KR20210082133A - Manufacturing Method of modified Ascon using waste plastic components - Google Patents

Manufacturing Method of modified Ascon using waste plastic components Download PDF

Info

Publication number
KR20210082133A
KR20210082133A KR1020210077013A KR20210077013A KR20210082133A KR 20210082133 A KR20210082133 A KR 20210082133A KR 1020210077013 A KR1020210077013 A KR 1020210077013A KR 20210077013 A KR20210077013 A KR 20210077013A KR 20210082133 A KR20210082133 A KR 20210082133A
Authority
KR
South Korea
Prior art keywords
waste plastic
melting point
asphalt
melting
providing
Prior art date
Application number
KR1020210077013A
Other languages
Korean (ko)
Other versions
KR102311081B1 (en
Inventor
정현석
임기열
Original Assignee
(주)신아 에이치에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)신아 에이치에스 filed Critical (주)신아 에이치에스
Priority to KR1020210077013A priority Critical patent/KR102311081B1/en
Publication of KR20210082133A publication Critical patent/KR20210082133A/en
Application granted granted Critical
Publication of KR102311081B1 publication Critical patent/KR102311081B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/001Waste organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a method for manufacturing asphalt concrete which comprises: an asphalt providing step of providing asphalt to a mixer; an aggregate providing step of providing aggregate to the mixer; a heating step of raising a temperature of the mixer to 160 to 190℃; and a waste plastic providing step of injecting low melting point waste plastic having a melting point less than or equal to the heating step, to the mixer in 0.1 to 6 wt% of total weight of whole asphalt concrete. According to the present invention, the method for manufacturing asphalt concrete has simple processes and cost effective manufacturing cost.

Description

폐플라스틱 성분을 활용한 개질아스콘 제조방법{Manufacturing Method of modified Ascon using waste plastic components}Manufacturing Method of modified Ascon using waste plastic components

본 발명은 아스콘 제조방법으로, 보다 상세하게는 폐플라스틱 성분을 활용함으로써 환경오염을 줄이며 아스콘의 특성을 개질시키고, 경제성을 확보할 수 있는 아스콘의 제조방법에 관한 것이다.The present invention relates to a method for producing asphalt concrete, and more particularly, to a method for producing asphalt concrete that can reduce environmental pollution, modify properties of asphalt concrete, and secure economic feasibility by utilizing waste plastic components.

일반적인 아스콘(아스팔트 콘크리트)은 아스팔트와 골재로 이루어지며, 이 때 아스팔트는 원유정제과정에서 얻어지는 역청질 석유계 아스팔트로서 포장 아스콘에 사용한다. 하지만 아스팔트만을 사용하여 아스콘을 제조하는 경우 소성변형 및 균열이 발생하 는등 온도에 대한 저항성이 미흡하여 개질제를 포함하여 아스콘의 품질을 개선한 개질 아스콘도 개발되고 있다. General asphalt concrete (asphalt concrete) consists of asphalt and aggregate. At this time, asphalt is a bituminous petroleum-based asphalt obtained from crude oil refining and is used for pavement asphalt. However, when asphalt is manufactured using only asphalt, plastic deformation and cracking occur, and the resistance to temperature is insufficient, so modified asphalt concrete that improves the quality of asphalt by including a modifier is being developed.

통상 개질제로는 열경화성 고무, 열가소성 수지등의 단순 배합 개질제와 열가소성 중합체등의 물리, 화학적 혼합개질제, 재생고무개질제 및 무기산또는 금속촉매재인 화학적 개질제, 및 섬유질 또는 천연아스팔트등의 첨가성 개질제가 사용되고 있다. Common modifiers include simple compound modifiers such as thermosetting rubber and thermoplastic resin, physical and chemical compound modifiers such as thermoplastic polymers, regenerated rubber modifiers and chemical modifiers that are inorganic acids or metal catalysts, and additive modifiers such as fibrous or natural asphalt. .

한편 플라스틱은 가공의 편리성과 저렴한 가격으로 일상생활에서 없어서는 안될 제품이 되었으며, 년간 발생되는 플라스틱 폐기물은 1000만톤 이상이지만 재활용 되는 양은 절반이 되지 않으며 나머지는 매립, 소각 되고 있는 실정이다. On the other hand, plastic has become an indispensable product in daily life due to its convenient processing and low price, and although more than 10 million tons of plastic waste is generated annually, less than half of it is recycled and the rest is landfilled and incinerated.

이에 국내 폐플라스틱은 지속적으로 늘어나는 추세이며 폐플라스틱 양을 줄이기 위한 규제를 강화시키면서, 발생되는 폐플라스틱의 처리에 대한 관심 또한 증가되고 있다. Accordingly, domestic waste plastics are continuously increasing, and as regulations to reduce the amount of waste plastics are strengthened, interest in the treatment of generated waste plastics is also increasing.

산업폐기물로 배출되는 폐플라스틱은 종류별 수집이 용이하여 재생이 비교적 용이하지만, 가정에서 배출되는 일반폐기물 형태의 폐플라스틱은 종류별 수집이 곤란하며, 플라스틱의 종류에 관계없이 다른 쓰레기와 구별해 수집하고 있다. Waste plastics discharged as industrial wastes are easy to collect by type and can be recycled relatively easily, but waste plastics in the form of general waste discharged from households are difficult to collect by type, and they are collected separately from other wastes regardless of the type of plastic. .

분리수집을 하여 작게 파쇄한 후 비중분리를 통하여 비교적 용해도가 낮은 것을 분리하여 용해성형하여 이용하는 경우도 있지만 이러한 성형품은 수요가 한정되어 있어, 대부분의 폐플라스틱은 재활용되지 못하고 처분되고 있다.After separation and collection and crushing, there are cases in which relatively low solubility is separated through specific gravity separation and then melted and molded, but the demand for these molded products is limited, so most of the waste plastics cannot be recycled and are disposed of.

폐플라스틱을 재활용하기 위한 새로운 방법이 필요하며 그 한 분야가 도로 포장용 아스팔트 혼합물에 이용하여 재활용하고 있다. A new method for recycling waste plastics is needed, and one sector is recycling it by using it as an asphalt mixture for paving the road.

한국등록특허 770785호에는 플라스틱을 왁스로 만들어서 왁스성분을 아스팔트와 혼합하여 사용하는 개질아스팔트 바인더를 제안하고 있다. 그러나 플라스틱을 왁스로 제조하는 공정에 소요되는 비용이 높아서 사용하기에 어려움이 있었다. Korean Patent Registration No. 770785 proposes a modified asphalt binder in which plastic is made into wax and the wax component is mixed with asphalt. However, there was a difficulty in using the plastic due to the high cost of the wax manufacturing process.

대한민국 등록특허 제10-770785호Republic of Korea Patent Registration No. 10-770785

본 발명의 목적은 폐플라스틱을 활용하여 아스콘을 제조하되, 폐플라스틱의 선별 부담을 최소한으로 줄이고 공정을 간소화하여 낮은 비용으로 효율적인 아스콘 제조방법을 제공하는 데 있다. It is an object of the present invention to provide an efficient method for manufacturing asphalt concrete using waste plastics, but at a low cost by minimizing the selection burden of waste plastics and simplifying the process.

본 발명은 아스콘의 제조방법으로서,The present invention is a method for producing ascon,

아스팔트를 믹서기에 제공하는 아스팔트 제공 단계;Asphalt providing step of providing asphalt to a blender;

골재를 상기 믹서기에 제공하는 골재 제공 단계;Aggregate providing step of providing the aggregate to the mixer;

상기 믹서기의 온도를 160 내지 190도℃로 승온하는 가열 단계; 및a heating step of raising the temperature of the mixer to 160 to 190°C; and

상기 믹서기에 상기 가열단계 이하의 녹는점을 가진 저융점 폐플라스틱과 상기 가열단계보다 높은 녹는점을 가진 고융점 폐플라스틱을 주입하며, 상기 저융점 폐플라스틱은 전체 아스콘 전체중량의 0.1 내지 6중량%로 주입하는 폐플라스틱 제공 단계를 포함하고,The low melting point waste plastic having a melting point below the heating step and the high melting point waste plastic having a melting point higher than the heating step are injected into the mixer, and the low melting point waste plastic is 0.1 to 6% by weight of the total weight of the total asphalt concrete Including the step of providing waste plastic injected into,

상기 폐플라스틱 제공단계는,The waste plastic providing step,

고융점 폐플라스틱과 저융점 폐플라스틱이 혼합된 폐플라스틱을 저융점 폐플라스틱만 녹일 수 있는 압출기에 주입하여 저융점 폐플라스틱을 용융시키고, 고융점 폐플라스틱은 압착시키는 압출단계를 포함하고,An extruding step of injecting a mixture of high melting point waste plastic and low melting point waste plastic into an extruder that can only melt low melting point waste plastic, melting the low melting point waste plastic, and compressing the high melting point waste plastic,

용융상태로 적하된 상기 저융점의 폐플라스틱을 회수하여 믹서기에 제공하고, 압착된 고융점 폐플라스틱은 절단하여 믹서기에 제공하며, Recovering the low-melting-point waste plastic dropped in a molten state and providing it to a mixer, and cutting the compressed high-melting-point waste plastic and providing it to a mixer,

상기 저융점 폐플라스틱은 폴리프로필렌, 폴리에틸렌, 폴리스티렌, EVA, ABS, 및 PVC로 구성되는 군에서 선택되는 하나가 사용될 수 있으며,The low melting point waste plastic may be one selected from the group consisting of polypropylene, polyethylene, polystyrene, EVA, ABS, and PVC,

상기 고융점 폐플라스틱은 와이어 및 케이블의 절연층, 경화고무, PET, PPO, 고융점폴리아미드, 나일론, 및 PMMA로 구성되는 군에서 선택되는 하나가 사용될 수 있다.As the high-melting-point waste plastic, one selected from the group consisting of insulating layers of wires and cables, cured rubber, PET, PPO, high-melting-point polyamide, nylon, and PMMA may be used.

본 발명의 일측면에 따른 아스콘의 제조방법은 기존의 아스콘 제조공정을 최대한 활용하여 폐플라스틱을 주입하면서도 공정이 간단하고 제조 비용이 낮은 아스콘의 제조방법을 제공한다. Ascon manufacturing method according to one aspect of the present invention provides a method for manufacturing asphalt concrete with a simple process and low manufacturing cost while injecting waste plastic by maximizing the existing asphalt concrete manufacturing process.

또한 본 발명의 다른 측면에 따른 아스콘의 제조방법은 폐플라스틱 성분 분류 과정을 최소화할 수 있는 아스콘의 제조방법을 제공한다. 즉, 고융점 아스팔트나 저융점 아스팔트 모두를 재활용 할 수 있게 되는데, 고융점 아스팔트는 골재의 대체재로 기능하며, 저융점 아스팔트는 인공아스팔트로 기능하게 된다. In addition, the method for producing asphalt concrete according to another aspect of the present invention provides a method for producing asphalt concrete that can minimize the waste plastic component classification process. That is, both high-melting-point asphalt and low-melting-point asphalt can be recycled. High-melting-point asphalt functions as a substitute for aggregate, and low-melting-point asphalt functions as artificial asphalt.

고유PET,PPO등 고융점을 갖거나 열경화성의 폐플라스틱은 입자화하여 골재의 대체제로 사용하며, 약 180℃이하의 저융점을 가진 PP,PVC,ABS,EPS(Expanded Polystyrene),HDPE 및 LDPE등의 플라스틱 분말을 아스콘 제조 믹서기에 제공함으로써 액상으로 용융되어 골재 및 고융점 플라스틱과 아스팔트와의 접착력을 향상시킨다. Waste plastics with high melting points such as intrinsic PET and PPO or thermosetting waste plastics are granulated and used as a substitute for aggregates. PP, PVC, ABS, EPS (Expanded Polystyrene), HDPE and LDPE with a low melting point of about 180℃ or less, etc. By providing the plastic powder of the asphalt concrete to the mixer, it is melted into a liquid to improve the adhesion between the aggregate and the high-melting-point plastic and asphalt.

낮은 용융점의 열가소성 폐플라스틱은 일부 용융하여 아스팔트 바인더와의 분자결합을 유도하기 때문에 부착강도 발현에 기여하게 되고, 높은 용융점의 폐 프라스틱은 용융되지 않은 상태로 유지되어 골재로서의 기능을 하며, 일부 탄성을 갖는 폐 플라스틱은 아스팔트 조성물에 압축방향 응력에 대한 저항을 높이게 된다. The low melting point thermoplastic waste plastic is partially melted and induces molecular bonding with the asphalt binder, so it contributes to the development of adhesive strength, and the high melting point waste plastic remains unmelted and functions as an aggregate, and some elasticity is reduced. The waste plastics with it increase the resistance to compressive stress in the asphalt composition.

도 1은 본 발명의 일실시예에 따른 아스콘 제조방법의 순서도이다.
도 2는 본 발명의 일실시예에 따른 아스콘의 제조방법에 따른 공시체의 융점 마샬 안정도 측정실험결과를 도시한 도면이다.
도 3은 고온을 유지하며 폐플라스틱을 압출하는 압출장치를 도시하는 도면이다.
1 is a flowchart of an asphalt concrete manufacturing method according to an embodiment of the present invention.
Figure 2 is a view showing the results of the melting point Marshall stability measurement experiment of the specimen according to the manufacturing method of asphalt according to an embodiment of the present invention.
3 is a view showing an extrusion apparatus for extruding waste plastic while maintaining a high temperature.

이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is to be understood that the terminology used herein is for the purpose of describing specific embodiments and is not intended to limit the scope of the present invention, which is limited only by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, unless otherwise stated.

본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless stated otherwise, the term comprise, comprises, comprising is meant to include the stated object, step or group of objects, and steps, and any other object. It is not used in the sense of excluding steps or groups of objects or groups of steps.

한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the other hand, various embodiments of the present invention may be combined with any other embodiments unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.

도 1은 도 1은 본 발명의 일실시예에 따른 아스콘 제조방법의 순서도이다. 1 is a flowchart of an asphalt concrete manufacturing method according to an embodiment of the present invention.

본 발명의 일실시예에 따른 아스콘의 제조방법은, 아스팔트 제공단계, 골재 제공단계, 가열단계, 및 폐플라스틱 제공단계를 포함한다. The method for producing asphalt concrete according to an embodiment of the present invention includes an asphalt providing step, an aggregate providing step, a heating step, and a waste plastic providing step.

아스팔트 제공단계(S1)는 아스콘을 제조하기 위한 원료인 아스팔트를 믹서기에 공급하는 단계로서, 이 때 사용되는 아스팔트는 개질되지 않은 아스팔트로서 통상 원유에서 분별증류 후 남은 아스팔트를 사용한다. 이러한 아스팔트는 상용화 되어 상품으로 판매되고 있고, 예를 들면 SK에너지의 수퍼팔트등이다.The asphalt providing step (S1) is a step of supplying asphalt, which is a raw material for manufacturing asphalt, to a mixer, and the asphalt used at this time is unmodified asphalt, and the asphalt remaining after fractional distillation from crude oil is usually used. Such asphalt has been commercialized and sold as a commodity, for example, SK Energy's Superphalt.

골재제공단계(S2)는 아스콘의 주원료인 골재를 제공하는 단계로서, 골재는 아스콘의 기본 구성이며, 통상 골재는 85 ~ 90 중량%가 포함되는데, 이러한 골재는 굵은 골재, 잔골재, 채움재 및 모래를 포함할 수 있으며, 채움재(필러)로는 석회석분, 포틀랜드 시멘트, 소석회, 플라이애시, 회수더스트, 제강더스트, 주물더스트 등이 사용될 수 있다.The aggregate providing step (S2) is a step of providing aggregate, which is the main raw material of asphalt concrete. Aggregate is the basic composition of asphalt concrete, and generally contains 85 to 90% by weight of aggregate. These aggregates include coarse aggregate, fine aggregate, filler material and sand. It may include, and as the filler (filler), limestone powder, Portland cement, slaked lime, fly ash, recovered dust, steelmaking dust, casting dust, etc. may be used.

일 실시예로, 골재는 입도 20mm의 파쇄석 6중량%, 입도 13mm의 파쇄석 32중량%, 모래 46중량%, 채움재로서 제강슬레그 12중량%, 규사 4중량%를 포함할 수 있다.In one embodiment, the aggregate may include 6% by weight of crushed stone of a particle size of 20mm, 32% by weight of crushed stone of a particle size of 13mm, 46% by weight of sand, 12% by weight of steelmaking slag as a filler, and 4% by weight of silica sand.

본 발명의 실시예들에서 이들 골재의 종류에 따른 함량은 크게 제한되지 않으나, 굵은 골재, 잔골재, 필러의 투입비율은 상호보완적이어서 어느 하나가 많이 투입되면 나머지는 적게 투입된다. In the embodiments of the present invention, the content according to the type of aggregate is not significantly limited, but the input ratios of coarse aggregate, fine aggregate, and filler are complementary to each other.

후술할 바와 같이 본 발명의 일실시예에서 고융점 플라스틱은 아스콘 조성물에서 녹지 않고, 잔골재 또는 필러의 기능을 수행할 수 있다. 따라서, 고융점 플라스틱을 주입할 경우 잔골재 또는 필러의 함량을 일반적인 아스콘의 경우보다 적을 수 있다. As will be described later, in one embodiment of the present invention, the high-melting-point plastic does not melt in the asphalt concrete composition, and may function as a fine aggregate or filler. Therefore, when high-melting plastic is injected, the content of fine aggregate or filler may be less than that of general asphalt concrete.

가열단계(S3)는 혼합된 아스팔트와 골재를 160 내지 190도℃로 가열하는 단계이다. The heating step (S3) is a step of heating the mixed asphalt and aggregate to 160 to 190 degrees Celsius.

폐플라스틱 제공단계(S4)의 제1실시예는 가열단계에서 정해진 온도에서 폐플라스틱을 주입하는 단계이며, 본 단계에서 정해진 가열온도 이하로 녹는점을 가지는 저융점 폐플라스틱이 주입된다. A first embodiment of the waste plastic providing step (S4) is a step of injecting the waste plastic at a predetermined temperature in the heating step, and in this step, the low melting point waste plastic having a melting point below the predetermined heating temperature is injected.

본 실시예에서 사용될 수 있는 저융점 폐플라스틱은 폴리프로필렌, 폴리에틸렌, 폴리스티렌, EVA, ABS, PVC등이다. 저융점 폐플라스틱은 믹서기에서 액상으로 융융되어 인공아스팔트로서 기능한다. Low melting point waste plastics that can be used in this embodiment are polypropylene, polyethylene, polystyrene, EVA, ABS, PVC, and the like. The low-melting-point waste plastic is melted into liquid in a mixer and functions as artificial asphalt.

한편 통상 폐플라스틱에는 저융점 폐플라스틱과 고융점 폐플라스틱이 혼재되어 있어, 종래에 이들을 분리하는 데 소요되는 비용이 많이 재활용하기 어려운 점이 있었으나, 본 실시에에서 저융점 폐플라스틱에 고융점 폐플라스틱이 포함되더라도 일정크기 이하로 절단하는 단계를 거치는 경우 고융점 폐플라스틱이 포함된 부분이 필러로서 작용할 수 있다. On the other hand, conventional waste plastics contain a mixture of low-melting-point waste plastics and high-melting-point waste plastics. Conventionally, the cost required to separate them is high and it is difficult to recycle, but in this embodiment, high-melting-point waste plastics are added to the low-melting-point waste plastics. Even if it is included, if it undergoes a step of cutting it to a predetermined size or less, the portion containing the high melting point waste plastic may act as a filler.

따라서 저융점 폐플라스티과 고융점 폐플라스틱이 혼합된 폐플라스틱인 경우 폐플라스틱을 0.5mm이하로 절단하여 주입하는 것이 바람직하다. 또한 이 때 저융점 폐플라스틱은 아스콘 전체중량의 0.1 내지 6중량%로 주입하는 것이 바람직하다. 0.1중량% 미만인 경우 아스팔트 대체 효과가 없으며, 6중량% 이상인 경우 흐름도가 나빠지는 문제가 있다. Therefore, in the case of waste plastic in which the low-melting-point waste plastic and the high-melting-point waste plastic are mixed, it is preferable to cut the waste plastic to 0.5 mm or less and inject it. In addition, at this time, it is preferable to inject the low-melting plastic waste in an amount of 0.1 to 6% by weight of the total weight of asphalt concrete. If it is less than 0.1% by weight, there is no effect of replacing asphalt, and if it is 6% by weight or more, there is a problem in that the flow rate is deteriorated.

폐플라스틱 제공단계의 제2실시예는 제1분쇄단계, 제2분쇄단계, 혼합단계를 포함한다. 제2실시예는 폐플라스틱이 고융점과 저융점으로 분리가능할 경우 바람직하게 이용할 수 있다. 이 때, 고융점 폐플라스틱은 와이어 및 케이블의 절연층, 열 수축성 포장과 같은 열경화성 플라스틱과 경화고무, PET, PPO, 고융점폴리아미드, 나일론, PMMA등 등 녹는점 180℃이상인 플라스틱일 수 있다. A second embodiment of the waste plastic providing step includes a first crushing step, a second crushing step, and a mixing step. The second embodiment can be preferably used when the waste plastic can be separated into a high melting point and a low melting point. In this case, the high melting point waste plastic may be a plastic having a melting point of 180° C. or higher, such as thermosetting plastics such as insulating layers of wires and cables, heat shrinkable packaging, and curing rubber, PET, PPO, high melting point polyamide, nylon, PMMA, and the like.

제1분쇄단계는 고융점 폐플라스틱을 잔골재 또는 채움재로 사용하기 위하여 KS F 2357(아스팔트 혼합물용 골재)의 규정 KS F 3501(아스팔트 포장용 채움재)의 규정에 맞게 분쇄하는 단계이다.The first crushing step is a step of pulverizing in accordance with the regulations of KS F 3501 (filling material for asphalt pavement) of KS F 2357 (aggregate for asphalt mixture) in order to use high-melting-point waste plastics as fine aggregates or fillers.

고융점 폐플라스틱은 믹서기의 온도에서 용융되지 않기 때문에 고상으로 남아서 잔골재 또는 채움재로 기능할 수 있다. 이 때, 고융점 폐플라스틱에 일부 포함되어 있을 수 있는 저융점 폐플라스틱은 믹서기에서 용융되어 인공아스팔트로 기능하므로 문제되지 않는다. Since the high melting point waste plastic does not melt at the temperature of the mixer, it remains in a solid state and can function as a fine aggregate or a filler. At this time, since the low-melting-point waste plastic, which may be partially contained in the high-melting-point waste plastic, is melted in a mixer and functions as artificial asphalt, there is no problem.

제2분쇄단계는 저융점 폐플라스틱을 일정 크기로 분쇄하는 단계이다. 저융점 폐플라스틱만으로 구성되는 경우 분쇄를 요하지는 않으나, 제1실시예에서 설명한 바와 같이 일부 고융점 폐플라스틱이 포함될 수 있으므로 분쇄를 진행한다. 다만 분쇄는 에너지를 소요하는 공정으로서, 본 단계에서의 저융점 폐플라스틱에 일부 포함된 고융점 폐플라스틱을 위한 분쇄는 보다 작게 분쇄하지 않아도 되는 KS F 2357(아스팔트 혼합물용 골재)규격을 따르도록 분쇄하는 것이 바람직하다. The second pulverizing step is a step of pulverizing the low-melting-point waste plastic to a predetermined size. If it is composed of only low-melting-point waste plastics, pulverization is not required, but as described in the first embodiment, some high-melting-point waste plastics may be included, so pulverization is performed. However, pulverization is an energy-consuming process, and the pulverization for high-melting-point waste plastics included in some of the low-melting-point waste plastics in this step is pulverized to comply with the KS F 2357 (Asphalt Mixture Aggregate) standard, which does not require pulverization. It is preferable to do

저융점 폐플라스틱은 액상으로 용융되고, 골재 및 고융점 플라스틱과 아스팔트와의 접착력을 향상시킨다. The low-melting-point waste plastic is melted into a liquid phase, and the adhesion between the aggregate and the high-melting-point plastic and asphalt is improved.

혼합단계는 선택적 단계로서 제1분쇄단계와 제2분쇄단계 후의 폐플라스틱을 혼합하는 단계이다. 혼합단계를 거치는 경우 보다 믹서기에 분산이 용이하게 이루어질 수 있다. The mixing step is a step of mixing the waste plastics after the first crushing step and the second crushing step as an optional step. Dispersion in the mixer can be made easier than when the mixing step is performed.

폐플라스틱 제공단계의 제3실시예는 제1분쇄단계와 코팅단계를 포함한다. A third embodiment of the waste plastic providing step includes a first crushing step and a coating step.

제1분쇄단계는 전술한 제1실시예에서와 동일하므로 자세한 설명을 생략한다. Since the first crushing step is the same as in the above-described first embodiment, a detailed description thereof will be omitted.

코팅단계는 저융점 폐플라스틱을 용융시켜 제1분쇄단계 이후의 고융점 폐플라스틱의 표면에 코팅하는 단계이다. The coating step is a step of melting the low-melting-point waste plastic and coating it on the surface of the high-melting-point waste plastic after the first crushing step.

예를 들어, 저융점 폐플라스틱을 유기용제에 투입하여 가열하여 녹인 후 스프레이, 디핑, 고속 교반 중 하나 이상의 방법으로 제1분쇄 단계를 거친 고융점 폐플라스틱 입자와 혼합되도록 한 뒤 건조하여 상기 고융점 폐플라스틱 입자의 표면에 코팅할 수 있다. For example, the low-melting-point waste plastic is put into an organic solvent, heated to melt, and then mixed with the high-melting-point waste plastic particles that have undergone the first crushing step by at least one of spraying, dipping, and high-speed stirring, followed by drying to the high melting point. It can be coated on the surface of the waste plastic particles.

폐플라스틱 제공단계의 제4실시예는 고융점 폐플라스틱이 폐어망인 경우의 실시예로서, 제4실시예는 절단단계와 코팅단계를 포함한다.A fourth embodiment of the waste plastic providing step is an embodiment when the high melting point waste plastic is a waste fishing net, and the fourth embodiment includes a cutting step and a coating step.

절단단계는 폐어망을 1 내지 5mm로 절단하는 단계이다. 폐어망은 통상 폴리아미드, 폴리에스테르, PE로 제조되는 고융점 폐플라스틱으로 이루어진다. 폐어망을 절단하면 단섬유상으로 절단되어 골재와 아스팔트간의 결합력을 증대시키는 충진재로 기능할 수 있다. 즉, 폐어망의 단섬유상은 아스콘 조성물에서 섬유상태 그대로 유지되어 골재 간 맞물림 응력을 증대시키면서 브리지효과를 유도하기 때문에 인장 내지 전단강도 발현에 기여하게 된다.The cutting step is a step of cutting the waste fishing net to 1 to 5 mm. Waste fishing nets are usually made of high melting point waste plastics made of polyamide, polyester, and PE. When the waste fishing net is cut, it is cut into short fibers and can function as a filler to increase the bonding force between the aggregate and asphalt. That is, the short fibers of the waste fishing net are maintained as they are in the asphalt concrete composition, thereby inducing a bridging effect while increasing the meshing stress between aggregates, thereby contributing to the expression of tensile or shear strength.

코팅단계는 저융점 폐플라스틱을 용융시켜 제1분쇄단계 이후의 폐어망 단섬유 표면에 코팅하는 단계이다. The coating step is a step of melting the low melting point waste plastic and coating the surface of the waste fishing net short fibers after the first crushing step.

예를 들어, 페어망 단섬유를 유기용제에 투입하여 가열하여 녹인 후 스프레이, 디핑, 고속 교반 중 하나 이상의 방법으로 제1분쇄 단계를 거친 페어망 단섬유와 혼합되도록 한 뒤 건조하여 상기 고융점 폐플라스틱 입자의 표면에 코팅할 수 있다. For example, after putting short pair mesh fibers in an organic solvent and heating them to melt, spray, dipping, and high-speed stirring to mix with short pair mesh fibers that have undergone the first grinding step, and then dry to close the high melting point It can be coated on the surface of plastic particles.

폐플라스틱 제공단계의 제5실시예는 고융점 폐플라스틱과 저융점 폐플라스틱이 전혀 분리가 어려운 경우 사용하는 실시예로서, 압출단계를 포함한다. 도 3은 고온을 유지하며 폐플라스틱을 압출하는 단계에 대한 개념을 도시한 것이다.A fifth embodiment of the waste plastic providing step is used when the high melting point waste plastic and the low melting point waste plastic are difficult to separate at all, and includes an extrusion step. 3 shows a concept for the step of extruding waste plastic while maintaining a high temperature.

압출단계는 고융점 폐플라스틱과 저융점 폐플라스틱이 혼합된 상태의 폐플라스틱을 저융점 폐플라스틱만 녹일 수 있는 압출기에 주입하여 저융점 폐플라스틱을 용융시키고, 고융점 폐플라스틱은 압착시키는 단계이다. The extruding step is a step of injecting the waste plastic in a mixed state of the high melting point waste plastic and the low melting point waste plastic into an extruder that can only melt the low melting point waste plastic, melting the low melting point waste plastic, and compressing the high melting point waste plastic.

예를 들어, 압출단계는 고융점과 저융점이 구분되지 않은 폐 플라스틱을 20mm이하의 크기로 분쇄하는 분쇄단계, 180내지 200℃의 온도를 유지하는 2개의 롤 (10)의 1 내지 2mm의 롤 간격사이로 폐플라스틱을 공급하여 압착과 용융이 동시에 이루어지도록 한다. For example, the extrusion step is a crushing step of pulverizing waste plastics that are not distinguished from high melting points and low melting points to a size of 20 mm or less, 1 to 2 mm rolls of two rolls 10 maintaining a temperature of 180 to 200 ° C. Waste plastic is supplied between the gaps so that compression and melting occur at the same time.

이 때, 용융상태로 적하된 저융점의 폐플라스틱을 회수하여 믹서기에 제공하고, 압착된 고융점 폐플라스틱은 추가적으로 절단하여 믹서기에 제공할 수 있다. At this time, the low-melting-point waste plastic dropped in the molten state may be recovered and provided to the mixer, and the compressed high-melting-point waste plastic may be additionally cut and provided to the mixer.

<실험예><Experimental example>

20mm 골재 6%, 13mm 골재 32%, 부순모래 46%, 제강슬래그 12%, 규사 4%, 저융점 고분자 5.4%의 아스콘 공시체를 제조하여 마샬 안정도 측정실험결과를 도 2에 도시하였다. 이에 따르면 안정도 값이 우수한 범위에 있음을 확인할 수 있다. Ascon specimens of 6% 20mm aggregate, 32% 13mm aggregate, 46% crushed sand, 12% steel slag, 4% silica sand, and 5.4% low-melting polymer were prepared, and the Marshall stability measurement test results are shown in FIG. According to this, it can be confirmed that the stability value is in an excellent range.

전술한 각 아스콘의 제조방법 및 그 조성물에서 제공된 특징, 구조, 효과 등은, 당 분야의 통상의 지식을 가지는 자에 의하여 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Characteristics, structures, effects, etc. provided in the above-described method for preparing each asphalt concrete and the composition thereof, can be combined or modified by those skilled in the art. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

S1 : 아스팔트 제공단계
S2 : 골재제공단계
S3 : 가열단계
S3 : 폐플라스틱 제공단계
S1 : Asphalt provision stage
S2: Aggregate provision stage
S3: heating step
S3: Waste plastic provision stage

Claims (5)

아스콘의 제조방법으로서,
아스팔트를 믹서기에 제공하는 아스팔트 제공 단계;
골재를 상기 믹서기에 제공하는 골재 제공 단계;
상기 믹서기의 온도를 160 내지 190도℃로 승온하는 가열 단계; 및
상기 믹서기에 상기 가열단계 이하의 녹는점을 가진 저융점 폐플라스틱과 상기 가열단계보다 높은 녹는점을 가진 고융점 폐플라스틱을 주입하며, 상기 저융점 폐플라스틱은 전체 아스콘 전체중량의 0.1 내지 6중량%로 주입하는 폐플라스틱 제공 단계를 포함하고,
상기 폐플라스틱 제공단계는,
고융점 폐플라스틱과 저융점 폐플라스틱이 혼합된 폐플라스틱을 저융점 폐플라스틱만 녹일 수 있는 압출기에 주입하여 저융점 폐플라스틱을 용융시키고, 고융점 폐플라스틱은 압착시키는 압출단계를 포함하고,
용융상태로 적하된 상기 저융점의 폐플라스틱을 회수하여 믹서기에 제공하고, 압착된 고융점 폐플라스틱은 절단하여 믹서기에 제공하는 아스콘의 제조방법.
As a method for producing ascon,
Asphalt providing step of providing asphalt to a blender;
Aggregate providing step of providing the aggregate to the mixer;
a heating step of raising the temperature of the mixer to 160 to 190°C; and
The low melting point waste plastic having a melting point lower than the heating step and the high melting point waste plastic having a melting point higher than the heating step are injected into the mixer, and the low melting point waste plastic is 0.1 to 6% by weight of the total weight of the total asphalt concrete Including the step of providing waste plastic injected into,
The waste plastic providing step,
An extruding step of injecting a mixture of high melting point waste plastic and low melting point waste plastic into an extruder that can only melt low melting point waste plastic, melting the low melting point waste plastic, and compressing the high melting point waste plastic,
A method of producing asphalt concrete by recovering the low-melting-point waste plastic dropped in a molten state and providing it to a mixer, and cutting the compressed high-melting-point waste plastic to a blender.
제 1항에 있어서,
상기 저융점 폐플라스틱은 폴리프로필렌, 폴리에틸렌, 폴리스티렌, EVA, ABS, 및 PVC로 구성되는 군에서 선택되는 하나인 아스콘의 제조방법.
The method of claim 1,
The low-melting-point waste plastic is one selected from the group consisting of polypropylene, polyethylene, polystyrene, EVA, ABS, and PVC.
제 2항에 있어서,
상기 고융점 폐플라스틱은 와이어 및 케이블의 절연층, 경화고무, PET, PPO, 고융점폴리아미드, 나일론, 및 PMMA로 구성되는 군에서 선택되는 하나인 아스콘의 제조방법.
3. The method of claim 2,
The high melting point waste plastic is one selected from the group consisting of an insulating layer of wire and cable, cured rubber, PET, PPO, high melting point polyamide, nylon, and PMMA.
제 1항에 있어서,
상기 압출단계는 고융점과 저융점이 구분되지 않은 폐 플라스틱을 20mm이하의 크기로 분쇄하고, 180내지 200℃의 온도를 유지하는 2개의 롤의 1 내지 2mm의 롤 간격사이로 폐 플라스틱을 공급하여 압착과 용융이 동시에 이루어지도록 하는 아스콘의 제조방법.
The method of claim 1,
The extrusion step pulverizes waste plastics that are not distinguished from high melting points and low melting points to a size of 20 mm or less, and supplies waste plastics between 1 to 2 mm roll spacing of two rolls maintaining a temperature of 180 to 200 ° C. A method of manufacturing asphalt that allows both and melting at the same time.
제1항 내지 제4항의 어느 한항의 아스콘의 제조방법에 따라 제조된 아스콘. Ascon prepared according to the method for manufacturing asphalt of any one of claims 1 to 4.
KR1020210077013A 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components KR102311081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210077013A KR102311081B1 (en) 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190174133A KR102269539B1 (en) 2019-12-24 2019-12-24 Manufacturing Method of modified Ascon using waste plastic components
KR1020210077013A KR102311081B1 (en) 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190174133A Division KR102269539B1 (en) 2019-12-24 2019-12-24 Manufacturing Method of modified Ascon using waste plastic components

Publications (2)

Publication Number Publication Date
KR20210082133A true KR20210082133A (en) 2021-07-02
KR102311081B1 KR102311081B1 (en) 2021-10-12

Family

ID=76607604

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020190174133A KR102269539B1 (en) 2019-12-24 2019-12-24 Manufacturing Method of modified Ascon using waste plastic components
KR1020210077013A KR102311081B1 (en) 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components
KR1020210077012A KR102311080B1 (en) 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190174133A KR102269539B1 (en) 2019-12-24 2019-12-24 Manufacturing Method of modified Ascon using waste plastic components

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210077012A KR102311080B1 (en) 2019-12-24 2021-06-14 Manufacturing Method of modified Ascon using waste plastic components

Country Status (1)

Country Link
KR (3) KR102269539B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335694A (en) * 2000-05-25 2001-12-04 Ichiro Matsubara Asphalt material, asphalt block, and forming method of solidified asphalt layer and solidified asphalt layer
JP2002096326A (en) * 2000-09-25 2002-04-02 Nippon Steel Corp Method for molding granulated material of waste plastics and molding device
KR20030004581A (en) * 2001-07-05 2003-01-15 한국건설기술연구원 Modified asphalt mixed with crumb rubber and gilsonite resin, methot for fabricating the same and method for fabricating asphalt concrete using the same
KR20040099672A (en) * 2003-05-19 2004-12-02 재단법인 한국건자재시험연구원 Asphalt concrete using the mixed wastes plastics
KR100770785B1 (en) 2006-07-27 2007-10-26 중앙대학교 산학협력단 Modified asphalt binder for pavement and manufacturing process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335694A (en) * 2000-05-25 2001-12-04 Ichiro Matsubara Asphalt material, asphalt block, and forming method of solidified asphalt layer and solidified asphalt layer
JP2002096326A (en) * 2000-09-25 2002-04-02 Nippon Steel Corp Method for molding granulated material of waste plastics and molding device
KR20030004581A (en) * 2001-07-05 2003-01-15 한국건설기술연구원 Modified asphalt mixed with crumb rubber and gilsonite resin, methot for fabricating the same and method for fabricating asphalt concrete using the same
KR20040099672A (en) * 2003-05-19 2004-12-02 재단법인 한국건자재시험연구원 Asphalt concrete using the mixed wastes plastics
KR100770785B1 (en) 2006-07-27 2007-10-26 중앙대학교 산학협력단 Modified asphalt binder for pavement and manufacturing process thereof

Also Published As

Publication number Publication date
KR102269539B1 (en) 2021-06-28
KR102311080B1 (en) 2021-10-12
KR20210082132A (en) 2021-07-02
KR102311081B1 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
Ahmad et al. Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review
JP5770282B2 (en) Method for the production of agglomerates comprising rubber and wax, agglomerates produced by the method and their use in asphalt and bitumen
EP1395527B1 (en) Compositions comprising solid particles and binder
US6669773B2 (en) Fly ash/mixed plastic aggregate and products made therefrom
CZ9903667A3 (en) Road asphalt rubber-modified binding agent
Rasel et al. Study of effects of waste PVC on the properties of bituminous mixes
KR102311081B1 (en) Manufacturing Method of modified Ascon using waste plastic components
US5252641A (en) Process for production of bituminous compositions containing polymeric residues
EP3966273B1 (en) Process for the production of an additive for bituminous conglomerates with high mechanical performances
CN104193220A (en) PET (polyethylene terephthalate) plastic concrete and preparation method thereof
AU2018363819B2 (en) A road making material, a method of producing a road making material and a road made therefrom
AU9277498A (en) Method for rubberizing and/or pelletizing trinidad lake asphalt
EP0448424B1 (en) Method of making bituminous compositions containing polymer residues
Carvalho et al. Glastic composite prototypes: A materials alternative for recycling plastic and glass waste
Mashaan et al. Evaluating the Rheological Properties and ageing Resistance of Waste PET-Modified Bitumen Binder
Kovács et al. Use of Recycled Polyethylene in Asphalt Mixture
EA045643B1 (en) METHOD FOR OBTAINING ADDITIVE FOR BITUMEN CONGLOMERATES WITH HIGH MECHANICAL CHARACTERISTICS AND COMPOSITION OF ADDITIVE
Alogba et al. Performance Evaluation of Plastic Modified Asphalt Enhanced with Recycled Glass Powder
WO2013075088A1 (en) Recycled asphalt paving formulation and method of making same
Shah A study of high-carbon fly ash filled thermoplastics
JP2006335057A (en) Processing method for reutilizing vulcanized rubber
EA028388B1 (en) Polymer-rubber composition and method of production thereof
SK6907Y1 (en) Composite material made of recycled fabrics

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right