KR20210086152A - Method for preparation of chlorinated polyvinylchloride - Google Patents

Method for preparation of chlorinated polyvinylchloride Download PDF

Info

Publication number
KR20210086152A
KR20210086152A KR1020190179885A KR20190179885A KR20210086152A KR 20210086152 A KR20210086152 A KR 20210086152A KR 1020190179885 A KR1020190179885 A KR 1020190179885A KR 20190179885 A KR20190179885 A KR 20190179885A KR 20210086152 A KR20210086152 A KR 20210086152A
Authority
KR
South Korea
Prior art keywords
polyvinyl chloride
light source
chlorinated polyvinyl
reactor
manufacturing
Prior art date
Application number
KR1020190179885A
Other languages
Korean (ko)
Inventor
홍기원
남궁지은
이우영
진선정
이소정
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to KR1020190179885A priority Critical patent/KR20210086152A/en
Priority to CN202080085457.0A priority patent/CN114829411A/en
Priority to PCT/KR2020/009174 priority patent/WO2021137374A1/en
Publication of KR20210086152A publication Critical patent/KR20210086152A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride

Abstract

The present invention is to provide a method for producing chlorinated polyvinyl chloride, which uses a UV LED as a light source, increases production efficiency of the chlorinated polyvinyl chloride by adjusting a radiation angle, and also increases the physical properties of the produced chlorinated polyvinyl chloride.

Description

염소화 폴리염화비닐의 제조 방법{Method for preparation of chlorinated polyvinylchloride}The manufacturing method of chlorinated polyvinyl chloride {Method for preparation of chlorinated polyvinylchloride}

본 발명은 자외선 LED를 이용한 염소화 폴리염화비닐의 제조 방법에 관한 것이다. The present invention relates to a method for producing chlorinated polyvinyl chloride using an ultraviolet LED.

염소화 폴리염화비닐은 내열성이 우수하여, 파이프, 필름, 시트 등 다양한 분야에서 사용되고 있다. 염소화 폴리염화비닐은, 폴리염화비닐을 염소와 반응시켜 제조하는데, 일반적으로 염소가 폴리염화비닐과 반응하기 위해서는 염소 라디칼이 생성되어야 하며 이를 위하여 자외선 조사가 필요하다. Chlorinated polyvinyl chloride has excellent heat resistance and is used in various fields such as pipes, films, and sheets. Chlorinated polyvinyl chloride is produced by reacting polyvinyl chloride with chlorine. In general, chlorine radicals must be generated in order for chlorine to react with polyvinyl chloride, and UV irradiation is required for this purpose.

현재까지 염소화 폴리염화비닐을 제조함에 있어, 자외선 조사를 위하여 사용되는 가장 보편적인 방법은 수은 UV Lamp를 사용하는 것이다. 수은 UV Lamp는 값이 저렴하고 쉽게 구할 수 있어 널리 사용되고 있으나, 에너지 효율이 낮고 수명이 짧아 이를 자주 교체하여야 하는 문제가 있다. 또한, 수은 UV Lamp에서 자외선이 방사형으로 나오는데, 이에 따라 자외선이 충분히 반응물에 도달하지 못하여 반응 효율이 떨어지는 문제가 발생한다. Until now, in the production of chlorinated polyvinyl chloride, the most common method used for UV irradiation is to use a mercury UV lamp. Mercury UV Lamps are widely used because they are inexpensive and easily available, but they have a problem that they have to be replaced frequently due to their low energy efficiency and short lifespan. In addition, ultraviolet rays are emitted from the mercury UV lamp in a radiation form, and accordingly, the ultraviolet rays do not sufficiently reach the reactants, which causes a problem in that the reaction efficiency is lowered.

이에, 본 발명자들은 상기와 같은 문제를 해결하기 위하여 예의 노력한 결과, 후술할 바와 같이 광원으로 UV LED를 사용하고, 또한 방사각을 조절하여 염소화 폴리염화비닐의 제조 효율을 증가시킴은 물론 제조된 염소화 폴리염화비닐의 물성도 증가시킬 수 있음을 확인하여 본 발명을 완성하였다. Accordingly, the present inventors have made diligent efforts to solve the above problems, as will be described later, using UV LED as a light source and adjusting the radiation angle to increase the production efficiency of chlorinated polyvinyl chloride as well as to increase the production efficiency of the chlorinated polyvinyl chloride. The present invention was completed by confirming that the physical properties of polyvinyl chloride can also be increased.

본 발명은, 광원으로 UV LED를 사용하고, 또한 방사각을 조절하여 염소화 폴리염화비닐의 제조 효율을 증가시킴은 물론 제조된 염소화 폴리염화비닐의 물성도 증가시키는 염소화 폴리염화비닐의 제조 방법의 제조 방법을 제공하기 위한 것이다. The present invention uses a UV LED as a light source and also adjusts the radiation angle to increase the production efficiency of chlorinated polyvinyl chloride as well as increase the physical properties of the produced chlorinated polyvinyl chloride. Preparation of a method for producing chlorinated polyvinyl chloride to provide a way.

상기 과제를 해결하기 위하여, 본 발명은 하기의 염소화 폴리염화비닐의 제조 방법을 제공한다:In order to solve the above problems, the present invention provides a method for producing the following chlorinated polyvinyl chloride:

1) 반응기 내에 폴리염화비닐 및 염소를 포함하는 반응물을 투입하는 단계; 및1) introducing a reactant containing polyvinyl chloride and chlorine into the reactor; and

2) 상기 반응물을 교반하면서, 자외선을 상기 반응물에 조사하는 단계를 포함하는, 염소화 폴리염화비닐의 제조 방법에 있어서, 2) In the method for producing chlorinated polyvinyl chloride, comprising the step of irradiating the reactant with ultraviolet rays while stirring the reactant,

상기 자외선 조사는 상기 반응기 안에 배치된 자외선 LED를 광원으로 사용하고, The ultraviolet irradiation uses an ultraviolet LED disposed in the reactor as a light source,

상기 광원의 방사각은 45°내지 110°인,The radiation angle of the light source is 45 ° to 110 °,

염소화 폴리염화비닐의 제조 방법.A method for producing chlorinated polyvinyl chloride.

폴리염화비닐은 염소와 반응시켜 염소화 폴리염화비닐을 제조할 수 있으며, 염소화 폴리염화비닐은 폴리염화비닐에 비하여 내열성이 더욱 향상되어, 파이프, 필름, 시트 등 다양한 분야에서 사용되고 있다. 이러한 염소화 폴리염화비닐을 제조하기 위해서는 염소 라디칼이 생성되어야 하며 이를 위하여 자외선 조사가 필요하다. Polyvinyl chloride can be reacted with chlorine to produce chlorinated polyvinyl chloride, and chlorinated polyvinyl chloride has improved heat resistance compared to polyvinyl chloride, and is used in various fields such as pipes, films, and sheets. In order to produce such chlorinated polyvinyl chloride, chlorine radicals must be generated, and ultraviolet irradiation is required for this purpose.

종래에는 자외선 조사를 위하여 광원으로 수은 UV Lamp 등이 사용되었으나, 에너지 효율이 낮고 수명이 짧아 이를 자주 교체하여야 하는 문제가 있다. 이에 본 발명에서는 자외선 LED를 광원으로 사용하되, 자외선 LED의 높은 광에너지로 인하여 염소화 폴리염화비닐의 제조 과정에서 이중 결합 또는 CCl2 결합의 생성으로 인한 물성 저하가 나타날 우려가 있는바, 상술한 바와 같이 상기 광원의 방사각을 조절하는 것을 특징으로 한다. Conventionally, a mercury UV lamp has been used as a light source for ultraviolet irradiation, but there is a problem in that the energy efficiency is low and the lifespan is short, so that it must be frequently replaced. Therefore, in the present invention, an ultraviolet LED is used as a light source, but due to the high light energy of the ultraviolet LED, there is a risk of deterioration of physical properties due to the generation of double bonds or CCl 2 bonds in the manufacturing process of chlorinated polyvinyl chloride. As such, it is characterized in that the radiation angle of the light source is adjusted.

상기 단계 1은 반응기 내에 폴리염화비닐 및 염소를 포함하는 반응물을 투입하는 단계로서, 후술할 단계 2의 반응을 준비하는 단계이다. Step 1 is a step of introducing a reactant containing polyvinyl chloride and chlorine into the reactor, and is a step of preparing the reaction of step 2 to be described later.

상기 반응기는 염소화 폴리염화비닐을 제조하기 위해 사용되는 것이면 특별히 제한되지 않는다. 또한, 상기 반응기는 온도 조절 장치, 압력 조절 장치 등을 구비하여 반응물의 반응에 필요한 조건을 조절할 수 있는 장치를 구비할 수 있다. 또한, 일반적으로 폴리염화비닐 및 염소는 교반하면서 반응시키므로, 상기 반응기의 내부에는 교반기를 구비할 수 있다. The reactor is not particularly limited as long as it is used for producing chlorinated polyvinyl chloride. In addition, the reactor may be provided with a device capable of adjusting the conditions required for the reaction of the reactants by having a temperature control device, a pressure control device, and the like. In addition, since polyvinyl chloride and chlorine are generally reacted with stirring, a stirrer may be provided inside the reactor.

상기 반응물 중 폴리염화비닐은 수성 현탁액으로 반응기에 투입되는 것이 바람직하며, 이에 따라 상기 교반기는 반응기 내부의 하단에 구비되는 것이 바람직하다. 상기 폴리염화비닐 수성 현탁액은, 폴리염화비닐을 물과 혼합하여 현탁하여 제조할 수 있으며, 상기 현탁액 내 폴리염화비닐은 1 내지 90 wt%로 조절하여 사용할 수 있다. 또한, 상기 현탁액을 먼저 제조하여 상기 반응기에 투입하거나, 또는 폴리염화비닐과 물을 순차적으로 또는 함께 상기 반응기에 투입한 다음 교반하여 제조할 수도 있다. Among the reactants, polyvinyl chloride is preferably introduced into the reactor as an aqueous suspension, and accordingly, the stirrer is preferably provided at the lower end of the reactor. The aqueous polyvinyl chloride suspension may be prepared by mixing polyvinyl chloride with water and suspending the polyvinyl chloride, and the polyvinyl chloride in the suspension may be adjusted to 1 to 90 wt%. In addition, the suspension may be prepared first and put into the reactor, or polyvinyl chloride and water may be sequentially or together added to the reactor and then stirred.

또한, 상기 반응물 중 염소는 반응기에 기체상 또는 액체상으로 투입할 수 있다. 한편, 염소는 후술할 염소화 반응에 의하여 소모되므로, 염소화 반응 과정에서 염소가 추가로 상기 반응기에 공급될 수 있으며, 이 과정은 폴리염화비닐의 염소화 정도를 모니터링하여 조절할 수 있다. In addition, chlorine among the reactants may be introduced into the reactor in gaseous or liquid phase. On the other hand, since chlorine is consumed by the chlorination reaction to be described later, chlorine may be additionally supplied to the reactor during the chlorination reaction process, and this process can be controlled by monitoring the chlorination degree of polyvinyl chloride.

또한, 상기 반응물의 투입량은 반응기의 크기 등을 고려하여 적절히 조절할 수 있다. In addition, the input amount of the reactant may be appropriately adjusted in consideration of the size of the reactor and the like.

상기 단계 2는, 상기 반응기에 투입된 반응물을 교반함과 동시에 자외선을 조사하여 염소화 반응을 수행하는 단계이다. Step 2 is a step of performing a chlorination reaction by irradiating ultraviolet rays while stirring the reactants introduced into the reactor.

염소화 반응의 온도는 55 내지 95℃가 바람직하다. 상기 염소화 반응의 온도가 55℃ 미만에서는 염소화 반응이 충분히 진행되지 않으며, 95℃ 초과에서는 폴리염화비닐의 열화가 진행되어 물성이 저하될 우려가 있다. 또한, 상기 염소화 반응이 진행됨에 따라 반응기 내부의 온도가 상승하게 되므로, 상기 범위를 유지하도록 반응기 내부 온도를 조절하는 것이 바람직하다. As for the temperature of the chlorination reaction, 55-95 degreeC is preferable. If the temperature of the chlorination reaction is less than 55 ° C., the chlorination reaction does not proceed sufficiently, and if it exceeds 95 ° C., deterioration of polyvinyl chloride proceeds and there is a possibility that physical properties may be reduced. In addition, since the temperature inside the reactor increases as the chlorination reaction proceeds, it is preferable to adjust the temperature inside the reactor to maintain the above range.

한편, 상기 단계 2의 염소화 반응을 위하여 자외선이 조사되며, 특히 본 발명에서는 광원으로 자외선 LED를 사용한다. Meanwhile, ultraviolet light is irradiated for the chlorination reaction of step 2, and in particular, in the present invention, an ultraviolet LED is used as a light source.

상기 자외선 LED는 상기 반응기 안에 배치된 것으로 1개가 배치되거나 또는 필요에 따라 복수개가 배치될 수 있다. 또한, 상기 자외선 LED로부터 나오는 자외선이 상기 반응기 내 반응물에 조사될 수 있는 위치이면, 상기 자외선 LED의 배치 위치는 특별히 제한되지 않는다. 바람직하게는, 상기 자외선 LED의 자외선이 효과적으로 반응물에 조사될 수 있도록, 반응기 상부에 배치되는 것이 바람직하다. One of the ultraviolet LEDs is disposed in the reactor, or a plurality of UV LEDs may be disposed as needed. In addition, as long as the ultraviolet light emitted from the ultraviolet LED can be irradiated to the reactants in the reactor, the arrangement position of the ultraviolet LED is not particularly limited. Preferably, it is preferable that the UV LED of the UV LED is disposed above the reactor so that the UV light can be effectively irradiated to the reactant.

상기 광원으로부터 방사되는 자외선의 파장은 상기 염소화 반응을 가능하게 할 정도이면 특별히 제한되지 않으며, 바람직하게는 290 ㎚ 내지 400 ㎚이다. The wavelength of ultraviolet rays emitted from the light source is not particularly limited as long as it enables the chlorination reaction, and is preferably 290 nm to 400 nm.

한편, 상기 광원의 방사각은 45°내지 110°이다. 상기 용어 '방사각'이란, 상기 광원으로부터 방사되는 자외선의 원뿔체에 나타나는 반정점각을 의미한다. 상기 방사각이 45° 미만에서는 광출력이 너무 높아 염소화 반응에서 생성되는 염소화 폴리염화비닐의 물성 저하가 나타날 우려가 있으며, 상기 방사각이 110° 초과에서는 광출력이 너무 낮아 염소화 반응이 잘 일어나지 않을 우려가 있다. 바람직하게는, 상기 광원의 방사각은 60°내지 70°이다. 상기 방사각은 광원에 설치된 쿼츠렌즈의 굴절각에 따라 결정되며, 쿼츠렌즈 변경을 통해 원하는 방사각으로 조절이 가능하다. On the other hand, the radiation angle of the light source is 45 ° to 110 °. The term 'radiation angle' refers to a semi-apical angle appearing in a cone of ultraviolet rays emitted from the light source. If the radiation angle is less than 45°, the light output is too high, and there is a risk of deterioration of the physical properties of chlorinated polyvinyl chloride produced in the chlorination reaction. There are concerns. Preferably, the radiation angle of the light source is between 60° and 70°. The radiation angle is determined according to the refraction angle of the quartz lens installed in the light source, and the desired radiation angle can be adjusted by changing the quartz lens.

바람직하게는, 상기 광원의 광출력은 10 W 내지 80 W, 보다 바람직하게는 20 W 내지 40 W이다. 바람직하게는, 상기 광원의 자외선 강도는 30 내지 300 mW/cm2 이다. 이때, 상기 광원의 광출력 및 자외선 강도는, 광원이 복수개인 경우 복수개의 광원의 광출력 및 자외선 강도의 총합을 의미한다. Preferably, the light output of the light source is 10 W to 80 W, more preferably 20 W to 40 W. Preferably, the ultraviolet intensity of the light source is 30 to 300 mW/cm 2 . In this case, the light output and ultraviolet intensity of the light source means the sum of the light output and ultraviolet intensity of the plurality of light sources when there are a plurality of light sources.

상기 광원과 상기 반응물 사이의 거리는 상기 광출력 및 자외선 강도를 고려하여 적절히 조절할 수 있으며, 바람직하게는 상기 거리가 10 cm 이하인 것이 바람직하다. The distance between the light source and the reactant may be appropriately adjusted in consideration of the light output and UV intensity, and preferably, the distance is 10 cm or less.

한편, 상기 단계 2를 통하여 염소화 반응이 진행됨에 따라 염소화 폴리염화비닐이 제조되며, 상기 염소화 반응의 반응 시간은, 폴리염화비닐의 염소화 정도를 모니터링하여 조절할 수 있다. 바람직하게는, 제조되는 염소화 폴리염화비닐의 염소 함량이 62 내지 69%, 64 내지 68%, 또는 66 내지 67.5%가 될 때까지 조절하는 것이 바람직하다. 한편, 상기 염소화 반응은 상기 광원을 통한 자외선 조사를 종료함으로써, 종료할 수 있다. On the other hand, as the chlorination reaction proceeds through step 2, chlorinated polyvinyl chloride is produced, and the reaction time of the chlorination reaction can be controlled by monitoring the degree of chlorination of the polyvinyl chloride. Preferably, it is preferable to adjust until the chlorine content of the chlorinated polyvinyl chloride to be produced becomes 62 to 69%, 64 to 68%, or 66 to 67.5%. On the other hand, the chlorination reaction may be terminated by terminating the ultraviolet irradiation through the light source.

또한, 본 발명은 상기 염소화 반응을 통하여 제조되는 염소화 폴리염화비닐을 탈수 및/또는 건조하는 단계를 추가로 포함할 수 있다. In addition, the present invention may further include the step of dehydrating and/or drying the chlorinated polyvinyl chloride produced through the chlorination reaction.

후술할 실시예와 같이, 상술한 본 발명에 따른 제조 방법으로 염소화 폴리염화비닐을 제조할 경우, 제조 효율이 높을 뿐만 아니라 제조된 염소화 폴리염화비닐의 착색도, 열안정성, 연화점 등의 물성 또한 개선될 수 있다. As in the examples to be described later, when chlorinated polyvinyl chloride is manufactured by the manufacturing method according to the present invention as described above, not only the manufacturing efficiency is high, but also physical properties such as coloration, thermal stability, and softening point of the prepared chlorinated polyvinyl chloride will be improved. can

상술한 바와 같이, 본 발명은 광원으로 UV LED를 사용하고 또한 방사각을 조절하여 염소화 폴리염화비닐의 제조 효율을 증가시킴은 물론 제조된 염소화 폴리염화비닐의 물성도 증가시킬 수 있다. As described above, the present invention can increase the production efficiency of chlorinated polyvinyl chloride by using UV LED as a light source and adjusting the radiation angle, as well as increase the physical properties of the produced chlorinated polyvinyl chloride.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are only illustrative of the present invention and the scope of the present invention is not limited to the following examples.

실시예 1Example 1

1) 실험 1-11) Experiment 1-1

중합도가 1000인 폴리염화비닐(분자사슬의 길이가 평균 1000개; K Value 67)과 탈이온수를 혼합하여 20 wt% 폴리염화비닐 슬러리를 제조한 후, 이를 5 L 반응기에 투입하였다. 상기 반응기에는, 반응기 상부 중앙을 기준으로 반응기 상부 반지름의 1/2 만큼 떨어진 위치에 UV Lamp 1기 (100 W)가 설치되어 있었다. A 20 wt% polyvinyl chloride slurry was prepared by mixing polyvinyl chloride having a polymerization degree of 1000 (average molecular chain length of 1000 pieces; K Value 67) and deionized water, and then it was put into a 5 L reactor. In the reactor, one UV lamp (100 W) was installed at a position spaced apart by 1/2 of the upper radius of the reactor from the center of the upper part of the reactor.

투입이 완료되면 400 내지 1000 rpm의 일정한 속도로 교반하면서 반응기 내부의 압력이 -0.9 bar 이상이 될 때까지 탈기를 진행하여 반응기 내부의 산소를 제거하였다. 탈기가 완료되면 40℃로 승온한 후, 염소 가스를 투입하기 시작하였다. When the input was completed, degassing was performed until the pressure inside the reactor became -0.9 bar or more while stirring at a constant speed of 400 to 1000 rpm to remove oxygen in the reactor. When the degassing was completed, the temperature was raised to 40° C., and chlorine gas was started to be introduced.

염소 투입이 정상적으로 이루어지면 UV Lamp를 가동하여 염소화 반응을 실시하였다. 이때 반응 압력은 0.5 내지 4.0 bar를 유지하였고, 반응 온도는 50 내지 95℃에서 염소화 반응을 진행하였다.When chlorine was normally added, the UV lamp was operated to carry out the chlorination reaction. At this time, the reaction pressure was maintained at 0.5 to 4.0 bar, and the chlorination reaction was carried out at a reaction temperature of 50 to 95 °C.

염소화 반응 중 투입 염소가 목표치에 도달하면 자외선 조사를 종료시켜 반응을 종료하였다. 반응 종료 후 충분한 질소로 미반응 잔류 염소를 제거한 뒤 염소화 폴리염화비닐 슬러리를 탈수한 후 다시 탈이온수로 슬러리를 제조하고, 중화제(Sodium carbonate)를 사용하여 중화한 뒤 탈수 및 건조를 실시하여 분말상의 염소화 폴리염화비닐을 제조하였다. When the input chlorine reached the target value during the chlorination reaction, the UV irradiation was terminated to terminate the reaction. After the reaction was completed, the unreacted residual chlorine was removed with sufficient nitrogen, the chlorinated polyvinyl chloride slurry was dehydrated, and the slurry was prepared again with deionized water, neutralized using a neutralizing agent (sodium carbonate), and then dehydrated and dried to obtain a powdery state. Chlorinated polyvinyl chloride was prepared.

2) 실험 1-2 내지 1-72) Experiment 1-2 to 1-7

UV LED Lamp를 하기 표 1과 같이 변경하여 사용한 것을 제외하고는, 상기 실험 1-1과 동일한 방법으로 염소화 폴리염화비닐을 제조하였다. A chlorinated polyvinyl chloride was prepared in the same manner as in Experiment 1-1, except that the UV LED lamp was changed and used as shown in Table 1 below.

상기 제조한 염소화 폴리염화비닐에 대하여 이하의 방법으로 각 물성을 평가하였다. Each of the physical properties of the prepared chlorinated polyvinyl chloride was evaluated by the following method.

(1) 가공착색: 색차계를 사용하여 백색도(White Index, WI)와 황색도(Yellow Index, YI)를 측정하였다. (1) Processing coloration: Whiteness (White Index, WI) and yellowness (Yellow Index, YI) were measured using a colorimeter.

(2) 열안정성: Mathis Oven을 이용하여 195℃로 오븐 온도를 설정하고 23 mm/10 min의 속도로 샘플을 분출하여 흑색으로 변색되는 시점을 측정하였다. (2) Thermal stability: The time of discoloration to black was measured by setting the oven temperature to 195° C. using a Mathis Oven and ejecting the sample at a rate of 23 mm/10 min.

③ Vicat 연화점: KS M ISO 306:2015에 따라 승온 속도 50℃, 하중 50N 조건에서 측정하였다. ③ Vicat softening point: In accordance with KS M ISO 306:2015, it was measured at a temperature increase rate of 50°C and a load of 50N.

④ 염소함량: 원소분석기(Elemental Analyzer)를 이용한 CHNS 원소함량을 측정하였다. ④ Chlorine content: CHNS element content was measured using an elemental analyzer.

상기 결과를 하기 표 1에 나타내었다. The results are shown in Table 1 below.

실험 1-1Experiment 1-1 실험 1-2Experiment 1-2 실험 1-3Experiment 1-3 실험 1-4Experiment 1-4 실험 1-5Experiment 1-5 실험 1-6Experiment 1-6 실험 1-7Experiment 1-7 반응
조건
reaction
Condition
Lamp 출력(W/개)Lamp output (W/EA) 100100 55 22 55 22 55 22
Lamp 총 출력(W)Lamp total power (W) 100100 100100 4040 100100 4040 100100 4040 Lamp 수(개)Number of Lamps (pcs) 1One 2020 2020 2020 2020 2020 2020 방사각(°)Radiation angle (°) 방사형radial 110110 110110 6060 6060 4545 4545 자외선 강도 (mW/cm2)UV intensity (mW/cm 2 ) 4040 8080 3535 170170 7070 230230 110110 염소화 반응 시간(분)Chlorination reaction time (min) 137137 135135 160160 9595 115115 116116 123123 총 반응 시간(분)Total reaction time (min) 218218 210210 254254 147147 179179 180180 196196 물성Properties 가공 착색processing coloring WIWI 11.311.3 8.58.5 12.312.3 10.210.2 16.716.7 9.29.2 10.210.2 YIYI 20.920.9 24.424.4 20.520.5 21.321.3 18.918.9 23.023.0 21.221.2 열안정성(분)Thermal stability (min) 6565 5555 6060 6060 7272 5252 5555 Vicat 연화점(℃)Vicat softening point (℃) 115.3115.3 114.1114.1 115.2115.2 115.1115.1 115.8115.8 114.7114.7 114.3114.3 염소함량(중량%)Chlorine content (wt%) 67.167.1 67.267.2 67.267.2 67.167.1 67.367.3 67.267.2 67.167.1

실시예 2Example 2

반응기로 200 L 반응기를 사용하고, UV LED Lamp를 하기 표 2와 같이 변경하여 사용한 것을 제외하고는, 상기 실험 1-1과 동일한 방법으로 염소화 폴리염화비닐을 제조하였다(실험 2-1 내지 2-7). Chlorinated polyvinyl chloride was prepared in the same manner as in Experiment 1-1, except that a 200 L reactor was used as the reactor and the UV LED lamp was changed as shown in Table 2 below (Experiment 2-1 to 2- 7).

상기 제조한 염소화 폴리염화비닐에 대하여 실시예 1과 동일한 방법으로 각 물성을 평가하였으며, 그 결과를 하기 표 2에 나타내었다. Each of the physical properties of the prepared chlorinated polyvinyl chloride was evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.

실험 2-1Experiment 2-1 실험 2-2Experiment 2-2 실험 2-3Experiment 2-3 실험 2-4Experiment 2-4 실험 2-5Experiment 2-5 실험 2-6Experiment 2-6 실험 2-7Experiment 2-7 반응
조건
reaction
Condition
Lamp 출력(W/개)Lamp output (W/EA) 200200 55 1One 55 1One 55 1One
Lamp 총 출력(W)Lamp total power (W) 400400 400400 8080 400400 8080 400400 8080 Lamp 수(개)Number of Lamps (pcs) 22 8080 8080 8080 8080 8080 8080 방사각(°)Radiation angle (°) 방사형radial 110110 110110 6060 6060 4545 4545 자외선 강도 (mW/cm2)UV intensity (mW/cm 2 ) 6565 7575 2020 160160 3535 225225 5050 염소화 반응 시간(분)Chlorination reaction time (min) 126126 123123 201201 8383 110110 109109 143143 총 반응 시간(분)Total reaction time (min) 192192 199199 343343 123123 166166 161161 220220 물성Properties 가공 착색processing coloring WIWI 13.313.3 10.610.6 14.014.0 13.113.1 18.218.2 10.010.0 12.112.1 YIYI 20.320.3 22.022.0 19.919.9 20.320.3 18.718.7 22.822.8 21.721.7 열안정성(분)Thermal stability (min) 6767 6060 6161 6565 7575 5050 5858 Vicat 연화점(℃)Vicat softening point (℃) 115.3115.3 114.2114.2 114.6114.6 115.2115.2 116.1116.1 114.3114.3 114.8114.8 염소함량(중량%)Chlorine content (wt%) 67.367.3 67.467.4 67.467.4 67.467.4 67.467.4 67.267.2 67.467.4

Claims (10)

1) 반응기 내에 폴리염화비닐 및 염소를 포함하는 반응물을 투입하는 단계; 및
2) 상기 반응물을 교반하면서, 자외선을 상기 반응물에 조사하는 단계를 포함하는, 염소화 폴리염화비닐의 제조 방법에 있어서,
상기 자외선 조사는 상기 반응기 안에 배치된 자외선 LED를 광원으로 사용하고,
상기 광원의 방사각은 45°내지 110°인,
염소화 폴리염화비닐의 제조 방법.
1) introducing a reactant containing polyvinyl chloride and chlorine into the reactor; and
2) In the method for producing chlorinated polyvinyl chloride, comprising the step of irradiating the reactant with ultraviolet rays while stirring the reactant,
The ultraviolet irradiation uses an ultraviolet LED disposed in the reactor as a light source,
The radiation angle of the light source is 45 ° to 110 °,
A method for producing chlorinated polyvinyl chloride.
제1항에 있어서,
상기 방사각은 60°내지 70°인,
제조 방법.
According to claim 1,
The radiation angle is 60 ° to 70 °,
manufacturing method.
제1항에 있어서,
상기 광원으로부터 방사되는 자외선의 파장은 290 ㎚ 내지 400 ㎚인,
제조 방법.
According to claim 1,
The wavelength of ultraviolet rays emitted from the light source is 290 nm to 400 nm,
manufacturing method.
제1항에 있어서,
상기 광원의 광출력은 10 W 내지 80 W인,
제조 방법.
According to claim 1,
The light output of the light source is 10 W to 80 W,
manufacturing method.
제1항에 있어서,
상기 광원의 광출력은 20 W 내지 40 W인,
제조 방법.
According to claim 1,
The light output of the light source is 20 W to 40 W,
manufacturing method.
제1항에 있어서,
상기 광원의 자외선 강도는 30 내지 300 mW/cm2인,
제조 방법.
According to claim 1,
The UV intensity of the light source is 30 to 300 mW / cm 2 of,
manufacturing method.
제1항에 있어서,
상기 자외선 LED는 상기 반응기 내 복수로 배치된,
제조 방법.
According to claim 1,
The ultraviolet LED is arranged in plurality in the reactor,
manufacturing method.
제1항에 있어서,
상기 광원과 반응물 사이의 거리가 10 cm 이하인,
제조 방법.
According to claim 1,
The distance between the light source and the reactant is 10 cm or less,
manufacturing method.
제1항에 있어서,
상기 단계 2는 제조되는 염소화 폴리염화비닐의 염소 함량이 62 내지 69 %일 때까지 수행하는,
제조 방법.
According to claim 1,
The step 2 is carried out until the chlorine content of the chlorinated polyvinyl chloride to be prepared is 62 to 69%,
manufacturing method.
제1항에 있어서,
상기 제조된 염소화 폴리염화비닐을 탈수 및/또는 건조하는 단계를 추가로 포함하는,
제조 방법.
According to claim 1,
Further comprising the step of dehydrating and / or drying the prepared chlorinated polyvinyl chloride,
manufacturing method.
KR1020190179885A 2019-12-31 2019-12-31 Method for preparation of chlorinated polyvinylchloride KR20210086152A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190179885A KR20210086152A (en) 2019-12-31 2019-12-31 Method for preparation of chlorinated polyvinylchloride
CN202080085457.0A CN114829411A (en) 2019-12-31 2020-07-13 Process for preparing chlorinated polyvinyl chlorides
PCT/KR2020/009174 WO2021137374A1 (en) 2019-12-31 2020-07-13 Method for producing chlorinated polyvinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190179885A KR20210086152A (en) 2019-12-31 2019-12-31 Method for preparation of chlorinated polyvinylchloride

Publications (1)

Publication Number Publication Date
KR20210086152A true KR20210086152A (en) 2021-07-08

Family

ID=76685884

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190179885A KR20210086152A (en) 2019-12-31 2019-12-31 Method for preparation of chlorinated polyvinylchloride

Country Status (3)

Country Link
KR (1) KR20210086152A (en)
CN (1) CN114829411A (en)
WO (1) WO2021137374A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031265A (en) * 2006-07-27 2008-02-14 Kaneka Corp Method for preparing chlorinated vinyl chloride resin
US9056959B2 (en) * 2011-11-07 2015-06-16 Kaneka Corporation Method for producing chlorinated vinyl chloride resin
EP2980106B1 (en) * 2013-03-29 2018-11-14 Kaneka Corporation Production method and production device for chlorinated vinyl chloride-based resin
CN104520336B (en) * 2013-05-02 2016-03-16 株式会社钟化 The manufacture method of chlorinated vinyl chloride-based resin
JP2017521536A (en) * 2014-07-22 2017-08-03 リライアンス インダストリーズ リミテッドReliance Industries Ltd. Preparation of chlorinated polyvinyl chloride

Also Published As

Publication number Publication date
WO2021137374A1 (en) 2021-07-08
CN114829411A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
EP2778180B1 (en) Method for producing chlorinated vinyl chloride resin
KR102085067B1 (en) Halogenation of hydrocarbons
TWI490245B (en) Method for producing chlorinated vinyl chloride resin and producing equipment
KR101654147B1 (en) Method for preparing chlorinated polyvinyl chloride resin
JP2017521535A (en) Production process of chlorinated polyvinyl chloride
EP3127926A1 (en) Production method for chlorinated vinyl chloride resin
TWI483959B (en) Production method of chlorinated vinyl chloride resin
KR20200076419A (en) Method for preparing chlorinated polyvinyl chloride resin
KR20210086152A (en) Method for preparation of chlorinated polyvinylchloride
KR20220083381A (en) Method for preparation of chlorinated polyvinylchloride
CN104710609B (en) A kind of method photocatalytically carrying out ethoxylation generation polyethers
KR101855247B1 (en) Method for producing chlorinated vinyl chloride-based resin
US10035865B2 (en) Preparation of chlorinated polyvinyl chloride
JP2017521536A5 (en)
WO2020194140A1 (en) A process for preparing chlorinated polyvinyl chloride (cpvc)
KR102235035B1 (en) Method for preparing polyvinylchloride
JP2004099669A (en) Method for manufacturing chlorinated vinyl chloride resin
JPS646002A (en) Post-treatment of post-chlorinated vinyl chloride polymer
BR112020023351A2 (en) adiabatic gel polymerization process for the production of water-soluble polyelectrolytes
CN117003722A (en) Preparation method of vinylene carbonate
CN111454385A (en) Preparation method of colorless transparent sodium polyacrylate dispersant
JP2000119332A (en) Production of chlorinated vinyl chloride-based resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application