KR20210095521A - The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process - Google Patents

The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process Download PDF

Info

Publication number
KR20210095521A
KR20210095521A KR1020200009553A KR20200009553A KR20210095521A KR 20210095521 A KR20210095521 A KR 20210095521A KR 1020200009553 A KR1020200009553 A KR 1020200009553A KR 20200009553 A KR20200009553 A KR 20200009553A KR 20210095521 A KR20210095521 A KR 20210095521A
Authority
KR
South Korea
Prior art keywords
reaction
precursor
formula
cpema
compound
Prior art date
Application number
KR1020200009553A
Other languages
Korean (ko)
Inventor
장명식
Original Assignee
장명식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장명식 filed Critical 장명식
Priority to KR1020200009553A priority Critical patent/KR20210095521A/en
Publication of KR20210095521A publication Critical patent/KR20210095521A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/17Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

The present invention relates to a method for preparing a compound represented by chemical formula 1 and a compound represented by chemical formula 2 as an organic ligand compound forming a precursor used for self-limiting reaction, among the precursors used in a process selected from the group consisting of atomic layer deposition (ALD) and chemical vapor deposition, with high purity and high efficiency in an eco-friendly manner using no organic solvent. The present invention is advantageous in that the compound represented by chemical formula 1 and the compound represented by chemical formula 2 are prepared in an aqueous solution, not an organic solvent used conventionally in the related art, and the byproducts generated during the preparation are removed with ease.

Description

원자층 증착/화학적 기상 증착 공정에서 위한 전구체를 구성하는 유기 리간드의 제조방법{The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process}The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process

본 발명은 원자층 증착(ALD : Atomic Layer Deposition) 및 화학적 기상 증착 (Chemical Vapor Deposition)으로 이루어진 군으로부터 선택되는 공정에 이용되는 전구체(Precursor) 중, 자가 제한적 반응(Self-limiting reaction)에 사용되는 전구체(Precursor)를 구성하는 리간드 유기화합물 화학식 1 화합물과 화학식 2 화합물The present invention provides a self-limiting reaction among precursors used in a process selected from the group consisting of atomic layer deposition (ALD) and chemical vapor deposition (Chemical Vapor Deposition). Ligand constituting a precursor Organic compound Formula 1 compound and Formula 2 compound

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

를 고순도, 고효율로 유기 용매를 사용하지 않고 자연 친화적인 방법으로 수용액에서 제조할 수 있는 제조방법에 관한 것이다.It relates to a manufacturing method that can be prepared in an aqueous solution with high purity and high efficiency without using an organic solvent in a nature-friendly method.

반도체 공정에서 사용되는 전구체(Precursor)는 특정 박막(메탈, 메탈산화막, 메탈질화막)을 형성하기 위하여 사용되는 선구물질을 통상적으로 명칭한다. 즉, 전구체는 일반적으로 중심금속과 리간드가 결합된 형태의 유기금속 화합물인데 상기 화학식 3과 화학식 4의 화합물이 리간드의 하나의 구성을 담당하게 된다. 전구체로 사용될 수 있는 다양한 리간드가 연구되어 있으며, 대표적인 예로는 알콕사이드(Alkoxide), 다이엔(Diene), β-다이케토나토(β-Diketonato), 다이아자다이엔 (Diazadiene), 아릴(Allyl), 알킬아미도 게열(alkylamido group), 싸이클로펜타다이엔(Cyclopentadiene) 등이 있으며, 본 발명자가 개발하고자 하는 화합물도 싸이클로펜타다이엔(Cyclopentadiene)의 유도체이다.A precursor used in a semiconductor process is commonly referred to as a precursor used to form a specific thin film (metal, metal oxide film, or metal nitride film). That is, the precursor is generally an organometallic compound in which a central metal and a ligand are bonded, and the compounds of Chemical Formulas 3 and 4 are responsible for one component of the ligand. Various ligands that can be used as precursors have been studied, and representative examples include alkoxide, diene, β-diketonato, diazadiene, aryl, There are alkylamido groups, cyclopentadiene, and the like, and the compound to be developed by the present inventors is also a derivative of cyclopentadiene.

상기의 다양한 리간드의 조성에 따라서 전구체의 특성이 달라질 수 있으며, 이러한 전구체의 특성으로 인하여 최종 필름에도 큰 영향을 미칠 수 있음은 이전의 많은 문헌에 보고된 바 있다. It has been previously reported in many literatures that the properties of the precursor may vary depending on the composition of the various ligands, and that the properties of the precursor may have a significant effect on the final film.

일반적인 전구체의 특성을 정리하면,Summarizing the characteristics of general precursors,

첫째, 열적 안정성이다. First, thermal stability.

전구체를 증착 챔버까지 이송하는 방식으로 가열 후 휘발된 전구체를 이송하는 방식과 챔버까지 이송 후 휘발시키는 방식이 있는데 전구체를 기화시키기 위하여 열에너지가 가해지게 되며, 이 과정에서 전구체의 열분해 및 이로 인한 증착률 증가가 발생하면 안된다.As a method of transferring the precursor to the deposition chamber, there are a method of transferring the volatilized precursor after heating and a method of volatilizing the precursor after transferring it to the chamber. An increase should not occur.

둘째, 휘발성이 좋아야 한다. Second, it must have good volatility.

전구체의 휘발성은 증차 공정상 웨이퍼 전체의 균일성과 계단피복성등에 영향을 미치게 되므로 빠르게 침투하여 균일하게 증착되기 위하여 전구체의 휘발성이 중요한 역할을 한다.Since the volatility of the precursor affects the uniformity and step coverage of the entire wafer during the step-up process, the volatility of the precursor plays an important role in order to quickly penetrate and deposit uniformly.

셋째, 표면 및 반응가스의 반응성이 좋아야 한다. Third, the reactivity of the surface and reaction gas should be good.

ALD공정은 표면 자기 제한 증착 방식이기 때문에 반응성이 낮으면 자기 제한 증착(self-limiting deposition)이 이루어지지 않기 때문이다.This is because, since the ALD process is a surface self-limiting deposition method, if the reactivity is low, self-limiting deposition is not performed.

넷째, 가장 중요한 전구체의 순도이다. Fourth, most important is the purity of the precursor.

반도체 소자는 아주 미세하여 미량의 불순물에도 소자의 결함이 발생할 수 있다. 또한 전기적 특성을 요구하는 박막의 경우에는 원하는 필름 성분 외의 극미량 메탈, 성분의 양에 따라 전기적 특성이 변하기 때문에 초고순도의 전구체를 사용하여야 한다.Since semiconductor devices are very fine, even a small amount of impurities may cause device defects. In addition, in the case of a thin film requiring electrical properties, an ultra-high purity precursor must be used because the electrical properties change depending on the amount of trace metal and components other than the desired film component.

상기와 같이 열적 안정성(Thermal Stability), 고휘발성(High Volatility), 높은 반응성(High Reactivity of Surface), 그리고 고순도(High Purity)을 가진 전구체의 개발이 절실히 요구되어지고 있다.As described above, the development of a precursor having thermal stability, high volatility, high reactivity of surface, and high purity is urgently required.

최근에 DRAM 축전기(capacitor)의 응용되는 물질로 유전상수(dielectric)가 SiO2보다 높은 물질로 질코니아(ZrO2)를 주로 사용한다. 질코니아(ZrO2)를 ALD 방법으로 성장시키기 위하여 특별한 전구체를 필요로 하는데, 지금까지 수많은 전구체들이 개발되어져 왔다. Recently, as a material used for DRAM capacitors, zirconia (ZrO 2 ) is mainly used as a material having a dielectric constant higher than that of SiO 2 . Zirconia (ZrO 2 ) It requires a special precursor to grow by the ALD method, so far, numerous precursors have been developed.

이중 알콕사이드(Alkoxide) 계열의 Zr전구체는 thermal stability의 한계 때문에 ALD 공정에 문제점이 발생하였으며(J. Niinisto et al., Adv. Eng. Mater. 2009, 11, 223), Among them, the alkoxide-based Zr precursor has a problem in the ALD process due to the limitation of thermal stability (J. Niinisto et al., Adv. Eng. Mater. 2009, 11, 223),

β-다이케토나토(β-Diketonato)계열의 전구체는 안정한 화합물이기 때문에 Ozone과 같은 강력한 산화제가 필요하였지만 낮은 증착률 때문에 DRAM 축전기(capacitor)에 적용하기에 적합하지 않았다.(M. Putkone et al., J. Mater. Chem. 2002, 12, 442~4480) Since the β-Diketonato series precursor is a stable compound, a strong oxidizing agent such as Ozone is required, but it is not suitable for application to DRAM capacitors due to its low deposition rate (M. Putkone et al. ., J. Mater. Chem. 2002, 12, 442~4480)

다른 후보군인 알킬아미도 계열(alkylamido group)의 전구체 테트라키스-에틸-메칠-아미노- 질코니윰(Tetrakis- Ethyl-methyl-Amino-zirconium, TEMAZr)은 휘발성이 좋고 Ozone과의 반응성도 좋아 산업적 적용되어 사용되고 있다.(D. Hausmann et al., 2002, 14, 4350) 하지만 300℃에서 낮은 열적 안정성으로 인한 열적 분해가 발생하여 새로운 계열의 전구체가 요구되어졌다.Another candidate group, tetrakis-ethyl-methyl-amino-zirconium (TEMAZr), a precursor of the alkylamido group, has good volatility and good reactivity with Ozone for industrial application. (D. Hausmann et al., 2002, 14, 4350) However, thermal decomposition occurred at 300℃ due to low thermal stability, so a new type of precursor was required.

대안 화합물로 메탈로센 촉매화합물에서 많이 사용되는 싸이클로펜타다이엔(Cyclopentadiene, 이하 Cp)리간드를 도입하게 되면서 전구체의 열적 안정성이 비약적으로 증가하게 되었다. Cp-type의 전구체 중 RCpZr[N(CH3)2]3(R = H, Methyl, Ethyl), [CH3Cp)2Zr(CH3)2, (CH3Cp)2ZrCH3OCH3, Cp2Zr(CH3)2, 그리고 RCpZr(CHIT)(CHIT = Cycloheptatrienyl) 등이 수십 nm 정도 두께의 ZrO2를 형성하는 ALD 전구체로 많은 개발이 이루어 졌다.(L. Aarik et al. Thi solid Film. 2014, 565, 37~44 ; J. Niinisto et al. Langmuir 2005, 21, 7321~7325 ; J. Niinisto et al. Chem. Meter. 2012, 24, 2002~2008) 현재 반도체 공정에서 적용되는 Cp-type으로 싸이클로펜타다이엔일 트리스다이아미도 질코니윰 [RCpZr[N(CH3)2]3( R = H) : CpTDMAZ]화합물이 ALD공정에 전구체로 사용되고 있다. 이 화합물은 상온에서 액체이며, 높은 증기압을 갖는 화합물로써 테트라키스-에틸-메칠-아미노- 질코니윰(Tetrakis- Ethyl-methyl-Amino-zirconium, TEMAZr)에 비해 고온의 증착온도에서 안정하여 ALD 공정에 가능한 것으로 판단되고 있다. 그러나 이 화합물은 ALD 공정에서 부반응물이 생성되는 것으로 알려지고 있다.As an alternative compound, the cyclopentadiene (Cp) ligand, which is often used in metallocene catalyst compounds, was introduced, and the thermal stability of the precursor was dramatically increased. Among Cp-type precursors, RCpZr[N(CH 3 ) 2 ] 3 (R = H, Methyl, Ethyl), [CH 3 Cp) 2 Zr(CH 3 ) 2 , (CH 3 Cp) 2 ZrCH 3 OCH 3 , Cp 2 Zr(CH 3 ) 2 , and RCpZr(CHIT)(CHIT = Cycloheptatrienyl) have been developed as ALD precursors that form ZrO 2 with a thickness of several tens of nm (L. Aarik et al. Thi Solid Film). 2014, 565, 37~44; J. Niinisto et al. Langmuir 2005, 21, 7321~7325; J. Niinisto et al. Chem. Meter. 2012, 24, 2002~2008) Cp- applied in the current semiconductor process As a type, cyclopentadienyl trisdiamido zirconia [RCpZr[N(CH 3 ) 2 ] 3 ( R = H): CpTDMAZ] compound is used as a precursor in the ALD process. This compound is a liquid at room temperature and has a high vapor pressure. It is stable at a high deposition temperature compared to tetrakis-ethyl-methyl-amino-zirconium (TEMAZr), so it is used in the ALD process. is considered to be possible. However, this compound is known to be a side reaction product in the ALD process.

가장 최근에 TEMAZ 및 CpTDMAZ 보다 열적 안정성과 휘발성이 높으며, 고온에서 장시간 보관시에도 분해되지 않는 유기 질코늄 화합물 화학식 3과 화학식 4이 전구체로 개발되어 원자층 증착법(ALD) 공정에 적용하는 사례가 보고되었다. Most recently, organic zirconium compounds, Chemical Formulas 3 and 4, which have higher thermal stability and volatility than TEMAZ and CpTDMAZ, and do not decompose even when stored for a long time at high temperatures, were developed as precursors and applied to the atomic layer deposition (ALD) process. became

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

위의 유기 질코늄 화합물인 화학식 3과 화학식 4 화합물의 제조하는 합성반응을 도식화하면 반응도면 1과 반응도면 2로 표현될 수 있다.Schematic of the synthesis reaction for preparing the compounds of Chemical Formula 3 and Chemical Formula 4, which are the above organic zirconium compounds, can be represented by Reaction Scheme 1 and Reaction Scheme 2.

[반응도면1][Reaction Diagram 1]

Figure pat00005
Figure pat00005

[반응도면2][Reaction diagram 2]

Figure pat00006
Figure pat00006

상기에서 언급한 것처럼 전구체는 필수적으로 고순도의 제품이 사용되어야만 ALD공정에서 안정하게 적용이 가능하다. 반응 도면 1과 2에서 사용되는 유기 리간드인 싸이클로펜타다이엔일 유도체의 순도는 전구체의 순도를 좌우하게 된다. 따라서 유기 리간드인 싸이클로펜타다이엔일 유도체인 하기 화학식 3의 싸이클로펜타다이엔일에칠메칠아민(이하 CpEMA)과 하기 화학식 4의 싸이클로펜타다이엔일프로필메칠아민(이하 CpPMA)를 고순도로 수득하기 위한 제조 공정이 필수적으로 수반되어야 하며, 이를 위하여 많은 연구가 진행된 게 사실이다.As mentioned above, the precursor can be applied stably in the ALD process only when a high-purity product is necessarily used. The purity of the cyclopentadienyl derivative, which is an organic ligand used in Schemes 1 and 2, determines the purity of the precursor. Therefore, to obtain cyclopentadienylethylmethylamine (hereinafter CpEMA) of the following formula (3), which is a cyclopentadienyl derivative, which is an organic ligand, and cyclopentadienylpropylmethylamine (hereinafter, CpPMA) of the following formula (4) with high purity It is a fact that the manufacturing process for this purpose must be accompanied, and a lot of research has been conducted for this purpose.

[화학식 1][Formula 1]

Figure pat00007
Figure pat00007

[화학식 2][Formula 2]

Figure pat00008
Figure pat00008

상기 화학식 1의 화합물 CpEMA는 반응도면 3과 같이 제조 될 수 있다.The compound CpEMA of Formula 1 may be prepared as shown in Scheme 3.

[반응도면 3][Reaction diagram 3]

Figure pat00009
Figure pat00009

상기 반응도면의 화합물 1은 금속원(metal source)으로 소듐하이드라이드 미네랄 에멀젼(NaH in mineral oil) 또는 소듐 터트부톡사이드(Sodium tert -butoxide) 또는 포타슘 터트부톡사이드(Potassium tert -butoxide)를 테트라하이드로퓨란(THF) 용매하에서 제조하여 사용하는 게 일반적인 제조 공정이다. Compound 1 of the drawings is a reaction metal element (metal source) with sodium hydride in mineral emulsion (NaH in mineral oil) or sodium tert-butoxide (Sodium tert -butoxide), or Potassium tert-butoxide (Potassium tert -butoxide) in tetrahydrofuran (THF) is a common manufacturing process for producing it by using a solvent.

또한 화합물 2의 할로겐 염은 문헌(Organic Syntheses: Wiley: New York, 1943; Collective volume 4, p 333)에 따라 쉽게 제조된다.In addition, the halogen salt of compound 2 is easily prepared according to the literature (Organic Syntheses: Wiley: New York, 1943; Collective volume 4, p 333).

Figure pat00010
Figure pat00010

상기 화학식 2의 화합물 CpPMA는 반응도면 4과 같이 제조 될 수 있다.The compound CpPMA of Formula 2 may be prepared as shown in Scheme 4.

[반응도면 4][Reaction diagram 4]

Figure pat00011
Figure pat00011

화합물 3의 할로겐 염은 아래의 반응도면 일반적인 합성 반응에 따라 쉽게 제조된다.The halogen salt of compound 3 is easily prepared according to the general synthesis reaction shown in the following scheme.

Figure pat00012
Figure pat00012

상기에서 언급한 거와 같이 일반적으로 화학식 1 및 화학식 2의 전구체의 리간드를 구성하는 싸이클로펜타다이엔일 유도체의 순도가 중요하며, 유도체를 제조하는 방법에 따라서 불순물을 쉽게 제거하기 위한 연구가 다양하게 시도되고 있는 실정이다.As mentioned above, in general, the purity of the cyclopentadienyl derivative constituting the ligand of the precursors of Formulas 1 and 2 is important, and various studies have been conducted to easily remove impurities depending on the method of preparing the derivative. It is being attempted.

[선행기술문헌][Prior art literature]

J. Niinisto et al., Adv. Eng. Mater. 2009, 11, 223J. Niinisto et al., Adv. Eng. Mater. 2009, 11, 223

M. Putkone et al., J. Mater. Chem. 2002, 12, 442~4480M. Putkone et al., J. Mater. Chem. 2002, 12, 442~4480

D. Hausmann et al., 2002, 14, 4350D. Hausmann et al., 2002, 14, 4350

Organic Syntheses: Wiley: New York, 1943; Collective volume 4, p 333Organic Syntheses: Wiley: New York, 1943; Collective volume 4, p 333

따라서, 본 발명은 화학식 1 및 화학식 2의 전구체의 리간드를 제조하기 위하여 유기 용매를 사용하지 않고 자연 친화적인 방법으로 수용액에서 고순도, 고효율로 제조할 수 있는 제조방법을 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a preparation method capable of preparing the ligands of the precursors of Chemical Formulas 1 and 2 with high purity and high efficiency in an aqueous solution in a nature-friendly method without using an organic solvent.

본 발명에 따른 화합물은 화학식 1인 CpEMA와 화학식 2의 CpPMA를 고순도로 제조하는 공정을 제공한다.The compound according to the present invention provides a process for preparing CpEMA of Formula 1 and CpPMA of Formula 2 with high purity.

[화학식 1][Formula 1]

Figure pat00013
Figure pat00013

[화학식 2][Formula 2]

Figure pat00014
Figure pat00014

화학식 3의 화합물은 상기에서 언급하였던 같이 아래의 반응으로 제조를 진행하게 된다. The compound of Formula 3 is prepared by the following reaction as mentioned above.

[반응도면 5][Reaction diagram 5]

Figure pat00015
Figure pat00015

금속원(metal source)으로 소듐하이드라이드 미네랄 에멀젼(NaH in mineral oil)를 사용하여 테트라하이드로퓨란(THF) 용매하에서 싸이클로펜타다이엔일 소듐을 제조하는 방법이 있다. 하지만 소듐하이드라이드 미네랄 에멀젼를 투입하는 동시에 수소 가스가 발생하여 폭발 위험성이 있음으로 대량으로 생산을 할 경우 투입속도를 매우 천천히 유지하여야 하는 단점으로 산업적, 공업적 및 안정적 대량 생산 시 적합하지 않다. There is a method for preparing sodium cyclopentadienyl sodium in a tetrahydrofuran (THF) solvent using sodium hydride mineral emulsion (NaH in mineral oil) as a metal source. However, since hydrogen gas is generated at the same time as sodium hydride mineral emulsion is added, there is a risk of explosion. Therefore, when mass-produced, the input rate must be maintained very slowly, which is not suitable for industrial, industrial and stable mass production.

또한 금속원(metal source)으로 소듐 터트부톡사이드(Sodium tert -butoxide) 또는 포타슘 터트부톡사이드(potassium tert -butoxide)를 테트라하이드로퓨란(THF) 용매하에서 용해한 후 싸이클로펜타다이엔을 투입하여 싸이클로펜타다이엔일 소듐 또는 싸이클로펜타다이엔일 포타슘을 제조한 후 본 반응에 사용하는 것으로 알려졌다. In addition metal source (metal source) with sodium tert-butoxide (Sodium tert -butoxide) or potassium tert-butoxide (potassium tert -butoxide) the tetrahydrofuran (THF) was dissolved in a solvent by introducing a cyclo-penta-diene cyclo penta die It is known that enyl sodium or cyclopentadienyl potassium is prepared and then used in this reaction.

일반적으로 CpEMA는 고진공(0.1~0.3 torr)에서 25~32℃에서 증류하여 제품을 분리, 정제하는 방법이 일반적이다. 하지만 정제과정에서 소듐 터트부톡사이드 또는 포타슘 터트부톡사이드 사용에서 부산물로 나오는 터트부탄올(tert-Butanol)이 매우 미량씩(0.01~0.05%) 잔존하는 게 문제점으로, 이는 전구체의 합성시 심한 문제점으로 대두되고 있는 실정이다. 즉, 아래의 반응도면 6에서 표현된 4의 화합물이 미량 발생하게 되고 이 화합물은 원자층 증착(ALD: Atomic Layer Deposition)을 방해하는 용인으로 알려지고 있다. 따라서 터트부탄올(tert-Butanol)의 제거를 위하여 많은 정제 작업이 필요하며, 이로 인한 수율 저하로 인한 경제적 손실이 매우 큰 게 사실이다.In general, it is common to separate and purify CpEMA products by distilling them at 25-32°C in a high vacuum (0.1-0.3 torr). However, the problem is that very trace amounts (0.01~0.05%) of tert-butanol, which is a by-product from the use of sodium tertbutoxide or potassium tertbutoxide during the purification process, remain, which is a serious problem in the synthesis of precursors. It is becoming. That is, a trace amount of the compound of 4 represented in Reaction Scheme 6 below is generated, and this compound is known to be an tolerance that interferes with Atomic Layer Deposition (ALD). Therefore, it is true that a lot of purification work is required to remove tert-butanol, and the economic loss due to a decrease in yield is very large.

[반응도면 6][Reaction diagram 6]

Figure pat00016
Figure pat00016

그리고 반응도면 5에서 표기한 거와 같이 싸이클로펜타다이엔일 소듐 또는 싸이클로펜타다이엔일 포타슘을 2당량을 사용하여 주반응에 1당량이 사용되며, 나머지 1당량은 아민 염의 중화에 사용되기 때문에 중화 후 다시 싸이클로펜타다이엔이 생성된다. 생성된 싸이클로펜타다이엔은 반응이 진행되는 동안 중합반응을 일으켜 다이싸이클로펜타다이엔(Dicylopentadiene)을 형성되는 것으로 알려졌으며 (Encyclopedia of Polymer Science and Technology vol 5, 759~776), 반응도면 7에서 화합물 5로 중합반응이 일어난다. 즉, 반응을 진행하는 20~25℃에서 중합비율이 2.5~3.5 mol%/Hr의 속도로 진행됨이 알려졌다. 중합된 다이싸이클로펜타다이엔은 리간드 CpEMA를 증류시 물리적 성질(Boiling Point)이 비슷하여 제거에 어려움이 많기 때문에 반응의 종료 후 work-up 작업에서 이를 적절하게 제거하는 작업이 수반된다면 리간드 제품을 편리하게 분리할 수 있는 장점이 있다.And as indicated in Reaction Scheme 5, 1 equivalent of cyclopentadienyl sodium or cyclopentadienyl potassium is used in 2 equivalents for the main reaction, and the remaining 1 equivalent is used for neutralization of the amine salt. Then, cyclopentadiene is produced again. The generated cyclopentadiene is known to cause a polymerization reaction during the reaction to form dicyclopentadiene (Encyclopedia of Polymer Science and Technology vol 5, 759~776), and the compound in Reaction Scheme 7 5, polymerization takes place. That is, it is known that the polymerization rate proceeds at a rate of 2.5 to 3.5 mol%/Hr at 20 to 25° C. during the reaction. Polymerized dicyclopentadiene has similar physical properties (boiling point) when distilling the ligand CpEMA, so it is difficult to remove it. Therefore, it is convenient to use the ligand product if it is properly removed in the work-up operation after the completion of the reaction. It has the advantage of being separable.

[반응도면 7][Reaction diagram 7]

Figure pat00017
Figure pat00017

또한 CpEMA는 상온에서 단일 물질로 존재할 경우 매우 불안정하여 분해 속도가 매우 빠르며, 영하 20℃에서 보관할 경우 24시간 경과 후 5~10%의 분해가 기체크로마토그래피 분석법에서 확인이 되었으며, 심지어 영하 50℃에서 보관할 경우 10일이상의 장기 보관에서도 분해가 관찰되었다. 따라서 리간드 CpEMA는 제조 즉시 전구체 화학식 5의 화합물로 전환이 이루어져 한다.In addition, when CpEMA exists as a single substance at room temperature, it is very unstable and has a very fast decomposition rate. When stored at -20°C, 5-10% decomposition after 24 hours was confirmed by gas chromatography analysis, even at -50°C. In the case of storage, degradation was observed even after long-term storage of more than 10 days. Therefore, the ligand CpEMA must be converted into the precursor compound of Formula 5 immediately after preparation.

[화학식 3][Formula 3]

Figure pat00018
Figure pat00018

일반적인 대량 생산에서 리간드를 보관하기 어렵고, 저온에서 분해속도가 매우 빠르기 때문에 산업적 이용가능성을 증가시킬 수 있는 열적 안정성이 있는 구조의 개발이 절실히 필요한 상태이다.Since it is difficult to store the ligand in general mass production and the decomposition rate is very fast at low temperature, the development of a structure with thermal stability that can increase industrial applicability is urgently needed.

화학식 4의 CpPMA의 제조 공정에서도 화학식 3의 CpEMA에서 언급한 거와 같이 부산물로 나오는 터트부탄올(tert-Butanol)이 매우 미량씩(0.01~0.05%) 잔존하는 게 문제점으로 이는 전구체의 합성시 심한 문제점으로 대두되며, 이는 아래의 반응도면 8으로 설명된다. In the manufacturing process of CpPMA of Formula 4, as mentioned in CpEMA of Formula 3, a very small amount (0.01~0.05%) of tert-butanol, which is a by-product, remains. This is a serious problem when synthesizing the precursor. , which is illustrated in Reaction Scheme 8 below.

[반응도면 8][Reaction diagram 8]

Figure pat00019
Figure pat00019

또한 CpPMA도 상온에서 매우 불안정하여 분해 속도가 매우 빠르며, 리간드 CpPMA도 제조 즉시 전구체 화학식 4의 화합물로 전환이 이루어져 한다.In addition, CpPMA is also very unstable at room temperature, so the decomposition rate is very fast, and the ligand CpPMA is also converted into the precursor compound of Formula 4 immediately after preparation.

[화학식 4][Formula 4]

Figure pat00020
Figure pat00020

본 발명자들은 상기에서 언급한 내용과 같이 전구체(Precursor)를 구성하는 리간드 유기화합물 화학식 1 화합물과 화학식 2 화합물을 제조하는 과정에서 소듐 터트부톡사이드 또는 포타슘 터트부톡사이드 사용에서 부산물로 나오는 터트부탄올(tert-Butanol)의 발생이 없으며, 부산물 다이싸이클로펜타다이엔 (Dicylopentadiene)을 한 공정으로 제거하여 공정을 단순화시킬 수 방법을 제공하고자 하였다.As described above, the present inventors have found that tertbutanol (tert butanol), which is a by-product from the use of sodium tertbutoxide or potassium tertbutoxide in the process of preparing the ligand organic compounds, the compounds of Formula 1 and the compounds of Formula 2, constituting the precursor as described above. -Butanol) is not generated, and the by-product dicyclopentadiene is removed in one process to provide a method to simplify the process.

이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 방법을 첨부된 반응식을 참조하여 보다 상세하게 기술된다. 그러나, 본 발명은 여기서 설명되는 예에 한정되지 않고 다른 형태로 구체화될 수도 있다. Hereinafter, in order to explain the present invention in more detail, a preferred method according to the present invention is described in more detail with reference to the accompanying scheme. However, the present invention is not limited to the examples described herein and may be embodied in other forms.

상기 리간드인 화학식 1의 화합물은 하기 반응식 1에 기재된 방법으로 수행하여 제조할 수 있다. The ligand, the compound of Formula 1, can be prepared by carrying out the method described in Scheme 1 below.

[반응식 1][Scheme 1]

Figure pat00021
Figure pat00021

본 발명의 싸이클로펜타다이엔일 유도체인 리간드 CpEMA를 제조하기 위한 상기 반응식 1을 단계별로 구체적화 하면 다음과 같다.Scheme 1 for preparing the ligand CpEMA, which is a cyclopentadienyl derivative of the present invention, is detailed step-by-step as follows.

[CpEMA 제조단계 1][CpEMA manufacturing step 1]

단계 1에서는 Cp Potassium salt solution을 제조하는 단계이다. Step 1 is a step for preparing Cp Potassium salt solution.

[반응식 2][Scheme 2]

Figure pat00022
Figure pat00022

상기의 반응식에서 사용된 금속원(metal source)으로 포타슘 하이드록사이드(Potassium hydroxide)를 증류수에서 용해한 후 싸이클로펜타다이엔을 투입하여 싸이클로펜타다이엔일 포타슘이 용해된 수용액을 제조하는 단계이다.A step of preparing a metal element (metal source) with potassium hydroxide (Potassium hydroxide) was dissolved in the distilled water charged into the cyclo-penta-diene cyclo penta the diene days potassium are dissolved in the aqueous solution used in the above reaction scheme.

싸이클로펜타다이엔을 용해하기 위하여 사용하는 포타슘 하이드록사이드의 당량은 2.5~4.0 당량을 사용하여 용해하며, 바람직하게는 3.5당량을 사용하여 10~15℃에서 용해한 후 coupling 단계를 진행한다.The equivalent of potassium hydroxide used for dissolving cyclopentadiene is dissolved using 2.5 to 4.0 equivalents, and preferably 3.5 equivalents is used to dissolve at 10 to 15° C., and then the coupling step is performed.

[CpEMA 제조단계 2][CpEMA manufacturing step 2]

단계 2에서는 싸이클로펜타다이엔일 포타슘이 녹아 있는 반응용액에 2-브로모-N-메틸에탄아민 브롬산염(2-bromo-N-methylethanamine hydrobromide)를 증류수에 용해한 용액을 투입하여 부산물 디싸이클로펜타다이엔(DCPD)가 혼합된 CpEMA potassium salt 용액을 제조하는 단계이다.In step 2, a solution of 2-bromo-N-methylethanamine hydrobromide in distilled water is added to the reaction solution in which cyclopentadienyl potassium is dissolved, and the by-product dicyclopentadiene (DCPD) is a step of preparing a mixed CpEMA potassium salt solution.

단계 2의 과정은 아래의 반응식 3으로 표현된다.The process of step 2 is represented by Scheme 3 below.

[반응식 3][Scheme 3]

Figure pat00023
Figure pat00023

단계 1의 반응식 2에서 제조한 반응용액에 수용액에 용해한 2-브로모-N-메틸에탄아민 브롬산염 수용액을 0~10℃에서 천천히 투입하여 목적하는 CpEMA potassium salt가 용해된 반응용액을 제조한다. Coupling에 사용되는 2-브로모-N-메틸에탄아민 브롬산염 당량비는 싸이클로펜타다이엔에 대하여 1.00 ~ 1.50 당량을 사용하며, 바람직하게는 1.25당량을 사용하며, 용해하기 위한 증류수의 비율은 2-브로모-N-메틸에탄아민 브롬산염에 중량비 1.75~2.0배 사용하여 용해하고, 용해된 수용액을 CpEMA potassium salt가 용액에 투입하는 온도는 0℃에서 +10℃ 범위에서 적가하고, 바람직하게 5~8℃에서 투입하여 CpEMA potassium salt 수용액을 제조한다. 이 과정에서 부산물로 나오는 디싸이클로펜타다이엔(DCPD)가 기체 크로마토그래피로 분석하면 2~3%가 관찰된다.To the reaction solution prepared in Scheme 2 of Step 1, an aqueous solution of 2-bromo-N-methylethanamine bromate dissolved in an aqueous solution is slowly added at 0 to 10° C. to prepare a reaction solution in which the desired CpEMA potassium salt is dissolved. The equivalent ratio of 2-bromo-N-methylethanamine bromate used for coupling is 1.00 to 1.50 equivalents based on cyclopentadiene, preferably 1.25 equivalents, and the ratio of distilled water for dissolving is 2-bromide. The mother-N-methylethanamine bromate is dissolved using 1.75 to 2.0 times the weight ratio, and the temperature at which CpEMA potassium salt is added to the solution is added dropwise in the range of 0°C to +10°C, preferably 5 to 8°C. to prepare an aqueous CpEMA potassium salt solution. If dicyclopentadiene (DCPD), which is a by-product in this process, is analyzed by gas chromatography, 2-3% is observed.

[CpEMA 제조단계 3][CpEMA manufacturing step 3]

단계 3에서는 제조된 CpEMA potassium salt 수용액에서 유기 용매를 사용하여 간단하게 부산물인 디싸이클로펜타다이엔(DCPD)를 제거하여 순수한 CpEMA potassium salt 용액을 제조하는 단계이다.In step 3, a pure CpEMA potassium salt solution is prepared by simply removing dicyclopentadiene (DCPD), a by-product, from the prepared CpEMA potassium salt aqueous solution using an organic solvent.

단계 3의 과정은 아래의 반응식 4로 표현된다.The process of step 3 is represented by Scheme 4 below.

[반응식 4][Scheme 4]

Figure pat00024
Figure pat00024

단계 2에서 제조된 CpEMA potassium salt 수용액에 n-헥산을 중량비 3~5배의 volume을 투입한 후 30분간 10~15℃ 교반하여 정치한 후 층분리하여 다이싸이클로펜타다이엔(Dicyclopentadiene)이 제거된 고순도의 CpEMA를 기체크로마토그래피( Gas Chromatography: GC)를 이용한 분석에서 98.5~99.5%로 CpEMA potassium salt 수용액을 얻는다.In the CpEMA potassium salt aqueous solution prepared in step 2, a volume of n-hexane was added 3 to 5 times the weight ratio, stirred for 30 minutes at 10 to 15° C., and left still, followed by layer separation to remove dicyclopentadiene. An aqueous solution of CpEMA potassium salt is obtained at 98.5 to 99.5% by analysis of high purity CpEMA using gas chromatography (Gas Chromatography: GC).

[CpEMA 제조단계 4][CpEMA manufacturing step 4]

단계 3에서는 제조된 CpEMA potassium salt 수용액에서 무기산을 사용하여 산성화한 후 유기 용매를 사용하여 간단하게 순수한 CpEMA를 제조하는 단계이다.In step 3, the prepared CpEMA potassium salt aqueous solution is acidified using an inorganic acid, and then pure CpEMA is simply prepared using an organic solvent.

단계 4의 과정은 아래의 반응식 5로 표현된다. The process of step 4 is represented by Scheme 5 below.

[반응식 5][Scheme 5]

Figure pat00025
Figure pat00025

사용되는 묽은 염산 3N 염산를 사용하여 용액을 산성화할 경우 pH 범위는 2~4이 가능하며, 바람직하게 pH 2.5*로 조정이 바람직하며, 산성화한 후 투입되는 n-헥산은 5배가 적당하다.When the solution is acidified using the used dilute hydrochloric acid 3N hydrochloric acid, the pH range is 2 to 4, preferably adjusted to pH 2.5*, and 5 times of n-hexane to be added after acidification is suitable.

얻어진 CpEMA 용액은 무수 마그네슘술페이트 또는 무수 소듐술페이트로 무수 탈수 반응을 진행한 후 여과, 증류하여 고순도의 맑은 CpEMA를 얻는다.The obtained CpEMA solution is subjected to anhydrous dehydration reaction with anhydrous magnesium sulfate or anhydrous sodium sulfate, followed by filtration and distillation to obtain high-purity, clear CpEMA.

본 발명의 싸이클로펜타다이엔일 유도체인 화학식 2의 리간드 CpPMA도 상기의 CpEMA과 같은 공정 단계로 하여 제조할 수 있으며, 이를 간단하게 표현하면 아래와 같이 반응식 6에 기재된 방법으로 수행하여 제조할 수 있다. The ligand CpPMA of Formula 2, which is the cyclopentadienyl derivative of the present invention, can also be prepared by the same process steps as CpEMA, and in simple terms, it can be prepared by carrying out the method described in Scheme 6 as follows.

[반응식 6][Scheme 6]

Figure pat00026
Figure pat00026

본 발명의 싸이클로펜타다이엔일 유도체인 리간드 CpPMA를 제조하기 위한 상기 반응식 6을 단계별로 구분하면 다음과 같으며, 반응 조건 및 제조 방법은 CpEMA와 차이 없이 동일하게 진행한다.Scheme 6 for preparing the ligand CpPMA, which is a cyclopentadienyl derivative of the present invention, is divided into steps as follows, and the reaction conditions and preparation method are the same as those of CpEMA.

[CpPMA 제조단계 1][CpPMA manufacturing step 1]

단계 1에서는 Cp Potassium salt solution을 제조하는 단계로 CpEMA와 동일하게 진행된다.In step 1, the Cp Potassium salt solution is prepared and proceeds in the same manner as CpEMA.

[CpPMA 제조단계 2][CpPMA manufacturing step 2]

단계 2에서는 싸이클로펜타다이엔일 포타슘이 녹아 있는 반응용액에 2-브로모-N-메틸프로필아민 브롬산염(2-bromo-N-methylpropylmine hydrobromide)를 증류수에 용해한 용액을 투입하여 부산물 디싸이클로펜타다이엔(DCPD)가 혼합된 CpEMA potassium salt 용액을 제조하는 단계이다.In step 2, a solution of 2-bromo-N-methylpropylamine hydrobromide in distilled water is added to the reaction solution in which cyclopentadienyl potassium is dissolved, and the by-product dicyclopentadiene (DCPD) is a step of preparing a mixed CpEMA potassium salt solution.

[CpPMA 제조단계 3][CpPMA manufacturing step 3]

단계 3에서는 제조된 CpPMA potassium salt 수용액에서 유기 용매를 사용하여 간단하게 부산물인 디싸이클로펜타다이엔(DCPD)를 제거하여 순수한 CpPMA potassium salt 용액을 제조하는 단계이다.In step 3, a pure CpPMA potassium salt solution is prepared by simply removing dicyclopentadiene (DCPD), a by-product, from the prepared CpPMA potassium salt aqueous solution using an organic solvent.

단계 6의 과정은 아래의 반응식 8로 표현된다.The process of step 6 is represented by Scheme 8 below.

이상으로, 상기에서 제시된 제조 단계의 각 조건으로 하여, 싸이클로펜타다이엔일 유도체인 리간드 CpEMA와 CpPMA를 수용액에서 반응 단계를 진행하여, 이로부터 고순도의 CpEMA와 CpPMA을 제공한다. As described above, under each of the conditions of the preparation steps presented above, the reaction step of the ligand CpEMA and CpPMA, which are cyclopentadienyl derivatives, is performed in an aqueous solution, thereby providing CpEMA and CpPMA of high purity.

본 발명에 따르면, 기존 특허방법에 기재된 제조 후 정제 방법보다는 매우 용이하게 고순도의 싸이클로펜타다이엔일 유도체 화합물을 제조 및 분리할 수 있는 방법을 찾게 되었고, 이로 인하여 본 발명을 완성하는 기초가 되었다. According to the present invention, a method for preparing and isolating a cyclopentadienyl derivative compound of high purity much more easily than the post-production purification method described in the existing patent method was found, which became the basis for completing the present invention.

따라서 본 특허 개발자는 결과적으로 대량생산에 유리하면서, 산업적 이용 가능성을 증가시키는 효과를 얻을 수 있다. Therefore, the developer of the present patent can obtain the effect of increasing the industrial applicability, while advantageous for mass production as a result.

즉, 본 발명의 제조공정은 That is, the manufacturing process of the present invention is

선행 기술의 제조방법과는 다르며, It is different from the manufacturing method of the prior art,

그 단계에 사용되는 싸이클로펜타다이엔일 유도체 화합물을 편리하게 The cyclopentadienyl derivative compound used in that step is conveniently

제조하며, 고순도의 제품을 분리하는 등, manufacturing, separating high-purity products, etc.

산업적으로 이용가능성을 증가시킨 보다 진보된 방법이라 할 수 있다. It can be said that it is a more advanced method that has increased industrial applicability.

이하, 본 발명을 하기 실시 예에 의거하여 보다 상세하게 설명하고자 한다. Hereinafter, the present invention will be described in more detail based on the following examples.

단, 이는 본 발명의 구성 및 작용의 이해를 돕기 위한 것일 뿐이며 본 발명의 범위가 이들 실시 예에 한정되는 것은 아니다.However, this is only to help the understanding of the configuration and operation of the present invention, and the scope of the present invention is not limited to these embodiments.

하기 실시예에 의하여 본 발명을 구체적으로 설명한다.The present invention will be described in detail by the following examples.

실시예 1: N-메틸-1,3-싸이클로펜타다이엔-1-에탄아민(화학식 1, N-methyl-1,3-Cyclopentadiene -1-ethan amine, CpEMA)의 제조 Example 1: Preparation of N-methyl-1,3-cyclopentadiene-1-ethanamine (Formula 1, N-methyl-1,3-Cyclopentadiene-1-ethan amine, CpEMA )

온도계가 연결된 3구 플라스크에 수용액 1200mL를 투입한 후 상온에서 포타슘 하이드록사이드 178.3gr(3.5당량)을 투입하여 상온에서 용해한다. 용해된 용액을 3~5℃로 냉각하고 1,3-싸이클로펜타다이엔 60.0gr(0.98mol)을 천천히 적가하여 용해한다. 다른 반응기에 온도계가 연결된 3구 플라스크에 수용액 477mL를 투입한 후 상온에서 2-브로모-N-메틸에탄아민 브롬산염 238.5gr(1.2당량)을 투입하여 상온에서 용해한다. 용해된 2-브로모-N-메틸에탄아민 브롬산염 수용액을 상기의 사전 냉각된 반응용기에 30분간 적가하여 coupling 반응을 진행한다. 적가가 완료되면 반응용액을 3~5℃를 유지하면서 추가로 2시간 교반한다. 기체크로마토그래피( Gas Chromatography: GC)를 이용하여 반응 완료를 확인한 후 반응용액에 n-헥산 300mL를 투입한 후 30분간 교반, 정치 및 층 분리하여 반응에서 형성된 부반응물질 디싸이클로펜타다이엔(DCPD)를 상층부로 이송하여 제거한다. 하층부의 수요액 층을 3~5℃로 유지한 후 프레쉬 n-헥산 500mL를 투입하고 3N 염산용액을 사용하여 산성화 시킨다. 반응용액의 pH 2.5가 되도록 조정한 후 반응용액을 30분간 추가로 교반하고 정치하여 n-헥산 층을 분리한다. 분리된 n-헥산 용액에 무수 황산 마그네슘을 투입하여 탈수반응을 진행하고 여과, 감압(3~5torr) 농축하여 맑은 오일상을 얻는다. After putting 1200 mL of aqueous solution into a three-neck flask connected to a thermometer, 178.3gr (3.5 equivalents) of potassium hydroxide was added at room temperature and dissolved at room temperature. The dissolved solution is cooled to 3-5 °C, and 60.0gr (0.98mol) of 1,3-cyclopentadiene is slowly added dropwise to dissolve. After adding 477 mL of aqueous solution to a three-neck flask connected to another reactor with a thermometer, 238.5gr (1.2 equivalents) of 2-bromo-N-methylethanamine bromate at room temperature was added and dissolved at room temperature. The dissolved 2-bromo-N-methylethanamine bromate aqueous solution was added dropwise to the pre-cooled reaction vessel for 30 minutes to proceed with the coupling reaction. When the dropwise addition is complete, the reaction solution is stirred for an additional 2 hours while maintaining 3-5 °C. After confirming the completion of the reaction using Gas Chromatography (GC), 300 mL of n-hexane was added to the reaction solution, stirred for 30 minutes, allowed to stand, and layer separated to form a side reaction material dicyclopentadiene (DCPD) is removed by transferring it to the upper layer. After maintaining the lower demand solution layer at 3~5℃, add 500mL of fresh n-hexane and acidify it using 3N hydrochloric acid solution. After adjusting the pH of the reaction solution to 2.5, the reaction solution is further stirred for 30 minutes and left still to separate the n-hexane layer. Anhydrous magnesium sulfate was added to the separated n-hexane solution to perform a dehydration reaction, followed by filtration and concentration under reduced pressure (3 to 5 torr) to obtain a clear oil phase.

상기에서 얻어진 오일상을 고진공 펌프(0.2torr)를 사용하여 분별 감압 증류를 진행하여 30~33℃ 범위에서 증류된 제품을 얻는다. 증류된 제품은 기체크로마토그래피 분석법에서 99.54%의 표제화합물 90.6gr 흰색의 오일상이다. The oil phase obtained above is subjected to fractional vacuum distillation using a high vacuum pump (0.2torr) to obtain a product distilled in the range of 30 to 33°C. The distilled product was 99.54% of the title compound 90.6gr as a white oil by gas chromatography analysis.

1H NMR(400MHz, C6D6): 2.28(3H, s), 2.38~62(2H, m), 2.82(2H, m), 2.86(1H, m), 2.93(1H, m), 6.01(1H, m), 6.19(1H, m), 6.32(1H, m), 6.44(2H, m) 1 H NMR (400 MHz, C6D 6 ): 2.28(3H, s), 2.38~62(2H, m), 2.82(2H, m), 2.86(1H, m), 2.93(1H, m), 6.01(1H) , m), 6.19 (1H, m), 6.32 (1H, m), 6.44 (2H, m)

실시예 2: N-메틸-1,3-싸이클로펜타다이엔-1-에탄아민(화학식 1, N-methyl-1,3-Cyclopentadiene -1-ethan amine, CpEMA)의 제조 Example 2: Preparation of N-methyl-1,3-cyclopentadiene-1-ethanamine (Formula 1, N-methyl-1,3-Cyclopentadiene-1-ethan amine, CpEMA )

상기 실시예 1에서 사용되는 포타슘 하이드록사이드 당량을 4.5당량으로 변경하여 사용하였으며, 이하 반응의 진행은 동일하게 진행하며, 기체크로마토그래피 분석법에서 99.62%의 표제화합물 86..2gr을 얻는다. The potassium hydroxide equivalent used in Example 1 was changed to 4.5 equivalents, and the following reaction proceeds in the same manner, and 99.62% of the title compound 86..2gr was obtained by gas chromatography analysis.

실시예 3: N-메틸-1,3-싸이클로펜타다이엔-1-프로판아민(화학식 2, N-methyl-1,3-Cyclo pentadiene-1-propanamine, CpPMA)의 제조 Example 3: Preparation of N-methyl-1,3-cyclopentadiene-1-propanamine (Formula 2, N-methyl-1,3-Cyclo pentadiene-1-propanamine, CpPMA )

온도계가 연결된 3구 플라스크에 수용액 880mL를 투입한 후 상온에서 포타슘 하이드록사이드 133.7gr(3.5당량)을 투입하여 상온에서 용해한다. 용해된 용액을 3~5℃로 냉각하고 1,3-싸이클로펜타다이엔 45.0gr(0.98mol)을 천천히 적가하여 용해한다. 다른 반응기에 온도계가 연결된 3구 플라스크에 수용액 460mL를 투입한 후 상온에서 2-브로모-N-메틸프로필아민 브롬산염 190.3gr(1.2당량)을 투입하여 상온에서 용해한다. 용해된 2-브로모-N-메틸프로필아민 브롬산염 수용액을 상기의 사전 냉각된 반응용기에 30분간 적가하여 coupling 반응을 진행한다. 적가가 완료되면 반응용액을 3~5℃를 유지하면서 추가로 2시간 교반한다. 기체크로마토그래피( Gas Chromatography: GC)를 이용하여 반응 완료를 확인한 후 반응용액에 n-헥산 280mL를 투입한 후 30분간 교반, 정치 및 층 분리하여 반응에서 형성된 부반응물질 디싸이클로펜타다이엔(DCPD)를 상층부로 이송하여 제거한다. 하층부의 수요액 층을 3~5℃로 유지한 후 프레쉬 n-헥산 420mL를 투입하고 3N 염산용액을 사용하여 산성화 시킨다. 반응용액의 pH 2.5가 되도록 조정한 후 반응용액을 30분간 추가로 교반하고 정치하여 n-헥산 층을 분리한다. 분리된 n-헥산 용액에 무수 황산 마그네슘을 투입하여 탈수반응을 진행하고 여과, 감압(3~5torr) 농축하여 맑은 오일상을 얻는다. After putting 880 mL of aqueous solution in a three-neck flask connected to a thermometer, 133.7gr (3.5 equivalents) of potassium hydroxide was added at room temperature and dissolved at room temperature. The dissolved solution is cooled to 3-5 °C, and 45.0gr (0.98mol) of 1,3-cyclopentadiene is slowly added dropwise to dissolve. After putting 460 mL of aqueous solution in a three-necked flask connected to another reactor with a thermometer, 190.3gr (1.2 equivalents) of 2-bromo-N-methylpropylamine bromate was added at room temperature and dissolved at room temperature. The dissolved 2-bromo-N-methylpropylamine bromate aqueous solution was added dropwise to the pre-cooled reaction vessel for 30 minutes to proceed with the coupling reaction. When the dropwise addition is complete, the reaction solution is stirred for an additional 2 hours while maintaining 3-5 °C. After confirming the completion of the reaction using Gas Chromatography (GC), 280 mL of n-hexane was added to the reaction solution, stirred for 30 minutes, left still, and layer separated to form a side reaction material dicyclopentadiene (DCPD) is removed by transferring it to the upper layer. After maintaining the lower demand solution layer at 3~5℃, add 420mL of fresh n-hexane and acidify it using 3N hydrochloric acid solution. After adjusting the pH of the reaction solution to 2.5, the reaction solution is further stirred for 30 minutes and left still to separate the n-hexane layer. Anhydrous magnesium sulfate was added to the separated n-hexane solution to perform a dehydration reaction, followed by filtration and concentration under reduced pressure (3 to 5 torr) to obtain a clear oil phase.

상기에서 얻어진 오일상을 고진공 펌프(0.2torr)를 사용하여 분별 감압 증류를 진행하여 45±4℃ 범위에서 증류된 제품을 얻는다. 증류된 제품은 기체크로마토그래피 분석법에서 99.65%의 표제화합물 71.0gr 연미색의 오일상이다. The oil phase obtained above is subjected to fractional vacuum distillation using a high vacuum pump (0.2torr) to obtain a product distilled at 45±4°C. The distilled product is a light-off-white oily state of 99.65% of the title compound 71.0gr by gas chromatography analysis.

1H NMR(400MHz, C6D6): 1.50(12H, q), 1.68(2H, q), 2.20(3H, s), 2.34~2.50(4H, m), 2.74(2H, t), 5.98(1H, m), 6.24(2H, m), 6.38(1H, m), 6.52(2H, m) 1 H NMR (400 MHz, C 6 D 6 ): 1.50(12H, q), 1.68(2H, q), 2.20(3H, s), 2.34-2.50(4H, m), 2.74(2H, t), 5.98 (1H, m), 6.24 (2H, m), 6.38 (1H, m), 6.52 (2H, m)

Claims (3)

하기 화학식 1과 화학식 2의 제조 방법.

(1) 화학식 1의 N-메틸-1,3-싸이클로펜타다이엔-1-에탄아민 화합물
[화학식 1]
Figure pat00027

(2) 화학식 2의 N-메틸-1,3-싸이클로펜타다이엔-1-프로판아민 화합물
[화학식 2]
Figure pat00028
A method for preparing the following Chemical Formulas 1 and 2.

(1) N-methyl-1,3-cyclopentadiene-1-ethanamine compound of Formula 1
[Formula 1]
Figure pat00027

(2) N-methyl-1,3-cyclopentadiene-1-propanamine compound of Formula 2
[Formula 2]
Figure pat00028
제 1 항에 있어서, 반응에 사용되는 포타슘하이드록사이드 당량비는 싸이클로펜타다이엔에 대하여 3.0~4.5당량을 사용하며, 바람직하게는 3.5당량을 사용한다. 용해하는 증류수의 비율은 싸이클로펜타다이엔에 중량비 6.7배 사용하여 용해한다.
The method according to claim 1, wherein the equivalent ratio of potassium hydroxide used in the reaction is 3.0 to 4.5 equivalents based on cyclopentadiene, preferably 3.5 equivalents. The ratio of distilled water to be dissolved is dissolved using 6.7 times the weight ratio in cyclopentadiene.
제 1 항에 있어서, 부반응물질 디싸이클로펜타다이엔(DCPD)를 제거하기 위하여 사용되는 n-헥산은 싸이클로펜타다이엔에 대하여 중량대비 부피로 5배를 사용한다.According to claim 1, wherein the amount of n-hexane used to remove the side reactant dicyclopentadiene (DCPD) is used in an amount of 5 times by weight to volume with respect to cyclopentadiene.
KR1020200009553A 2020-01-23 2020-01-23 The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process KR20210095521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200009553A KR20210095521A (en) 2020-01-23 2020-01-23 The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200009553A KR20210095521A (en) 2020-01-23 2020-01-23 The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process

Publications (1)

Publication Number Publication Date
KR20210095521A true KR20210095521A (en) 2021-08-02

Family

ID=77315539

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200009553A KR20210095521A (en) 2020-01-23 2020-01-23 The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process

Country Status (1)

Country Link
KR (1) KR20210095521A (en)

Similar Documents

Publication Publication Date Title
JP5957017B2 (en) Novel group 4B organometallic compound and method for producing the same
KR20140078534A (en) Metal precursor and metal containing thin film prepared by using the same
JPWO2012060428A1 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
JP2017511308A (en) Organic germanium amine compound and thin film deposition method using the same
KR20210094035A (en) A raw material for chemical vapor deposition containing a ruthenium complex and a chemical vapor deposition method using the raw material for chemical vapor deposition
KR101806987B1 (en) Group 4 metal element-containing compound, preparing method thereof, precursor composition including the same for layer deposition, and depositing method of layer using the same
KR20150143371A (en) Precusor compounds and Method for forming a thin film using thereof
KR20140131219A (en) Ruthenium precursors, preparation method thereof and process for the formation of thin films using the same
KR20210095521A (en) The novel preparation of the organic compound constituting a precursor for in the ALD / CVD process
JP2009030164A (en) Raw material for forming strontium-containing thin film and method for preparing the same
KR101569447B1 (en) A precursor for zirconium oxide thin film, method for manufacturing thereof and a preparation method of thin film
KR102418179B1 (en) Novel organo-zirconium compounds as a precursor for ald or cvd and preparation method thereof
WO2007136186A1 (en) Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition
KR101865479B1 (en) Novel intermediates for cyclopentadienyl derivatives and preparation method of said cyclopentadienyl derivatives
JP4672897B2 (en) Process for producing bis (cyclopentadienyl) ruthenium derivative
KR102080218B1 (en) Double-substituted cyclopentadiene compounds, organometallic compounds and preparation method thereof
KR20140074162A (en) A precursor compound containing group iv transition metal, and depositing method of thin film using the same
KR102574475B1 (en) Composition for film deposition comprising group iv metal element-containing precursor compound, and method for forming film using the same
US20220356198A1 (en) Method for producing organometallic compound and thin film fabricated using organometallic compound obtained thereby
KR20150035855A (en) A precursor compound containing group iv transition metal, preparing method thereof, precursor composition containing the same, and depositing method of thin film using the same
CN113563390B (en) Preparation method of bis (triisopropylcyclopentadienyl) strontium
KR102550599B1 (en) Metal precursor compound and deposition method for preparing film using the same
KR100756388B1 (en) Aluminium precursor for cvd and its preparation method thereof
KR101572086B1 (en) Group iv transition metal precursors, preparation method thereof and process for the formation of thin films using the same
KR101788558B1 (en) Group 4 metal element-containing alkoxy compound, preparing method thereof, precursor composition including the same for film deposition, and method of depositing film using the same