KR20210083061A - Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same - Google Patents

Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20210083061A
KR20210083061A KR1020190175668A KR20190175668A KR20210083061A KR 20210083061 A KR20210083061 A KR 20210083061A KR 1020190175668 A KR1020190175668 A KR 1020190175668A KR 20190175668 A KR20190175668 A KR 20190175668A KR 20210083061 A KR20210083061 A KR 20210083061A
Authority
KR
South Korea
Prior art keywords
binder
secondary battery
lithium secondary
active material
ionic liquid
Prior art date
Application number
KR1020190175668A
Other languages
Korean (ko)
Other versions
KR102282949B1 (en
Inventor
임태은
성민지
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020190175668A priority Critical patent/KR102282949B1/en
Publication of KR20210083061A publication Critical patent/KR20210083061A/en
Application granted granted Critical
Publication of KR102282949B1 publication Critical patent/KR102282949B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a binder for a lithium secondary battery, an electrode including the same, and a lithium secondary battery, and more specifically, to a binder composition for a lithium secondary battery including N-vinyl imidazolium ionic liquid represented by chemical formula 1 and N-vinylacetamide, a positive electrode active material composition including the binder composition, and a lithium secondary battery including the binder composition and the positive electrode active material. The binder for a lithium secondary battery of the present invention can provide a lithium secondary battery with improved high-temperature thermal stability and charge/discharge characteristics.

Description

리튬 이차전지용 바인더, 그리고 이를 포함하는 전극 및 리튬 이차전지{BINDER FOR LITHIUM SECONDARY BATTERY, AND ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}A binder for a lithium secondary battery, and an electrode and a lithium secondary battery including the same {BINDER FOR LITHIUM SECONDARY BATTERY, AND ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}

본 발명은 리튬 이차전지용 바인더, 그리고 이를 포함하는 전극 및 리튬 이차전지에 관한 것으로, 보다 구체적으로는 하기 [화학식 1]로 표시되는 N-비닐 이미다졸륨(N-vinyl imidazolium) 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide)를 포함하는 리튬 이차전지용 바인더 조성물, 상기 바인더 조성물을 포함하는 양극 활물질 조성물, 및 상기 바인더 조성물 및 양극 활물질을 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a binder for a lithium secondary battery, an electrode comprising the same, and a lithium secondary battery, and more specifically, N-vinyl imidazolium ionic liquid and N represented by the following [Formula 1] A binder composition for a lithium secondary battery comprising -vinylacetamide (N-Vinylacetamide), a cathode active material composition comprising the binder composition, and a lithium secondary battery comprising the binder composition and a cathode active material.

리튬이온전지(LIBs)는 전기자동차(EVs) 및 에너지-저장 시스템(ESSs)을 비롯한 다양한 분야에서 전도유망한 에너지 변환/저장 소자로 주목받고 있다. 그러나 현재까지 LIBs는 활물질의 이론 용량이 낮아 그 에너지 밀도가 대규모 적용에 요구되는 수준을 충족시키지는 못하고 있다. 따라서, LIBs에 있어 높은 에너지 밀도를 얻기 위해서는 더욱 높은 비용량(Specific capacity)을 지닌 진보된 소재를 이용하는 것이 필요하다. 이와 관련하여 니켈이 풍부한 층상 산화물(LiNixCoyMnzO2, Ni-rich NCM)은 비용량(>180mA h g-1)이 리튬 코발트 산화물의 비용량(150 mA h g-1)보다 높기 때문에, 대체 양극 소재로 많은 주목을 받아왔다. Lithium-ion batteries (LIBs) are attracting attention as promising energy conversion/storage devices in various fields including electric vehicles (EVs) and energy-storage systems (ESSs). However, until now, LIBs have low theoretical capacity of active materials, so their energy density has not met the level required for large-scale applications. Therefore, in order to obtain a high energy density in LIBs, it is necessary to use an advanced material with a higher specific capacity. In this regard, nickel-rich layered oxides (LiNi x Co y Mn z O 2 , Ni-rich NCMs) have higher specific capacities (> 180 mA hg −1 ) than those of lithium cobalt oxides (150 mA h g −1 ). Therefore, it has received much attention as an alternative anode material.

리튬이온 전지는 통상적으로 전기 활성 물질, 도전제와 바인더 용액을 균일하게 혼합 연마해 슬러리로 만든 후 집전장치인 동박 또는 알루미늄박 상에 도포하며 건조, 압밀 다짐 등 공정 처리를 거쳐 제작된다. 여기에서 리튬이온 전지 바인더는 리튬이온 전지 제조 과정에서 필수불가결한 원료 중 하나로서 양극, 음극 전기 활성 재료와 도전제를 집전장치 상에 부착시키는 역할을 한다.Lithium ion batteries are usually manufactured by uniformly mixing and polishing an electroactive material, a conductive agent, and a binder solution to make a slurry, then coating it on a copper or aluminum foil, which is a current collector, followed by drying, consolidation, and other processes. Here, the lithium ion battery binder is one of the indispensable raw materials in the lithium ion battery manufacturing process, and serves to attach the positive and negative electroactive materials and the conductive agent on the current collector.

리튬이온 전지 양극 바인더는 주로 두 가지 유형으로 나뉜다. 하나는 유기 용매를 분산제로 채택하는 유성 바인더로 현재 비교적 광범위하게 응용되는 것은 플루오로폴리머(fluoropolymer) 바인더이다. 예를 들어 N-메틸피롤리돈(N-methylpyrrolidone, NMP)를 용매로 한 폴리비닐 리덴플루오라이드(polyvinylidene fluoride, PVDF)가 있는데, 상기 바인더는 유기 용매 용량이 크고 제작과정에서 휘발되기 쉬워 환경을 오염시키는 동시에 작업자의 건강에도 비교적 큰 위해를 가할 뿐만 아니라 플루오로폴리머 및 그 용매는 가격이 비싸 생산원가가 높다. 또한 상기 PVDF 바인더는 충방전 순환 특성이 떨어지는 문제점이 있다.Lithium-ion battery positive electrode binders are mainly divided into two types. One is an oil-based binder employing an organic solvent as a dispersant, and a fluoropolymer binder that is currently relatively widely applied. For example, there is polyvinylidene fluoride (PVDF) using N-methylpyrrolidone (NMP) as a solvent, and the binder has a large organic solvent capacity and is easy to volatilize during the manufacturing process. At the same time, it pollutes and poses a relatively large risk to the health of workers. Fluoropolymers and their solvents are expensive and thus costly to produce. In addition, the PVDF binder has a problem in that the charging and discharging cycle characteristics are inferior.

대한민국 공개특허 제10-2008-0105045호Republic of Korea Patent Publication No. 10-2008-0105045

본 발명은 리튬 이차 전지의 고온 열안정성 및 충방전 특성을 향상시킬 수 있는 리튬 이차 전지용 바인더, 상기 바인더를 포함하는 리튬 이차 전지용 양극 활물질 조성물 및 상기 바인더를 포함하는 리튬 이차 전지를 제공하는 것이다.The present invention provides a binder for a lithium secondary battery capable of improving high-temperature thermal stability and charge/discharge characteristics of a lithium secondary battery, a cathode active material composition for a lithium secondary battery comprising the binder, and a lithium secondary battery including the binder.

본 발명의 목적을 달성하기 위하여, 하기 [화학식 1]로 표시되는 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide)를 포함하는 리튬 이차전지용 바인더 조성물을 제공한다,In order to achieve the object of the present invention, there is provided a binder composition for a lithium secondary battery comprising an ionic liquid represented by the following [Formula 1] and N-vinylacetamide (N-Vinylacetamide),

[화학식 1][Formula 1]

Figure pat00001
,
Figure pat00001
,

(여기서 R은 C2-C13-알킬, 알릴 또는 부테닐 중 어느 하나이고, 음이온(anion)은 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-(TFSI), (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 - 또는 (CN)2N- 중 어느 하나이다.).(wherein R is any one of C 2 -C 13 -alkyl, allyl or butenyl, and an anion is BF 4 - , PF 6 - , SbF 6 - , NO 3 - , CF 3 SO 3 - , (CF 3 SO 2 ) 2 N - (TFSI), (C 2 F 5 SO 2 ) 2 N - , (CF 3 SO 2 ) 3 C - , CF 3 CO 2 - , C 3 F 7 CO 2 - , CH 3 CO 2 - or (CN) 2 N - ).

상기 바인더 조성물은 개시제로 AIBN(azobisisobutyronitrile), ADMVN(azobisdimethylvaleronitrile), DLP(dilauroyl peroxide), BPO(Benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), t-부틸 퍼아세테이트(t-butyl peracetate), 큐밀 퍼옥사이드(cumyl peroxide), t-부틸 퍼옥사이드(t-butyl peroxide), t-부틸 하이드로퍼옥사이드(t-butyl hydroperoxide) 또는 이들의 조합 것을 특징으로 한다. The binder composition is an initiator AIBN (azobisisobutyronitrile), ADMVN (azobisdimethylvaleronitrile), DLP (dilauroyl peroxide), BPO (Benzoyl peroxide), acetyl peroxide (acetyl peroxide), t-butyl peracetate (t-butyl peracetate), cumyl per Oxide (cumyl peroxide), t-butyl peroxide (t-butyl peroxide), t- butyl hydroperoxide (t-butyl hydroperoxide) or a combination thereof is characterized.

상기 바인더는 불소 함유 고분자를 더 포함할 수 있으며, 상기 불소 함유 고분자는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 또는 이들의 조합 것을 특징으로 한다. The binder may further include a fluorine-containing polymer, wherein the fluorine-containing polymer is polyvinylidene fluoride, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinyl It is characterized as a copolymer of leadenefluoride-tetrafluoroethylene (PVdF-TFE) or a combination thereof.

본 발명의 다른 실시예는, 상기 바인더 조성물; 양극 활물질;및 용매를 포함하는 리튬 이차 전지용 양극 활물질 조성물을 제공한다. Another embodiment of the present invention, the binder composition; It provides a cathode active material composition for a lithium secondary battery comprising a cathode active material; and a solvent.

상기 양극 활물질 조성물은 하기 [화학식 2]로 표시되는 NCM계 양극활물질을 포함할 수 있다;The cathode active material composition may include an NCM-based cathode active material represented by the following [Formula 2];

[화학식 2][Formula 2]

LiaNixCoyMnzOα Li a Ni x Co y Mn z O α

(상기 식에서 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0 이다.).(In the above formula, 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0).

본 발명의 또 다른 실시예에서, 상기 바인더 및 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;및 비수 전해질을 포함하는 리튬 이차 전지를 제공한다.In another embodiment of the present invention, there is provided a lithium secondary battery including a positive electrode including the binder and a positive electrode active material; a negative electrode including a negative electrode active material; and a non-aqueous electrolyte.

본 발명의 리튬 이차전지용 바인더는 고온 열안정성 및 충방전 특성이 향상된 리튬 이차 전지를 제공할 수 있다.The binder for a lithium secondary battery of the present invention may provide a lithium secondary battery with improved high-temperature thermal stability and charge/discharge characteristics.

도 1은 본 발명에 의하여 합성된 이온성 액체의 사진이다.
도 2는 본 발명에 의하여 합성된 이온성 액체의 TGA 결과 그래프이다.
도 3은 본 발명에 의하여 합성된 이온성 액체의 자일렌 용해도 실험 결과 사진이다.
도 4는 N-비닐아세트아미드의 Al 및 유리 위에서 열 가교 실험 결과를 나타내는 사진이다.
도 5는 본 발명의 의하여 합성된 이온성 액체의 열 가교 실험 결과를 나타내는 사진이다.
도 6은 N-비닐아세트아미드와 PVdF를 바인더로 사용하여 제조된 전극의 FR-IR 분석 실험 결과를 나타내는 그래프이다.
도 7은 이온성 액체, N-비닐아세트아미드 및 PVdF를 바인더로 사용하여 제조된 전극과 PVdF만을 바인더로 사용하여 제조된 전극의 전기화학적 성능을 나타내는 그래프이다(monomer = 이온성 액체 및 N-비닐아세트아미드 혼합물).
1 is a photograph of an ionic liquid synthesized according to the present invention.
2 is a graph of TGA results of the ionic liquid synthesized according to the present invention.
3 is a photograph of the xylene solubility test result of the ionic liquid synthesized according to the present invention.
4 is a photograph showing the results of thermal crosslinking experiments on Al and glass of N-vinylacetamide.
5 is a photograph showing the thermal crosslinking test result of the ionic liquid synthesized according to the present invention.
6 is a graph showing the results of FR-IR analysis of electrodes prepared using N-vinylacetamide and PVdF as binders.
7 is a graph showing the electrochemical performance of an electrode prepared using an ionic liquid, N-vinylacetamide and PVdF as a binder, and an electrode prepared using only PVdF as a binder (monomer = ionic liquid and N-vinyl) acetamide mixture).

이하, 실시예 및 실험예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Experimental Examples. However, these examples are only for helping the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

본 발명의 일 실시예에 따른 리튬 이차전지용 바인더는 하기 [화학식 1]로 표시되는 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide)를 포함할 수 있다;The binder for a lithium secondary battery according to an embodiment of the present invention may include an ionic liquid represented by the following [Formula 1] and N-vinylacetamide (N-Vinylacetamide);

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

(여기서 R은 C2-C13-알킬, 알릴 또는 부테닐 중 어느 하나이고, 음이온(anion)은 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-(TFSI), (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 - 또는 (CN)2N- 중 어느 하나이다.)(wherein R is any one of C 2 -C 13 -alkyl, allyl or butenyl, and an anion is BF 4 - , PF 6 - , SbF 6 - , NO 3 - , CF 3 SO 3 - , (CF 3 SO 2 ) 2 N - (TFSI), (C 2 F 5 SO 2 ) 2 N - , (CF 3 SO 2 ) 3 C - , CF 3 CO 2 - , C 3 F 7 CO 2 - , CH 3 CO 2 - or (CN) 2 N - either.)

본 발명의 이온성 액체는 일반적으로 양이온과 음이온으로 구성되며, 상기 이온성 액체의 양이온은 N-비닐 이미다졸륨(N-vinyl imidazolium)이나, 이에 제한되지 않고 높은 이온 전도도와 낮은 점도를 갖는다면 피롤리디니늄계, 트리아졸리움계, 테트라졸이움계, 모르폴리늄계 또는 피페리디늄계 양이온으로 대체하여 사용될 수 있다. The ionic liquid of the present invention is generally composed of a cation and an anion, and the cation of the ionic liquid is N-vinyl imidazolium, but is not limited thereto, but if it has high ionic conductivity and low viscosity Pyrrolidinium-based, triazolium-based, tetrazolium-based, morpholinium-based or piperidinium-based cations may be used instead of cations.

(1) 피롤리디니늄계 이온성 액체(1) pyrrolidinium-based ionic liquid

Figure pat00003
Figure pat00003

(2) 트리아졸리움계 이온성 액체(2) Triazolium-based ionic liquid

Figure pat00004
Figure pat00004

(3) 테트라졸이움계 이온성 액체(3) tetrazolium-based ionic liquids

Figure pat00005
Figure pat00005

(4) 모르폴리늄계 이온성 액체(4) Morpholinium-based ionic liquids

Figure pat00006
Figure pat00006

(5) 피페리디늄계 이온성 액체(5) Piperidinium-based ionic liquids

Figure pat00007
Figure pat00007

그러나 상기 이온성 액체의 양이온은 가교에 기여하기 위하여 비닐(vinyl) 작용기를 포함하는 것이 바람직하며, 더욱 바람직하게는 상기 비닐 작용기는 이온성 액체의 양이온의 질소 원자에 연결될 수 있다. However, the cation of the ionic liquid preferably includes a vinyl functional group to contribute to crosslinking, and more preferably, the vinyl functional group may be connected to a nitrogen atom of the cation of the ionic liquid.

상기 알킬 쇄(R, alkyl chain)는 C2-C13-알킬, 알릴 또는 부테닐 중 어느 하나인 것이 바람직하지만 이에 제한되는 것은 아니다. The alkyl chain (R, alkyl chain) is preferably any one of C 2 -C 13 -alkyl, allyl or butenyl, but is not limited thereto.

이온성 액체에 포함되는 음이온은 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-(TFSI), (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 - 또는 (CN)2N- 중 어느 하나를 포함할 수 있으며, 바람직하게는 BF4 - 또는(CF3SO2)2N-(TFSI) 중 어느 하나이다. Anions included in the ionic liquid are BF 4 - , PF 6 - , SbF 6 - , NO 3 - , CF 3 SO 3 - , (CF 3 SO 2 ) 2 N - (TFSI), (C 2 F 5 SO 2 ) ) 2 N , (CF 3 SO 2 ) 3 C , CF 3 CO 2 , C 3 F 7 CO 2 , CH 3 CO 2 or (CN) 2 N may include any one of, Preferably either BF 4 - or (CF 3 SO 2 ) 2 N - (TFSI).

본 발명자는 상기 이온성 액체의 음이온에 따라 본 발명 바인더 조성물의 열적 분해 온도가 상이한 것을 확인하였다. 구체적으로 동일한 알킬 쇄(R)인 경우, 음이온으로 TFSI-를 포함하는 바인더 조성물이 BF4 -를 포함하는 바인더 조성물보다 열적 안정성이 우수하였으며 동일한 음이온을 포함하는 경우에는 알킬 쇄(R)에 의하여 바인더 조성물의 열적 안정성이 크게 변하지 않는 것을 관찰하였다. The present inventors confirmed that the thermal decomposition temperature of the binder composition of the present invention is different depending on the anion of the ionic liquid. Specifically, in the case of the same alkyl chain (R), the binder composition including TFSI − as an anion had better thermal stability than the binder composition including BF 4 , and in the case of including the same anion, the binder by the alkyl chain (R) It was observed that the thermal stability of the composition did not change significantly.

또한 자일렌(xylene) 용매에 대한 용해도를 평가한 결과 알킬 쇄(R) 및 음이온에 상관없이 대부분의 이온성 액체가 자일렌 용매에 대한 용해도가 낮은 것으로 나타났으나, TFSI-를 음이온으로 포함하고 탄소수가 12개인 알킬 쇄(R)를 포함하는 경우 자일렌 용매에 용해되는 것을 확인하였다. 또한 화학적 안정성을 평가하기 위한 고체 전해질인 LPS와의 storage test에서 상기 이온성 액체가 TFSI-를 음이온으로 포함하고 탄소수가 12개인 알킬 쇄(R) 또는 부테닐을 포함하는 경우 상기 바인더 조성물의 분해 거동은 관찰되지 않았다. In addition, as a result of evaluating the solubility in xylene solvent, most ionic liquids showed low solubility in xylene solvent regardless of the alkyl chain (R) and anion, but TFSI - was included as an anion. It was confirmed that when it contains an alkyl chain (R) having 12 carbon atoms, it is dissolved in a xylene solvent. In addition, the ionic liquid is TFSI in the storage test with the solid electrolyte of LPS to evaluate the chemical stability - those containing the containing the anion and the number of carbon atoms is 12 alkyl chain (R) or butenyl decomposition behavior of the binder composition not observed.

또한 상기 바인더 조성물은 개시제를 더 포함하고, 상기 개시제는 AIBN(azobisisobutyronitrile), ADMVN(azobisdimethylvaleronitrile), DLP(dilauroyl peroxide), BPO(Benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), t-부틸 퍼아세테이트(t-butyl peracetate), 큐밀 퍼옥사이드(cumyl peroxide), t-부틸 퍼옥사이드(t-butyl peroxide), t-부틸 하이드로퍼옥사이드(t-butyl hydroperoxide) 또는 이들의 조합 것을 특징으로 한다. 상기 개시제는 열 또는 자외선에 의하여 라디칼을 발생시키고 가교 결합을 개시할 수 있다. In addition, the binder composition further includes an initiator, and the initiator is azobisisobutyronitrile (AIBN), azobisdimethylvaleronitrile (ADMVN), dilauroyl peroxide (DLP), Benzoyl peroxide (BPO), acetyl peroxide, t-butyl peracetate ( t-butyl peracetate), cumyl peroxide, t-butyl peroxide, t-butyl hydroperoxide, or a combination thereof. The initiator may generate radicals by heat or ultraviolet rays and initiate cross-linking.

상기 개시제는 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide) 혼합물 1 중량부에 대하여 0.1 중량부로 혼합되는 것이 바람직하다. The initiator is preferably mixed in an amount of 0.1 parts by weight based on 1 part by weight of the mixture of the ionic liquid and N-vinylacetamide.

상기 바인더는 불소 함유 고분자를 더 포함할 수 있으며, 상기 불소 함유 고분자는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 또는 이들의 조합 것을 특징으로 한다. 상기 불소 함유 고분자는 상기 바인더를 포함하는 양극 활물질 입자 간의 접착을 용이하게 하는 역할을 한다. 이러한 불소 함유 고분자는 전극을 제조하는 과정 중 압연 공정에서 상기 고분자가 녹을 수 있고, 특히 상기 압연 공정을 상기 고분자 융점 이상으로 실시하게 되면 상기 고분자가 거의 녹아, 활물질 입자들 간의 접착력을 더욱 향상시킬 수 있다.The binder may further include a fluorine-containing polymer, wherein the fluorine-containing polymer is polyvinylidene fluoride (PVdF), polyvinylidene fluoride polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) , a copolymer of polyvinylidene fluoride-tetrafluoroethylene (PVdF-TFE) or a combination thereof. The fluorine-containing polymer serves to facilitate adhesion between the particles of the positive electrode active material including the binder. In such a fluorine-containing polymer, the polymer can be melted in the rolling process during the manufacturing process of the electrode, and in particular, when the rolling process is performed above the polymer melting point, the polymer is almost melted, and the adhesion between the active material particles can be further improved. have.

본 발명자는 PVdF을 첨가하지 않고 N-비닐아세트아미드(N-Vinylacetamide)만으로 결착력을 측정한 결과 결착력 미비로 인하여 집전체로부터 파우더가 분리되는 것을 확인하여, 본 발명의 바인더 조성물의 결착력을 증가시키기 위하여 PVdF을 첨가하였다. The present inventors measured the binding force only with N-vinylacetamide without adding PVdF, and confirmed that the powder was separated from the current collector due to insufficient binding force. In order to increase the binding force of the binder composition of the present invention PVdF was added.

상기 바인더 조성물은 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide)가 1:1의 중량비로 혼합되는 것이 바람직하고, 상기 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide) 혼합물과 불소 함유 고분자는 1:1의 중량비로 혼합되는 것이 바람직하다.The binder composition is preferably mixed with an ionic liquid and N-vinylacetamide in a weight ratio of 1:1, and contains a mixture of the ionic liquid and N-vinylacetamide and fluorine The polymer is preferably mixed in a weight ratio of 1:1.

본 발명의 또 다른 실시 예에서, 상기 바인더 조성물; 양극 활물질;및 용매를 포함하는 리튬 이차 전지용 양극 활물질 조성물을 제공하며, 상기 양극 활물질 조성물은 하기 [화학식 2]로 표시되는 NCM계 양극활물질을 포함할 수 있다;In another embodiment of the present invention, the binder composition; It provides a cathode active material composition for a lithium secondary battery comprising a cathode active material; and a solvent, wherein the cathode active material composition may include an NCM-based cathode active material represented by the following [Formula 2];

[화학식 2][Formula 2]

LiaNixCoyMnzOα Li a Ni x Co y Mn z O α

(상기 식에서 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0 이다.).(In the above formula, 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0).

구체적으로 상기 양극 활물질은 LiNi0.8Co0.1Mn0.1O2 인 것이 바람직하다. Specifically, the positive active material is preferably LiNi 0.8 Co 0.1 Mn 0.1 O 2 .

본 발명의 또 다른 실시예에서, 상기 바인더 및 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;및 전해질을 포함하는 리튬 이차 전지를 제공한다. 상기 바인더로 제조된 양극을 포함하는 리튬 이차전지의 전기화학적 성능을 평가한 결과 상기 바인더가 첨가된 셀은 초기 포메이션에서 상기 바인더가 첨가되지 않은 셀(바인더로 PVdF만 첨가)에 비하여 쿨롱 효율이 증가되었으며, 이후 싸이클에서도 PVdF만으로 제조된 셀에 비하여 높은 쿨롱 효율을 나타내었다.In another embodiment of the present invention, there is provided a lithium secondary battery including a positive electrode including the binder and a positive electrode active material; a negative electrode including a negative electrode active material; and an electrolyte. As a result of evaluating the electrochemical performance of a lithium secondary battery including a positive electrode made of the binder, the cell to which the binder is added has a higher coulombic efficiency than the cell to which the binder is not added (only PVdF is added as a binder) in the initial formation. and showed higher coulombic efficiency in subsequent cycles as compared to cells prepared only with PVdF.

이하에서 본 발명에 대한 실시예를 통해 보다 구체적으로 설명하며, 본 발명이 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples, and the present invention is not limited by the Examples.

<실시예> <Example>

(1) 이온성 액체(가교제)의 합성(1) Synthesis of ionic liquid (crosslinking agent)

이온성 액체의 간단한 합성을 위하여 two step 합성법을 고안하였으며 출발 물질에 대한 알킬화(alkylation)(step 1) 및 음이온 치환 반응(step 2)을 통하여 이온성 액체를 합성하였다. A two-step synthesis method was devised for the simple synthesis of an ionic liquid, and the ionic liquid was synthesized through alkylation (step 1) and anion substitution reaction (step 2) of the starting material.

[STEP 1][STEP 1]

Figure pat00008
Figure pat00008

초기 알킬화(alkylation) 진행 시 imidazolium bromide(Br-)가 중간체로 형성되며 알킬 할라이드(alkyl halide) 종류에 따라 생성물이 얻어지는 양상이 달라지는 경향을 확인하였으며, C-12의 경우, 화학 반응의 속도가 매우 느려 reflux 조건에서 실험을 진행하였다. During the initial alkylation, imidazolium bromide (Br-) is formed as an intermediate, and it was confirmed that the pattern of product obtained varies depending on the type of alkyl halide. In the case of C-12, the rate of chemical reaction is very high. The experiment was carried out under the slow reflux condition.

[STEP 2][STEP 2]

Figure pat00009
Figure pat00009

TFSI 음이온의 경우 생성물은 소수성(hydrophobic) 특성을 지니고 있으며 함께 형성되는 부산물은 hydrophilic한 특성을 지니고 있음. 이에 친수성(hydrophilic)인 물을 용매로 사용하여 생성물과 부산물 간 분리를 유도하고자 하였다. BF4 음이온의 경우 생성물 및 형성되는 NaBr 부산물 모두 소수성 특성을 지니고 있으나 상대적으로 NaBr의 용해도를 낮출 수 있는 아세톤을 용매로 이용하여 생성물 및 부산물의 분리를 유도하고자 하였다. 반응이 끝난 후, 분리된 생성물은 DCM(dichloromethane)에 용해시킨 다음, 이를 acidic, basic 및 neutral Al2O3를 정지상으로 하여 컬럼 크로마토그래피(column chromatography) 정제법을 이용하여 불순물을 제거하였다. In the case of TFSI anion, the product has hydrophobic properties, and the by-products formed together have hydrophilic properties. Therefore, hydrophilic water was used as a solvent to induce separation between the product and the by-product. In the case of BF 4 anion, both the product and the formed NaBr by-product have hydrophobic properties, but acetone, which can relatively lower the solubility of NaBr, was used as a solvent to induce separation of the product and the by-product. After the reaction was completed, the separated product was dissolved in DCM (dichloromethane), and then impurities were removed by column chromatography purification using acidic, basic and neutral Al 2 O 3 as a stationary phase.

상기 방법에 의하여 [도 1]의 10종의 이온성 액체를 제조하였다(VPI, 1-vinyl-3-propylimidazolium; VBI, 1-vinyl-3-butylimidazolium; VAI, 1-vinyl-3-allylimidazolium; VHAI, 1-vinyl-3-homoallylimidazolium; VDI, 1-vinyl-3-dodecylimidazolium).10 kinds of ionic liquids of [Fig. 1] were prepared by the above method (VPI, 1-vinyl-3-propylimidazolium; VBI, 1-vinyl-3-butylimidazolium; VAI, 1-vinyl-3-allylimidazolium; VHAI) , 1-vinyl-3-homoallylimidazolium; VDI, 1-vinyl-3-dodecylimidazolium).

<실험예><Experimental example>

(1) 이온성 액체의 열적 안정성(TGA) 평가(1) Thermal stability (TGA) evaluation of ionic liquids

상기 합성된 이온성 액체의 열적 안정성을 평가하기 위해 TGA를 측정하였으며 음이온 및 알킬기에 따라 열적 분해 온도가 다른 것을 확인하였다(도 2 및 표 1). To evaluate the thermal stability of the synthesized ionic liquid, TGA was measured, and it was confirmed that the thermal decomposition temperature was different depending on the anion and the alkyl group (FIG. 2 and Table 1).

이온성 액체ionic liquid Td(℃)T d (℃) VPI TFSIVPI TFSI ~300~300 VPI BF4 VPI BF 4 ~230~230 VAI TFSIVAI TFSI ~320~320 VAI BF4 VAI BF 4 ~230~230 VDI TFSIVDI TFSI ~300~300

구체적으로 동일한 알킬 쇄(R)인 경우, 음이온으로 TFSI-를 포함하는 바인더 조성물이 BF4 -를 포함하는 바인더 조성물보다 열적 안정성이 우수하였으며 동일한 음이온을 포함하는 경우에는 알킬 쇄(R)에 의하여 바인더 조성물의 열적 안정성이 크게 변하지 않는 것을 관찰하였다.Specifically, in the case of the same alkyl chain (R), the binder composition including TFSI − as an anion had better thermal stability than the binder composition including BF 4 , and in the case of including the same anion, the binder by the alkyl chain (R) It was observed that the thermal stability of the composition did not change significantly.

(2) 이온성 액체의 용해도 측정(2) Determination of solubility of ionic liquids

합성된 이온성 액체를 전극 제조 과정에서 활용 가능한지에 대한 유무를 판단하기 위하여 자일렌(xylene) 용매에 대한 상기 이온성 액체의 용해도 평가를 진행하였다(도 3 및 표 2). In order to determine whether the synthesized ionic liquid can be used in the electrode manufacturing process, solubility evaluation of the ionic liquid in a xylene solvent was performed (FIG. 3 and Table 2).

상태state 이온성 액체 용량Ionic liquid capacity Xylene 용량Xylene capacity 용해도Solubility VPI TFSIVPI TFSI 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VPI BF4 VPI BF 4 액체Liquid 0.1g0.1g 5ml5ml 층분리layer separation VBI TFSIVBI TFSI 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VBI BF4 VBI BF 4 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VAI TFSIVAI TFSI 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VAI BF4 VAI BF 4 고체solid 0.5g0.5g 5ml5ml 녹지 않음does not melt VHAI TFSIVHAI TFSI 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VHAI BF4 VHAI BF 4 액체Liquid 0.5g0.5g 5ml5ml 층분리layer separation VDI TFSIVDI TFSI 액체Liquid 5g5g 5ml5ml 녹음record VDI BF4 VDI BF 4 고체solid 0.5g0.5g 5ml5ml 층 분리layer separation

실험 결과 프로필(propyl), 알릴(allyl), 부틸(butyl), 호모알릴(homoallyl) 을 포함하는 이온성 액체의 경우 음이온에 상관없이 자일렌(xylene)에 대한 용해도가 낮았으며, 특이적으로 알킬기의 탄소의 개수가 12개이면서 TFSI-를 음이온으로 가질 때 자일렌에 용해되는 것을 확인하였다. As a result of the experiment, in the case of an ionic liquid containing propyl, allyl, butyl, and homoallyl, the solubility in xylene was low regardless of the anion, and specifically, the alkyl group It was confirmed that when the number of carbons is 12 and TFSI - has an anion, it is dissolved in xylene.

(3) 이온성 액체의 화학적 안정성(LPS 용해 거동 및 NMR 분석)(3) Chemical stability of ionic liquids (LPS dissolution behavior and NMR analysis)

전극 제조 공정에서 이온성 액체와 LPS의 고른 분산을 유도하여 전극 내부에서의 바인더 네트워크를 잘 형성되도록 하기 위해서는 LPS에 대한 용해도가 높으면서 화학적으로 분해가 일어나지 않는 것이 중요하다. In order to induce even dispersion of the ionic liquid and LPS in the electrode manufacturing process to form a binder network inside the electrode, it is important that LPS has high solubility and that chemical decomposition does not occur.

합성된 이온성 액체의 화학적 안정성을 평가하기 위해 고제 전해질인 LPS와 storage test를 진행한 뒤, 용액에 대한 NMR 분석을 통해 가교제의 chemical shift 변화를 비교하였다. To evaluate the chemical stability of the synthesized ionic liquid, a storage test was performed with LPS, a solid electrolyte, and the chemical shift change of the crosslinking agent was compared through NMR analysis of the solution.

이온성액체 용량Ionic liquid capacity LPS 용량LPS capacity 용해 거동 dissolution behavior 분해 거동(1H)Decomposition behavior ( 1 H) VPI TFSIVPI TFSI 1.0g1.0g 0.01g0.01g 녹음record 6%6% VPI BF4 VPI BF 4 1.0g1.0g 0.01g0.01g 녹음record 5%5% VBI TFSIVBI TFSI 1.0g1.0g 0.01g0.01g 녹음record 7%7% VBI BF4 VBI BF 4 1.0g1.0g 0.01g0.01g 녹음record 8%8% VAI TFSIVAI TFSI 1.0g1.0g 0.01g0.01g 녹음record 8%8% VHAI TFSIVHAI TFSI 1.0g1.0g 0.01g0.01g 분산Dispersion 관찰 안됨not observed VHAI BF4 VHAI BF 4 1.0g1.0g 0.01g0.01g 녹음record 18%18% VDI TFSIVDI TFSI 1.0g1.0g 0.01g0.01g 분산Dispersion 관찰 안됨not observed

실험 결과 음이온 종류에 따라 LPS와의 거동이 다른 것을 확인하였으며 상기 이온성 액체가 TFSI-를 음이온으로 포함하고 탄소수가 12개인 알킬 쇄(R) 또는 부테닐을 포한하는 경우 상기 바인더 조성물의 분해 거동은 관찰되지 않았다.Result was confirmed that the behavior with LPS vary depending on the anionic type of the ionic liquid is TFSI - decomposition behavior of the binder composition if it contains as anion a carbon number pohan 12 alkyl chain (R) or butenyl are observed It didn't happen.

(4) N-비닐아세트아미드(Vinylacetamide)의 가교력 평가(4) Evaluation of crosslinking power of N-vinylacetamide

N-vinylacetamide를 NMP 용매에 AIBN과 함께 첨가한 후 Cu 호일에 도포하고 120℃의 온도에서 건조하였다. 이 경우 혼합 용액의 점도가 낮아 두께 제어가 용이하지 않았지만 오븐 건조 후, 투명하고 딱딱한 막이 관찰되어 가교가 진행된 것으로 판단된다. After adding N-vinylacetamide together with AIBN to the NMP solvent, it was applied to Cu foil and dried at a temperature of 120°C. In this case, the viscosity of the mixed solution was low, so it was difficult to control the thickness, but after oven drying, a transparent and hard film was observed, indicating that crosslinking has progressed.

이에 본 발명자는 N-Vinylacetamide와 Cu의 약한 상호작용으로, Al 및 유리 위에서 실험을 진행하였으며 NMP 용매의 양을 변화하여 안정한 막을 형성하고자 하였다. 1시간 후, 용매량에 상관없이 모두 완전히 굳은 상태였으며 용매의 양을 늘릴수록 막이 두껍게 형성됨을 확인하였다(도 4). Therefore, the present inventors conducted an experiment on Al and glass due to the weak interaction of N-Vinylacetamide and Cu, and tried to form a stable film by changing the amount of NMP solvent. After 1 hour, regardless of the amount of solvent, all were in a completely solid state, and it was confirmed that as the amount of solvent was increased, a thicker film was formed (FIG. 4).

(5) 이온성 액체의 가교력 평가(5) Evaluation of crosslinking power of ionic liquids

상기 합성된 이온성 액체와 개시제(AIBN)의 비율을 9:1로 하여 혼합한 뒤, 70℃ 오븐에서 장시간 보관하여 결과를 관찰하였다(도 5)After mixing the synthesized ionic liquid and the initiator (AIBN) in a ratio of 9:1, the result was observed by storing in an oven at 70° C. for a long time (FIG. 5)

실험 결과 VPI 이온성 액체는 반응을 시작하여 2시간 이후 색 변화와 함께 완전히 굳어 딱딱한 형태로 변하였으며 overnight 보관 이후 더 진한 색으로 변하였다. As a result of the experiment, the VPI ionic liquid started the reaction, and after 2 hours, it completely hardened with color change and changed to a hard form. After overnight storage, the VPI ionic liquid changed to a darker color.

VAI 이온성 액체는 30분 후부터 기포가 발생하면서 반응을 시작하였으며 1시간 후부터 계면의 색이 변화하였지만 굳는 형태를 나타나지 않았으며 overnight 이후 검은색을 나타내었다. The VAI ionic liquid started the reaction with bubbles generated after 30 minutes, and although the color of the interface changed after 1 hour, it did not show any solidified form and appeared black after overnight.

(6) N-비닐아세트아미드(Vinylacetamide)의 결착력 평가(6) Evaluation of binding force of N-vinylacetamide

일반적으로 사용하는 바인더인 PVdF를 N-비닐아세트아미드로 대체하여 전극을 제조하고, 결착력을 비교하였다. 이 때 가교를 위해 첨가하는 개시제가 열에 대한 불안정성을 가짐에 따라 마지막 단계에서 첨가하여 Al 위에 코팅하였다. An electrode was prepared by replacing PVdF, which is a commonly used binder, with N-vinylacetamide, and binding strength was compared. At this time, since the initiator added for crosslinking has instability to heat, it was added in the last step and coated on Al.

N-비닐아세트아미드 0.4g을 NMP 용액에 녹인다음 도전제 Super-P 0.2g, NCM811 양극 활물질 3.4g, AIBN 0.04g을 순차적으로 첨가하여 Al 위에 코팅하고, 120℃ 오븐에서 건조 후, 결착력을 확인할 결과, PVdF 없이 N-비닐아세트아미드만을 바인더로 사용하였을 때 결착력 미비로 인해 집전체로부터 powder가 떨어져 나오는 것을 관찰할 수 있었다. After dissolving 0.4 g of N-vinylacetamide in NMP solution, 0.2 g of the conductive agent Super-P, 3.4 g of NCM811 positive electrode active material, and 0.04 g of AIBN were sequentially added to coat on Al, dried in an oven at 120° C. As a result, when only N-vinylacetamide was used as a binder without PVdF, it was observed that the powder came off from the current collector due to insufficient binding force.

따라서 본 발명자는 결착력을 증가시키고자 N-비닐아세트아미드를 기존 바인더인 PVdF와 함께 1:1의 중량비로 혼합하여 전극을 제조한 결과 결착력이 증가하여 집전체에 결착하는 것을 확인하였다. Therefore, in order to increase the binding force, the present inventors prepared an electrode by mixing N-vinylacetamide with PVdF, which is a conventional binder, in a weight ratio of 1:1, and as a result, it was confirmed that the binding force was increased and binding to the current collector.

상기 N-비닐아세트아미드는 분자 내 이중 결합(double bond)를 통하여 가교가 진행되므로 폴리머화(polymerization) 이후 C=C 결합의 변화가 있을 것으로 예측하여 FT-IR 분석을 진행하였다. 도 6을 참조하면, N-비닐아세트아미드의 C=C 작용기는 1644cm-1 부근에서 관찰되나 전극 상태에서 C=C 결합의 픽이 사라짐에 의해 막을 형성하였다고 판단되었다. Since the N-vinylacetamide is cross-linked through an intramolecular double bond, FT-IR analysis was performed in anticipation of a change in the C=C bond after polymerization. Referring to FIG. 6 , the C=C functional group of N-vinylacetamide was observed in the vicinity of 1644 cm-1, but it was determined that the film was formed by the disappearance of the C=C bond peak in the electrode state.

(6) 이온성 액체, N-비닐아세트아미드 및 PVdF를 바인더로 사용한 전극의 전기화학적 성능 평가(6) Electrochemical performance evaluation of electrodes using ionic liquids, N-vinylacetamide and PVdF as binders

이후 본 발명자는 상기 이온성 액체와 N-비닐아세트아미드를 혼합하고, 상기 혼합물을 PVdF와 함께 바인더 조성물로 사용하여 양극을 제조한 후, 상기 양극을 포함하는 전지를 제조하였다. Then, the present inventors mixed the ionic liquid with N-vinylacetamide, and prepared a positive electrode by using the mixture together with PVdF as a binder composition, and then manufactured a battery including the positive electrode.

이온성 액체(VPI BF4), N-비닐아세트아미드, PVdF 및 AIBN를 1:1:2:0.2의 중량비로 혼합하여 바인더 조성물을 제조한 후, NCM811 양극, 상기 바인더 조성물 및 카본 블랙(Super P)를 85:10:5(wt%)의 비율로 혼합하여 양극을 제조하였다. 사이클링 성능은 각각의 양극, Li 금속 음극, 폴리(에틸렌)(PE) 분리막(Celgard), 및 전해질(1:2 (v/v)의 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)의 혼합물(PanaxEtec)에 1M LiPF6)로 구성된 2032 코인 셀을 사용하여 조사되었다. 셀은 2사이클(형성 단계) 동안 0.1 C-rate으로 3.0-4.3V(vs.Li/Li+)의 전위 범위에서 충전/방전되었으며 그들은 충방전 유닛(WBCS3000, Wonatech)에 의해 25℃에서 1.0C-rate(180 mA g-1) (사이클 단계)로 사이클링되었다.After preparing a binder composition by mixing an ionic liquid (VPI BF 4 ), N-vinylacetamide, PVdF and AIBN in a weight ratio of 1:1:2:0.2, NCM811 positive electrode, the binder composition and carbon black (Super P ) was mixed in a ratio of 85:10:5 (wt%) to prepare a positive electrode. Cycling performance was measured using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) with each anode, Li metal cathode, poly(ethylene) (PE) separator (Celgard), and electrolyte (1:2 (v/v) PanaxEtec) was investigated using a 2032 coin cell composed of 1 M LiPF 6 ). Cells were charged/discharged in the potential range of 3.0-4.3V (vs.Li/Li + ) at 0.1 C-rate for 2 cycles (formation phase) and they were charged/discharged at 25°C at 1.0C by a charge/discharge unit (WBCS3000, Wonatech). -rate (180 mA g -1 ) (cycle steps).

도 7을 참조하면, 이온성 액체(VPI BF4), N-비닐아세트아미드가 첨가된 셀은 초기 포메이션에서 쿨롱 효율을 증가시켰으며(PVdF: 89.64%, 이온성 액체(VPI BF4) 및 N-비닐아세트아미드 혼합 binder: 90.77%) 이후 싸이클에서도 기존 PVdF 셀보다 높은 쿨롱 효율을 나타내었다. Referring to FIG. 7 , the cell to which ionic liquid (VPI BF 4 ), N-vinylacetamide was added increased the coulombic efficiency in the initial formation (PVdF: 89.64%, ionic liquid (VPI BF 4 ) and N -Vinylacetamide mixed binder: 90.77%) showed higher coulombic efficiency than the existing PVdF cell even after the cycle.

Claims (7)

하기 [화학식 1]로 표시되는 이온성 액체 및 N-비닐아세트아미드(N-Vinylacetamide)를 포함하는 리튬 이차전지용 바인더 조성물;
[화학식 1]
Figure pat00010

(여기서 R은 C2-C13-알킬, 알릴 또는 부테닐 중 어느 하나이고, 음이온(anion)은 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-(TFSI), (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 - 또는 (CN)2N- 중 어느 하나이다.)
A binder composition for a lithium secondary battery comprising an ionic liquid represented by the following [Formula 1] and N-vinylacetamide (N-Vinylacetamide);
[Formula 1]
Figure pat00010

(wherein R is any one of C 2 -C 13 -alkyl, allyl or butenyl, and an anion is BF 4 - , PF 6 - , SbF 6 - , NO 3 - , CF 3 SO 3 - , (CF 3 SO 2 ) 2 N - (TFSI), (C 2 F 5 SO 2 ) 2 N - , (CF 3 SO 2 ) 3 C - , CF 3 CO 2 - , C 3 F 7 CO 2 - , CH 3 CO 2 - or (CN) 2 N - either.)
제1항에 있어서,
상기 바인더 조성물은 개시제를 더 포함하고, 상기 개시제는 AIBN(azobisisobutyronitrile), ADMVN(azobisdimethylvaleronitrile), DLP(dilauroyl peroxide), BPO(Benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), t-부틸 퍼아세테이트(t-butyl peracetate), 큐밀 퍼옥사이드(cumyl peroxide), t-부틸 퍼옥사이드(t-butyl peroxide), t-부틸 하이드로퍼옥사이드(t-butyl hydroperoxide) 또는 이들의 조합 것을 특징으로 하는 리튬 이차전지용 바인더.
According to claim 1,
The binder composition further includes an initiator, and the initiator is azobisisobutyronitrile (AIBN), azobisdimethylvaleronitrile (ADMVN), dilauroyl peroxide (DLP), Benzoyl peroxide (BPO), acetyl peroxide, t-butyl peracetate (t) -Butyl peracetate), cumyl peroxide (cumyl peroxide), t-butyl peroxide (t-butyl peroxide), t-butyl hydroperoxide (t-butyl hydroperoxide), or a binder for a lithium secondary battery, characterized in that a combination thereof.
제1항에 있어서,
상기 바인더는 불소 함유 고분자를 더 포함하는 것을 특징으로 하는 리튬 이차전지용 바인더.
According to claim 1,
The binder is a lithium secondary battery binder, characterized in that it further comprises a fluorine-containing polymer.
제3항에 있어서,
상기 불소 함유 고분자는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 또는 이들의 조합 것을 특징으로 하는 리튬 이차전지용 바인더.
4. The method of claim 3,
The fluorine-containing polymer is polyvinylidene fluoride (PVdF), polyvinylidene fluoride polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene A binder for a lithium secondary battery, characterized in that a polymer (PVdF-TFE) or a combination thereof.
제1항 내지 제4항 중 어느 한 항의 바인더 조성물; 양극 활물질;및 용매를 포함하는 리튬 이차 전지용 양극 활물질 조성물.
The binder composition of any one of claims 1 to 4; A cathode active material; and a cathode active material composition for a lithium secondary battery comprising a solvent.
제5항에 있어서,
상기 양극 활물질 조성물은 하기 [화학식 2]로 표시되는 NCM계 양극활물질을 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질 조성물;
[화학식 2]
LiaNixCoyMnzOα
(상기 식에서 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0 이다.).
6. The method of claim 5,
The cathode active material composition is a cathode active material composition for a lithium secondary battery, characterized in that it comprises an NCM-based cathode active material represented by the following [Formula 2];
[Formula 2]
Li a Ni x Co y Mn z O α
(In the above formula, 0.6≤a≤1.2, 0<x≤1.0, 0<y≤1.0, 0<z≤1.0, α=2, x+y+z=1.0).
제1항 내지 제4항 중 어느 한 항의 바인더 및 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;및 비수 전해질을 포함하는 리튬 이차 전지. A lithium secondary battery comprising: a positive electrode including the binder of any one of claims 1 to 4 and a positive electrode active material; a negative electrode including a negative electrode active material; and a non-aqueous electrolyte.
KR1020190175668A 2019-12-26 2019-12-26 Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same KR102282949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190175668A KR102282949B1 (en) 2019-12-26 2019-12-26 Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190175668A KR102282949B1 (en) 2019-12-26 2019-12-26 Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20210083061A true KR20210083061A (en) 2021-07-06
KR102282949B1 KR102282949B1 (en) 2021-07-27

Family

ID=76861099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190175668A KR102282949B1 (en) 2019-12-26 2019-12-26 Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR102282949B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019794A (en) 2021-08-02 2023-02-09 고려대학교 산학협력단 Binder for secondary battery, electrode composition for secondary battery and secondary battery comprising the same
KR102598513B1 (en) * 2022-10-27 2023-11-06 제이엘켐 주식회사 Binder resin for electrode of secondary battery, anode for secondary battery and secondary battery
CN117487483B (en) * 2023-11-01 2024-05-14 南开大学 Ionic polymer binder and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071347A (en) * 2003-12-30 2005-07-07 주식회사 엘지화학 Ionic liquid-modified cathode and electrochemical device using the same
KR20080105045A (en) 2006-02-03 2008-12-03 다이이치 고교 세이야쿠 가부시키가이샤 Lithium rechargeable battery using ionic liquid
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
JP2015038870A (en) * 2013-07-19 2015-02-26 パイオトレック株式会社 Conductive coupling agent usable for positive electrode and/or negative electrode
KR20150093803A (en) * 2013-01-21 2015-08-18 쇼와 덴코 가부시키가이샤 Binder for lithium ion secondary battery electrodes, slurry, electrode, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071347A (en) * 2003-12-30 2005-07-07 주식회사 엘지화학 Ionic liquid-modified cathode and electrochemical device using the same
KR20080105045A (en) 2006-02-03 2008-12-03 다이이치 고교 세이야쿠 가부시키가이샤 Lithium rechargeable battery using ionic liquid
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
KR20150093803A (en) * 2013-01-21 2015-08-18 쇼와 덴코 가부시키가이샤 Binder for lithium ion secondary battery electrodes, slurry, electrode, and lithium ion secondary battery
JP2015038870A (en) * 2013-07-19 2015-02-26 パイオトレック株式会社 Conductive coupling agent usable for positive electrode and/or negative electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019794A (en) 2021-08-02 2023-02-09 고려대학교 산학협력단 Binder for secondary battery, electrode composition for secondary battery and secondary battery comprising the same
KR102598513B1 (en) * 2022-10-27 2023-11-06 제이엘켐 주식회사 Binder resin for electrode of secondary battery, anode for secondary battery and secondary battery
CN117487483B (en) * 2023-11-01 2024-05-14 南开大学 Ionic polymer binder and preparation method and application thereof

Also Published As

Publication number Publication date
KR102282949B1 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
JP5394239B2 (en) Gel polymer electrolyte and electrochemical device provided with the same
KR101880029B1 (en) Battery electrode and lithium ion secondary battery provided with same
JP5638756B2 (en) Electrode having improved performance and electrochemical element having the same
JP6203834B2 (en) Secondary battery cathode and secondary battery including the same
KR102237866B1 (en) Battery paste, battery electrode plate, and manufacturing method therefor
KR100866764B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
KR20140008264A (en) Secondary battery including electrolyte additive
KR20110136740A (en) Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same
JP6821011B2 (en) A method for manufacturing an electrode containing a polymer electrolyte and an electrode manufactured by that method.
KR102538143B1 (en) A method for manufacturing an all solid state lithium secondary battery
KR20190050709A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US20140312268A1 (en) Battery binder
CN112514132A (en) Composite electrolyte membrane and all-solid-state battery including the same
EP3748759B1 (en) Electrolyte for lithium secondary battery
KR102282949B1 (en) Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same
KR102517991B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
CN1685540A (en) Rechargeable lithium battery
KR20190127602A (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte for all solid-state battery and an electrode manufactured thereby
KR20160066498A (en) Binder for Secondary Battery And Secondary Battery Comprising The Same
EP3955360A1 (en) Solid electrolyte composite and all-solid-state battery electrode comprising same
TW201444167A (en) Electricity storage device, electrode used therein, and porous sheet
KR102049679B1 (en) The lithium ion secondary battery provided with the positive electrode for lithium ion secondary batteries obtained using the slurry for positive electrodes of a lithium ion secondary battery, the slurry for positive electrodes of a lithium ion secondary battery, and its manufacturing method, and the positive electrode for lithium ion secondary batteries, and its manufacturing method
JPH11135129A (en) Polymer binder for organic electrolyte battery electrode
KR20190127603A (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte for all solid-state battery and an electrode manufactured thereby
CN107430947A (en) Electrochemical capacitor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant