KR20210086729A - a low-density high-strength ceramsite proppant - Google Patents

a low-density high-strength ceramsite proppant Download PDF

Info

Publication number
KR20210086729A
KR20210086729A KR1020190175974A KR20190175974A KR20210086729A KR 20210086729 A KR20210086729 A KR 20210086729A KR 1020190175974 A KR1020190175974 A KR 1020190175974A KR 20190175974 A KR20190175974 A KR 20190175974A KR 20210086729 A KR20210086729 A KR 20210086729A
Authority
KR
South Korea
Prior art keywords
weight
parts
ceramsite
powder
silicate
Prior art date
Application number
KR1020190175974A
Other languages
Korean (ko)
Inventor
짱 쩡
Original Assignee
짱 쩡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 짱 쩡 filed Critical 짱 쩡
Priority to KR1020190175974A priority Critical patent/KR20210086729A/en
Publication of KR20210086729A publication Critical patent/KR20210086729A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention relates to a low-density, high-strength ceramsite propant produced by a method comprising the steps of: crushing and dry grinding the raw material into a coarse powder; adding fly ash, disilicon trioxide, cryolite, kaolinite, and the like to the coarse powder; putting a product into a ball mill, performing ball milling for 30 minutes to 2 hours, and sieving the same to obtain a mixed powder; mixing a sodium fluoride silicate solution and a polyvinyl alcohol solution in a mass ratio of 1:7 to 1:15 to obtain a mixed slurry; mixing the mixed powder and the mixed slurry to obtain particles by granulating; producing a ceramsite blank by sintering the particles at a high temperature; and adding alumina powder to the ceramsite blank, grinding, and removing the alumina powder.

Description

저밀도 고강도 세람사이트 프로판트{a low-density high-strength ceramsite proppant}Low-density high-strength ceramsite proppant

본 발명은 프로판트(proppant) 분야에 관련된 것으로, 보다 상세하게는, 산업 폐기물과 잔여물(tailings)을 사용하여 제조되는 저밀도 고강도 세람사이트 프로판트(ceramsite proppant)에 관한 것이다.FIELD OF THE INVENTION The present invention relates to the field of proppants and, more particularly, to low-density, high-strength ceramsite proppants manufactured using industrial waste and tailings.

프로판트(proppant)는 파쇄에 이용되는 고체 입자의 한 유형이다. 파쇄 후, 프로판트는 파쇄된 암석의 벽 표면을 지지하여 파쇄된 암석의 틈이 다시 좁아지지 않도록 할 수 있고, 결과적으로 수압으로 파열된 부분은 유정 보어(wellbore)로 연결되는 흐름 전도 채널(flow-conduction channel)이 된다. 1977년에 미국은 높은 폐쇄 압력 하에서 높은 압축 강도 및 높은 유동 전도성의 특성을 갖는 소결된 보크사이트(sintered bauxite)로 불리는 인공 프로판트를 개발하였다. 중국에서는 주 재료로 보크사이트를 소결 또는 분사하여 제조한 인공 프로판트를 총칭하여 세람사이트(ceramcite)라고 한다. 국내외에서 세람사이트 프로판트의 상대 밀도는 2.70 - 3.60 범위이고, 이의 벌크 밀도(bulk density)는 1.60-2.10 g/cm3 범위이다. 이는 모두 천연 석영 모래의 상대 밀도 범위와 벌크 밀도 범위보다 높다.A proppant is a type of solid particle used for fracturing. After crushing, the proppant supports the wall surface of the crushed rock so that the fractured rock does not narrow again, and as a result, the hydraulically fractured portion is flow-conducting channel (flow-conducting channel) leading to the wellbore. conduction channel). In 1977, the United States developed an artificial proppant called sintered bauxite, which had the characteristics of high compressive strength and high flow conductivity under high closing pressure. In China, artificial proppant manufactured by sintering or spraying bauxite as the main material is collectively called ceramcite. At home and abroad, the relative density of ceramsite proppant is in the range of 2.70 - 3.60, and its bulk density is in the range of 1.60-2.10 g/cm 3 . Both are higher than the relative and bulk density ranges of natural quartz sand.

중국의 철강 및 알루미나 산업의 급속한 발전으로 산업 폐기물 및 보크 사이트 잔여물의 배출량이 증가하면서 생태 환경이 파괴되고 사람들의 일상 생활에 심각한 영향을 일으켰다.With the rapid development of China's steel and alumina industry, the emission of industrial waste and bauxite residues has increased, destroying the ecological environment and causing serious impact on people's daily life.

결과적으로, 2차 자원으로 산업 폐기물과 광산 잔여물을 재활용하고, 생태 환경을 개선하고, 유해한 것을 이익되는 것으로 만들고, 그리고 폐기물을 유용한 것으로 바꾸기 위해서, 경제적이고 합리적인 방법을 채택하여 산업 폐기물과 잔여물의 실용 가치를 향상시키는 것이 중요한 연구 주제가 되었다. Consequently, in order to recycle industrial wastes and mine residues as secondary resources, improve the ecological environment, turn the harmful into beneficial, and turn the waste into useful, economic and rational methods are adopted to dispose of industrial wastes and residues. Improving practical value has become an important research topic.

종래 기술에 존재하는 기술적 문제를 고려하여, 본 발명의 발명자들은 자원 절약, 폐기물 활용 및 환경 보호의 목적을 달성하기 위해 원료 물질로 산업 폐기물 또는 잔여물을 사용하여 저밀도 고강도 세람사이트 프로판트를 제조할 수 있는 방법을 집중적으로 연구하였고 이를 제안해 왔다. In consideration of the technical problems existing in the prior art, the inventors of the present invention have prepared a low-density high-strength ceramsite proppant using industrial waste or residues as raw materials to achieve the purposes of resource saving, waste utilization and environmental protection. Methods have been intensively studied and suggested.

하나의 양태로, 본 발명은 산업 폐기물을 사용하여 제조되는 저밀도 고강도 세람사이트 프로판트를 제공한다. 상기 세람사이트 프로판트는 다음의 단계에 의하여 제조된다.In one aspect, the present invention provides a low-density, high-strength ceramsite proppant manufactured using industrial waste. The ceramsite proppant is prepared by the following steps.

(1) 고로(blast furnace) 슬래그(slag)에서 발생하는 산업 폐기물 35-70 중량부를 거친 분말로 파쇄 및 건식 분쇄하는 단계;(1) crushing and dry grinding 35-70 parts by weight of industrial waste generated from blast furnace slag into a coarse powder;

(2) 플라이 애쉬(fly ash) 17 - 40 중량부, 디실리콘 트리옥사이드(disilicon trioxide) 3 - 16 중량부, 빙정석(cryolite) 17 - 30 중량부, 고령석(kaolin) 8 - 30 중량부, 과망간산 칼륨(potassium permanganate) 1 - 3 중량부, 옥살산철(iron oxalate) 5 - 7.5 중량부, 흑연(graphite) 0.1 - 3 중량부 및 탄산 칼슘(calcium carbonate) 5 - 25 중량부를 첨가하는 단계;(2) 17 - 40 parts by weight of fly ash, 3 - 16 parts by weight of disilicon trioxide, 17 - 30 parts by weight of cryolite, 8 - 30 parts by weight of kaolin, 1 - 3 parts by weight of potassium permanganate, 5 - 7.5 parts by weight of iron oxalate, 0.1 - 3 parts by weight of graphite, and 5 - 25 parts by weight of calcium carbonate;

(3) 생성물을 볼 밀에 투입하여 30 분 내지 2 시간 동안 볼 밀을 수행하고, 120-메쉬 체로 걸러내어 혼합 분말을 수득하는 단계;(3) putting the product into a ball mill to perform a ball mill for 30 minutes to 2 hours, and sieving through a 120-mesh sieve to obtain a mixed powder;

(4) 플루오린화 규소산 나트륨(sodium fluosilicate) 용액과 폴리비닐 알코올(polyvinyl alcohol) 용액을 1 : 7 - 1 : 15의 질량비로 교반하여 혼합 슬러리를 수득하는 단계;(4) stirring a sodium fluosilicate solution and a polyvinyl alcohol solution in a mass ratio of 1: 7 - 1: 15 to obtain a mixed slurry;

(5) 상기 혼합 분말과 상기 혼합 슬러리를 5 : 2 - 2 : 1의 질량비로 혼합하고, 과립화하여 입자를 수득하는 단계;(5) mixing the mixed powder and the mixed slurry in a mass ratio of 5: 2 - 2: 1, and granulating to obtain particles;

(6) 상기 입자를 고온 소결하여 세람사이트 블랭크(ceramsite blank)를 제조하는 단계; 및(6) preparing a ceramsite blank by sintering the particles at a high temperature; and

(7) 알루미나(alumina) 분말 8 - 10 중량부를 상기 세람사이트 블랭크에 첨가하여 연마하고, 상기 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하는 단계. (7) grinding by adding 8-10 parts by weight of alumina powder to the ceramsite blank, and removing the alumina powder to obtain a low-density, high-strength ceramsite proppant.

산업 폐기물로, 다양한 공급원으로부터 제공되는 알루미늄이 풍푸하고 철이 풍부한 폐기물 물질이 사용될 수 있고, 폐내화재(waste refractories) 및 고로 슬래그가 사용될 수도 있다. As industrial waste, aluminum-rich and iron-rich waste materials from various sources may be used, and waste refractories and blast furnace slag may be used.

상기 저밀도 고강도 세람사이트 프로판트는 1.20-1.60g/cm3의 벌크 밀도와 13.0-24.0 MPa의 압축 강도를 갖는다.The low-density high-strength ceramsite proppant has a bulk density of 1.20-1.60 g/cm 3 and a compressive strength of 13.0-24.0 MPa.

본 발명의 유리한 효과는 다음과 같다.Advantageous effects of the present invention are as follows.

(1) 프로판트를 제조하기 위한 원료로 산업 폐기물 및 잔여 폐기물을 사용함으로써, 본 발명은 폐기물의 이용가능성을 현저히 개선하고 자원을 절약하고 환경을 보호하고, 오염을 방지할 수 있다.(1) By using industrial waste and residual waste as raw materials for producing proppant, the present invention can significantly improve the availability of waste, save resources, protect the environment, and prevent pollution.

(2) 제조용 물질로 본 발명의 성분 원료를 택함으로써, 본 발명은 저밀도를 유지하면서도 세람사이트 프로판트의 강도를 현저히 향상시킨다.(2) By adopting the raw material of the present invention as a material for manufacturing, the present invention significantly improves the strength of the ceramsite proppant while maintaining a low density.

(3) 본 발명의 방법은 공정이 간단하고 비용이 저렴하다.(3) The process of the present invention is simple and low in cost.

이하, 구체적인 실시예와 조합하여 본 발명을 더 자세하게 설명한다. 그러나, 본 발명은 하기의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail in combination with specific examples. However, the present invention is not limited to the following examples.

실시예 1Example 1

고로 슬래그 40 중량부를 측정하여 해머 분쇄기(hammer crusher)에 투입하고 슬래그 거친 분말을 수득하기 위해 약 30분 동안 분쇄하였다. 플라이 애쉬 20 중량부 디실리콘 트리옥사이드 5 중량부, 빙정석 22 중량부, 고령석 30 중량부, 과망간산 칼륨 3 중량부, 옥살산철 5 중량부, 흑연 2 중량부 및 탄산 칼슘 5 중량부 각각을 측정한 후, 이들 물질을 상기 슬래그 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 45분 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기(disc granulator)에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 20)(혼합 물질의 총 중량의 35%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음 로터리 킬른(rotary kiln)에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크(ceramsite blank)를 수득하였다. 알루미나 분말 10 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.40 parts by weight of blast furnace slag was measured, put into a hammer crusher, and pulverized for about 30 minutes to obtain a coarse slag powder. 20 parts by weight of fly ash, 5 parts by weight of disilicon trioxide, 22 parts by weight of cryolite, 30 parts by weight of kaolin, 3 parts by weight of potassium permanganate, 5 parts by weight of iron oxalate, 2 parts by weight of graphite and 5 parts by weight of calcium carbonate Then, these materials were put into a ball mill together with the slag coarse powder, water was added, and the ball mill was performed for about 45 minutes to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:20) (accounting for 35% of the total weight of the mixture material) was mixed was added. did. The product was granulated, filtered through a 120-mesh sieve, and then put into a rotary kiln and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 10 parts by weight of alumina powder was added, the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

실시예 2Example 2

폐내화재 55중량부를 측정하여 해머 분쇄기에 투입하고 폐내화재 거친 분말을 수득하기 위해 약 30분 동안 분쇄하였다. 플라이 애쉬 30 중량부 디실리콘 트리옥사이드 12 중량부, 빙정석 25 중량부, 고령석 20 중량부, 과망간산 칼륨 2.3 중량부, 옥살산철 6 중량부, 흑연 3 중량부 및 탄산 칼슘 22 중량부 각각을 측정한 후, 이들 물질을 상기 폐내화재 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 55분 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 20)(혼합 물질의 총 중량의 35%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음, 로터리 킬른에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크를 수득하였다. 알루미나 분말 10 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.55 parts by weight of the waste refractory material was measured, put into a hammer grinder, and pulverized for about 30 minutes to obtain a coarse powder of the waste refractory material. 30 parts by weight of fly ash, 12 parts by weight of disilicon trioxide, 25 parts by weight of cryolite, 20 parts by weight of kaolinite, 2.3 parts by weight of potassium permanganate, 6 parts by weight of iron oxalate, 3 parts by weight of graphite and 22 parts by weight of calcium carbonate Then, these materials were put into a ball mill together with the waste refractory material coarse powder, water was added, and the ball mill was performed for about 55 minutes to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:20) (accounting for 35% of the total weight of the mixture material) were mixed was added. The product was granulated, sieved through a 120-mesh sieve, put into a rotary kiln, and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 10 parts by weight of alumina powder was added, and the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

실시예 3Example 3

보크사이트 잔여물(bauxite tailings) 55중량부를 측정하고 해머 분쇄기에 투입하여 거친 분말을 수득하기 위해 약 40분 동안 분쇄하였다. 플라이 애쉬 35 중량부 디실리콘 트리옥사이드 6 중량부, 빙정석 16 중량부, 고령석 17 중량부, 과망간산 칼륨 1.5 중량부, 옥살산철 7 중량부, 흑연 4 중량부 및 탄산 칼슘 15 중량부 각각을 측정한 후, 이들 물질을 상기 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 1시간 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 20)(혼합 물질의 총 중량의 35%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음, 로터리 킬른에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크를 수득하였다. 알루미나 분말 6 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.55 parts by weight of bauxite tailings were measured and put into a hammer grinder and grinded for about 40 minutes to obtain a coarse powder. 35 parts by weight of fly ash, 6 parts by weight of disilicon trioxide, 16 parts by weight of cryolite, 17 parts by weight of kaolinite, 1.5 parts by weight of potassium permanganate, 7 parts by weight of iron oxalate, 4 parts by weight of graphite and 15 parts by weight of calcium carbonate Then, these materials were put into a ball mill together with the coarse powder, water was added, and the ball mill was performed for about 1 hour to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:20) (accounting for 35% of the total weight of the mixture material) were mixed was added. The product was granulated, sieved through a 120-mesh sieve, put into a rotary kiln, and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 6 parts by weight of alumina powder was added, and the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

실시예 4Example 4

보크사이트 잔여물 52중량부의 무게를 측정하고 해머 분쇄기에 투입하여 거친 분말을 수득하기 위해 약 40분 동안 분쇄하였다. 플라이 애쉬 33 중량부 디실리콘 트리옥사이드 6 중량부, 빙정석 19 중량부, 고령석 20 중량부, 과망간산 칼륨 1.8 중량부, 옥살산철 7 중량부, 흑연 3 중량부 및 탄산 칼슘 25 중량부 각각을 측정한 후, 이들 물질을 상기 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 1시간 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 20)(혼합 물질의 총 중량의 35%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음, 로터리 킬른에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크를 수득하였다. 알루미나 분말 7 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.52 parts by weight of the bauxite residue was weighed, put into a hammer grinder, and pulverized for about 40 minutes to obtain a coarse powder. 33 parts by weight of fly ash 6 parts by weight of disilicon trioxide, 19 parts by weight of cryolite, 20 parts by weight of kaolinite, 1.8 parts by weight of potassium permanganate, 7 parts by weight of iron oxalate, 3 parts by weight of graphite and 25 parts by weight of calcium carbonate Then, these materials were put into a ball mill together with the coarse powder, water was added, and the ball mill was performed for about 1 hour to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:20) (accounting for 35% of the total weight of the mixture material) were mixed was added. The product was granulated, sieved through a 120-mesh sieve, put into a rotary kiln, and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 7 parts by weight of alumina powder was added, and the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

실시예 5Example 5

고로 슬래그 30 중량부와 보크사이트 잔여물 52 중량부를 측정하여 해머 분쇄기에 투입하고 거친 분말을 수득하기 위해 약 55분 동안 분쇄하였다. 망간 광물 분말 10중량부, 플라이 애쉬 41 중량부, 디실리콘 트리옥사이드 3 중량부, 빙정석 20 중량부, 고령석 13 중량부, 과망간산 칼륨 3 중량부, 옥살산철 7.5 중량부, 흑연 0.5 중량부 및 탄산 칼슘 16 중량부 각각을 측정한 후, 이들 물질을 상기 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 1.5시간 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 30)(혼합 물질의 총 중량의 20%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음 로터리 킬른에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크를 수득하였다. 알루미나 분말 11 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.30 parts by weight of blast furnace slag and 52 parts by weight of bauxite residue were measured, put into a hammer grinder, and pulverized for about 55 minutes to obtain a coarse powder. Manganese mineral powder 10 parts by weight, fly ash 41 parts by weight, disilicon trioxide 3 parts by weight, cryolite 20 parts by weight, kaolinite 13 parts by weight, potassium permanganate 3 parts by weight, iron oxalate 7.5 parts by weight, graphite 0.5 parts by weight and carbonic acid After measuring each of 16 parts by weight of calcium, these materials were put into a ball mill together with the coarse powder, water was added, and the ball mill was performed for about 1.5 hours to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:30) (accounting for 20% of the total weight of the mixture material) was mixed was added. The product was granulated, sieved through a 120-mesh sieve, put into a rotary kiln, and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 11 parts by weight of alumina powder was added, the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

실시예 6Example 6

고로 슬래그 52 중량부와 보크사이트 잔여물 45 중량부를 측정하여 해머 분쇄기에 투입하고 거친 분말을 수득하기 위해 약 75분 동안 분쇄하였다. 망간 광물 분말 14중량부, 플라이 애쉬 20 중량부, 디실리콘 트리옥사이드 12 중량부, 빙정석 20 중량부, 고령석 25 중량부, 과망간산 칼륨 3 중량부, 옥살산철 4 중량부, 흑연 2 중량부 및 탄산 칼슘 25 중량부 각각을 측정한 후, 이들 물질을 상기 거친 분말과 함께 볼 밀에 투입하고 물을 첨가하고 약 1.5시간 동안 볼 밀을 수행하여 혼합된 분말 물질을 수득하였다. 수득된 혼합된 분말 물질을 디스크 과립기에 투입하고, 플루오린화 규소산 나트륨과 폴리비닐 알코올(1 : 30)(혼합 물질의 총 중량의 20%를 차지)이 혼합된 슬러리를 첨가하였다. 생성물을 과립화하고, 120-메쉬 체로 거른 다음 로터리 킬른에 투입하여 1280 - 1350℃에서 소결하여 세람사이트 블랭크를 수득하였다. 알루미나 분말 12 중량부 첨가하고, 상기 세람사이트 블랭크를 연마한 다음, 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하였다.52 parts by weight of blast furnace slag and 45 parts by weight of bauxite residue were measured and put into a hammer grinder, and pulverized for about 75 minutes to obtain a coarse powder. Manganese mineral powder 14 parts by weight, fly ash 20 parts by weight, disilicon trioxide 12 parts by weight, cryolite 20 parts by weight, kaolinite 25 parts by weight, potassium permanganate 3 parts by weight, iron oxalate 4 parts by weight, graphite 2 parts by weight and carbonic acid After measuring each of 25 parts by weight of calcium, these materials were put into a ball mill together with the coarse powder, water was added, and the ball mill was performed for about 1.5 hours to obtain a mixed powder material. The obtained mixed powder material was put into a disk granulator, and a slurry in which sodium fluoride silicate and polyvinyl alcohol (1:30) (accounting for 20% of the total weight of the mixture material) was mixed was added. The product was granulated, sieved through a 120-mesh sieve, put into a rotary kiln, and sintered at 1280 - 1350° C. to obtain a ceramsite blank. 12 parts by weight of alumina powder was added, and the ceramsite blank was polished, and then the alumina powder was removed to obtain a low-density, high-strength ceramsite proppant.

본 발명에 따라 제조된 상기 저밀도 고강도 세람사이트 프로판트의 특성을 더 구체적으로 설명하기 위하여, 본 발명은 또한 하기의 기술적인 지표들을 측정하기 위한 실험예들을 제공한다. 상기 측정된 지표들을 하기 표 1에 나타내었다.In order to more specifically describe the properties of the low-density high-strength ceramsite proppant prepared according to the present invention, the present invention also provides experimental examples for measuring the following technical indicators. The measured indices are shown in Table 1 below.

  압축 강도
(Compressive strength)
(MPa)
compressive strength
(Compressive strength)
(MPa)
투과도
(Permeability) (μm2)
permeability
(Permeability) (μm 2 )
벌크 세기
(Bulk intensity) (g/cm3)
Bulk Century
(Bulk intensity) (g/cm 3 )
실시예 1Example 1 20℃:14.620 degrees Celsius: 14.6 9393 1.351.35 200℃:15.0200 degrees Celsius: 15.0 실시예 2Example 2 20℃:14.820 degrees Celsius: 14.8 9595 1.411.41 200℃:15.0200 degrees Celsius: 15.0 실시예 3Example 3 20℃:17.320 degrees Celsius: 17.3 9999 1.61.6 200℃:18.5200 degrees Celsius: 18.5 실시예 4Example 4 20℃:18.420 degrees Celsius: 18.4 9898 1.591.59 200℃:19.0200 degrees Celsius: 19.0 실시예 5Example 5 20℃:21.120 degrees Celsius: 21.1 9696 1.521.52 200℃:22.3200 degrees Celsius: 22.3 실시예 6Example 6 20℃:20.920 degrees Celsius: 20.9 9797 1.471.47 200℃:22.7200 degrees Celsius: 22.7

실시예 1 내지 6에서 수득된 세람사이트 프로판트를 투과도 시험기를 사용하여 투과도 시험을 실시하였다. 측정된 투과도 데이터를 표 1에 나타내었다. 표 1에서 볼 수 있듯이, 본 발명의 방법에 따라 제조된 프로판트는 93-99μm2 범위의 높은 투과도를 나타냄을 알 수 있다.The ceramsite propant obtained in Examples 1 to 6 was subjected to a permeability test using a permeability tester. The measured transmittance data are shown in Table 1. As can be seen in Table 1, it can be seen that the proppant prepared according to the method of the present invention exhibits high transmittance in the range of 93-99 μm 2 .

실시예 1 내지 6에서 수득한 세람사이트 프로판트를 제로 폐쇄 압력(zero closing pressure) 하에서 2일 동안 20℃와 200℃에서 온도를 유지하면서 경화시킨 후, 압축 강도 시험을 수행하였다. 측정된 압축 강도 데이터를 표 1에 나타내었다. 표 1에서 볼 수 있듯이, 본 발명의 방법에 따라 제조된 프로판트는 14.6MPa-22.7MPa 범위의 상대적으로 높은 압축 강도를 나타냄을 알 수 있다.After curing the ceramsite propant obtained in Examples 1 to 6 while maintaining the temperature at 20° C. and 200° C. for 2 days under zero closing pressure, a compressive strength test was performed. The measured compressive strength data are shown in Table 1. As can be seen in Table 1, it can be seen that the proppant prepared according to the method of the present invention exhibits a relatively high compressive strength in the range of 14.6 MPa-22.7 MPa.

상기의설명은 오직 본 발명의 바람직한 실시예를 예시한 것일 뿐이고, 본 발명의 보호 범위는 이에 제한되지 않으며, 본 발명의 기술적 해결책 및 본 발명의 개념에 따라 당업자에 의하여 이루어지는 임의의 등가물의 치환 또는 수정 사항은 본 발명의 보호 범위 내에 포함되어야 한다.The above description only exemplifies the preferred embodiment of the present invention, the protection scope of the present invention is not limited thereto, and any equivalent substitution or substitution made by those skilled in the art according to the technical solution of the present invention and the concept of the present invention Modifications should be included within the protection scope of the present invention.

Claims (4)

하기 단계를 포함하는 방법에 의하여 제조되는 세람사이트 프로판트(ceramsite proppant):
(1) 고로(blast furnace) 슬래그(slag)에서 발생하는 산업 폐기물 35-70 중량부를 거친 분말로 파쇄 및 건식 분쇄하는 단계;
(2) 플라이 애쉬(fly ash) 17 - 40 중량부, 디실리콘 트리옥사이드(disilicon trioxide) 3 - 16 중량부, 빙정석(cryolite) 17 - 30 중량부, 고령석(kaolin) 8 - 30 중량부, 과망간산 칼륨(potassium permanganate) 1 - 3 중량부, 옥살산철(iron oxalate) 5 - 7.5 중량부, 흑연(graphite) 0.1 - 3 중량부 및 탄산 칼슘(calcium carbonate) 5 - 25 중량부를 첨가하는 단계;
(3) 생성물을 볼 밀에 투입하여 30 분 내지 2 시간 동안 볼 밀을 수행하고, 120-메쉬 체로 걸러내어 혼합 분말을 수득하는 단계;
(4) 플루오린화 규소산 나트륨(sodium fluosilicate) 용액과 폴리비닐 알코올 용액을 1 : 7 - 1 : 15의 질량비로 교반하여 혼합 슬러리를 수득하는 단계;
(5) 상기 혼합 분말과 상기 혼합 슬러리를 5 : 2 - 2 : 1의 질량비로 혼합하고, 과립화하여 입자를 수득하는 단계;
(6) 상기 입자를 고온 소결하여 세람사이트 블랭크(ceramsite blank)를 제조하는 단계; 및
(7) 알루미나(alumina) 분말 8 - 10 중량부를 상기 세람사이트 블랭크에 첨가하여 연마하고, 상기 알루미나 분말을 제거하여 저밀도 고강도 세람사이트 프로판트를 수득하는 단계.
A ceramsite proppant prepared by a method comprising the steps of:
(1) crushing and dry grinding 35-70 parts by weight of industrial waste generated from blast furnace slag into a coarse powder;
(2) 17 - 40 parts by weight of fly ash, 3 - 16 parts by weight of disilicon trioxide, 17 - 30 parts by weight of cryolite, 8 - 30 parts by weight of kaolin, 1 - 3 parts by weight of potassium permanganate, 5 - 7.5 parts by weight of iron oxalate, 0.1 - 3 parts by weight of graphite, and 5 - 25 parts by weight of calcium carbonate;
(3) putting the product into a ball mill to perform a ball mill for 30 minutes to 2 hours, and sieving through a 120-mesh sieve to obtain a mixed powder;
(4) stirring a sodium fluosilicate solution and a polyvinyl alcohol solution in a mass ratio of 1:7 - 1:15 to obtain a mixed slurry;
(5) mixing the mixed powder and the mixed slurry in a mass ratio of 5: 2 - 2: 1, and granulating to obtain particles;
(6) preparing a ceramsite blank by sintering the particles at a high temperature; and
(7) grinding by adding 8-10 parts by weight of alumina powder to the ceramsite blank, and removing the alumina powder to obtain a low-density high-strength ceramsite proppant
제1항에 있어서,
상기 고로 슬래그는 규산 이칼슘(dicalcium silicate) 규산 삼칼슘(tricalcium silicate), 규산 마그네슘(magnesium silicate), 규산 알루미늄(aluminum silicate), 규산 망간(manganese silicate) 및 규산 철(iron silicate)을 주성분으로 하는, 세람사이트 프로판트.
According to claim 1,
The blast furnace slag contains dicalcium silicate, tricalcium silicate, magnesium silicate, aluminum silicate, manganese silicate and iron silicate as main components. , Ceramsite Propant.
제1항에 있어서,
상기 고로 슬래그는 자석을 이용한 철 제거 공정을 수행해야 하는, 세람사이트 프로판트.
According to claim 1,
The blast furnace slag should be subjected to an iron removal process using a magnet, ceramsite proppant.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 고온 소결은 로터리 킬른(rotary kiln)으로 1280 - 1350℃에서 수행되는, 세람사이트 프로판트.
4. The method according to any one of claims 1 to 3,
The high temperature sintering is carried out at 1280 - 1350 ° C with a rotary kiln, ceramsite proppant.
KR1020190175974A 2019-12-27 2019-12-27 a low-density high-strength ceramsite proppant KR20210086729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190175974A KR20210086729A (en) 2019-12-27 2019-12-27 a low-density high-strength ceramsite proppant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190175974A KR20210086729A (en) 2019-12-27 2019-12-27 a low-density high-strength ceramsite proppant

Publications (1)

Publication Number Publication Date
KR20210086729A true KR20210086729A (en) 2021-07-09

Family

ID=76865031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190175974A KR20210086729A (en) 2019-12-27 2019-12-27 a low-density high-strength ceramsite proppant

Country Status (1)

Country Link
KR (1) KR20210086729A (en)

Similar Documents

Publication Publication Date Title
CN105294142B (en) A kind of red mud base sintering light-weight aggregate and preparation method thereof
CN103521681A (en) Molding sand and preparation method thereof
KR20210045729A (en) A low-density high-strength ceramsite proppant
CN106630700A (en) Inorganic gelling material made from coal ash and waste glass and preparation method of inorganic gelling material
CN103521695A (en) Molding sand for casting iron balls and preparation method of molding sand
CN107699225A (en) A kind of petroleum fracturing propping agent and production technology and purposes
CN103521689A (en) Molding sand for recycling old sand and preparation method thereof
CN107353032B (en) Foamed ceramic insulation board taking industrial inorganic hazardous wastes and refractory clay tailings as raw materials and preparation method thereof
CN102942368A (en) Method for preparing high-strength petroleum fracturing propping agent from low-grade bauxite
CN107759153B (en) Alkali-activated high-titanium slag permeable product and preparation method thereof
KR101306186B1 (en) Manufacturing method of geopolymeric concrete for eco-friendly non-cement of new construction materials using recycled aggregate from waste of constrcution
KR20210084712A (en) A low-density high-strength ceramsite proppant
DE102020200055A1 (en) A HIGH STRENGTH, LOW DENSITY KERAMSITE SUPPORT
KR20210078107A (en) A low-density high-strength ceramsite proppant
KR20210083490A (en) Low-density high-strength ceramsite proppant
CN103756665A (en) Low-density propping agent taking flint clay as raw material and preparation method thereof
KR20210086729A (en) a low-density high-strength ceramsite proppant
KR20210063788A (en) A low-density high-strength ceramsite proppant
KR20210054947A (en) A low-density high-strength ceramsite proppant
KR20200116708A (en) Coated proppant
KR20200123940A (en) A coated proppant
CN107793132A (en) Ceramic Tiles based on ceramic polished slag and preparation method thereof
KR20210065310A (en) A low-density high-strength ceramsite proppant
CN114133223A (en) Energy-saving and environment-friendly low-cost ceramsite proppant and preparation method thereof
KR20200119947A (en) A double-coated proppant