KR20210091949A - Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis - Google Patents

Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis Download PDF

Info

Publication number
KR20210091949A
KR20210091949A KR1020200005278A KR20200005278A KR20210091949A KR 20210091949 A KR20210091949 A KR 20210091949A KR 1020200005278 A KR1020200005278 A KR 1020200005278A KR 20200005278 A KR20200005278 A KR 20200005278A KR 20210091949 A KR20210091949 A KR 20210091949A
Authority
KR
South Korea
Prior art keywords
neuraminidase
active ingredient
preventing
butterbur
sepsis
Prior art date
Application number
KR1020200005278A
Other languages
Korean (ko)
Other versions
KR102386936B1 (en
Inventor
김대욱
김영수
오유진
우현심
조해진
Original Assignee
한국수목원관리원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수목원관리원 filed Critical 한국수목원관리원
Priority to KR1020200005278A priority Critical patent/KR102386936B1/en
Publication of KR20210091949A publication Critical patent/KR20210091949A/en
Application granted granted Critical
Publication of KR102386936B1 publication Critical patent/KR102386936B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health

Abstract

The present invention relates to a composition containing a Petasites japonicus extract as an active ingredient for preventing, improving, or treating sepsis. Accordingly, by containing a material extracted from Petasites japonicus, that is a natural substance, as an active ingredient, burden with respect to rejection in human body can be reduced and sepsis can be efficiently prevented, alleviated, or treated.

Description

머위 추출물을 유효성분으로 함유하는 패혈증 예방, 개선 또는 치료용 조성물 {Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis}Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis

본 발명은 머위 추출물을 유효성분으로 함유하는 패혈증 예방, 개선 또는 치료용 조성물에 관한 것으로, 더욱 상세하게는 머위 추출물의 유효성분으로서, Bakkenolide D, 5-O-caffeoylquinic acid, 1,5-dicaffeoylquinic acid 중 어느 하나 이상을 포함하여 패혈증을 예방, 개선 또는 치료할 수 있는 조성물에 관한 것이다.The present invention relates to a composition for preventing, improving, or treating sepsis containing a butterbur extract as an active ingredient, and more particularly, as an active ingredient of the butterbur extract, Bakkenolide D, 5-O-caffeoylquinic acid, 1,5-dicaffeoylquinic acid It relates to a composition capable of preventing, ameliorating or treating sepsis, including any one or more.

당 가수분해효소 중 뉴라미니데이즈(neuraminidase)는 세포 표면에 있는 당복합체 특히 당단백체(glycoprotein)의 말단에 있는 시알산(sialic acid)을 가수분해하는 효소이다. 뉴라미니데이즈(neuraminidase, NA)는 당단백의 구성요소인 갈락토즈와 시알산의 아세탈결합을 가수분해 하며, 구체적으로 α2-3 위치 및 α2-6 위치를 선택적으로 가수 분해 한다(Shinya et al. Nature 2006, 440, 435). 뉴라미니데이즈는 고등진핵세포(highereukaryote)와 많은 종류의 병원성 바이러스와 박테리아에 분포한다(Vimr, E.; Lichtensteiger, C. Trends Microbiol. 2002, 10, 254.; Schauer, R. Glycoconjugate J. 2000, 17, 485.; Taylor, G. L. Curr. opin. Struct. Biol. 1996, 6, 830). 뉴라미니데이즈에 의한 시알산의 가수분해는 세포-세포신호전달 및 세포-세포인자에 결정적인 역할을 한다.Among glycohydrolases, neuraminidase is an enzyme that hydrolyzes sialic acid at the end of a sugar complex on a cell surface, particularly a glycoprotein. Neuraminidase (NA) hydrolyzes the acetal bond between galactose and sialic acid, which are components of glycoproteins, and specifically selectively hydrolyzes the α2-3 position and the α2-6 position (Shinya et al. Nature). 2006, 440, 435). Neuraminidase is distributed in higher eukaryotes and many pathogenic viruses and bacteria (Vimr, E.; Lichtensteiger, C. Trends Microbiol. 2002, 10, 254.; Schauer, R. Glycoconjugate J. 2000, 17, 485.; Taylor, G. L. Curr. opin. Struct. Biol. 1996, 6, 830). The hydrolysis of sialic acid by neuraminidase plays a crucial role in cell-cell signaling and cell-cell factors.

인플루엔자 바이러스는 급성 호흡기 질환을 일으키는 전염성이 매우 강한 바이러스로 온 세계에 집단감염이나 소아, 고령자, 심폐질환 환자에게 심각한 호흡기 증상을 유발하는 바이러스 중 하나이다(Hien, T. T. et al. N. Eng. J. Med., 350, 1179, 2004). 인플루엔자 바이러스는 분류학적으로 오르토믹소바이러스(Orthomyxovirus)에 속하며 A, B, C의 3가지 형이 있으며 특히 유행적으로 확산되는 형은 A, B형이다. 인플루엔자 바이러스경우 감염된 숙주세포에서 증식된 바이런(viron)은 세포말에 있는 당단백의 말단에 있는 시알산과 접합되어있다. 뉴라미니데이즈(neuraminidase)에 의해 시알산과 바이런이 가수분해되면 새로운 세포로 바이러스가 확산되고, 여기서 뉴라미데이즈의 기능을 억제하면 바이러스의 확산을 저해 할 수 있다. 따라서, 뉴라미데이즈 저해제는 항바이러스 소재로 활용되고 있다.Influenza virus is a highly contagious virus that causes acute respiratory disease, and is one of the viruses that cause severe respiratory symptoms in children, the elderly, and patients with cardiopulmonary disease (Hien, TT et al. N. Eng. J. Med., 350, 1179, 2004). Influenza virus belongs to Orthomyxovirus taxonomically, and there are three types, A, B, and C, and the most prevalent type is A and B. In the case of influenza virus, the viron proliferated in the infected host cell is conjugated with sialic acid at the end of the glycoprotein at the end of the cell. When sialic acid and byron are hydrolyzed by neuraminidase, the virus spreads to new cells, where inhibition of the function of neuramidase can inhibit the spread of the virus. Therefore, neuramidase inhibitors are being used as antiviral materials.

한편, 바이오필름(biofilm)생성은 병원성박테리아가 숙주세포로 감염될 때 핵심과정이다. 바이오필름생성에 뉴라미니데이즈는 결정적인 효소로 작용한다. 따라서 뉴라미니데이즈의 기능을 저해하면 바이오필름 생성이 억제되고 그 결과 박테리아의 감염을 차단 할 수 있다(Soong, G. et al., J. Clin. Invest. 2006, 116, 2297). 스트렙토코커스 뉴모니에(Streptococcus pneumonia), 슈도모나스 에어루지노사(Pseudomonas aeruginosa) 및 클로스트리디윰 펄프리겐(Clostridium perfringen) 등이 뉴라미니데이즈에 의해 생성되는 바이오필름단계를 거쳐 감염시키는 대표적인 병원성 박테리아이다. 또한, 시알산은 면역반응과 밀접한 관계가 있다. 일반적으로 바이러스 또는 박테리아 감염 후 세포표면의 당복합체에 있는 시알산이 뉴라미니데이즈에 의해 가수분해되면서 세포 내의 사이토카인등이 활성화되고 염증반응이 진행되면서 패혈(sepsis)에 이르게 된다. 따라서 뉴라미니데이즈 저해제는 병원성 바이러스 및 박테리아의 감염과 감염 후 수반되는 염증생성 질환 예방 및 치료에 효과적이다.On the other hand, biofilm production is a key process when pathogenic bacteria infect host cells. Neuraminidase acts as a crucial enzyme in biofilm formation. Therefore, inhibiting the function of neuraminidase inhibits biofilm production and, as a result, can block bacterial infection (Soong, G. et al., J. Clin. Invest. 2006, 116, 2297). Streptococcus pneumoniae (Streptococcus pneumonia), Pseudomonas aeruginosa (Pseudomonas aeruginosa) and Clostridium perfringen (Clostridium perfringen) are representative pathogenic bacteria that infect through the biofilm stage generated by neuraminidase. In addition, sialic acid is closely related to the immune response. In general, after viral or bacterial infection, as sialic acid in the sugar complex on the cell surface is hydrolyzed by neuraminidase, cytokines in the cell are activated and an inflammatory reaction proceeds, leading to sepsis. Therefore, neuraminidase inhibitors are effective in preventing and treating pathogenic viruses and bacteria and inflammatory diseases accompanying infection.

이러한 바이러스 및 박테리아의 감염으로 인한 염증을 완화시키기 위하여‘특허문헌 1’과 같이 뉴라미니데이즈를 억제시키는 천연물로부터 유래된 활성물질에 대한 연구가 활발하게 진행되고 있다. In order to alleviate inflammation caused by these viral and bacterial infections, research on active substances derived from natural substances that inhibit neuraminidase, such as 'Patent Document 1', is being actively conducted.

10-0962334 B1 (2010. 06. 10.)10-0962334 B1 (2010. 06. 10.)

본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명에서 해결하고자 하는 과제는 머위를 이용하여 박테리아의 뉴라미니데이즈를 억제시킴으로써 패혈증을예방, 개선 또는 치료할 수 있는 조성물을 제공하는 것이다.The present invention has been devised to solve the above problems, and an object to be solved in the present invention is to provide a composition capable of preventing, improving or treating sepsis by inhibiting neuraminidase of bacteria using butterbur.

위와 같은 과제를 해결하기 위한 본 발명은 머위 추출물을 유효성분으로 함유하는 것을 특징으로 하는 패혈증 예방 또는 개선용 식품 조성물을 제공하는 것을 기술적 특징으로 한다. The present invention for solving the above problems is a technical feature to provide a food composition for preventing or improving sepsis, characterized in that it contains butterbur extract as an active ingredient.

위와 같은 과제를 해결하기 위한 본 발명은 머위 추출물을 유효성분으로 함유하는 것을 특징으로 하는 패혈증 예방 또는 개선용 약학적 조성물을 제공하는 것을 기술적 특징으로 한다. The present invention for solving the above problems is a technical feature to provide a pharmaceutical composition for preventing or improving sepsis, characterized in that it contains butterbur extract as an active ingredient.

또한, 위와 같은 과제를 해결하기 위한 본 발명은 머위 추출물로서 Bakkenolide D, 5-O-caffeoylquinic acid, 1,5-dicaffeoylquinic acid 중 어느 하나 이상을 함유하는 것을 기술적 특징으로 한다.In addition, the present invention for solving the above problems is technically characterized in that it contains any one or more of Bakkenolide D, 5-O-caffeoylquinic acid, and 1,5-dicaffeoylquinic acid as a butterbur extract.

본 발명은 천연물인 머위로부터 추출된 물질을 유효성분으로 함유함으로써 인체 내 거부반응에 대한 부담을 줄이고, 효율적으로 패혈증을 예방하거나, 개선 또는 치료할 수 있다. The present invention can reduce the burden of rejection in the human body and effectively prevent, improve or treat sepsis by containing a material extracted from coltsfoot, which is a natural product, as an active ingredient.

도 1은 머위 추출물로부터 추출된 물질의 박테리아 뉴라미니데이즈 저해 활성을 나타내는 그래프
도 2는 머위 추출물로부터 추출된 물질의 박테리아 뉴라미니데이즈의 가수활성을 나타내는 그래프
도 3은 물질 2의 박테리아 뉴라미니데이즈의 저해활성을 Lineweaver-Burk plot(왼쪽) 및 dixon plot(오른쪽)으로 평가한 것을 타나내는 나타내는 그래프
도 4는 물질 3의 박테리아 뉴라미니데이즈의 저해활성을 Lineweaver-Burk plot(왼쪽) 및 dixon plot(오른쪽)으로 평가한 것을 타나내는 나타내는 그래프
도 5는 물질 4의 박테리아 뉴라미니데이즈의 저해활성을 Lineweaver-Burk plot(왼쪽) 및 dixon plot(오른쪽)으로 평가한 것을 타나내는 나타내는 그래프
1 is a graph showing the bacterial neuraminidase inhibitory activity of a substance extracted from a coltsfoot extract;
2 is a graph showing the hydrolytic activity of bacteria neuraminidase of a substance extracted from coltsfoot extract;
3 is a graph showing the evaluation of the inhibitory activity of bacterial neuraminidase of substance 2 by Lineweaver-Burk plot (left) and dixon plot (right);
4 is a graph showing the evaluation of the inhibitory activity of bacterial neuraminidase of substance 3 by Lineweaver-Burk plot (left) and dixon plot (right);
5 is a graph showing the evaluation of the inhibitory activity of bacterial neuraminidase of substance 4 by Lineweaver-Burk plot (left) and dixon plot (right);

본 명세서 및 청구범위에 사용된 용어나 단어는 "발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙"에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야지, 통상적이거나 사전적인 의미로 한정해서 해석되서는 안 된다.The terms or words used in the present specification and claims conform to the technical idea of the present invention based on the "principle that the inventor can appropriately define the concept of a term in order to best describe his invention" It should be interpreted as the meaning and concept that

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해해야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all the technical ideas of the present invention, so various equivalents that can replace them at the time of the present application It should be understood that there may be water and variations.

실시예 1. 머위 지상부 추출물의 제조Example 1. Preparation of an extract of above ground coltsfoot

건조된 머위 지상부 1.6kg과 메탄올을 혼합한 다음 상온에서 7일간 추출하였다. 감압 조건 및 45℃의 온도에서 용매를 제거한 다음 잔여물을 획득하였다. After mixing 1.6 kg of dried coltsfoot with methanol, it was extracted at room temperature for 7 days. A residue was obtained after removing the solvent under reduced pressure and a temperature of 45°C.

실험예 1. 유효성분의 분획 및 분석Experimental Example 1. Fractionation and analysis of active ingredients

실시예 1에서 제조된 머위 지상부 추출물을 Diaion HP-20 column을 통과시켰고, n-헥산(n-hexane), 클로로폼(chloroform), 에틸 아세테이트(ethyl acetate), n-부탄올(n-butanol) 및 물 순서로 순차적으로 분배하였다. n-BuOH-가용성 분획이 박테리아 뉴라미니데이즈에 대한 효소억제를 보였기 때문에 이 활성분획(11.4g)을 CHCl3 : MeOH = 25 : 1로 실리카겔 컬럼상에서 크로마토그래피하였고, 총 다섯 개의 분획물을 획득하였다(PB1-PB5).The above-ground coltsfoot extract prepared in Example 1 was passed through a Diaion HP-20 column, n-hexane, chloroform, ethyl acetate, n-butanol, and Water was dispensed sequentially in order. Since the n-BuOH-soluble fraction showed enzyme inhibition against bacterial neuraminidase, this active fraction (11.4 g) was chromatographed on a silica gel column with CHCl 3 : MeOH = 25: 1, and a total of five fractions were obtained ( PB1-PB5).

PB3(1.7g)을 95%의 메탄올로 Sephadex LH-20상에서 크로마토그래피하여 5개의 하위 분획물을 획득하였다. 그 중 하위분획2를 85%의 수성 메탄올로 Sephadex LH-20상에서 재크로마토그래피하였다. 나머지 3개의 하위분획들은 70%의 수성 메탄올을 이동상으로 Recycling Preparative HPLC에 의해 정제시켰고, 물질 1(15mg) 및 물질 2(17mg)를 수득하였다. PB3 (1.7 g) was chromatographed on Sephadex LH-20 with 95% methanol to obtain 5 sub-fractions. Subfraction 2 was rechromatographed on Sephadex LH-20 with 85% aqueous methanol. The remaining three subfractions were purified by Recycling Preparative HPLC with 70% aqueous methanol as a mobile phase to obtain material 1 (15 mg) and material 2 (17 mg).

PB5(2.1g)는 ODS(reversed-phase resin) 컬럼에 넣고 메탄올의 농도가 증가(20-100%)하는 물로 분리한 다음, 70%의 수성 메탄올을 이용하여 Sephadex LH-20 컬럼으로 재크로마토그래피시켜 총 세 개의 하위분획을 얻었다. 첫 번째 하위분획은 75%의 수성 메탄올을 이용하여 Recycling Preparative HPLC에 의해 더 분리되었고, 이에 따라 물질 3(32mg) 및 물질 4(11mg)를 수득하였다.PB5 (2.1g) was placed in a reversed-phase resin (ODS) column, separated into water with increasing methanol concentration (20-100%), and then rechromatographed with a Sephadex LH-20 column using 70% aqueous methanol. A total of three sub-fractions were obtained. The first subfraction was further separated by Recycling Preparative HPLC using 75% aqueous methanol, thus obtaining material 3 (32 mg) and material 4 (11 mg).

분리된 물질 1 내지 4를 1H 및 13C-핵자기공명분광법(NMR)을 이용하여 분석하였고, 그 결과는 아래와 같다.The separated materials 1 to 4 were analyzed using 1 H and 13 C-nuclear magnetic resonance spectroscopy (NMR), and the results are as follows.

물질 1.Substance 1.

1H-NMR (700 MHz, Chloroform-d)δ 5.10 (1H, m, H-1), 1.78 (2H, m, H-2), 1.66 (1H, m, H-3), 1.34 (1H, m, H-3), 1.55 (1H, m, H-4), 1.91 (1H, d, H-6), 2.21 (1H, m, H-6), 5.72 (1H, d, H-9), 2.78 (1H, dd, H-10), 4.63 (2H, m, H-12), 5.15 (2H, d, H-13), 0.87 (3H, d, H-14), 1.09 (3H, s, H-15), 1.91 (3H, s, H-2′), 5.91 (1H, dd, H-3″), 1.85 (3H, dd, H-4″), 1.75 (3H, s, H-5″). 13C-NMR (175 MHz, Chloroform-d) δ 70.5 (C-1), 26.8 (C-2), 29.5 (C-3), 35.2 (C-4), 43.4 (C-5), 45.8 (C-6), 54.9 (C-7), 177.5 (C-8), 80.8 (C-9), 51.4 (C-10), 147.7 (C-11), 70.6 (C-12), 108.3 (C-13), 15.5 (C-14), 19.5 (C-15), 169.9 (C-1′), 20.9 (C-2′), 167.3 (C-1″), 128.2 (C-2″), 136.7 (C-3″), 15.5 (C-4″), 20.3 (C-5″). 1 H-NMR (700 MHz, Chloroform- d )δ 5.10 (1H, m, H-1), 1.78 (2H, m, H-2), 1.66 (1H, m, H-3), 1.34 (1H, m, H-3), 1.55 (1H, m, H-4), 1.91 (1H, d, H-6), 2.21 (1H, m, H-6), 5.72 (1H, d, H-9) , 2.78 (1H, dd, H-10), 4.63 (2H, m, H-12), 5.15 (2H, d, H-13), 0.87 (3H, d, H-14), 1.09 (3H, s) , H-15), 1.91 (3H, s, H-2′), 5.91 (1H, dd, H-3″), 1.85 (3H, dd, H-4″), 1.75 (3H, s, H-) 5″). 13 C-NMR (175 MHz, Chloroform-d) δ 70.5 (C-1), 26.8 (C-2), 29.5 (C-3), 35.2 (C-4), 43.4 (C-5), 45.8 ( C-6), 54.9 (C-7), 177.5 (C-8), 80.8 (C-9), 51.4 (C-10), 147.7 (C-11), 70.6 (C-12), 108.3 (C) -13), 15.5 (C-14), 19.5 (C-15), 169.9 (C-1′), 20.9 (C-2′), 167.3 (C-1″), 128.2 (C-2″), 136.7 (C-3″), 15.5 (C-4″), 20.3 (C-5″).

물질 2.Substance 2.

1H-NMR (900 MHz, Chloroform-d)δ 5.15 (1H, m, H-1), 1.84 (1H, m, H-2), 1.76 (1H, m, H-2), 1.67 (1H, dd, H-3), 1.37 (1H, dd, H-3), 1.57 (1H, m, H-4), 2.24 (1H, d, H-6), 1.96 (1H, d, H-6), 5.76 (1H, d, H-9), 2.75 (1H, dd, H-10), 4.67 (2H, m, H-12), 5.21 (1H, s, H-13), 5.17 (1H, s, H-13), 0.90 (3H, d, H-14), 1.11 (3H, s, H-15), 2.02 (3H, s, H-2′), 5.62 (1H, d, J = 10.14 Hz, H-2″), 7.04 (1H, d, J = 10.14 Hz, H-3″), 2.39 (3H, s, H-4″). 13C-NMR (225 MHz, Chloroform-d) δ 70.3 (C-1), 26.8 (C-2), 29.5 (C-3), 35.3 (C-4), 43.3 (C-5), 45.8 (C-6), 54.9 (C-7), 177.5 (C-8), 80.8 (C-9), 51.7 (C-10), 147.8 (C-11), 70.5 (C-12), 108.2 (C-13), 15.5 (C-14), 19.5 (C-15), 169.9 (C-1′), 21.2 (C-2′), 165.6 (C-1″), 112.4 (C-2″), 152.8 (C-3″), 19.2 (C-4″). 1 H-NMR (900 MHz, Chloroform- d )δ 5.15 (1H, m, H-1), 1.84 (1H, m, H-2), 1.76 (1H, m, H-2), 1.67 (1H, dd, H-3), 1.37 (1H, dd, H-3), 1.57 (1H, m, H-4), 2.24 (1H, d, H-6), 1.96 (1H, d, H-6) , 5.76 (1H, d, H-9), 2.75 (1H, dd, H-10), 4.67 (2H, m, H-12), 5.21 (1H, s, H-13), 5.17 (1H, s) , H-13), 0.90 (3H, d, H-14), 1.11 (3H, s, H-15), 2.02 (3H, s, H-2′), 5.62 (1H, d, J = 10.14 Hz) , H-2″), 7.04 (1H, d, J = 10.14 Hz, H-3″), 2.39 (3H, s, H-4″). 13 C-NMR (225 MHz, Chloroform- d ) δ 70.3 (C-1), 26.8 (C-2), 29.5 (C-3), 35.3 (C-4), 43.3 (C-5), 45.8 ( C-6), 54.9 (C-7), 177.5 (C-8), 80.8 (C-9), 51.7 (C-10), 147.8 (C-11), 70.5 (C-12), 108.2 (C) -13), 15.5 (C-14), 19.5 (C-15), 169.9 (C-1′), 21.2 (C-2′), 165.6 (C-1″), 112.4 (C-2″), 152.8 (C-3″), 19.2 (C-4″).

물질 3. Substance 3.

1H-NMR (700 MHz, Methanol-d 4)δ 2.25 (2H, d, H-2), 5.46 (1H, m, H-3), 4.00 (1H, dd, H-4), 5.42 (1H, m, H-5), 2.19 (1H, m, H-6), 2.35 (1H, dd, H-6), 7.08 (2H, s, H-2′,2″), 6.79 (1H, s, H-5″), 6.81 (1H, s, H-5′), 6.97 (2H, d, H-6′,6″), 7.59 (1H, d, H-7″), 7.64 (1H, d, H-7′), 6.28 (1H, d, H-8″), 6.37 (1H, d, H-8′). 13C-NMR (175 MHz, Methanol-d 4) δ 73.5 (C-1), 36.4 (C-2), 71.3 (C-3), 69.4 (C-4), 70.6 (C-5), 34.7 (C-6), 176.3 (C-7), 126.4 (C-1″), 126.5 (C-1′), 113.9 (C-2′,2″), 145.3 (C-3′,3″), 148.0 (C-4″), 148.1 (C-4′), 115.1 (C-5′,5″), 121.7 (C-6′,6″), 145.7 (C-7″), 145.9 (C-7′), 113.7 (C-8″), 114.2 (C-8′), 167.0 (C-9″), 167.5 (C-9′). 1 H-NMR (700 MHz, Methanol- d 4 )δ 2.25 (2H, d, H-2), 5.46 (1H, m, H-3), 4.00 (1H, dd, H-4), 5.42 (1H) , m, H-5), 2.19 (1H, m, H-6), 2.35 (1H, dd, H-6), 7.08 (2H, s, H-2′,2″), 6.79 (1H, s) , H-5″), 6.81 (1H, s, H-5′), 6.97 (2H, d, H-6′,6″), 7.59 (1H, d, H-7″), 7.64 (1H, d, H-7′), 6.28 (1H, d, H-8″), 6.37 (1H, d, H-8′). 13 C-NMR (175 MHz, Methanol- d 4 ) δ 73.5 (C-1), 36.4 (C-2), 71.3 (C-3), 69.4 (C-4), 70.6 (C-5), 34.7 (C-6), 176.3 (C-7), 126.4 (C-1″), 126.5 (C-1′), 113.9 (C-2′,2″), 145.3 (C-3′,3″) , 148.0 (C-4″), 148.1 (C-4′), 115.1 (C-5′,5″), 121.7 (C-6′,6″), 145.7 (C-7″), 145.9 (C -7′), 113.7 (C-8″), 114.2 (C-8′), 167.0 (C-9″), 167.5 (C-9′).

물질 4.Substance 4.

1H-NMR (900 MHz, Methanol-d 4) δ 2.18 (1H, m, H-2), 2.08 (1H, m, H-2), 5.36 (1H, m, H-5), 3.75 (1H, dd, H-3), 4.20 (1H, m, H-4), 2.18 (1H, m, H-6), 2.07 (1H, m, H-6), 7.07 (1H, d, H-2′), 6.80 (1H, d, H-5′), 6.97 (2H, d, H-6′), 7.58 (1H, d, H-7′), 6.28 (1H, d, H-8′). 13C-NMR (225 MHz, Methanol-d 4) δ 74.9 (C-1), 37.6 (C-2), 70.6 (C-3), 72.3 (C-4), 70.1 (C-5), 36.9 (C-6), 175.7 (C-7), 126.4 (C-1′), 113.8 (C-2′), 145.4 (C-3′), 148.2 (C-4′), 115.1 (C-5′), 121.6 (C-6′), 145.6 (C-7′), 113.9 (C-8′), 167.2 (C-9′). 1 H-NMR (900 MHz, Methanol- d 4 ) δ 2.18 (1H, m, H-2), 2.08 (1H, m, H-2), 5.36 (1H, m, H-5), 3.75 (1H) , dd, H-3), 4.20 (1H, m, H-4), 2.18 (1H, m, H-6), 2.07 (1H, m, H-6), 7.07 (1H, d, H-2) ′), 6.80 (1H, d, H-5′), 6.97 (2H, d, H-6′), 7.58 (1H, d, H-7′), 6.28 (1H, d, H-8′) . 13 C-NMR (225 MHz, Methanol- d 4 ) δ 74.9 (C-1), 37.6 (C-2), 70.6 (C-3), 72.3 (C-4), 70.1 (C-5), 36.9 (C-6), 175.7 (C-7), 126.4 (C-1′), 113.8 (C-2′), 145.4 (C-3′), 148.2 (C-4′), 115.1 (C-5) '), 121.6 (C-6'), 145.6 (C-7'), 113.9 (C-8'), 167.2 (C-9').

그리고 상기 물질 1 내지 4를 분석한 결과, 아래 표 1에 기재된 바와 같이 Bakkenolide 화합물 2가지와, caffeoylquinic acid 화합물 2가지로 각각 분석되었다(물질 1: Bakkenolide B, 물질 2: Bakkenolide D, 물질 3: 1,5-Dicaffeoylquinic acid, 물질 4: 5-O-Caffeoylquinic acid).And as a result of analyzing the materials 1 to 4, as described in Table 1 below, two Bakkenolide compounds and two caffeoylquinic acid compounds were analyzed respectively (Material 1: Bakkenolide B, Material 2: Bakkenolide D, Material 3: 1 ,5-Dicaffeoylquinic acid, substance 4: 5- O- Caffeoylquinic acid).

Figure pat00001
Figure pat00001

각각의 화합물의 화학구조는 화학식 1 및 화학식 2와 같다. Chemical structures of each compound are as shown in Formulas 1 and 2.

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

실험예 2. 뉴라미니데이즈 저해 활성 분석(assay of neuraminidase inhibitory activity) Experimental Example 2. Assay of neuraminidase inhibitory activity

실험예 1에서 분석된 4가지의 유효 화합물을 대상으로 뉴라미니데이즈 저해 활성 분석을 실시하였다. 뉴라미니데이즈는 Clostridium perfringens에서 유래된 박테리아 뉴라미니데이즈를 사용하였다. 기질은 4-methylumbelliferyl-N-acetyl-a-d-neuraminidase acid sodium salt hydrate)을 사용하였고, 이의 가수분해 반응을 형광분석함으로써 뉴라미니지데이즈 억제 활성 분석을 확인하였다. 퀘르세틴은 양성 대조군으로서 이용하였고, 효소 활성에 대한 계산은 아래의 수학식 1과 같이 계산하여 산출하였다.Neuraminidase inhibitory activity analysis was performed on the four active compounds analyzed in Experimental Example 1. For neuraminidase, the bacterium neuraminidase derived from Clostridium perfringens was used. As a substrate, 4-methylumbelliferyl-N-acetyl-ad-neuraminidase acid sodium salt hydrate) was used, and the neuraminidase inhibitory activity analysis was confirmed by fluorescence analysis of its hydrolysis reaction. Quercetin was used as a positive control, and the enzymatic activity was calculated as in Equation 1 below.

Figure pat00004
Figure pat00004

그 결과, 도 1에 도시된 바와 같이 물질 1 내지 4 모두 농도-의존적으로 박테리아 뉴라미니데이즈 활성을 억제하는 것을 알 수 있다. 즉, 물질 2 내지 3의 경우, 2.3-80.1μM 범위의 IC50 값에서 유의적인 뉴라미니데이즈 활성 억제능을 보이는 것을 알 수 있다(물질 2의 IC50: 80.1μM, 물질 3의 IC50: 2.3μM, 물질 4의 IC50: 22.6μM). 다만, 물질 1의 경우 IC50 값이 200μM를 초과함으로써 뉴라미니데이즈 활성 억제능이 현저하게 떨어지는 것을 알 수 있다. 특히 물질 3에 해당하는 1,5-Dicaffeoylquinic acid는 양성 대조군인 퀘르세틴보다 10배 이상의 뉴라미니데이즈 활성 억제능을 보이는 것을 알 수 있다. As a result, as shown in FIG. 1 , it can be seen that all of substances 1 to 4 inhibit bacterial neuraminidase activity in a concentration-dependent manner. That is, in the case of materials 2 to 3, it can be seen that significant neuraminidase activity inhibitory activity is shown at IC 50 values in the range of 2.3-80.1 μM (IC 50 of material 2: 80.1 μM, IC 50 of material 3: 2.3 μM , IC 50 of material 4: 22.6 μM). However, in the case of material 1, it can be seen that the IC 50 value exceeds 200 μM, thereby remarkably lowering the ability to inhibit neuraminidase activity. In particular, it can be seen that 1,5-Dicaffeoylquinic acid corresponding to substance 3 exhibits more than 10-fold inhibition of neuraminidase activity than quercetin, a positive control.

또한, 도 2에 도시된 바와 같이 효소농도와 저해제(물질)의 농도를 달리하는 실험에서 각 변화들은 직선식을 보이고 있고, Y축의 동일한 교점을 지나므로 가역적 효소 저해제인 것을 알 수 있다. In addition, as shown in FIG. 2 , in the experiment in which the enzyme concentration and the concentration of the inhibitor (substance) are different, each change shows a linear equation and passes through the same intersection of the Y-axis, so it can be seen that the enzyme is a reversible enzyme inhibitor.

실험예 3. 뉴라미니데이즈 저해 양상 분석Experimental Example 3. Analysis of neuraminidase inhibition pattern

실험예 1에서 분석된 4가지의 유효 화합물 중 물질 2 내지 4의 뉴라미니데이즈 활성 억제능의 동적 파라미터는 Lineweaver-Burk double-reciprocal-plot 및 dixon plot를 이용하여 분석하였다. 모든 파라미터는 SigmaPlot(SPCC Inc., Chicago, IL, USA)을 이용하여 계산하였다. Among the four active compounds analyzed in Experimental Example 1, the dynamic parameters of the neuraminidase activity inhibitory ability of substances 2 to 4 were analyzed using a Lineweaver-Burk double-reciprocal-plot and dixon plot. All parameters were calculated using SigmaPlot (SPCC Inc., Chicago, IL, USA).

구체적으로, 실험예 2의 결과를 이용하여 다양한 농도의 기질 및 저해제에 의해서 반응물에서 일어나는 반응을 형광의 발광 값으로 분석하였다. Specifically, using the results of Experimental Example 2, reactions occurring in reactants with various concentrations of substrates and inhibitors were analyzed as fluorescence emission values.

Linewever-Burk plot을 이용하여 1/[S]에 따른 1/velocity(1/V)의 변화를 분석하였고, Dixon plot을 이용하여 물질들의 농도에 따른 1/Vmaxapp의 변화를 분석하였다.The change of 1/velocity (1/V) according to 1/[S] was analyzed using the Linewever-Burk plot, and the change of 1/V maxapp according to the concentration of substances was analyzed using the Dixon plot.

데이터 분석은 20분간 일어나는 형광 값의 변화 기울기로 실시하였고, 각 구간의 형광값 변화는 20마다 측정하여 Lineweaver-Burk plot 및 dixon plot으로 평가하였다.Data analysis was performed with the gradient of the change in fluorescence value occurring for 20 minutes, and the change in fluorescence value in each section was measured every 20 and evaluated by Lineweaver-Burk plot and dixon plot.

그 결과, 저해 양상은 bakkenolide 와 caffeoylquinic acid의 화학적 구조에 따라 다르게 확인되었다. 물질 2의 경우 도 3에 도시된 바와 같이 Km값은 일정하나, Vmax값은 감소되는 양상 즉, 기질 농도가 증가함에 따라 기울기는 다르지만 동일한 x절편을 형성하므로 이를 통해 비경쟁적 저해제임을 알 수 있다. 따라서 이 물질은 활성부위가 아닌 부위에서 효소와 결합할 수 있다. As a result, the inhibition pattern was confirmed differently depending on the chemical structures of bakkenolide and caffeoylquinic acid. In the case of material 2, as shown in FIG. 3, the K m value is constant, but the V max value decreases, that is, the slope is different as the substrate concentration increases, but the same x-intercept is formed, so it can be seen that it is a non-competitive inhibitor. there is. Therefore, this substance can bind enzymes at sites other than the active site.

그리고 물질 3 및 물질 4의 경우 도 4 및 도 5에 도시된 바와 같이 Lineweaver-Burk plot에서 Vmax값은 일정하나 Km값이 감소되는 양상을 보였고, 이를 통해 경쟁적 저해제임을 알 수 있다. 이는 물질 3 및 물질 4가 다양한 농도의 기질과 함께 처리되었을 시 효소의 활성을 억제하기 위하여 기질-결합 부위에 경쟁적으로 영향을 미칠 수 있음을 의미한다. 그리고 물질 3이 가장 강력한 가역적 억제제로 확인되었다. And in the case of materials 3 and 4, as shown in FIGS. 4 and 5, the V max value was constant in the Lineweaver-Burk plot, but the K m value was decreased, indicating that they were competitive inhibitors. This means that when substances 3 and 4 are treated with various concentrations of substrate, they can competitively affect the substrate-binding site to inhibit the activity of the enzyme. And substance 3 was identified as the most potent reversible inhibitor.

Dixon plot은 효소 억제 유형을 분석하고 억제제 결합에 대한 Ki값을 결정하기 위해 널리 수용되는 방법이며, Ki는 x-축 값을 의미한다(도 3 내지 5의 오른쪽 그래프 참조). 표 1에 기재된 바와 같이 Ki값은 82.7μM, 1.4μM, 16.1μM으로 도출되었다. Ki값은 최대의 절반 수준의 억제를 만드는데 필요한 농도를 나타내고, Ki값이 낮은 억제제는 더 높은 수준의 박테리아 뉴라미니데이즈 억제 활성을 의미하고, 이는 더욱 효율적으로 질병 억제할 수 있는 능력이 있음을 시사한다.The Dixon plot is a widely accepted method for analyzing the type of enzyme inhibition and determining the Ki value for inhibitor binding, where Ki refers to the x-axis value (see the graph on the right of FIGS. 3 to 5 ). As shown in Table 1, K i values were derived as 82.7 μM, 1.4 μM, and 16.1 μM. The K i value represents the concentration required to produce half the maximum level of inhibition, and the inhibitor with a lower K i value means a higher level of bacterial neuraminidase inhibitory activity, which has the ability to inhibit the disease more efficiently. suggests

한편, 위와 같은 머위 추출물로부터 추출된 물질들의 박테리아 뉴라미니데이즈의 억제 활성은 패혈증(敗血症, sepsis)을 개선하는데 효과가 있음을 의미한다(Paulson, J.C.,Kawasaki, N., 2011. Sialidase inhibitors DAMPen sepsis. Nat. Biotechnol. 29, 406-407). 패혈증은 병원 입원 환자의 사망률의 주요 원인 중 하나로서, 세균성 병원체에 대한 면역계의 과도한 반응으로 인해 광범위한 부종과 중요한 조직에 부정적인 영향을 미치는 질환이다.On the other hand, the inhibitory activity of bacterial neuraminidase of the substances extracted from coltsfoot extract as above means that it is effective in improving sepsis (Paulson, JC, Kawasaki, N., 2011. Sialidase inhibitors DAMPen sepsis) (Nat. Biotechnol. 29, 406-407). Sepsis is one of the major causes of mortality among hospitalized patients, a disease that negatively affects vital tissues with extensive edema due to an overreaction of the immune system to bacterial pathogens.

Claims (3)

머위 추출물을 유효성분으로 함유하는 것을 특징으로 하는 패혈증 예방 또는 개선용 식품 조성물.
A food composition for preventing or improving sepsis, characterized in that it contains butterbur extract as an active ingredient.
머위 추출물을 유효성분으로 함유하는 것을 특징으로 하는 패혈증 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating sepsis, characterized in that it contains butterbur extract as an active ingredient.
청구항 1 또는 청구항 2에 있어서,
상기 머위 추출물은 Bakkenolide D, 5-O-caffeoylquinic acid, 1,5-dicaffeoylquinic acid 중 어느 하나 이상을 함유하는 것을 특징으로 하는 조성물.

The method according to claim 1 or 2,
The composition, characterized in that the butterbur extract contains any one or more of Bakkenolide D, 5-O-caffeoylquinic acid, and 1,5-dicaffeoylquinic acid.

KR1020200005278A 2020-01-15 2020-01-15 Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis KR102386936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200005278A KR102386936B1 (en) 2020-01-15 2020-01-15 Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200005278A KR102386936B1 (en) 2020-01-15 2020-01-15 Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis

Publications (2)

Publication Number Publication Date
KR20210091949A true KR20210091949A (en) 2021-07-23
KR102386936B1 KR102386936B1 (en) 2022-04-13

Family

ID=77155425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200005278A KR102386936B1 (en) 2020-01-15 2020-01-15 Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis

Country Status (1)

Country Link
KR (1) KR102386936B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167518A1 (en) * 2022-03-03 2023-09-07 서울대학교병원 Composition for preventing, alleviating or treating dry eye syndrome or meibomian gland dysfunction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059463A (en) * 2002-07-26 2004-02-26 Lotte Co Ltd Anti-influenza virus agent and composition containing the same and food or drink
KR100962334B1 (en) 2009-10-19 2010-06-10 주식회사 중앙백신연구소 Antiviral agents with inhibitory activities on avian and swine influenza virus or novel influenza virus by compounds isolated from curcurma longa
KR101689656B1 (en) * 2016-06-08 2016-12-26 주식회사 네이처바이오 Composition comprising Butterbur leaf having the protection of neuronal cells and the improvement of memory
KR101754142B1 (en) * 2015-06-03 2017-07-05 충남대학교산학협력단 Composition comprising quinic acid derivatives for preventing or treating sepsis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059463A (en) * 2002-07-26 2004-02-26 Lotte Co Ltd Anti-influenza virus agent and composition containing the same and food or drink
KR100962334B1 (en) 2009-10-19 2010-06-10 주식회사 중앙백신연구소 Antiviral agents with inhibitory activities on avian and swine influenza virus or novel influenza virus by compounds isolated from curcurma longa
KR101754142B1 (en) * 2015-06-03 2017-07-05 충남대학교산학협력단 Composition comprising quinic acid derivatives for preventing or treating sepsis
KR101689656B1 (en) * 2016-06-08 2016-12-26 주식회사 네이처바이오 Composition comprising Butterbur leaf having the protection of neuronal cells and the improvement of memory

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Quilantang et al., Quantitative Determination of Bakkenolide D in Petasites japonicus and Farfugium japonicum by HPLC/UV. Natural Product Sciences. Vol. 23, No. 4, pp. 270-273(2017) 1부.* *
Woo et al., Isolation and Identification of bakkenolides and caffeoylquinic acids from the aerial parts of Petasites japonicus. 한국자원식물학회 학술대회논문집. 2018. p. 99 *
조배식. 머위의 항산화효능 및 항균작용에 관한 연구. 박사학위논문. 조선대학교 대학원. 2005년 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167518A1 (en) * 2022-03-03 2023-09-07 서울대학교병원 Composition for preventing, alleviating or treating dry eye syndrome or meibomian gland dysfunction

Also Published As

Publication number Publication date
KR102386936B1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
Schepetkin et al. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium
Xie et al. The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway
Park et al. Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata
Asghari et al. Flavonoids from Salvia chloroleuca with α-amylsae and α-glucosidase inhibitory effect
Dao et al. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata
Chu et al. In vitro and in vivo antimetastatic effects of Terminalia catappa L. leaves on lung cancer cells
Indrianingsih et al. α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume
Wang et al. Anti-inflammatory activity of new guaiane type sesquiterpene from Wikstroemia indica
Morikawa et al. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium
Shibata et al. Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus
Kim et al. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases
Ryu et al. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata
CN113491703B (en) Application of phenylethanoid glycosides compounds and composition thereof in preparation of medicines for preventing and treating new coronavirus infection
Jeong et al. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition
Woo et al. Potent inhibition of bacterial neuraminidase activity by pterocarpans isolated from the roots of Lespedeza bicolor
Nguyen et al. New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae
Abdel‐Raouf et al. Antimicrobial and antihyperlipidemic activities of isolated quercetin from Anabaena aequalis 1
Phaopongthai et al. Azole-synergistic anti-candidal activity of altenusin, a biphenyl metabolite of the endophytic fungus Alternaria alternata isolated from Terminalia chebula Retz.
Vo et al. Protein tyrosine phosphatase 1B (PTP1B) inhibitory constituents from the aerial parts of Tradescantia spathacea Sw.
KR102386936B1 (en) Composition containing extract of butterbur as an active ingredient for preventing, alleviating or treating sepsis
Ullah et al. Bacterial neuraminidase inhibition by phenolic compounds from Usnea longissima
Woo et al. Chemical constituents from the roots of Kadsura coccinea with their protein tyrosine phosphatase 1B and acetylcholinesterase inhibitory activities
Tantry et al. Acylated flavonol glycoside from Platanus orientalis
Zeng et al. A new bisepoxylignan dendranlignan A isolated from Chrysanthemum Flower inhibits the production of inflammatory mediators via the TLR4 pathway in LPS-induced H9c2 cardiomyocytes
Cheng et al. Anti-inflammatory polyoxygenated cyclohexene derivatives from Uvaria macclurei

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant