트, 레거시 스테이션, 저전력 스테이션)가 해당 액세스 포인트로부터 웨이크업 패킷(1200, 1300, 1400)을 수신한 경우, 통신 노드에 의해 측정된 레거시 프리앰블(1210, 1310, 1410) 및 WUR PPDU 영역(1220, 1320, 1420) 각각의 수신 신호 세기는 모두 CCA 임계값 이상일 수 있다. 반면, 액세스 포인트의 커버리지 밖에 위치한 통신 노드(예를 들어, 다른 액세스 포인트, 레거시 스테이션, 저전력 스테이션)가 해당 액세스 포인트로부터 웨이크업 패킷(1200, 1300, 1400)을 수신한 경우, 통신 노드에 의해 측정된 레거시 프리앰블(1210, 1310, 1410) 및 WUR PPDU 영역(1220, 1320, 1420) 각각의 수신 신호 세기는 모두 CCA 임계값 미만일 수 있다. 따라서 도 9 내지 도 11에 따른 문제들이 해소될 수 있으므로, 무선랜 기반의 통신 시스템에서 통신 오류(예를 들어, 프레임 충돌)가 해소될 수 있다.
■ 액세스 포인트와 저전력 스테이션 간의 통신 절차
무선랜 기반의 통신 시스템에서 액세스 포인트와 저전력 스테이션 간의 접속 절차(또는, 저전력 동작의 지원 요청 절차) 이후에 액세스 포인트와 저전력 스테이션 간의 통신 절차는 다음과 같이 수행될 수 있다.
도 15는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제2 실시예를 도시한 타이밍도이다.
도 15를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다.
저전력 스테이션으로 전송될 데이터가 액세스 포인트에 존재하는 경우, 액세스 포인트는 웨이크업 패킷(1501)을 생성할 수 있다. 웨이크업 패킷(1501)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷(1501)은 저전력 스테이션이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷(1501)은 Poll 지시자를 더 포함할 수 있고, Poll 지시자는 WU-Poll 프레임의 전송이 요구되지 않는 것을 지시할 수 있다.
액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 캐리어 센싱 동작을 수행할 수 있다. 미리 설정된 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다. 예를 들어, 저전력 스테이션으로 전송될 데이터가 비-QoS 데이터인 경우, 액세스 포인트는 "DIFS + 백오프 구간" 동안 캐리어 센싱 동작을 수행할 수 있다. 저전력 스테이션으로 전송될 데이터가 QoS 데이터인 경우, 액세스 포인트는 QoS 데이터의 AC에 따른 "AIFS + 백오프 구간" 동안 캐리어 센싱 동작을 수행할 수 있다.
미리 설정된 구간 동안 채널 상태가 아이들 상태인 경우, 액세스 포인트는 웨이크업 패킷(1501)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷(1501)은 브로드캐스트 방식, 멀티캐스트 방식 또는 유니캐스트(unicast) 방식으로 전송될 수 있다. 웨이크업 패킷(1501)이 레거시 프리앰블 및 WUR PPDU를 포함하는 경우, 웨이크업 패킷(1501)의 레거시 프리앰블의 전송 대역폭은 20MHz일 수 있고, 웨이크업 패킷(1501)의 WUR PPDU의 전송 대역폭은 20MHz 또는 20MHz보다 작을 수 있다. 예를 들어, 웨이크업 패킷(1501)의 WUR PPDU의 전송 대역폭은 4MHz, 8MHz, 16MHz 등일 수 있다. 반면, 미리 설정된 구간 동안 채널의 상태가 비지 상태인 경우, 액세스 포인트는 캐리어 센싱 동작을 다시 수행할 수 있다.
한편, WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션의 WURx는 웨이크업 패킷(1501)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 액세스 포인트로부터 웨이크업 패킷(1501)이 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드(예를 들어, PCR: 웨이크업 상태, WURx: 슬립 상태)로 천이될 수 있다. 또한, 웨이크업 패킷(1501)을 수신한 저전력 스테이션은 웨이크업 패킷(1501)의 수신기 주소 필드가 저전력 스테이션을 지시하는 경우에 노멀 모드로 동작할 수 있다. 노멀 모드로 동작하는 저전력 스테이션은 WUR 모드에서 수신된 웨이크업 패킷(1501)에 포함된 정보에 기초하여 후속 동작을 수행할 수 있다. 웨이크업 패킷(1501)에 포함된 Poll 지시자가 WU-Poll 프레임의 전송이 요구되지 않는 것을 지시하는 경우, 저전력 스테이션은 WU-Poll 프레임의 전송 없이 미리 설정된 시간 동안 노멀 모드를 유지할 수 있다. 노멀 모드의 유지 시간 동안에 데이터 프레임(1502)의 송수신 절차가 수행될 수 있다.
한편, 액세스 포인트는 데이터 프레임(1502)을 생성할 수 있고, 웨이크업 패킷의 전송 종료 시점으로부터 전송 대기 구간 이후에 데이터 프레임(1502)을 저전력 스테이션에 전송할 수 있다. 전송 대기 구간은 웨이크업 패킷(1501)을 수신한 저전력 스테이션의 모드 천이 시간에 기초하여 설정될 수 있다. 예를 들어, 전송 대기 구간은 저전력 스테이션의 모드 천이 시간 이상일 수 있고, 웨이크업 패킷(1501)의 전송 종료 시점부터 시작될 수 있다. 따라서 웨이크업 패킷(1501)의 전송 종료 시점으로부터 전송 대기 구간이 경과한 경우, 액세스 포인트는 저전력 스테이션이 노멀 모드로 동작하는 것으로 판단할 수 있다.
전송 대기 구간 이후에 캐리어 센싱 동작이 수행될 수 있고, 캐리어 센싱 동작에 의해 채널 상태가 아이들 상태인 것으로 판단된 경우에 액세스 포인트는 캐리어 센싱 구간 이후에 데이터 프레임(1502)을 저전력 스테이션에 전송할 수 있다. 캐리어 센싱 구간은 "DIFS + 백오프 구간" 또는 "AIFS + 백오프 구간"으로 설정될 수 있다. 캐리어 센싱 구간 동안에 채널 상태가 비지 상태인 경우, 액세스 포인트는 현재 백오프 값(예를 들어, 랜덤 액세스 절차)을 정지시킬 수 있고, 채널 상태가 비지 상태에서 아이들 상태로 변경된 경우에 "DIFS + 정지된 백오프 값에 대응하는 구간" 또는 "AIFS + 정지된 백오프 값에 대응하는 구간"에서 캐리어 센싱 동작을 다시 수행할 수 있다. "DIFS + 정지된 백오프 값에 대응하는 구간" 또는 "AIFS + 정지된 백오프 값에 대응하는 구간"이 만료된 경우, 액세스 포인트는 데이터 프레임(1502)을 저전력 스테이션에 전송할 수 있다. 데이터 프레임(1502)의 응답이 미리 설정된 시간 내에 저전력 스테이션으로부터 수신되지 않은 경우, 액세스 포인트는 데이터 프레임(1502)의 전송 실패로 판단할 수 있고, 캐리어 센싱 구간을 다시 설정 할 수 있다. 예를 들어, 다시 설정된 캐리어 센싱 구간을 위한 경쟁 윈도우는 이전 캐리어 센싱 구간을 설정하기 위한 경쟁 윈도우의 2배일 수 있다. 다른 통신 노드에 의한 채널 점유가 종료된 경우에 액세스 포인트는 다시 설정된 캐리어 센싱 구간에서 캐리어 센싱 동작을 수행할 수 있고, 다시 설정된 캐리어 센싱 구간 동안에 채널 상태가 아이들 상태인 경우에 데이터 프레임(1502)을 저전력 스테이션에 전송할 수 있다.
또한, 전송 대기 구간에서 다른 통신 노드에 의해 채널이 점유되는 것을 방지하기 위해, 액세스 포인트는 전송 대기 구간에서 웨이크업 패킷(1501)(예를 들어, 웨이크업 패킷(1501) 중에서 일부 신호)을 반복 전송할 수 있다. 또는, 액세스 포인트는 전송 대기 구간에서 더미(dummy) 신호를 반복 전송할 수 있다. 또는, 액세스 포인트는 전송 대기 구간에서 다른 스테이션을 위한 프레임(예를 들어, 레거시 스테이션을 위한 데이터 프레임)을 전송할 수 있다.
한편, 데이터 프레임(1502)에 포함된 듀레이션(duration) 필드는 "SIFS + ACK 프레임(1503)"에 대응하는 구간, "SIFS + ACK 프레임(1503) + SIFS + LP(low power) 동작 요청 프레임(1504)"에 대응하는 구간 또는 "SIFS + ACK 프레임(1503) + SIFS + LP 동작 요청 프레임(1504) + SIFS + LP 동작 응답 프레임(1505)"에 대응하는 구간을 지시할 수 있다.
데이터 프레임(1502)에 포함된 듀레이션 필드는 아래 설명되는 동작 모드의 천이 절차에 기초하여 설정될 수 있다. 예를 들어, 동작 모드의 천이 절차#1-2가 사용되는 경우, 데이터 프레임(1502)에 포함된 듀레이션 필드는 "SIFS + ACK 프레임(1503)"에 대응하는 구간을 지시할 수 있다. 동작 모드의 천이 절차#4가 사용되는 경우, 데이터 프레임(1502)에 포함된 듀레이션 필드는 "SIFS + ACK 프레임(1503) + SIFS + LP 동작 요청 프레임(1504)"에 대응하는 구간을 지시할 수 있다. 동작 모드의 천이 절차#5가 사용되는 경우, 데이터 프레임(1502)에 포함된 듀레이션 필드는 "SIFS + ACK 프레임(1503) + SIFS + LP 동작 요청 프레임(1504) + SIFS + LP 동작 응답 프레임(1505)"에 대응하는 구간을 지시할 수 있다. 데이터 프레임(1502)을 수신한 다른 통신 노드는 데이터 프레임(1502)에 포함된 듀레이션 필드에 기초하여 NAV(network allocation vector)를 설정할 수 있다.
한편, 저전력 스테이션의 PCR은 액세스 포인트로부터 데이터 프레임(1502)을 수신할 수 있다. 데이터 프레임(1502)의 디코딩(decoding) 동작이 성공적으로 완료된 경우, 저전력 스테이션의 PCR은 데이터 프레임(1502)의 응답으로 ACK 프레임(1503)을 액세스 포인트에 전송할 수 있다. ACK 프레임(1503)은 데이터 프레임(1502)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있다. 저전력 스테이션으로부터 ACK 프레임(1503)이 수신된 경우, 액세스 포인트는 데이터 프레임(1502)이 저전력 스테이션에서 성공적으로 수신된 것으로 판단될 수 있다.
반면, 액세스 포인트와 저전력 스테이션 간의 채널 상태가 나쁜 경우, 저전력 스테이션의 PCR은 액세스 포인트로부터 데이터 프레임(1502)을 수신하지 못할 수 있다. 예를 들어, WUR 모드로부터 노멀 모드로의 천이 시점부터 미리 설정된 구간(예를 들어, 수신 대기 구간) 동안에 저전력 스테이션이 액세스 포인트로부터 데이터 프레임(1502)을 수신하지 못한 경우, 저전력 스테이션은 WUR 모드로 동작할 수 있다. 수신 대기 구간은 액세스 포인트에 의해 설정될 수 있고, 액세스 포인트는 설정된 수신 대기 구간을 지시하는 정보를 웨이크업 패킷(1501), 도 7에 도시된 LP 지원 응답 프레임(701) 또는 연결 응답 프레임을 통해 저전력 스테이션에 알려줄 수 있다. 또한, 데이터 프레임(1502)에 대한 응답이 저전력 스테이션으로부터 수신되지 않은 경우, 액세스 포인트는 수신 대기 구간 후에 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있고, 수신 대기 구간을 고려하여 웨이크업 패킷의 재전송 절차를 수행할 수 있다.
데이터 프레임(1502)의 송수신 절차가 완료된 경우, 저전력 스테이션의 동작 모드의 천이 절차가 수행될 수 있다. 저전력 스테이션의 동작 모드의 천이 절차는 5가지 방식으로 수행될 수 있다.
■ 동작 모드의 천이 절차#1(ACK 프레임(1503) 사용)
저전력 스테이션은 데이터 프레임(1502)에 대한 응답인 ACK 프레임(1503)을 액세스 포인트에 전송한 후에 WUR 모드로 동작할 수 있다. 예를 들어, ACK 프레임(1503)의 전송 종료 시점에서 저전력 스테이션의 동작 모드는 노멀 모드에서 WUR 모드로 천이될 수 있다. 여기서, ACK 프레임(1503)은 저전력 스테이션이 WUR 모드로 동작하는 것을 알리는 지시자를 포함할 수 있다. ACK 프레임(1503)이 저전력 스테이션으로부터 수신된 경우, 액세스 포인트는 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있다.
■ 동작 모드의 천이 절차#2(ACK 프레임(1503) 사용)
ACK 프레임(1503)의 전송 종료 시점으로부터 미리 설정된 구간(예를 들어, 수신 대기 구간) 내에 액세스 포인트로부터 프레임(예를 들어, 신호)이 수신되지 않은 경우, 저전력 스테이션은 수신 대기 구간의 종료 후에 WUR 모드로 동작할 수 있다. 수신 대기 구간은 액세스 포인트에 의해 설정될 수 있고, 액세스 포인트는 수신 대기 구간을 지시하는 정보를 웨이크업 패킷(1501), 도 7에 도시된 LP 지원 응답 프레임(702) 또는 연결 응답 프레임을 통해 저전력 스테이션에 알려줄 수 있다.
■ 동작 모드의 천이 절차#3("ACK 프레임(1503)+LP 동작 응답 프레임(1505)" 사용)
저전력 스테이션으로부터 데이터 프레임(1502)에 대한 응답인 ACK 프레임(1503)이 수신된 경우, 액세스 포인트는 저전력 스테이션이 WUR 모드로 동작하는 것을 승인하는 LP 동작 응답 프레임(1505)을 생성할 수 있다. 여기서, ACK 프레임(1503)은 WUR 모드 동작의 승인을 요청하는 지시자를 포함할 수 있고, LP 동작 응답 프레임(1505)은 저전력 스테이션으로 전송될 데이터가 액세스 포인트에 존재하지 않는 경우에 생성될 수 있다. 액세스 포인트는 LP 동작 응답 프레임(1505)을 저전력 스테이션에 전송할 수 있다. LP 동작 응답 프레임(1505)은 ACK 프레임(1503)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있다. LP 동작 응답 프레임(1505)은 액션 프레임 또는 널(null) 데이터 프레임으로 설정될 수 있다. LP 동작 응답 프레임(1505)을 수신한 저전력 스테이션은 WUR 모드로 동작할 수 있고, LP 동작 응답 프레임(1505)을 전송한 액세스 포인트는 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있다.
■ 동작 모드의 천이 절차#4("ACK 프레임(1503)+LP 동작 요청 프레임(1504)" 사용)
데이터 프레임(1502)에 대한 응답인 ACK 프레임(1503)의 전송 후에, 저전력 스테이션은 WUR 모드로 동작하는 것을 알리는 LP 동작 요청 프레임(1504)을 생성할 수 있고, 생성된 LP 동작 요청 프레임(1504)을 액세스 포인트에 전송할 수 있다. LP 동작 요청 프레임(1504)은 저전력 스테이션의 PCR에 의해 전송될 수 있고, ACK 프레임(1503)의 전송 종료 시점으로부터 SIFS 후에 전송될 수 있다. 저전력 스테이션은 LP 동작 요청 프레임(1504)의 전송 후에 WUR 모드로 동작할 수 있다. LP 동작 요청 프레임(1504)이 저전력 스테이션으로부터 수신된 경우, 액세스 포인트는 LP 동작 요청 프레임(1504)의 종료 시점 후에 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있다.
■ 동작 모드의 천이 절차#5("ACK 프레임(1503)+LP 동작 요청 프레임(1504)+LP 동작 응답 프레임(1505)" 사용)
데이터 프레임(1502)에 대한 응답인 ACK 프레임(1503)의 전송 후에, 저전력 스테이션은 WUR 모드 동작의 승인을 요청하는 LP 동작 요청 프레임(1504)을 생성할 수 있고, 생성된 LP 동작 요청 프레임(1504)을 액세스 포인트에 전송할 수 있다. LP 동작 요청 프레임(1504)은 저전력 스테이션의 PCR에 의해 전송될 수 있고, ACK 프레임(1503)의 전송 종료 시점 후에 전송될 수 있다. LP 동작 요청 프레임(1504)을 수신한 액세스 포인트는 저전력 스테이션으로 전송될 데이터가 액세스 포인트에 존재하지 않는 경우에 WUR 모드로 동작하는 것을 승인하는 LP 동작 응답 프레임(1505)을 생성할 수 있다. 액세스 포인트는 LP 동작 응답 프레임(1505)을 저전력 스테이션에 전송할 수 있다. LP 동작 응답 프레임(1505)은 LP 동작 요청 프레임(1504)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있다. 여기서, LP 동작 요청 프레임(1504) 및 LP 동작 응답 프레임(1505)은 액션 프레임 또는 널 데이터 프레임으로 설정될 수 있다. LP 동작 응답 프레임(1505)을 수신한 저전력 스테이션은 WUR 모드로 동작할 수 있고, LP 동작 응답 프레임(1505)을 전송한 액세스 포인트는 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있다.
한편, 데이터 프레임에 대한 응답인 ACK 프레임이 액세스 포인트에서 수신되지 않은 경우, 데이터 프레임의 재전송 절차는 다음과 같이 수행될 수 있다.
도 16은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제3 실시예를 도시한 타이밍도이다.
도 16을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 16의 웨이크업 패킷(1601, 1603), 데이터 프레임(1602, 1604), ACK 프레임(1605), LP 동작 요청 프레임(1606), LP 동작 응답 프레임(1607), 캐리어 센싱 구간 및 전송 대기 구간 각각은 도 15의 웨이크업 패킷(1501), 데이터 프레임(1502), ACK 프레임(1503), LP 동작 요청 프레임(1504), LP 동작 응답 프레임(1505), 캐리어 센싱 구간 및 전송 대기 구간과 동일 또는 유사하게 설정될 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션의 WURx는 웨이크업 패킷#1(1601)를 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 저전력 스테이션으로 전송될 데이터가 존재하는 경우, 액세스 포인트는 웨이크업 패킷#1(1601)을 생성할 수 있다. 웨이크업 패킷#1(1601)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷#1(1601)은 저전력 스테이션이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷#1(1601)은 Poll 지시자를 더 포함할 수 있고, Poll 지시자는 WU-Poll 프레임의 전송이 요구되지 않는 것을 지시할 수 있다.
액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷#1(1601)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷#1(1601)은 브로드캐스트 방식, 멀티캐스트 방식 또는 유니캐스트 방식으로 전송될 수 있다. 웨이크업 패킷#1(1601)이 레거시 프리앰블 및 WUR PPDU를 포함하는 경우, 웨이크업 패킷#1(1601)의 레거시 프리앰블의 전송 대역폭은 20MHz일 수 있고, 웨이크업 패킷(1601)의 WUR PPDU의 전송 대역폭은 20MHz 또는 20MHz보다 작을 수 있다. 예를 들어, 웨이크업 패킷(1601)의 WUR PPDU의 전송 대역폭은 4MHz, 8HMz, 16MHz 등일 수 있다.
웨이크업 패킷#1(1601)의 전송 종료 시점 후에 액세스 포인트는 전송 대기 구간 후에 채널 접속 절차를 통해 데이터 프레임#1(1602)을 저전력 스테이션에 전송할 수 있다. 데이터 프레임#1(1602)의 종료 시점으로부터 타임아웃(timeout) 구간(예를 들어, SIFS + "2 * 타임 슬롯" + "ACK 프레임의 전송 시간") 내에 데이터 프레임#1(1602)에 대한 응답인 ACK 프레임이 수신되지 않은 경우, 액세스 포인트는 데이터 프레임#1(1602)이 저전력 스테이션에서 수신되지 못한 것으로 판단할 수 있다. 예를 들어, 저전력 스테이션의 PCR이 슬립 모드로 동작하는 경우 또는 액세스 포인트와 저전력 스테이션 간의 채널 상태가 나쁜 경우, 데이터 프레임#1(1602)은 저전력 스테이션에서 수신 또는 디코딩되지 못할 수 있다. 따라서 저전력 스테이션은 데이터 프레임#1(1602)에 대한 응답인 ACK 프레임을 액세스 포인트에 전송하지 못할 수 있다.
이 경우, 액세스 포인트는 데이터 프레임의 재전송 절차를 수행할 수 있다. 예를 들어, 액세스 포인트는 웨이크업 패킷#2(1603)를 전송하기 위해 캐리어 센싱 구간 동안 캐리어 센싱 동작을 수행할 수 있다. 웨이크업 패킷#2(1603)를 위한 캐리어 센싱 구간은 데이터 프레임#1(1602)의 전송 종료 시점부터 타임아웃 구간 이후에 시작될 수 있다. 웨이크업 패킷#2(1603)의 캐리어 센싱 구간은 웨이크업 패킷#1(1601)의 캐리어 센싱 구간에 기초하여 설정될 수 있다. 예를 들어, 웨이크업 패킷#2(1603)의 캐리어 센싱 구간은 웨이크업 패킷#1(1601)의 캐리어 센싱 구간과 동일하게 설정될 수 있다. 또는, 웨이크업 패킷#2(1603)의 캐리어 센싱 구간을 위한 경쟁 윈도우는 웨이크업 패킷#1(1601)의 캐리어 센싱 구간을 위한 경쟁 윈도우의 2배로 설정될 수 있다.
여기서, 웨이크업 패킷#2(1603)는 웨이크업 패킷#1(1601)과 동일할 수 있다. 웨이크업 패킷#2(1603)는 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷#2(1603)는 저전력 스테이션이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷#2(1603)는 Poll 지시자를 더 포함할 수 있고, Poll 지시자는 WU-Poll 프레임의 전송이 요구되지 않는 것을 지시할 수 있다.
캐리어 센싱 구간 동안에 채널 상태가 아이들 상태인 경우, 액세스 포인트는 웨이크업 패킷#2(1603)를 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷#2(1603)의 전송 종료 시점 후에 액세스 포인트는 전송 대기 구간 동안 캐리어 센싱 동작을 수행할 수 있고, 전송 대기 구간 동안 채널 상태가 아이들 상태인 경우에 데이터 프레임#2(1604)를 저전력 스테이션에 전송할 수 있다. 데이터 프레임#2(1604)의 전송 대기 구간은 데이터 프레임#1(1602)의 전송 대기 구간과 동일하게 설정될 수 있다. 또는, 데이터 프레임#2(1604)의 전송 대기 구간을 위한 경쟁 윈도우는 데이터 프레임#1(1602)의 전송 대기 구간을 위한 경쟁 윈도우의 2배로 설정될 수 있다.
웨이크업 패킷#2(1603)가 액세스 포인트로부터 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 웨이크업 패킷#2(1603)를 수신한 저전력 스테이션은 웨이크업 패킷#2(1603)의 수신기 주소 필드가 저전력 스테이션을 지시하는 경우에 노멀 모드로 동작할 수 있다. 그 후에, 데이터 프레임#2(1604), ACK 프레임(1605), LP 동작 요청 프레임(1606) 및 LP 동작 응답 프레임(1607)의 송수신 절차들이 수행될 수 있다. 데이터 프레임#2(1604), ACK 프레임(1605), LP 동작 요청 프레임(1606) 및 LP 동작 응답 프레임(1607)의 송수신 절차들은 도 15에 도시된 데이터 프레임(1502), ACK 프레임(1503), LP 동작 요청 프레임(1504) 및 LP 동작 응답 프레임(1505)의 송수신 절차들과 동일 또는 유사하게 수행될 수 있다.
한편, 액세스 포인트는 웨이크업 패킷의 전송 종료 시점으로부터 전송 대기 구간 후에, 액세스 포인트는 데이터 프레임을 전송하는 대신에 웨이크업 패킷에 대한 응답인 WU-Poll 프레임을 저전력 스테이션으로부터 수신할 수 있다. WU-Poll 프레임이 저전력 스테이션으로부터 수신된 경우, 액세스 포인트는 데이터 프레임을 저전력 스테이션에 전송할 수 있다. 여기서, WU-Poll 프레임은 저전력 스테이션이 노멀 모드로 동작하는 것을 지시할 수 있다. 무선랜 기반의 통신 시스템에서 WU-Poll 프레임을 사용하는 실시예들은 다음과 같을 수 있다.
도 17은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제4 실시예를 도시한 타이밍도이다.
도 17을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 17의 웨이크업 패킷(1701), 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705), LP 동작 응답 프레임(1706), 캐리어 센싱 구간 및 전송 대기 구간 각각은 도 15의 웨이크업 패킷(1501), 데이터 프레임(1502), ACK 프레임(1503), LP 동작 요청 프레임(1504), LP 동작 응답 프레임(1505), 캐리어 센싱 구간 및 전송 대기 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션으로 전송될 데이터가 액세스 포인트에 존재하는 경우, 액세스 포인트는 웨이크업 패킷(1701)을 생성할 수 있다. 웨이크업 패킷(1701)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷(1701)은 저전력 스테이션이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷(1701)은 Poll 지시자를 더 포함할 수 있고, Poll 지시자는 WU-Poll 프레임의 전송이 요구되는 것을 지시할 수 있다. 또한, 웨이크업 패킷(1701)은 데이터 프레임(1703)에 포함된 데이터의 품질 정보(예를 들어, QoS 관련 정보, AC 정보), 듀레이션 필드 등을 더 포함할 수 있다.
웨이크업 패킷(1701)의 듀레이션 필드는 데이터 프레임(1703)(예를 들어, 데이터 프레임(1703)에 포함된 데이터 유닛)의 길이를 지시할 수 있다. 또는, 웨이크업 패킷(1701)의 듀레이션 필드는 웨이크업 패킷(1701)의 전송 종료 시점으로부터 WU-Poll 프레임(1702)의 전송 종료 시점까지의 구간, 웨이크업 패킷(1701)의 전송 종료 시점으로부터 ACK 프레임(1704)의 전송 종료 시점까지의 구간 또는 웨이크업 패킷(1701)의 전송 종료 시점으로부터 LP 동작 응답 프레임(1706)의 전송 종료 시점까지의 구간을 지시할 수 있다. 따라서 웨이크업 패킷(1701)을 수신한 다른 통신 노드는 웨이크업 패킷(1701)의 듀레이션 필드에 기초하여 NAV를 설정할 수 있다.
액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(1701)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷(1701)이 레거시 프리앰블 및 WUR PPDU를 포함하는 경우, 웨이크업 패킷(1701)의 레거시 프리앰블의 전송 대역폭은 20MHz일 수 있고, 웨이크업 패킷(1701)의 WUR PPDU의 전송 대역폭은 20MHz 또는 20MHz보다 작을 수 있다. 예를 들어, 웨이크업 패킷(1701)의 WUR PPDU의 전송 대역폭은 4MHz, 8MHz, 16MHz 등일 수 있다.
한편, WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션의 WURx는 웨이크업 패킷(1701)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 액세스 포인트로부터 웨이크업 패킷(1701)이 수신되고, 웨이크업 패킷(1701)의 수신기 주소 필드가 저전력 스테이션을 지시하는 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션의 WURx는 웨이크업 패킷(1701)에 포함된 정보(예를 들어, 주소, QoS 관련 정보, AC 정보, 듀레이션 필드, Poll 지시자)를 저전력 스테이션 PCR(또는, 베이스밴드 프로세서)에 전송할 수 있다.
저전력 스테이션(예를 들어, PCR, 베이스밴드 프로세서)은 웨이크업 패킷(1701)에 포함된 정보를 확인할 수 있다. 웨이크업 패킷(1701)에 포함된 Poll 지시자가 "1"로 설정되어 있는 경우, 저전력 스테이션은 WU-Poll 프레임의 전송이 요구되는 것으로 판단할 수 있다. 따라서 저전력 스테이션의 PCR은 저전력 스테이션이 노멀 모드로 동작하는 것을 지시하는 WU-Poll 프레임(1702)을 생성할 수 있고, 생성된 WU-Poll 프레임(1702)을 액세스 포인트에 전송할 수 있다. 이 경우, 저전력 스테이션의 PCR은 웨이크업 패킷(1701)에 의해 지시되는 AC에 따른 캐리어 센싱 구간에서 캐리어 센싱 동작을 수행할 수 있고, 캐리어 센싱 구간 동안 채널 상태가 아이들 상태인 경우에 WU-Poll 프레임(1702)을 액세스 포인트에 전송할 수 있다. WU-Poll 프레임(1702)을 위한 캐리어 센싱 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다.
WU-Poll 프레임(1702)은 IEEE 802.11 표준에 규정된 PS(power saving)-Poll 프레임과 동일 또는 유사하게 구성될 수 있다. WU-Poll 프레임(1702)은 듀레이션 필드를 더 포함할 수 있으며, WU-Poll 프레임(1702)의 듀레이션 필드는 WU-Poll 프레임(1702)의 전송 종료 시점부터 ACK 프레임(1704)의 전송 종료 시점까지의 구간 또는 WU-Poll 프레임(1702)의 전송 종료 시점부터 LP 동작 응답 프레임(1706)의 전송 종료 시점까지의 구간을 지시할 수 있다. 따라서 WU-Poll 프레임(1702)을 수신한 다른 통신 노드는 WU-Poll 프레임(1702)의 듀레이션 필드에 기초하여 NAV를 설정할 수 있다.
저전력 스테이션으로부터 WU-Poll 프레임(1702)이 수신된 경우, 액세스 포인트는 저전력 스테이션이 노멀 모드로 동작하는 것으로 판단할 수 있다. 따라서 액세스 포인트는 WU-Poll 프레임(1702)의 수신 종료 시점으로부터 SIFS 후에 데이터 프레임(1703)을 저전력 스테이션에 전송할 수 있다. 또는, 액세스 포인트는 WU-Poll 프레임(1702)의 수신 종료 시점으로부터 SIFS 후에 WU-Poll 프레임(1702)의 응답인 ACK 프레임(미도시)을 저전력 스테이션에 전송할 수 있고, ACK 프레임의 전송 종료 시점으로부터 SIFS 후에 데이터 프레임(1703)을 저전력 스테이션에 전송할 수 있다. 저전력 스테이션은 액세스 포인트로부터 데이터 프레임(1703)을 수신할 수 있고, 데이터 프레임(1703)에 대한 응답인 ACK 프레임(1704)을 액세스 포인트에 전송할 수 있다.
반면, 액세스 포인트와 저전력 스테이션 간의 채널 상태가 나쁜 경우, 저전력 스테이션은 액세스 포인트로부터 데이터 프레임(1703)을 수신하지 못할 수 있다. 또는, 액세스 포인트는 WU-Poll 프레임(1702)을 저전력 스테이션으로부터 수신하지 못한 경우에 데이터 프레임(1703)을 전송하지 않을 수 있고, 이 경우에 저전력 스테이션은 액세스 포인트로부터 데이터 프레임(1703)을 수신하지 못할 수 있다. 예를 들어, WU-Poll 프레임(1702)의 종료 시점부터 미리 설정된 구간(예를 들어, 수신 대기 구간) 동안에 저전력 스테이션이 액세스 포인트로부터 데이터 프레임(1703)을 수신하지 못한 경우, 저전력 스테이션은 WUR 모드로 동작할 수 있다. 수신 대기 구간은 액세스 포인트에 의해 설정될 수 있고, 액세스 포인트는 수신 대기 구간을 지시하는 정보를 웨이크업 패킷(1701), 도 7에 도시된 LP 지원 응답 프레임(702) 또는 연결 응답 프레임을 통해 저전력 스테이션에 알려줄 수 있다.
WU-Poll 프레임(1702)의 송수신 절차가 완료된 후에 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705) 및 LP 동작 응답 프레임(1706)의 송수신 절차들이 수행될 수 있다. 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705) 및 LP 동작 응답 프레임(1706)의 송수신 절차들은 도 15에 도시된 데이터 프레임(1502), ACK 프레임(1503), LP 동작 요청 프레임(1504) 및 LP 동작 응답 프레임(1505)의 송수신 절차들과 동일 또는 유사하게 수행될 수 있다.
한편, 웨이크업 패킷에 대한 응답인 WU-Poll 프레임이 액세스 포인트에서 수신되지 않은 경우, 웨이크업 패킷의 재전송 절차는 다음과 같이 수행될 수 있다.
도 18은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제5 실시예를 도시한 타이밍도이다.
도 18을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 18의 웨이크업 패킷(1801, 1802), WU-Poll 프레임(1803), 데이터 프레임(1804), ACK 프레임(1805), LP 동작 요청 프레임(1806), LP 동작 응답 프레임(1807), 캐리어 센싱 구간 및 전송 대기 구간 각각은 도 17의 웨이크업 패킷(1701), WU-Poll 프레임(1702), 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705), LP 동작 응답 프레임(1706), 캐리어 센싱 구간 및 전송 대기 구간과 동일 또는 유사하게 설정될 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션의 WURx는 웨이크업 패킷(1801, 1802)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 저전력 스테이션으로 전송될 데이터가 액세스 포인트에 존재하는 경우, 액세스 포인트는 웨이크업 패킷#1(1801)을 생성할 수 있다. 웨이크업 패킷#1(1801)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷#1(1801)은 저전력 스테이션이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷#1(1801)은 Poll 지시자를 더 포함할 수 있고, Poll 지시자는 WU-Poll 프레임의 전송이 요구되는 것을 지시할 수 있다. 웨이크업 패킷#1(1801)은 데이터 프레임(1804)에 포함된 데이터의 품질 정보(예를 들어, QoS 관련 정보, AC 정보), 듀레이션 필드 등을 포함할 수 있다. 액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷#1(1801)을 저전력 스테이션에 전송할 수 있다. 캐리어 센싱 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다.
웨이크업 패킷#1(1801)의 전송 종료 시점으로부터 타임아웃 구간(예를 들어, 도 15에 도시된 전송 대기 구간) 내에 웨이크업 패킷#1(1801)에 대한 응답인 WU-Poll 프레임은 저전력 스테이션으로부터 수신되지 않을 수 있다. 예를 들어, 웨이크업 패킷#1(1801)이 저전력 스테이션에서 성공적으로 수신(또는, 디코딩)되지 못한 경우 또는 타임아웃 구간 내에 저전력 스테이션의 동작 모드가 WUR 모드에서 노멀 모드로 천이되지 못한 경우, 저전력 스테이션은 웨이크업 패킷#1(1801)에 대한 응답인 WU-Poll 프레임을 전송하지 못할 수 있다. 웨이크업 패킷#1(1801)에 대한 응답인 WU-Poll 프레임이 저전력 스테이션으로부터 수신되지 않은 경우, 액세스 포인트는 저전력 스테이션이 WUR 모드로 동작하는 것으로 판단할 수 있다. 따라서 액세스 포인트는 웨이크업 패킷#2(1802)의 재전송 절차를 수행할 수 있다. 웨이크업 패킷#2(1802)는 웨이크업 패킷#1(1801)과 동일 또는 유사하게 구성될 수 있다.
액세스 포인트는 웨이크업 패킷#2(1802)의 재전송 절차를 위한 캐리어 센싱 구간 동안에 캐리어 센싱 동작을 수행할 수 있다. 웨이크업 패킷#2(1802)의 캐리어 센싱 구간은 타임아웃 구간의 종료 시점부터 시작될 수 있고, 웨이크업 패킷#1(1801)의 캐리어 센싱 구간에 기초하여 설정될 수 있다. 예를 들어, 웨이크업 패킷#2(1802)의 캐리어 센싱 구간은 웨이크업 패킷#1(1801)의 캐리어 센싱 구간과 동일하게 설정될 수 있다. 또는, 웨이크업 패킷#2(1802)의 캐리어 센싱 구간을 위한 경쟁 윈도우는 웨이크업 패킷#1(1801)의 캐리어 센싱 구간을 위한 경쟁 윈도우의 2배로 설정될 수 있다.
액세스 포인트로부터 웨이크업 패킷#2(1802)가 수신되고, 웨이크업 패킷#2(1802)의 수신기 주소 필드가 저전력 스테이션을 지시하는 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션의 WURx는 웨이크업 패킷#2(1802)에 포함된 정보(예를 들어, 주소, QoS 관련 정보, AC 정보, 듀레이션 필드)를 저전력 스테이션의 PCR(또는, 베이스밴드 프로세서)에 전송할 수 있다.
저전력 스테이션의 PCR은 저전력 스테이션이 노멀 모드로 동작하는 것을 지시하는 WU-Poll 프레임(1803)을 액세스 포인트에 전송할 수 있다. 웨이크업 패킷#2(1802)의 송수신 절차가 완료된 후에 WU-Poll 프레임(1803), 데이터 프레임(1804), ACK 프레임(1805), LP 동작 요청 프레임(1806) 및 LP 동작 응답 프레임(1807)의 송수신 절차들이 수행될 수 있다. WU-Poll 프레임(1803), 데이터 프레임(1804), ACK 프레임(1805), LP 동작 요청 프레임(1806) 및 LP 동작 응답 프레임(1807)의 송수신 절차들은 도 17에 도시된 WU-Poll 프레임(1702), 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705) 및 LP 동작 응답 프레임(1706)의 송수신 절차들과 동일 또는 유사하게 수행될 수 있다.
한편, 액세스 포인트가 복수의 저전력 스테이션들에 통신 서비스를 제공하는 경우, 통신 노드의 동작 방법들은 다음과 같을 수 있다.
도 19는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제6 실시예를 도시한 타이밍도이다.
도 19를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2 등을 포함할 수 있다. 저전력 스테이션#1 및 저전력 스테이션#2는 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2는 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다.
액세스 포인트와 저전력 스테이션#1 간의 데이터 송수신 절차(이하, "데이터 송수신 절차#1")와 액세스 포인트와 저전력 스테이션#2 간의 데이터 송수신 절차(이하, "데이터 송수신 절차#2")는 시간 영역에서 연속하여 수행될 수 있다. 예를 들어, 데이터 송수신 절차#1이 완료된 후에 데이터 송수신 절차#2가 수행될 수 있다. 데이터 송수신 절차#1은 웨이크업 패킷#1(1901), WU-Poll 프레임#1(1902), 데이터 프레임#1(1903), ACK 프레임#1(1904), LP 동작 요청 프레임#1(1905) 및 LP 동작 응답 프레임#1(1906)의 송수신 절차를 포함할 수 있다. 데이터 송수신 절차#2는 웨이크업 패킷#2(1907), WU-Poll 프레임#2(1908), 데이터 프레임#2(1909), ACK 프레임#2(1910), LP 동작 요청 프레임#2(1911) 및 LP 동작 응답 프레임#2(1912)의 송수신 절차를 포함할 수 있다. 데이터 송수신 절차#1 및 데이터 송수신 절차#2 각각은 도 16에 도시된 웨이크업 패킷(1701), WU-Poll 프레임(1702), 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705) 및 LP 동작 응답 프레임(1706)의 송수신 절차와 동일 또는 유사하게 수행될 수 있다.
데이터 송수신 절차#1 및 데이터 송수신 절차#2는 서로 다른 TXOP(transmission opportunity)에서 수행될 수 있거나, 하나의 TXOP에서 수행될 수 있다. 예를 들어, 저전력 스테이션#1 및 #2에 전송될 데이터 유닛의 크기가 미리 설정된 임계값 이상인 경우, 데이터 송수신 절차#1 및 데이터 송수신 절차#2는 서로 다른 TXOP에서 수행될 수 있다. 이 경우, 데이터 송수신 절차#1을 위한 TXOP#1은 웨이크업 패킷#1(1901)의 전송 시작 시점부터 LP 동작 응답 프레임#1(1906)의 전송 종료 시점까지로 설정될 수 있고, 데이터 송수신 절차#2를 위한 TXOP#2는 웨이크업 패킷#2(1907)의 전송 시작 시점부터 LP 동작 응답 프레임#2(1912)의 전송 종료 시점까지로 설정될 수 있다. 따라서 액세스 포인트는 TXOP#1의 종료 후에 웨이크업 패킷#2(1907)를 전송하기 위해 캐리어 센싱 동작을 수행할 수 있다.
반면, 저전력 스테이션#1 및 #2에 전송될 데이터 유닛의 크기가 미리 설정된 임계값 미만 경우, 데이터 송수신 절차#1 및 #2는 하나의 TXOP에서 수행될 수 있다. 데이터 송수신 절차#1 및 #2를 위한 TXOP는 웨이크업 패킷#1(1901)의 전송 시작 시점부터 LP 동작 응답 프레임#2(1912)의 전송 종료 시점까지로 설정될 수 있다. 이 경우, 액세스 포인트는 LP 동작 응답 프레임#1(1906)의 전송 종료 시점으로부터 SIFS 후에 웨이크업 패킷#2(1907)를 전송할 수 있다.
한편, 액세스 포인트가 복수의 저전력 스테이션들에 통신 서비스를 제공하는 경우, 트리거 프레임에 기초하여 통신이 수행될 수 있다. 트리거 프레임에 기초한 통신 방법들은 다음과 같을 수 있다.
도 20은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제7 실시예를 도시한 타이밍도이다.
도 20을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3 등을 포함할 수 있다. 저전력 스테이션#1 내지 #3은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2 및 저전력 스테이션#3은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2 및 저전력 스테이션#3은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 도 20의 웨이크업 패킷(2001, 2002, 2003), WU-Poll 프레임(2005), 데이터 프레임(2006), ACK 프레임(2007), LP 동작 요청 프레임(2008), LP 동작 응답 프레임(2009), 캐리어 센싱 구간 및 전송 대기 구간 각각은 도 17의 웨이크업 패킷(1701), WU-Poll 프레임(1702), 데이터 프레임(1703), ACK 프레임(1704), LP 동작 요청 프레임(1705), LP 동작 응답 프레임(1706), 캐리어 센싱 구간 및 전송 대기 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 내지 #3에 전송될 데이터가 액세스 포인트에 존재하는 경우, 액세스 포인트는 웨이크업 패킷(2001, 2002, 2003)을 생성할 수 있다. 웨이크업 패킷(2001, 2002, 2003)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷(2001, 2002, 2003)는 저전력 스테이션#1 내지 #3 각각이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷(2001, 2002, 2003)은 Poll 지시자, MU 지시자 및 저전력 스테이션이 노멀 모드로 동작하는 시점(T)을 지시하는 지시자를 더 포함할 수 있다. 웨이크업 패킷(2001, 2002, 2003)의 Poll 지시자는 WU-Poll 프레임의 전송이 요구되는 것을 지시할 수 있고, 웨이크업 패킷(2001, 2002, 2003)의 MU 지시자는 웨이크업 패킷(2001, 2002, 2003)이 다중 사용자 전송을 위해 사용되는 것을 지시할 수 있다. 저전력 스테이션이 노멀 모드로 동작하는 시점(T)을 지시하는 지시자에 의해 저전력 스테이션#1 내지 #3은 동시에 노멀 모드로 동작할 수 있다. 따라서 저전력 스테이션 별로 웨이크업 신호(2001, 2002, 2003)의 수신 시점 및 모드 천이 시간이 상이함에 따라 발생되는 대기 구간(예를 들어, 노멀 모드의 동작 시점부터 트리거 프레임#1(2004)의 수신 시점까지의 구간)이 감소될 수 있고, 이에 따라 전력 소모가 줄어들 수 있다.
여기서, 웨이크업 패킷#1(2001)은 저전력 스테이션#1을 위해 설정될 수 있고, 웨이크업 패킷#1(2001)의 수신기 주소 필드는 저전력 스테이션#1을 지시할 수 있다. 웨이크업 패킷#2(2002)는 저전력 스테이션#2를 위해 설정될 수 있고, 웨이크업 패킷#2(2002)의 수신기 주소 필드는 저전력 스테이션#2를 지시할 수 있다. 웨이크업 패킷#3(2003)은 저전력 스테이션#3을 위해 설정될 수 있고, 웨이크업 패킷#3(2003)의 수신기 주소 필드는 저전력 스테이션#3을 지시할 수 있다.
액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷#1(2001)을 저전력 스테이션#1에 전송할 수 있고, 웨이크업 패킷#1(2001)의 전송 종료 시점으로부터 xIFS 후에 웨이크업 패킷#2(2002)를 저전력 스테이션#2에 전송할 수 있고, 웨이크업 패킷#2(2002)의 전송 종료 시점으로부터 xIFS 후에 웨이크업 패킷#3(2003)을 저전력 스테이션#3에 전송할 수 있다. xIFS는 SIFS 또는 SIFS보다 짧은 IFS(예를 들어, RIFS(reduced IFS))일 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 내지 #3의 WURx는 웨이크업 패킷(2001, 2002, 2003)를 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2001, 2002, 2003)가 수신되고, 웨이크업 패킷(2001, 2002, 2003)의 수신기 주소 필드가 해당 저전력 스테이션#1 내지 #3을 지시하는 경우, 저전력 스테이션#1 내지 #3의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 여기서, 저전력 스테이션#1 내지 #3의 PCR들 각각의 웨이크업 시점은 서로 다를 수 있다.
또한, 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2001, 2002, 2003)의 Poll 지시자에 기초하여 WU-Poll 프레임의 전송이 요구되는 것을 확인할 수 있고, 웨이크업 패킷(2001, 2002, 2003)의 MU 지시자에 기초하여 웨이크업 패킷(2001, 2002, 2003)이 다중 사용자 전송을 위해 사용되는 것을 확인할 수 있다. 이 경우, 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2001, 2002, 2003)을 수신한 후에 트리거 프레임#1(2004)의 수신을 위해 대기할 수 있다.
또한, 저전력 스테이션#1 내지 #3의 동작 모드는 웨이크업 패킷(2001, 2002, 2003)에 의해 지시되는 노멀 모드의 동작 시점에 맞춰 WUR 모드에서 노멀 모드로 천이될 수 있다. 이 경우, 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2001, 2002, 2003)에 의해 지시되는 노멀 모드의 동작 시점까지 추가적으로 저전력 동작을 수행할 수 있다.
모든 저전력 스테이션#1 내지 #3이 노멀 모드로 동작하는 것으로 판단된 경우(예를 들어, 웨이크업 패킷#3(2003)의 전송 종료 시점으로부터 전송 대기 구간(예를 들어, 모드 천이 시간)이 경과한 경우), 액세스 포인트는 WU-Poll 프레임(2005)의 전송을 트리거링하는 트리거 프레임#1(2004)을 전송할 수 있다. 트리거 프레임#1(2004)은 저전력 스테이션#1의 WU-Poll 프레임#1(2005)의 전송을 위해 할당된 RU#1을 지시하는 정보, 저전력 스테이션#2의 WU-Poll 프레임#2(2005)의 전송을 위해 할당된 RU#2를 지시하는 정보, 저전력 스테이션#3의 WU-Poll 프레임#3(2005)의 전송을 위해 할당된 RU#3을 지시하는 정보 등을 포함할 수 있다.
RU#1, RU#2 및 RU#3 각각은 서로 다른 주파수 대역(예를 들어, 채널, 서브 채널)을 지시할 수 있고, 저전력 스테이션#1의 식별자, 저전력 스테이션#2의 식별자 및 저전력 스테이션#3의 식별자에 매핑될 수 있다. 또한, RU#1은 저전력 스테이션#1의 데이터 프레임#1(2006) 및 ACK 프레임#1(2007)의 송수신 절차를 위해 사용될 수 있고, RU#2는 저전력 스테이션#2의 데이터 프레임#2(2006) 및 ACK 프레임#2(2007)의 송수신 절차를 위해 사용될 수 있고, RU#3은 저전력 스테이션#3의 데이터 프레임#3(2006) 및 ACK 프레임#3(2007)의 송수신 절차를 위해 사용될 수 있다.
트리거 프레임#1(2004)이 액세스 포인트로부터 수신된 경우, 저전력 스테이션#1 내지 #3은 트리거 프레임#1(2004)에 포함된 정보에 기초하여 할당된 자원(예를 들어, RU#1, RU#2 및 RU#3)을 확인할 수 있다. 저전력 스테이션#1 내지 #3의 PCR들은 할당된 자원(예를 들어, RU#1, RU#2 및 RU#3)을 사용하여 WU-Poll 프레임(2005)(예를 들어, WU-Poll 프레임#1, WU-Poll 프레임#2, WU-Poll 프레임#3)을 액세스 포인트에 전송할 수 있다. WU-Poll 프레임(2005)은 트리거 프레임#1(2004)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있고, OFDMA(orthogonal frequency division multiple access) 방식으로 전송될 수 있다.
저전력 스테이션#1 내지 #3으로부터 WU-Poll 프레임(2005)이 수신된 경우, 액세스 포인트는 저전력 스테이션#1 내지 #3이 노멀 모드로 동작하는 것으로 판단할 수 있다. 따라서 액세스 포인트는 WU-Poll 프레임(2005)의 수신 종료 시점으로부터 SIFS 후에 데이터 프레임(2006)을 저전력 스테이션#1 내지 #3에 전송할 수 있다. 데이터 프레임(2006)은 OFDMA 방식으로 전송될 수 있다.
웨이크업 상태로 동작하는 저전력 스테이션#1 내지 #3의 PCR들은 액세스 포인트로부터 데이터 프레임(2006)을 수신할 수 있고, 데이터 프레임(2006)의 디코딩 동작이 성공적으로 완료된 경우에 데이터 프레임(2006)에 대한 응답인 ACK 프레임(2007)을 액세스 포인트에 전송할 수 있다. ACK 프레임(2007)은 OFDMA 방식으로 전송될 수 있다. 또는, ACK 프레임(2007)은 데이터 프레임(2006)에 대한 BA(block ACK) 프레임일 수 있다. ACK 프레임(2007)을 수신한 액세스 포인트는 데이터 프레임(2006)이 저전력 스테이션#1 내지 #3에서 성공적으로 수신된 것으로 판단할 수 있다.
그 후에, 액세스 포인트는 LP 동작 요청 프레임(2009)의 전송을 트리거링하는 트리거 프레임#2(2008)를 생성할 수 있다. 트리거 프레임#2(2008)는 저전력 스테이션#1의 LP 동작 요청 프레임#1(2009)의 전송을 위해 할당된 RU#1을 지시하는 정보, 저전력 스테이션#2의 LP 동작 요청 프레임#2(2009)의 전송을 위해 할당된 RU#2를 지시하는 정보, 저전력 스테이션#3의 LP 동작 요청 프레임#3(2009)의 전송을 위해 할당된 RU#3을 지시하는 정보 등을 포함할 수 있다.
트리거 프레임#2(2008)에 의해 지시되는 RU#1, RU#2 및 RU#3은 서로 다른 주파수 대역(예를 들어, 채널, 서브 채널)을 지시할 수 있고, 저전력 스테이션#1의 식별자, 저전력 스테이션#2의 식별자 및 저전력 스테이션#3의 식별자에 매핑될 수 있다. 또한, RU#1은 저전력 스테이션#1의 LP 동작 응답 프레임#1(2010)의 송수신 절차를 위해 사용될 수 있고, RU#2는 저전력 스테이션#2의 LP 동작 응답 프레임#2(2010)의 송수신 절차를 위해 사용될 수 있고, RU#3은 저전력 스테이션#3의 LP 동작 응답 프레임#3(2010)의 송수신 절차를 위해 사용될 수 있다.
트리거 프레임#2(2008)가 액세스 포인트로부터 수신된 경우, 저전력 스테이션#1 내지 #3의 PCR들은 트리거 프레임#2(2008)에 의해 지시되는 자원(예를 들어, RU#1, RU#2 및 RU#3)을 사용하여 LP 동작 요청 프레임(2009)을 전송할 수 있다. LP 동작 요청 프레임#1(2009)은 저전력 스테이션#1의 WUR 모드 동작의 승인을 요청할 수 있고, LP 동작 요청 프레임#2(2009)는 저전력 스테이션#2의 WUR 모드 동작의 승인을 요청할 수 있고, LP 동작 요청 프레임#3(2009)은 저전력 스테이션#3의 WUR 모드 동작의 승인을 요청할 수 있다. LP 동작 요청 프레임(2009)은 트리거 프레임#2(2008)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있고, OFDMA 방식으로 전송될 수 있다.
LP 동작 요청 프레임(2009)을 수신한 액세스 포인트는 저전력 스테이션#1 내지 #3으로 전송될 데이터가 존재하지 않는 경우에 LP 동작 요청 프레임(2009)에 대한 응답으로 LP 동작 응답 프레임(2010)을 저전력 스테이션#1 내지 #3에 전송할 수 있다. LP 동작 응답 프레임#1(2010)은 저전력 스테이션#1의 WUR 모드 동작이 승인된 것을 지시할 수 있고, LP 동작 응답 프레임#2(2010)는 저전력 스테이션#2의 WUR 모드 동작이 승인된 것을 지시할 수 있고, LP 동작 응답 프레임#3(2010)은 저전력 스테이션#3의 WUR 모드 동작이 승인된 것을 지시할 수 있다. LP 동작 응답 프레임(2010)은 LP 동작 요청 프레임(2009)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있고, OFDMA 방식으로 전송될 수 있다.
LP 동작 요청 프레임#1(2009)에 대한 응답인 LP 동작 응답 프레임#1(2010)은 트리거 프레임#2(2008)에 의해 지시되는 RU#1을 사용하여 전송될 수 있고, LP 동작 요청 프레임#2(2009)에 대한 응답인 LP 동작 응답 프레임#2(2010)는 트리거 프레임#2(2008)에 의해 지시되는 RU#2를 사용하여 전송될 수 있고, LP 동작 요청 프레임#3(2009)에 대한 응답인 LP 동작 응답 프레임#3(2010)은 트리거 프레임#2(2008)에 의해 지시되는 RU#3을 사용하여 전송될 수 있다. LP 동작 응답 프레임(2010)을 수신한 저전력 스테이션#1 내지 #3은 WUR 모드로 동작할 수 있고, LP 동작 응답 프레임(2010)을 전송한 액세스 포인트는 저전력 스테이션#1 내지 #3이 WUR 모드로 동작하는 것으로 판단할 수 있다.
한편, 액세스 포인트가 복수의 저전력 스테이션들에 통신 서비스를 제공하는 경우, 복수의 저전력 스테이션들을 위한 웨이크업 패킷은 브로드캐스트 방식 또는 멀티캐스트 방식으로 전송될 수 있다.
도 21은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제8 실시예를 도시한 타이밍도이다.
도 21을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3, 저전력 스테이션#4 등을 포함할 수 있다. 저전력 스테이션#1 내지 #4는 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3 및 저전력 스테이션#4는 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3 및 저전력 스테이션#4는 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다.
도 21의 웨이크업 패킷(2101), 트리거 프레임(2102, 2106), WU-Poll 프레임(2103), 데이터 프레임(2104), ACK 프레임(2105), LP 동작 요청 프레임(2107), LP 동작 응답 프레임(2108), 캐리어 센싱 구간 및 전송 대기 구간 각각은 도 20의 웨이크업 패킷(2001, 2002, 2003), 트리거 프레임(2004, 2008), WU-Poll 프레임(2005), 데이터 프레임(2006), ACK 프레임(2007), LP 동작 요청 프레임(2009), LP 동작 응답 프레임(2010), 캐리어 센싱 구간 및 전송 대기 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 내지 #3에 전송될 데이터가 액세스 포인트에 존재하는 경우, 액세스 포인트는 웨이크업 패킷(2101)을 생성할 수 있다. 웨이크업 패킷(2101)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 예를 들어, 웨이크업 패킷(2101)은 저전력 스테이션들이 노멀 모드로 동작할 것을 요청할 수 있고, OOK 방식으로 변조될 수 있다. 웨이크업 패킷(2101)은 Poll 지시자 및 MU 지시자를 더 포함할 수 있다. 웨이크업 패킷(2101)의 Poll 지시자는 WU-Poll 프레임의 전송이 요구되는 것을 지시할 수 있고, 웨이크업 패킷(2101)의 MU 지시자는 웨이크업 패킷(2101)이 다중 사용자 전송을 위해 사용되는 것을 지시할 수 있다.
웨이크업 패킷(2101)이 브로드캐스트 방식으로 전송되는 경우, 웨이크업 패킷(2101)의 수신기 주소 필드는 웨이크업 패킷(2101)이 브로드캐스트 방식으로 전송되는 것을 지시할 수 있다. 예를 들어, 웨이크업 패킷(2101)에 포함된 수신기 주소 필드는 웨이크업 패킷(2101)이 브로드캐스트 방식으로 전송되는 것을 지시하는 브로드캐스트 식별자(예를 들어, 브로드캐스트 MAC 주소, 브로드캐스트 AID, 브로드캐스트 PAID)로 설정될 수 있다. 웨이크업 패킷(2101)이 멀티캐스트 방식으로 전송되는 경우, 웨이크업 패킷(2101)은 데이터 프레임(2104)의 수신 대상인 저전력 스테이션#1 내지 #3을 지시하는 멀티캐스트 식별자(예를 들어, 멀티캐스트 MAC 주소, 멀티캐스트 AID, 멀티캐스트 PAID, 그룹 ID)를 포함할 수 있다. 액세스 포인트는 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2101)을 브로드캐스트 방식 또는 멀티캐스트 방식으로 전송할 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 내지 #4)의 WURx는 웨이크업 패킷(2101)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2101)이 수신되고, 웨이크업 패킷(2101)이 브로드캐스트 방식으로 전송된 경우, 액세스 포인트의 커버리지에 속한 모든 저전력 스테이션#1 내지 #4의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 액세스 포인트로부터 웨이크업 패킷(2101)이 수신되고, 웨이크업 패킷(2101)이 저전력 스테이션#1 내지 #3을 지시하는 멀티캐스트 식별자를 포함하는 경우, 저전력 스테이션#1 내지 #3의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 반면, 웨이크업 패킷(2101)에 포함된 멀티캐스트 식별자에 의해 지시되지 않는 저전력 스테이션#4의 동작 모드는 WUR 모드로 유지될 수 있다.
또한, 저전력 스테이션들은 웨이크업 패킷(2101)의 Poll 지시자에 기초하여 WU-Poll 프레임의 전송이 요구되는 것을 확인할 수 있고, 웨이크업 패킷(2101)의 MU 지시자에 기초하여 웨이크업 패킷(2101)이 다중 사용자 전송을 위해 사용되는 것을 확인할 수 있다. 따라서 저전력 스테이션들은 웨이크업 패킷(2101)을 수신한 후에 트리거 프레임#1(2102)의 수신을 위해 대기할 수 있다.
저전력 스테이션#1 내지 #3이 노멀 모드로 동작하는 것으로 판단된 경우(예를 들어, 웨이크업 패킷(2101)의 전송 종료 시점으로부터 전송 대기 구간(예를 들어, 모드 천이 시간)이 경과한 경우), 액세스 포인트는 WU-Poll 프레임(2103)의 전송을 트리거링하는 트리거 프레임#1(2102)을 전송할 수 있다. 트리거 프레임#1(2102)은 데이터 프레임(2104)의 수신 대상인 저전력 스테이션#1 내지 #3 각각의 식별자(예를 들어, MAC 주소, AID, PAID), 저전력 스테이션#1의 WU-Poll 프레임#1(2103)의 전송을 위해 할당된 RU#1을 지시하는 정보, 저전력 스테이션#2의 WU-Poll 프레임#2(2103)의 전송을 위해 할당된 RU#2를 지시하는 정보, 저전력 스테이션#3의 WU-Poll 프레임#3(2103)의 전송을 위해 할당된 RU#3을 지시하는 정보 등을 포함할 수 있다.
RU#1, RU#2 및 RU#3은 서로 다른 주파수 대역(예를 들어, 채널, 서브 채널)을 지시할 수 있고, 저전력 스테이션#1의 식별자, 저전력 스테이션#2의 식별자 및 저전력 스테이션#3의 식별자에 매핑될 수 있다. 또한, RU#1은 저전력 스테이션#1의 데이터 프레임#1(2104) 및 ACK 프레임#1(2105)의 송수신 절차를 위해 사용될 수 있고, RU#2는 저전력 스테이션#2의 데이터 프레임#2(2104) 및 ACK 프레임#2(2105)의 송수신 절차를 위해 사용될 수 있고, RU#3은 저전력 스테이션#3의 데이터 프레임#3(2104) 및 ACK 프레임#3(2105)의 송수신 절차를 위해 사용될 수 있다.
트리거 프레임#1(2102)이 액세스 포인트로부터 수신되고, 트리거 프레임#1(2102)에 포함된 식별자가 저전력 스테이션#1 내지 #3을 지시하는 경우, 저전력 스테이션#1 내지 #3은 트리거 프레임#1(2102)에 의해 지시되는 자원(예를 들어, RU#1, RU#2 및 RU#3)을 사용하여 WU-Poll 프레임(2103)을 전송할 수 있다. WU-Poll 프레임(2103)은 트리거 프레임#1(2102)의 수신 종료 시점으로부터 SIFS 후에 전송될 수 있고, OFDMA 방식으로 전송될 수 있다. 한편, 브로드캐스트 방식으로 전송된 웨이크업 패킷(2101)을 수신한 저전력 스테이션#4는 액세스 포인트로부터 트리거 프레임#1(2102)을 수신할 수 있고, 수신된 트리거 프레임#1(2102)에 포함된 식별자가 저전력 스테이션#4를 지시하지 않기 때문에 WUR 모드로 동작할 수 있다. 즉, 트리거 프레임#1(2102)이 수신된 후에 저전력 스테이션#4의 동작 모드는 노멀 모드에서 WUR 모드로 천이할 수 있다.
여기서, 트리거 프레임#1(2102)의 송수신 절차가 완료된 후에 WU-Poll 프레임(2103), 데이터 프레임(2104), ACK 프레임(2105), 트리거 프레임#2(2106), LP 동작 요청 프레임(2107) 및 LP 동작 응답 프레임(2108)의 송수신 절차들이 수행될 수 있다. WU-Poll 프레임(2103), 데이터 프레임(2104), ACK 프레임(2105), 트리거 프레임#2(2106), LP 동작 요청 프레임(2107) 및 LP 동작 응답 프레임(2108)의 송수신 절차들은 도 20에 도시된 WU-Poll 프레임(2005), 데이터 프레임(2006), ACK 프레임(2007), 트리거 프레임#2(2008), LP 동작 요청 프레임(2009) 및 LP 동작 응답 프레임(2010)의 송수신 절차들과 동일 또는 유사하게 수행될 수 있다.
■ 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치한 것을 지시하는 리브(leave) 프레임
앞서 설명된 도 10에 도시된 무선랜 기반의 통신 시스템에서 웨이크업 패킷(910)의 레거시 프리앰블(911)의 전송 거리가 웨이크업 패킷(910)의 WUR PPDU(912)의 전송 거리보다 짧기 때문에, 액세스 포인트의 커버리지 밖에 위치한 저전력 스테이션은 액세스 포인트로부터 WUR PPDU(912)를 수신할 수 있다. 그러나 WUR PPDU(912)가 성공적으로 수신된 경우에도, 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하기 때문에 저전력 스테이션과 액세스 포인트 간의 레거시 프레임의 송수신 절차는 수행되지 못할 수 있다. 이 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것을 지시하는 리브 프레임을 액세스 포인트에 전송할 수 있다. 리브 프레임의 송수신 절차는 다음과 같이 수행될 수 있다.
도 22는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제9 실시예를 도시한 타이밍도이다.
도 22를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지 밖에 위치할 수 있다. 예를 들어, 웨이크업 패킷(2201)이 레거시 프리앰블 및 WUR PPDU를 포함하는 경우, 저전력 스테이션은 웨이크업 패킷(2201)의 WUR PPDU의 전송 범위 내에 위치할 수 있고, 웨이크업 패킷(2201)의 레거시 프리앰블의 전송 범위 밖에 위치할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다.
액세스 포인트는 캐리어 센싱 구간 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2201)을 전송할 수 있다. 캐리어 센싱 구간 및 웨이크업 패킷(2201) 각각은 도 15에 도시된 캐리어 센싱 구간 및 웨이크업 패킷(1501)과 동일 또는 유사하게 설정될 수 있다. 웨이크업 패킷(2201)은 웨이크업 패킷(2201)의 전송 전력 정보를 더 포함할 수 있고, 전송 전력 정보는 웨이크업 패킷(2201)의 MAC 헤더 또는 프레임 바디에 포함될 수 있다. 또는, 웨이크업 패킷(2201)의 전송 전력 정보는 도 7에 도시된 절차에서 저전력 스테이션으로 시그널링될 수 있다. 예를 들어, 웨이크업 패킷(2201)의 전송 전력 정보는 도 7의 LP 응답 지원 프레임(702) 또는 연결 응답 프레임에 포함될 수 있다.
저전력 스테이션이 웨이크업 패킷(2201)의 WUR PPDU의 전송 범위 내에 위치하기 때문에, 저전력 스테이션은 웨이크업 패킷(2201)의 WUR PPDU를 수신할 수 있고, 웨이크업 패킷(2201)의 WUR PPDU에 포함된 정보(예를 들어, 전송 전력 정보)를 확인할 수 있다. 저전력 스테이션은 웨이크업 패킷(2201)의 전송 전력과 웨이크업 패킷(2201)의 수신 신호 세기 간의 차이(예를 들어, 경로 손실)를 확인할 수 있고, 확인된 차이에 기초하여 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는지를 판단할 수 있다. 예를 들어, 웨이크업 패킷(2201)의 전송 전력과 수신 신호 세기 간의 차이가 미리 설정된 임계값 미만인 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것으로 판단할 수 있다. 반면, 웨이크업 패킷(2201)의 전송 전력과 수신 신호 세기 간의 차이가 미리 설정된 임계값 이상인 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단할 수 있다.
또는, 저전력 스테이션은 웨이크업 패킷(2201)의 수신 신호 세기에 기초하여 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는지를 판단할 수 있다. 예를 들어, 웨이크업 패킷(2201)의 수신 신호 세기가 미리 설정된 임계값 이상인 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것으로 판단할 수 있다. 반면, 웨이크업 패킷(2201)의 수신 신호 세기가 미리 설정된 임계값 미만인 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단할 수 있다.
또는, 저전력 스테이션은 액세스 포인트로부터 수신된 프레임의 시퀀스 넘버에 기초하여 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는지를 판단할 수 있다. 예를 들어, 액세스 포인트로부터 수신된 프레임들의 시퀀스 넘버들이 연속되는 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것으로 판단할 수 있다. 반면, 액세스 포인트로부터 수신된 프레임들의 시퀀스 넘버들이 연속되지 않는 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단할 수 있다.
저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단된 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것을 지시하는 리브 프레임(2202)을 생성할 수 있다. 즉, 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단된 경우, 저전력 스테이션은 WU-Poll 프레임 대신에 리브 프레임(2202)을 액세스 포인트에 전송할 수 있다. 리브 프레임(2202)의 포맷은 웨이크업 패킷(2201)의 포맷과 동일 또는 유사할 수 있다. 예를 들어, 리브 프레임(2202)은 도 8에 도시된 웨이크업 패킷(800)과 동일하게 구성될 수 있고, OOK 방식에 기초하여 변복조될 수 있고, 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것을 지시하는 리브 지시자를 포함할 수 있다. 리브 지시자는 리브 프레임(2202)의 MAC 헤더 또는 프레임 바디에 포함될 수 있고, 1비트의 크기를 가질 수 있다. 예를 들어, "0"으로 설정된 리브 지시자는 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것을 지시할 수 있고, "1"로 설정된 리브 지시자는 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것을 지시할 수 있다.
저전력 스테이션은 캐리어 센싱 구간 동안 채널 상태가 아이들 상태인 경우에 리브 프레임(2202)을 액세스 포인트에 전송할 수 있다. 리브 프레임(2202)을 위한 캐리어 센싱 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다. 리브 프레임(2202)은 저전력 스테이션의 PCR에 의해 전송될 수 있고, 리브 프레임(2202)의 전송을 위해 저전력 스테이션의 PCR의 동작 상태는 슬립 상태에서 웨이크업 상태로 천이될 수 있고, 리브 프레임(2202)의 전송이 완료된 후에 저전력 스테이션의 PCR의 동작 상태는 웨이크업 상태에서 슬립 상태로 천이될 수 있다. 또는, 저전력 스테이션이 WUTx를 포함하는 경우, 리브 프레임(2202)은 저전력 스테이션의 WUTx에 의해 전송될 수 있다.
액세스 포인트는 저전력 스테이션으로부터 리브 프레임(2202)을 수신할 수 있고, 리브 프레임(2202)에 포함된 리브 지시자에 기초하여 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단할 수 있다. 따라서 액세스 포인트는 저전력 스테이션에 데이터 프레임을 전송하지 않을 수 있다. 또한, 액세스 포인트는 액세스 포인트에 저장된 저전력 스테이션의 정보(예를 들어, 컨텍스트(context) 정보)를 삭제할 수 있고, 저전력 스테이션과의 연결을 해제할 수 있다.
한편, 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단되고, 다른 액세스 포인트로부터 수신된 웨이크업 패킷의 수신 신호 세기가 미리 설정된 임계값 이상인 경우에 다른 액세스 포인트를 탐색하기 위해 저전력 스테이션의 PCR의 동작 상태는 슬립 상태에서 웨이크업 상태로 천이할 수 있다. 웨이크업 상태로 동작하는 PCR은 다른 액세스 포인트를 위한 탐색 동작을 수행할 수 있다. 이 경우, 저전력 스테이션의 WURx는 다른 액세스 포인트의 정보(예를 들어, MAC 주소, BSS ID, SSID(service set identifier) 등)를 저전력 스테이션의 PCR에 제공할 수 있고, 저전력 스테이션의 PCR은 저전력 스테이션의 WURx로부터 획득된 다른 액세스 포인트의 정보에 기초하여 탐색 동작을 신속하게 수행할 수 있다.
■ 얼라이브 타이머(alive timer)에 기초한 통신 노드의 동작 방법
무선랜 기반의 통신 시스템에서 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는지를 확인하기 위해 얼라이브 타이머가 사용될 수 있다. 얼라이브 타이머의 초기값은 0일 수 있고, 얼라이브 타이머의 종료값은 슬롯들의 개수로 표현될 수 있다. 얼라이브 타이머의 종료값은 액세스 포인트에 의해 설정될 수 있고, 액세스 포인트와 저전력 스테이션에서 공유될 수 있다. 얼라이브 타이머의 종료값은 도 7에 도시된 절차에서 저전력 스테이션으로 시그널링될 수 있다. 예를 들어, 얼라이브 타이머의 종료값은 도 7의 LP 응답 지원 프레임(702) 또는 연결 응답 프레임에 포함될 수 있다. 또는, 얼라이브 타이머의 종료값은 웨이크업 패킷(또는, 얼라이브 프레임)을 통해 저전력 스테이션에 시그널링될 수 있다. 얼라이브 타이머에 기초한 통신 노드의 동작 방법은 다음과 같을 수 있다.
도 23은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제10 실시예를 도시한 타이밍도이다.
도 23을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다.
액세스 포인트와 저전력 스테이션 간의 데이터 프레임(2302)의 송수신 절차가 수행될 수 있다. 여기서, 웨이크업 패킷#1(2301), 데이터 프레임(2302) 및 ACK 프레임(2303) 각각의 송수신 절차는 도 15에 도시된 웨이크업 패킷(1501), 데이터 프레임(1502) 및 ACK 프레임(1503)의 송수신 절차와 동일 또는 유사할 수 있다. 웨이크업 패킷#1(2301)은 얼라이브 타이머의 종료값을 포함할 수 있다.
데이터 프레임(2302)의 송수신 절차가 완료된 경우, 액세스 포인트 및 저전력 스테이션 각각은 ACK 프레임(2303)의 종료 시점에 얼라이브 타이머를 시작할 수 있다. 얼라이브 타이머의 종료값에 대응하는 구간(이하, "얼라이브 구간"이라 함)에서 하나 이상의 저전력 스테이션으로 전송될 데이터가 존재하지 않는 경우, 액세스 포인트는 얼라이브 구간의 종료 시점 전에 얼라이브 프레임(2304)을 전송할 수 있다. 또는, 얼라이브 타이머의 종료값에 대응하는 구간의 종료 시점 전에 얼라이브 프레임(2304) 대신에 웨이크업 패킷이 전송될 수 있다. 이 경우, 웨이크업 패킷은 얼라이브 프레임(2304)과 동일한 기능을 수행할 수 있다. 즉, 얼라이브 구간 동안에 액세스 포인트로부터 신호(예를 들어, 프레임)가 수신되지 않는 경우에 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단하기 때문에, 액세스 포인트는 얼라이브 구간의 종료 시점 전에 신호(예를 들어, 프레임)를 전송할 수 있다.
얼라이브 프레임(2304)은 유니캐스트 방식으로 저전력 스테이션에 전송될 수 있다. 또는, 얼라이브 프레임(2304)은 브로드캐스트 방식 또는 멀티캐스트 방식으로 전송될 수 있다. 따라서 액세스 포인트의 커버리지 내에 위치한 모든 저전력 스테이션들은 얼라이브 프레임(2304)을 수신할 수 있다. 얼라이브 프레임(2304)의 포맷은 도 8에 도시된 웨이크업 패킷(800)(예를 들어, WUR PPDU(820))의 포맷과 동일 또는 유사할 수 있다. 얼라이브 프레임(2304)은 얼라이브 타이머의 종료값을 포함할 수 있으며, 얼라이브 프레임(2304)에 포함된 얼라이브 타이머의 종료값은 웨이크업 패킷#1(2301)에 포함된 얼라이브 타이머의 종료값과 다를 수 있다.
여기서, 얼라이브 타이머의 종료값이 20으로 설정된 경우, 얼라이브 구간은 20개의 슬롯들에 대응하는 구간을 지시할 수 있다. 얼라이브 타이머가 시작되는 경우에 얼라이브 타이머의 값은 0부터 1만큼씩 증가될 수 있고, 얼라이브 타이머의 값이 종료값(예를 들어, 20)에 도달하는 경우에 얼라이브 타이머는 종료될 수 있다.
저전력 스테이션이 액세스 포인트의 커버리지 내에 위치한 경우, 저전력 스테이션은 액세스 포인트로부터 얼라이브 프레임(2304)(또는, 웨이크업 패킷)을 수신할 수 있고, 얼라이브 프레임(2304)(또는, 웨이크업 패킷)이 수신된 경우에 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것으로 판단할 수 있다. 또한, 얼라이브 프레임(2304)(또는, 웨이크업 패킷)의 수신기 주소 필드가 다른 저전력 스테이션을 지시하는 경우에도, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 내에 위치하는 것으로 판단할 수 있다. 이 경우, 저전력 스테이션은 얼라이브 타이머의 현재값을 초기화(reset)할 수 있다. 예를 들어, 얼라이브 프레임(2304)(또는, 웨이크업 패킷)의 수신 종료 시점에서, 저전력 스테이션은 얼라이브 타이머의 값을 0으로 설정할 수 있고, 얼라이브 타이머를 다시 시작할 수 있다. 또한, 얼라이브 프레임(2304)(또는, 웨이크업 패킷)에 새로운 얼라이브 타이머의 종료값이 포함되어 있는 경우, 저전력 스테이션은 새로운 얼라이브 타이머의 종료값을 사용할 수 있다.
한편, 저전력 스테이션으로 전송될 데이터가 존재하는 경우, 액세스 포인트는 웨이크업 패킷#2(2305)를 저전력 스테이션에 전송할 수 있고, 웨이크업 패킷#2(2305)의 전송 종료 시점에 얼라이브 타이머를 다시 시작할 수 있다. 저전력 스테이션은 액세스 포인트로부터 웨이크업 패킷#2(2305)를 수신할 수 있고, 웨이크업 패킷#2(2305)의 수신 종료 시점에서 얼라이브 타이머를 다시 시작할 수 있다. 또한, 액세스 포인트로부터 웨이크업 패킷#2(2305)가 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다.
웨이크업 패킷#2(2305)의 전송 후에 액세스 포인트는 데이터 프레임(미도시)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷#2(2305)를 수신한 후에 저전력 스테이션이 액세스 포인트의 커버리지 밖으로 이동한 경우, 저전력 스테이션은 액세스 포인트로부터 데이터 프레임을 수신하지 못할 수 있다. 예를 들어, 웨이크업 패킷#2(2305)의 수신 종료 시점부터 시작되는 얼라이브 구간에서 액세스 포인트로부터 데이터 프레임(또는, 트리거 프레임, 얼라이브 프레임, 웨이크업 패킷)이 수신되지 않은 경우, 저전력 스테이션은 저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단할 수 있다.
저전력 스테이션이 액세스 포인트의 커버리지 밖에 위치하는 것으로 판단된 경우, 저전력 스테이션은 다른 액세스 포인트를 탐색할 수 있다. 예를 들어, WUR 모드로 동작하는 저전력 스테이션의 동작 모드는 노멀 모드로 천이될 수 있고, 노멀 모드로 동작하는 저전력 스테이션의 PCR은 다른 액세스 포인트를 위한 탐색 동작을 수행할 수 있다. 이 경우, 저전력 스테이션의 WURx는 다른 액세스 포인트의 정보(예를 들어, MAC 주소, BSS ID, SSID 등)를 저전력 스테이션의 PCR에 제공할 수 있고, 저전력 스테이션의 PCR은 저전력 스테이션의 WURx로부터 획득된 다른 액세스 포인트의 정보에 기초하여 탐색 동작을 신속하게 수행할 수 있다.
■ PSMP(power save multi-poll) 절차에 기초한 통신 노드의 동작 방법
무선랜 기반의 통신 시스템에서 PSMP 절차가 사용될 수 있다.
도 24는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제11 실시예를 도시한 타이밍도이다.
도 24를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3 등을 포함할 수 있다. 저전력 스테이션#1 내지 #3은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션#1 내지 #3은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션#1 내지 #3은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션션#1 내지 #3은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 24의 웨이크업 패킷(2401) 및 캐리어 센싱 구간 각각은 도 15의 웨이크업 패킷(1501) 및 캐리어 센싱 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 내지 #3으로 전송될 데이터가 존재하고, 저전력 스테이션#1 내지 #3이 PSMP 절차를 지원하는 경우, 액세스 포인트는 웨이크업 패킷(2401)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2401)을 전송할 수 있다. 웨이크업 패킷(2401)은 브로드캐스트 방식 또는 멀티캐스트 방식으로 저전력 스테이션#1 내지 #3에 전송될 수 있다. 웨이크업 패킷(2401)은 PSMP 절차가 수행되는 것을 지시하는 지시자를 포함할 수 있다. PSMP 절차가 수행되는 것을 지시하는 지시자는 웨이크업 패킷(2401)의 MAC 헤더 또는 프레임 바디에 포함될 수 있고, PSMP 절차에 참여하는 저전력 스테이션의 식별자 또는 그룹 식별자일 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 내지 #3의 WURx는 웨이크업 패킷(2401)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 액세스 포인트로부터 웨이크업 패킷(2401)을 수신할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2401)이 수신된 경우, 저전력 스테이션#1 내지 #3 각각의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2401)에 포함된 정보에 기초하여 PSMP 절차가 수행되는 것으로 판단할 수 있다.
저전력 스테이션#1 내지 #3이 노멀 모드로 동작하는 것으로 판단된 경우(예를 들어, 웨이크업 패킷(2401)의 전송 종료 시점으로부터 전송 대기 구간(예를 들어, 모드 천이 시간)이 경과한 경우), 액세스 포인트는 PSMP 프레임(2402)을 저전력 스테이션#1 내지 #3에 전송할 수 있다. PSMP 프레임(2402)은 하향링크 구간을 지시하는 정보, 하향링크 구간에서 PSMP DTT(downlink transmission time)#1 내지 #3(2403, 2404, 2405)을 지시하는 정보, 상향링크 구간을 지시하는 정보, 상향링크 구간에서 PSMP UTT(uplink transmission time)#1 내지 #3(2406, 2407, 2408)을 지시하는 정보, PSMP 프레임(2402)에 의해 트리거링되는 PSMP 절차에 참여하는 저전력 스테이션들의 개수 등을 포함할 수 있다. 여기서, PSMP DTT#1(2403) 및 PSMP UTT#1(2406)은 저전력 스테이션#1을 위해 설정될 수 있고, PSMP DTT#2(2404) 및 PSMP UTT#2(2407)는 저전력 스테이션#2를 위해 설정될 수 있고, PSMP DTT#3(2405) 및 PSMP UTT#3(2408)은 저전력 스테이션#3을 위해 설정될 수 있다. 하향링크 구간에서 PSMP DTT들(2403, 2404, 2405) 간의 간격은 RIFS 또는 SIFS일 수 있고, 상향링크 구간에서 PSMP UTT들(2406, 2407, 2408) 간의 간격은 RIFS 또는 SIFS일 수 있다.
노멀 모드로 동작하는 저전력 스테이션#1 내지 #3(예를 들어, 저전력 스테이션#1 내지 #3의 PCR)은 액세스 포인트로부터 PSMP 프레임(2402)을 수신할 수 있고, PSMP 프레임(2402)에 포함된 정보를 확인할 수 있다. 예를 들어, 저전력 스테이션#1 내지 #3은 PSMP DTT(2403, 2404, 2405) 및 PSMP UTT(2406, 2407, 2408)를 확인할 수 있다.
PSMP DTT#1(2403)에서, 액세스 포인트는 데이터 프레임을 저전력 스테이션#1에 전송할 수 있고, 저전력 스테이션#1은 액세스 포인트로부터 데이터 프레임을 수신할 수 있다. PSMP UTT#1(2406)에서, 저전력 스테이션#1은 데이터 프레임을 액세스 포인트에 전송할 수 있고, 액세스 포인트는 저전력 스테이션#1로부터 데이터 프레임을 수신할 수 있다. 또한, 저전력 스테이션#1은 PSMP DTT#1(2403)에서 수신된 데이터 프레임에 대한 응답인 ACK 프레임을 PSMP UTT#1(2406)에서 전송할 수 있다.
PSMP DTT#1(2403)의 종료 시점부터 PSMP UTT#1(2406)의 시작 시점까지 저전력 스테이션#1은 WUR 모드로 동작할 수 있다. 또는, PSMP DTT#1(2403)의 종료 시점부터 PSMP UTT#1(2406)의 시작 시점까지 저전력 스테이션#1의 PCR 및 WURx는 모두 슬립 상태로 동작할 수 있다. PSMP UTT#1(2406)의 종료 시점 후에 저전력 스테이션#1은 WUR 모드로 동작할 수 있다.
PSMP DTT#2(2404)에서, 액세스 포인트는 데이터 프레임을 저전력 스테이션#2에 전송할 수 있고, 저전력 스테이션#2는 액세스 포인트로부터 데이터 프레임을 수신할 수 있다. PSMP UTT#2(2407)에서, 저전력 스테이션#2는 데이터 프레임을 액세스 포인트에 전송할 수 있고, 액세스 포인트는 저전력 스테이션#2로부터 데이터 프레임을 수신할 수 있다. 또한, 저전력 스테이션#2는 PSMP DTT#2(2404)에서 수신된 데이터 프레임에 대한 응답인 ACK 프레임을 PSMP UTT#2(2407)에서 전송할 수 있다.
PSMP DTT#2(2404)의 종료 시점부터 PSMP UTT#2(2407)의 시작 시점까지 저전력 스테이션#2는 WUR 모드로 동작할 수 있다. 또는, PSMP DTT#2(2404)의 종료 시점부터 PSMP UTT#2(2407)의 시작 시점까지 저전력 스테이션#2의 PCR 및 WURx는 모두 슬립 상태로 동작할 수 있다. PSMP UTT#2(2407)의 종료 시점 후에 저전력 스테이션#2는 WUR 모드로 동작할 수 있다.
PSMP DTT#3(2405)에서, 액세스 포인트는 데이터 프레임을 저전력 스테이션#3에 전송할 수 있고, 저전력 스테이션#3은 액세스 포인트로부터 데이터 프레임을 수신할 수 있다. PSMP UTT#3(2408)에서, 저전력 스테이션#3은 데이터 프레임을 액세스 포인트에 전송할 수 있고, 액세스 포인트는 저전력 스테이션#3으로부터 데이터 프레임을 수신할 수 있다. 또한, 저전력 스테이션#3은 PSMP DTT#3(2405)에서 수신된 데이터 프레임에 대한 응답인 ACK 프레임을 PSMP UTT#3(2408)에서 전송할 수 있다.
PSMP DTT#3(2405)의 종료 시점부터 PSMP UTT#3(2408)의 시작 시점까지 저전력 스테이션#3은 WUR 모드로 동작할 수 있다. 또는, PSMP DTT#3(2405)의 종료 시점부터 PSMP UTT#3(2408)의 시작 시점까지 저전력 스테이션#3의 PCR 및 WURx는 모두 슬립 상태로 동작할 수 있다. PSMP UTT#3(2408)의 종료 시점 후에 저전력 스테이션#3은 WUR 모드로 동작할 수 있다.
■ U- APSD (unscheduled automatic power save delivery) 절차에 기초한 통신 노드의 동작 방법
무선랜 기반의 통신 시스템에서 U-APSD 절차가 사용될 수 있다.
도 25는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제12 실시예를 도시한 타이밍도이다.
도 25를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 25의 웨이크업 패킷(2501) 및 캐리어 센싱 구간 각각은 도 15의 웨이크업 패킷(1501) 및 캐리어 센싱 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션으로 전송될 데이터가 존재하고, 저전력 스테이션이 U-APSD 절차를 지원하는 경우, 액세스 포인트는 웨이크업 패킷(2501)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2501)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷(2501)은 U-APSD 절차가 수행되는 것을 지시하는 지시자를 포함할 수 있고, U-APSD 절차가 수행되는 것을 지시하는 지시자는 저전력 스테이션의 식별자 또는 그룹 식별자일 수 있다. U-APSD 절차가 수행되는 것을 지시하는 지시자는 웨이크업 패킷(2501)의 MAC 헤더 또는 프레임 바디에 포함될 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션은 웨이크업 패킷(2501)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 액세스 포인트로부터 웨이크업 패킷(2501)을 수신할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2501)이 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션은 웨이크업 패킷(2501)에 포함된 정보에 기초하여 U-APSD 절차가 수행되는 것으로 판단할 수 있다.
노멀 모드로 동작하는 저전력 스테이션(예를 들어, 저전력 스테이션의 PCR)은 U-APSD 절차를 트리거링하는 데이터 프레임#1(2502)을 액세스 포인트에 전송할 수 있다. 또는, 저전력 스테이션은 데이터 프레임#1(2502) 대신에 널 데이터 프레임을 액세스 포인트에 전송할 수 있다. 저전력 스테이션으로부터 데이터 프레임#1(2502)(또는, 널 데이터 프레임)이 수신된 경우, 액세스 포인트는 U-APSD 절차가 개시되는 것으로 판단할 수 있고, 데이터 프레임#1(2502)의 응답인 ACK 프레임#1(2503)을 데이터 프레임#1(2502)의 수신 종료 시점으로부터 SIFS 후에 저전력 스테이션에 전송할 수 있다. 그 후에, U-APSD 절차에 따른 상향링크 프레임에 의해 설정된 TXOP(Transmission Opportunity) 내에서 액세스 포인트와 저전력 스테이션 간의 데이터의 송수신 절차가 수행될 수 있다. 예를 들어, 액세스 포인트는 ACK 프레임#1(2503)의 전송 종료 시점 후에 RD(Reverse Direction) 절차를 통해 데이터 프레임#2(2504)를 저전력 스테이션에 전송할 수 있다. 또는, 데이터 프레임#2(2504) 대신에 널 데이터 프레임이 저전력 스테이션에 전송될 수 있다. 저전력 스테이션은 액세스 포인트로부터 데이터 프레임#2(2504)를 수신할 수 있고, 데이터 프레임#2(2504)의 수신 종료 시점으로부터 SIFS 후에 ACK 프레임#2(2505)를 액세스 포인트에 전송할 수 있다. ACK 프레임#2(2505)가 저전력 스테이션으로부터 수신된 경우, 액세스 포인트는 데이터 프레임#2(2504)가 저전력 스테이션에서 성공적으로 수신된 것으로 판단할 수 있다.
반면, 앞서 설명된 TXOP에서 전송 절차와 다르게 RD가 설정되어 있지 않거나 TXOP의 길이가 데이터 프레임#2(2504)의 전송을 위해 필요한 시간보다 짧은 경우, 액세스 포인트는 ACK 프레임#1(2503)의 전송 종료 시점으로부터 SIFS 후에 데이터 프레임#2(2504)를 전송하는 대신에 별도의 채널 접속 절차를 수행함으로써 데이터 프레임#2(2504)를 전송할 수 있다. 한편, 미리 설정된 시간(예를 들어, 노멀 모드로 동작하는 것으로 협의된 시간) 이상을 노멀 모드로 동작하고 있는 저전력 스테이션은 액세스 포인트와 저전력 스테이션 간의 TXOP 종료 후에 WUR 모드로 천이될 수 있다. 한편, U-APSD 절차에 복수의 저전력 스테이션들이 참여하는 경우, 아래의 문제들이 발생할 수 있다.
도 26은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제13 실시예를 도시한 타이밍도이다.
도 26을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2, 저전력 스테이션#3 등을 포함할 수 있다. 저전력 스테이션#1 내지 #3은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션#1 내지 #3은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션#1 내지 #3은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션#1 내지 #3은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 도 26의 웨이크업 패킷(2601) 및 캐리어 센싱 구간 각각은 도 15의 웨이크업 패킷(1501) 및 캐리어 센싱 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 내지 #3으로 전송될 데이터가 존재하고, 저전력 스테이션#1 내지 #3이 U-APSD 절차를 지원하는 경우, 액세스 포인트는 웨이크업 패킷(2601)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2601)을 전송할 수 있다. 웨이크업 패킷(2601)은 브로드캐스트 방식 또는 멀티캐스트 방식으로 저전력 스테이션#1 내지 #3에 전송될 수 있다. 웨이크업 패킷(2601)는 U-APSD 절차가 수행되는 것을 지시하는 지시자를 포함할 수 있고, U-APSD 절차가 수행되는 것을 지시하는 지시자는 U-APSD 절차에 참여하는 저전력 스테이션의 식별자 또는 그룹 식별자일 수 있다. U-APSD 절차가 수행되는 것을 지시하는 지시자는 웨이크업 패킷(2601)의 MAC 헤더 또는 프레임 바디에 포함될 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2601)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 액세스 포인트로부터 웨이크업 패킷(2601)을 수신할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2601)이 수신된 경우, 저전력 스테이션#1 내지 #3은 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션#1 내지 #3은 웨이크업 패킷(2601)에 포함된 정보에 기초하여 U-APSD 절차가 수행되는 것으로 판단할 수 있다.
노멀 모드로 동작하는 저전력 스테이션#1 내지 #3(예를 들어, 저전력 스테이션#1 내지 #3의 PCR)은 U-APSD 절차를 트리거링하는 데이터 프레임#1 내지 #3(2602, 2603, 2604)을 액세스 포인트에 전송할 수 있다. 저전력 스테이션#1 내지 #3은 WUR 모드에서 노멀 모드로의 천이 시점부터 EDCA 방식에 따른 구간(예를 들어, 도 3에 도시된 SIFS, DIFS, AIFS 등) 동안에 채널 상태가 아이들 상태인 경우에 데이터 프레임#1 내지 #3(2602, 2603, 2604)을 전송할 수 있다. 저전력 스테이션#1 내지 #3의 모드 천이 시간이 비슷한 경우, 데이터 프레임#1 내지 #3(2602, 2603, 2604)의 전송은 충돌될 수 있다. 따라서 액세스 포인트는 저전력 스테이션#1 내지 #3으로부터 데이터 프레임#1 내지 #3(2602, 2603, 2604)을 수신할 수 없으며, 이에 따라 U-APSD 절차가 수행되지 못할 수 있다.
■ 셀프(self) NAV에 기초한 통신 노드의 동작 방법
앞서 설명된 도 26의 문제를 해소하기 위해 셀프 NAV가 사용될 수 있다. 셀프 NAV 값은 프레임에 포함된 듀레이션 필드와 무관하게 저전력 스테이션 또는 액세스 포인트에 의해 설정될 수 있다. 셀프 NAV 값이 액세스 포인트에 의해 설정된 경우, 액세스 포인트는 설정된 셀프 NAV 값을 저전력 스테이션에 알려줄 수 있다. 예를 들어, 셀프 NAV 값은 도 7 도시된 절차를 통해 저전력 스테이션에 시그널링될 수 있다. 셀프 NAV는 WUR 모드에서 노멀 모드로의 천이 시점부터 설정될 수 있고, 셀프 NAV 값은 WUR 모드에서 노멀 모드로의 천이 시점부터 특정 시점까지의 구간을 지시할 수 있다. 복수의 저전력 스테이션들은 동일 또는 서로 다른 셀프 NAV 값을 가질 수 있다.
도 27은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제14 실시예를 도시한 타이밍도이다.
도 27을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2 등을 포함할 수 있다. 저전력 스테이션#1 및 #2는 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 저전력 스테이션#1의 모드 천이 시간은 저전력 스테이션#2의 모드 천이 시간과 동일할 수 있다. 또는, 저전력 스테이션#1의 모드 천이 시간은 저전력 스테이션#2의 모드 천이 시간과 다를 수 있다. 도 27의 웨이크업 패킷(2701) 및 캐리어 센싱 구간 각각은 도 15의 웨이크업 패킷(1501) 및 캐리어 센싱 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 및 #2로 전송될 데이터가 존재하고, 저전력 스테이션#1 및 #2가 U-APSD 절차(또는, 도 17 내지 도 21에 도시된 WU-Poll 프레임에 기초한 통신 절차)를 지원하는 경우, 액세스 포인트는 웨이크업 패킷(2701)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2701)을 전송할 수 있다. 웨이크업 패킷(2701)은 브로드캐스트 방식 또는 멀티캐스트 방식에 기초하여 저전력 스테이션#1 및 #2에 전송될 수 있다.
U-APSD 절차가 수행되는 경우, 웨이크업 패킷(2701)은 U-APSD 절차가 수행되는 것을 지시하는 지시자를 포함할 수 있다. U-APSD 절차가 수행되는 것을 지시하는 지시자는 웨이크업 패킷(2701)의 MAC 헤더 또는 프레임 바디에 포함될 수 있다. 도 17 내지 도 21에 도시된 WU-Poll 프레임에 기초한 통신 절차가 수행되는 경우, 웨이크업 패킷(2701)은 WU-Poll 프레임에 기초한 통신 절차가 수행되는 것을 지시하는 지시자(예를 들어, Poll 지시자)를 포함할 수 있다. WU-Poll 프레임에 기초한 통신 절차가 수행되는 것을 지시하는 지시자(예를 들어, Poll 지시자)는 웨이크업 패킷(2701)의 MAC 헤더 또는 프레임 바디에 포함될 수 있다. 또한, 웨이크업 패킷(2701)은 저전력 스테이션#1 및 #2 각각의 셀프 NAV 값을 포함할 수 있다. 저전력 스테이션#1의 셀프 NAV 값은 저전력 스테이션#2의 셀프 NAV 값과 다르게 설정될 수 있다. 저전력 스테이션#1 및 #2가 셀프 NAV 값을 알고 있는 경우, 셀프 NAV 값은 웨이크업 패킷(2701)에 포함되지 않을 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 및 #2는 웨이크업 패킷(2701)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 액세스 포인트로부터 웨이크업 패킷(2701)을 수신할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2701)이 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 또한, 저전력 스테이션은 웨이크업 패킷(2701)에 포함된 정보에 기초하여 U-APSD 절차(또는, WU-Poll 프레임에 기초한 통신 절차)가 수행되는 것으로 판단할 수 있다.
저전력 스테이션#1 및 #2는 WUR 모드에서 노멀 모드로의 천이 시점에서 셀프 NAV를 설정할 수 있고, 셀프 NAV의 종료 시점 후의 캐리어 센싱 구간에서 캐리어 센싱 동작을 수행할 수 있다. 셀프 NAV의 종료 시점 후의 캐리어 센싱 구간은 도 3에 도시된 SIFS, PIFS, "DIFS + 백오프 구간", "AIFS[AC_VO] + 백오프[AC_VO] 구간", "AIFS[AC_VI] + 백오프[AC_VI] 구간", "AIFS[AC_BE] + 백오프[AC_BE] 구간" 또는 "AIFS[AC_BK] + 백오프[AC_BK] 구간"일 수 있다.
저전력 스테이션#1은 셀프 NAV 종료 시점 후의 캐리어 센싱 구간 동안에 채널 상태가 아이들 상태이기 때문에 데이터 프레임#1(2702)을 액세스 포인트에 전송할 수 있다. 액세스 포인트는 저전력 스테이션#1로부터 데이터 프레임#1(2702)을 수신할 수 있고, SP#1에서 데이터 프레임#1(2702)에 의해 트리거링되는 U-APSD 절차(예를 들어, 액세스 포인트와 저전력 스테이션#1 간의 통신 절차)를 수행할 수 있다. 또는, WU-Poll 프레임에 기초한 통신 절차가 수행되는 경우, 저전력 스테이션#1은 데이터 프레임#1(2702) 대신에 WU-Poll 프레임을 액세스 포인트에 전송할 수 있다. 액세스 포인트는 저전력 스테이션#1로부터 WU-Poll 프레임을 수신할 수 있고, WU-Poll 프레임에 의해 트리거링되는 통신 절차(예를 들어, 액세스 포인트와 저전력 스테이션#1 간의 통신 절차)를 수행할 수 있다. 액세스 포인트와 저전력 스테이션#1 간의 통신 절차가 종료된 경우, 저전력 스테이션#1의 동작 모드는 노멀 모드에서 WUR 모드로 천이될 수 있다.
한편, 저전력 스테이션#2는 셀프 NAV 종료 시점 후의 캐리어 센싱 구간 동안에 저전력 스테이션#1의 데이터 프레임#1(2702)을 감지할 수 있고, 데이터 프레임#1(2702)의 수신 신호 세기가 미리 설정된 임계값 이상인 경우에 채널 상태를 비지 상태로 판단할 수 있다. 캐리어 센싱 구간 동안에 채널 상태가 비지 상태인 경우, 저전력 스테이션#2는 현재 백오프 값을 정지(예를 들어, 랜덤 백오프 절차의 정지)시킬 수 있고, 채널 상태가 아이들 상태로 될 때까지 프레임(예를 들어, 데이터 프레임, WU-Poll 프레임)을 전송하지 않을 수 있다. 그 후에, 저전력 스테이션#2는 프레임 전송을 위해 캐리어 센싱 동작을 다시 수행할 수 있다. 예를 들어, 저전력 스테이션#2는 "DIFS + 정지된 백오프 값에 대응하는 구간" 또는 "AIFS + 정지된 백오프 값에 대응하는 구간" 동안에 캐리어 센싱 동작을 다시 수행할 수 있다. 캐리어 센싱 구간에서 채널 상태가 아이들 상태인 경우, 저전력 스테이션#2는 데이터 프레임#2(2703)를 액세스 포인트에 전송할 수 있다.
액세스 포인트는 저전력 스테이션#2로부터 데이터 프레임#2(2703)를 수신할 수 있고, SP#2에서 데이터 프레임#2(2703)에 의해 트리거링되는 U-APSD 절차(예를 들어, 액세스 포인트와 저전력 스테이션#2 간의 통신 절차)를 수행할 수 있다. 또는, WU-Poll 프레임에 기초한 통신 절차가 수행되는 경우, 저전력 스테이션#2는 데이터 프레임#2(2703) 대신에 WU-Poll 프레임을 액세스 포인트에 전송할 수 있다. 액세스 포인트는 저전력 스테이션#2로부터 WU-Poll 프레임을 수신할 수 있고, WU-Poll 프레임에 의해 트리거링되는 통신 절차(예를 들어, 액세스 포인트와 저전력 스테이션#2 간의 통신 절차)를 수행할 수 있다. 액세스 포인트와 저전력 스테이션#2 간의 통신 절차가 종료된 경우, 저전력 스테이션#2의 동작 모드는 노멀 모드에서 WUR 모드로 천이될 수 있다.
한편, 앞서 설명된 도 21의 실시예에서 트리거 프레임#1(2102)의 전송을 보장하기 위해 셀프 NAV가 사용될 수 있으며, 셀프 NAV에 기초한 통신 노드의 동작 방법은 다음과 같을 수 있다.
도 28은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제15 실시예를 도시한 타이밍도이다.
도 28을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션#1, 저전력 스테이션#2 등을 포함할 수 있다. 저전력 스테이션#1 및 #2는 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트, 저전력 스테이션#1 및 저전력 스테이션#2는 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다. 저전력 스테이션#1의 모드 천이 시간은 저전력 스테이션#2의 모드 천이 시간과 다를 수 있다. 도 28의 웨이크업 패킷(2801), 트리거 프레임(2802) 및 캐리어 센싱 구간 각각은 도 21의 웨이크업 패킷(2101), 트리거 프레임#1(2102) 및 캐리어 센싱 구간과 동일 또는 유사하게 설정될 수 있다.
저전력 스테이션#1 및 #2로 전송될 데이터가 존재하는 경우, 액세스 포인트는 웨이크업 패킷(2801)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷(2801)을 전송할 수 있다. 웨이크업 패킷(2801)은 브로드캐스트 방식 또는 멀티캐스트 방식에 기초하여 저전력 스테이션#1 및 #2에 전송될 수 있다. 웨이크업 패킷(2801)은 저전력 스테이션#1 및 #2 각각의 셀프 NAV 값을 포함할 수 있다. 저전력 스테이션#1 및 #2 각각의 셀프 NAV 값은 셀프 NAV가 T1까지 설정되도록 결정될 수 있다. 따라서 저전력 스테이션#1의 셀프 NAV 값은 WUR 모드에서 노멀 모드로의 천이 시점부터 T1까지의 구간을 지시할 수 있고, 저전력 스테이션#2의 셀프 NAV 값은 WUR 모드에서 노멀 모드로의 천이 시점부터 T1까지의 구간을 지시할 수 있다. 저전력 스테이션#1의 모드 천이 시간이 저전력 스테이션#2의 모드 천이 시간과 다른 경우, 저전력 스테이션#1의 셀프 NAV 값은 저전력 스테이션#2의 셀프 NAV 값과 다를 수 있다. 저전력 스테이션#1 및 #2가 셀프 NAV 값을 알고 있는 경우, 셀프 NAV 값은 웨이크업 패킷(2801)에 포함되지 않을 수 있다.
WUR 모드(예를 들어, PCR: 슬립 상태, WURx: 웨이크업 상태)로 동작하는 저전력 스테이션#1 및 #2는 웨이크업 패킷(2801)을 수신하기 위해 모니터링 동작(예를 들어, 캐리어 센싱 동작)을 수행할 수 있고, 액세스 포인트로부터 웨이크업 패킷(2801)을 수신할 수 있다. 액세스 포인트로부터 웨이크업 패킷(2801)이 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 저전력 스테이션#1 및 #2는 WUR 모드에서 노멀 모드로의 천이 시점에서 셀프 NAV를 설정할 수 있고, 셀프 NAV의 종료 시점 후의 캐리어 센싱 구간에서 캐리어 센싱 동작을 수행할 수 있다.
한편, 셀프 NAV에 의해 트리거 프레임(2802)의 전송이 보장되기 때문에, 액세스 포인트는 랜덤 액세스 절차의 수행 없이 미리 설정된 구간(예를 들어, SIFS, DIFS) 동안에 채널 상태가 아이들 상태인 경우에 트리거 프레임(2802)을 전송할 수 있다. 예를 들어, 트리거 프레임(2802)은 "셀프 NAV 값에 의해 지시되는 구간 + 캐리어 센싱 구간" 내에서 전송될 수 있다. 저전력 스테이션#1 및 #2는 액세스 포인트로부터 트리거 프레임(2802)을 수신할 수 있고, 트리거 프레임(2802)에 의해 지시되는 자원을 사용하여 WU-Poll 프레임(2803-1, 2803-2)을 전송할 수 있다. 여기서, WU-Poll 프레임(2803-1, 2803-2), 데이터 프레임(2804) 및 ACK 프레임(2805-1, 2805-2) 각각의 송수신 절차는 도 21에 도시된 WU-Poll 프레임(2103), 데이터 프레임(2104) 및 ACK 프레임(2105)의 송수신 절차와 동일 또는 유사하게 수행될 수 있다.
■ PCR 및 WUTx를 포함하는 액세스 포인트의 동작 방법
액세스 포인트는 PCR 및 WUTx를 포함할 수 있고, 액세스 포인트의 PCR 및 WUTx 각각은 독립적으로 동작할 수 있다. 액세스 포인트의 PCR 및 WUTx 각각이 독립적으로 동작하는 경우, 아래의 문제점들이 발생할 수 있다.
도 29는 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제16 실시예를 도시한 타이밍도이다.
도 29를 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다.
저전력 스테이션으로 전송될 데이터가 존재하는 경우, 액세스 포인트는 웨이크업 패킷#1(2901)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷#1(2901)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷#1(2901)은 액세스 포인트의 WUTx에 의해 전송될 수 있다. 웨이크업 패킷#1(2901)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 웨이크업 패킷#1(2901)의 종료 시점으로부터 전송 대기 구간 후에, 액세스 포인트의 PCR은 데이터 프레임#1(2902)을 저전력 스테이션에 전송할 수 있다.
한편, 저전력 스테이션은 액세스 포인트로부터 웨이크업 패킷#1(2901)을 수신하지 못할 수 있으며, 이 경우에 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이되지 못할 수 있다. 즉, 저전력 스테이션은 계속하여 WUR 모드로 동작할 수 있다. 따라서 저전력 스테이션은 액세스 포인트로부터 데이터 프레임#1(2902)을 수신하지 못할 수 있고, 데이터 프레임#1(2902)이 수신되지 않은 경우에 데이터 프레임#1(2902)에 대한 응답(예를 들어, ACK 프레임)을 액세스 포인트에 전송하지 못할 수 있다.
웨이크업 패킷#1(2901)의 전송 후에 저전력 스테이션으로부터 응답이 수신되지 않는 경우, 액세스 포인트의 WUTx는 저전력 스테이션이 WUR 모드에서 노멀 모드로 천이되지 못한 것으로 판단할 수 있다. 따라서 액세스 포인트의 WUTx는 웨이크업 패킷#2(2903)를 저전력 스테이션에 재전송할 수 있다. 여기서, 웨이크업 패킷#2(2903)는 웨이크업 패킷#1(2901)과 동일할 수 있다.
반면, 데이터 프레임#1(2902)에 대한 응답이 저전력 스테이션으로부터 수신되지 않는 경우, 액세스 포인트의 PCR은 데이터 프레임#1(2902)이 저전력 스테이션에서 성공적으로 수신되지 못한 것으로 판단할 수 있다. 따라서 액세스 포인트의 PCR은 데이터 프레임#2(2904)를 저전력 스테이션에 재전송할 수 있다. 여기서, 데이터 프레임#2(2904)는 데이터 프레임#1(2901)과 동일할 수 있다. 저전력 스테이션이 WUR 모드로 동작하는 경우에 데이터 프레임#2(2904)에 대한 응답은 저전력 스테이션으로부터 수신되지 않기 때문에, 액세스 포인트의 PCR은 데이터 프레임의 재전송 절차를 계속하여 수행할 수 있다. 데이터 프레임의 재전송 절차에 의해 채널이 불필요하게 점유되기 때문에 채널 효율이 감소될 수 있다. 또한, 데이터 프레임의 재전송 절차에서 캐리어 센싱 동작을 위한 경쟁 윈도우는 데이터 프레임의 이전 전송 절차에서 캐리어 센싱 동작을 위한 경쟁 윈도우의 2배이기 때문에, 경쟁 윈도우의 증가에 따라 데이터 프레임의 전송이 지연될 수 있다.
앞서 설명된 문제점을 해결하기 위해 액세스 포인트의 PCR은 셀프 NAV를 설정할 수 있다. 셀프 NAV에 기초한 통신 노드의 동작 방법은 다음과 같을 수 있다.
도 30은 무선랜 기반의 통신 시스템에서 통신 노드의 동작 방법의 제17 실시예를 도시한 타이밍도이다.
도 30을 참조하면, 무선랜 기반의 통신 시스템은 액세스 포인트, 저전력 스테이션 등을 포함할 수 있다. 저전력 스테이션은 액세스 포인트의 커버리지에 속할 수 있고, 액세스 포인트에 접속될 수 있다. 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)과 동일 또는 유사하게 구성될 수 있다. 또한, 액세스 포인트 및 저전력 스테이션은 도 5의 저전력 스테이션(500)에 비해 WUTx를 더 포함할 수 있다. 액세스 포인트 및 저전력 스테이션은 도 3에 도시된 EDCA 방식에 기초하여 동작할 수 있다.
저전력 스테이션으로 전송될 데이터가 존재하는 경우, 액세스 포인트는 웨이크업 패킷#1(3001)을 생성할 수 있고, 미리 설정된 구간(예를 들어, 캐리어 센싱 구간) 동안 채널 상태가 아이들 상태인 경우에 웨이크업 패킷#1(3001)을 저전력 스테이션에 전송할 수 있다. 웨이크업 패킷#1(3001)은 액세스 포인트의 WUTx에 의해 전송될 수 있다. 웨이크업 패킷#1(3001)은 도 8 및 도 12 내지 도 14에 도시된 웨이크업 패킷과 동일 또는 유사하게 구성될 수 있다. 웨이크업 패킷#1(3001)의 종료 시점으로부터 전송 대기 구간 후에, 액세스 포인트의 PCR은 데이터 프레임#1(3002)을 저전력 스테이션에 전송할 수 있다.
한편, 저전력 스테이션은 액세스 포인트로부터 웨이크업 패킷#1(3001)을 수신하지 못할 수 있으며, 이 경우에 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이되지 못할 수 있다. 즉, 저전력 스테이션은 계속하여 WUR 모드로 동작할 수 있다. 따라서 저전력 스테이션은 액세스 포인트로부터 데이터 프레임#1(3002)을 수신하지 못할 수 있고, 데이터 프레임#1(3002)이 수신되지 않은 경우에 데이터 프레임#1(3002)에 대한 응답(예를 들어, ACK 프레임)을 액세스 포인트에 전송하지 못할 수 있다.
웨이크업 패킷#1(3001)의 전송 후에 저전력 스테이션으로부터 응답이 수신되지 않는 경우, 액세스 포인트의 WUTx는 저전력 스테이션이 WUR 모드에서 노멀 모드로 천이되지 못한 것으로 판단할 수 있다. 또한, 데이터 프레임#1(3002)에 대한 응답이 저전력 스테이션으로부터 수신되지 않는 경우, 액세스 포인트의 PCR은 데이터 프레임#1(3002)이 저전력 스테이션에서 성공적으로 수신되지 못한 것으로 판단할 수 있고, 셀프 NAV를 설정할 수 있다. 데이터 프레임#1(3002)에 대한 응답이 저전력 스테이션으로부터 수신되지 않은 것은 저전력 스테이션이 노멀 모드로 동작하지 않는 것을 지시할 수 있기 때문에, 저전력 스테이션이 노멀 모드로 동작할 때까지 데이터 프레임의 재전송을 제한하기 위해 셀프 NAV가 설정될 수 있다. 예를 들어, 액세스 포인트의 PCR을 위한 셀프 NAV는 웨이크업 패킷#2(3003)로 인한 전송 대기 구간의 종료 시점까지 설정될 수 있다. 셀프 NAV에 의해 데이터 프레임의 재전송이 제한되기 때문에, 불필요한 데이터 프레임에 의해 채널이 점유되는 것이 방지될 수 있다.
저전력 스테이션이 노멀 모드로 동작하지 않는 것으로 판단된 경우, 액세스 포인트의 WUTx는 웨이크업 패킷#2(3003)를 저전력 스테이션에 재전송할 수 있다. 여기서, 웨이크업 패킷#2(3003)는 웨이크업 패킷#1(3001)과 동일할 수 있다. 웨이크업 패킷#2(3003)가 재전송된 것이 확인된 경우, 액세스 포인트의 PCR은 웨이크없 신호#2(300)의 종료 시점으로부터 전송 대기 구간 후에 데이터 프레임#2(3004)를 저전력 스테이션에 전송할 수 있다.
한편, 액세스 포인트로부터 웨이크업 패킷#2(3003)가 수신된 경우, 저전력 스테이션의 동작 모드는 WUR 모드에서 노멀 모드로 천이될 수 있다. 노멀 모드로 동작하는 저전력 스테이션의 PCR은 액세스 포인트로부터 데이터 프레임#2(3004)를 수신할 수 있고, 데이터 프레임#2(3004)에 대한 응답인 ACK 프레임(3005)을 액세스 포인트에 전송할 수 있다. 저전력 스테이션으로부터 ACK 프레임(3005)이 수신된 경우, 액세스 포인트는 데이터 프레임#2(3004)가 저전력 스테이션에서 성공적으로 수신된 것으로 판단할 수 있다.
본 발명에 따른 방법들은 다양한 컴퓨터 수단을 통해 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능 매체에 기록되는 프로그램 명령은 본 발명을 위해 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 매체의 예에는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 적어도 하나의 소프트웨어 모듈로 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 무선랜 기반의 통신 시스템에서 액세스 포인트(access point)의 동작 방법으로서,
    제1 천이 시간을 지시하는 정보를 제1 스테이션(station)으로부터 수신하는 단계;
    제2 천이 시간을 지시하는 정보를 제2 스테이션으로부터 수신하는 단계;
    제1 WUR(wake-up radio) 웨이크업 프레임을 상기 제1 스테이션에 전송하는 단계;
    상기 제1 WUR 웨이크업 프레임의 전송 후에 제2 WUR 웨이크업 프레임을 상기 제2 스테이션에 전송하는 단계; 및
    상기 제1 스테이션 및 상기 제2 스테이션에 의한 전송들을 요청(soliciting)하기 위한 제1 프레임을 상기 제1 스테이션 및 상기 제2 스테이션에 전송하는 단계를 포함하며,
    상기 제1 스테이션 및 상기 제2 스테이션 각각은 트랜시버(transceiver) 및 수신기(receiver)를 포함하고, 상기 제1 천이 시간은 상기 제1 WUR 웨이크업 프레임의 수신 후에 상기 제1 스테이션의 상기 트랜시버가 도즈(doze) 상태에서 어웨이크(awake) 상태로 천이하기 위해 요구되는 시간이고, 상기 제2 천이 시간은 상기 제2 WUR 웨이크업 프레임의 수신 후에 상기 제2 스테이션의 상기 트랜시버가 상기 도즈 상태에서 상기 어웨이크 상태로 천이하기 위해 요구되는 시간이고, 상기 제1 프레임은 상기 제1 천이 시간과 상기 제2 천이 시간이 모두 만료된 후에 전송되는, 액세스 포인트의 동작 방법.
  2. 청구항 1에 있어서,
    상기 제1 WUR 웨이크업 프레임과 상기 제2 WUR 웨이크업 프레임 간의 전송 간격(interval)은 SIFS(short inter-frame space) 이하인 IFS(inter-frame space)인, 액세스 포인트의 동작 방법.
  3. 청구항 1에 있어서,
    상기 제1 프레임은 상기 전송들을 트리거링하기 위해 사용되는 트리거 프레임인, 액세스 포인트의 동작 방법.
  4. 청구항 1에 있어서,
    상기 제1 프레임은 상기 제1 스테이션에 의한 제1 응답 프레임의 전송을 위해 할당되는 제1 RU(resource unit)의 정보 및 상기 제2 스테이션에 의한 제2 응답 프레임의 전송을 위해 할당되는 제2 RU의 정보를 포함하고, 상기 제1 RU 및 상기 제2 RU는 주파수 도메인에서 다중화되는, 액세스 포인트의 동작 방법.
  5. 청구항 4에 있어서,
    상기 제1 RU는 상기 제1 스테이션의 식별자에 매핑되고, 상기 제2 RU는 상기 제2 스테이션의 식별자에 매핑되는, 액세스 포인트의 동작 방법.
  6. 청구항 4에 있어서,
    상기 액세스 포인트의 동작 방법은,
    상기 제1 프레임의 전송 후에 MU(multi-user) 전송 방식에 기초하여 제1 데이터 프레임 및 제2 데이터 프레임을 상기 제1 스테이션 및 상기 제2 스테이션에 전송하는 단계를 더 포함하는, 액세스 포인트의 동작 방법.
  7. 청구항 6에 있어서,
    상기 제1 데이터 프레임 및 상기 제1 데이터 프레임에 대한 응답인 제1 ACK(acknowledgement)은 상기 제1 RU를 사용하여 전송되고, 상기 제2 데이터 프레임 및 상기 제2 데이터 프레임에 대한 응답인 제2 ACK은 상기 제2 RU를 사용하여 전송되는, 액세스 포인트의 동작 방법.
  8. 청구항 6에 있어서,
    상기 액세스 포인트의 동작 방법은,
    상기 제1 스테이션으로부터 상기 제1 프레임에 대한 응답인 제1 응답 프레임을 수신하는 단계; 및
    상기 제2 스테이션으로부터 상기 제1 프레임에 대한 응답인 제2 응답 프레임을 수신하는 단계를 더 포함하며,
    상기 제1 데이터 프레임은 상기 제1 응답 프레임의 수신 후에 전송되고, 상기 제2 데이터 프레임은 상기 제2 응답 프레임의 수신 후에 전송되는, 액세스 포인트의 동작 방법.
  9. 무선랜 기반의 통신 시스템에서 액세스 포인트(access point)의 동작 방법으로서,
    제1 천이 시간을 지시하는 정보를 제1 스테이션(station)으로부터 수신하는 단계;
    제2 천이 시간을 지시하는 정보를 제2 스테이션으로부터 수신하는 단계;
    상기 제1 스테이션 및 상기 제2 스테이션을 포함하는 복수의 스테이션들이 노멀 모드(normal mode)로 동작할 것을 요청하는 WUR(wake-up radio) 웨이크업 프레임을 전송하는 단계; 및
    MU(multi-user) 전송들을 요청(soliciting)하기 위한 제1 프레임을 상기 복수의 스테이션들에 전송하는 단계를 포함하며,
    상기 제1 스테이션 및 상기 제2 스테이션 각각은 트랜시버(transceiver) 및 수신기(receiver)를 포함하고, 상기 제1 천이 시간은 상기 WUR 웨이크업 프레임의 수신 후에 상기 제1 스테이션의 상기 트랜시버가 도즈(doze) 상태에서 어웨이크(awake) 상태로 천이하기 위해 요구되는 시간이고, 상기 제2 천이 시간은 상기 WUR 웨이크업 프레임의 수신 후에 상기 제2 스테이션의 상기 트랜시버가 상기 도즈 상태에서 상기 어웨이크 상태로 천이하기 위해 요구되는 시간이고, 상기 제1 프레임은 상기 복수의 스테이션들의 천이 시간들 중에서 가장 긴 천이 시간이 만료된 후에 전송되는, 액세스 포인트의 동작 방법.
  10. 청구항 9에 있어서,
    상기 WUR 웨이크업 프레임은 브로드캐스트 방식 또는 멀티캐스트 방식에 기초하여 전송되는, 액세스 포인트의 동작 방법.
  11. 청구항 9에 있어서,
    상기 제1 프레임은 상기 MU 전송들을 트리거링하기 위해 사용되는 트리거 프레임인, 액세스 포인트의 동작 방법.
  12. 청구항 9에 있어서,
    상기 제1 프레임은 상기 제1 스테이션에 의한 제1 응답 프레임의 전송을 위해 할당되는 제1 RU(resource unit)의 정보 및 상기 제2 스테이션에 의한 제2 응답 프레임의 전송을 위해 할당되는 제2 RU의 정보를 포함하고, 상기 제1 RU 및 상기 제2 RU는 주파수 도메인에서 다중화되는, 액세스 포인트의 동작 방법.
  13. 청구항 12에 있어서,
    상기 제1 RU는 상기 제1 스테이션의 식별자에 매핑되고, 상기 제2 RU는 상기 제2 스테이션의 식별자에 매핑되는, 액세스 포인트의 동작 방법.
  14. 청구항 12에 있어서,
    복수의 데이터 프레임들 중에서 상기 제1 스테이션을 위한 제1 데이터 프레임은 상기 제1 RU를 사용하여 전송되고, 상기 복수의 데이터 프레임들 중에서 상기 제2 스테이션을 위한 제2 데이터 프레임은 상기 제2 RU를 사용하여 전송되는, 액세스 포인트의 동작 방법.
  15. 청구항 9에 있어서,
    상기 액세스 포인트의 동작 방법은,
    상기 제1 스테이션으로부터 상기 제1 프레임에 대한 응답인 제1 응답 프레임을 수신하는 단계; 및
    상기 제2 스테이션으로부터 상기 제1 프레임에 대한 응답인 제2 응답 프레임을 수신하는 단계를 더 포함하며,
    복수의 데이터 프레임들은 상기 제1 응답 프레임 및 상기 제2 응답 프레임의 수신 후에 상기 복수의 스테이션들에 전송되는, 액세스 포인트의 동작 방법.
  16. 무선랜 기반의 통신 시스템에서 PCR(primary connectivity radio) 및 WURx(wake-up receiver)를 포함하는 제1 스테이션(station)의 동작 방법으로서,
    상기 제1 스테이션의 상기 PCR이 제1 천이 시간을 지시하는 정보를 포함하는 제1 프레임을 전송하는 단계;
    상기 제1 스테이션의 상기 WURx가 WUR(wake-up radio) 웨이크업 프레임을 액세스 포인트(access point)로부터 수신하는 단계;
    상기 WUR 웨이크업 프레임의 수신 후에 상기 제1 스테이션의 상기 PCR의 동작 상태가 도즈(doze) 상태에서 어웨이크(awake) 상태로 천이하는 단계;
    상기 제1 스테이션의 상기 PCR이 복수의 스테이션들의 전송들을 요청하는 제2 프레임을 상기 액세스 포인트로부터 수신하는 단계; 및
    상기 제1 스테이션의 상기 PCR이 상기 액세스 포인트로부터 제1 데이터 프레임을 수신하는 단계를 포함하며,
    상기 제1 천이 시간은 상기 WUR 웨이크업 프레임의 수신 후에 상기 제1 스테이션의 상기 PCR이 상기 도즈 상태에서 상기 어웨이크 상태로 천이하기 위해 요구되는 시간이고, 상기 WUR 웨이크업 프레임의 수신과 상기 제2 프레임의 수신 간의 듀레이션(duration)은 상기 제1 천이 시간과 상기 복수의 스테이션들의 천이 시간들 중에서 가장 긴 천이 시간 간의 듀레이션 이상인, 제1 스테이션의 동작 방법.
  17. 청구항 16에 있어서,
    상기 WUR 웨이크업 프레임은 오직 상기 제1 스테이션에 전송되는 전용(dedicated) WUR 웨이크업 프레임 또는 상기 복수의 스테이션들에 전송되는 공통(common) WUR 웨이크업 프레임인, 제1 스테이션의 동작 방법.
  18. 청구항 16에 있어서,
    상기 제2 프레임은 상기 제1 스테이션에 의한 제1 응답 프레임의 전송을 위해 할당되는 제1 RU(resource unit)의 정보 및 제2 스테이션에 의한 제2 응답 프레임의 전송을 위해 할당되는 제2 RU의 정보를 포함하고, 상기 제1 RU 및 상기 제2 RU는 주파수 도메인에서 다중화되는, 제1 스테이션의 동작 방법.
  19. 청구항 18에 있어서,
    상기 제1 RU는 상기 제1 스테이션의 식별자에 매핑되고, 상기 제2 RU는 상기 제2 스테이션의 식별자에 매핑되고, 상기 제1 스테이션을 위한 상기 제1 데이터 프레임은 상기 제1 RU를 사용하여 수신되고, 상기 제2 스테이션을 위한 제2 데이터 프레임은 상기 제2 RU를 사용하여 수신되는, 제1 스테이션의 동작 방법.
  20. 청구항 16에 있어서,
    상기 제1 스테이션의 동작 방법은,
    상기 제1 스테이션의 상기 PCR이 상기 트리거 프레임에 대한 응답인 제1 응답 프레임을 상기 액세스 포인트에 전송하는 단계를 더 포함하며,
    상기 제1 데이터 프레임은 상기 제1 응답 프레임의 전송 후에 수신되는, 제1 스테이션의 동작 방법.
KR1020210104804A 2016-08-23 2021-08-09 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법 KR102378089B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20160107206 2016-08-23
KR1020160107206 2016-08-23
KR1020170014974 2017-02-02
KR20170014974 2017-02-02
KR20170030629 2017-03-10
KR1020170030629 2017-03-10
KR1020170106794A KR102293670B1 (ko) 2016-08-23 2017-08-23 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170106794A Division KR102293670B1 (ko) 2016-08-23 2017-08-23 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Publications (2)

Publication Number Publication Date
KR20210100584A true KR20210100584A (ko) 2021-08-17
KR102378089B1 KR102378089B1 (ko) 2022-03-24

Family

ID=61246146

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170106794A KR102293670B1 (ko) 2016-08-23 2017-08-23 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
KR1020210104804A KR102378089B1 (ko) 2016-08-23 2021-08-09 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170106794A KR102293670B1 (ko) 2016-08-23 2017-08-23 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Country Status (5)

Country Link
US (2) US10897739B2 (ko)
EP (2) EP3923666A1 (ko)
KR (2) KR102293670B1 (ko)
CN (2) CN116456438A (ko)
WO (1) WO2018038532A1 (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297400B2 (ja) * 2016-03-18 2023-06-26 キヤノン株式会社 通信装置、情報処理装置、制御方法、および、プログラム
US11012938B2 (en) * 2016-10-23 2021-05-18 Lg Electronics Inc. Method for transmitting and receiving wake-up signal in wireless LAN system and apparatus therefor
CN108064073B (zh) * 2016-11-09 2021-01-15 华为技术有限公司 唤醒方法、站点和接入点
KR102174045B1 (ko) 2016-12-14 2020-11-04 텔레폰악티에볼라겟엘엠에릭슨(펍) 웨이크-업 라디오
US11076351B2 (en) 2016-12-14 2021-07-27 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up signal construction
US10462744B2 (en) * 2017-02-14 2019-10-29 Intel IP Corporation Methods and systems for reuse of a wireless medium during wake-up of a wireless device
FI3619973T3 (fi) * 2017-05-05 2024-01-02 Interdigital Patent Holdings Inc Proseduureja ja mekanismeja kapeakaistaista monikanavalähetystä varten herätysradioita varten
CN108880767B (zh) * 2017-05-11 2023-02-24 中兴通讯股份有限公司 信号发送方法及通信设备
US11277795B2 (en) * 2018-01-14 2022-03-15 Lg Electronics Inc. Method for receiving wake up packet via wake up radio module in wireless LAN system and wireless terminal using same
EP3758422A4 (en) * 2018-02-21 2022-04-06 Sony Group Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
WO2019170557A1 (en) * 2018-03-05 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method, network node and computer program for aligning range performance
US11019568B2 (en) 2018-03-21 2021-05-25 Mediatek Singapore Pte. Ltd. Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
WO2019190151A1 (ko) * 2018-03-26 2019-10-03 엘지전자 주식회사 무선랜 시스템에서 s-tdma를 기반으로 ppdu를 전송하는 방법 및 장치
WO2019208988A1 (ko) * 2018-04-27 2019-10-31 엘지전자 주식회사 무선랜 시스템에서 통신하기 위한 방법 및 이를 이용한 무선 단말
US11134444B2 (en) * 2018-07-09 2021-09-28 Electronics And Telecommunications Research Institute Method and apparatus for low power communication in communication system
WO2020022711A1 (ko) * 2018-07-27 2020-01-30 엘지전자 주식회사 무선랜 시스템에서 응답 신호를 생성하는 방법 및 장치
CN110798293B (zh) * 2018-08-02 2023-03-10 华为技术有限公司 物理层聚合过程协议数据单元的通信方法和相关装置
US10924995B2 (en) 2018-09-19 2021-02-16 Hewlett Packard Enterprise Development Lp Wake-up radio roaming
US10871815B2 (en) * 2018-09-28 2020-12-22 Sonos, Inc. Network identification of portable electronic devices while changing power states
JP7387258B2 (ja) * 2018-11-08 2023-11-28 キヤノン株式会社 通信装置、通信方法及びプログラム
JP7289632B2 (ja) 2018-11-08 2023-06-12 キヤノン株式会社 通信装置、制御方法、および、プログラム
JP7332288B2 (ja) 2018-12-27 2023-08-23 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
JP7353044B2 (ja) 2019-03-08 2023-09-29 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
TWI714067B (zh) * 2019-04-25 2020-12-21 瑞昱半導體股份有限公司 封包傳輸控制方法與封包傳輸電路
CN111901007B (zh) * 2019-05-05 2022-02-08 瑞昱半导体股份有限公司 封包传输控制方法与封包传输电路
US10939471B2 (en) * 2019-06-13 2021-03-02 David E. Newman Managed transmission of wireless DAT messages
US20220295333A1 (en) * 2019-07-12 2022-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Wake-Up Packet based Coordination of Broadcasting Device Responses
US11252262B2 (en) 2019-10-28 2022-02-15 Facebook Technologies, Llc Coordination among artificial reality links
US11206092B1 (en) 2020-11-13 2021-12-21 Ultralogic 5G, Llc Artificial intelligence for predicting 5G network performance
US20210168722A1 (en) * 2020-12-23 2021-06-03 Intel Corporation Apparatus, system, and method of waking up a computing device based on wireless sensing
WO2024034947A1 (en) * 2022-08-10 2024-02-15 Samsung Electronics Co., Ltd. Method and apparatus for wake-up receiving in wireless communication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215227A1 (en) * 2004-03-23 2005-09-29 Vu Mieu V Method and apparatus for entering a low power mode
US20100220702A1 (en) * 2009-03-02 2010-09-02 Texas Instruments Incorporated Low power control for wireless lan communication
US20100241854A1 (en) * 2009-03-19 2010-09-23 Zongming Sinbada Yao Method and apparatus for low-power ap-assisted fast wireless roaming using optimized neighbor graphs
US20120250597A1 (en) * 2011-03-29 2012-10-04 Minyoung Park Method of enhancing u-apsd for low power wi-fi
US20140112225A1 (en) * 2012-10-23 2014-04-24 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for wlan
US20140112229A1 (en) * 2012-10-24 2014-04-24 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US20140269462A1 (en) * 2013-03-12 2014-09-18 Qualcomm Incorporated Signature-Coded Wake-Up Transmission
US20150172031A1 (en) * 2013-12-17 2015-06-18 Electronics And Telecommunications Research Institute Method and apparatus for retransmitting packet for low-power wireless sensor communications

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047378A (en) 1997-09-29 2000-04-04 International Business Machines Corporation Wake multiple over LAN
KR101042600B1 (ko) 2009-12-04 2011-06-20 한국전자통신연구원 반―선형 센서 네트워크에서 저전력 매체 접근 제어 방법
US8761065B2 (en) * 2010-11-16 2014-06-24 Intel Corporation Techniques for wakeup signaling for a very low power WLAN device
US8902803B2 (en) * 2012-03-05 2014-12-02 Qualcomm Incorporated Systems and methods for reducing collisions after traffic indication map paging
EP2846597B1 (en) * 2012-04-30 2017-09-27 LG Electronics Inc. Method and device for accessing channel in wireless lan system
US9019874B2 (en) * 2012-06-27 2015-04-28 Nokia Corporation Method, apparatus, and computer program product for resolving hidden node in synchronized DCF based channel access
CN103533606A (zh) * 2012-07-06 2014-01-22 华为技术有限公司 无线局域网的信息传输方法及终端、接入设备
US9191891B2 (en) * 2012-11-02 2015-11-17 Qualcomm Incorporated Systems and methods for low power wake-up signal implementation and operations for WLAN
US9351250B2 (en) * 2013-01-31 2016-05-24 Qualcomm Incorporated Methods and apparatus for low power wake up signal and operations for WLAN
US10028272B2 (en) * 2013-02-24 2018-07-17 Lg Electronics Inc. Method and apparatus for exchanging frame for a low-power device in a wireless local area network (WLAN) system
WO2015026074A1 (ko) * 2013-08-19 2015-02-26 엘지전자 주식회사 무선랜 시스템에서 전력 절약 동작 방법 및 장치
KR20160018438A (ko) * 2014-08-08 2016-02-17 뉴라컴 인코포레이티드 고효율 무선랜에서 동적 프레임간 간격 프로세싱
US9955333B2 (en) 2014-08-20 2018-04-24 Qualcomm, Incorporated Secure wireless wake-up companion
AU2015387838B2 (en) * 2015-03-24 2019-01-17 Huawei Technologies Co., Ltd. Method for sending uplink multi-user transmission trigger frame, access point, and station
US9485733B1 (en) * 2015-05-17 2016-11-01 Intel Corporation Apparatus, system and method of communicating a wakeup packet
US9801133B2 (en) * 2015-06-16 2017-10-24 Intel Corporation Apparatus, system and method of communicating a wakeup packet response
US20170280498A1 (en) * 2016-03-25 2017-09-28 Intel Corporation Opportunistic wake-up transmissions via time-division multiplexing in ofdma-based 802.11ax
US10609644B2 (en) * 2016-05-10 2020-03-31 Zte Corporation Low power receiver for wireless communication
US9924462B2 (en) * 2016-07-13 2018-03-20 Intel IP Corporation Low-power wake-up receiver negotiation procedure
US20180020405A1 (en) * 2016-07-13 2018-01-18 Intel IP Corporation Wake-up packet acknowledgement procedure
WO2018021779A1 (ko) * 2016-07-24 2018-02-01 주식회사 윌러스표준기술연구소 웨이크-업 라디오를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US10129064B1 (en) * 2016-08-02 2018-11-13 Newracom, Inc. Wireless device low power wake up
US10263890B2 (en) * 2016-08-15 2019-04-16 Netflix, Inc. Synthetic supernet compression
US10091728B2 (en) * 2016-09-09 2018-10-02 Futurewei Technologies, Inc. System and method for transmitting a wake-up packet
US11012938B2 (en) * 2016-10-23 2021-05-18 Lg Electronics Inc. Method for transmitting and receiving wake-up signal in wireless LAN system and apparatus therefor
US10849070B2 (en) * 2016-12-06 2020-11-24 Lg Electronics Inc. Method for transmitting or receiving wake-up radio frame in wireless LAN system and apparatus therefor
US10470125B2 (en) * 2016-12-22 2019-11-05 Mediatek Inc. Multi-user (MU) wake-up signal transmission by using FDMA scheme in WLAN
JP6591463B2 (ja) * 2017-01-13 2019-10-16 株式会社東芝 無線通信装置
US11019568B2 (en) * 2018-03-21 2021-05-25 Mediatek Singapore Pte. Ltd. Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215227A1 (en) * 2004-03-23 2005-09-29 Vu Mieu V Method and apparatus for entering a low power mode
US20100220702A1 (en) * 2009-03-02 2010-09-02 Texas Instruments Incorporated Low power control for wireless lan communication
US20100241854A1 (en) * 2009-03-19 2010-09-23 Zongming Sinbada Yao Method and apparatus for low-power ap-assisted fast wireless roaming using optimized neighbor graphs
US20120250597A1 (en) * 2011-03-29 2012-10-04 Minyoung Park Method of enhancing u-apsd for low power wi-fi
US20140112225A1 (en) * 2012-10-23 2014-04-24 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for wlan
US20140112229A1 (en) * 2012-10-24 2014-04-24 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US20140269462A1 (en) * 2013-03-12 2014-09-18 Qualcomm Incorporated Signature-Coded Wake-Up Transmission
US20150172031A1 (en) * 2013-12-17 2015-06-18 Electronics And Telecommunications Research Institute Method and apparatus for retransmitting packet for low-power wireless sensor communications

Also Published As

Publication number Publication date
US20190191376A1 (en) 2019-06-20
CN116456438A (zh) 2023-07-18
KR102293670B1 (ko) 2021-08-26
EP3923666A1 (en) 2021-12-15
US10897739B2 (en) 2021-01-19
KR20180022612A (ko) 2018-03-06
CN109863811B (zh) 2023-05-23
US20210092678A1 (en) 2021-03-25
US11553426B2 (en) 2023-01-10
EP3506712A1 (en) 2019-07-03
WO2018038532A1 (ko) 2018-03-01
CN109863811A (zh) 2019-06-07
KR102378089B1 (ko) 2022-03-24
EP3506712A4 (en) 2020-04-29
EP3506712B1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
KR102378089B1 (ko) 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
KR102456846B1 (ko) 무선랜에서 액세스 포인트의 탐색 방법 및 장치
KR102378088B1 (ko) 무선랜에서 초기 협상 방법 및 장치
KR102491171B1 (ko) 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
CN106576102B (zh) 在无线通信系统中使站能够接收信号的方法和设备
KR101625068B1 (ko) 무선랜 시스템에서 백오프를 수행하는 방법 및 장치
KR101772460B1 (ko) 무선랜 시스템에서 동적 채널 센싱 방법 및 장치
US11134444B2 (en) Method and apparatus for low power communication in communication system
KR20160010431A (ko) 무선랜 시스템에서 기본 서비스 세트를 지원하는 방법 및 장치
KR20160006681A (ko) 무선랜 시스템에서 동적 채널 센싱 방법 및 장치
KR20150013514A (ko) 무선랜 시스템에서 피드백 트리거 프레임 송수신 방법 및 장치
KR20140130112A (ko) 무선랜 시스템에서 널 데이터 패킷 프레임을 이용하는 채널 액세스 방법 및 장치
KR20140129086A (ko) 무선 통신 시스템에서의 서비스 기간 설정 방법 및 이를 위한 장치
US11246095B2 (en) Method for transmitting or receiving frame in wireless LAN system and device therefor
KR20150105333A (ko) 무선랜 시스템에서 개선된 스캐닝 방법 방법 및 장치
KR20200006006A (ko) 통신 시스템에서 저전력 통신을 위한 방법 및 장치
KR20190062318A (ko) 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
KR20200054108A (ko) 통신 시스템에서 웨이크업 프레임의 송수신을 위한 방법 및 장치
KR20220139817A (ko) 무선랜에서 mlsr 동작을 위한 방법 및 장치
KR20200054107A (ko) 통신 시스템에서 저전력 통신을 위한 파라미터의 설정 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant