KR20210096931A - pH sensitive hyaluronate copolymer and drug delivery system using the same - Google Patents

pH sensitive hyaluronate copolymer and drug delivery system using the same Download PDF

Info

Publication number
KR20210096931A
KR20210096931A KR1020200010606A KR20200010606A KR20210096931A KR 20210096931 A KR20210096931 A KR 20210096931A KR 1020200010606 A KR1020200010606 A KR 1020200010606A KR 20200010606 A KR20200010606 A KR 20200010606A KR 20210096931 A KR20210096931 A KR 20210096931A
Authority
KR
South Korea
Prior art keywords
hyaluronic acid
cancer
random copolymer
drug
imidazole
Prior art date
Application number
KR1020200010606A
Other languages
Korean (ko)
Other versions
KR102354429B1 (en
Inventor
오경택
심태훈
한상명
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020200010606A priority Critical patent/KR102354429B1/en
Publication of KR20210096931A publication Critical patent/KR20210096931A/en
Application granted granted Critical
Publication of KR102354429B1 publication Critical patent/KR102354429B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

The present invention relates to a pH-sensitive hyaluronic acid random copolymer and a drug delivery system for cancer treatment using the same. It was confirmed that the hyaluronic acid random copolymer (HID) exhibits pH sensitivity and amphiphilicity. In the case of the drug delivery system in which doxorubicin is encapsulated in the HID, a stable nanocarrier is formed at physiological pH (pH 7.4) to protect the drug, but becomes destabilized by protonation of an imidazole group in acidic conditions (pH 6.8 to 6.0) of cancer cells, and then the nanocarrier will disintegrate and release the drug. Thus, the HID may be provided as a pH-dependent drug delivery system that safely protects the drug until HID arrives at a target site, reduces drug toxicity in vivo, and improves drug activity locally at the target site.

Description

pH 민감성 히알루론산 공중합체 및 이를 이용한 약물전달체{pH sensitive hyaluronate copolymer and drug delivery system using the same}pH sensitive hyaluronate copolymer and drug delivery system using same

본 발명은 pH 민감성 히알루론산 랜덤공중합체 및 이를 이용한 암질환 치료용 약물전달체에 관한 기술이다.The present invention relates to a pH-sensitive random copolymer of hyaluronic acid and a drug delivery system for cancer treatment using the same.

약리학적으로 효과적인 약물은 실제 임상적용에 있어서 약물의 심각한 독성 및 낮은 용해도 때문에 기대한 바와는 달리 탁월한 효과를 보여주지 못함에 따라, 질병치료에 사용되는 약물의 부작용을 최소화하기 위한 새로운 약물제형 개발이 활발히 진행되어 왔다.Pharmacologically effective drugs do not show excellent effects as expected due to the serious toxicity and low solubility of the drug in actual clinical application. has been actively pursued.

새로운 약물제형으로 약물의 치료효능을 향상시키면서 독성을 최소화할 수 있는 약물 전달체가 개발되어왔다. 이러한 약물 전달체 중 친수성 잔기와 소수성 잔기를 동시에 갖는 화합물에 열역학적으로 안정하고 균일한 구형의 구조를 갖는 미셀이 있다. 미셀 구조를 갖는 화합물은 중심부위에 소수성을 띄고 있어 다양한 소수성 약물을 봉입할 수 있다. 봉입된 소수성 약물들은 수용액에서 용해도가 낮은 단점이 있지만 미셀 입자에 봉입되면 수용액 상에서의 약물 용해도를 향상시킬 수 있으므로, 소수성 및 친수성 잔기로 이루어진 나노크기의 미셀은 약물 전달체로서의 응용 가능성이 높다.A drug delivery system that can minimize toxicity while improving the therapeutic efficacy of a new drug formulation has been developed. Among these drug carriers, there is a micelle having a thermodynamically stable and uniform spherical structure in a compound having both a hydrophilic moiety and a hydrophobic moiety. Since the compound having a micelle structure has hydrophobicity in the center, various hydrophobic drugs can be encapsulated. Encapsulated hydrophobic drugs have a disadvantage of low solubility in aqueous solution, but when encapsulated in micellar particles, drug solubility in aqueous solution can be improved.

한편, 정상 조직 및 체내의 pH 환경은 일반적으로 pH 7.2 내지 pH 7.4를 유지하고 있다. 그러나 암 또는 염증성 질환 조직에서는 국부적으로 낮은 pH를 나타내는데, 암 주위의 pH는 암세포의 활발한 대사에 의해 발생되는 유기산 때문에 정상조직보다 낮은 pH를 나타내어 평균 pH 6.8 정도인 것으로 보고되어 있다. 또한 세포 내에 입자가 흡수될 경우 엔도좀을 형성하는데, 엔도좀의 pH는 대략 6.0 이하로 알려져 있다.Meanwhile, the pH environment of normal tissues and the body generally maintains pH 7.2 to pH 7.4. However, it has been reported that the cancer or inflammatory disease tissue exhibits a locally low pH, and the pH around the cancer exhibits a lower pH than normal tissues due to the organic acid generated by the active metabolism of cancer cells, and is reported to be about pH 6.8 on average. In addition, when particles are absorbed into cells, endosomes are formed, and the pH of the endosomes is known to be about 6.0 or less.

따라서, 암 또는 염증성 조직에서 국부적으로 낮은 pH를 이용하여 pH 민감성 고분자들을 약물전달 목적으로 제조되어 왔으나, 기존 pH 민감성 고분자들의 경우 pH 변화에 따른 pH 민감성이 현저하게 낮아 실질적으로 이용할 수 없거나, 소수성 약물이 봉입되었을 경우 질환에 대한 높은 치료 효과를 기대할 수 없는 문제점이 나타남에 따라, 새로운 pH 민감성 약물전달체에 대한 개발이 필요한 실정이다.Therefore, pH-sensitive polymers have been prepared for drug delivery by using a locally low pH in cancer or inflammatory tissues, but in the case of existing pH-sensitive polymers, the pH sensitivity according to the pH change is remarkably low, so they cannot be practically used, or hydrophobic drugs When this is encapsulated, there is a problem that a high therapeutic effect on the disease cannot be expected, and therefore, it is necessary to develop a new pH-sensitive drug delivery system.

기능성 생체 재료인 히알루론산(HA)은 암세포상에서 과발현된 CD44와 특이적으로 상호작용함에 따라, 히알루론산을 이용한 암표적화에 대한 연구가 활발하게 진행되어 왔다. 그러나 히알루론산의 pKa (3-4, 카르복실기)는 종양 pH에서 약물을 방출하기에 부적절한 생체 물질이므로, 실제로 항암 치료용 약물전달체로의 활용이 제한적이다.As hyaluronic acid (HA), a functional biomaterial, specifically interacts with CD44 overexpressed on cancer cells, studies on cancer targeting using hyaluronic acid have been actively conducted. However, since the pKa (3-4, carboxyl group) of hyaluronic acid is an inappropriate biomaterial to release drugs at tumor pH, its use as a drug delivery agent for anticancer treatment is limited.

대한민국 공개특허 제10-2014-0118560호 (2014.10.08. 공개)Republic of Korea Patent Publication No. 10-2014-0118560 (published on Oct. 8, 2014)

본 발명은 종양의 pH 조건에서 약물을 방출하기 부적절한 히알루론산에 이미다졸기와 다양한 아미노알킬을 중합시킨 랜덤공중합체를 제공하여, 종양의 산성 미세환경에서 민감성을 나타내어 약물을 방출하는 새로운 히알루론산 기반의 약물전달체를 제공하고자 한다. The present invention provides a random copolymer obtained by polymerizing an imidazole group and various aminoalkyl groups on hyaluronic acid, which is inappropriate to release a drug under the tumor pH conditions, and is a novel hyaluronic acid-based base that exhibits sensitivity in the acidic microenvironment of the tumor and releases the drug To provide a drug delivery system of

본 발명은 하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체를 제공한다.The present invention provides a pH-sensitive hyaluronic acid random copolymer represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에 있어서, In Formula 1,

R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고, R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,

상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체이다.Wherein x is a hyaluronic acid-graft-monomer is already imidazole (hyaluronic acid- graft -imidazole), y is a monomer of the hyaluronic acid, z is a hyaluronic acid-monomer of dodecylamine (hyaluronic acid- graft -dodecylamine) - graft am.

본 발명은 상기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체를 포함하는 약물전달체를 제공한다.The present invention provides a drug delivery system comprising a random copolymer of pH-sensitive hyaluronic acid represented by Formula 1 above.

또한, 본 발명은 상기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체; 및 상기 랜덤공중합체에 봉입된 항암제를 유효성분으로 함유하는 암질환 치료용 약학조성물을 제공한다.In addition, the present invention is a random copolymer of pH-sensitive hyaluronic acid represented by Formula 1; And it provides a pharmaceutical composition for treating cancer diseases containing the anticancer agent encapsulated in the random copolymer as an active ingredient.

본 발명에 따르면, 친수성 히알루론산에 이미다졸기와 도데실아민기를 중합시킨 히알루론산 랜덤공중합체(HID)는 pH 민감성과 양친매성을 나타내는 것이 확인되었으며, 상기 HID에 독소루비신을 봉입시킨 약물전달체의 경우 생리적 pH (pH 7.4)에서 안정한 나노 담체를 형성하여 약물을 보호하는 반면, 암세포의 산성 조건(pH 6.8 내지 6.0)에서는 이미다졸기의 양성자화에 의해 불안정화되어 나노 담체가 붕괴되어 약물을 방출하는 것이 확인됨에 따라, 상기 HID는 표적 부위에 도착하기 전까지 약물을 안전하게 보호하여 생체 내 약물 독성을 감소시키고 표적 부위에서 국부적으로 약물활성을 향상시키는 pH 의존성 약물전달체로 제공될 수 있다.According to the present invention, it was confirmed that a hyaluronic acid random copolymer (HID) obtained by polymerizing an imidazole group and a dodecylamine group in hydrophilic hyaluronic acid exhibits pH sensitivity and amphiphilicity. While it protects the drug by forming a stable nanocarrier at physiological pH (pH 7.4), in acidic conditions (pH 6.8 to 6.0) of cancer cells, it is destabilized by protonation of the imidazole group and the nanocarrier collapses to release the drug. As confirmed, the HID can be provided as a pH-dependent drug delivery system that safely protects the drug until it arrives at the target site, reduces drug toxicity in vivo, and improves drug activity locally at the target site.

도 1(a)는 HID의 화학적 합성 과정을 나타낸 모식도이며, 도 1(b)는 산성 종양 환경에서 pH 민감성 HID의 개념을 나타낸 모식도이다.
도 2는 1H-NMR 분석 결과로, 도 2(a)는 HID의 구조 분석 결과이며, 도 2(b)는 HA-그래프트 중합-이미다졸의 구조 분석 결과이며, 도 2(c)는 HA-그래프트 중합-도데실아민의 구조 분석 결과이다.
도 3은 산-염기 적정을 통하여 NaCl, HA 및 HID의 pH 프로파일을 확인한 결과이다.
도 4는 HID 나노담체 (nanocarrier, HN)의 pH 민감성을 확인한 결과로, 도 4(a)는 pH 의존성 입자 크기 및 HN의 제타 전위를 확인한 결과이며, 도 4(b)는 HID의 pH 의존성 CMC 값을 확인한 결과이다.
도 5는 각 pH 조건에서 HN의 형태를 확인한 FE-SEM 결과 및 입자 크기 분포를 확인한 DLS 결과로, 도 5(a)는 pH 7.4의 HN 결과이며, 도 5(b)는 pH 6.5에서 HN의 결과이다.
도 6(a)는 pH 7.4 및 pH 6.5에서 독소루비신이 로딩된 HID 나노담체(DHNs)로부터 누적 DOX 방출을 확인한 결과이며, 도 6(b)는 pH 7.4에서 DHNs의 전환된 구조 및 입자 크기 분포를 확인한 FE-SEM 및 DLS 분석 결과이며, 도 6(c)는 pH 6.5에서 DHNs의 전환된 구조 및 입자 크기 분포를 확인한 FE-SEM 및 DLS 분석 결과이다.
도 7은 HID, DOX·HCl 및 DHNs 처리된 Hep3B 세포의 세포 생존도를 분석한 결과이다.
Figure 1 (a) is a schematic diagram showing the chemical synthesis process of HID, Figure 1 (b) is a schematic diagram showing the concept of pH-sensitive HID in an acidic tumor environment.
Fig. 2 is a result of 1H-NMR analysis, Fig. 2 (a) is a structural analysis result of HID, Fig. 2 (b) is a structural analysis result of HA-graft polymerization-imidazole, and Fig. 2 (c) is a HA- This is the result of structural analysis of graft polymerization-dodecylamine.
3 is a result of confirming the pH profile of NaCl, HA and HID through acid-base titration.
Figure 4 is the result of confirming the pH sensitivity of the HID nanocarrier (nanocarrier, HN), Figure 4 (a) is the result of confirming the pH-dependent particle size and zeta potential of HN, Figure 4 (b) is the pH-dependent CMC of HID This is the result of checking the value.
5 is an FE-SEM result confirming the shape of HN at each pH condition and a DLS result confirming a particle size distribution, FIG. 5 (a) is a HN result at pH 7.4, and FIG. It is the result.
6(a) is the result of confirming the cumulative DOX release from doxorubicin-loaded HID nanocarriers (DHNs) at pH 7.4 and pH 6.5, and FIG. 6(b) shows the converted structure and particle size distribution of DHNs at pH 7.4. The confirmed FE-SEM and DLS analysis results, and FIG. 6(c) is the FE-SEM and DLS analysis results confirming the converted structure and particle size distribution of DHNs at pH 6.5.
7 is a result of analyzing the cell viability of Hep3B cells treated with HID, DOX·HCl and DHNs.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

기능적 생체 재료인 히알루론산(HA)은 암 세포상에서 과발현된 CD44와 특이적인 상호 작용함에 따라, 히알루론산을 이용한 암 표적화 연구가 활발하게 진행되었으나, 높은 기능성에도 불구하고, HA의 pKa (3-4, 카르복실기)는 종양 pH에서 약물을 방출하기에 부적절한 생체 물질이므로, 상기 문제점을 해결하기 위해 본 발명자들은 EDC / NHS 하에서 히알루론산에 pH 민감성을 나타내는 이미다졸기와 소수성을 나타내는 아미노알킬을 중합시킨 히알루론산 랜덤중합체를 제조함으로써 본 발명을 완성하였다.As hyaluronic acid (HA), a functional biomaterial, specifically interacts with CD44 overexpressed on cancer cells, cancer targeting studies using hyaluronic acid have been actively conducted, but despite high functionality, HA pKa (3-4 , carboxyl group) is a biomaterial that is inappropriate to release a drug at tumor pH, so to solve the above problem, the present inventors have polymerized an imidazole group showing pH sensitivity to hyaluronic acid under EDC / NHS and an aminoalkyl group showing hydrophobicity. The present invention was completed by preparing a random ronic acid polymer.

본 발명은 하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체를 제공할 수 있다.The present invention may provide a pH-sensitive hyaluronic acid random copolymer represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에 있어서, In Formula 1,

R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고,R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,

상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체이다.Wherein x is a hyaluronic acid-graft-monomer is already imidazole (hyaluronic acid- graft -imidazole), y is a monomer of the hyaluronic acid, z is a hyaluronic acid-monomer of dodecylamine (hyaluronic acid- graft -dodecylamine) - graft am.

보다 상세하게는 상기 히알루론산 랜덤공중합체는 친수성 히알루론산(y); 히알루론산의 카르복실기에 이미다졸기가 결합되어 형성된 pH 민감성 부위(x); 및 히알루론산의 카르복실기에 아미노알킬기가 결합되어 형성된 소수성 부위(z)로 이루어지며, pH 민감성 및 양친매성을 나타내는 것일 수 있다.More specifically, the random copolymer of hyaluronic acid is hydrophilic hyaluronic acid (y); a pH-sensitive region (x) formed by bonding an imidazole group to a carboxyl group of hyaluronic acid; and a hydrophobic region (z) formed by bonding an aminoalkyl group to a carboxyl group of hyaluronic acid, and may exhibit pH sensitivity and amphiphilicity.

상기 히알루론산 랜덤공중합체는 x:y:z가 30-40:40-50:10-20 몰비로 이루어진 것일 수 있으며, 보다 바람직하게는 40:45:15 몰비로 이루어지는 것일 수 있으나, 이에 제한되지 않는다.The hyaluronic acid random copolymer may have a molar ratio of x:y:z of 30-40:40-50:10-20, and more preferably a molar ratio of 40:45:15, but is not limited thereto. does not

상기 히알루론산 랜덤공중합체는 pH 7.0 내지 pH 7.5의 중성 조건에 자가조립형태에 의하여 미셀화되고, pH 6.0 내지 pH 6.8의 산성 조건에서 미셀이 붕괴되는 것일 수 있다.The random copolymer of hyaluronic acid may be micelled by self-assembly in a neutral condition of pH 7.0 to pH 7.5, and the micelles may be disintegrated in an acidic condition of pH 6.0 to pH 6.8.

상기 미셀은 120 nm 내지 190 nm의 평균직경을 나타내는 것일 수 있다.The micelles may have an average diameter of 120 nm to 190 nm.

본 발명은 상기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체를 포함하는 약물전달체를 제공할 수 있다.The present invention may provide a drug delivery system comprising a random copolymer of pH-sensitive hyaluronic acid represented by Formula 1 above.

상기 약물전달체는 종양의 산성 미세환경인 pH 6.0 내지 pH 6.8에서 미셀이 붕괴되어 약물이 방출되는 것일 수 있다.The drug delivery system may be one in which micelles are disintegrated in the acidic microenvironment of the tumor, pH 6.0 to pH 6.8, to release the drug.

또한, 본 발명은 하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체; 및 상기 랜덤공중합체에 봉입된 항암제를 유효성분으로 함유하는 암질환 치료용 약학조성물을 제공할 수 있다.In addition, the present invention is a pH-sensitive hyaluronic acid random copolymer represented by the following formula (1); And it can provide a pharmaceutical composition for treating cancer diseases containing the anticancer agent encapsulated in the random copolymer as an active ingredient.

[화학식 1][Formula 1]

Figure pat00003
Figure pat00003

상기 화학식 1에 있어서, In Formula 1,

R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고,R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,

상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체이다.Wherein x is a hyaluronic acid-graft-monomer is already imidazole (hyaluronic acid- graft -imidazole), y is a monomer of the hyaluronic acid, z is a hyaluronic acid-monomer of dodecylamine (hyaluronic acid- graft -dodecylamine) - graft am.

상기 히알루론산은 CD44가 과발현된 암세포와 특이적으로 상호작용하여 암세포를 표적하는 것일 수 있다.The hyaluronic acid may specifically interact with CD44 overexpressed cancer cells to target cancer cells.

상기 약학조성물은 종양의 산성 미세환경인 pH 6.0 내지 pH 6.8에서 미셀이 붕괴되어 항암제가 방출되는 것일 수 있다.The pharmaceutical composition may be one in which the micelle is disintegrated in the acidic microenvironment of the tumor, pH 6.0 to pH 6.8, to release the anticancer agent.

상기 항암제는 독소루비신 (doxorubicin), 파클리탁셀 (paclitaxel) 및 도세탁셀 (Docetaxel)로 이루어진 군에서 선택되는 것일 수 있다.The anticancer agent may be selected from the group consisting of doxorubicin, paclitaxel, and docetaxel.

상기 암질환은 폐암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 유방암, 간암, 피부암, 위암, 식도암, 고환암, 신장암, 대장암 및 직장암으로 이루어진 군에서 선택되는 것일 수 있으며, 이에 제한되지 않는다.The cancer disease may be selected from the group consisting of lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, breast cancer, liver cancer, skin cancer, stomach cancer, esophageal cancer, testicular cancer, kidney cancer, colorectal cancer and rectal cancer, It is not limited thereto.

또한, 본 발명은 상기 약물 전달체를 포함하는 암질환 치료용 약학조성물을 제공할 수 있다.In addition, the present invention may provide a pharmaceutical composition for the treatment of cancer diseases comprising the drug carrier.

본 발명의 일실시예 및 도 1에 따르면, 상기 히알루론산에 이미다졸기와 도데실아민기를 중합시킨 히알루론산 랜덤공중합체(HID)는 pH 민감성과 양친매성을 나타내는 것이 확인되었으며, 상기 HID에 독소루비신을 봉입시킨 약물전달체의 경우 생리적 pH (pH 7.4)에서 안정한 나노 담체를 형성하여 약물을 보호하는 반면, 암세포의 산성 조건(pH 6.8 내지 6.0)에서는 이미다졸기의 양성자화에 의해 불안정화되어 나노 담체가 붕괴되어 약물을 방출하는 확인됨에 따라, 상기 HID는 표적 부위에 도착하기 전까지 약물을 안전하게 보호하여 생체 내 약물 독성을 감소시키고 표적 부위에서 국부적으로 약물활성을 향상시키는 pH 의존성 약물전달체 및 항암치료제로 제공될 수 있다.According to an embodiment of the present invention and FIG. 1, it was confirmed that the hyaluronic acid random copolymer (HID) obtained by polymerizing an imidazole group and a dodecylamine group in the hyaluronic acid exhibits pH sensitivity and amphiphilicity, and doxorubicin to the HID. In the case of a drug carrier encapsulated with a nanocarrier, it forms a stable nanocarrier at physiological pH (pH 7.4) to protect the drug, whereas in acidic conditions of cancer cells (pH 6.8 to 6.0), the nanocarrier is destabilized by protonation of the imidazole group. As it is confirmed that it decays and releases the drug, the HID safely protects the drug until it arrives at the target site, thereby reducing drug toxicity in vivo and improving drug activity locally at the target site. Provided as a pH-dependent drug carrier and anticancer agent can be

본 발명의 한 구체예에서, 상기 암질환 치료용 약학조성물은 통상적인 방법에 따라 주사제, 과립제, 산제, 정제, 환제, 캡슐제, 좌제, 겔, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택된 어느 하나의 제형을 사용할 수 있다.In one embodiment of the present invention, the pharmaceutical composition for the treatment of cancer diseases is an injection, granule, powder, tablet, pill, capsule, suppository, gel, suspension, emulsion, drop or liquid according to a conventional method. Any one formulation selected from may be used.

본 발명의 다른 구체예에서, 상기 암질환 치료용 약학조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.In another embodiment of the present invention, suitable carriers, excipients, disintegrants, sweeteners, coating agents, swelling agents, lubricants, flavoring agents, antioxidants, buffers, bacteriostats, It may further include one or more additives selected from the group consisting of diluents, dispersants, surfactants, binders and lubricants.

구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Specifically, carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline Cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil can be used. Solid preparations for oral administration include tablets, pills, powders, granules, and capsules. agent and the like, and such a solid preparation may be prepared by mixing at least one excipient, for example, starch, calcium carbonate, sucrose or lactose, gelatin, and the like in the composition. In addition to simple excipients, lubricants such as magnesium stearate and talc can also be used. Liquid formulations for oral use include suspensions, solutions, emulsions, syrups, and the like, and various excipients such as wetting agents, sweeteners, fragrances, and preservatives in addition to commonly used simple diluents such as water and liquid paraffin may be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, suppositories, and the like. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base material for the suppository, witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like can be used.

본 발명의 일실시예에 따르면 상기 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다.According to an embodiment of the present invention, the pharmaceutical composition is administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intrasternal, transdermal, intranasal, inhalational, topical, rectal, oral, intraocular or intradermal routes. can be administered to the subject.

상기 약물전달체의 바람직한 투여량은 대상체의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 200 mg/kg, 구체적으로는 0.1 내지 200 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다.The preferred dosage of the drug carrier may vary depending on the condition and weight of the subject, the type and extent of the disease, the drug form, the route and duration of administration, and may be appropriately selected by those skilled in the art. According to an embodiment of the present invention, although not limited thereto, the daily dose may be 0.01 to 200 mg/kg, specifically 0.1 to 200 mg/kg, and more specifically 0.1 to 100 mg/kg. Administration may be administered once a day or may be administered in several divided doses, thereby not limiting the scope of the present invention.

본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.In the present invention, the 'subject' may be a mammal including a human, but is not limited to these examples.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, to help the understanding of the present invention, examples will be described in detail. However, the following examples are merely illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<실험예><Experimental example>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

1. 물질1. Substance

소듐하이알루로네이트 (Sodium hyaluronate, HA, weight-average molecular weights 480kDa)을 SK bioland (Seoul, Republic of Korea)에서 구입하였다. Sodium hyaluronate (Sodium hyaluronate, HA, weight-average molecular weights 480kDa) was purchased from SK bioland (Seoul, Republic of Korea).

1-(3-아미노프로필)-이미다졸 (1-(3-aminopropyl)-imidazole; IM), 도데실아민 (dodecylamine), 피렌 (pyrene), N-하이드록시숙이미드 (N-hydroxysuccinimide; NHS), N-(3-디메틸아미노프로필)-N′-에틸카르보디이미드 하이드로클로라이드 (N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride; EDC-HCl), 트리에틸아민 (triethylamine; TEA), 무수 1,4-디옥산 (anhydrous 1,4-dioxane), (N,N-dimethylformamide; DMF) 및 D2O-d6을 Sigma-Aldrich (St. Louis, MO, US)에서 구입하였다. 1-(3-aminopropyl)-imidazole (1-(3-aminopropyl)-imidazole; IM), dodecylamine, pyrene, N-hydroxysuccinimide (NHS) , N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride; EDC-HCl), triethylamine (TEA), anhydrous 1,4-dioxane (anhydrous 1,4-dioxane), (N,N-dimethylformamide; DMF) and D2O-d6 were purchased from Sigma-Aldrich (St. Louis, MO, US).

에탄올 (EtOH)과 아세토니트릴 (ACN)은 Honeywell Burdick & Jackson® (Muskegon, MI, US)에서 구입하였으며, 독소루비신-하이드로클로라이드 (Doxubicin-hydrochloride; DOX-HCl)을 Boryung Co. (Seoul, Republic of Korea)에서 구입하였다. 도세탁셀 (Docetaxel)은 Samyang Bio Pharmaceutical® (Daejeon, South Korea)에서 구입하였다. 모든 화합물은 분석용 등급으로 사용하였다.Ethanol (EtOH) and acetonitrile (ACN) were purchased from Honeywell Burdick & Jackson ® (Muskegon, MI, US), and doxubicin-hydrochloride (DOX-HCl) was obtained from Boryung Co. (Seoul, Republic of Korea). Docetaxel was purchased from Samyang Bio Pharmaceutical® (Daejeon, South Korea). All compounds were used as analytical grade.

세포 배양을 위해, 사람 유방암 Hep3B 세포를 Korean Cell Line Bank (KCLB, Seoul, Republic of Korea)로부터 얻었으며, DMEM 배지, 태아소혈청 (fetal bovine serum; FBS), 페니실린 및 스트렙토마이신을 Welgene (Seoul, Republic of Korea)에서 구입하였으며, 세포 계수 키트-8 (CCK-8)를 Dojindo Molecular Technologies (Tokyo, Japan)에서 구입하여 사용하였다.For cell culture, human breast cancer Hep3B cells were obtained from Korean Cell Line Bank (KCLB, Seoul, Republic of Korea), and DMEM medium, fetal bovine serum (FBS), penicillin and streptomycin were added to Welgene (Seoul, Republic of Korea), and Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Molecular Technologies (Tokyo, Japan) and used.

2. 액틴 기반 적정 (Acid-Base Titration)2. Actin-Based Titration

전위차측정법 (potentiometric method)을 이용하여 HID, HA 및 NaCl (대조군)의 적정 플롯을 얻었다. 분말 상태의 폴리머와 NaCl를 증류수 (0.0108 mmol/ml, number of moles of -COOH) 10 mL에 용해시키고, 1 N NaOH로 pH를 12로 조정하였다. 상기 용액을 0.5 N HCl로 적정하고 pH 프로파일을 획득하였다. 세번 적정을 수행하여 평균값을 표시하였다.Titration plots of HID, HA and NaCl (control) were obtained using a potentiometric method. The polymer powder and NaCl were dissolved in 10 mL of distilled water (0.0108 mmol/ml, number of moles of -COOH), and the pH was adjusted to 12 with 1 N NaOH. The solution was titrated with 0.5 N HCl and a pH profile was obtained. Three titrations were performed to indicate the average value.

3. 히알루론산 랜덤공중합체(HID) 나노담체 (HID nanocarriers; HNs) 제조3. Preparation of hyaluronic acid random copolymer (HID) nanocarriers (HID nanocarriers; HNs)

히알루론산 랜덤공중합체(HID, 10 mg)를 에탄올 10 ml에 용해시켰다. 둥근바닥 플라스크에서 회전증발기 (EYELA n-1000, Tokyo, Japan)를 이용하여 유기층을 제거하여 얇은 필름을 생성하였다.A random hyaluronic acid copolymer (HID, 10 mg) was dissolved in 10 ml of ethanol. The organic layer was removed from a round-bottom flask using a rotary evaporator (EYELA n-1000, Tokyo, Japan) to produce a thin film.

나노담체 제조를 위해, 필름을 인산염완충식염수 (phosphate-buffered saline; PBS) 용액으로 재수화하였다. 그 후에, 프로브 타입 초음파분석기 (VCV-505, Sonics & Materials, CT, US)를 각각 이용하여 용액윽 10분간 초음파처리하였다. 나노담체 용액의 pH 값을 PBS (pH 6.0-7.4)로 조절하였다.For nanocarrier preparation, the film was rehydrated with phosphate-buffered saline (PBS) solution. Thereafter, each solution was sonicated for 10 minutes using a probe-type ultrasonicator (VCV-505, Sonics & Materials, CT, US). The pH value of the nanocarrier solution was adjusted with PBS (pH 6.0-7.4).

4. 임계미셀농도 (critical micelle concentration; CMC) 분석4. Critical micelle concentration (CMC) analysis

임계미셀농도 (CMC) 결정을 위해, 편광판을 갖춘 Scinco FS-2 fluorescence Spectrometer (Seoul, Republic of Korea)를 이용하여 여기광 (343 nm) 및 방출광 (384 nm)으로 형광 측정을 수행하였다. For the determination of the critical micelle concentration (CMC), fluorescence was measured with excitation light (343 nm) and emission light (384 nm) using a Scinco FS-2 fluorescence spectrometer (Seoul, Republic of Korea) equipped with a polarizer.

HN 시료를 6.0-7.4 범위의 PBS에서 다양한 pH 값으로 준비하고, 6.0 × 10-7 M 농도의 형광 프로브 피렌을 혼합하여 실온에서 하룻밤동안 교반하였다. 모든 측정은 공기평형 용액에서 실온으로 수행되었다. HN samples were prepared at various pH values in PBS ranging from 6.0-7.4, and a fluorescent probe pyrene at a concentration of 6.0 × 10 -7 M was mixed and stirred at room temperature overnight. All measurements were performed at room temperature in an air-equilibrated solution.

CMC 값은 나노담체 농도의 log10 값에 대한 방출 스펙트럼 프로파일의 I1 (intensity of first peak)에서 I3 (intensity of the third peak)의 비율을 플로팅하여 결정하였으며, 상기 플롯에서 낮은 중합체 농도의 교차점으로 CMC 값을 정의하였다.The CMC value was determined by plotting the ratio of I1 (intensity of first peak) to I3 (intensity of the third peak) of the emission spectrum profile against the log10 value of the nanocarrier concentration, and the CMC value as the intersection of the low polymer concentration in the plot was defined.

5. 입자 크기 및 제타 전위 측정5. Particle Size and Zeta Potential Measurements

나노담체의 효율적인 유체역학적 직경 (hydrodynamic diameter; Deff.) 및 HID의 제타 전위를 Multi Angle Sizing Option (BI-MAS)을 갖춘 Zetasizer Nano-ZS (Malvern Instruments, UK)를 이용하여 광자상관법으로 측정하였다.The efficient hydrodynamic diameter (Deff.) of the nanocarriers and the zeta potential of HID were measured by photon correlation method using Zetasizer Nano-ZS (Malvern Instruments, UK) equipped with Multi Angle Sizing Option (BI-MAS). .

PBS 용액 (pH 6.0-7.4)을 이용하여 스탁 용액을 20배 희석하여 각각 다른 pH 조건(0.01 wt%)으로 HN들을 준비하였다.HNs were prepared under different pH conditions (0.01 wt%) by diluting the stock solution 20-fold using PBS solution (pH 6.0-7.4).

측정 전, HN 용액을 실온에서 6시간 동안 인큐베이션하였다 (n = 3). Prior to measurement, the HN solution was incubated at room temperature for 6 hours (n = 3).

제조사에서 제공한 소프트웨어로 Deff. 및 제타 전위 값을 계산하였다; 각 시료를 세번 측정하여 각 파라미터에 대한 평균 값을 계산하였다 (n = 3). With software provided by the manufacturer, Dff. and zeta potential values were calculated; Each sample was measured three times to calculate the average value for each parameter (n = 3).

6. HID 나노담체 (HNs)의 형태확인6. Confirmation of morphology of HID nanocarriers (HNs)

pH 7.4 및 6.5에서 나노담체를 12시간 이상 인큐베이션하였다. 희석된 나노E담체 용액 (0.1 mg/mL)을 유리 슬라이드 위에 올리고, 진공상태에서 건조하였다. HNs의 형태를 field emission scanning electron microscope (FE-SEM, Sigma, Carl Zeiss, Germany)를 이용하여 확인하였다.Nanocarriers were incubated for at least 12 hours at pH 7.4 and 6.5. The diluted nano-E carrier solution (0.1 mg/mL) was placed on a glass slide and dried in vacuo. The morphology of HNs was confirmed using a field emission scanning electron microscope (FE-SEM, Sigma, Carl Zeiss, Germany).

7. 독소루비신 (DOX)이 담지된 HID 나노담체 (DHNs) 준비7. Preparation of HID nanocarriers (DHNs) loaded with doxorubicin (DOX)

독소루비신이 담지된 HID 나노담체(DHNs)를 준비하기 위해, DOX 및 HID를 10 mL EtOH에 용해시키고 얇은층 방법으로 준비하였다. HID 나노전달체 안으로 DOX를 담지하기 전, DOX·HCl를 TEA (2 mol)과 함께 EtOH에 첨가하여 하룻밤동안 교반하여 독소루비신 염을 얻었다. To prepare doxorubicin-supported HID nanocarriers (DHNs), DOX and HID were dissolved in 10 mL EtOH and prepared by a thin layer method. Before loading DOX into the HID nanocarrier, DOX.HCl was added to EtOH together with TEA (2 mol) and stirred overnight to obtain a doxorubicin salt.

DHN를 제조하기 위해, 회전증발기(model n-1000, EYELA, Tokyo, Japan)를 이용하여 유기 용액을 제거하여 각 둥근바닥 플라스크에 얇은 막을 생성하였다. To prepare DHN, the organic solution was removed using a rotary evaporator (model n-1000, EYELA, Tokyo, Japan) to form a thin film in each round-bottom flask.

PBS 용액 (pH 7.4, 0.15 M)으로 재수화된 필름 용액을 10 분간 초음파 처리하여 DHN을 생성하였다. 0.45 μm 막 필터에 상기 나노담체 용액을 통과시켜 비캡슐화된 약물을 제거하였다. 하기 식을 이용하여 약물 담지능 및 효율성을 계산하였다.The film solution rehydrated with PBS solution (pH 7.4, 0.15 M) was sonicated for 10 min to generate DHN. The unencapsulated drug was removed by passing the nanocarrier solution through a 0.45 μm membrane filter. Drug loading capacity and efficiency were calculated using the following formula.

약물 담지 용량 (Drug-loading capacity, %) = (Weight of drugs in nanocarriers) / (Weight of total nanocarriers) × 100Drug-loading capacity (%) = (Weight of drugs in nanocarriers) / (Weight of total nanocarriers) × 100

약물 담지 효율성 (Drug-loading efficiency, %) = (Weight of drugs in nanocarriers) / (Weight of drug initially added to formulation) × 100Drug-loading efficiency (%) = (Weight of drugs in nanocarriers) / (Weight of drug initially added to formulation) × 100

HN에 담지된 독소루비신의 함량은 물 : PBS 용액 (90 : 10 vol%)에 용해시킨 후 UV-1200 Spectrophotometer (Labentech, Incheon, Republic of Korea)를 이용하여 481 nm UV 흡광도에서 측정하였다The content of doxorubicin supported on HN was measured at 481 nm UV absorbance using a UV-1200 Spectrophotometer (Labentech, Incheon, Republic of Korea) after dissolving in water: PBS solution (90: 10 vol%).

8. 도세탁셀 (DTX)이 담지된 HID 나노담체 (DTHNs)의 준비8. Preparation of HID nanocarriers (DTHNs) loaded with docetaxel (DTX)

도세탁셀이 담지된 HID 나노담체(DTHNs)를 준비하기 위해, DTX 및 HID를 10 mL EtOH에 용해시키고 얇은층 방법으로 준비하였다. To prepare docetaxel-supported HID nanocarriers (DTHNs), DTX and HID were dissolved in 10 mL EtOH and prepared by a thin layer method.

DTHN를 제조하기 위해, 회전증발기(model n-1000, EYELA, Tokyo, Japan)를 이용하여 유기 용액을 제거하여 각 둥근바닥 플라스크에 얇은 막을 생성하였다. To prepare DTHN, the organic solution was removed using a rotary evaporator (model n-1000, EYELA, Tokyo, Japan) to form a thin film in each round-bottom flask.

PBS 용액 (pH 7.4, 0.15 M)으로 재수화된 필름 용액을 10 분간 초음파처리하여 DTHN을 생성하였다. 0.45 μm 막 필터에 상기 나노담체 용액을 통과시켜 비캡슐화된 약물을 제거하였다. 하기 식을 이용하여 약물 담지능 및 효율성을 계산하였다.DTHN was generated by sonicating the film solution rehydrated with PBS solution (pH 7.4, 0.15 M) for 10 min. The unencapsulated drug was removed by passing the nanocarrier solution through a 0.45 μm membrane filter. Drug loading capacity and efficiency were calculated using the following formula.

약물 담지 용량 (Drug-loading capacity, %) = (Weight of drugs in nanocarriers) / (Weight of total nanocarriers) × 100Drug-loading capacity (%) = (Weight of drugs in nanocarriers) / (Weight of total nanocarriers) × 100

약물 담지 효율성 (Drug-loading efficiency, %) = (Weight of drugs in nanocarriers) / (Weight of drug initially added to formulation) × 100Drug-loading efficiency (%) = (Weight of drugs in nanocarriers) / (Weight of drug initially added to formulation) × 100

high-performance liquid chromatography (Agilent 1200 series, Agilent Technologies Santa Clara, CA, USA)를 이용하여 도세탁셀의 농도를 결정하였다.The concentration of docetaxel was determined using high-performance liquid chromatography (Agilent 1200 series, Agilent Technologies Santa Clara, CA, USA).

역상 C18 컬럼 (150×4.5 mm id., pore size 5 μm; Micro solv Tech. Corp., Eatontown, NJ, USA)을 이용하였으며, ACN와 증류수의 혼합액(55:45, v/v%)으로 구성된 이동상을 이용하여 등용매 이송하였다. 1 mL/min 유속의 펌프로 시료를 운반하였을 때 도세탁셀의 머무름 시간은 4.5 분이었으며, 컬럼 온도는 25℃를 유지하였다.A reversed-phase C18 column (150×4.5 mm id., pore size 5 μm; Micro solv Tech. Corp., Eatontown, NJ, USA) was used, and it was composed of a mixture of ACN and distilled water (55:45, v/v%). It was transferred isocratic using the mobile phase. When the sample was transported by a pump with a flow rate of 1 mL/min, the retention time of docetaxel was 4.5 minutes, and the column temperature was maintained at 25°C.

컬럼 배출액을 230 nm에서 검출하고 도세탁셀의 농도를 표준 도세탁실 용액의 선형 검량선을 이용하여 계산하였다.The column effluent was detected at 230 nm and the concentration of docetaxel was calculated using a linear calibration curve of a standard docetaxel solution.

9. 생체 외 (In vitro) 약물 방출9. In vitro drug release

약물 방출을 확인하기 위해, DOX·HCl 또는 DHNs 용액 (80 μg of DOX)을 Spectra/Por 투석막 주머니 (MWCO 6-8 kDa)에 세 배로 넣고, 각 샘플을 pH 7.4 및 6.5 PBS에 넣고 인큐베이션하였다. 싱크 조건을 유지하기 위해, 순환항온 수조(Nexus Tech., Seoul, Republic of Korea)에서 37℃, 100 rpm으로 교반하였다.To confirm drug release, DOX.HCl or DHNs solution (80 μg of DOX) was placed in triplicate Spectra/Por dialysis membrane bags (MWCO 6-8 kDa), and each sample was incubated in PBS with pH 7.4 and 6.5. In order to maintain the sink conditions, the mixture was stirred at 37° C. and 100 rpm in a circulating constant temperature water bath (Nexus Tech., Seoul, Republic of Korea).

투석막 주머니의 외부 상을 약물 농도의 분석을 위해 회수하고, 싱크 조건을 유지하기 위해, 미리 정해진 시간 간격마다 신선한 PBS로 교체하였다. The outer phase of the dialysis membrane bag was withdrawn for analysis of drug concentration and replaced with fresh PBS at predetermined time intervals to maintain sink conditions.

UV Spectrophotometer로 상기 방법으로 DOX의 농도를 측정하였다.The concentration of DOX was measured by the above method with a UV Spectrophotometer.

10. 생체 외 항암효과 확인10. Confirmation of in vitro anticancer effect

세포독성을 확인하기 24시간 전에 96-웰 플레이트의 각 웰당 8×103 세로 밀도로 Hep3B 세포를 성장 배지에 접종하였다. 사용하기 전 즉시 DMEM 배지로 DOX·HCl 및 DHNs를 준비하였다. 96-웰 플레이트로부터 배지를 제거하고 각각 다른 농도의 DOX를 첨가하고 48시간 동안 인큐베이션하였다. Hep3B cells were inoculated into the growth medium at a vertical density of 8×10 3 per well of a 96-well plate 24 hours before cytotoxicity was confirmed. Immediately before use, DOX·HCl and DHNs were prepared in DMEM medium. The medium was removed from the 96-well plate, different concentrations of DOX were added, and incubated for 48 hours.

CCK-8 분석을 수행하여 세포 생존도를 확인하였다.CCK-8 assay was performed to confirm cell viability.

간략하게, 신선한 배지 (90 μL)에 CCK 용액 10 μL를 각 웰에 첨가하고 플레이트를 추가로 3시간 동안 인큐베이션하였다. 각 웰의 흡광도를 450 nm 파장에서 Flexstation three microplate reader (Molecular Devices, Sunnyvale, CA, US)로 확인하였다. Briefly, 10 µL of CCK solution in fresh medium (90 µL) was added to each well and the plate was incubated for an additional 3 h. The absorbance of each well was checked with a Flexstation three microplate reader (Molecular Devices, Sunnyvale, CA, US) at a wavelength of 450 nm.

<실시예 1> 히알루론산-중합-(이미다졸-도데실아민) (HID) 합성<Example 1> Hyaluronic acid-polymerization-(imidazole-dodecylamine) (HID) synthesis

1. 히알루론산-중합-(이미다졸-도데실아민) [hyaluronic acid-graft-(imidazole-dodecylamine), [(h-1. hyaluronic acid-polymerization-(imidazole-dodecylamine) [hyaluronic acid-graft-(imidazole-dodecylamine), [(h- gg -I)-I) xx -(h)-(h) yy -(h--(h- gg -D)-D) zz ]] ranran , HID] 합성, HID] synthesis

항암치료에 적합한 나노담체로 제공하기 위해, 도 1과 같은 과정으로 히알루론산-중합-(이미다졸-도데실아민) [Hyaluronic acid-graft -(imidazole-dodecylamine), (h-g-I)x-(h)y-(h-g-D)z]ran, HID]을 합성하였다. In order to provide a nanocarrier suitable for anticancer treatment, hyaluronic acid-polymerization-(imidazole-dodecylamine) [Hyaluronic acid-graft-(imidazole-dodecylamine), (h- g- I) x -(h) y -(h- g -D) z ] ran , HID] was synthesized.

결합 시약, EDC·HCl 및 NHS 존재하에서 아미드 생성에 의해 히알루론산(HA)의 백본에 1-(3-아미노프로필)-이미다졸 (IM)이 화학적 결합하여 pH 민감성을 갖도록 히알루론산(HA)을 변형시켰다.1-(3-aminopropyl)-imidazole (IM) chemically binds to the backbone of hyaluronic acid (HA) by amide formation in the presence of binding reagents, EDC HCl and NHS, to form hyaluronic acid (HA) with pH sensitivity transformed.

HA (M.W. 480 kDa, 500 mg, 1.35 mmol (the number of moles of -COOH))를 증류수에 5 mg/ml 농도로 용해시킨 후 HA의 카르복실기를 활성화시키기 위해, EDC (776 mg, 4.05 mmol) 및 NHS (466 mg, 4.05 mmol)를 첨가하였다. 실온에서 12시간 동안 교반한 후, 에탄올에 용해시킨 IM (5.4 mmol) 및 도데실아민 (1.35 mmol)를 천천히 첨가하고 65℃에서 2일간 교반하였다.After dissolving HA (MW 480 kDa, 500 mg, 1.35 mmol (the number of moles of -COOH)) in distilled water at a concentration of 5 mg/ml, to activate the carboxyl group of HA, EDC (776 mg, 4.05 mmol) and NHS (466 mg, 4.05 mmol) was added. After stirring at room temperature for 12 hours, IM (5.4 mmol) and dodecylamine (1.35 mmol) dissolved in ethanol were slowly added, followed by stirring at 65° C. for 2 days.

히알루론산-중합-이미다졸 (hyaluronic acid-graft-imidazole; HI) 및 히알루론산-중합-도데실아민 (hyaluronic acid-graft-dodecylamine; HD)을 제조하기 위해, 에탄올에 용해시킨 IM (5.4 mmol) 및 도데실아민 (5.4 mmol)를 천천히 첨가하고 65℃에서 2일간 교반하였다.To prepare hyaluronic acid-polymerized-imidazole (hyaluronic acid-graft-imidazole; HI) and hyaluronic acid-polymerized-dodecylamine (HD), IM dissolved in ethanol (5.4 mmol) and dodecylamine (5.4 mmol) were added slowly and stirred at 65° C. for 2 days.

반응혼합물을 투석막(molecular weight cut off (MWCO) 12000-14000 Da)을 이용하여 1일 동안 물:에탄올 (water:ethanol, 1:1 v/v)로 투석하고, 2일 동안 물로 투석하여 부산물을 제거한 후, 동결 건조하여 건조된 HA 유도체를 수득하였다.The reaction mixture was dialyzed against water:ethanol (1:1 v/v) for 1 day using a dialysis membrane (molecular weight cut off (MWCO) 12000-14000 Da), and dialyzed with water for 2 days to remove by-products After removal, freeze-drying was performed to obtain a dried HA derivative.

상기 HID, HI 및 HD와 같이 합성된 폴리머의 구조적 특징을 1H-NMR 600 MHz spectrometer (Delta, JEOL, MA, US)를 이용하여 확인하였다.The structural characteristics of the synthesized polymers such as HID, HI and HD were confirmed using 1 H-NMR 600 MHz spectrometer (Delta, JEOL, MA, US).

2. HID 확인2. Check HID

상기와 같이 산성 환경에서 종양 조직으로 약물을 방출하기 위해 히알루론산의 카르복실기를 pH 민감성 모이어티인 이미다졸 링과 중합하여 랜덤 공중합체를 제조하였다. A random copolymer was prepared by polymerizing the carboxyl group of hyaluronic acid with an imidazole ring, which is a pH-sensitive moiety, in order to release the drug into the tumor tissue in an acidic environment as described above.

앞선 보고에서 이미다졸 링은 6.8 pKa를 나타내며, 암 미세환경에서 pH 반응성을 나타내는 것으로 확인되었다. 또한, 히알루론산은 친수성 중합체이기 때문에 도데실아민은 소수성 부분으로서 양친매성 특성이 작용하도록 결합되었다. In the previous report, the imidazole ring exhibited 6.8 pKa and was confirmed to exhibit pH reactivity in the cancer microenvironment. In addition, since hyaluronic acid is a hydrophilic polymer, dodecylamine is bound to act as an amphiphilic property as a hydrophobic moiety.

EDC/NHS 화합물을 이용하여 히알루론산의 카르복실기의 아민 결합반응으로 중합체를 합성하였다. 그 결과, 중합체를 93.6%의 수율로 얻었다. A polymer was synthesized by amine coupling reaction of the carboxyl group of hyaluronic acid using an EDC/NHS compound. As a result, a polymer was obtained in a yield of 93.6%.

δ 7.1 - 7.5 (imidazole group), δ 0.75 (-CH3-, the last portion of dodecylamine ) 및 δ 4.34 (-CH-, the backbone of hyaluronic acid )와 같은 세 개의 1H-NMR 피크 비교를 통하여 부착된 이미다졸기 및 도데실아민기의 양을 확인하였다. Attached through comparison of three 1 H-NMR peaks, such as δ 7.1 - 7.5 (imidazole group), δ 0.75 (-CH 3 -, the last portion of dodecylamine ) and δ 4.34 (-CH-, the backbone of hyaluronic acid) The amounts of imidazole groups and dodecylamine groups were confirmed.

그 결과, 도 2와 같이 중합 비율은 이미다졸기 45% 및 도데실아민기 15%로 확인되었다.As a result, as shown in FIG. 2, the polymerization ratio was confirmed to be 45% of imidazole groups and 15% of dodecylamine groups.

다른 두 개의 중합체를 추가로 합성하고 HID와 비교하여 구조분석을 수행하였다. Two other polymers were further synthesized and structural analysis was performed by comparison with HID.

1H-NMR 피크의 δ 7.1~7.5 (imidazole group) 및 δ 0.75 (-CH3-, dodecylamine)를 통하여 중합된 이미다졸기 및 도데실아민기의 양이 확인되었다. HI 내 이미다졸 링의 중합 비율은 55 %로 확인된 반면, HD에 도데실아민 중합은40 %인 것으로 확인되었다.The amounts of polymerized imidazole groups and dodecylamine groups were confirmed through δ 7.1 to 7.5 (imidazole group) and δ 0.75 (-CH 3 -, dodecylamine) of 1 H-NMR peak. The polymerization rate of the imidazole ring in HI was found to be 55%, whereas the polymerization rate of dodecylamine in HD was found to be 40%.

<실시예 2> HID의 pH 프로파일 확인<Example 2> Confirmation of pH profile of HID

pKa 및 완충 능력은 중합체의 pH 민감성과 밀접한 관련성이 있기 때문에, 산-염기 적정으로 pH 프로파일을 조사하였다. 그 결과, 도 3과 같이 HID의 pKa는 약 6.84였으며, 완충 pH 범위가 6.32 및 8.23 사이로 확인되었다.Since the pKa and buffering capacity are closely related to the pH sensitivity of the polymer, the pH profile was investigated by acid-base titration. As a result, as shown in FIG. 3 , the pKa of HID was about 6.84, and it was confirmed that the buffer pH range was between 6.32 and 8.23.

약 6.84의 pKa 값과 넓은 완충 능력을 나타내는 pH 민감성 중합체는 고형 종양의 산성 환경에서 약물 방출 프로파일을 전환하기에 적합한 물질임이 보고되어 있으나, 대조적으로 HA 및 NaCl은 이미다졸기의 부재로 인하여 완충 능력을 나타내지 않았다. It has been reported that pH-sensitive polymers exhibiting a pKa value of about 6.84 and broad buffering capacity are suitable materials for converting drug release profiles in the acidic environment of solid tumors. did not show

HID의 pH 프로파일을 명확하게 확인하기 위해, 1H-NMR 상의 이미다졸기의 치환 비율(Graft ratio, G.R.)과 하이드로클로라이드의 양성자에 반응한 이미다졸기의 몰수를 비교하였다.In order to clearly confirm the pH profile of HID, the substitution ratio (Graft ratio, GR) of imidazole groups on 1 H-NMR and the number of moles of imidazole groups reacted to protons of hydrochloride were compared.

하이드로클로라이드의 양성자 농도 측정을 통하여 이미다졸기의 수를 확인한 결과, 도 2와 같이 G.R. 기반으로 1H-NMR 분석에 의해, 40 mg의 HID 중 108 μmol의 카르복실기는 이미다졸 모이어티 및 도데실아민이 각각 45% 및 15% 중합되었다. 또한, 도 3과 같이 이미다졸 45 μmol이 양성자화된 것을 고려하면, 산 적정에 의해 HID의 G.R.은 42%로 확인되었으며, 상기 결과는 NMR 분석과 유사한 것을 확인할 수 있었다.As a result of confirming the number of imidazole groups through measurement of the proton concentration of hydrochloride, 108 μmol of carboxyl groups in 40 mg of HID by 1 H-NMR analysis based on GR as shown in FIG. 2 were imidazole moieties and dodecylamine These were 45% and 15% polymerized, respectively. In addition, considering that 45 μmol of imidazole was protonated as shown in FIG. 3, the GR of HID was confirmed to be 42% by acid titration, and it was confirmed that the result was similar to that of NMR analysis.

<실시예 3> HNs의 pH-민감성 (sensitivity) 확인<Example 3> pH-sensitivity (sensitivity) confirmation of HNs

HID의 pH 프로파일을 기반으로, 산성 종양 미세환경에서 작용성을 확인하기 위해 HNs의 pH 민감성을 확인하였다. Based on the pH profile of HID, we confirmed the pH sensitivity of HNs to confirm their functionality in the acidic tumor microenvironment.

DLS을 이용하여 HN의 pH 의존성 입자 크기를 확인한 결과, 도 4a와 같이 pH 7.4에서는 입자의 직경이 200 nm보다 작았으며, 좁은 크기 분포를 나타내었다. As a result of confirming the pH-dependent particle size of HN using DLS, the particle diameter was smaller than 200 nm at pH 7.4, as shown in FIG. 4a, and showed a narrow size distribution.

또한, pH 7.4에서 미셀의 평균 직경은 151.1 nm 였으며, 좁은 크기 분포와 0.20의 PDI 값을 나타내었다. pH 6.5 및 6에서는 이미다졸기의 양성자화에 의해 HNs가 붕괴되어 각각 376 nm 및 465 nm로 입자 직경의 증가 나타났으며, 추가적인 pH의 감소는 HID의 이미다졸기의 양성자가 증가하여 미셀의 불안정성을 증가시키는 것이 확인되었다.In addition, the average diameter of the micelles at pH 7.4 was 151.1 nm, and exhibited a narrow size distribution and a PDI value of 0.20. At pH 6.5 and 6, HNs was disintegrated by protonation of the imidazole group, resulting in an increase in particle diameter to 376 nm and 465 nm, respectively. was found to increase.

또한, 제타 전위 측정을 통하여 나노담체의 pH 민감성을 확인하였다.In addition, the pH sensitivity of the nanocarriers was confirmed by measuring the zeta potential.

그 결과, 도 4a와 같이 pH 7.4에서 HNs의 제타 전위는 약 -15.1 mV로 확인되었다. pH가 생리적 pH 이하로 감소될 경우, 이미다졸기의 양성자가 증가하여 입자의 제타 전위는 급격히 증가하고 pH 6.5에서 약 -3.0 mV의 거의 중성 전하에 근접하는 것으로 확인되었다. As a result, it was confirmed that the zeta potential of HNs at pH 7.4 was about -15.1 mV as shown in FIG. 4a. It was confirmed that when the pH was decreased below physiological pH, the proton of the imidazole group increased and the zeta potential of the particle rapidly increased and approached a nearly neutral charge of about -3.0 mV at pH 6.5.

한편, 형광 소수성 프로브인 피렌의 존재하에서 형광분석기를 이용한 CMC 분석을 수행하여 HN 형성의 pH 의존성을 확인하였다.Meanwhile, pH dependence of HN formation was confirmed by performing CMC analysis using a fluorescence analyzer in the presence of pyrene, a fluorescent hydrophobic probe.

다른 pH 조건에서 HID의 CMC 측정을 통하여 미셀의 형성을 확인한 결과, 도 3b와 같이 pH 7.4 및 pH 7.0의 중성 조건에서는 CMC가 각각 1.6 및 10.9 μg/mL로 나타났다. 저분자량 계면활성제 (e.g., sodium dodecyl sulfate; 2.0 mg/mL at pH 7.4)와 비교하면 HID는 매우 낮은 CMC 값을 가지는 것이 확인되었다.As a result of confirming the formation of micelles through CMC measurement of HID at different pH conditions, CMC was found to be 1.6 and 10.9 μg/mL, respectively, in neutral conditions of pH 7.4 and pH 7.0, as shown in FIG. 3b. Compared with a low molecular weight surfactant (e.g., sodium dodecyl sulfate; 2.0 mg/mL at pH 7.4), it was confirmed that HID had a very low CMC value.

상기 결과로부터 약물 운반을 위한 나노담체로서의 안정성이 확인되었으며, 주사 후 급격한 희석에 의한 CMC 미만의 농도에서 미셀로부터의 약물 손실 억제가 확인되었다. From the above results, stability as a nanocarrier for drug delivery was confirmed, and inhibition of drug loss from micelles at a concentration below CMC by rapid dilution after injection was confirmed.

그러므로, HID는 생리적 pH 조건에서 나노담체로 자가 생성될 수 있다.Therefore, HIDs can self-generate into nanocarriers under physiological pH conditions.

pH 감소에 따라, HID의 이미다졸기가 양성화되어 미셀 중심의 미세극성 변화 및 CMC 증가를 유도하였다. pH 6.8에서 HID의 CMC는 49.5 μg/mL 까지 현저하게 증가하였으며, 이는 이미다졸기의 양성자 증가에 의해 HID가 소수성 상태에서 더욱 친수성화됨에 따라 미셀이 불안정해졌기 때문이며, FE-SEM를 통하여 pH 6.5에서 미셀의 붕괴가 확인되었다. As the pH decreased, the imidazole group of HID became protonated, leading to a change in the micropolarity of the micelle center and an increase in CMC. At pH 6.8, the CMC of HID significantly increased to 49.5 μg/mL, which is because micelles became unstable as the HID became more hydrophilic in a hydrophobic state due to the increase in protons of the imidazole group, and pH 6.5 through FE-SEM Collapse of micelles was confirmed in

도 5를 참고하면, pH 7.4에서 나노크기의 입자를 생성한 HID는 pH 6.5에서 붕괴되었으며, pH 7.4에서 나노담체는 좁은 단봉형 크기 분포 (PDI: 0.20)를 나타낸 반면, pH 6.5에서는 미셀의 입자 크기 분포는 두 봉우리 (PDI: 0.45)로 나타났다. Referring to FIG. 5 , HID, which produced nano-sized particles at pH 7.4, was disrupted at pH 6.5, and at pH 7.4, the nanocarriers showed a narrow unimodal size distribution (PDI: 0.20), whereas at pH 6.5, micellar particles The size distribution showed two peaks (PDI: 0.45).

상기 결과로부터 나노담체는 이미다졸기의 양성자화에 의해 양성 전하 사이 척력에 의해 붕괴되는 것으로 확인되었다.From the above results, it was confirmed that the nanocarriers were disintegrated by the repulsive force between the positive charges due to the protonation of the imidazole group.

<실시예 4> 산성 pH에서 DHNs의 전환된 약물 방출 프로파일 확인<Example 4> Confirmation of the converted drug release profile of DHNs at acidic pH

pH 민감성 나노담체로서 HID의 높은 기능성을 확인하기 위해, 독소루비신(DOX)과 도세탁셀 (DTX)을 모델 약물로 사용하였다. To confirm the high functionality of HID as a pH-sensitive nanocarrier, doxorubicin (DOX) and docetaxel (DTX) were used as model drugs.

DOX와 DTX는 유방암, 전립선암, 폐암 및 위암을 포함하여 많은 암에 대한 강한 효과를 나타내는 약물이나, 매우 소수성을 나타내는 약물로 낮은 용해성을 나타내기 때문에 약학적 적용이 제한적이다. DOX and DTX are drugs that show strong effects on many cancers, including breast cancer, prostate cancer, lung cancer, and stomach cancer, but their pharmaceutical applications are limited because they are very hydrophobic drugs and show low solubility.

그러므로, 나노담체는 DOX 및 DTX의 가용화 및 표적화된 운반성은 상기 문제점을 극복하여 약물학적 효과를 개선시킬 수 있다. Therefore, the solubilization and targeted delivery of DOX and DTX nanocarriers can overcome the above problems and improve the pharmacological effect.

DHNs의 약물 담지 프로파일 및 나노 크기 입자의 형성을 확인하기 위해, DHNs의 특징을 분석하였다. 표 1을 참고하면 나노담체는 10, 20 및 30 wt% 목표 로딩 함량으로 준비되었다. 목표 로딩 농도가 증가함에 따라, 입자 크기는 200 nm 미만으로 유지되었으나, 로딩 효율은 감소하는 것이 확인되었다.In order to confirm the drug loading profile of DHNs and the formation of nano-sized particles, the characteristics of DHNs were analyzed. Referring to Table 1, nanocarriers were prepared with target loading contents of 10, 20 and 30 wt%. As the target loading concentration increased, it was confirmed that the particle size was kept below 200 nm, but the loading efficiency decreased.

또한, DTHNs의 약물 담지 프로파일 및 나노 입자의 형성에 관련된 결과를 확인하였다. 그 결과 표 1과 같이 DHNs과 비슷한 경향을 나타내었으며, 10w% 목표 로딩함량으로 준비한 경우, 입자의 크기는 약 200nm였다.In addition, the results related to the drug loading profile of DTHNs and the formation of nanoparticles were confirmed. As a result, as shown in Table 1, it showed a similar tendency to DHNs, and when prepared with a target loading content of 10w%, the particle size was about 200nm.

DHNs의 약물 방출 프로파일을 결정하기 위해, DOX-HCl 및 DHNs를 싱크 조건으로 PBS (pH 7.4 및 pH 6.5)에서 인큐베이션하였다. To determine the drug release profile of DHNs, DOX-HCl and DHNs were incubated in PBS (pH 7.4 and pH 6.5) under sink conditions.

그 결과, 도 6a와 같이 DOX-HCl는 두 pH 조건에서 비슷한 비율로 광범위하게 방출되었으며, 싱크 조건은 약물 방출 프로파일을 결정하는데 충분한 것으로 확인되었다. As a result, as shown in FIG. 6a, DOX-HCl was widely released at a similar rate in both pH conditions, and it was confirmed that the sink condition was sufficient to determine the drug release profile.

반면, DHNs는 pH 의존성 약물 방출을 나타내었는 데, pH 7.4에서 48시간 이상 40 % 이하의 방출을 나타났으나, pH 6.5에서는 HID 상 이미다졸기의 양성자화로 인해 구조적 전환이 나타나 DOX이 약 70% 방출되었다.On the other hand, DHNs showed a pH-dependent drug release, which showed a release of less than 40% for more than 48 hours at pH 7.4, but at pH 6.5, a structural change was observed due to protonation of the imidazole group on the HID, resulting in a DOX of about 70%. was released

또한, pH 7.4 및 6.5에서 FE-SEM로 DHN의 형태를 확인한 결과, 도 6b 및 도 6c와 같이 pH 감소에 따라 나노담체의 구조 전환이 유도되는 것을 확인할 수 있었다. In addition, as a result of confirming the morphology of DHN by FE-SEM at pH 7.4 and 6.5, it was confirmed that the structural transformation of the nanocarrier was induced as the pH decreased as shown in FIGS. 6b and 6c.

pH 7.4에서 DHNs는 HID의 DOX과 '이미다졸 및 도데실아민' 사이의 소수성 상호작용에 의해 HN 보다 더욱 구 모형의 구조를 나타내었으며, pH가 6.5로 더 감소함에 따라, DHN 중심에서 이미다졸기의 양성자화가 나노담체의 로딩 용량을 감소시키고 우수한 DOX 방출을 유도하였다. 전환된 약물 방출 프로파일은 양성 전하 중 정전기적 반발에 의한 것이며, 이는 구조적 전환을 유도하였다.At pH 7.4, DHNs exhibited a more spherical structure than HN due to the hydrophobic interaction between DOX of HID and 'imidazole and dodecylamine'. The protonation of nanocarriers decreased the loading capacity of the nanocarriers and induced good DOX release. The shifted drug release profile is due to electrostatic repulsion among positive charges, which induced a conformational shift.

상기 결과들로부터 DHNs는 생리적 pH (pH 7.4)에서 DOX의 pH 의존성 방출을 효율적으로 억제하는 것이 확인되었다. 따라서 이러한 억제는 DHNs가 종양 부위에 도착하기 전 혈류내에서 약물 손실을 최소화하여 혈액 순환동안 전신 독성을 감소시킬 수 있으며, 종양의 pHex (tumor extracellular pH; pH 6.5 내지 7.2) 및 pHen (endosomal pH; pH 6.5 이하) 에서 DHNs로부터 DOX 방출을 유도하여 더욱 효과적으로 항종양 활성이 가능하게 한다.From the above results, it was confirmed that DHNs effectively inhibited the pH-dependent release of DOX at physiological pH (pH 7.4). Therefore, such inhibition can reduce systemic toxicity during blood circulation by minimizing drug loss in the bloodstream before DHNs reach the tumor site, and the tumor's pHex (tumor extracellular pH; pH 6.5 to 7.2) and pHen (endosomal pH; At pH 6.5 or lower), it induces DOX release from DHNs, enabling more effective antitumor activity.

NanocarriersNanocarriers
(loaded drug)(loaded drug)
TargetTarget
ContentContent
(wrt %)(wrt %)
Loading efficiencyloading efficiency
(wt%)(wt%)
Loading contentLoading content
(wt %)(wt%)
Average SizeAverage Size
(( DD effeff , nm), nm)
PDIPDI
DHNsDHNs
(DOX)(DOX)
1010 88.088.0 8.98.9 145.0 ± 2.9145.0 ± 2.9 0.26 ± 0.010.26 ± 0.01
2020 72.272.2 15.315.3 151.7 ± 2.1151.7 ± 2.1 0.21 ± 0.090.21 ± 0.09 3030 68.168.1 22.622.6 180.9 ± 2.7180.9 ± 2.7 0.25 ± 0.070.25 ± 0.07 DTHNsDTHNs
(DTX)(DTX)
1010 76.576.5 7.87.8 213.0 ± 5.0213.0 ± 5.0 0.19 ± 0.020.19 ± 0.02

<실시예 5> DHNs의 항종양 효과 확인<Example 5> Confirmation of antitumor effect of DHNs

DHNs의 항종양 효과를 확인하기 위해, DOX·HCl 및 DHNs가 처리된 Hep3B 세포의 세포 생존도를 평가하여 암 치료에 대한 활성을 확인하였다.In order to confirm the antitumor effect of DHNs, the cell viability of Hep3B cells treated with DOX·HCl and DHNs was evaluated to confirm the activity against cancer treatment.

그 결과, 도 7과 같이 HID는 모든 농도에서 독성이 나타나지 않았으며, DOX·HCl (1.00 μg/ml)의 IC50 값과 비교하여 DHNs (0.54 μg/ml)은 1.8배 세포 독성이 확인되었다.As a result, as shown in FIG. 7 , HID did not show toxicity at any concentration, and DHNs (0.54 μg/ml) showed 1.8-fold cytotoxicity compared to the IC 50 value of DOX·HCl (1.00 μg/ml).

상기 결과는 HA와 CD44 간의 상호작용에 의한 HID의 증가된 로딩 능력에 의한 것으로, 이는 양성자 스폰지 효과에 의해 세포 내 약물 분포 및 엔도솜 파괴가 유도되었기 때문이다. This result is due to the increased loading capacity of HID by the interaction between HA and CD44, because intracellular drug distribution and endosomal destruction were induced by the proton sponge effect.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (13)

하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체:
[화학식 1]
Figure pat00004

상기 화학식 1에 있어서,
R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고,
상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체임.
A random copolymer of pH-sensitive hyaluronic acid represented by the following formula (1):
[Formula 1]
Figure pat00004

In Formula 1,
R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,
wherein x is a monomer of hyaluronic acid-graft-imidazole, y is a monomer of hyaluronic acid, and z is a monomer of hyaluronic acid-graft-dodecylamine. Lim.
청구항 1에 있어서, 상기 히알루론산 랜덤공중합체는 친수성 히알루론산(y); 히알루론산의 카르복실기에 이미다졸기가 결합되어 형성된 pH 민감성 부위(x); 및 히알루론산의 카르복실기에 아미노알킬기가 결합되어 형성된 소수성 부위(z)로 이루어지며, pH 민감성 및 양친매성을 나타내는 것을 특징으로 하는 pH 민감성 히알루론산 랜덤공중합체.The method according to claim 1, wherein the hyaluronic acid random copolymer is hydrophilic hyaluronic acid (y); a pH-sensitive region (x) formed by bonding an imidazole group to a carboxyl group of hyaluronic acid; and a hydrophobic region (z) formed by bonding an aminoalkyl group to a carboxyl group of hyaluronic acid, and pH-sensitive hyaluronic acid random copolymer, characterized in that it exhibits pH sensitivity and amphiphilicity. 청구항 1에 있어서, 상기 히알루론산 랜덤공중합체는 x:y:z가 30-40:40-50:10-20 몰비로 이루어진 것을 특징으로 pH 민감성 히알루론산 랜덤공중합체.The method according to claim 1, wherein the random copolymer of hyaluronic acid is pH-sensitive hyaluronic acid random copolymer, characterized in that x: y: z is 30-40: 40-50: 10-20 molar ratio consisting of. 청구항 1에 있어서, 상기 히알루론산 랜덤공중합체는 x:y:z가 40:45:15 몰비로 이루어지는 것을 특징으로 하는 pH 민감성 히알루론산 랜덤공중합체.The method according to claim 1, wherein the hyaluronic acid random copolymer is pH-sensitive hyaluronic acid random copolymer, characterized in that x:y:z is 40:45:15 molar ratio consisting of. 청구항 1에 있어서, 상기 히알루론산 랜덤공중합체는 pH 7.0 내지 pH 7.5의 중성 조건에 자가조립형태에 의하여 미셀화되고, pH 6.0 내지 pH 6.8의 산성 조건에서 미셀이 붕괴되는 것을 특징으로 하는 pH 민감성 히알루론산 랜덤공중합체.The method according to claim 1, wherein the random copolymer of hyaluronic acid is micellarized by self-assembly in neutral conditions of pH 7.0 to pH 7.5, and micelles are disintegrated in acidic conditions of pH 6.0 to pH 6.8 pH-sensitive hyaluronic acid ronic acid random copolymer. 청구항 5에 있어서, 상기 미셀은 120 nm 내지 190 nm의 평균직경을 나타내는 것을 특징으로 하는 pH 민감성 히알루론산 랜덤공중합체.The method according to claim 5, wherein the micelles are pH-sensitive hyaluronic acid random copolymer, characterized in that it exhibits an average diameter of 120 nm to 190 nm. 하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체를 포함하는 약물전달체.
[화학식 1]
Figure pat00005

상기 화학식 1에 있어서,
R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고,
상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체임.
A drug delivery system comprising a random copolymer of pH-sensitive hyaluronic acid represented by the following formula (1).
[Formula 1]
Figure pat00005

In Formula 1,
R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,
wherein x is a monomer of hyaluronic acid-graft-imidazole, y is a monomer of hyaluronic acid, and z is a monomer of hyaluronic acid-graft-dodecylamine. Lim.
청구항 7에 있어서, 상기 약물전달체는 종양의 산성 미세환경인 pH 6.0 내지 pH 6.8에서 미셀이 붕괴되어 약물이 방출되는 것을 특징으로 하는 약물전달체.The drug delivery system according to claim 7, wherein the micelle is disintegrated in the acidic microenvironment of the tumor, pH 6.0 to pH 6.8, to release the drug. 하기 화학식 1로 표시되는 pH 민감성 히알루론산 랜덤공중합체; 및
상기 랜덤공중합체에 봉입된 항암제를 유효성분으로 함유하는 암질환 치료용 약학조성물.
[화학식 1]
Figure pat00006

상기 화학식 1에 있어서,
R1은 이미다졸-(CH2)n-NH- 이고, 상기 n은 1 내지 5의 정수이며, R2는 아미노(C12-C20)알킬이고,
상기 x는 히알루론산-그래프트-이미다졸 (hyaluronic acid-graft-imidazole)의 단량체이며, y는 히알루론산의 단량체이며, z는 히알루론산-그래프트-도데실아민 (hyaluronic acid-graft-dodecylamine)의 단량체임.
pH-sensitive hyaluronic acid random copolymer represented by the following formula (1); and
A pharmaceutical composition for treating cancer diseases containing an anticancer agent encapsulated in the random copolymer as an active ingredient.
[Formula 1]
Figure pat00006

In Formula 1,
R 1 is imidazole-(CH 2 )n-NH-, n is an integer from 1 to 5, R 2 is amino(C12-C20)alkyl,
wherein x is a monomer of hyaluronic acid-graft-imidazole, y is a monomer of hyaluronic acid, and z is a monomer of hyaluronic acid-graft-dodecylamine. Lim.
청구항 9에 있어서, 상기 히알루론산은 CD44가 과발현된 암세포와 특이적으로 상호작용하여 암세포를 표적하는 것을 특징으로 하는 암질환 치료용 약학조성물.The pharmaceutical composition for the treatment of cancer diseases according to claim 9, wherein the hyaluronic acid specifically interacts with the CD44 overexpressed cancer cells to target the cancer cells. 청구항 9에 있어서, 상기 약학조성물은 종양의 산성 미세환경인 pH 6.0 내지 pH 6.8에서 미셀이 붕괴되어 항암제가 방출되는 것을 특징으로 하는 암질환 치료용 약학조성물.The pharmaceutical composition for the treatment of cancer diseases according to claim 9, wherein the micelle is disintegrated in the acidic microenvironment of the tumor, pH 6.0 to pH 6.8, to release the anticancer agent. 청구항 9에 있어서, 상기 항암제는 독소루비신 (doxorubicin), 파클리탁셀 (paclitaxel) 및 도세탁셀 (Docetaxel)로 이루어진 군에서 선택되는 것을 특징으로 하는 암질환 치료용 약학조성물.The pharmaceutical composition according to claim 9, wherein the anticancer agent is selected from the group consisting of doxorubicin, paclitaxel, and docetaxel. 청구항 9항에 있어서, 상기 암질환은 폐암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 유방암, 간암, 피부암, 위암, 식도암, 고환암, 신장암, 대장암 및 직장암으로 이루어진 군에서 선택되는 것을 특징으로 하는 암질환 치료용 약학조성물.10. The method of claim 9, wherein the cancer disease is lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, breast cancer, liver cancer, skin cancer, stomach cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer and rectal cancer from the group consisting of A pharmaceutical composition for the treatment of cancer diseases, characterized in that selected.
KR1020200010606A 2020-01-29 2020-01-29 pH sensitive hyaluronate copolymer and drug delivery system using the same KR102354429B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200010606A KR102354429B1 (en) 2020-01-29 2020-01-29 pH sensitive hyaluronate copolymer and drug delivery system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200010606A KR102354429B1 (en) 2020-01-29 2020-01-29 pH sensitive hyaluronate copolymer and drug delivery system using the same

Publications (2)

Publication Number Publication Date
KR20210096931A true KR20210096931A (en) 2021-08-06
KR102354429B1 KR102354429B1 (en) 2022-01-21

Family

ID=77315223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200010606A KR102354429B1 (en) 2020-01-29 2020-01-29 pH sensitive hyaluronate copolymer and drug delivery system using the same

Country Status (1)

Country Link
KR (1) KR102354429B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750255A (en) * 2021-09-30 2021-12-07 大连民族大学 Environment-responsive hyaluronic acid-podophyllotoxin prodrug micelle and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006847A (en) * 2006-07-14 2008-01-17 울산대학교 산학협력단 Chitosan complex containing ph sensitive imidazole group and preparation method thereof
KR20110114914A (en) * 2010-04-14 2011-10-20 가톨릭대학교 산학협력단 Ph sensitive nano complex for drug delivery and preparation method thereof
KR20140118560A (en) 2013-03-29 2014-10-08 성균관대학교산학협력단 Dual ionic pH-sensitive copolymer and use thereof
CN105944108A (en) * 2016-04-22 2016-09-21 烟台大学 Liposome pH-sensitivity modifier containing menthone 1,2-glycerol ketal and paclitaxel-curcumin compound liposome preparation
CN110354095A (en) * 2019-07-01 2019-10-22 东南大学 Target the pH sensitive transparent matter acid nanoparticle and preparation method thereof of atherosclerosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006847A (en) * 2006-07-14 2008-01-17 울산대학교 산학협력단 Chitosan complex containing ph sensitive imidazole group and preparation method thereof
KR20110114914A (en) * 2010-04-14 2011-10-20 가톨릭대학교 산학협력단 Ph sensitive nano complex for drug delivery and preparation method thereof
KR20140118560A (en) 2013-03-29 2014-10-08 성균관대학교산학협력단 Dual ionic pH-sensitive copolymer and use thereof
CN105944108A (en) * 2016-04-22 2016-09-21 烟台大学 Liposome pH-sensitivity modifier containing menthone 1,2-glycerol ketal and paclitaxel-curcumin compound liposome preparation
CN110354095A (en) * 2019-07-01 2019-10-22 东南大学 Target the pH sensitive transparent matter acid nanoparticle and preparation method thereof of atherosclerosis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750255A (en) * 2021-09-30 2021-12-07 大连民族大学 Environment-responsive hyaluronic acid-podophyllotoxin prodrug micelle and preparation method and application thereof
CN113750255B (en) * 2021-09-30 2023-10-31 大连民族大学 Environment-responsive hyaluronic acid-podophyllotoxin prodrug micelle and preparation method and application thereof

Also Published As

Publication number Publication date
KR102354429B1 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
Li et al. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy
US7229973B2 (en) pH-sensitive polymeric micelles for drug delivery
Zhang et al. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin
Ray et al. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy
Shen et al. Degradable poly (β-amino ester) nanoparticles for cancer cytoplasmic drug delivery
Zhang et al. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel
Gao et al. Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles
CN102060991B (en) Amphiphilic prodrug of 7- ethyl-10-hydroxycamptothecin and preparation method thereof
Zhou et al. Hypoxia-responsive block copolymer polyprodrugs for complementary photodynamic-chemotherapy
US10376591B2 (en) Formulations and carrier systems including farnesylthiosalicylic moieties
Sedlacek et al. Poly (2-methyl-2-oxazoline) conjugates with doxorubicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties
Lei et al. Co-delivery of paclitaxel and gemcitabine via a self-assembling nanoparticle for targeted treatment of breast cancer
Yadavar-Nikravesh et al. Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects
Zhang et al. A PEGylated alternating copolymeric prodrug of sulfur dioxide with glutathione responsiveness for Irinotecan delivery
Yu et al. Optimizing particle size of docetaxel-loaded micelles for enhanced treatment of oral epidermoid carcinoma
Muddineti et al. Vitamin-E/lipid based PEGylated polymeric micellar doxorubicin to sensitize doxorubicin-resistant cells towards treatment
Cuggino et al. Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy
Di et al. Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment
US20210330808A1 (en) Small polymeric carriers for delivery of agents
Damrongrak et al. Delivery of acetogenin-enriched Annona muricata Linn leaf extract by folic acid-conjugated and triphenylphosphonium-conjugated poly (glycerol adipate) nanoparticles to enhance toxicity against ovarian cancer cells
CN109762099B (en) Polymer-antitumor drug conjugate and preparation method and application thereof
KR102354429B1 (en) pH sensitive hyaluronate copolymer and drug delivery system using the same
Wei et al. Novel curcumin derivative-decorated ultralong-circulating paclitaxel nanoparticles: a novel delivery system with superior anticancer efficacy and safety
Kumbhar et al. d-Gluconic acid–based methotrexate prodrug–loaded mixed micelles composed of MDR reversing copolymer: in vitro and in vivo results
Han et al. Development of a pH-responsive polymer based on hyaluronic acid conjugated with imidazole and dodecylamine for nanomedicine delivery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant