KR20210082101A - Chloroplast Transit Peptides and Uses Thereof - Google Patents

Chloroplast Transit Peptides and Uses Thereof Download PDF

Info

Publication number
KR20210082101A
KR20210082101A KR1020200181984A KR20200181984A KR20210082101A KR 20210082101 A KR20210082101 A KR 20210082101A KR 1020200181984 A KR1020200181984 A KR 1020200181984A KR 20200181984 A KR20200181984 A KR 20200181984A KR 20210082101 A KR20210082101 A KR 20210082101A
Authority
KR
South Korea
Prior art keywords
ser
leu
ala
thr
pro
Prior art date
Application number
KR1020200181984A
Other languages
Korean (ko)
Inventor
박중혁
성순기
김한울
윤준선
한윤정
Original Assignee
주식회사 팜한농
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팜한농 filed Critical 주식회사 팜한농
Publication of KR20210082101A publication Critical patent/KR20210082101A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03004Protoporphyrinogen oxidase (1.3.3.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/08Fusion polypeptide containing a localisation/targetting motif containing a chloroplast localisation signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Lubricants (AREA)

Abstract

Provided are a polypeptide capable of moving to a chloroplast of a plant cell, and a use for movement to a chloroplast of a target protein of the polypeptide. The present invention can provide useful properties to plants or enhance the useful properties.

Description

엽록체 전이 펩타이드 및 이의 용도{Chloroplast Transit Peptides and Uses Thereof}Chloroplast Transit Peptides and Uses Thereof

식물 세포의 엽록체로 이동 가능한 폴리펩타이드, 및 상기 폴리펩타이드의 목적 단백질의 엽록체로의 이동에 사용하기 위한 용도가 제공된다.A polypeptide capable of translocating to the chloroplast of a plant cell, and use of the polypeptide for transport of a protein of interest to the chloroplast are provided.

식물 세포는 특유의 막 구조로 경계가 정해져 있고, 세포내 분화된 기능을 수행하는, 일반적으로는 "색소체"로 지칭되는 독특한 세포소기관을 포함한다. 색소체는 광합성뿐만 아니라, 화학 화합물의 합성 및 저장도 담당하기도 한다. 색소체는 핵과 독립적으로 유전자 발현 및 단백질 합성 시스템을 갖지만, 세포 내에서 핵-세포질 시스템과의 긴밀한 협력에 의존하는 반-자율 방식으로 존재한다.Plant cells contain unique organelles, commonly referred to as "pigments", that are delimited by distinct membrane structures and perform differentiated intracellular functions. In addition to photosynthesis, plastids are also responsible for the synthesis and storage of chemical compounds. Plastids have systems for gene expression and protein synthesis independent of the nucleus, but exist within the cell in a semi-autonomous manner that relies on close cooperation with the nuclear-cytoplasmic system.

대표적인 색소체로 엽록체를 들 수 있다. 엽록체의 가장 본질적인 기능은 광합성 수행이지만, 그 외에도 식물 세포에 중요한 많은 다른 생합성 과정을 수행한다. 또한, 엽록체는 농약 산업에서 중요한 표적 중 하나이다. 예를 들어, 많은 제초제는 엽록체 내에서 수행되는 기능을 차단시킴으로써 작용하는 것으로 알려져 있다. A representative plastid is a chloroplast. Although the most essential function of chloroplasts is the performance of photosynthesis, they also perform many other biosynthetic processes important to plant cells. In addition, chloroplasts are one of the important targets in the agrochemical industry. For example, many herbicides are known to act by blocking functions performed within the chloroplast.

대부분의 엽록체 단백질은 식물 세포의 핵에서 암호화되고, 세포질에서 전구체 단백질로서 합성되고, 번역 후에 엽록체로 수송된다. 엽록체 위치화가 예정된 전구체 단백질은 엽록체 전이 펩타이드 (Chloroplast Transit Peptide, CTP)로 알려져 있는 N-말단 연장부를 포함한다.Most chloroplast proteins are encoded in the nucleus of plant cells, synthesized as precursor proteins in the cytoplasm, and transported to the chloroplast after translation. Precursor proteins destined for chloroplast localization contain an N-terminal extension known as Chloroplast Transit Peptide (CTP).

상기 N-말단 전이 펩타이드는 목적 물질 (예컨대, 목적 단백질)을 엽록체에 표적화시키는 수단으로서 유용하게 사용될 수 있다.The N-terminal transit peptide may be usefully used as a means for targeting a target substance (eg, a target protein) to the chloroplast.

본 명세서에서, 신규한 엽록체 전이 펩타이드 (Chloroplast Transit Peptide, CTP) 및 이의 목적 물질의 엽록체 표적화 용도가 제공된다.In the present specification, a novel chloroplast transit peptide (Chloroplast Transit Peptide, CTP) and a target substance thereof for targeting the chloroplast are provided.

일 예는 신규한 엽록체 전이 펩타이드를 제공한다.One example provides a novel chloroplast transit peptide.

다른 예는 상기 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 제공한다. 상기 목적 단백질은 상기 엽록체 전이 펩타이드의 C-말단, N-말단, 또는 양 말단 모두에 펩타이드 링커를 통하거나 통하지 않고 직접 연결된 것일 수 있으며, 예컨대, 엽록체 전이 펩타이드의 C-말단에 연결된 것일 수 있다.Another example provides a fusion protein comprising the chloroplast transit peptide and a target protein. The target protein may be directly linked to the C-terminus, the N-terminus, or both ends of the chloroplast transit peptide through or without a peptide linker, for example, it may be linked to the C-terminus of the chloroplast transit peptide.

다른 예는 상기 엽록체 전이 펩타이드 또는 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드를 제공한다. Another example provides a polynucleotide encoding the chloroplast transit peptide or the fusion protein.

다른 예는 상기 폴리뉴클레오타이드를 운반 (또는 포함)하는 재조합 벡터를 제공한다.Another example provides a recombinant vector carrying (or comprising) the polynucleotide.

다른 예는 상기 폴리뉴클레오타이드 또는 재조합 벡터를 포함하는 재조합 세포를 제공한다.Another example provides a recombinant cell comprising the polynucleotide or recombinant vector.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질, 이를 암호화하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터, 및 상기 폴리뉴클레오타이드 또는 재조합 벡터를 포함하는 재조합 세포로 이루어진 군에서 선택된 1종 이상을 포함하는, 상기 목적 단백질의 엽록체 수송용 조성물을 제공한다.Another example is at least one selected from the group consisting of a fusion protein comprising a chloroplast transit peptide and a target protein, a polynucleotide encoding the same, a recombinant vector comprising the polynucleotide, and a recombinant cell comprising the polynucleotide or the recombinant vector It provides a composition for transporting the chloroplast of the target protein, comprising a.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질, 또는 이를 암호화하는 폴리뉴클레오타이드를 세포에 도입하는 단계를 포함하는, 상기 목적 단백질의 엽록체 수송 방법을 제공한다. 상기 세포는 엽록체를 포함하는 모든 세포들 중에서 선택될 수 있으며, 예컨대, 식물 또는 조류(algae)의 세포일 수 있다.Another example provides a chloroplast transport method of the target protein, comprising the step of introducing a fusion protein comprising a chloroplast transit peptide and a target protein, or a polynucleotide encoding the same into a cell. The cell may be selected from all cells including chloroplasts, and may be, for example, cells of plants or algae.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드 또는 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터로 형질전환된 형질전환체를 제공한다. Another example provides a polynucleotide encoding a fusion protein comprising a chloroplast transit peptide and a target protein, or a transformant transformed with a recombinant vector comprising the polynucleotide.

다른 예는 숙주 세포를 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드 또는 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터로 형질전환시키는 단계를 포함하는, 형질전환체의 제조 방법을 제공한다. 상기 숙주세포는 식물 세포일 수 있다.Another example provides a method for producing a transformant, comprising transforming a host cell with a polynucleotide encoding a fusion protein comprising a chloroplast transit peptide and a target protein or a recombinant vector comprising the polynucleotide. The host cell may be a plant cell.

본 명세서에서, 신규한 엽록체 전이 펩타이드 (Chloroplast Transit Peptide, CTP) 및 이의 목적 물질의 엽록체 표적화 용도가 제공된다.In the present specification, a novel chloroplast transit peptide (Chloroplast Transit Peptide, CTP) and a target substance thereof for targeting the chloroplast are provided.

본 명세서에서, 폴리뉴클레오타이드("유전자"와 혼용될 수 있음) 또는 폴리펩타이드("단백질"과 혼용될 수 있음)가 "특정 핵산 서열 또는 아미노산 서열을 포함한다, 특정 핵산 서열 또는 아미노산 서열로 이루어진다, 또는 특정 핵산 서열 또는 아미노산 서열로 표현된다" 함은 등가적 의미로 상호 혼용 가능한 표현으로, 상기 폴리뉴클레오타이드 또는 폴리펩타이드가 상기 특정 핵산 서열 또는 아미노산 서열을 필수적으로 포함하는 것을 의미할 수 있으며, 상기 폴리뉴클레오타이드 또는 폴리펩타이드의 본래의 기능 및/또는 목적하는 기능을 유지하는 범위에서 상기 특정 핵산 서열 또는 아미노산 서열에 변이(결실, 치환, 변형, 및/또는 부가)가 가해진 "실질적으로 동등한 서열"을 포함하는 것(또는 상기 변이가 도입된 것을 배제하지 않는 것)으로 해석될 수 있다. As used herein, a polynucleotide (which may be used interchangeably with "gene") or a polypeptide (which may be used interchangeably with "protein") is "comprising a specific nucleic acid sequence or amino acid sequence, consisting of a specific nucleic acid sequence or amino acid sequence, Or it is expressed as a specific nucleic acid sequence or amino acid sequence" is an equivalent meaning and interchangeable expressions, and may mean that the polynucleotide or polypeptide essentially includes the specific nucleic acid sequence or amino acid sequence, and the polynucleotide or polypeptide necessarily includes the specific nucleic acid sequence or amino acid sequence. Includes "substantially equivalent sequences" in which mutations (deletions, substitutions, modifications, and/or additions) are made to the specific nucleic acid sequence or amino acid sequence to the extent that the original function and/or the desired function of the nucleotide or polypeptide is maintained. It can be interpreted as doing (or not excluding that the mutation is introduced).

일 예에서, 본 명세서에서 제공되는 핵산 서열 또는 아미노산 서열은 이들의 본래의 기능 또는 목적하는 기능을 유지하는 범위에서 통상적인 돌연변이 유발법, 예를 들면 방향성 진화법(directed evolution) 및/또는 부위특이적 돌연변이법(site-directed mutagenesis) 등에 의하여 변형된 것을 포함할 수 있다. 일 예에서, 폴리뉴클레오타이드 또는 폴리펩타이드가 "특정 핵산 서열 또는 아미노산 서열을 포함한다" 함은 상기 폴리뉴클레오타이드 또는 폴리펩타이드가 (i) 상기 특정 핵산 서열 또는 아미노산 서열로 이루어지거나 또는 이를 필수적으로 포함하거나, 또는 (ii) 상기 특정 핵산 서열 또는 아미노산 서열과 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성을 갖는 서열로 이루어지거나 이를 필수적으로 포함하고 본래의 기능 및/또는 목적하는 기능을 유지하는 것을 의미할 수 있다. 본 명세서에서, 상기 본래의 기능은, 엽록체 전이 (수송, 위치화, 및/또는 표적화) 기능을 의미할 수 있다.In one embodiment, the nucleic acid sequences or amino acid sequences provided herein can be subjected to conventional mutagenesis methods, such as directed evolution and/or site-specification, to the extent that they retain their original or desired functions. It may include those modified by site-directed mutagenesis or the like. In one embodiment, reference to a polynucleotide or polypeptide “comprising a specific nucleic acid sequence or amino acid sequence” means that the polynucleotide or polypeptide (i) consists of or consists essentially of the specific nucleic acid sequence or amino acid sequence; or (ii) at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, 95% of the specific nucleic acid sequence or amino acid sequence. It may mean that it consists of or consists essentially of a sequence having at least 96%, at least 97%, at least 98%, or at least 99% homology and maintains the original function and/or the desired function. As used herein, the original function may refer to a chloroplast transition (transport, localization, and/or targeting) function.

본 명세서에 기재된 핵산 서열은 코돈의 축퇴성(degeneracy)으로 인하여 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열 및/또는 기능을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있다.The nucleic acid sequence described herein is within a range that does not change the amino acid sequence and / or function of the protein expressed from the coding region, considering the codon preferred in the organism to express the protein due to the degeneracy of the codon. Various modifications can be made to the coding region in .

본 명세서에서, 용어 "상동성(identity or homology)"은 주어진 핵산 서열 또는 아미노산 서열과 일치하는 정도를 의미하며 백분율(%)로 표시될 수 있다. 핵산 서열에 대한 상동성의 경우, 예를 들면, 문헌에 의한 알고리즘 BLAST(참조: Karlin 및 Altschul, Pro. Natl. Acad. Sci. USA, 90, 5873, 1993)나 Pearson에 의한 FASTA(참조: Methods Enzymol., 183, 63, 1990)를 사용하여 결정할 수 있다. 이러한 알고리즘 BLAST에 기초하여, BLASTN이나 BLASTX라고 불리는 프로그램이 개발되어 있다(참조: http://www.ncbi.nlm.nih.gov).As used herein, the term “identity or homology” refers to the degree of agreement with a given nucleic acid sequence or amino acid sequence, and may be expressed as a percentage (%). For homology to nucleic acid sequences, for example, the algorithm BLAST according to the literature (Karlin and Altschul, Pro. Natl. Acad. Sci. USA, 90, 5873, 1993) or FASTA by Pearson (see Methods Enzymol) ., 183, 63, 1990) can be used. Based on such an algorithm BLAST, a program called BLASTN or BLASTX has been developed (refer to http://www.ncbi.nlm.nih.gov).

본 명세서에서 '서열번호로 특정된 아미노산 서열 또는 핵산 서열을 포함하는 폴리펩타이드 (또는 단백질) 및 폴리뉴클레오타이드 (또는 유전자)'는, 다르게 정의되지 않는 한, 상기 서열번호의 서열과 100% 동일한 서열을 포함하는 것뿐 아니라, 상기 서열과 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성을 갖는 서열을 포함하고, 100% 동일한 서열을 포함하는 폴리펩타이드 또는 폴리뉴클레타이드 본래의 기능 및/또는 목적하는 기능을 유지하는 모든 폴리펩타이드 또는 폴리뉴클레타이드를 포함하는 것으로 해석될 수 있다.본 명세서에서 제공되는 단백질의 아미노산 서열 중 N 말단으로부터 첫 번째 아미노산 잔기가 메티오닌 (Met, M)인 경우, 상기 단백질은 재조합적으로 생산된 것이고, 상기 메티오닌 잔기는 개시 코돈에 의하여 암호화된 것일 수 있다. 따라서, 본 명세서에서 제공되는 단백질은 정의된 아미노산 서열 중에서 개시코돈에 의하여 암호화된 메티오닌(N 말단으로부터 첫 번째 아미노산 잔기)이 제외된 형태의 단백질 (예컨대, 자연적으로 존재하거나, 화학적 합성 등과 같이 재조합적 방법 이외의 방법으로 생산된 단백질)도 포함하는 것으로 해석될 수 있다. In the present specification, 'polypeptide (or protein) and polynucleotide (or gene) comprising an amino acid sequence or nucleic acid sequence specified by SEQ ID NO:', unless otherwise defined, refers to a sequence 100% identical to the sequence of SEQ ID NO: 60% or more, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96 A polypeptide or polynucleotide comprising a sequence having at least %, at least 97%, at least 98%, or at least 99% homology, and retaining the original function and/or desired function of a polypeptide or polynucleotide comprising a sequence that is 100% identical. It can be interpreted as including all polypeptides or polynucleotides. In the amino acid sequence of a protein provided herein, when the first amino acid residue from the N-terminus is methionine (Met, M), the protein is recombinantly produced, and the methionine residue may be encoded by an initiation codon. Accordingly, the protein provided herein is a protein in a form in which methionine (the first amino acid residue from the N-terminus) encoded by the initiation codon is excluded from the defined amino acid sequence (eg, naturally occurring or recombinantly such as chemically synthesized) protein produced by a method other than the method).

이하, 본 명세서에 개시되는 발명을 보다 상세히 설명한다.Hereinafter, the invention disclosed herein will be described in more detail.

일 예에서, 엽록체 전이 펩타이드 (Chloroplast Transit Peptide, CTP)가 제공된다. 상기 엽록체 전이 펩타이드는 엽록체를 포함하는 세포에서 엽록체 내 위치화 가능한 펩타이드를 의미할 수 있다. In one embodiment, Chloroplast Transit Peptide (CTP) is provided. The chloroplast transit peptide may refer to a peptide localizable in the chloroplast in a cell including the chloroplast.

일 예에서, 상기 엽록체 전이 펩타이드는 서열번호 1 내지 77 중에서 선택된 아미노산 서열을 포함하는 폴리펩타이드, 상기 폴리펩타이드의 단편, 및/또는 상기 폴리펩타이드의 연장체일 수 있다. 일 구체예에서, 상기 엽록체 전이 펩타이드는 서열번호 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, 및 77 중에서 선택된 아미노산 서열, 예컨대, 서열번호 42, 43, 및 63 중에서 선택된 아미노산 서열을 포함하는 폴리펩타이드 또는 상기 폴리펩타이드의 단편일 수 있다.In one example, the chloroplast transit peptide may be a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 1 to 77, a fragment of the polypeptide, and/or an extension of the polypeptide. In one embodiment, the chloroplast transit peptide is SEQ ID NO: 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, an amino acid sequence selected from 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, and 77, such as SEQ ID NOs: 42, 43, and It may be a polypeptide comprising an amino acid sequence selected from 63 or a fragment of the polypeptide.

상기 폴리펩타이드 단편은, (1) 서열번호 1 내지 77 중에서 선택된 아미노산 서열, (2) 서열번호 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, 및 77 중에서 선택된 아미노산 서열, 또는 (3) 서열번호 42, 43, 및 63 중에서 선택된 아미노산 서열 중에서, N-말단(첫 번째 아미노산 잔기)부터 연속하는 20개 이상, 25개 이상, 30개 이상, 35개 이상, 40개 이상, 42개 이상, 45개 이상, 47개 이상, 50개 이상, 52개 이상, 55개 이상, 56개 이상, 57개 이상, 58개 이상, 59개 이상, 60개 이상, 61개 이상, 62개 이상, 63개 이상, 64개 이상, 65개 이상, 66개 이상, 67개 이상, 68개 이상, 69개 이상, 또는 70개 이상의 아미노산을 포함하는 것일 수 있다. The polypeptide fragment comprises (1) an amino acid sequence selected from SEQ ID NOs: 1 to 77, (2) SEQ ID NOs: 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, and 77 an amino acid sequence, or (3) 20 or more, 25 or more, 30 or more, 35 or more, 40 consecutive from the N-terminus (the first amino acid residue) of the amino acid sequence selected from SEQ ID NOs: 42, 43, and 63 more than 42, more than 45, more than 47, more than 50, more than 52, more than 55, more than 56, more than 57, more than 58, more than 59, more than 60, more than 61 , 62 or more, 63 or more, 64 or more, 65 or more, 66 or more, 67 or more, 68 or more, 69 or more, or 70 or more amino acids.

상기 폴리펩타이드 연장체는 서열번호 1 내지 77 중에서 선택된 아미노산 서열에 추가하여 1 내지 50개, 1 내지 45개, 1 내지 40개, 1 내지 35개, 1 내지 30개, 또는 1 내지 25개의 아미노산으로 이루어진 연장서열을 추가로 포함하는 것일 수 있으며, 상기 연장서열은 상기 아미노산 서열의 N-말단 또는 C-말단, 예컨대 C-말단에 연결된 것일 수 있다. 일 구체예에서, 상기 폴리펩타이드 연장체로서, 서열번호 63의 C-말단에 5개 아미노산이 추가된 서열번호 319, 10개의 아미노산이 추가된 서열번호 320, 15개의 아미노산이 추가된 서열번호 321 등을 예시할 수 있으나, 이에 제한되는 것은 아니다.The polypeptide extension consists of 1 to 50, 1 to 45, 1 to 40, 1 to 35, 1 to 30, or 1 to 25 amino acids in addition to the amino acid sequence selected from SEQ ID NOs: 1 to 77. It may further include an extension sequence, and the extension sequence may be linked to the N-terminus or C-terminus, such as the C-terminus of the amino acid sequence. In one embodiment, as the polypeptide extension, SEQ ID NO: 319 with 5 amino acids added to the C-terminus of SEQ ID NO: 63, SEQ ID NO: 320 with 10 amino acids added, SEQ ID NO: 321 with 15 amino acids added, etc. Examples may be provided, but the present invention is not limited thereto.

상기 폴리펩타이드, 폴리펩타이드 단편 및/또는 폴리펩타이드 연장체는 세포 내, 구체적으로 엽록체 내, 예컨대, 스트로마에서, 펩티다제, 예컨대, 스트로마 프로세싱 펩티다제 (Stromal Processing Peptidase, SPP; 예컨대, 애기장대의 경우 At5g42390, 클라미도모나스속 미생물의 경우 SPP-1, SPP-2 등) 에 의하여 절단되는 절단 부위(cleavage site)를 포함하는 것일 수 있다. Said polypeptide, polypeptide fragment and/or polypeptide elongate may be administered intracellularly, specifically in a chloroplast, such as in a stroma, a peptidase such as a Stromal Processing Peptidase (SPP; e.g. Arabidopsis thaliana). In the case of At5g42390, in the case of Chlamydomonas microorganisms, it may include a cleavage site that is cleaved by SPP-1, SPP-2, etc.).

다른 예에서, 상기 엽록체 전이 펩타이드는 애기장대의 프로토포르피리노겐 옥시데이즈 1 (Protoporphyrinogen Oxidase 1; PPO1)의 N-말단 부위, 예컨대, 서열번호 326의 아미노산 서열 중 N-말단(첫 번째 아미노산 잔기)부터 연속하는 30개 이상, 31개 이상, 32개 이상, 33개 이상, 34개 이상, 35개 이상, 36개 이상, 37개 이상, 38개 이상, 39개 이상, 또는 40개 이상의 아미노산을 포함하는 것일 수 있으며, 이에 더하여, 상기 N-말단 부위는 세포 내, 구체적으로 엽록체 내, 예컨대, 스트로마에서, 펩티다제, 예컨대, 스트로마 프로세싱 펩티다제 (Stromal Processing Peptidase, SPP; 예컨대, 애기장대의 경우 At5g42390, 클라미도모나스속 미생물의 경우 SPP-1, SPP-2 등)에 의하여 절단되는 절단 부위(cleavage site)를 포함하는 것일 수 있다. 일 구체예에서, 상기 애기장대 프로토포르피리노겐 옥시데이즈 1의 N-말단 부위는 서열번호 326의 아미노산 서열 중, 적어도 서열번호 334, 335, 336, 337, 338, 또는 339의 아미노산 서열을 포함하는 것일 수 있다.In another example, the chloroplast transit peptide is an N-terminal region of Arabidopsis Protoporphyrinogen Oxidase 1 (PPO1), such as the N-terminal (first amino acid residue) of the amino acid sequence of SEQ ID NO: 326. 30 or more, 31 or more, 32 or more, 33 or more, 34 or more, 35 or more, 36 or more, 37 or more, 38 or more, 39 or more, or 40 or more amino acids consecutive from In addition, the N-terminal region is intracellular, specifically in the chloroplast, e.g., in the stroma, a peptidase, e.g., Stromal Processing Peptidase (SPP; e.g., Arabidopsis thaliana) In the case of At5g42390, in the case of Chlamydomonas microorganisms, it may include a cleavage site that is cleaved by SPP-1, SPP-2, etc.). In one embodiment, the N-terminal region of Arabidopsis protoporphyrinogen oxidase 1 comprises at least the amino acid sequence of SEQ ID NO: 334, 335, 336, 337, 338, or 339 among the amino acid sequence of SEQ ID NO: 326 it could be

다른 예는 상기 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 제공한다. 상기 목적 단백질은 상기 엽록체 전이 펩타이드의 C-말단, N 말단, 또는 양 말단 모두에 펩타이드 링커를 통하거나 통하지 않고 직접 연결된 것일 수 있으며, 예컨대, 엽록체 전이 펩타이드의 C-말단에 연결된 것일 수 있다.Another example provides a fusion protein comprising the chloroplast transit peptide and a target protein. The target protein may be directly linked to the C-terminus, the N-terminus, or both ends of the chloroplast transit peptide through or without a peptide linker, for example, it may be linked to the C-terminus of the chloroplast transit peptide.

상기 목적 단백질은 엽록체로 수송하거나 엽록체에서 발현시키고자 하는 모든 단백질 중에서 선택된 것일 수 있다. The target protein may be selected from all proteins to be transported to or expressed in the chloroplast.

상기 융합 단백질에 있어서, 목적 단백질이 재조합적으로 생산되고 엽록체 전이 펩타이드의 C-말단에 연결되는 경우, 본 명세서에서 제공되거나 공지된 상기 목적 단백질의 아미노산 서열 중 개시코돈에 의하여 암호화된 N-말단의 첫 번째 아미노산 잔기인 메티오닌 (Met, M))이 제외된 나머지 서열이 엽록체 전이 펩타이드의 C-말단에 연결될 수 있다. 즉, 목적 단백질이 재조합적으로 생산된 것인 경우, 상기 융합 단백질은 엽록체 전이 펩타이드의 C-말단과 목적 단백질의 N-말단으로부터 2번째 아미노산 잔기가 연결된 단백질일 수 있다.In the fusion protein, when the target protein is recombinantly produced and linked to the C-terminus of the chloroplast transit peptide, the N-terminus encoded by the initiation codon in the amino acid sequence of the target protein provided or known herein The remaining sequence excluding the first amino acid residue methionine (Met, M)) may be linked to the C-terminus of the chloroplast transit peptide. That is, when the target protein is recombinantly produced, the fusion protein may be a protein in which the second amino acid residue from the C-terminus of the chloroplast transit peptide and the N-terminus of the target protein are linked.

일 예에서, 상기 목적 단백질은 제초제 내성 단백질일 수 있다. 상기 제조체 내성 단백질은 PPO (protoporphyrinogen oxidase) 단백질 등과 같은 PPO 활성 저해 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (PPO 활성 저해 제초제 내성 단백질); EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) 단백질 등과 같은 글리포세이트에 대한 내성 부여 및/또는 증진 가능한 단백질 (글리포세이트 내성 단백질); PAT (phosphinothricin-N-acetyltransferase) 단백질 등과 같은 글루포시네이트에 대한 내성 부여 및/또는 증진 가능한 단백질 (글루포시네이트 내성 단백질); DMO (dicamba monooxygenase) 등의 디캄바에 대한 내성 부여 및/또는 증진 가능한 단백질 (디캄바 내성 단백질); 2,4-D 모노옥시게나아제, AAD (aryloxyalkanoate dioxygenase) 등의 2,4-D (2,4-Dichlorophenoxyacetic acid)에 대한 내성 부여 및/또는 증진 가능한 단백질 (2,4-D 내성 단백질); ALS (acetolactate synthase), AHAS (acetohydroxyacid synthase), AtAHASL (Arabidopsis thaliana acetohydroxyacid synthase large subunit) 등의 ALS 저해성 설포닐우레아 (sulfonylurea)계 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (ALS 저해성 설포닐우레아 (sulfonylurea)계 제초제 내성 단백질); 광계 II (photosystem II) 단백질 D1 등의 광계 II 저해성 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (광계 II 저해성 제초제 내성 단백질); 시토크롬 P450 (cytochrome P450) 등의 페닐우레아계 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (페닐우레아계 제초제 내성 단백질); HPPD (hydroxyphenylpyruvate dioxygenase) 등의 색소체 저해성 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (색소체 저해성 제초제 내성 단백질); 니트릴레이즈 (nitrilase) 등과 같은 브로목시닐 제초제에 대한 내성 부여 및/또는 증진 가능한 단백질 (브로목시닐 제초제 내성 단백질) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.In one example, the target protein may be a herbicide resistance protein. The manufacturer-resistant protein is a protein capable of conferring and/or enhancing resistance to PPO activity inhibitory herbicides such as PPO (protoporphyrinogen oxidase) protein (PPO activity inhibitory herbicide resistance protein); Proteins capable of conferring and/or enhancing resistance to glyphosate, such as 5-enolpyruvylshikimate-3-phosphate synthase (EPPSS) protein (glyphosate resistance protein); a protein capable of conferring and/or enhancing resistance to glufosinate, such as phosphinothricin-N-acetyltransferase (PAT) protein (glufosinate resistance protein); DMO (dicamba monooxygenase), such as resistance to dicamba and / or enhanceable protein (dicamba resistance protein); 2,4-D monooxygenase, AAD (aryloxyalkanoate dioxygenase), etc. 2,4-D (2,4-Dichlorophenoxyacetic acid) to confer and/or enhance resistance to proteins (2,4-D resistance protein); ALS-inhibiting sulfonylurea-based herbicides such as acetolactate synthase (ALS), acetohydroxyacid synthase (AHAS), AtAHASL ( Arabidopsis thaliana acetohydroxyacid synthase large subunit), and/or protein (ALS inhibitory sulfonyl) urea (sulfonylurea) herbicide tolerance protein); Photosystem II (photosystem II) protein D1, such as a protein that can confer and / or enhance resistance to a photosystem II inhibitory herbicide (photosystem II inhibitory herbicide tolerance protein); Proteins capable of conferring and/or enhancing resistance to phenylurea-based herbicides such as cytochrome P450 (phenylurea-based herbicide resistance protein); Proteins capable of conferring and/or enhancing tolerance to plastid inhibitory herbicides such as hydroxyphenylpyruvate dioxygenase (HPPD) (chromosome inhibitory herbicide resistance protein); It may be at least one selected from the group consisting of a protein capable of imparting and/or enhancing tolerance to bromoxynyl herbicides such as nitrilase (nitrilase) and the like (bromoxynyl herbicide resistance protein).

보다 구체적으로, 상기 제초제 내성 단백질은 PPO 활성 저해 제초제에 대한 내성과 관련된 단백질일 수 있다. 상기 PPO 활성 저해 제초제에 대한 내성과 관련된 단백질은 원핵생물(예컨대, 남세균)로부터 유래하는 PPO 단백질로서, PPO 억제 제초제에 대하여 내성을 갖는 제초제 내성 PPO 단백질일 수 있으며, 예컨대, 오실라토리아 니그로-비리디스(Oscillatoria nigro-viridis) (예컨대, Oscillatoria nigro-viridis PCC 7112 균주) 유래 PPO 단백질, 링비아 속(Lyngbya sp.) 균주 (예컨대, Lyngbya sp. PCC 8106 균주) 유래 PPO 단백질, 할로테세 속 (Halothece sp.) (예컨대, Halothece sp. PCC 7418 균주) 유래 PPO 단백질, 써모시네코코커스 에롱가투스 (Thermosynechococcus elongatus) (예컨대, Thermosynechococcus elongatus BP-1 또는 PKUAC-SCTE542) 균주 유래 PPO 단백질, 시네코코커스속 (Synechococcus sp.) (예컨대, Synechococcus sp. JA-3-3Ab) 균주 유래 PPO 단백질, 스피루리나 서브살사 (Spirulina subsalsa) 유래 PPO 단백질, 써모시네코코커스 속 (Thermosynechococcus sp.) (예컨대, (Thermosynechococcus sp. NK55a) 균주 유래 PPO 단백질, 시아노박테리아 박테리움 (Cyanobacteria bacterium) (예컨대, Cyanobacteria bacterium J003) 균주 유래 PPO 단백질, 써모시네코코커스 불카누스 (Thermosynechococcus vulcanus) (예컨대, Thermosynechococcus vulcanu NIES-2134) 유래 PPO 단백질, 아우제노클로렐라 프로토테코이데스 (Auxenochlorella protothecoides) 유래 PPO 단백질, 마이소코커스 산투스 (Myxococcus xanthus) 유래 PPO 단백질, PPO 활성 및/또는 PPO 활성 저해 제초제에 대한 내성을 유지하는 이들의 변이체 등으로 이루어진 군에서 선택된 1종 이상을 예시할 수 있으나, 이에 제한되는 것은 아니다.More specifically, the herbicide resistance protein may be a protein related to resistance to PPO activity inhibitory herbicides. The protein related to resistance to the PPO activity inhibitory herbicide is a PPO protein derived from prokaryotes (eg, cyanobacteria), and may be a herbicide-resistant PPO protein having resistance to PPO inhibitory herbicides, for example, Oscilatoria nigro-viri. display (Oscillatoria nigro-viridis) (e. g., Oscillatoria nigro-viridis PCC 7112 strain) derived PPO protein, ring via-in (Lyngbya sp.) strain (e.g., Lyngbya sp. PCC 8106 strain) derived PPO protein, halo tese in (Halothece sp.) (eg, Halothece sp. PCC 7418 strain) derived PPO protein, Thermosynechococcus elongatus (eg, Thermosynechococcus elongatus BP-1 or PKUAC-SCTE542) strain PPO protein, Synechococcus genus ( Synechococcus sp.) (eg, Synechococcus sp. JA-3-3Ab) strain-derived PPO protein, Spirulina subsalsa- derived PPO protein, Thermosynechococcus sp.) (eg, ( Thermosynechococcus sp. NK55a) strain-derived PPO protein, Cyanobacteria bacterium (eg Cyanobacteria bacterium J003) strain-derived PPO protein, Thermosynechococcus vulcanus ( Thermosynechococcus vulcanus ) (eg Thermosynechococcus vulcanu NIES-2134)-derived PPO protein, PPO protein from Auxenochlorella protothecoides , PPO group from Myxococcus xanthus One or more selected from the group consisting of white matter, PPO activity and/or PPO activity inhibitory herbicides, etc. may be exemplified, but the present invention is not limited thereto.

다른 예에서, 상기 제초제 내성 단백질은 글리포세이트 제초제 내성 EPSPS (glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase, 예컨대, cp4 epsps, mepsps, 2mepsps, CP4EPSPS 등), GOX (glyphosate oxidase), GAT (glyphosate-N-acetyltransferase) 또는 글리포세이트 디카복실레이즈 (glyphosate decarboxylase); 글루포시네이트 제초제 내성 PAT (phosphinothricin-N-acetyltransferase); 디캄바 제초제 내성 DMO (dicamba monooxygenase); 2,4-D 제초제 내성 2,4-D 모노옥시게나아제 또는 AAD (aryloxyalkanoate dioxygenase); ALS 저해성 설포닐우레아 (sulfonylurea)계 제초제 내성 ALS (acetolactate synthase), AHAS (acetohydroxyacid synthase), 또는 AtAHASL (Arabidopsis thaliana acetohydroxyacid synthase large subunit); 제2광계(광계 II) 저해성 제초제 내성 광계 II (photosystem II) 단백질 D1; 페닐우레아계 제초제 내성 시토크롬 P450 (cytochrome P450); 색소체 저해성 제초제 내성 HPPD (hydroxyphenylpyruvate dioxygenase); 브로목시닐 제초제 내성 니트릴레이즈 (nitrilase); 이들의 원래의 효소 활성 및/또는 제초제 내성을 유지하는 변이체; 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상일 수 있다.In another example, the herbicide resistance protein is a glyphosate herbicide resistant EPSPS (glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase, such as cp4 epsps, mepsps, 2mepsps, CP4EPSPS, etc.), glyphosate oxidase (GOX), glyphosate- N-acetyltransferase) or glyphosate decarboxylase; glufosinate herbicide resistant PAT (phosphinothricin-N-acetyltransferase); dicamba herbicide tolerant DMO (dicamba monooxygenase); 2,4-D herbicide tolerant 2,4-D monooxygenase or aryloxyalkanoate dioxygenase (AAD); ALS inhibitory sulfonylurea herbicide-resistant ALS (acetolactate synthase), AHAS (acetohydroxyacid synthase), or AtAHASL ( Arabidopsis thaliana acetohydroxyacid synthase large subunit); photosystem II inhibitory herbicide tolerance photosystem II protein D1; phenylurea herbicide resistant cytochrome P450; plastid inhibitory herbicide-resistant HPPD (hydroxyphenylpyruvate dioxygenase); bromoxynil herbicide tolerant nitrilase; variants that retain their original enzymatic activity and/or herbicide tolerance; And it may be at least one selected from the group consisting of combinations thereof.

상기한 제초제 내성 단백질은 야생형 단백질 뿐 아니라, 이들과 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 99.2% 이상, 99.4% 이상, 99.6% 이상, 99.8% 이상, 또는 99.9% 이상의 서열 상동성을 가지고, 식물 및/또는 조류에 제초제 내성 부여 및/또는 증진 활성을 유지하는 변이형 단백질들도 포함할 수 있다.The above herbicide tolerance protein is not only wild-type protein, but also 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97 % or more, 98% or more, 99% or more, 99.2% or more, 99.4% or more, 99.6% or more, 99.8% or more, or 99.9% or more sequence homology, conferring and/or enhancing herbicide tolerance to plants and/or algae Variant proteins that retain activity may also be included.

다른 예에서, 상기 목적 단백질은 생물학적 활성 물질 및 대사물질의 합성 효소 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.In another example, the target protein may be at least one selected from the group consisting of biologically active substances and synthesizing enzymes of metabolites.

상기 생물학적 활성 물질은 생체 내에서 유용한 효과를 나타내는 모든 단백질을 포함하며, 예컨대, 의료용 단백질, 화장품 원료 단백질 (예, 성장 인자 등), 대사물질의 합성 효소 등을 포함할 수 있다.The biologically active material includes all proteins exhibiting useful effects in vivo, and may include, for example, medical proteins, cosmetic raw materials (eg, growth factors, etc.), synthesizing enzymes of metabolites, and the like.

상기 의료용 단백질은 생체에서 목적하는 활성 (예컨대 특정 질병 또는 증상의 예방, 경감, 및/또는 치료 활성, 또는 생체 필요 물질을 대체하는 활성)을 갖는 단백질 및/또는 펩타이드일 수 있으며, 예컨대, 효소 활성의 단백질 (예컨대, 프로테아제, 키나제, 포스파타제 등), 수용체 단백질, 수송체 단백질, 살균 및/또는 내독소-결합 단백질, 구조 단백질, 항체 등의 면역 폴리펩타이드, 독소, 항생제, 호르몬, 성장 인자, 백신 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 일 예에서, 상기 목적 단백질은 호르몬, 사이토카인, 조직 플라스미노겐 활성인자, 면역글로불린 (예컨대, 항체 또는 그의 항원 결합 단편 또는 변이체) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 다른 구체예에서, 상기 목적 단백질은 인슐린, 사람 성장 호르몬(hGH) 등의 호르몬, 인슐린-유사 성장 인자, EGF (epidermal growth factor), VEGRF (vascular endothelial growth factor) 등의 각종 성장 인자, 각종 수용체, 조직 플라스미노겐 활성인자(tPA), 에리트로포이에틴(EPO), 사이토카인 (예컨대, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18과 같은 인터루킨), 인터페론(IFN)-알파, -베타, -감마, -오메가 또는 -타우 등의 인터페론(IFN), TNF-알파, 베타 또는 감마 등의 종양 괴사 인자(TNF), TNF-관련 세포자멸사 유도 리간드 (TNF-related apoptosis-inducing ligand; TRAIL), G-CSF, GM-CSF, M-CSF 등의 콜로니 자극 인자 (colony stimulating factor; CSF), MCP-1 등의 단핵구 화학주성 단백질 (monocyte chemoattractant protein; MCP)로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. The medical protein may be a protein and/or peptide having a desired activity in a living body (eg, prevention, alleviation, and/or therapeutic activity of a specific disease or symptom, or an activity of replacing a substance necessary for a living body), for example, enzymatic activity of proteins (e.g., proteases, kinases, phosphatases, etc.), receptor proteins, transporter proteins, bactericidal and/or endotoxin-binding proteins, structural proteins, immune polypeptides such as antibodies, toxins, antibiotics, hormones, growth factors, vaccines It may be one or more selected from the group consisting of. In one example, the target protein may be one or more selected from the group consisting of hormones, cytokines, tissue plasminogen activators, immunoglobulins (eg, antibodies or antigen-binding fragments or variants thereof), and the like. In another embodiment, the target protein is insulin, hormones such as human growth hormone (hGH), insulin-like growth factor, epidermal growth factor (EGF), various growth factors such as vascular endothelial growth factor (VEGRF), various receptors, tissue plasminogen activator (tPA), erythropoietin (EPO), cytokines (eg, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, Interleukins such as IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18), interferon ( IFN)-alpha, -beta, -gamma, -omega or -tau such as interferon (IFN), TNF-alpha, beta or gamma, such as tumor necrosis factor (TNF), TNF-related apoptosis inducing ligand (TNF-related apoptosis-inducing ligand; TRAIL), colony stimulating factors (CSF) such as G-CSF, GM-CSF, M-CSF, and monocyte chemoattractant protein (MCP) such as MCP-1 It may be one or more selected from the group, but is not limited thereto.

상기 대사물질은, 예컨대, 이소프레노이드(isoprenoid), 페놀 화합물, 플라보노이드, 카로티노이드, 토코페롤, 레티놀 등으로 이루어진 군에서 선택된 1종 이상의 유용 대사물질을 의미하는 것일 수 있으며, 상기 대사물질의 합성 효소는 상기 1종 이상의 대사물질의 대사 경로에 관여하는 효소들 중에서 선택된 것일 수 있다. 예컨대, 이소프레노이드(isoprenoid)의 경우, 상기 합성 효소는 1-deoxy-D-xylulose 5-phosphate 신타아제 (DOXP synthase), 1-deoxy-D-xylulose 5-phosphate 리덕타아제 (DOXP reductase), 4-diphosphocytidyl-2-C-methyl-D-erythritol 신타아제 (CDPME synthase), 4-diphosphocytidyl-2-C-methyl-D-erythritol 키나아제 (CDPME kinase), 2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate 신타아제 (MEcPP synthase), (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate 신타아제 (HMBPP synthase), (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate 리덕타아제 (HMBPP reductase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있고; 페놀 화합물의 경우, 상기 합성 효소는 칼콘 신타아제 (Chalcone synthase), 칼콘 아이소머라아제 (chalcone isomerase), 플라본 3-하이드록실라아제 (flavanone 3-hydroxylase), 디하이드로플라보놀 4-리덕타아제 (dihydroflavonol 4-reductase), 플라바논 4-리덕타아제 (flavanone 4-reductase), 안토시아니딘 신타아제 (anthocyanidin synthase), UDP-글루코오스 플라보노이드 3-O 글루코실트랜스퍼라아제 (UDP-glucose flavonoid 3-O glucosyltransferase), 플라보놀 신타아제 (flavonol synthase), 류코안토시아니딘 리덕타아제 (leucoanthocyanidin reductase), 안토시아니딘 리덕타아제 (anthocyanidin reductase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있고; 플라보노이드의 경우, 상기 합성 효소는 페닐 암모니아 리아제 (phenyl ammonia lyase), 티로신 암모니아 리아제 (tyrosine ammonia lyase), 신나메이트 4-하이드록실라아제 (cinnamate 4-hydroxylase), 4-쿠마레이트: CoA 리가아제 (4-coumarate: CoA ligase), 칼콘 신타아제 (chalcone synthase), 칼콘 아이소머라아제 (chalcone isomerase), 이소플라본 신타아제 (isoflavone synthase), 가용성 플라본 신타아제 (soluble flavone synthase), 막결합 플라본 신타아제 (membrane-bound flavone synthase), 플라보논 3베타-하이드록실라아제 (flavanone 3β-hydroxylase), 플라보놀 신타아제 (flavonol synthase), 이소플라본 신타아제 (isoflavone synthase), 칼콘 리덕타아제 (chalcone reductase), 디하이드로플라보놀 4-리덕타아제 (dihydroflavonol 4-reductase), 류코시아니딘 리덕타아제 (leucocyanidin reductase), 안토시아니딘 신타아제 (anthocyanidin synthase), 플라보노이드 3-O-글라이코실트랜스퍼라아제 (flavonoid 3-O-glycosyltransferase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으며; 카로티노이드의 경우, 상기 합성 효소는 1-디옥시자일룰로오스 5-포이페이트 신테아제 (1-deoxyxylulose 5-phosphate Synthase), 파이토엔 신타아제 (Phytoene synthase), 파이토엔 디새츄레아제 Phytoene desaturease), 제타-카로틴 디새츄라아제 (ζ-carotene desaturase), 카로틴 아이소머라아제 (carotene isomerase), 베타-카로틴 하이드록실라아제 (β-carotene hydroxylase), 라이코펜 ε-사이클라아제 (lycopene ε-cyclase), 라이코펜 베타-사이클라아제 (lycopene β-cyclase), 베타-카로틴 하이드록실라아제 (β-carotene hydroxylase), ε-카로틴 하이드록실라아제 (ε-carotene hydroxylase), 제아잔틴 에폭시다아제 (zeaxanthin epoxidase), 비올라잔틴 디-에폭시다아제 (violaxanthin de-epoxidase), 네오잔틴 신타아제 (neoxanthin synthase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.The metabolite may mean, for example, one or more useful metabolites selected from the group consisting of isoprenoids, phenolic compounds, flavonoids, carotenoids, tocopherol, retinol, and the like, and the synthesizing enzyme of the metabolite is It may be selected from among the enzymes involved in the metabolic pathway of the one or more metabolites. For example, in the case of isoprenoids, the synthetase is 1-deoxy-D-xylulose 5-phosphate synthase (DOXP synthase), 1-deoxy-D-xylulose 5-phosphate reductase (DOXP reductase), 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (CDPME synthase), 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CDPME kinase), 2-C-Methyl-D-erythritol-2 ,4-cyclopyrophosphate synthase (MEcPP synthase), (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate synthase (HMBPP synthase), (E)-1-hydroxy-2-methyl -but-2-enyl-4-diphosphate reductase (HMBPP reductase) may be at least one selected from the group consisting of; In the case of phenolic compounds, the synthetase is chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase ( dihydroflavonol 4-reductase), flavanone 4-reductase, anthocyanidin synthase, UDP-glucose flavonoid 3-O glucosyltransferase (UDP-glucose flavonoid 3- O glucosyltransferase), flavonol synthase (flavonol synthase), leucoanthocyanidin reductase (leucoanthocyanidin reductase), anthocyanidin reductase (anthocyanidin reductase) may be at least one selected from the group consisting of; In the case of flavonoids, the synthetase is phenyl ammonia lyase, tyrosine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate: CoA ligase ( 4-coumarate: CoA ligase, chalcone synthase, chalcone isomerase, isoflavone synthase, soluble flavone synthase, membrane-bound flavone synthase ( membrane-bound flavone synthase, flavonone 3beta-hydroxylase, flavonol synthase, isoflavone synthase, chalcone reductase, Dihydroflavonol 4-reductase, leucocyanidin reductase, anthocyanidin synthase, flavonoid 3-O-glycosyltransferase (flavonoid 3-O-glycosyltransferase) may be at least one selected from the group consisting of; In the case of carotenoids, the synthetase is 1-deoxyxylulose 5-phosphate Synthase, Phytoene synthase, Phytoene desaturase ), zeta-carotene desaturase (ζ-carotene desaturase), carotene isomerase (carotene isomerase), beta-carotene hydroxylase (β-carotene hydroxylase), lycopene ε-cyclase (lycopene ε-cyclase) , lycopene beta-cyclase (lycopene β-cyclase), beta-carotene hydroxylase (β-carotene hydroxylase), ε-carotene hydroxylase (ε-carotene hydroxylase), zeaxanthin epoxidase (zeaxanthin epoxidase) , violaxanthin de-epoxidase (violaxanthin de-epoxidase), neoxanthin synthase (neoxanthin synthase), and the like may be at least one selected from the group consisting of.

다른 예는 상기 엽록체 전이 펩타이드 또는 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드를 제공한다. Another example provides a polynucleotide encoding the chloroplast transit peptide or the fusion protein.

다른 예는 상기 폴리뉴클레오타이드를 운반 (또는 포함)하는 재조합 벡터를 제공한다.Another example provides a recombinant vector carrying (or comprising) the polynucleotide.

다른 예는 상기 폴리뉴클레오타이드 또는 재조합 벡터를 포함하는 재조합 세포를 제공한다.Another example provides a recombinant cell comprising the polynucleotide or recombinant vector.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질, 이를 암호화하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터, 및 상기 폴리뉴클레오타이드 또는 재조합 벡터를 포함하는 재조합 세포로 이루어진 군에서 선택된 1종 이상을 포함하는, 상기 목적 단백질의 엽록체 수송용 및/또는 엽록체 발현용 조성물을 제공한다.Another example is at least one selected from the group consisting of a fusion protein comprising a chloroplast transit peptide and a target protein, a polynucleotide encoding the same, a recombinant vector comprising the polynucleotide, and a recombinant cell comprising the polynucleotide or the recombinant vector It provides a composition for chloroplast transport and / or chloroplast expression of the target protein, comprising a.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질, 또는 이를 암호화하는 폴리뉴클레오타이드를 세포에 도입하는 단계를 포함하는, 상기 목적 단백질의 엽록체 수송 방법을 제공한다. 상기 세포는 엽록체를 포함하는 모든 세포들 중에서 선택될 수 있으며, 예컨대, 식물 또는 조류(algae)의 세포일 수 있다.Another example provides a chloroplast transport method of the target protein, comprising the step of introducing a fusion protein comprising a chloroplast transit peptide and a target protein, or a polynucleotide encoding the same into a cell. The cell may be selected from all cells including chloroplasts, and may be, for example, cells of plants or algae.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드 또는 상기 폴리뉴클레오타이드를 포함하는 벡터로 형질전환된 형질전환체를 제공한다. Another example provides a transformant transformed with a polynucleotide encoding a fusion protein comprising a chloroplast transit peptide and a target protein or a vector comprising the polynucleotide.

다른 예는 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질을 암호화하는 폴리뉴클레오타이드 또는 상기 폴리뉴클레오타이드를 포함하는 벡터로 형질전환시키는 단계를 포함하는, 형질전환체의 제조 방법을 제공한다. Another example provides a method for producing a transformant, comprising transforming with a polynucleotide encoding a fusion protein comprising a chloroplast transit peptide and a target protein or a vector comprising the polynucleotide.

상기 형질 전환은 조류 또는 식물의 세포, 원형질체, 캘러스, 배축, 종자, 자엽, 또는 전체 (whole body)에 대하여 수행되는 것일 수 있다. 상기 형질전환체는 조류, 또는 식물의 세포, 원형질체, 캘러스, 배축, 종자, 자엽, 전체, 또는 이의 클론 또는 자손일 수 있다. 상기 형질전환체는, 목적 단백질의 엽록체 수송능이 부여되거나, 형질전환 전 또는 형질전환되지 않은 동종 식물 또는 조류와 비교하여, 우수한 목적 단백질의 엽록체 수송능을 갖는 것일 수 있다.The transformation may be performed on cells, protoplasts, callus, hypocotyls, seeds, cotyledons, or whole bodies of algae or plants. The transformant may be an alga or plant cell, protoplast, callus, hypocotyl, seed, cotyledon, whole, or clone or progeny thereof. The transformant may have a chloroplast transport ability of the target protein, or have superior chloroplast transport ability of the target protein compared to the same plant or alga before or without transformation.

상기 형질전환에 있어서, 상기 폴리뉴클레오타이드는 각 아미노산을 암호화하는 코돈들 중에서 형질도입될 세포에 최적화된 (optimized) 코돈을 포함하도록 설계된 것일 수 있다. 상기 최적화 코돈은 이 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 용이하게 알 수 있다 (예컨대, "http://www.genscript.com/codon-opt.html", "http://sg.idtdna.com/CodonOpt" 등 참조).In the transformation, the polynucleotide may be designed to include a codon optimized for a cell to be transduced among codons encoding each amino acid. The optimization codon can be easily recognized by those of ordinary skill in the art (eg, "http://www.genscript.com/codon-opt.html", "http://sg .idtdna.com/CodonOpt", etc.).

또한, 상기 폴리펩타이드(엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질)는 앞서 설명한 바와 같은 폴리펩타이드와 생물학적 균등한 활성을 보유(유지)하는 변이를 포함하는 것을 배제하지 않는다. 예컨대, 상기 변이는 분자의 활성을 전체적으로 변경시키지 않는 아미노산 치환일 수 있고, 이러한 아미노산 치환은 당해 분야에 공지되어 있다. 일 예에서, 상기 아미노산 치환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, 또는 Asp/Gly 간의 치환을 들 수 있으나, 이에 제한되는 것은 아니다. 경우에 따라서, 상기 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질은 하나 이상의 아미노산이 인산화 (phosphorylation), 황화 (sulfation), 아실화 (acylation), 당화 (glycosylation), 메틸화 (methylation), 파네실화 (farnesylation) 등으로 이루어진 군에서 선택된 1종 이상으로 수식 (modification) 될 수도 있다. 또한, 상기 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질은 아미노산 변이 및/또는 수식에 의해서 단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 변이체를 포함할 수 있다.In addition, it is not excluded that the polypeptide (chloroplast transit peptide, target protein, or fusion protein) contains a mutation that retains (maintains) a biologically equivalent activity to the polypeptide as described above. For example, the mutation may be an amino acid substitution that does not entirely alter the activity of the molecule, and such amino acid substitutions are known in the art. In one embodiment, the amino acid substitution is amino acid residues Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, substitutions between Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, or Asp/Gly. In some cases, the chloroplast transit peptide, target protein, or fusion protein is one or more amino acids phosphorylation, sulfation, acylation, glycosylation, methylation, farnesylation (farnesylation) ) may be modified with one or more selected from the group consisting of. In addition, the chloroplast transit peptide, the target protein, or the fusion protein may include a variant in which structural stability to heat, pH, etc. of the protein is increased or protein activity is increased by amino acid mutation and/or modification.

용어 "서열 상동성"이란 야생형 (wild type) 또는 기준이 되는 아미노산 서열 또는 염기 서열과의 유사한 정도를 나타내기 위한 것으로서, 제초제 내성 PPO 단백질 변이체의 아미노산 서열과 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 동일한 아미노산 잔기를 포함하면서, 상기 엽록체 전이 펩타이드 및/또는 목적 단백질과 생물학적으로 균등한 활성을 보유한다면 본 발명의 범위에 포함될 수 있다. 이러한 단백질 상동물은 목적 단백질과 동일한 활성 부위를 포함할 수 있다. The term "sequence homology" is intended to indicate a degree of similarity to a wild type or a reference amino acid sequence or base sequence, and is 60% or more, 65% or more, 70% or more with the amino acid sequence of the herbicide-resistant PPO protein variant. and/or the chloroplast transit peptide comprising amino acid residues that are at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical. Alternatively, it may be included in the scope of the present invention as long as it has biologically equivalent activity to the target protein. Such protein homologues may contain the same active site as the target protein.

상기 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질은 당 분야에 널리 공지된 방법으로 천연에서 추출 및 정제하여 얻을 수 있다. 또는, 유전자 재조합 기술을 이용한 재조합 단백질로 수득할 수 있다. 유전자 재조합 기술을 이용할 경우, 엽록체 전이 펩타이드 및/또는 목적 단백질을 암호화하는 핵산을 적절한 발현 벡터에 삽입하고, 벡터를 숙주세포로 형질전환하여 목적 단백질이 발현되도록 숙주 세포를 배양한 뒤, 숙주세포로부터 엽록체 전이 펩타이드 및/또는 목적 단백질을 회수하는 과정으로 수득할 수 있다. 단백질은 선택된 숙주 세포에서 발현시킨 후, 분리 및 정제를 위해 통상적인 생화학 분리 기술, 예를 들어 단백질 침전제에 의한 처리 (염석법), 원심분리, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피 (겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피 등을 이용할 수 있으며, 순도가 높은 단백질을 분리하기 위하여 이들 중 2가지 이상을 조합하여 이용할 수 있다.The chloroplast transit peptide, target protein, or fusion protein can be obtained by extraction and purification from nature by methods well known in the art. Alternatively, it can be obtained as a recombinant protein using genetic recombination technology. In the case of using genetic recombination technology, a nucleic acid encoding a chloroplast transit peptide and/or a target protein is inserted into an appropriate expression vector, the vector is transformed into a host cell, the host cell is cultured so that the target protein is expressed, and the host cell is removed from the host cell. It can be obtained by the process of recovering the chloroplast transit peptide and/or the target protein. After the protein is expressed in a selected host cell, for isolation and purification, conventional biochemical separation techniques such as treatment with a protein precipitating agent (salting out method), centrifugation, sonication, ultrafiltration, dialysis, molecular sieve chromatography (Gel filtration), adsorption chromatography, ion exchange chromatography, various chromatography such as affinity chromatography, etc. can be used, and two or more of these can be used in combination to separate high-purity proteins.

상기 엽록체 전이 펩타이드 및/또는 목적 단백질을 암호화하는 핵산 분자 (폴리뉴클레오타이드)는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다.The chloroplast transit peptide and/or the nucleic acid molecule (polynucleotide) encoding the protein of interest may be isolated or prepared using standard molecular biology techniques, for example, chemical synthesis or recombinant methods, or commercially available ones.

본 명세서에 기재된 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질은 당업계에 공지된 다양한 방법에 의하여 식물체 또는 조류 내에 도입될 수 있으며, 바람직하게는 식물 또는 조류 형질전환용 발현벡터가 이용될 수 있다. The chloroplast transit peptide, target protein, or fusion protein described herein may be introduced into a plant or alga by various methods known in the art, and preferably, an expression vector for plant or algae transformation may be used.

식물체 형질전환의 경우, 벡터에 포함되는 적합한 프로모터로는, 식물체 내 유전자 도입을 위해 당업계에서 통상적으로 이용되는 어떠한 것도 이용될 수 있으며, 예를 들어, SP6 프로모터, T7 프로모터, T3 프로모터, PM 프로모터, 애기장대 또는 옥수수의 유비퀴틴 프로모터, 컬리플라워 모자이크 바이러스 (CaMV) 35S 프로모터, 노팔린 씬타아제 (nos) 프로모터, 피그워트 모자이크 바이러스 35S 프로모터, 수가크레인 바실리폼 바이러스 프로모터, 콤멜리나 엘로우 모틀 바이러스 프로모터, 리불로오스-1,5-비스-포스페이트 카르복실라아제 스몰 서브유니트 (ssRuBisCO)의 광유도성 프로모터, 벼 사이토졸 트리오스포스페이트 이소머라아제 (TPI) 프로모터, 애기장대의 아데닌 포스포리보실트랜스퍼라아제 (APRT) 프로모터, 옥토파인 신타아제 프로모터 및 BCB (blue copper binding protein) 프로모터 등으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.In the case of plant transformation, as a suitable promoter included in the vector, any conventionally used in the art for gene introduction into plants may be used, for example, SP6 promoter, T7 promoter, T3 promoter, PM promoter , Arabidopsis or corn ubiquitin promoter, cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase (nos) promoter, pigwort mosaic virus 35S promoter, sugacrane basiliform virus promoter, Commelina yellow mottle virus promoter, Lee Photoinducible promoter of fluorose-1,5-bis-phosphate carboxylase small subunit (ssRuBisCO), rice cytosolic triose phosphate isomerase (TPI) promoter, Arabidopsis adenine phosphoribosyltransferase ( APRT) promoter, an octopine synthase promoter, and one or more selected from the group consisting of a blue copper binding protein (BCB) promoter, etc. may be used, but the present invention is not limited thereto.

또한, 상기 벡터는 3'-말단의 폴리아데닐화를 야기시키는 폴리 A 시그널서열을 포함할 수 있으며, 예를 들어, 사과 액틴 유전자로부터 유래된 것 (Malus domestica actin 3’end), 아그로박테리움 투메파시엔스의 노팔린 신타아제 유전자로부터 유래된 것 (NOS 3' end), 아그로박테리움 투메파시엔스의 옥토파인 신타아제 유전자로부터 유래된 터미네이터 (octopine synthase terminator), 토마토 또는 감자의 프로테아제 억제자 I 또는 Ⅱ 유전자의 3' 말단 부분, CaMV 35S 터미네이터, 벼 α-아밀라아제 RAmy1 A 터미네이터 및 파세올린 (phaseolin) 터미네이터를 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, the vector may include a poly A signal sequence causing polyadenylation at the 3'-end, for example, those derived from the apple actin gene ( Malus domestica actin 3'end), Agrobacterium tume those derived from the nopaline synthase gene of Fasiens (NOS 3' end), the terminator derived from the octopine synthase gene of Agrobacterium tumefaciens, the protease inhibitor I of tomatoes or potatoes, or 3' terminal portion of the II gene, CaMV 35S terminator, rice α-amylase RAmy1 A terminator, and phaseolin terminator, but are not limited thereto.

또한, 조류 형질전환의 경우, 프로모터로서 엽록체 특이적 프로모터, 핵 프로모터, 항시성 프로모터 또는 유도성 프로모터를 사용할 수 있다. 본 명세서에서 제공되는 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질은 5'UTR 또는 3'UTR 에 작동적으로 연결되어 조류의 핵 안에서 기능을 발휘하도록 설계될 수 있다. 또한, 상기 벡터는 조류 형질전환에 적합한 전사 조절 서열을 더욱 포함할 수 있다. 제초제 내성을 부여하는 재조합 유전자는 숙주 조류에서 핵의 게놈 또는 엽록체의 게놈에 통합될 수 있으나, 이에 제한되는 것은 아니다.In addition, in the case of avian transformation, a chloroplast-specific promoter, a nuclear promoter, a constitutive promoter, or an inducible promoter may be used as the promoter. The chloroplast transit peptide, protein of interest, or fusion protein provided herein can be designed to be operably linked to a 5'UTR or 3'UTR to exert a function in the nucleus of an avian. In addition, the vector may further include a transcriptional control sequence suitable for avian transformation. Recombinant genes conferring herbicide tolerance may be integrated into, but not limited to, the genome of the nucleus or the genome of the chloroplast in the host bird.

또한, 상기 벡터는 선택적으로, 리포터 분자로서 선택 표지를 암호화하는 유전자를 추가적으로 포함할 수 있으며, 선택 표지의 예로서 항생제 (예: 네오마이신, 카베니실린, 카나마이신, 스펙티노마이신, 하이그로마이신, 블레오마이신, 앰피실린, 클로람페니콜 등) 또는 제초제 (글리포세이트, 글루포시네이트, 포스피노트리신 등) 내성 유전자 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, the vector may optionally further include a gene encoding a selection marker as a reporter molecule, and examples of the selection marker include antibiotics (eg, neomycin, carbenicillin, kanamycin, spectinomycin, hygromycin, bleomycin, ampicillin, chloramphenicol, etc.) or herbicides (glyphosate, glufosinate, phosphinothricin, etc.) resistance genes, and the like, but are not limited thereto.

또한, 식물 발현용 재조합 벡터는 바이너리 (binary) 벡터, 코인테그레이션 벡터 (cointegration vector) 또는 T-DNA (transfer DNA) 부위를 포함하지는 않지만 식물에서 발현될 수 있도록 디자인된 일반 벡터가 사용될 수 있다. In addition, the recombinant vector for plant expression does not include a binary vector, a cointegration vector, or a T-DNA (transfer DNA) region, but a general vector designed to be expressed in plants may be used.

상기에서 바이너리 벡터 또는 코인테그레이션 벡터를 사용하는 경우, 식물체에 상기 재조합 벡터를 도입하기 위한 형질전환용 균주로는 아그로박테리움을 사용하는 것이 바람직하며 (Agrobacterium-mediated transformation), 이때 아그로박테리움 투메파시엔스 (Agrobacterium tumefaciens) 또는 아그로박테리움 라이조게네스 (Agrobacterium rhizogenes)를 사용할 수 있다. 그 밖에 T-DNA 부위를 포함하지 않는 벡터를 이용하는 경우에는, 전기천공법 (electroporation), 입자 총법 (particle bombardment), 폴리에틸렌 글리콜 침전법 (polyethylene glycol-mediated uptake) 등이 재조합 플라스미드를 식물체로 도입하는데 이용될 수 있다. In the case of using a binary vector or a cointegration vector in the above, it is preferable to use Agrobacterium as a transformation strain for introducing the recombinant vector into a plant ( Agrobacterium- mediated transformation), in which case Agrobacterium tumefaci Ens ( Agrobacterium tumefaciens ) or Agrobacterium rhizogenes ( Agrobacterium rhizogenes ) can be used. In addition, in the case of using a vector that does not contain a T-DNA region, electroporation, particle bombardment, polyethylene glycol-mediated uptake, etc. are used to introduce the recombinant plasmid into the plant. can be used

상기와 같은 방법으로 유전자가 도입된 형질전환 식물들은 당업계에 공지된 표준 기술을 사용하여 캘러스 유도, 발근 및 토양 순화와 같은 과정을 거쳐 식물체로 재분화시킬 수 있다.Transgenic plants into which genes are introduced in the above manner can be redifferentiated into plants through processes such as callus induction, rooting and soil acclimatization using standard techniques known in the art.

본 명세서에서 형질전환의 대상이 되는 식물은, 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 수 있는 식물세포 (현탁배양 세포 포함), 원형질체 (protoplast), 캘러스 (callus), 배축 (hypocotyl), 종자 (seed), 자엽 (cotyledon), 신초 (shoot) 등을 모두 포함하는 의미로서 이해된다. Plants to be transformed in the present specification are, as well as mature plants, plant cells (including suspension-cultured cells) that can develop into mature plants, protoplasts, callus, hypocotyl, seeds (seed) ), cotyledon, shoot, and the like are understood to include all.

또한, 본 명세서의 형질전환체의 범주에는 상기 유전자가 도입된 형질전환체 뿐만 아니라 이의 클론 또는 자손 (T1 세대, T2 세대, T3 세대, T4 세대, T5 세대, 또는 그 이상)을 포함하며, 예를 들어, 엽록체 전이 펩타이드, 목적 단백질, 또는 융합 단백질이 형질전환된 식물의 무성 또는 유성 자손으로서 제초제 내성 형질이 유전된 식물들도 본 발명의 형질전환 식물의 범주에 포함된다. 또한, 본원의 유전자가 형질전환된 식물의 모든 교배 및 융합 생성물과 함께, 초기 형질전환된 식물의 특성을 나타내는 모든 돌연변이체 및 변이체가 본 발명의 범주에 포함된다. 아울러, 본 발명의 방법으로 미리 형질전환시킨 형질전환된 식물, 또는 이들의 자손으로부터 기원하며 형질전환된 세포의 적어도 일부로 이루어진 종자, 꽃, 줄기, 과실, 잎, 뿌리, 괴경, 및/또는 괴근과 같은 식물의 일부도 본 발명의 범주에 포함된다.In addition, the transformant category of the present specification includes the transformant into which the gene is introduced, as well as clones or progeny thereof (T 1 generation, T 2 generation, T 3 generation, T 4 generation, T 5 generation, or more) It includes, for example, asexual or sexual progeny of a plant transformed with a chloroplast transit peptide, a target protein, or a fusion protein, and plants that have inherited herbicide tolerance traits are also included in the scope of the transgenic plants of the present invention. Also included within the scope of the present invention are all mutants and variants exhibiting the characteristics of an initially transformed plant, along with all crosses and fusion products of plants transformed with the genes herein. In addition, seeds, flowers, stems, fruits, leaves, roots, tubers, and/or tubers originating from the transformed plants previously transformed by the method of the present invention, or their progeny and consisting of at least a part of transformed cells, and Parts of the same plant are also included in the scope of the present invention.

본 발명이 적용될 수 있는 식물은 특별히 제한되지 않으며, 단자엽 또는 쌍자엽 식물을 모두 포함하여 이루어진 군에서 선택된 1종 이상일 수 있다. 또한 초본 또는 목본 식물일 수 있다. 상기 단자엽 식물은 택사과 (Alismataceae), 자라풀과 (Hydrocharitaceae), 지채과 (Juncaginaceae), 장지채과 (Scheuchzeriaceae), 가래과 (Potamogetonaceae), 나자스말과 (Najadaceae), 거머리말과 (Zosteraceae), 백합과 (Liliaceae), 지모과 (Haemodoraceae), 용설란과 (Agavaceae), 수선화과 (Amaryllidaceae), 마과 (Dioscoreaceae), 물옥잠과 (Pontederiaceae), 붓꽃과 (Iridaceae), 버먼초과 (Burmanniaceae), 골풀과 (Juncaceae), 닭의장풀과 (Commelinaceae), 곡정초과 (Eriocaulaceae), 화본과 (벼과, Gramineae, Poaceae), 천남성과 (Araceae), 개구리밥과 (Lemnaceae), 흑삼릉과 (Sparganiaceae), 부들과 (Typhaceae), 사초과 (방동사니과, Cyperaceae), 파초과 (Musaceae), 생강과 (Zingiberaceae), 홍초과 (Cannaceae), 난초과 (Orchidaceae)의 식물을 포함할 수 있으나, 이에 제한되는 것은 아니다. Plants to which the present invention can be applied are not particularly limited, and may be at least one selected from the group consisting of monocotyledonous or dicotyledonous plants. It may also be herbaceous or woody. The monocotyledonous plants are Alismataceae, Hydrocharitaceae, Juncaginaceae, Scheuchzeriaceae, Potamogetonaceae, Najadaceae, Zosteraceae, Liliaceae), Haemodoraceae, Agavaceae, Amaryllidaceae, Dioscoreaceae, Pontederiaceae, Iridaceae, Burmanniaceae, Juncaceae, Chicken coleoptera , Eriocaulaceae, Gramineae, Poaceae, Araceae, Lemnaceae, Sparganiaceae, Typhaceae, Musaceae (Cyperaceae), Musaceae ), Ginger family (Zingiberaceae), Cannaceae (Cannaceae), may include plants of the Orchidaceae (Orchidaceae), but is not limited thereto.

상기 쌍자엽 식물은 암매과 (돌매화나무과, Diapensiaceae), 매화오리나무과 (Clethraceae), 노루발과 (Pyrolaceae), 진달래과 (Ericaceae), 자금우과 (Myrsinaceae), 앵초과 (Primulaceae), 갯질경이과 (Plumbaginaceae), 감나무과 (Ebenaceae), 때죽나무과 (Styracaceae), 노린재나무과 (Symplocaceae), 회목과 (Symplocaceae), 물푸레나무과 (목서과, Oleaceae), 마전과 (Loganiaceae), 용담과 (Gentianaceae), 조름나물과 (Menyanthaceae), 협죽도과 (마삭나무과, Apocynaceae), 박주가리과 (Asclepiadaceae), 꼭두서니과 (Rubiaceae), 꽃고비과 (Polemoniaceae), 메꽃과 (Convolvulaceae), 지치과 (Boraginaceae), 마편초과 (Verbenaceae), 꿀풀과 (Labiatae), 가지과 (Solanaceae), 현삼과 (Scrophulariaceae), 능소화과 (Bignoniaceae), 쥐꼬리망초과 (Acanthaceae), 참깨과 (Pedaliaceae), 열당과 (Orobanchaceae). 제스네리아과 (Gesneriaceae), 통발과 (Lentibulariaceae), 파리풀과 (Phrymaceae), 질경이과 (Plantaginaceae), 인동과 (Caprifoliaceae), 연복초과 (Adoxaceae), 마타리과 (Valerianaceae), 산토끼꽃과 (Dipsacaceae), 초롱꽃과 (Campanulaceae), 국화과 (Compositae), 소귀나무과 (Myricaceae), 가래나무과 (Juglandaceae), 버드나무과 (Salicaceae), 자작나무과 (Betulaceae), 너도밤나무과 (참나무과, Fagaceae), 느릅나무과 (Ulmaceae), 뽕나무과 (Moraceae), 쐐기풀과 (Urticaceae), 단향과 (Santalaceae), 겨우살이과 (Loranthaceae), 마디풀과 (여뀌과, Polygonaceae), 자리공과 (상륙과, Phytolaccaceae), 분꽃과 (Nyctaginaceae), 석류풀과 (Aizoaceae), 쇠비름과 (Portulacaceae), 석죽과 (Caryophyllaceae), 명아주과 (Chenopodiaceae), 비름과 (Amaranthaceae), 선인장과 (Cactaceae), 목련과 (Magnoliaceae), 붓순나무과 (Illiciaceae), 녹나무과 (Lauraceae), 계수나무과 (Cercidiphyllaceae), 미나리아재비과 (Ranunculaceae), 매자나무과 (Berberidaceae), 으름덩굴과 (Lardizabalaceae), 새모래덩굴과 (방기과, Menispermaceae), 수련과 (Nymphaeaceae), 붕어마름과 (Ceratophyllaceae), 어항마름과 (Cabombaceae), 삼백초과 (Saururaceae), 후추과 (Piperaceae), 홀아비꽃대과 (Chloranthaceae), 쥐방울덩굴과 (Aristolochiaceae), 다래나무과 (Actinidiaceae), 차나무과 (동백나무과, Theaceae), 물레나물과 (Guttiferae), 끈끈이주걱과 (Droseraceae), 양귀비과 (Papaveraceae), 풍접초과 (Capparidaceae), 십자화과 (겨자과, Cruciferae), 플라타너스과 (버즘나무과, Platanaceae), 조록나무과 (금루매과, Hamamelidaceae), 꿩의비름과 (돌나물과, Crassulaceae), 범의귀과 (Saxifragaceae), 두충과 (Eucommiaceae), 돈나무과 (Pittosporaceae), 장미과 (Rosaceae), 콩과 (Leguminosae), 괭이밥과 (Oxalidaceae), 쥐손이풀과 (Geraniaceae), 한련과 (Tropaeolaceae), 남가새과 (Zygophyllaceae), 아마과 (Linaceae), 대극과 (Euphorbiaceae), 별이끼과 (Callitrichaceae), 운향과 (Rutaceae), 소태나무과 (Simaroubaceae), 멀구슬나무과 (Meliaceae), 원지과 (Polygalaceae), 옻나무과 (Anacardiaceae), 단풍나무과 (단풍과, Aceraceae), 무환자나무과 (Sapindaceae), 칠엽수과 (Hippocastanaceae), 나도 밤나무과 (Sabiaceae), 봉선화과 (물봉선과, Balsaminaceae), 감탕나무과 (Aquifoliaceae), 노박덩굴과 (화살나무과, Celastraceae), 고추나무과 (Staphyleaceae), 회양목과 (Buxaceae), 시로미과 (Empetraceae), 갈매나무과 (Rhamnaceae), 포도과 (Vitaceae), 담팔수과 (Elaeocarpaceae), 피나무과 (Tiliaceae), 아욱과 (Malvaceae), 벽오동과 (Sterculiaceae), 팥꽃나무과 (서향나무과, Thymelaeaceae), 보리수나무과 (Elaeagnaceae), 이나무과 (Flacourtiaceae), 제비꽃과 (Violaceae), 시계꽃과 (Passifloraceae), 위성류과 (Tamaricaceae), 물별과 (Elatinaceae), 베고니아과 (Begoniaceae), 박과 (Cucurbitaceae), 부처꽃과 (배롱나무과, Lythraceae), 석류나무과 (Punicaceae), 바늘꽃과 (Onagraceae), 개미탑과 (Haloragaceae), 박쥐나무과 (Alangiaceae), 층층나무과 (산수유나무과, Cornaceae), 두릅나무과 (오갈피나무과, Araliaceae), 산형과 (미나리과)(Umbelliferae(Apiaceae))의 식물을 포함할 수 있으나, 이에 한정되는 것은 아니다. The dicotyledonous plants are family (Diapensiaceae), Alderaceae (Clethraceae), Pyrolaceae, Ericaceae, Myrsinaceae, Primulaceae, Plumbaginaceae, Plumbaginaceae, , Styracaceae, Symplocaceae, Symplocaceae, Oleaceae, Loganiaceae, Gentianaceae, Menyanthaceae, oleaceae , Apocynaceae), Asclepiadaceae, Rubiaceae, Polemoniaceae, Convolvulaceae, Boraginaceae, Verbenaceae, Labiatae, Solanaceae (Scrophulariaceae), Bignoniaceae, Acanthaceae, Pedaliaceae, Orobanchaceae. Gesneriaceae, Lentibulariaceae, Phrymaceae, Plantaginaceae, Caprifoliaceae, Adoxaceae, Valerianaceae, Dipsacaceae Campanulaceae), Compositae, Myricaceae, Juglandaceae, Salicaceae, Betulaceae, Fagaceae, Ulmaceae, Moraceae , Urticaceae, Santalaceae, Loranthaceae, Polygonaceae, Phytolaccaceae, Nyctaginaceae, Aizoaceae, Purslane (Portulacaceae), Caryophyllaceae, Chenopodiaceae, Amaranthaceae, Cactaceae, Magnoliaceae, Illiciaceae, Lauraceae, Cercidiphyllaceae, Ranunculaceae, Berberidaceae, Lardizabalaceae, Menispermaceae, Nymphaeaceae, Ceratophyllaceae, Cabombaceae (Saururaceae), Piperaceae, Chloranthaceae, Aristolochiaceae, Actinidiaceae, Teaaceae (Camellidae, Thea) ceae), Guttiferae, Droseraceae, Papaveraceae, Capparidaceae, Cruciferae, Platanaceae, Platanaceae, Hamamelidaceae , pheasant family (Sedumaceae, Crassulaceae), Saxifragaceae, Eucommiaceae, Pittosporaceae, Rosaceae, Leguminosae, Oxalidaceae, Rataceae , Tropaeolaceae, Zygophyllaceae, Linaceae, Euphorbiaceae, Callitrichaceae, Rutaceae, Simaroaceaeubaceae, Meliaceae, Meliaceae ), Sumacaceae (Anacardiaceae), Mapleaceae (Aceraceae), Sapindaceae, Hippocastanaceae, Sabiaceae, Balsamaceae (Balsaminaceae), Aquifoliaceae, (Arrowaceae, Celastraceae), Staphyleaceae, Buxaceae, Empetraceae, Rhamnaceae, Vitaceae, Elaeocarpaceae, Tiliaceae, Malvaceae , Sterculiaceae, Thymelaeaceae, Elaeagnaceae, Flacourtiaceae, Violaceae, Pa ssifloraceae), Tamaricaceae, Elatinaceae, Begoniaceae, Cucurbitaceae, Punicaceae, Onagraceae, Antaceae ( Haloragaceae), Alangiaceae, Dogwood (Cornaceae), Araliaceae (Araliaceae), Umbelliferae (Apiaceae)) no.

구체예로, 상기 식물은 벼, 밀, 보리, 옥수수, 대두, 감자, 팥, 귀리 및 수수를 포함하는 식량 작물류; 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 및 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 마초, 목초, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채, 잔디 및 피마자를 포함하는 특용 작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 및 바나나를 포함하는 과수류; 소나무, 팜오일 및 유칼립투스를 포함하는 목본류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 및 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알팔파, 톨페스큐 및 페레니얼라이그라스를 포함하는 사료 작물류 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 구체 예로, 상기 식물은 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 또는 완두 등의 쌍자엽 식물; 및 벼, 밀, 보리, 옥수수, 수수 등의 단자엽 식물 등으로 이루어진 군에서 선택된 1종 이상을 들 수 있으나, 이에 제한되는 것은 아니다.In an embodiment, the plant includes food crops including rice, wheat, barley, corn, soybean, potato, red bean, oat and sorghum; vegetable crops including Chinese cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion and carrot; specialty crops including ginseng, tobacco, cotton, forage, grass, sesame, sugar cane, sugar beet, perilla, peanut, rapeseed, grass and castor; fruit trees including apple trees, pear trees, jujube trees, peaches, poplars, grapes, tangerines, persimmons, plums, apricots and bananas; woody trees including pine, palm oil and eucalyptus; flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies and tulips; And ryegrass, red clover, orchard grass, alfalfa, may be at least one selected from the group consisting of feed crops including tall fescue and perennial ryegrass, but is not limited thereto. Specifically, the plant is Arabidopsis thaliana, potato, eggplant, tobacco, red pepper, tomato, burdock, mustard greens, lettuce, bellflower, spinach, chard, sweet potato, celery, carrot, water parsley, parsley, Chinese cabbage, cabbage, radish, watermelon, melon , dicot plants such as cucumber, pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, or pea; and one or more selected from the group consisting of monocotyledonous plants such as rice, wheat, barley, corn, and sorghum, but is not limited thereto.

본 발명이 적용될 수 있는 조류는 특별히 제한되지 않으며, 원핵 (Prokaryotic) 조류 또는 진핵 (Eukaryotic) 조류일 수 있다. 예를 들어, 조류는 시아노박테리아, 녹조류, 홍조류, 갈조류, 대형조류 (macroalgae) 또는 미세조류 (microalgae)일 수 있다.Algae to which the present invention can be applied is not particularly limited, and may be prokaryotic algae or eukaryotic algae. For example, the algae may be cyanobacteria, green algae, red algae, brown algae, macroalgae or microalgae.

시아노박테리아류로는, Chroococcales 문 (예, Aphanocapsa, Aphanothece, Chamaesiphon, Chondrocystis, Chroococcus, Chroogloeocystis, Crocosphaera, Cyanobacterium, Cyanobium, Cyanodictyon, Cyanosarcina, Cyanothece, Dactylococcopsis, Gloeocapsa, Gloeothece, Halothece, Johannesbaptistia, Merismopedia, Microcystis, Radiocystis, Rhabdoderma, Snowella, Synechococcus, Synechocystis, Thermosynechococcus, Woronichinia), Gloeobacteria 문, Nostocales 문 (예, Microchaetaceae, Nostocaceae, Rivulariaceae, Scytonemataceae), Oscillatoriales 문 (예, Arthronema, Arthrospira, Blennothrix, Crinalium, Geitlerinema, Halomicronema, Halospirulina, Hydrocoleum, Jaaginema, Katagnymene, Komvophoron, Leptolyngbya, Limnothrix, Lyngbya, Microcoleus,Oscillatoria, Phormidium, Planktothricoides, Planktothrix, Plectonema, Pseudanabaena, Pseudophormidium, Schizothrix, Spirulina, Starria, Symploca, Trichodesmium, Tychonema), Pleurocapsales 문 (예, Chroococcidiopsis, Dermocarpa, Dermocarpella, Myxosarcina, Pleurocapsa, Solentia, Stanieria, Xenococcus), Prochlorales 문, 또는 Stigonematales 문 (예, Capsosira, Chlorogloeopsis, Fischerella, Hapalosiphon, Mastigocladopsis, Mastigocladus, Nostochopsis, Stigonema, Symphyonema, Symphonemopsis, Umezakia, Westiellopsis) 등을 예시할 수 있다.Cyanobacteria include, but are not limited to, the phylum Chroococcales (e.g., Aphanocapsa, Aphanothece, Chamaesiphon, Chondrocystis, Chroococcus, Chroogloeocystis, Crocosphaera, Cyanobacterium, Cyanobium, Cyanodictyon, Cyanosarcina, Cyanothecesis, Dactylococcia, Radiocystis, Rhabdoderma, Snowella, Synechococcus, Synechocystis, Thermosynechococcus, Woronichinia), phyla Gloeobacteria, phyla Nostocales (e.g., Microchaetaceae, Nostocaceae, Rivulariaceae, Scytonemataceae), phyla Oscillatoriales (e.g., Arthroulinalema, Bcytonemataceae), phyla Oscillatoriales (e.g., ma. , Hydrocoleum, Jaaginema, Katagnymene, Komvophoron, Leptolyngbya, Limnothrix, Lyngbya, Microcoleus, Oscillatoria, Phormidium, Planktothricoides, Planktothrix, Plectonema, Pseudanabaena, Pseudophorocix, Scichondiossalina, Pseudanabaena, Pseudophorocix, Schizosle , Dermocarpa, Dermocarpella, Myxosarcina, Pleurocapsa, Solentia, Stanieria, Xen ococcus), Prochlorales, or Stigonematales (eg, Capsosira, Chlorogloeopsis, Fischerella, Hapalosiphon, Mastigocladopsis, Mastigocladus, Nostochopsis, Stigonema, Symphyonema, Symphonemopsis, Umezakia, Westiellopsis).

조류의 다른 예로, Chlorophyta, Chlamydomonas, Volvacales, Dunaliella, Scenedesmus, Chlorella, 또는 Hematococcm 를 예시할 수 있다.Other examples of algae may be exemplified by Chlorophyta, Chlamydomonas, Volvacales, Dunaliella, Scenedesmus, Chlorella, or Hematococcm.

조류의 다른 예로, Phaeodactylum tricornutum, Amphiprora hyaline, Amphora spp., Chaetoceros muelleri, Navicula saprophila, Nitzschia communis, Scenedesmus dimorphus, Scenedesmus obliquus, Tetraselmis suecica, Chlamydomonas reinhardtii, Chlorella vulgaris, Haematococcus pluvialis, Neochloris oleoabundans, Synechococcus elongatus, Botryococcus braunii, Gloeobacter violaceus, Synechocystis, Thermosynechococcus elongatus, Nannochloropsis oculata, Nannochloropsis salina, Nannochloropsis gaditana, Isochrysis galbana, Botryococcus sudeticus, Euglena gracilis, Neochloris oleoabundans, Nitzschia palea, Pleurochrysis carterae, Tetraselmis chuii, Pavlova spp., Aphanocapsa spp., Synechosystis spp., Nannochloris spp. 등을 예시할 수 있다. 그러나, 상기 열거한 종류들에 제한 되는 것은 아니며, 그 외 다양한 속 및 종에 속하는 조류들이 포함될 수 있다.Other examples of algae include Phaeodactylum tricornutum, Amphiprora hyaline, Amphora spp., Chaetoceros muelleri, Navicula saprophila, Nitzschia communis, Scenedesmus dimorphus, Scenedesmus obliquus obliquus, Tetraselmis suecica, Chlamydomonas reinhardtii, Chlorocella vialis, Neococolec , Gloeobacter violaceus, Synechocystis, Thermosynechococcus elongatus, Nannochloropsis oculata, Nannochloropsis salina, Nannochloropsis gaditana, Isochrysis galbana, Botryococcus sudeticus, Euglena gracilis, Neochloris oleoabundans, Nitzschia palea, Pleurochrysis carterae, Tetraselmis chuii, Pavlova spp., Aphanocapsa spp., Synechosystis spp. , Nannochloris spp. etc. can be exemplified. However, it is not limited to the above-listed species, and other algae belonging to various genera and species may be included.

본 명세서에서 제공되는 엽록체 전이 펩타이드는 목적 단백질을 효과적으로 엽록체 내로 표적화함으로써 상기 목적 단백질이 소망하는 효과를 보다 잘 발휘할 수 있도록 하여, 식물에 유용한 성질 부여하거나 보다 증진시킬 수 있다.The chloroplast transit peptide provided herein can effectively target the target protein into the chloroplast so that the target protein can better exert a desired effect, thereby imparting useful properties to plants or further enhancing it.

도 1은 일 실시예에 따른 식물발현벡터의 모식도이다.
도 2a 및 2b는 애기장대 원형질체에서 후보 CTP 단백질의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 3은 옥수수 원형질체에서 후보 CTP 단백질의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 4는 애기장대 및 옥수수 원형질체에서 후보 CTP 단백질 GmCTP44-67의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 5는 애기장대 및 옥수수 원형질체에서 후보 CTP 단백질 GmCTP45-56, GmCTP45-57, GmCTP45-58, GmCTP45-59, 및 GmCTP45-60의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 6는 애기장대 및 옥수수 원형질체에서 후보 CTP 단백질 GmCTP65-45, GmCTP65-50, 및 GmCTP65-55의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 7은 옥수수 원형질체에서 후보 CTP 단백질 GmCTP65-70, GmCTP65-75, 및 GmCTP65-80의 C-말단에 연결된 녹색형광단백질의 세포 내 발현 위치를 보여주는 형광 이미지이다.
도 8은 형질전환식물 제작에 사용하기 위한, CTP 후보 단백질의 C-말단에 목적 단백질이 융합된 융합 단백질을 암호화하는 유전자를 포함하는 식물형질전환벡터의 일 예를 모식적으로 보여준다.
도 9는 형질전환식물 제작에 사용하기 위한, CTP 후보 단백질의 C-말단에 목적 단백질(mCyPPO10 서열번호 327, 또는 CP4EPSPS 서열번호 330)이 융합된 융합 단백질을 암호화하는 유전자를 포함하는 식물형질전환벡터의 일 예를 모식적으로 보여준다.
도 10은 CTP 후보 단백질의 C-말단에 목적 단백질이 융합된 융합 단백질을 암호화하는 유전자가 도입된 애기장대 형질전환체(T2세대)의 tiafenacil에 대한 내성을 보여주는 이미지이다.
도 11은 CTP 후보 단백질의 C-말단에 목적 단백질이 융합된 융합 단백질을 암호화하는 유전자가 도입된 애기장대 형질전환체(T2세대)의 glyphosate에 대한 내성을 보여주는 이미지이다.
도 12는 CTP 후보 단백질의 C-말단에 목적 단백질이 융합된 융합 단백질을 암호화하는 유전자가 도입된 애기장대 형질전환체(T2세대)의 isoxaflutole에 대한 내성을 보여주는 이미지이다.
도 13은 CTP 후보 단백질의 C-말단에 목적 단백질이 융합된 융합 단백질을 암호화하는 유전자가 도입된 애기장대 형질전환체(T2세대)의 glufosinate, tiafenacil, 또는 glyphosate 에 대한 내성을 보여주는 이미지이다.
도 14은 일 실시예에 따른 p35S-AtPPO1TP-CyPPO2-HA 식물형질전환용 벡터 모식도이다.
도 15는 다양한 길이의 AtPPO1TP를 이용한 p35S-AtPPO1TP-CyPPO2-HA 형질전환용 벡터를 이용하여 형질전환된 애기장대 식물체의 세포에서 발현되는 단백질의 웨스턴블라팅 결과이다.
도 16은 일 실시예에 따른 p35S-AtPPO1TP-CyPPO2-YFP 식물형질전환용 벡터 모식도이다.
도 17a 및 17b는 다양한 길이의 AtPPO1TP를 이용한 p35S-AtPPO1TP-CyPPO2-YFP 형질전환용 벡터를 이용하여 형질전환된 담배에서의 세포 내 단백질 발현 위치를 보여주는 형광 이미지이다.
도 18는 AtPPO1TP-37과 CyPPO2가 도입된 애기장대 형질전환체(T1세대)의 tiafenacil에 대한 내성을 보여주는 이미지이다.
도 19은 일 실시예에 따른 p35S-AtPPO1TP-37-mCyPPO8 콩 형질전환용 벡터 모식도이다.
도 20는 AtPPO1TP-37과 mCyPPO8이 도입된 콩 형질전환체(T1세대)의 tiafenacil에 대한 내성을 보여주는 이미지이다.
도 21은 일 실시예에 따른 p35S-AtPPO1TP-37-mCyPPO10 콩 형질전환용 벡터 모식도이다.
도 22a 및 22b는 AtPPO1TP-37과 mCyPPO10이 도입된 콩 형질전환체(T2세대)의 다양한 제초제에 대한 내성을 보여주는 이미지이다.
1 is a schematic diagram of a plant expression vector according to an embodiment.
2A and 2B are fluorescence images showing the intracellular expression location of the green fluorescent protein linked to the C-terminus of the candidate CTP protein in Arabidopsis protoplasts.
3 is a fluorescence image showing the intracellular expression location of the green fluorescent protein linked to the C-terminus of the candidate CTP protein in corn protoplasts.
4 is a fluorescence image showing the intracellular expression location of the green fluorescent protein linked to the C-terminus of the candidate CTP protein GmCTP44-67 in Arabidopsis and corn protoplasts.
5 is a fluorescence image showing the intracellular expression location of green fluorescent protein linked to the C-terminus of candidate CTP proteins GmCTP45-56, GmCTP45-57, GmCTP45-58, GmCTP45-59, and GmCTP45-60 in Arabidopsis and corn protoplasts. to be.
6 is a fluorescence image showing the intracellular expression location of the green fluorescent protein linked to the C-terminus of candidate CTP proteins GmCTP65-45, GmCTP65-50, and GmCTP65-55 in Arabidopsis thaliana and corn protoplasts.
7 is a fluorescence image showing the intracellular expression location of the green fluorescent protein linked to the C-terminus of the candidate CTP proteins GmCTP65-70, GmCTP65-75, and GmCTP65-80 in corn protoplasts.
8 schematically shows an example of a plant transformation vector including a gene encoding a fusion protein in which a target protein is fused to the C-terminus of a CTP candidate protein for use in the construction of a transgenic plant.
9 is a plant transformation vector comprising a gene encoding a fusion protein in which a target protein (mCyPPO10 SEQ ID NO: 327, or CP4EPSPS SEQ ID NO: 330) is fused to the C-terminus of a CTP candidate protein for use in the construction of a transgenic plant; schematically shows an example of
10 is an image showing resistance to tiafenacil of an Arabidopsis transformant (T 2 generation) into which a gene encoding a fusion protein in which a target protein is fused to the C-terminus of the CTP candidate protein is introduced.
11 is an image showing resistance to glyphosate of an Arabidopsis transformant (T 2 generation) into which a gene encoding a fusion protein in which a target protein is fused to the C-terminus of a CTP candidate protein is introduced.
12 is an image showing resistance to isoxaflutole of an Arabidopsis transformant (T 2 generation) into which a gene encoding a fusion protein in which a target protein is fused to the C-terminus of the CTP candidate protein is introduced.
13 is an image showing resistance to glufosinate, tiafenacil, or glyphosate of an Arabidopsis transformant (T 2 generation) into which a gene encoding a fusion protein in which a target protein is fused to the C-terminus of the CTP candidate protein is introduced.
14 is a schematic diagram of a vector for plant transformation of p35S-AtPPO1TP-CyPPO2-HA according to an embodiment.
15 is a western blotting result of proteins expressed in cells of Arabidopsis plants transformed using a vector for transformation of p35S-AtPPO1TP-CyPPO2-HA using AtPPO1TP of various lengths.
16 is a schematic diagram of a vector for p35S-AtPPO1TP-CyPPO2-YFP plant transformation according to an embodiment.
17A and 17B are fluorescence images showing intracellular protein expression positions in tobacco transformed using a vector for transformation of p35S-AtPPO1TP-CyPPO2-YFP using AtPPO1TP of various lengths.
18 is an image showing resistance to tiafenacil of Arabidopsis transformants (T 1 generation) introduced with AtPPO1TP-37 and CyPPO2.
19 is a schematic diagram of a vector for transformation of p35S-AtPPO1TP-37-mCyPPO8 soybean according to an embodiment.
20 is an image showing the resistance to tiafenacil of AtPPO1TP-37 and mCyPPO8 introduced soybean transformants (T 1 generation).
21 is a schematic diagram of a vector for transformation of p35S-AtPPO1TP-37-mCyPPO10 soybeans according to an embodiment.
22A and 22B are images showing the resistance to various herbicides of AtPPO1TP-37 and mCyPPO10 introduced soybean transformants (T 2 generation).

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.

실시예 1. 콩 유전체로부터 엽록체 이동 단백질 선발Example 1. Selection of chloroplast migration proteins from soybean genome

엽록체로 이동하는 단백질은 먼저 핵에서 해당 유전자의 전사(transcription)가 일어나고, 번역(translation) 과정 중에 엽록체로 이동하며, 이는 단백질의 N-terminal 부분에 위치하는 chloroplast transit peptide (이하, CTP)라는 특정 서열에 의해 조절된다.A protein that moves to the chloroplast first undergoes transcription of the corresponding gene in the nucleus and moves to the chloroplast during the translation process, which is a specific protein called chloroplast transit peptide (hereinafter, CTP) located in the N-terminal part of the protein. regulated by the sequence.

본 실시예에서는, 콩(Glycine max) 유전체로부터 CTP 서열을 선발하기 위하여, 콩 단백질 database (UniProt; https://www.uniprot.org)에서 엽록체에서 기능을 할 것으로 예측되는 단백질을 1차 선별하였다. 이 가운데, 단백질의 발현량과 기능을 웹 database (Phytozome ver.12.1; https://phytozome.jgi.doe.gov)를 기반으로 분석한 후, 77종의 단백질을 최종 후보로 선발하였다. 각 후보유전자의 단백질서열을 대상으로 ChloroP (http://www.cbs.dtu.dk/services/ChloroP/)를 이용하여 CTP cleavage site를 추정하고, 개시코돈(start codon)에서부터 CTP cleavage site 뒤쪽 (C-말단 쪽)으로 20개 아미노산까지를 포함하는 서열을 확보하였다.In this example, in order to select the CTP sequence from the soybean (Glycine max ) genome, the protein predicted to function in the chloroplast in the soybean protein database (UniProt; https://www.uniprot.org) was first selected. . Among them, after analyzing the expression levels and functions of proteins based on the web database (Phytozome ver.12.1; https://phytozome.jgi.doe.gov), 77 proteins were selected as final candidates. Estimate the CTP cleavage site using ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) for the protein sequence of each candidate gene, and from the start codon to the back of the CTP cleavage site ( C-terminal side) to obtain a sequence containing up to 20 amino acids.

상기 확보된 CTP 후보 아미노산 서열을 표 1에 예시하였다: The obtained CTP candidate amino acid sequences are exemplified in Table 1:

77종 후보유전자의 CTP 추정 단백질 서열CTP putative protein sequences of 77 candidate genes SEQ ID NOSEQ ID NO CTPCTP 아미노산 서열 (N→C)amino acid sequence (N→C) 1One GmCTP01GmCTP01 MVPHGIIVRSSIPGSTVSQTGPARKLKESKFPPHHSRLTYLPHTPPKPKLSKTMSSFTHATTLLHAHIKMVPHGIIVRSSIPGSTVSQTGPARKLKESKFPPHHSRLTYLPHTPPKPKLSKTMSSFTHATTLLHAHIK 22 GmCTP02GmCTP02 MATATAAATSSFMGTRLLEAHSGAGRVQARFGFGKKKAAAPKKVSRGSGSSSDRPLWMATATAAATSSFMGTRLLEAHSGAGRVQARFGFGKKKAAAPKKKVSRGSGSSSDRPLW 33 GmCTP03GmCTP03 MHTGMASLTQLHYKVHTSTFRRVHSRSQGLLKSGKLSQLQGSAFPSIHINQSCICCTKLTPWESSPVTYAPTDNQMHTGMASLTQLHYKVHTSTFRRVHSRSQGLLKSGKLSQLQGSAFPSIHINQSCICCTKLTPWESSPVTYAPTDNQ 44 GmCTP04GmCTP04 MVPKPILVTTPPPATSAPSPLLNAVSPLKTEEKPQTQTLKTPTTTTQKAITKPSPSSSTTKTTPQQRVELKRKTNSMVPKPILVTTPPPATSAPSPLLNAVSPLKTEEKPQTQTLKTPTTTTQKAITKPSPSSSTTKTTPQQRVELKRKTNS 55 GmCTP05GmCTP05 MATCFAPFSVSGGSHELWLTKRVGPKLTVQRRSNLVIKRNHTSSISAEYRDNRGGGGGDFVAGFLLMATCFAPFSVSGGSHELWLTKRVGPKLTVQRRSNLVIKRNHTSSISAEYRDNRGGGGGDFVAGFLL 66 GmCTP06GmCTP06 MMEVMICENFRYSPLSILSSSPSPRCHLSVPSSSLRIKPSSSSSSSSSVSCSLMENQETQRSKFMDFPFVMMEVMICENFRYSPLSILSSSPSPRCHLSVPSSSLRIKPSSSSSSSSSVSCSLMENQETQRSKFMDFPFV 77 GmCTP07GmCTP07 MATSAIQQSAFAGQTALKQLNELVRKTGGAGKGRTNMRRTVKSAPMATSAIQQSAFAGQTALKQLNELVRKTGGAGKGRTNMRRTVKSAP 88 GmCTP08GmCTP08 MATWVLSECGLRPLPPVFPRSTRPISCQKPSKSRFLSTNKGVPDLNMATWVLSECGLRPLPPVFPRSTRPISCQKPSKSRFLSTNKGVPDLN 99 GmCTP09GmCTP09 MIALKAIQASSFALHHNNVRLPHTRASSVLCFCSKSNKNEPDNSQMIALKAIQASSFALHHNVRLPHTRASSVLCFCSKSNKNEPDNSQ 1010 GmCTP10GmCTP10 MAQAMASMTSLRGSSQAVLEGSLGSTRLNVGSGSRVASVTRAGFTVRAQQQQVNGGEVQSSRRAVLSLVAAGLTMAQAMASMTSLRGSSQAVLEGSLGSTRLNVGSGSRVASVTRAGFTVRAQQQQVNGGEVQSSRRAVLSLVAAGLT 1111 GmCTP11GmCTP11 MSSPCSCACASTNWSVDYGYGGGGVLSNSKVRSRRSKEISMAHSVCGSRRSTALVISSLPFGFLFLSPPAEARRNKKAIPEDQYITSPAMSSPCSCACASTNWSVDYGYGGGGVLSNSKVRSRRSKEISMAHSVCGSRRSTALVISSLPFGFLFLSPPAEARRNKKAIPEDQYITSPA 1212 GmCTP13GmCTP13 MAIRVTFSFSGYVAQSLASSAGVRVANSRCVQECWIRTRLSGATMAIRVTFSFSGYVAQSLASSAGVRVANSRCVQECWIRTRLSGAT 1313 GmCTP14GmCTP14 MAVSSTTATVCIPAKNIPTTQAPKIGFSSTIAFAAKPRRRLLRIRSSSAETSGTEVDSETSIEVPMAVSSTTATVCIPAKNIPTTQAPKIGFSSTIAFAAKPRRRLLRIRSSSAETSGTEVDSETSIEVP 1414 GmCTP15GmCTP15 MAIGVAVSGMYTLTPTLSSFKHPTRLFSRAAFTAKLPLQFRASSTSFIDTETNPRESNVVVVEKDVSSRSSNSLACPVCYDMAIGVAVSGMYTLTPTLSSFKHPTRLFSRAAFTAKLPLQFRASSTSFIDTETNPRESNVVVVEKDVSSRSSNSLACPVCYD 1515 GmCTP16GmCTP16 MAGMNSSVLACSYAISGAACSELNGKVTSVASVASSGYKLPLIKCEARVPMAGMNSSVLACSYAISGAACSELNGKVTSVASVASSGYKLPLIKCEARVP 1616 GmCTP17GmCTP17 MLITVREASSCSSSPLSFWLNRFNAKPSKTLKTTSICQASFSVQRRPTHSWNTRHLSTSELANFDPLGINSDLSSGLMLITVREASSCSSSPLSFWLNRFNAKPSKTLKTTSICQASFSVQRRPTHSWNTRHLSTSELANFDPLGINSDLSSGL 1717 GmCTP18GmCTP18 MASVVASLPPPLLLPARKSHMGNFPSSPVSLLSGRWNRVSFVVKASGESSESSTTLTVFKSVQNMASVVASLPPPLLLPARKSHMGNFPSSPVSLLSGRWNRVSFVVKASGESSESSTTLTVFKSVQN 1818 GmCTP19GmCTP19 MASLATLAAVQPATINGLAGSSLSGTKLSFKPSRHSVKSKNFSVTKHYRSGAVVAKYGDKSVYFDLEDMASLATLAAVQPATINGLAGSSLSGTKLSFKPSRHSVKSKNFSVTKHYRSGAVVAKYGDKSVYFDLED 1919 GmCTP20GmCTP20 MAATNASIFASSTQPCLPVPPTIPNTLATPFLNVSSPRSYLVKKKHVKFSKKISAAAVATTTTTEEIQEYKLPSMAATNASIFASSTQPCLPVPPTIPNTLATPFLNVSSPRSYLVKKKKHVKFSKKISAAAVATTTTTEEIQEYKLPS 2020 GmCTP21GmCTP21 MSSFYMSLNPSISQSCYKPKQFFNLERESTLVGRSPVIQIRCRRVVSACLNVDVDAPDSGKMSSFYMSLNPSISQSCYKPKQFFNLERESTLVGRSPVIQIRCRRVVSACLNVDVDAPDSGK 2121 GmCTP22GmCTP22 MPSLSVFPSLPSLQNPNLSQPNFFNFRLPSLCHRPLVKSTATFHRRILCKAFRDSGEDIKAVLKSDDGGGSGDGGGDGGGMPSLSVFPSLPSLQNPNLSQPNFFNFRLPSLCHRPLVKSTATFHRRILCKAFRDSGEDIKAVLKSDDGGGSGDGGGDGGG 2222 GmCTP23GmCTP23 MATFFGSPPIFSLPLTRTHHISSSSQTPPPTPPPQSQPPTSSPQQLRTTNLNDESMQVCTEAKQQKPIKPSTKVESTDWMATFFGSPPIFSLPLTRTHHISSSSQTPPPTPPPQSQPPTSSPQQLRTTNLNDESMQVCTEAKQQKPIKPSTKVESTDW 2323 GmCTP24GmCTP24 MAAATSSAVLNGFGSHFLCGGKRSHALLAASIGGKVGASVSPKRVIVAVAAAPKKSWIPAVKGGGSFIDPMAAATSSAVLNGFGSHFLCGGKRSHALLAASIGGKVGASVSPKRVIVAVAAAPKKSWIPAVKGGGSFIDP 2424 GmCTP25GmCTP25 MAAASSMALSSPSLAGKAVKLGPSAPEVGRVSMRKTVTKQVSSGSPWYGPMAAASSMALSSPSLAGKAVKLGPSAPEVGRVSMRKTVTKQVSSGSPWYGP 2525 GmCTP26GmCTP26 MALSVSSPSCVRVPSCFWKPNGKSCKERTKVSCAAHNDNKNPLVGIGIGVVTMALSVSSPSCVRVPSCFWKPNGKSCKERTKVSCAAHNDNKNPLVGIGIGVVT 2626 GmCTP27GmCTP27 MAFSAITTLPSPQFLRLPQSSPSLRFSPPILKRPKPLSIRSVSIPAAPASGSLAPAVSLTDNALKMAFSAITTLPSPQFLRLPQSSPSLRFSPPILKRPKPLSIRSVSIPAAPASGSLAPAVSLTDNALK 2727 GmCTP28GmCTP28 MTVAMAVWSAGLHFSAATKPHSSLRPLEKIICTAPFFKASSGFAATKPFCILNTTRLSYSGTTIIPRAAPVTDVEDGNHGETDTIPTMTVAMAVWSAGLHFSAATKPHSSLRPLEKIICTAPFFKASSGFAATKPFCILNTTRLSYSGTTIIPRAAPVTDVEDGNHGETDTIPT 2828 GmCTP29GmCTP29 MSMDMACSLPQSRVLHGGLGTSYRHRSVGQLGCFDFRGRGFGCASFGDSRSVSRLQRSRMNVSACWNNSRVATGREFKVLNMSMDMACSLPQSRVLHGGLGTSYRHRSVGQLGCFDFRGRGFGCASFGDSRSVSRLQRSRMNVSACWNNSRVATGREFKVLN 2929 GmCTP30GmCTP30 MATISAAITTPSITRACLVQKRSLGFSSPVLGLPAMGKVGRVSCSMEEKPSSVKESSSSMLGMMATISAAITTPSITRACLVQKRSLGFSSPVLGLPAMGKVGRVSCSMEEKPSSVKESSSSMLGM 3030 GmCTP31GmCTP31 MAAVVSASSHLLFVLRSQPLSSSPSFISLLKPLLVSSPYAVSTPLRHIQVPPLRKPLFSTSSSPSLTVSQDSEELEEKEIADDDDELMAAVVSASSHLLFVLRSQPLSSSPSFISLLKPLLVSSPYAVSTPLRHIQVPPLRKPLFSTSSSSPSLTVSQDSEELEEKEIADDDDEL 3131 GmCTP32GmCTP32 MARTLTLTPISFTLAKTLNPIFPFHNTLPFSSSILSRQKLTRRSLSRSVLRPTAGELSGSVDDDEESGELDDLMARTLTLTPISFTLAKTLNPIFPFHNTLPFSSSILSRQKLTRRSLSRSVLRPTAGELSGSVDDDEESGELDDL 3232 GmCTP33GmCTP33 MHVVVVLNTQSYCRGLEPPSSSPSVVSNKGTRTLSFRRLLLRPSLGIHLSRSFALKCVVTPNPAVELPLTAENVESVLDEIRPYLIADGGMHVVVVLNTQSYCRGLEPPSSSPSVVSNKGTRTLSFRRLLLRPSLGIHLSRSFALKCVVTPNPAVELPLTAENVESVLDEIRPYLIADGG 3333 GmCTP34GmCTP34 MQSLSPPTSNALNLKHVFRPRLGASSRISVKCAFGFEPVSYGVGSSRADWQMQSLSPPTSNALNLKHVFRPRLGASSRISVKCAFGFEPVSYGVGSSRADWQ 3434 GmCTP35GmCTP35 MTLHLQHKNINMAAKLTLSSPFSFKTSFLPKSPSFSLGLYSPRTNVTGVKVHAKLGGGDEQAKKGGKKKFITMTLHLQHKNINMAAKLTLSSPFSFKTSFLPKSPSFSLGLYSPRTNVTGVKVHAKLGGGDEQAKKGGKKKFIT 3535 GmCTP36GmCTP36 MALATNSKKPHCMAINLSTTASLHSKPSFLTHKHNNLIKIYHPSSSLLTTCAQTQGTDTGVTQEDASAGNGMALATNSKKPHCMAINLSTTASLHSKPSFLTHKHNNLIKIYHPSSSLLTTCAQTQGTTDGVTQEDASAGNG 3636 GmCTP37GmCTP37 MVVCGYEEQEEERQRKRKEFGLGLHLSADNTLRPFEKTTILKALSISDATKPCYISHKTRLSSSSSGITMIPRATTVIGTVMVVCGYEEQEEERQRKRKEFGLGLHLSADNTLRPFEKTTILKALSISDATKPCYISHKTRLSSSSGITMIPRATTVIGTV 3737 GmCTP38GmCTP38 MFSSTRCAFLSNSGLGGCSSLCDAQRKRSTRFRVVSMTPSSSRSGDRNGSVVMETMFSSTRCAFLSNSGLGGCSSLCDAQRKRSTRFRVVSMTPSSSRSGDRNGSVVMET 3838 GmCTP39GmCTP39 MDSASFAHPLISHVITSSSLHRSYGIHHSARLGLWKNKVWNSACCAAGVEDLFDDSNLKRNENGMDSASFAHPLISHVITSSSLHRSYGIHHSARLGLWKNKVWNSACCAAGVEDLFDDSNLKRNENG 3939 GmCTP41GmCTP41 MASSCASSAIAAVAISTPSSQKNGSLLGSTKASFLSGRKLKVNNFTAPVGARSSTTVCAVAEPDRPLWFPGSTPPPWLMASSCASSAIAAVAISTPSSQKNGSLLGSTKASFLSGRKLKVNNFTAPVGARSSTTVCAVAEPDRPLWFPGSTPPPWL 4040 GmCTP42GmCTP42 MAAAAAVTVLLPPRIPTATNVTRCSALPSLPPRGTNTKTTLLLSSLNHFSVSRKSSLLQTRASSEESSSVDANEVFTDLKEMAAAAAVTVLLPPRIPTATNVTRCSALPSLPPRGTNTKTTLLLSSLNHFSVSRKSSLLQTRASSEESSSVDANEVFTDLKE 4141 GmCTP43GmCTP43 MASSICALSPSVQSQLTKTTLVAPIPLYQRSKCEMSRRSFAFKGIVASGVSVAASTLTAEAEPSSKMASSICALSPSVQSQLTKTTLVAPIPLYQRSKCEMSRRSFAFKGIVASGVSVAASTLTAEAEPSSK 4242 GmCTP44GmCTP44 MLAISAIASLPVLPPVRRGGHCIEQNVVSTLSFPRRLQTTNNSISLSSTQFPFGRRARSTQPATIICAAALNARCGAEQTQTVTRQAMLAISAIASLPVLPPVRRGGHCIEQNVVSTLSFPRRLQTTNNSISLSSTQFPFGRRARSTQPATIICAAALNARCGAEQTQTVTRQA 4343 GmCTP45GmCTP45 MASMTTMLQTMVPKNAPNLPPRVGVSNNTTKISFAGSGRVPCTRIQRNRNRSSSIVVAAVGDVSSDGTTYLVAGAIMASMTTMLQTMVPKNAPNLPPRVGVSNNTTKISFAGSGRVPCTRIQRNRNRSSSIVVAAVGDVSSDGTTYLVAGAI 4444 GmCTP46GmCTP46 MASISSLSLTSVSLPKSQSLDPKKISDSSSSSGSRSQSCCCAPSFQRRKMLLSSAAIVAGTLCSNSVSGVSLAMASISSLSLTSVSLPKSQSLDPKKISDSSSSSGSRSQSCCCAPSFQRRKMLLSSAAIVAGTLCSNSVSGVSLA 4545 GmCTP47GmCTP47 MELSRLFVSDTCFFSPPIRCSPSPALSTFFAVKNRRSRRRSSFCSASNPDTLVAGGAAVVAGAGEKHEEDLKSWMHKHGLMELSRLFVSDTCFFSPPIRCSPSPALSTFFAVKNRRSRRRSSFCSASNPDTLVAGGAAVVAGAGEKHEEDLKSWMHKHGL 4646 GmCTP48GmCTP48 MASVFSACSGSAVLFYSRNSFPSKGSFIHLKRPLSANCVASLGTEVSVSPAVDTFWQWLMASVFSACSGSAVLFYSRNSFPSKGSFIHLKRPLSANCVASLGTEVSVSPAVDTFWQWL 4747 GmCTP49GmCTP49 MRALNSHVLLVDLHSHHHVPTSTLSYLRNSRFISSLRRRSPRTGIRCTASPEIRRPSDRFYGSSPSMRALNSHVLLVDLHSHHHVPTSTLSYLRNSRFISSLRRRSPRTGIRCTASPEIRRPSDRFYGSSPS 4848 GmCTP50GmCTP50 MVSASLQFWSWIAPTPISHRYTHKFASLTSLKLATPVSSTNTVYLPKPLVVRFALTESDSPKSIEPDPQTLLMVSASLQFWSWIAPTPISHRYTHKFASLTSLKLATPVSSTNTVYLPKPLVVRFALTESDSPKSIEPDPQTLL 4949 GmCTP51GmCTP51 MASINFNPFGGNWFSKPPNPLPLPSLPNTLTDAPSLPPNFAAISLPNPFRRRPKPKSAEPTEPGPYEQLARQVLWEMASINFNPFGGNWFSKPPNPLPLPSLPNTLTDAPSLPPNFAAISLPNPFRRRPKPKSAEPTEPGPYEQLARQVLWE 5050 GmCTP52GmCTP52 MATINLSSATTSLFQSKHRTKRIPRLPTIARITNHIEGTHLNSPNGSPILGNANNSLEVPSNNYISLHSSMATINLSSATTSLFQSKHRTKRIPRLPTIARITNHIEGTHLNSPNGSPILGNANNSLEVPSNNYISLHSS 5151 GmCTP53GmCTP53 MAVQAFYHLGSPLTSQSHFPSPPLRLTLTASAPFKPRPLASIGISPLPERRRMPVAGAVEESQESSEPEAEADLAMAVQAFYHLGSPLTSQSHFPSPPLRLTLTASAPFKPRPLASIGISPLPERRRMPVAGAVEESQESSEPEAEADLA 5252 GmCTP54GmCTP54 MGLCTVQPITLSKLPNASSFLPKPKPSLPQSYTPSAAHLSRSVCLRNLSPKATSSMGLCTVQPITLSKLPNASSFLPKPKPSLPQSYTPSAAHLSRSVCLRNLSPKATSS 5353 GmCTP55GmCTP55 MASACASSAITAVAISTPSSGQKNGSGGCFLSGRKLRVKKERAAIGGRSMGTTVCAVAEPDRPLWFPGSTPPPWLMASACASSAITAVAISTPSSGQKNGSGGCFLSGRKLRVKKERAAIGGRSMGTTVCAVAEPDRPLWFPGSTPPPWL 5454 GmCTP56GmCTP56 MMMISTSTMALASLLPKTAPHVLSLTNPSASTPFILPFSFHCLPHPPLLSALKASSSGGDDLRGKPLLSQGIGMMMISTSTMALASLLPKTAPHVLSLTNPSASTPFILPFSFHCLPHPPLLSALKASSSGGDDLRGKPLLSQGIG 5555 GmCTP57GmCTP57 MLQNPRVLRYSAQPFNPPTRTAASSLSPFQLIPTSPSFPILKQQCRFSRRELTIFSNSCLLLLLGSQAVDGSRARAEEDVGNTSNIDQLEENLMLQNPRVLRYSAQPFNPPTRTAASSLSPFQLIPTSPSFPILKQQCRFSRRELTIFSNSCLLLLLGSQAVDGSRARAEEDVGNTSNIDQLEENL 5656 GmCTP58GmCTP58 MAAFFGSPPIFSLPPTIIRTHHISSSSQTPPPTPSPQSQPPTSSPQQLRTTNLNEESVQVSTEAKQQKPIKPVTSSTKVMAAFFGSPPIFSLPPTIIRTHHISSSSQTPPPTPSPQSQPPTSSPQQLRTTNLNEESVQVSTEAKQQKPIKPVTSSTKV 5757 GmCTP59GmCTP59 MAAVPSTFALTKSALSINKLDHSLVKIKPYSFSLNLNRLGRMETSLTRRPLTIQATYSDGGRPSSASVFVGGFLLGGLIVGTLGCMAAVPSTFALTKSALSINKLDHSLVKIKPYSFSLNLNRLGRMETSLTRRPLTIQATYSDGGRPSSASVFVGGFLLGGLIVGTLGC 5858 GmCTP60GmCTP60 MPLPTVVSPFSSSSGTFLSTVTARSSLPPKRNVSPSPSPFSTLSRRDIALLSFFSLSLSAPSSAIMPLPTVVSPFSSSSGTFLSTVTARSSLPPKRNVSPSPSPFSTLSRRDIALLSFFSLSLSAPSSAI 5959 GmCTP61GmCTP61 MAAFTSIAVQYSSTSSLQSLVPSLEATRDHNSWWGRVRSYKPTAKISLQQNITRGLTIMAAFTSIAVQYSSTSSLQSLVPSLEATRDHNSWWGRVRSYKPTAKISLQQNITRGLTI 6060 GmCTP62GmCTP62 MKGSCCLANTHKLYSSLPLSNSNNNHIVSCQKGFTFKVRNLGFNVDKSFWSNHVSYVAQKRKGNGMKGSCCLANTHKLYSSLPLSNSNNNHIVSCQKGFTFKVRNLGFNVDKSFWSNHVSYVAQKRKGNG 6161 GmCTP63GmCTP63 MAIILAANMCSITNSKTVEVIKRFDIEDKLQSRSNIALPRLEASSSRRHLLISVGPSLVTLTCGLSPSMVWAEEKSGEKEEEDKGVIGAIKMAIILAANMCSITNSKTVEVIKRFDIEDKLQSRSNIALPRLEASSSRRHLLISVGPSLVTLTCGLSPSMVWAEEKSGEKEEEDKGVIGAIK 6262 GmCTP64GmCTP64 MTLAMAVWSAGLHFSAARSSLRPLEKTICTAPFLKASSGFAATKPFCILNTTRLSYSGTTIIPRAAPVTDVKDGNQGETDTIMTLAMAVWSAGLHFSAARSSLRPLEKTICTAPFLKASSGFAATKPFCILNTTRLSYSGTTIIPRAAPVTDVKDGNQGETDTI 6363 GmCTP65GmCTP65 MAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTMAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNST 6464 GmCTP67GmCTP67 MVCAISSSPFSTLSFRRLVVSNATVSPCKPRAVKLLTALPSAGRRQLLFFLTATTAFTAREAASVMVCAISSSPFSTLSFRRLVVSNATVSPCKPRAVKLLTALPSAGRRQLLFFLTATTAFTAREAASV 6565 GmCTP68GmCTP68 MGIVGFEINANSASASALHYYGANSFSSHTVPFSLRPFFGNALNVNTRVAGKIRASHARKPKFGAVIVASLSGGMGIVGFEINANSASASALHYYGANSFSSHTVPFSLRPFFGNALNVNTRVAGKIRASHARKPKFGAVIVASLSGG 6666 GmCTP69GmCTP69 MATATAAAATSYFFGTRLNNVNTTTLNNGRFHALLNFMATATAAAATSYFFGTRLNNVNTTTLNNGRFHALLNF 6767 GmCTP70GmCTP70 MAALTSLSFSAVTHCSERKVTLSSTRFLASSSEIMAALTSLSFSAVTHCSERKVTLSSTRFLASSSEI 6868 GmCTP71GmCTP71 MATTFASSSPRIATFLSSSSSSSTLRTTTTLPSLQFTSPSKKLILFHNPVLQKHSRFRPLLLPPPMATTFASSSPRIATFLSSSSSSSTLRTTTTLPSLQFTSPSKKLILFHNPVLQKHSRFRPLLLPPP 6969 GmCTP72GmCTP72 MALAMAACSLGLHLSADNTLRPFEKTTVLKALSISYVTKPCYISHKTRLSSPSSSGITMIARATAVTGTVEDGNQGEADTIPMALAMAACSLGLHLSADNTLRPFEKTTVLKALSISYVTKPCYISHKTRLSSPSSSGITMIARATAVTGTVEDGNQGEADTIP 7070 GmCTP73GmCTP73 METFSISRNSSSLIILTRPSTRHKPIFLPQRHGSLTFNTIRCTTTDNNNNNTSNNNTTNDDANSVMETFSISRNSSSLIILTRPSTRHKPIFLPQRHGSLTFNTIRCTTTDNNNNNTSNNNTTNDDANSV 7171 GmCTP75GmCTP75 MATILPPSNAQFVSFNARHRSSSPTLPRWGWRKEQDASIVANRTRGQAFQVLVASGKEGSKDDVVMVDPVEAKMATILPPSNAQFVSFNARHRSSSPTLPRWGWRKEQDASIVANRTRGQAFQVLVASGKEGSKDDVVMVDPVEAK 7272 GmCTP76GmCTP76 MAATTATATSYFFGTRLNNPTTLNNGRFHALLNFGKKKAAAPPPKKKEVKVKPSGDRLMAATTATATSYFFGTRLNNPTTLNNGRFHALLNFGKKKAAAPPPKKKEVKVKPSGDRL 7373 GmCTP77GmCTP77 MASISCITHHPITSKLNNAFSSPHVSASNLASRFLGTRKRVGLHSLTSRIIGPSNGSKATCWFRFGKNGVDAKGMASISCITHHPITSKLNNAFSSPHVSASNLASRFLGTRKRVGLHSLTSRIIGPSNGSKATCWFRFGKNGVDAKG 7474 GmCTP78GmCTP78 MTLTTAFSCSLAAASLSTAASFRRNKCTTSKIFHSMTLTTAFSCSLAAASLSTAASFRRNKCTTSKIFHS 7575 GmCTP79GmCTP79 MATIIAGIPTTSITRAGLVLKRPVGASSSTVLGLPAMAKAGKVRCSMEEKPSSSSNIGMGASMATIIAGIPTTSITRAGLVLKRPVGASSSTVLGLPAMAKAGKVRCSMEEKPSSSSNIGMGAS 7676 GmCTP80GmCTP80 MALPHSIILPFSSIISPCCLPKHKPTNFTLPFKLNGDSCRSIRIPSRVQALKSDGGKWKKRGQEASSMALPHSIILPFSSIISPCCLPKHKPTNFTLPFKLNGDSCRSIRIPSRVQALKSDGGKWKKRGQEASS 7777 GmCTP81GmCTP81 MSQVVATRSIHSSLTRPTSGSAHHRAQTLLKPPTFASKLFGAQRNNPSKVCSRSCLVNARKSAPAKVVPVSPEDDSMSQVVATRSIHSSLTRPTSGSAHHRAQTLLKPPTFASKLFGAQRNNPSKVCSRSCLVNARKSAPAKVVPVSPEDDS

실시예Example 2. 후보유전자의 N-terminal 2. N-terminal of candidate gene 클로닝cloning

상기 실시예 1에서 선별된 77종의 CTP 추정 단백질 서열을 암호화하는 후보 유전자의 DNA 서열 (표 2)을 PCR로 증폭하여, restriction enzyme digestion/ligation 또는 In-Fusion® HD Cloning Kit (Clontech)을 통해, 식물발현벡터의 CaMV35S promoter (Cauliflower mosaic virus 35S promoter, p35S)와 GFP (Green fluorescent protein) 사이에 삽입하여 도 1의 구조를 갖는 식물발현벡터를 준비하였다.The DNA sequence (Table 2) of the candidate gene encoding the 77 kinds of CTP putative protein sequences selected in Example 1 was amplified by PCR, and restriction enzyme digestion/ligation or In-Fusion® HD Cloning Kit (Clontech) , A plant expression vector having the structure of FIG. 1 was prepared by inserting it between the CaMV35S promoter (Cauliflower mosaic virus 35S promoter, p35S) and GFP (Green fluorescent protein) of the plant expression vector.

상기 77종 후보 유전자의 DNA 서열을 아래의 표 2에 예시하였다:The DNA sequences of the 77 candidate genes are exemplified in Table 2 below:

SEQ ID NOSEQ ID NO CTPCTP DNA 서열 (5'→3')DNA sequence (5'→3') 7878 GmCTP01GmCTP01 ATGGTTCCACATGGCATAATAGTAAGGTCTTCCATACCGGGCAGCACGGTCAGCCAAACTGGTCCTGCCCGAAAACTCAAAGAGTCCAAATTCCCACCTCACCACTCAAGGCTCACTTACTTACCACACACACCTCCTAAACCAAAATTATCCAAAACCATGTCCAGCTTCACTCATGCCACCACACTCCTCCATGCCCACATCAAAATGGTTCCACATGGCATAATAGTAAGGTCTTCCATACCGGGCAGCACGGTCAGCCAAACTGGTCCTGCCCGAAAACTCAAAGAGTCCAAATTCCCACCTCACCACTCAAGGCTCACTTACTTACCACACACACCTCCTAAACCAAAATTATCCAAAACCATGTCCAGCTTCACTCATGCCACCACACTCCTCCATGCCCACATCAAA 7979 GmCTP02GmCTP02 ATGGCCACCGCAACAGCAGCAGCCACCTCGTCCTTCATGGGGACGCGCCTCCTGGAGGCCCACTCCGGGGCGGGGCGGGTGCAGGCCCGGTTCGGGTTTGGCAAGAAGAAAGCCGCCGCCCCGAAGAAAGTTTCCAGGGGGTCGGGCTCTAGCTCCGATAGGCCCCTGTGGATGGCCACCGCAACAGCAGCAGCCACCTCGTCCTTCATGGGGACCGCGCCTCCTGGAGGCCCACTCCGGGGCGGGGCGGGTGCAGGCCCGGTTCGGGTTTGGCAAGAAGAAAGCCGCCGCCCCGAAGAAAGTTTCCAGGGGGTCGGGCTCTAGCTCCGATAGGCCCCTGTGG 8080 GmCTP03GmCTP03 ATGCATACAGGAATGGCTTCATTAACTCAACTCCATTATAAAGTACATACCTCCACTTTCAGAAGGGTGCATTCTAGAAGCCAAGGATTATTGAAATCTGGAAAACTATCCCAACTTCAAGGATCCGCCTTTCCTAGTATTCACATTAATCAATCCTGCATATGCTGCACGAAGTTAACTCCATGGGAGTCATCACCTGTCACATATGCTCCTACTGATAATCAAATGCATACAGGAATGGCTTCATTAACTCAACTCCATTATAAAGTACATACCTCCACTTTCAGAAGGGTGCATTCTAGAAGCCAAGGATTATTGAAATCTGGAAAACTATCCCAACTTCAAGGATCCGCCTTTCCTAGTATTCACATTAATCAATCCTGCATATGCATCACGAAGTTAACTCCATAGGAGTCATCTCCTGAACTTA 8181 GmCTP04GmCTP04 ATGGTCCCAAAACCAATCTTAGTCACAACACCACCGCCGGCAACTTCTGCACCCTCTCCACTGCTCAACGCAGTTTCACCCCTCAAAACAGAAGAAAAACCCCAAACACAAACCCTAAAAACCCCCACCACCACCACTCAAAAAGCTATAACCAAACCAAGCCCATCATCATCCACCACCAAAACGACGCCGCAGCAGCGCGTGGAGCTAAAGAGAAAAACAAACTCAATGGTCCCAAAACCAATCTTAGTCACAACACCACCGCCGGCAACTTCTGCACCCTCTCCACTGCTCAACGCAGTTTCACCCCTCAAAACAGAAGAAAAACCCCAAACACAAACCCTAAAAACCCCCACCACCACCACTCAAAAAGCTATAACCAAACCAAGCCCATCATACTCATCCACCACCAAAACGAACGCCCGCAGCAGGACGTGGA 8282 GmCTP05GmCTP05 ATGGCAACTTGTTTCGCTCCGTTCTCCGTTTCAGGTGGATCTCATGAGCTGTGGTTAACAAAGCGAGTTGGACCTAAGCTCACTGTTCAAAGGAGATCAAACCTTGTGATCAAGAGGAACCACACTTCTTCAATTAGTGCAGAATACCGTGATAATAGAGGAGGTGGAGGTGGGGATTTTGTTGCTGGCTTTCTTCTGATGGCAACTTGTTTCGCTCCGTTCTCCGTTTCAGGTGGATCTCATGAGCTGTGGTTAACAAAGCGAGTTGGACCTAAGCTCACTGTTCAAAGGAGATCAAACCTTGTGATCAAGAGGAACCACACTTCTTCAATTAGTCGCAGAATACCGTGATAATAGAGGAGGTGGAGGTGGGGATTTTGTTGCTGGCTTTCTTCTG 8383 GmCTP06GmCTP06 ATGGAAGTGATGATCTGTGAGAATTTCCGGTATTCACCACTCTCCATCTTATCTTCTTCTCCTTCACCTCGTTGCCATCTCTCTGTTCCATCTTCTTCTTTGAGGATTAAACCTTCTTCTTCATCTTCATCATCATCATCTGTGTCTTGTTCTCTCATGGAGAATCAGGAGACCCAACGCAGCAAATTCATGGACTTTCCGTTCGTTATGGAAGTGATGATCTGTGAGAATTTCCGGTATTCACCACTCTCCATCTTATCTTCTTCTCCTTCACCTCGTTGCCATCTCTCTGTTCCATCTTCTTCTTTGAGGATTAAACCTTCTTCTTCATCTTCATCATCATCATCTGTGTCTTGTTCTCTCATGGAGAATCAGGAGACCCAACGCAGCAAATTCATGGACTTTCCGTTC 8484 GmCTP07GmCTP07 ATGGCCACCTCTGCTATTCAGCAATCAGCATTCGCAGGTCAAACTGCTCTGAAGCAGCTCAATGAGTTGGTCCGCAAGACCGGTGGCGCCGGCAAAGGTCGCACCAACATGCGCCGTACCGTCAAGAGTGCTCCTATGGCCACCTCTGCTATTCAGCAATCAGCATTCGCAGGTCAAACTGCTCTGAAGCAGCTCAATGAGTTGGTCCGCAAGACCGGTGGCGCCGGCAAAGGTCGCACCAACATGCGCCGTACCGTCAAGAGTGCTCCT 8585 GmCTP08GmCTP08 ATGGCAACCTGGGTTTTATCAGAATGTGGCTTAAGGCCTCTTCCACCAGTGTTTCCACGGTCAACAAGACCCATTTCGTGCCAAAAACCTTCAAAGTCTAGATTTTTAAGCACAAACAAGGGTGTGCCAGATCTGAATATGGCAACCTGGGTTTTATCAGAATGTGGCTTAAGGCCTCTTCCACCAGTGTTTCCACGGTCAACAAGACCCATTTCGTGCCAAAAACCTTCAAAGTCTAGATTTTTAAGCACAAACAAGGGTGTGCCAGATCTGAAT 8686 GmCTP09GmCTP09 ATGATTGCCCTGAAAGCCATTCAAGCGTCCTCCTTCGCTCTCCACCACAACAACGTAAGACTCCCTCACACAAGAGCTTCTTCTGTTCTGTGCTTTTGCAGCAAGTCGAACAAGAACGAGCCTGATAATTCCCAAATGATTGCCCTGAAAGCCATTCAAGCGTCCTCCTTCGCTCTCCACCACAACAACGTAAGACTCCCTCACACAAGAGCTTCTTCTGTTCTGTGCTTTTGCAGCAAGTCGAACAAGAACGAGCCTGATAATTCCCAA 8787 GmCTP10GmCTP10 ATGGCTCAAGCAATGGCATCAATGACTAGCTTACGTGGTTCCTCTCAGGCTGTGTTGGAAGGTAGCCTTGGCTCCACACGCTTGAATGTGGGGAGTGGAAGCAGGGTGGCCTCAGTCACACGTGCAGGGTTCACAGTTAGAGCACAGCAACAACAAGTGAATGGTGGTGAGGTACAAAGTAGCCGTAGGGCAGTGCTTTCACTTGTTGCTGCTGGTTTGACCATGGCTCAAGCAATGGCATCAATGACTAGCTTACGTGGTTCCTCTCAGGCTGTGTTGGAAGGTAGCCTTGGCTCCACACGCTTGAATGTGGGGAGTGGAAGCAGGGTGGCCTCAGTCACACGTGCAGGGTTCACAGTTAGAGCACAGCAACAACAAGTGAATGGTGTGGTGAGGTACAAAGTAGCCTCGTAGGGCAGTGGCTAGCCTCGTAGGGCAGGGTGGCTCAAGCAATGGCATCAATGACTAGCTTACGTGGTTCCTCTCAGGCTGTTGGAAGGTAGCCTTGGCTCCACACGCTTGAATGTGGGGAGTGGAAGCAGGGTGGCCTCAGTCACACGTGCAGGGTTCACAGTTAGAGC 8888 GmCTP11GmCTP11 ATGAGTTCCCCTTGCAGTTGCGCTTGCGCTTCTACTAATTGGAGCGTTGATTATGGTTATGGAGGTGGTGGCGTGCTTTCAAATTCAAAGGTAAGAAGCAGGAGGTCCAAAGAAATATCCATGGCACATTCAGTTTGTGGTTCGAGAAGGTCCACTGCACTTGTGATTTCATCCTTGCCTTTCGGCTTCCTTTTCCTATCTCCGCCAGCTGAGGCCAGACGCAACAAGAAGGCCATCCCCGAAGACCAATACATTACTAGCCCAGCTATGAGTTCCCCTTGCAGTTGCGCTTGCGCTTCTACTAATTGGAGCGTTGATTATGGTTATGGAGGTGGTGGCGTGCTTTCAAATTCAAAGGTAAGAAGCAGGAGGTCCAAAGAAATATCCATGGCACATTCAGTTTGTGGTTCGAGAAGGTCCACTGCACTTGACTTGATTTCATCCTTGCCTTTCGGCTTGACCAATTAGCATAGCATAGCATCGCTTGACTAGCTAGCAT 8989 GmCTP13GmCTP13 ATGGCTATTCGTGTAACCTTTTCCTTTTCGGGCTATGTCGCCCAGAGCCTCGCCTCCTCCGCCGGCGTGCGCGTCGCCAATTCGCGTTGCGTCCAGGAATGCTGGATCCGTACGCGCCTCTCTGGCGCCACCATGGCTATTCGTGTAACCTTTTCCTTTTCGGGCTATGTCGCCCAGAGCCTCGCCTCCTCCGCCGGCGTGCGCGTCGCCAATTCGCGTTGCGTCCAGGAATGCTGGATCCGTACGCGCCTCTCTGGCGCCACC 9090 GmCTP14GmCTP14 ATGGCTGTGTCCTCCACCACTGCCACAGTATGTATTCCTGCTAAGAACATTCCAACCACTCAAGCACCAAAAATTGGATTCTCAAGTACCATCGCCTTTGCTGCGAAACCGCGAAGAAGATTATTACGCATCAGAAGCTCCTCAGCCGAAACATCTGGCACAGAGGTAGATTCAGAGACTTCCATTGAAGTTCCAATGGCTGTGTCCTCCACCACTGCCACAGTATGTATTCCTGCTAAGAACATTCCAACCACTCAAGCACCAAAAATTGGATTCTCAAGTACCATCGCCTTTGCTGCGAAACCGCGAAGAAGATTATTACGCATCAGAAGCTCCTCAGCCGAAACATCTGGCACAGAGGTAGATTCAGAGACTTCCATTGAAGTTCCA 9191 GmCTP15GmCTP15 ATGGCTATAGGCGTAGCAGTTTCCGGTATGTACACGCTCACTCCAACTCTCTCTTCATTCAAGCACCCCACGCGCCTCTTCTCACGCGCTGCTTTCACTGCAAAGCTTCCACTTCAATTTCGAGCTTCTTCAACGTCCTTCATCGACACCGAAACCAATCCAAGAGAATCCAACGTAGTAGTAGTTGAAAAGGACGTAAGCAGTAGAAGCAGCAATTCGTTGGCTTGTCCCGTATGTTACGATATGGCTATAGGCGTAGCAGTTTCCGGTATGTACACACGCTCACTCCAACTCTCTCTTCATTCAAGCACCCCACGCGCCTCTTCTCACGCGCTGCTTTCACTGCAAAGCTTCCACTTCAATTTCGAGCTTCTTCAACGTCCTTCATCGACACCGAAACCAATCCAAGAGAATCCAACGTAGTAGTAGTTCGTAGGTAGATGACGTAAGTAGTTGAAAGAATCAGCCG 9292 GmCTP16GmCTP16 ATGGCTGGCATGAACTCTAGCGTATTGGCCTGTAGCTATGCCATATCTGGTGCAGCATGCTCCGAGCTCAATGGGAAGGTCACTTCCGTGGCCTCTGTTGCATCCTCTGGCTACAAGTTGCCATTGATCAAATGTGAGGCCAGAGTTCCCATGGCTGGCATGAACTCTAGCGTATTGGCCTGTAGCTATGCCATATCTGGTGCAGCATGCTCCGAGCTCAATGGGAAGGTCACTTCCGTGGCCTCTGTTGCATCCTCTGGCTACAAGTTGCCATTGATCAAATGTGAGGCCAGAGTTCCC 9393 GmCTP17GmCTP17 ATGTTGATAACGGTTAGGGAAGCTTCTTCTTGTTCTTCTTCTCCCCTCAGCTTCTGGCTTAATCGTTTCAACGCAAAACCCTCCAAAACACTCAAAACAACATCCATTTGCCAAGCTAGTTTCTCTGTCCAAAGAAGACCCACTCATTCATGGAATACTCGCCATCTCTCTACCAGCAGTGAGCTAGCAAATTTTGATCCCTTGGGTATTAACTCAGATTTATCTTCTGGTATGTTGATAACGGTTAGGGAAGCTTCTTCTTGTTCTTCTTCTCCCCTCAGCTTCTGGCTTAATCGTTTCAACGCAAAACCCTCCAAAACACTCAAAACAACATCCATTTGCCAAGCTAGTTTCTCTGTCCAAAGAAGACCCACTCATTCATGGAATACTCGCCATCTCTCTCTACCAGCAGTGAGCTAGCTAGAATTGTTGATCCCTTCTTTACCAGCAGTGAGCTAGCAAATTGTTGATCTC 9494 GmCTP18GmCTP18 ATGGCTTCCGTTGTTGCAAGCTTGCCGCCACCATTGCTGCTCCCTGCTAGAAAATCACATATGGGCAACTTCCCAAGTTCCCCTGTTTCTCTTCTTTCAGGGAGATGGAATCGTGTTTCTTTTGTTGTGAAGGCTTCTGGAGAAAGTTCTGAATCTTCAACTACCCTTACTGTTTTTAAGTCTGTTCAGAATATGGCTTCCGTTGTTGCAAGCTTGCCGCCACCATTGCTGCTCCCTGCTAGAAAATCACATATGGGCAACTTCCCAAGTTCCCCTGTTTCTCTTCTTTCAGGGATGGAATCGTGTTTCTTTTGTTGTGAAGGCTTCTGGAGAAAGTTCTGAATCTTCAACTACCCTTACTGTTTTTAAGTCTGTTCAGAAT 9595 GmCTP19GmCTP19 ATGGCTTCTCTAGCAACCTTGGCTGCTGTTCAACCAGCTACGATCAATGGCCTTGCTGGAAGTTCCCTCTCTGGAACTAAGCTCTCTTTCAAGCCCTCTCGCCACAGTGTCAAATCCAAGAACTTCAGTGTAACTAAGCATTACAGGAGTGGTGCCGTGGTAGCAAAGTATGGTGACAAGAGTGTGTACTTTGATTTGGAGGATATGGCTTCTCTAGCAACCTTGGCTGCTGTTCAACCAGCTACGATCAATGGCCTTGCTGGAAGTTCCCTCTCTGGAACTAAGCTCTCTTTCAAGCCCTCTCGCCACAGTGTCAAATCCAAGAACTTCAGTGTAACTAAGCATTACAGGAGTGGTGCCGTGGTAGCAAAGTATGGTGACAAGAGTGAGTATTTGATTGG 9696 GmCTP20GmCTP20 ATGGCTGCAACGAATGCGTCAATCTTTGCATCTTCCACGCAACCATGCTTGCCTGTGCCTCCTACCATTCCAAACACGCTTGCTACTCCTTTTCTCAATGTTTCGTCACCAAGAAGTTACCTTGTGAAGAAAAAGCATGTGAAATTTAGCAAAAAAATCAGTGCTGCTGCTGTTGCAACAACAACAACAACTGAGGAAATTCAAGAGTACAAGCTTCCATCAATGGCTGCAACGAATGCGTCAATCTTTGCATCTTCCACGCAACCATGCTTGCCTGTGCCTCCTACCATTCCAAACACGCTTGCTACTCCTTTTCTCAATGTTTCGTCACCAAGAAGTTACCTTGTGAAGAAAAAGCATGTGAAATTTAGCAAAAAAATCAGCTTGCTGCTGCTGTTGCAACAACAACAACAACTGAGGAACAT 9797 GmCTP21GmCTP21 ATGAGTTCATTTTACATGTCTCTGAACCCTTCAATTTCTCAATCGTGTTACAAACCCAAGCAATTTTTCAATTTGGAGAGAGAGAGTACTTTGGTGGGAAGAAGTCCTGTTATTCAGATTAGATGCCGGAGGGTTGTGAGTGCGTGTCTTAACGTGGATGTTGATGCACCTGATAGTGGGAAGATGAGTTCATTTTACATGTCTCTGAACCCTTCAATTTCTCAATCGTTGTTACAAACCCAAGCAATTTTTCAATTTGGAGAGAGAGAGTACTTTGGTGGGAAGAAGTCCTGTTATTCAGATTAGATGCCGGAGGGTTGTGAGTGCGTGTCTTAACGTGGATGTTGATGCACCTGATAGTGGGAAG 9898 GmCTP22GmCTP22 ATGCCTTCTCTCTCCGTTTTCCCATCACTCCCATCGCTTCAAAACCCTAACTTGAGCCAACCCAATTTCTTCAATTTCCGCTTACCGTCGCTCTGTCACCGTCCCCTCGTCAAAAGCACTGCAACTTTTCACCGTAGAATCCTCTGCAAAGCCTTCAGAGATTCCGGCGAGGACATCAAGGCGGTGCTCAAGTCCGACGACGGTGGTGGCAGCGGCGACGGCGGCGGCGACGGTGGGGGTATGCCTTCTCTCTCCGTTTTCCCATCACTCCCATCGCTTCAAAAACCCTAACTTGAGCCAACCCAATTTCTTCAATTTCCGCTTACCGTCGCTCTGTCACCGTCCCCTCGTCAAAAGCACTGCAACTTTTCACCGTAGAATCCTCTGCAAAGCCTGTTCAGAGAGATTCCGGCGCGCGGACATCAAGGCGGCGCGCGCGGACATCAAGGCGGTGCTCAGTAGTCGTCGGG 9999 GmCTP23GmCTP23 ATGGCTACATTCTTTGGTTCCCCTCCAATTTTCTCCCTCCCCCTCACTAGAACTCACCACATTTCTTCATCATCACAAACTCCACCACCAACTCCTCCTCCACAATCTCAGCCTCCAACTTCGTCTCCACAGCAGCTAAGAACAACAAATTTGAATGATGAATCAATGCAAGTGTGCACTGAAGCTAAGCAACAGAAGCCCATCAAACCATCCACTAAGGTTGAATCCACAGATTGGATGGCTACATTCTTTGGTTCCCCTCCAATTTTCTCCCTCCCCCTCACTAGAACTCACCACATTTCTTCATCATCACAAACTCCACCACCAACTCCTCCTCCACAATCTCAGCCTCCAACTTCGTCTCCACAGCAGCTAAGAACAACAAATTTGAATGATGAATCAATGCAAGTGTAAGGTTGAACTCAAGCACAACAGAGGAGGGACCATCAACAACAGAGG 100100 GmCTP24GmCTP24 ATGGCAGCTGCAACATCTAGTGCTGTGTTAAACGGGTTTGGATCTCACTTCTTGTGTGGAGGAAAGAGGAGCCATGCCCTTCTTGCTGCTAGCATTGGAGGGAAAGTTGGTGCTTCTGTTAGTCCTAAAAGAGTTATTGTGGCAGTTGCTGCTGCACCAAAGAAGTCATGGATCCCCGCTGTAAAAGGTGGTGGGAGTTTCATAGACCCAATGGCAGCTGCAACATCTAGTGCTGTGTTAAACGGGTTTGGATCTCACTTCTTGTGTGGAGGAAAGAGGAGCCATGCCCTTCTTGCTGCTAGCATTGGAGGGAAAGTTGGTGCTTCTGTTAGTCCTAAAAGAGTTATTGTGGCAGTTGCTGCTGCACCAAAGAAGTCATGGATCCCCGCTGTAAAAGGTGGTGGGAG 101101 GmCTP25GmCTP25 ATGGCAGCAGCTTCTTCCATGGCTCTCTCATCCCCATCCTTGGCTGGCAAGGCCGTGAAGCTGGGCCCATCAGCCCCAGAAGTGGGAAGGGTGAGCATGAGGAAGACCGTCACCAAGCAGGTCTCCTCAGGAAGCCCATGGTACGGCCCAATGGCAGCAGCTTCTTCCATGGCTCTCTCATCCCCATCCTTGGCTGGCAAGGCCGTGAAGCTGGGCCCATCAGCCCCAGAAGTGGGAAGGGTGAGCATGAGGAAGACCGTCACCAAGCAGGTCTCCTCAGGAAGCCCATGGTACGGCCCA 102102 GmCTP26GmCTP26 ATGGCACTCTCAGTCTCCTCACCCTCATGCGTACGCGTTCCTTCATGTTTTTGGAAACCAAATGGCAAGAGTTGCAAAGAGCGTACTAAGGTTTCATGTGCAGCTCACAATGATAATAAGAATCCGTTGGTTGGAATCGGTATTGGGGTTGTAACGATGGCACTCTCAGTCTCCTCACCCTCATGCGTACCGTTCCTTCATGTTTTTGGAAACCAAATGGCAAGAGTTGCAAAGAGCGTACTAAGGTTTCATGTGCAGCTCACAATGATAATAAGAATCCGTTGGTTGGAATCGGTATTGGGGTTGTAACG 103103 GmCTP27GmCTP27 ATGGCTTTCTCTGCAATCACTACCTTGCCCTCTCCTCAATTTCTCCGCCTTCCTCAATCTTCACCCTCTCTTCGATTTTCACCGCCAATTCTCAAACGCCCCAAACCCCTCTCCATTCGATCAGTTTCAATCCCCGCTGCACCAGCATCTGGTTCTCTGGCCCCTGCAGTTTCACTTACGGATAATGCGCTGAAGATGGCTTTCTCTGCAATCACTACCTTGCCCTCTCCTCAATTTCTCCGCCTTCCTCAATCTTCACCCTCTCTTCGATTTTCACCGCCAATTCTCAAACGCCCCAAACCCCTCTCCATTCGATCAGTTTCAATCCCCGCTGCACCAGCATCTGGTTCTTCTGGCCCCTGCAGTTTCACTTACGGATAATGCGCTGAAG 104104 GmCTP28GmCTP28 ATGACTGTGGCTATGGCTGTTTGGAGTGCTGGTCTTCACTTCAGTGCTGCTACGAAGCCTCATAGTAGCTTGAGGCCTTTGGAGAAAATCATTTGCACTGCCCCTTTCTTCAAGGCCTCATCTGGGTTTGCTGCTACTAAGCCATTCTGCATCCTTAACACAACAAGATTGTCATATTCTGGAACTACAATTATCCCTCGAGCAGCACCTGTTACTGATGTGGAGGACGGGAATCATGGTGAGACTGATACCATTCCAACTATGACTGTGGCTATGGCTGTTTGGAGTGCTGGTCTTCACTTCAGTGCTGCTACGAAGCCTCATAGTAGCTTGAGGCCTTTGGAGAAAATCATTTGCACTGCCCCTTTCTTCAAGGCCTCATCTGGGTTTGCTGCTACTAAGCCATTCTGCATCCTTAACACAACAAGATTGTCATATTCTGGAACTACAAGATTGTCATATTCTGGAACTACAATTGTCATATTCTGGAACTACAATTAGATCCCTCGAG 105105 GmCTP29GmCTP29 ATGAGCATGGATATGGCTTGTAGTTTGCCGCAGTCAAGAGTGTTGCATGGAGGTCTGGGGACGAGTTACAGACACAGATCAGTAGGTCAGTTAGGCTGCTTTGATTTTAGAGGGAGAGGTTTTGGTTGTGCTTCTTTTGGGGACTCGAGAAGTGTTTCAAGACTGCAGAGGAGCAGGATGAATGTTTCTGCTTGTTGGAATAATTCAAGAGTGGCTACTGGCAGGGAGTTTAAAGTTTTGAATATGAGCATGGATATGGCTTGTAGTTTGCCGCAGTCAAGAGTGTTGCATGGAGGTCTGGGGACGAGTTACAGACACAGATCAGTAGGTCAGTTAGGCTGCTTTGATTTTAGAGGGAGAGGTTTTGGTTGTGCTTCTTTTGGGGACTCGAGAAGTGTTTCAAGACTGCAGAGAGGAGCAGGGATGAATGTGATTGAGCAGTTGTAGACTTTGAATGATTGCATTTGTAG 106106 GmCTP30GmCTP30 ATGGCAACCATCTCCGCTGCTATCACAACCCCATCGATCACCCGCGCATGTCTAGTGCAAAAACGTTCTCTTGGGTTCTCATCTCCCGTTCTTGGTTTGCCAGCAATGGGTAAGGTGGGAAGAGTGAGTTGCTCCATGGAGGAAAAGCCTTCTTCTGTGAAGGAAAGCAGCTCAAGCATGTTGGGGATGATGGCAACCATCTCCGCTGCTATCACAACCCCATCGATCACCCGCGCATGTCTAGTGCAAAAACGTTCTCTTGGGTTCTCATCTCCCGTTCTTGGTTTGCCAGCAATGGGTAAGGTGGGAAGAGTGAGTTGCTCCATGGAGGAAAAGCCTTCTTCTGTGAAGGAAAGCAGCTCAAGCATGTTGGGGATG 107107 GmCTP31GmCTP31 ATGGCGGCAGTAGTATCAGCATCTTCTCATCTATTGTTTGTTCTTCGTTCACAACCATTATCATCATCACCCTCTTTCATTTCTCTTCTCAAACCTCTTCTTGTTTCTTCCCCCTATGCTGTATCTACACCCCTTCGGCATATCCAAGTTCCACCGCTTCGAAAACCTCTCTTCTCTACTTCCTCTTCCCCCTCCCTTACCGTTTCTCAAGATAGTGAAGAATTGGAAGAAAAAGAGATTGCAGACGATGATGATGAATTGATGGCGGCAGTAGTATCAGCATCTTCTCATCTATTGTTTGTTCTTCGTTCACAACCATTATCATCATCACCCTCTTTCATTTCTCTTCTCAAACCTCTTCTTGTTTCTTCCCCCTATGCTGTATCTACACCCCTTCGGCATATCCAAGTTCCACCGCTGATTGAGTGAACGATGGATGATGATTGATGCTCTTCTCTCTACTTCCTCTTCCACCGACAAGATACGTTACCATTCCACCGACAAGAT 108108 GmCTP32GmCTP32 ATGGCACGCACTCTAACACTAACACCTATCTCTTTCACTCTCGCTAAAACCCTAAACCCCATTTTCCCATTCCACAACACTCTTCCCTTCTCCTCTTCAATCCTTTCTCGCCAGAAGCTCACTCGCCGGAGCCTATCCCGCTCCGTCCTCCGTCCTACCGCCGGCGAACTTTCCGGCAGCGTCGACGACGATGAAGAATCGGGCGAATTGGACGACCTCATGGCACGCACTCTAACACTAACACCTATCTCTTTCACTCTCGCTAAAACCCTAAACCCCATTTTCCCATTCCACAACACTCTTCCCTTCTCCTCTTCAATCCTTTCTCGCCAGAAGCTCACTCGCCGGAGCCTATCCCGCTCCGTCCTCCGTCTGACCCGCGGCGAACTTTCCGGCAGCTCCGTCGCGACGATGAAGAA 109109 GmCTP33GmCTP33 ATGCATGTTGTTGTGGTGCTCAACACGCAATCCTACTGCAGAGGCCTAGAACCTCCTTCATCTTCTCCTTCCGTCGTTTCCAACAAGGGAACAAGGACTTTGAGTTTCAGGAGGCTGCTGCTGCGTCCTTCTCTTGGGATTCATTTATCGCGTAGCTTTGCTTTAAAGTGTGTTGTTACTCCGAACCCAGCTGTGGAATTGCCATTAACTGCTGAAAATGTAGAAAGTGTATTGGATGAAATTCGACCCTATCTCATTGCAGACGGTGGGATGCATGTTGTTGTGGTGCTCAACACGCAATCCTACTGCAGAGGCCTAGAACCTCCTTCATCTTCTCCTTCCGTCGTTTCCAACAAGGGAACAAGGACTTTGAGTTTCAGGAGGCTGCTGCTGCGTCCTTCTCTTGGGATTCATTTATCGCGTAGCTTTGCTTTAAAGTGTGTTGTGGGCTTGAAAGTGAAGCTGTGGGCTTGATGAACCCAGCTGGTGGAT 110110 GmCTP34GmCTP34 ATGCAGAGTCTTTCACCACCTACTTCCAACGCGCTCAATTTGAAGCATGTTTTTCGCCCGCGACTTGGCGCGTCAAGCCGAATCTCTGTCAAATGCGCTTTTGGGTTTGAGCCGGTGAGCTACGGAGTCGGCTCCAGCCGAGCCGATTGGCAGATGCAGAGTCTTTCACCACCTACTTCCAACGCGCTCAATTTGAAGCATGTTTTTCGCCCGCGACTTGGCGCGTCAAGCCGAATCTCTGTCAAATGCGCTTTTGGGTTTGAGCCGGTGAGCTACGGAGTCGGCTCCAGCCGAGCCGATTGGCAG 111111 GmCTP35GmCTP35 ATGACATTGCATTTGCAGCACAAAAACATCAACATGGCTGCCAAACTCACTCTATCTTCTCCCTTTTCCTTCAAAACTTCATTTCTGCCAAAATCACCATCATTTTCTCTAGGTTTATACTCCCCCAGAACTAATGTTACCGGTGTCAAAGTTCATGCTAAATTAGGTGGTGGAGATGAACAAGCCAAGAAAGGAGGAAAGAAGAAATTCATAACCATGACATTGCATTTGCAGCACAAAAACATCAACATGGCTGCCAAACTCACTCTATCTTCTCCCTTTTCCTTCAAAACTTCATTTCTGCCAAAATCACCATCATTTTCTCTAGGTTTATACTCCCCCAGAACTAATGTTACCGGTGTCAAAGTTCATGCTAAATTAGGTGGTGGAGATGAACAAGCCAGAAGAAAGGAGGAAA 112112 GmCTP36GmCTP36 ATGGCATTAGCAACTAACTCCAAAAAACCTCACTGTATGGCCATCAATCTCAGCACCACTGCTTCTCTTCACTCCAAGCCTTCTTTTCTGACCCATAAACACAACAACCTCATCAAAATCTACCATCCTTCTTCCTCTTTACTCACAACATGTGCTCAAACACAAGGGACTGACACTGGAGTTACACAGGAAGATGCTTCTGCTGGTAATGGAATGGCATTAGCAACTAACTCCAAAAAAACCTCACTGTATTGGCCATCAATCTCAGCACCACTGCTTCTCTTCACTCCAAGCCTTCTTTTCTGACCCATAAACACAACAACCTCATCAAAATCTACCATCCTTCTTCCTCTTTACTCACAACATGTGCTCAAACACAAGGGACTGACACTGGAGTTACACAGGAAGATGCTTCT 113113 GmCTP37GmCTP37 ATGGTGGTCTGCGGCTATGAAGAACAGGAAGAAGAAAGACAGAGGAAGAGGAAAGAATTTGGTCTTGGACTTCACTTGAGTGCTGACAACACCTTGAGACCTTTTGAAAAAACCACTATCTTGAAGGCCCTCTCTATCTCTGATGCTACTAAACCATGTTACATTTCTCACAAAACAAGATTATCATCTTCATCTTCAGGAATAACAATGATCCCACGAGCAACAACAGTTATTGGTACTGTGATGGTGGTCTGCGGCTATGAAGAACAGGAAGAAGAAAGACAGAGGAAGAGGAAAGAATTTGGTCTTGGACTTCACTTGAGTGCTGACAACACCTTGAGACCTTTTGAAAAAACCACTATCTTGAAGGCCCTCTCTATCTCTGATGCTACTAAACCATGTTACATTTGCCTCACAAAACAAATTGTTATCAACTTCATCTTCAGGAACTCATACTATGATC 114114 GmCTP38GmCTP38 ATGTTCTCCTCAACCAGATGCGCTTTCCTGAGCAACTCAGGTTTAGGTGGGTGCAGCAGCTTGTGTGATGCGCAGAGAAAGCGTTCAACTCGTTTCAGGGTGGTGAGTATGACCCCAAGCAGCAGCAGGTCCGGTGATAGAAACGGCAGCGTTGTGATGGAGACGATGTTCTCCTCAACCAGATGCGCTTTCCTGAGCAACTCAGGTTTAGGTGGGTGCAGCAGCTTGTGTGATGCGCAGAGAAAGCGTTCAACTCGTTTCAGGGTGGTGAGTATGACCCCAAGCAGCAGCAGGTCCGGTGATAGAAACGGCAGCGTTGTGATGGAGACG 115115 GmCTP39GmCTP39 ATGGACTCTGCTTCATTCGCTCATCCTTTGATTTCCCACGTCATCACTAGCTCAAGCTTGCATCGTTCCTACGGTATTCATCACAGTGCAAGACTAGGCCTATGGAAGAACAAAGTCTGGAACTCAGCTTGTTGTGCTGCTGGAGTAGAAGACTTGTTTGACGATAGTAATTTGAAGAGAAATGAGAATGGTATGGACTCTGCTTCATTCGCTCATCCTTTGATTTCCCACGTCATCACTAGCTCAAGCTTGCATCGTTCCTACGGTATTCATCACAGTGCAAGACTAGGCCTATGGAAGAACAAAGTCTGGAACTCAGCTTGTTGTGCTGCTGGAGTAGAAGACTTGTTTTGACGATAGTAATTTGAAGAGAAATGAGAATGGT 116116 GmCTP41GmCTP41 ATGGCTTCCTCGTGTGCTTCCTCTGCCATTGCAGCTGTTGCCATCTCCACACCAAGTTCCCAGAAGAATGGATCACTCTTGGGAAGCACAAAAGCTTCTTTTCTTAGTGGGAGGAAACTGAAGGTGAACAACTTTACAGCACCAGTTGGAGCACGATCCAGCACTACAGTTTGCGCAGTTGCTGAGCCTGATAGGCCTCTGTGGTTCCCAGGCAGCACCCCTCCTCCATGGCTAATGGCTTCCTCGTGTGCTTCCTCTGCCATTGCAGCTGTTGCCATCTCCACACCAAGTTCCCAGAAGAATGGATCACTCTTGGGAAGCACAAAAGCTTCTTTTCTTAGTGGGAGGAAACTGAAGGTGAACAACTTTACAGCACCAGTTGGAGCACGATCCAGCACTACAGTTTGCGCCAGTTGCTGTGCCTGCATGGCC 117117 GmCTP42GmCTP42 ATGGCGGCGGCGGCGGCAGTGACGGTGCTACTCCCACCTAGGATTCCGACCGCCACCAACGTTACCCGCTGCTCTGCTTTGCCTTCTCTGCCTCCTCGCGGCACCAACACTAAAACCACTTTGCTCTTATCTTCCCTCAACCACTTCTCAGTGTCCCGAAAATCTTCTCTGCTTCAGACCAGAGCTTCTTCAGAGGAATCATCCTCAGTAGATGCCAATGAGGTGTTCACAGATTTGAAGGAAATGGCGGCGGCGGCGGCAGTGACGGTGCTACTCCCACCTAGGATTCCGACCGCCACCAACGTTACCCGCTGCTCTGCTTTGCCTTCTCTGCCTCCTCGCGGCACCAACACTAAAACCACTTTGCTCTTATCTTCCCTCAACCACTTCTCTCAGTGTCCCGAAAATCTTCTCTCTGCTTCAGACCAGATAGCTCCTCTCTCAGAGGAGTAGATGATCTCTCAGTAGAGT 118118 GmCTP43GmCTP43 ATGGCTTCTTCCATCTGTGCTCTCTCGCCTTCCGTCCAATCACAGCTCACTAAAACCACCCTCGTTGCTCCAATCCCTCTCTATCAACGAAGCAAGTGCGAAATGAGCAGGAGGAGTTTTGCGTTTAAGGGAATTGTGGCCTCTGGCGTTTCGGTCGCGGCTTCTACTCTCACAGCCGAAGCAGAACCATCTTCCAAAATGGCTTCTTCCATCTGTGCTCTCTCGCCTTCCGTCCAATCACAGCTCACTAAAACCACCCTCGTTGCTCCAATCCCTCTCTATCAACGAAGCAAGTGCGAAATGAGCAGGAGGAGTTTTGCGTTTAAGGGAATTGTGGCCTCTGGCGTTTCGGTCGCGGCTTCTACTCTCACAGCCGAAGCAGAACCATCTTCCAAA 119119 GmCTP44GmCTP44 ATGTTGGCTATTAGTGCAATTGCATCTTTGCCCGTATTACCACCAGTCAGAAGAGGTGGCCACTGCATTGAACAGAATGTTGTTTCCACATTGAGCTTTCCAAGACGACTACAGACAACTAATAATTCAATATCTCTGAGTAGTACACAGTTTCCATTCGGTAGAAGAGCTCGTTCTACGCAGCCAGCAACTATAATATGTGCTGCAGCTTTGAATGCAAGATGTGGTGCAGAGCAAACCCAAACTGTTACTCGCCAGGCTATGTTGGCTATTAGTGCAATTGCATCTTTGCCCGTATTACCACCAGTCAGAAGAGGTGGCCACTGCATTGAACAGAATGTTGTTTCCACATTGAGCTTTCCAAGACGACTACAGACAACTAATAATTCAATATCTCTGAGTAGTACACACAGTTTCCATTCGGTAGAAGAGCTCGTTCTACGCAGATGCAGCTGGTTCTACGCAGATGCAGCAACTCAATAGAATATGACAGACTGCAGCTGGATGAATATGAT 120120 GmCTP45GmCTP45 ATGGCATCCATGACGACTATGCTTCAGACCATGGTTCCCAAGAATGCACCGAATCTCCCTCCTCGTGTTGGTGTTTCCAACAACACTACTAAGATCTCATTTGCTGGCTCAGGTAGGGTACCGTGCACCCGGATTCAGAGGAACAGGAATAGATCTTCTTCCATTGTGGTTGCTGCAGTTGGAGATGTTTCATCTGATGGCACCACTTACCTTGTTGCTGGTGCCATTATGGCATCCATGACGACTATGCTTCAGACCATGGTTCCCAAGAATGCACCGAATCTCCCTCCTCGTGTTGGTGTTTCCAACAACACTACTAAGATCTCATTTGCTGGCTCAGGTAGGGTACCGTGCACCCGGATTCAGAGGAACAGGAATAGATCTTCTTTGCTGTGGCGTTGCTGCAGTTGTGGAGATGTTTCATCTGATGTG 121121 GmCTP46GmCTP46 ATGGCATCAATTTCGTCCTTATCTCTCACTTCTGTTTCCCTCCCCAAATCTCAATCTCTGGACCCCAAGAAAATCTCTGATTCTTCTTCCTCCTCTGCAGGCAGCAGGAGTCAAAGTTGTTGTTGCGCGCCATCGTTCCAACGAAGAAAGATGCTTCTATCTTCCGCCGCCATCGTTGCCGGAACCTTGTGCAGCAATTCAGTCAGCGGAGTCAGTTTGGCAATGGCATCAATTTCGTCCTTATCTCTCACTTCTGTTTCCCTCCCCAAATCTCAATCTCTGGACCCCAAGAAAATCTCTGATTCTTCTTCCTCCTCTGCAGGCAGCAGGAGTCAAAGTTGTTGTTGCGCGCCATCGTTCCCAACGAAGAAAGATGCTTCTATCTTCCGCCGCCATCGGTTTGCCGGAACCTTGTGCAGCAATGG 122122 GmCTP47GmCTP47 ATGGAACTCTCTCGTCTCTTCGTTTCCGACACGTGCTTCTTCTCCCCTCCGATTCGCTGCTCCCCTTCGCCGGCGCTGTCCACGTTTTTCGCCGTCAAGAACCGCCGGAGCAGGAGGAGGAGCAGCTTCTGTTCCGCCTCCAATCCCGACACCTTGGTCGCCGGCGGTGCCGCCGTCGTCGCTGGGGCCGGCGAGAAGCACGAGGAGGACTTGAAGTCTTGGATGCACAAACACGGCCTCATGGAACTCTCTCGTCTCTTCGTTTCCGACACGTGCTTCTTCTCCCCTCCGATTCGCTGCTCCCCTTCGCCGGCGCTGTCCACGTTTTTCGCCGTCAAGAACCGCCGGAGCAGGAGGAGGAGCAGCTTCTGTTCCGCCTCCAATCCCGACACCTTGGACTGCCGGCGGTGCCGCCGTCCGTCGAGCTGCGGCCGGAGCAGACGCTGGGGCCGGG 123123 GmCTP48GmCTP48 ATGGCTAGTGTCTTTTCTGCATGTTCAGGTTCTGCTGTTCTTTTCTACAGCAGAAACTCCTTTCCCTCAAAAGGATCTTTCATTCACCTCAAAAGGCCTCTCTCTGCCAACTGTGTAGCTTCTTTGGGGACTGAGGTATCAGTGTCTCCAGCAGTAGACACTTTCTGGCAGTGGCTTATGGCTAGTGTCTTTTCTGCATGTTCAGGTTCTGCTGTTCTTTTCTACAGCAGAAACTCCTTTCCCTCAAAAGGATCTTTCATTCACCTCAAAAGGCCTCTCTCTGCCAACTGTGTAGCTTCTTTGGGGACTGAGGTATCAGTGTCTCCAGCAGTAGACACTTTCTGGCAGTGGCTT 124124 GmCTP49GmCTP49 ATGAGAGCGCTAAATTCGCACGTGCTCCTCGTAGATCTTCACTCCCACCATCACGTGCCCACCTCAACCCTCTCCTACCTCAGAAACTCCCGCTTCATATCATCCCTCCGTCGACGCTCCCCAAGAACCGGAATCCGATGTACGGCGTCGCCGGAGATTCGCCGCCCCTCCGATCGCTTCTACGGCTCCTCGCCGTCGATGAGAGCGCTAAATTCGCACGTGCTCCTCGTAGATCTTCACTCCCACCATCACGTGCCCACCTCAACCCTCTCCTACCTCAGAAACTCCCGCTTCATATCATCCCTCCTCGTCGACGCTCCCCAAGAACCGGAATCCGATGTACGGCGTCGCCGGAGATTCGCCGCCCCTCCGATCGCTTCTACGGCTCCTCGCC 125125 GmCTP50GmCTP50 ATGGTTTCAGCTTCGCTTCAATTCTGGTCTTGGATAGCACCTACTCCTATATCCCACCGTTACACCCATAAATTTGCTTCCCTAACCTCACTCAAATTAGCCACTCCTGTTTCTTCTACTAATACCGTTTATCTTCCCAAGCCTCTAGTTGTGCGTTTTGCTCTAACTGAGTCCGACTCGCCCAAATCCATAGAACCTGACCCTCAAACTCTTCTCATGGTTTCAGCTTCGCTTCAATTCTGGTCTTGGATAGCACCTACTCCTATATCCCACCGTTACACCCATAAATTTGCTTCCCTAACCTCACTCAAATTAGCCACTCCTGTTTCTTCTACTAATACCGTTTATCTTCCCAAGCCTCTAGTTGTGCGTTTTGCTCTAACTGAGTCCGACTCGCCCAAATCCATAGAACCTGACCCTCAATCTAGAACCTC 126126 GmCTP51GmCTP51 ATGGCTTCCATCAACTTCAACCCCTTCGGTGGAAACTGGTTCTCAAAACCCCCTAATCCCCTCCCTCTCCCTTCCCTCCCCAACACCCTCACCGACGCACCCTCCCTCCCTCCCAACTTCGCCGCAATCTCCCTCCCAAACCCCTTCCGCCGCAGGCCCAAGCCCAAGTCCGCCGAGCCCACCGAACCCGGGCCCTACGAGCAGCTGGCCCGGCAGGTCCTCTGGGAGATGGCTTCCATCAACTTCAACCCCTTCGGTGGAAACTGGTTCTCAAAACCCCCTAATCCCCTCCCTCTCCCTTCCCTCCCCAACACCCTCACCGACGCACCCTCCCTCCCTCCCAACTTCGCCGCAATCTCCCTCCCAAACCCCTTCCGCCGCAGGCCCAAGCCCAAGTCCGCCGAGCCCTCACCGAGCCTCGGGCCCTACGAG 127127 GmCTP52GmCTP52 ATGGCAACCATTAACCTTTCTTCCGCTACTACGTCTCTCTTCCAATCCAAACACCGAACGAAACGCATTCCACGCCTCCCTACAATCGCCAGAATAACAAACCACATCGAAGGAACTCATCTTAACTCCCCCAACGGCTCTCCCATCCTTGGCAACGCAAACAATTCCCTTGAGGTTCCCTCCAATAACTATATCTCGCTACACTCTTCAATGGCAACCATTAACCTTTCTTCCGCTACTACGTCTCTCTTCCAATCCAAACACCGAACGAAACGCATTCCACGCCTCCCTACAATCGCCAGAATAACAAACCACATCGAAGGAACTCATCTTAACTCCCCCAACGGCTCTCCCATCCTTGGCAACGCAAACAATTCCCTTGAGGTTCCCTCCAATAACTCTTATCTCGCTAC 128128 GmCTP53GmCTP53 ATGGCTGTGCAAGCTTTCTATCACTTAGGGTCACCGCTGACGTCACAGTCACACTTTCCATCACCCCCTCTCCGACTCACACTCACTGCTTCCGCGCCCTTCAAGCCCCGACCCCTCGCTTCCATCGGAATCTCGCCGCTCCCGGAGAGGCGCCGGATGCCGGTGGCCGGCGCCGTGGAGGAAAGCCAAGAGAGTTCCGAACCGGAAGCGGAAGCGGATTTGGCAATGGCTGTGCAAGCTTTCTATCACTTAGGGTCACCGCTGACGTCACAGTCACACTTTCCATCACCCCCTCTCCGACTCACACTCACTGCTTCCGCGCCCTTCAAGCCCCGACCCCTCGCTTCCATCGGAATCTCGCCGCTCCCGGAGAGGCGCCGGATGCCGGTGGCCGGCGCCGTGGAGTTCCGAAAGCCAAGAGAGAG 129129 GmCTP54GmCTP54 ATGGGGCTTTGTACAGTTCAGCCTATCACTCTCTCGAAGCTTCCTAACGCCTCCTCTTTTCTTCCTAAACCTAAACCCTCTCTTCCTCAGTCTTACACTCCCTCCGCCGCACACTTATCTCGGTCAGTTTGCTTAAGGAATCTGTCGCCAAAGGCAACATCTTCTATGGGGCTTTGTACAGTTCAGCCTATCACTCTCTCGAAGCTTCCTAACGCCTCCTCTTTTCTTCCTAAACCTAAACCCTCTCTTCCTCAGTCTTACACTCCCTCCGCCGCACACTTATCTCGGTCAGTTTGCTTAAGGAATCTGTCGCCAAAGGCAACATCTTCT 130130 GmCTP55GmCTP55 ATGGCTTCCGCTTGTGCTTCCTCTGCAATTACAGCTGTTGCCATCTCTACGCCGAGTTCCGGGCAGAAGAATGGATCAGGAGGTTGTTTTCTTAGTGGAAGGAAATTGAGGGTGAAAAAGGAGAGAGCAGCAATTGGAGGACGATCGATGGGCACTACAGTGTGCGCAGTTGCTGAGCCTGACAGACCTCTATGGTTCCCAGGCAGCACCCCTCCTCCATGGCTTATGGCTTCCGCTTGTGCTTCCTCTGCAATTACAGCTGTTGCCATCTCTACGCCGAGTTCCGGGCAGAAGAATGGATCAGGAGGTTGTTTTCTTAGTGGAAGGAAATTGAGGGTGAAAAAGGAGAGAGCAGCAATTGGAGGACGATCGATGGGCACTACAGTGTGGCGCAGTTGCTCTGAGCCTGACAGGCAGTCTAGTC 131131 GmCTP56GmCTP56 ATGATGATGATTTCAACTTCAACCATGGCTTTGGCTTCTTTACTACCCAAAACGGCACCGCATGTCCTTTCCCTCACAAACCCTTCCGCTTCCACTCCCTTCATCTTACCTTTCAGTTTCCACTGTTTGCCTCACCCTCCTCTTCTCTCTGCCCTCAAAGCTAGTTCCTCCGGTGGCGACGATTTACGCGGCAAGCCCCTGCTTTCTCAGGGAATTGGAATGATGATGATTTCAACTTCAACCATGGCTTTGGCTTCTTTACTACCCAAAACGGCACCGCATGTCCTTTCCCTCACAAACCCTTCCGCTTCCACTCCCTTCATCTTACCTTTCAGTTTCCACTGTTTGCCTCACCCTCCTCTTCTCTCTGCCCTCAAAGCTAGTTCCTCCGGTGGCGACGCCTGCTTCGGCAGTC 132132 GmCTP57GmCTP57 ATGCTGCAAAACCCAAGAGTATTGCGATATTCCGCTCAGCCATTCAATCCTCCAACTCGCACGGCAGCATCATCACTTTCTCCATTCCAATTAATACCCACTTCTCCATCTTTTCCAATCCTCAAACAGCAATGCAGATTCTCACGTAGAGAGCTCACAATCTTTAGCAACTCTTGCTTGCTACTACTCTTGGGTTCTCAGGCAGTGGATGGATCCAGAGCAAGAGCAGAAGAAGACGTTGGTAACACAAGTAACATTGATCAACTAGAAGAGAATCTGATGCTGCAAAACCCAAGAGTATTGCGATATTCCGCTCAGCCATTCAATCCTCCAACTCGCACGGCAGCATCATCACTTTCTCCATTCCAATTAATACCCACTTCTCCATCTTTTCCAATCCTCAAACAGCAATGCAGATTCTCACGTAGAGAGCTCACAATCTCTTTAGCAACTCTTGCTTGCTAGCTAGACTCAACTCTTGCTTGCTAGACTCATAGAGGATGGATCAGGATG 133133 GmCTP58GmCTP58 ATGGCTGCTTTCTTTGGTTCCCCACCAATTTTCTCCCTCCCCCCTACTATTATTAGAACTCATCACATTTCTTCATCATCACAAACTCCACCACCAACACCTTCACCACAATCTCAGCCTCCAACTTCGTCTCCACAGCAGCTAAGAACAACAAATTTGAATGAGGAATCAGTGCAAGTGTCCACTGAAGCTAAGCAACAGAAGCCCATCAAACCAGTCACTTCATCCACTAAGGTTATGGCTGCTTTCTTTGGTTCCCCACCAATTTTCTCCCTCCCCCCTACTATTATTAGAACTCATCACATTTCTTCATCATCACAAACTCCACCACCAACACCTTCACCACAATCTCAGCCTCCAACTTCGTCTCCACAGCAGCTAAGAACAACAAATTTGAATGAGGAATCAGTGCAAGTGTTCCACTCACTGAAGCCCATCAGCAA 134134 GmCTP59GmCTP59 ATGGCTGCTGTTCCCTCTACTTTCGCTCTAACCAAATCTGCATTGTCCATAAACAAGCTGGACCACTCTCTGGTCAAGATCAAACCATACAGCTTCTCTCTGAATCTAAACCGTCTAGGGAGGATGGAAACATCTTTAACCAGAAGGCCTCTAACAATTCAAGCCACATATAGTGATGGTGGAAGGCCCAGCAGTGCTAGTGTATTTGTTGGTGGGTTTCTCTTGGGAGGATTAATAGTTGGCACTCTTGGTTGTATGGCTGCTGTTCCCTCTACTTTCGCTCTAACCAAATCTGCATTGTCCATAAACAAGCTGGACCACTCTCTGGTCAAGATCAAACCATACAGCTTCTCTCTGAATCTAAACCGTCTAGGGAGGATGGAAACATCTTTAACCAGAAGGCCTCTAACAATTGGGTTTCCACATATAGTGATGGTGGATTGTGACTTGATGTGATGGTGGAAGGCCTAGAGCAGTGCTAGGG 135135 GmCTP60GmCTP60 ATGCCACTGCCAACGGTCGTTTCCCCATTTTCTTCTTCCTCAGGCACCTTCTTATCCACAGTTACCGCGCGCTCTTCACTCCCTCCAAAACGCAACGTCTCCCCTTCCCCTTCCCCCTTCTCCACTCTCTCTCGCAGAGACATTGCTCTGCTTTCCTTCTTCTCCCTCTCCCTCTCAGCACCATCCTCCGCCATCATGCCACTGCCAACGGTCGTTTCCCCATTTTCTTCTTCCTCAGGCACCTTCTTATCCACAGTTACCGCGCGCTCTTCACTCCCTCCAAAACGCAACGTCTCCCCTTCCCCTTCCCCCTTCTCCACTCTCTCTCGCAGAGACATTGCTCTGCTTTCCTTCTTCTCCCTCTCCCTCTCAGCACCATCCTCCGCCATC 136136 GmCTP61GmCTP61 ATGGCAGCTTTTACATCAATTGCTGTACAGTACTCATCCACATCATCTTTACAGTCTTTGGTGCCTTCTTTAGAGGCTACACGCGATCATAACTCATGGTGGGGGAGAGTGAGATCATACAAACCCACAGCAAAAATTTCACTCCAACAGAATATCACAAGAGGCTTAACAATCATGGCAGCTTTTACATCAATTGCTGTACAGTACTCATCCACATCATCTTTACAGTCTTTGGTGCCTTCTTTAGAGGCTACACGCGATCATAACTCATGGTGGGGGAGTGAGATCATACAAACCCACAGCAAAAATTTCACTCCAACAGAATATCACAAGAGGCTTAACAATC 137137 GmCTP62GmCTP62 ATGAAGGGTTCTTGTTGCCTTGCCAATACACACAAGCTCTATTCCTCTCTTCCTTTGAGCAACTCCAACAACAACCACATCGTTTCATGCCAAAAAGGTTTCACTTTTAAGGTGAGGAATTTGGGCTTCAACGTGGACAAGAGCTTTTGGTCAAACCATGTTTCCTATGTAGCACAAAAGAGAAAGGGTAATGGTATGAAGGGTTCTTGTTGCCTTGCCAATACACACACAAGCTCTATTCCTCTCTTCCTTTGAGCAACTCCAACAACAACCACATCGTTTCATGCCAAAAAGGTTTCACTTTTAAGGTGAGGAATTTGGGCTTCAACGTGGACAAGAGCTTTTGGTCAAACCATGTTTCCTATGTAGCACAAAAGAGAAAGGGTAATGGT 138138 GmCTP63GmCTP63 ATGGCAATTATCCTTGCAGCAAATATGTGTTCCATTACAAATTCCAAAACAGTTGAAGTGATCAAAAGATTTGATATTGAAGATAAACTGCAATCCAGATCTAATATTGCACTGCCTCGCCTGGAAGCTTCATCAAGTCGCAGGCATCTCTTAATCAGTGTTGGCCCTTCATTGGTTACCTTAACATGTGGTTTATCACCATCAATGGTATGGGCTGAAGAGAAGTCTGGTGAGAAAGAGGAAGAAGATAAAGGGGTTATTGGGGCCATCAAAATGGCAATTATCCTTGCAGCAAATATGTGTTCCATTACAAATTCCAAAACAGTTGAAGTGATCAAAAGATTTGATATTGAAGATAAACTGCAATCCAGATCTAATATTGCACTGCCTCGCCTGGAAGCTTCATCAAGTCGCAGGCATCTCTTAATCAGGTGGTTGGCCCTTCATTGGTTACCTTAAGACATGTGGTAGGAAGATTGAATGGATGGAAGAATGA 139139 GmCTP64GmCTP64 ATGACTCTGGCTATGGCTGTTTGGAGTGCTGGTCTTCACTTCAGTGCTGCTCGTAGTAGCTTGAGACCTTTGGAGAAAACCATTTGCACTGCCCCTTTCTTGAAGGCGTCATCTGGGTTTGCTGCTACTAAGCCATTCTGCATCCTTAACACAACAAGATTGTCATATTCTGGAACTACAATTATCCCTCGAGCAGCACCTGTTACTGATGTGAAGGATGGGAATCAAGGTGAGACTGATACCATTATGACTCTGGCTATGGCTGTTTGGAGTGCTGGTCTTCACTTCAGTGCTGCTCGTAGTAGCTTGAGACCTTTGGAGAAAACCATTTGCACTGCCCCTTTCTTGAAGGCGTCATCTGGGTTTGCTGCTACTAAGCCATTCTGCATCCTTAACACAACAAGATTGTGGTCATTCTGGAACTACAATTATTCACTCGAGGAGCACCGATTGATAGCATGAGCACCGA 140140 GmCTP65GmCTP65 ATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGGCGGCGTCAAACTCAAACAGCACTATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGGCGGCGTCAAACTCAAACAGCACT 141141 GmCTP67GmCTP67 ATGGTGTGTGCAATCTCATCATCACCGTTCTCAACTCTCTCGTTTCGGCGTCTCGTCGTGAGCAATGCGACGGTGTCTCCGTGCAAGCCGCGTGCCGTGAAACTCTTAACGGCGCTTCCGAGCGCGGGGCGGAGGCAGTTGCTGTTTTTTCTAACGGCGACGACAGCGTTCACGGCGAGGGAAGCGGCATCCGTGATGGTGTGTGCAATCTCATCATCACCGTTCTCAACTCTCTCGTTTCGGCGTCTCGTCGTGAGCAATGCGACGGTGTCTCCGTGCAAGCCGCGTGCCGTGAAACTCTTAACGGCGCTTCCGAGCGCGGGGCGGAGGCAGTTGCTGTTTTTTCTAACGGCGCGACGACAGCGTTCACGGCGAGGGAAGCGGCATCCG 142142 GmCTP68GmCTP68 ATGGGAATTGTTGGCTTTGAAATTAATGCGAATTCTGCTTCTGCTTCTGCTTTGCATTATTATGGTGCTAATTCGTTCTCTTCCCACACGGTTCCTTTTTCTCTGAGACCCTTTTTCGGGAATGCTCTGAACGTGAACACGAGGGTTGCAGGGAAGATTCGGGCCTCTCATGCTAGAAAGCCCAAATTCGGAGCAGTTATTGTTGCTTCACTGAGTGGTGGCATGGGAATTGTTGGCTTTGAAATTAATGCGAATTCTGCTTCTGCTTCTGCTTTGCATTATTATGGTGCTAATTCGTTCTCTTCCCACACGGTTCCTTTTTCTCTGAGACCCTTTTTCGGGAATGCTCTGAACGTGAACACGAGGGTTTTGCAGGGAAGATTCGGTGGCCTCTGCTAGAGTAAGCCCAAATTCGTGGAGCAGT 143143 GmCTP69GmCTP69 ATGGCCACTGCCACCGCCGCCGCCGCCACGTCATACTTTTTCGGCACCCGTCTCAACAACGTTAACACGACAACCTTAAACAACGGAAGATTCCACGCGCTCTTGAACTTCATGGCCACTGCCACCGCCGCCGCCGCCACGTCATACTTTTTCGGCACCCGTCTCAACAACGTTAACACGACAACCTTAAACAACGGAAGATTCCACGCGCTCTTGAACTTC 144144 GmCTP70GmCTP70 ATGGCTGCTCTCACTTCTCTATCTTTCTCAGCAGTGACTCATTGCTCAGAAAGAAAAGTGACCCTTTCCTCCACTCGCTTTCTGGCTTCCTCCTCAGAGATAATGGCTGCTCTCACTTCTCTATCTTTCTCAGCAGTGACTCATTGCTCAGAAAGAAAAGTGACCCTTTCCTCCACTCGCTTTCTGGCTTCCTCCTCAGAGATA 145145 GmCTP71GmCTP71 ATGGCCACCACATTTGCATCCTCATCTCCAAGAATTGCAACCTTCCTCTCTTCTTCTTCTTCTTCTTCTACTCTTAGAACTACTACCACTCTTCCATCTCTCCAATTTACCTCCCCATCCAAAAAGTTAATCCTTTTTCACAACCCAGTACTTCAAAAACATAGCAGATTCCGACCCCTTCTTCTTCCTCCTCCTATGGCCACCACATTTGCATCCTCATCTCCAAGAATTGCAACCTTCCTCTCTTCTTCTTCTTCTTCTTCTACTCTTAGAACTACTACCACTCTTCCATCTCTCCAATTTACCTCCCCATCCAAAAAGTTAATCCTTTTTCACAACCCAGTACTTCAAAAACATAGCAGATTCCGACCCCTTCTTCTTCCTCCTCCT 146146 GmCTP72GmCTP72 ATGGCCCTGGCTATGGCTGCTTGCAGTCTTGGACTTCACTTGAGTGCTGATAACACCTTGAGACCTTTTGAAAAAACCACCGTCTTGAAGGCCCTCTCTATCTCTTATGTTACTAAACCATGTTACATTTCTCACAAAACAAGATTATCATCACCTTCATCTTCAGGAATAACAATGATCGCACGAGCAACAGCAGTTACTGGTACTGTGGAGGATGGAAATCAAGGAGAGGCTGATACCATTCCAATGGCCCTGGCTATGGCTGCTTGCAGTCTTGGACTTCACTTGAGTGCTGATAACACCTTGAGACCTTTTGAAAAAACCACCGTCTTGAAGGCCCTCTCTATCTCTTATGTTACTAAACCATGTTACATTTCTCACAAAACAAGATTATCATCACCTTCATCTTCTCAGGAATAACAATGATCGCACACGAGCAACAGCAGTTGATACCATCAGCAGGCAGTTGAAAGG 147147 GmCTP73GmCTP73 ATGGAAACCTTCTCCATCTCTCGAAACTCATCTTCCCTCATCATTCTCACTAGACCATCAACCAGGCACAAGCCAATCTTCCTGCCACAGCGTCACGGTTCTCTCACTTTCAACACCATCAGATGCACCACCACTGATAATAACAATAACAATACTAGTAACAACAACACAACCAATGATGATGCAAACTCAGTTATGGAAACCTTCTCCATCTCTCGAAACTCATCTTCCCTCATCATTCTCACTAGACCATCAACCAGGCACAAGCCAATCTTCCTGCCACAGCGTCACGGTTCTCTCACTTTCAACACCATCAGATGCACCACCACTGATAATAACAATAACAATACTAGTAACAACAACACAACCAATGATGATGCAAACTCAGTT 148148 GmCTP75GmCTP75 ATGGCCACCATTCTACCGCCAAGCAACGCTCAGTTTGTTTCCTTCAACGCTCGCCACCGCTCTTCCTCTCCCACTCTCCCAAGGTGGGGATGGAGAAAAGAGCAAGACGCAAGCATAGTTGCCAATAGAACCCGAGGTCAAGCATTTCAAGTCCTGGTAGCTTCAGGAAAGGAAGGTTCAAAAGATGATGTGGTCATGGTTGATCCTGTGGAAGCCAAGATGGCCACCATTCTACCGCCAAGCAACGCTCAGTTTGTTTCCTTCAACGCTCGCCACCGCTCTTCCTCTCCCACTCTCCCAAGGTGGGGATGGAGAAAAGAGCAAGACGCAAGCATAGTTGCCAATAGAACCCGAGGTCAAGCATTTCAAGTCCTGGTAGCTTCAGGAAAGGAAGGTTCAAGAAAGATGATGTGGTCATGGTT 149149 GmCTP76GmCTP76 ATGGCTGCCACCACCGCCACCGCCACGTCATACTTTTTTGGCACCCGCCTCAACAACCCGACAACCTTAAACAACGGAAGATTCCACGCGCTCCTCAACTTCGGCAAAAAGAAGGCGGCGGCGCCGCCACCGAAGAAAAAGGAAGTGAAAGTGAAACCCTCCGGCGACCGGCTGATGGCTGCCACCACCGCCACCGCCACGTCATACTTTTTTGGCACCCGCCTCAACAACCCGACAACCTTAAACAACGGAAGATTCCACGCGCTCCTCAACTTCGGCAAAAAGAAGGCGGCGGCGCCGCCACCGAAGAAAAAGGAAGTGAAAGTGAAACCCTCCGGCGACCGGCTG 150150 GmCTP77GmCTP77 ATGGCTTCTATCTCATGCATCACCCACCACCCCATCACTTCCAAGCTCAATAATGCCTTCTCTTCACCCCACGTCTCTGCCTCAAACTTGGCCTCACGGTTTCTGGGCACCAGAAAAAGAGTTGGGTTGCATAGCCTCACCTCTAGAATAATTGGACCCTCTAATGGCTCCAAAGCCACATGCTGGTTCAGGTTCGGCAAGAACGGTGTTGATGCCAAAGGTATGGCTTCTATCTCATGCATCACCCACCACCCCATCACTTCCAAGCTCAATAATGCCTTCTCTTCACCCCACGTCTCTGCCTCAAACTTGGCCTCACGGTTTCTGGGCACCAGAAAAAGAGTTGGGTTGCATAGCCTCACCTCTAGAATAATTGGACCCTCTCATGGCTCCAAAGCCACATGCTGGAGTTCAGGTTCGGCAGA 151151 GmCTP78GmCTP78 ATGACTTTGACAACCGCGTTTTCTTGTTCGCTCGCCGCTGCTTCTCTCTCCACCGCCGCCAGTTTCCGCCGGAATAAATGCACCACCAGCAAGATTTTTCATTCCATGACTTTGACAACCGCGTTTTCTTGTTCGCTCGCCGCTGCTTCTCTCTCCACCGCCGCCAGTTTCCGCCGGAATAAATGCACCACCAGCAAGATTTTTCATTCC 152152 GmCTP79GmCTP79 ATGGCAACCATCATCGCCGGCATCCCAACTACATCGATCACTCGCGCAGGTCTTGTGCTCAAACGACCTGTTGGAGCCTCGTCCTCTACCGTTCTTGGATTGCCAGCAATGGCTAAGGCAGGGAAAGTGAGGTGCTCCATGGAGGAAAAGCCTTCAAGCAGCTCAAATATAGGGATGGGGGCATCCATGGCAACCATCATCGCCGGCATCCCAACTACATCGATCACTCGCGCAGGTCTTGTGCTCAAACGACCTGTTGGAGCCTCGTCCTCTACCGTTCTTGGATTGCCAGCAATGGCTAAGGCAGGGAAAGTGAGGTGCTCCATGGAGGAAAAGCCTTCAAGCAGCTCAAATATAGGGATGGGGGCATCC 153153 GmCTP80GmCTP80 ATGGCGCTGCCCCATTCCATCATTCTGCCCTTCTCGTCCATCATTTCACCATGTTGTCTTCCCAAACATAAACCTACCAATTTCACCCTTCCCTTTAAGCTGAATGGTGATAGCTGTAGATCAATAAGAATCCCAAGCAGAGTTCAAGCACTCAAATCTGATGGTGGTAAATGGAAGAAGAGAGGGCAAGAAGCATCTAGTATGGCGCTGCCCCATTCCATCATTCTGCCCTTCTCGTCCATCATTTCACCATGTTGTCTTCCCAAACATAAACCTACCAATTTCACCCTTCCCTTTAAGCTGAATGGTGATAGCTGTAGATCAATAAGAATCCCAAGCAGAGTTCAAGCACTCAAATCTGATGGTGGTAAATGGAAGAAGAGAGGGCAAGAAGCATCTAGT 154154 GmCTP81GmCTP81 ATGTCTCAGGTAGTGGCCACTCGATCCATTCACTCCTCCCTCACGCGCCCCACCTCAGGATCTGCACACCACAGGGCCCAAACGTTGTTGAAGCCTCCAACTTTTGCTTCCAAATTGTTCGGAGCACAAAGGAACAACCCCTCCAAAGTTTGCTCCCGAAGTTGCCTCGTCAATGCGAGGAAATCTGCACCCGCTAAAGTTGTTCCCGTGTCACCCGAGGATGATTCAATGTCTCAGGTAGTGGCCACTCGATCCATTCACTCCTCCCTCACGCGCCCCACCTCAGGATCTGCACACCACAGGGCCCAAACGTTGTTGAAGCCTCCAACTTTTGCTTCCAAATTGTTCGGAGCACAAAGGAACAACCCCTCCAAAGTTTGCTCCCGAAGTTGCCTCGTCAATGCGCGAGGAAATCTGCTCACCCGCTGA

구체적으로, PCR 반응액은 Template (Maverick 콩 gDNA, 100 ng/㎕) 1 ㎕, 10X buffer 5 ㎕, dNTP mixture (각 10 mM) 1 ㎕, forward primer (표 3 참조; 10 uM) 1 ㎕, reverse primer (표 3 참조; 10 uM) 1 ㎕, DDW 40 ㎕, 및 Pfu-X (Solgent, 2.5unit/㎕) 1 ㎕ 등의 50 ㎕로 구성하였고, 94℃ 에서 4분간 반응 한 후, 30 cycles (94℃ 에서 30초, 57℃ 에서 30초, 및 72℃ 에서 1.5분) 반복하고, 72℃ 에서 5분 반응하여 증폭하였다.Specifically, the PCR reaction solution is Template (Maverick bean gDNA, 100 ng/μl) 1 μl, 10X buffer 5 μl, dNTP mixture (10 mM each) 1 μl, forward primer (see Table 3; 10 uM) 1 μl, reverse Primer (see Table 3; 10 uM) 1 μl, DDW 40 μl, and 50 μl of Pfu-X (Solgent, 2.5 unit/μl) 1 μl, etc., were reacted at 94 ° C for 4 minutes, and then 30 cycles ( 30 seconds at 94°C, 30 seconds at 57°C, and 1.5 minutes at 72°C), and amplified by reaction at 72°C for 5 minutes.

상기와 같은 유전자 증폭에 사용된 프라이머 서열을 아래의 표 3에 정리하였다: The primer sequences used for gene amplification as described above are summarized in Table 3 below:

SEQ ID NOSEQ ID NO Forward PrimerForward Primer Sequence(5'->3')Sequence(5'->3') SEQ ID NOSEQ ID NO Reverse primerReverse primer Sequence(5'->3')Sequence(5'->3') 155155 GmCTP01_FGmCTP01_F cgcGGATCCATGGTTCCACATGGCATAATAGTAAGGcgcGGATCCATGGTTCCACATGGCATAATAGTAAGG 232232 GmCTP01_RGmCTP01_R aaaAGGCCTCTCGAGTTTGATGTGGGCATGGAGGAGTGaaaAGGCCTCTCGAGTTTGATGTGGGCATGGAGGAGTG 156156 GmCTP02_FGmCTP02_F cgcGGATCCATGGCCACCGCAACAGcgcGGATCCATGGCCACCGCAACAG 233233 GmCTP02_RGmCTP02_R aaaAGGCCTCTCGAGCCACAGGGGCCTATCGGAaaaAGGCCTCTCGAGCCACAGGGGCCTATCGGA 157157 GmCTP03_FGmCTP03_F tccctctccccttgctccgtGGATCCATGCATACAGGAATGGCTTCtccctctccccttgctccgtGGATCCATGCATACAGGAATGGCTTC 234234 GmCTP03_RGmCTP03_R cagctcctcgcccttgctcacAGGCCTCTCGAGTTGATTATCAGTAGGAGCATATGTGACAGGcagctcctcgcccttgctcacAGGCCTCTCGAGTTGATTATCAGTAGGAGCATATGTGACAGG 158158 GmCTP04_FGmCTP04_F cgcGGATCCATGGTCCCAAAACCAATCTTAGTCACcgcGGATCCATGGTCCCAAAACCAATCTTAGTCAC 235235 GmCTP04_RGmCTP04_R aaaAGGCCTCTCGAGTGAGTTTGTTTTTCTCTTTAGCTCCACGaaaAGGCCTCTCGAGTGAGTTTGTTTTTCTCTTTAGCTCCACG 159159 GmCTP05_FGmCTP05_F cgcGGATCCATGGCAACTTGTTTCGCTCCcgcGGATCCATGGCAACTTGTTTCGCTCC 236236 GmCTP05_RGmCTP05_R aaaAGGCCTCTCGAGCAGAAGAAAGCCAGCAACAAAATCCaaaAGGCCTCTCGAGCAGAAGAAAGCCAGCAACAAAATCC 160160 GmCTP06_FGmCTP06_F cgcGGATCCATGATGGAAGTGATGATCTGTGAGAATTTcgcGGATCCATGATGGAAGTGATGATCTGTGAGAATTT 237237 GmCTP06_RGmCTP06_R aaaAGGCCTCTCGAGAACGAACGGAAAGTCCATGAATTTGaaaAGGCCTCTCGAGAACGAACGGAAAGTCCATGAATTTG 161161 GmCTP07_FGmCTP07_F cgcGGATCCATGGCCACCTCTGCTATTCAGcgcGGATCCATGGCCACCTCTGCTATTCAG 238238 GmCTP07_RGmCTP07_R aaaAGGCCTCTCGAGAGGAGCACTCTTGACGGTACaaaAGGCCTCTCGAGAGGAGCACTCTTGACGGTAC 162162 GmCTP08_FGmCTP08_F tccctctccccttgctccgtcgcGGATCCATGGCAACCTGGGTTTTATCAGAAtccctctccccttgctccgtcgcGGATCCATGGCAACCTGGGTTTTATCAGAA 239239 GmCTP08_RGmCTP08_R cagctcctcgcccttgctcacAGGCCTCTCGAGATTCAGATCTGGCACACCCTTGcagctcctcgcccttgctcacAGGCCTCTCGAGATTCAGATCTGGCACACCCTTG 163163 GmCTP09_FGmCTP09_F cgcGGATCCATGATTGCCCTGAAAGCCATTCAAcgcGGATCCATGATTGCCCTGAAAGCCATTCAA 240240 GmCTP09_RGmCTP09_R aaaAGGCCTCTCGAGTTGGGAATTATCAGGCTCGTTCTTGTTaaaAGGCCTCTCGAGTTGGGAATTATCAGGCTCGTTCTTGTT 164164 GmCTP10_FGmCTP10_F cgcGGATCCATGGCTCAAGCAATGGCATCAAcgcGGATCCATGGCTCAAGCAATGGCATCAA 241241 GmCTP10_RGmCTP10_R aaaAGGCCTCTCGAGGGTCAAACCAGCAGCAACAAGaaaAGGCCTCTCGAGGGTCAAACCAGCAGCAACAAG 165165 GmCTP11_FGmCTP11_F cgcGGATCCATGAGTTCCCCTTGCAGTTGCcgcGGATCCATGAGTTCCCCTTGCAGTTGC 242242 GmCTP11_RGmCTP11_R aaaAGGCCTCTCGAGAGCTGGGCTAGTAATGTATTGGTCTTCaaaAGGCCTCTCGAGAGCTGGGCTAGTAATGTATTGGTCTTC 166166 GmCTP13_FGmCTP13_F tccctctccccttgctccgtGGATCCATGGCTATTCGTGTAACCTTTTCCTTtccctctccccttgctccgtGGATCCATGGCTATTCGTGTAACCTTTTCCTT 243243 GmCTP13_RGmCTP13_R cagctcctcgcccttgctcacAGGCCTCTCGAGGGTGGCGCCAGAGAGGcagctcctcgcccttgctcacAGGCCTCTCGAGGGTGGCGCCAGAGAGG 167167 GmCTP14_FGmCTP14_F cgcGGATCCATGGCTGTGTCCTCCACCAcgcGGATCCATGGCTGTGTCCTCCACCA 244244 GmCTP14_RGmCTP14_R aaaAGGCCTCTCGAGTGGAACTTCAATGGAAGTCTCTGAATCTACCaaaAGGCCTCTCGAGTGGAACTTCAATGGAAGTCTCTGAATCTACC 168168 GmCTP15_FGmCTP15_F cgcGGATCCATGGCTATAGGCGTAGCAGTTTcgcGGATCCATGGCTATAGGCGTAGCAGGTTT 245245 GmCTP15_RGmCTP15_R aaaAGGCCTCTCGAGATCGTAACATACGGGACAAGCCAAaaaAGGCCTCTCGAGATCGTAACATACGGGACAAGCCAA 169169 GmCTP16_FGmCTP16_F cgcGGATCCATGGCTGGCATGAACTCTAGCcgcGGATCCATGGCTGGCATGAACTCTAGC 246246 GmCTP16_RGmCTP16_R aaaAGGCCTCTCGAGGGGAACTCTGGCCTCACATTTGaaaAGGCCTCTCGAGGGGAACTCTGGCCTCACATTTG 170170 GmCTP17_FGmCTP17_F cgcGGATCCATGTTGATAACGGTTAGGGAAGCTTCcgcGGATCCATGTTGATAACGGTTAGGGAAGCTTC 247247 GmCTP17_RGmCTP17_R aaaAGGCCTCTCGAGACCAGAAGATAAATCTGAGTTAATACCCAAGaaaAGGCCTCTCGAGACCAGAAGATAAATCTGAGTTAATACCCAAG 171171 GmCTP18_FGmCTP18_F cgcGGATCCATGGCTTCCGTTGTTGCAAGcgcGGATCCATGGCTTCCGTTGTTGCAAG 248248 GmCTP18_RGmCTP18_R aaaAGGCCTCTCGAGATTCTGAACAGACTTAAAAACAGTAAGGGTAGaaaAGGCCTCTCGAGATTCTGAACAGACTTAAAAACAGTAAGGGTAG 172172 GmCTP19_FGmCTP19_F cgcGGATCCATGGCTTCTCTAGCAACCTTGGcgcGGATCCATGGCTTCTCTAGCAACCTTGG 249249 GmCTP19_RGmCTP19_R aaaAGGCCTCTCGAGATCCTCCAAATCAAAGTACACACTCTTGaaaAGGCCTCTCGAGATCCTCCAAATCAAAGTACACACTCTTG 173173 GmCTP20_FGmCTP20_F cgcGGATCCATGGCTGCAACGAATGCGcgcGGATCCATGGCTGCAACGAATGCG 250250 GmCTP20_RGmCTP20_R aaaAGGCCTCTCGAGTGATGGAAGCTTGTACTCTTGAATTTCCTCaaaAGGCCTCTCGAGTGATGGAAGCTTGTACTCTTGAATTTCCTC 174174 GmCTP21_FGmCTP21_F cgcGGATCCATGAGTTCATTTTACATGTCTCTGAACCCcgcGGATCCATGAGTTCATTTTACATGTCTCTGAACCC 251251 GmCTP21_RGmCTP21_R aaaAGGCCTCTCGAGCTTCCCACTATCAGGTGCATCAACaaaAGGCCTCTCGAGCTTCCCACTATCAGGTGCATCAAC 175175 GmCTP22_FGmCTP22_F cgcGGATCCATGCCTTCTCTCTCCGTTTTCCcgcGGATCCATGCCTTCTCTCTCCGTTTTCC 252252 GmCTP22_RGmCTP22_R aaaAGGCCTCTCGAGACCCCCACCGTCGCCaaaAGGCCTCTCGAGACCCCCACCGTCGCC 176176 GmCTP23_FGmCTP23_F cgcGGATCCATGGCTACATTCTTTGGTTCCCCcgcGGATCCATGGCTACATTCTTTGGTTCCCC 253253 GmCTP23_RGmCTP23_R aaaAGGCCTCTCGAGCCAATCTGTGGATTCAACCTTAGTGGaaaAGGCCTCTCGAGCCAATCTGTGGATTCAACCTTAGTGG 177177 GmCTP24_FGmCTP24_F tccctctccccttgctccgtGGATCCATGGCAGCTGCAACATCTAGTtccctctccccttgctccgtGGATCCATGGCAGCTGCAACATCTAGT 254254 GmCTP24_RGmCTP24_R cagctcctcgcccttgctcacAGGCCTCTCGAGTGGGTCTATGAAACTCCCACCACcagctcctcgcccttgctcacAGGCCTCTCGAGTGGGTCTATGAAACTCCCACCAC 178178 GmCTP25_FGmCTP25_F cgcGGATCCATGGCAGCAGCTTCTTCCAcgcGGATCCATGGCAGCAGCTTCTTCCA 255255 GmCTP25_RGmCTP25_R aaaAGGCCTCTCGAGTGGGCCGTACCATGGGCaaaAGGCCTCTCGAGTGGGCCGTACCATGGGC 179179 GmCTP26_FGmCTP26_F cgcGGATCCATGGCACTCTCAGTCTCCTCAcgcGGATCCATGGCACTCTCAGTCTCCTCA 256256 GmCTP26_RGmCTP26_R aaaAGGCCTCTCGAGCGTTACAACCCCAATACCGATTCCAaaaAGGCCTCTCGAGCGTTACAACCCCAATACCGATTCCA 180180 GmCTP27_FGmCTP27_F cgcGGATCCATGGCTTTCTCTGCAATCACTACCcgcGGATCCATGGCTTTCTCTGCAATCACTACC 257257 GmCTP27_RGmCTP27_R aaaAGGCCTCTCGAGCTTCAGCGCATTATCCGTAAGTGaaaAGGCCTCTCGAGCTTCAGCGCATTATCCGTAAGTG 181181 GmCTP28_FGmCTP28_F tccctctccccttgctccgtGGATCCATGACTGTGGCTATGGCTGTTtccctctccccttgctccgtGGATCCATGACTGTGGCTATGGCTGTT 258258 GmCTP28_RGmCTP28_R cagctcctcgcccttgctcacAGGCCTCTCGAGAGTTGGAATGGTATCAGTCTCACCATcagctcctcgcccttgctcacAGGCCTCTCGAGAGTTGGAATGGTATCAGTCTCACCAT 182182 GmCTP29_FGmCTP29_F tccctctccccttgctccgtGGATCCATGAGCATGGATATGGCTTGTAGTTTtccctctccccttgctccgtGGATCCATGAGCATGGATATGGCTTGTAGTTTT 259259 GmCTP29_RGmCTP29_R cagctcctcgcccttgctcacAGGCCTCTCGAGATTCAAAACTTTAAACTCCCTGCCAGTAGcagctcctcgcccttgctcacAGGCCTCTCGAGATTCAAAACTTTAAACTCCCTGCCAGTAG 183183 GmCTP30_FGmCTP30_F cgcGGATCCATGGCAACCATCTCCGCTcgcGGATCCATGGCAACCATCTCCGCT 260260 GmCTP30_RGmCTP30_R aaaAGGCCTCTCGAGCATCCCCAACATGCTTGAGCaaaAGGCCTCTCGAGCATCCCCAACATGCTTGAGC 184184 GmCTP31_FGmCTP31_F cgcGGATCCATGGCGGCAGTAGTATCAGCcgcGGATCCATGGCGGCAGTAGTATCAGC 261261 GmCTP31_RGmCTP31_R aaaAGGCCTCTCGAGCAATTCATCATCATCGTCTGCAATCTCaaaAGGCCTCTCGAGCAATTCATCATCATCGTCTGCAATCTC 185185 GmCTP32_FGmCTP32_F cgcGGATCCATGGCACGCACTCTAACACTAACcgcGGATCCATGGCACGCACTCTAACACTAAC 262262 GmCTP32_RGmCTP32_R aaaAGGCCTCTCGAGGAGGTCGTCCAATTCGCCCGaaaAGGCCTCTCGAGGAGGTCGTCCAATTCGCCCG 186186 GmCTP33_FGmCTP33_F tccctctccccttgctccgtGGATCCATGCATGTTGTTGTGGTGCTCtccctctccccttgctccgtGGATCCATGCATGTTGTTGTGGTGGCTC 263263 GmCTP33_RGmCTP33_R cagctcctcgcccttgctcacAGGCCTCTCGAGCCCACCGTCTGCAATGAGATAGcagctcctcgcccttgctcacAGGCCTCTCGAGCCCACCGTCTGCAATGAGATAG 187187 GmCTP34_FGmCTP34_F cgcGGATCCATGCAGAGTCTTTCACCACCTACcgcGGATCCATGCAGAGTCTTTCACCACCTAC 264264 GmCTP34_RGmCTP34_R aaaAGGCCTCTCGAGCTGCCAATCGGCTCGGaaaAGGCCTCTCGAGCTGCCAATCGGCTCGG 188188 GmCTP35_FGmCTP35_F cgcGGATCCATGACATTGCATTTGCAGCACAAcgcGGATCCATGACATTGCATTTGCAGCACAA 265265 GmCTP35_RGmCTP35_R aaaAGGCCTCTCGAGGGTTATGAATTTCTTCTTTCCTCCTTTCTTGGaaaAGGCCTCTCGAGGGTTATGAATTTCTTCTTTCCTCCTTTCTTGG 189189 GmCTP36_FGmCTP36_F cgcGGATCCATGGCATTAGCAACTAACTCCAAAAAACcgcGGATCCATGGCATTAGCAACTAACTCCAAAAAAC 266266 GmCTP36_RGmCTP36_R aaaAGGCCTCTCGAGTCCATTACCAGCAGAAGCATCTTCCaaaAGGCCTCTCGAGTCCATTACCAGCAGAAGCATCTTCC 190190 GmCTP37_FGmCTP37_F cgcGGATCCATGGTGGTCTGCGGCTATGcgcGGATCCATGGTGGTCTGCGGCTATG 267267 GmCTP37_RGmCTP37_R aaaAGGCCTCTCGAGCACAGTACCAATAACTGTTGTTGCTCaaaAGGCCTCTCGAGCACAGTACCAATAACTGTTGTTGCTC 191191 GmCTP38_FGmCTP38_F cgcGGATCCATGTTCTCCTCAACCAGATGCGcgcGGATCCATGTTCTCCTCAACCAGATGCG 268268 GmCTP38_RGmCTP38_R aaaAGGCCTCTCGAGCGTCTCCATCACAACGCTGCaaaAGGCCTCTCGAGCGTCTCCATCACAACGCTGC 192192 GmCTP39_FGmCTP39_F tccctctccccttgctccgtGGATCCATGGACTCTGCTTCATTCGCTCtccctctccccttgctccgtGGATCCATGGACTCTGCTTCATTCGCTC 269269 GmCTP39_RGmCTP39_R cagctcctcgcccttgctcacAGGCCTCTCGAGACCATTCTCATTTCTCTTCAAATTACTATCGTcagctcctcgcccttgctcacAGGCCTCTCGAGACCATTCTCATTTCTCTTCAAATTACTATCGT 193193 GmCTP41_FGmCTP41_F tccctctccccttgctccgtGGATCCATGGCTTCCTCGTGTGCTTCtccctctccccttgctccgtGGATCCATGGCTTCCTCGTGTGCTTC 270270 GmCTP41_RGmCTP41_R cagctcctcgcccttgctcacAGGCCTCTCGAGTAGCCATGGAGGAGGGGTGcagctcctcgcccttgctcacAGGCCTCTCGAGTAGCCATGGAGGAGGGGTG 194194 GmCTP42_FGmCTP42_F cgcGGATCCATGGCGGCGGCGGcgcGGATCCATGGCGGCGGCGG 271271 GmCTP42_RGmCTP42_R aaaAGGCCTCTCGAGTTCCTTCAAATCTGTGAACACCTCATTGGaaaAGGCCTCTCGAGTTCCTTCAAATCTGTGAACACCTCATTGG 195195 GmCTP43_FGmCTP43_F cgcGGATCCATGGCTTCTTCCATCTGTGCTCcgcGGATCCATGGCTTCTTCCATCTGTGCTC 272272 GmCTP43_RGmCTP43_R aaaAGGCCTCTCGAGTTTGGAAGATGGTTCTGCTTCGGCaaaAGGCCTCTCGAGTTTGGAAGATGGTTCTGCTTCGGC 196196 GmCTP44_FGmCTP44_F cgcGGATCCATGTTGGCTATTAGTGCAATTGCATCcgcGGATCCATGTTGGCTATTAGTGCAATTGCATC 273273 GmCTP44_RGmCTP44_R aaaAGGCCTCTCGAGAGCCTGGCGAGTAACAGTTTaaaAGGCCTCTCGAGAGCCTGGCGAGTAACAGTTT 197197 GmCTP45_FGmCTP45_F cgcGGATCCATGGCATCCATGACGACTATGCcgcGGATCCATGGCATCCATGACGACTATGC 274274 GmCTP45_RGmCTP45_R aaaAGGCCTCTCGAGAATGGCACCAGCAACAAGGaaaAGGCCTCTCGAGAATGGCACCAGCAACAAGG 198198 GmCTP46_FGmCTP46_F cgcGGATCCATGGCATCAATTTCGTCCTTATCTCTcgcGGATCCATGGCATCAATTTCGTCCTTATCTCT 275275 GmCTP46_RGmCTP46_R aaaAGGCCTCTCGAGTGCCAAACTGACTCCGCTGACaaaAGGCCTCTCGAGTGCCAAACTGACTCCGCTGAC 199199 GmCTP47_FGmCTP47_F cgcGGATCCATGGAACTCTCTCGTCTCTTCGTcgcGGATCCATGGAACTCTCTCGTCTCTTCGT 276276 GmCTP47_RGmCTP47_R aaaAGGCCTCTCGAGGAGGCCGTGTTTGTGCATCaaaAGGCCTCTCGAGGAGGCCGTGTTTGTGCATC 200200 GmCTP48_FGmCTP48_F tccctctccccttgctccgtGGATCCATGGCTAGTGTCTTTTCTGCATGTtccctctccccttgctccgtGGATCCATGGCTAGTGTCTTTTCTTGCATGT 277277 GmCTP48_RGmCTP48_R cagctcctcgcccttgctcacAGGCCTCTCGAGAAGCCACTGCCAGAAAGTGTCTAcagctcctcgcccttgctcacAGGCCTCTCGAGAAGCCACTGCCAGAAAGTGTCTA 201201 GmCTP49_FGmCTP49_F cgcGGATCCATGAGAGCGCTAAATTCGCACcgcGGATCCATGAGAGCGCTAAATTCGCAC 278278 GmCTP49_RGmCTP49_R aaaAGGCCTCTCGAGCGACGGCGAGGAGCCGaaaAGGCCTCTCGAGCGACGGCGAGGAGCCG 202202 GmCTP50_FGmCTP50_F cgcGGATCCATGGTTTCAGCTTCGCTTCAATTCcgcGGATCCATGGTTTCAGCTTCGCTTCAATTC 279279 GmCTP50_RGmCTP50_R aaaAGGCCTCTCGAGGAGAAGAGTTTGAGGGTCAGGTTCTaaaAGGCCTCTCGAGGAGAAGAGTTTGAGGGTCAGGTTCT 203203 GmCTP51_FGmCTP51_F cgcGGATCCATGGCTTCCATCAACTTCAACCcgcGGATCCATGGCTTCCATCAACTTCAACC 280280 GmCTP51_RGmCTP51_R aaaAGGCCTCTCGAGCTCCCAGAGGACCTGCCGaaaAGGCCTCTCGAGCTCCCAGAGGACCTGCCG 204204 GmCTP52_FGmCTP52_F cgcGGATCCATGGCAACCATTAACCTTTCTTCCcgcGGATCCATGGCAACCATTAACCTTTCTTCC 281281 GmCTP52_RGmCTP52_R aaaAGGCCTCTCGAGTGAAGAGTGTAGCGAGATATAGTTATTGGAGaaaAGGCCTCTCGAGTGAAGAGTGTAGCGAGATATAGTTATTGGAG 205205 GmCTP53_FGmCTP53_F cgcGGATCCATGGCTGTGCAAGCTTTCTATCcgcGGATCCATGGCTGTGCAAGCTTTCTATC 282282 GmCTP53_RGmCTP53_R aaaAGGCCTCTCGAGTGCCAAATCCGCTTCCGCaaaAGGCCTCTCGAGTGCCAAATCCGCTTCCGC 206206 GmCTP54_FGmCTP54_F cgcGGATCCATGGGGCTTTGTACAGTTCAGCcgcGGATCCATGGGGCTTTGTACAGTTCAGC 283283 GmCTP54_RGmCTP54_R aaaAGGCCTCTCGAGAGAAGATGTTGCCTTTGGCGAaaaAGGCCTCTCGAGAGAAGATGTTGCCTTTGGCGA 207207 GmCTP55_FGmCTP55_F cgcGGATCCATGGCTTCCGCTTGTGCcgcGGATCCATGGCTTCCGCTTGTGC 284284 GmCTP55_RGmCTP55_R aaaAGGCCTCTCGAGAAGCCATGGAGGAGGGGaaaAGGCCTCTCGAGAAGCCATGGAGGAGGGG 208208 GmCTP56_FGmCTP56_F cgcGGATCCATGATGATGATTTCAACTTCAACCATGGcgcGGATCCATGATGATGATTTCAACTTCAACCATGG 285285 GmCTP56_RGmCTP56_R aaaAGGCCTCTCGAGTCCAATTCCCTGAGAAAGCAGGaaaAGGCCTCTCGAGTCCAATTCCCTGAGAAAGCAGG 209209 GmCTP57_FGmCTP57_F tccctctccccttgctccgtGGATCCATGCTGCAAAACCCAAGAGTATTtccctctccccttgctccgtGGATCCATGCTGCAAAACCCAAGAGTATT 286286 GmCTP57_RGmCTP57_R cagctcctcgcccttgctcacAGGCCTCTCGAGCAGATTCTCTTCTAGTTGATCAATGTTACTTGcagctcctcgcccttgctcacAGGCCTCTCGAGCAGATTCTCTTCTAGTTGATCAATGTTACTTG 210210 GmCTP58_FGmCTP58_F cgcGGATCCATGGCTGCTTTCTTTGGTTCCcgcGGATCCATGGCTGCTTTCTTTGGTTCC 287287 GmCTP58_RGmCTP58_R aaaAGGCCTCTCGAGAACCTTAGTGGATGAAGTGACTGGaaaAGGCCTCTCGAGAACCTTAGTGGATGAAGTGACTGG 211211 GmCTP59_FGmCTP59_F tccctctccccttgctccgtGGATCCATGGCTGCTGTTCCCTCTACtccctctccccttgctccgtGGATCCATGGCTGCTGTTCCCTCTAC 288288 GmCTP59_RGmCTP59_R cagctcctcgcccttgctcacAGGCCTCTCGAGACAACCAAGAGTGCCAACTATTAATCCcagctcctcgcccttgctcacAGGCCTCTCGAGACAACCAAGAGTGCCAACTATTAATCC 212212 GmCTP60_FGmCTP60_F cgcGGATCCATGCCACTGCCAACGGTCcgcGGATCCATGCCACTGCCAACGGTC 289289 GmCTP60_RGmCTP60_R aaaAGGCCTCTCGAGGATGGCGGAGGATGGTGCaaaAGGCCTCTCGAGGATGGCGGAGGATGGTGC 213213 GmCTP61_FGmCTP61_F cgcGGATCCATGGCAGCTTTTACATCAATTGCTGcgcGGATCCATGGCAGCTTTTACATCAATTGCTG 290290 GmCTP61_RGmCTP61_R aaaAGGCCTCTCGAGGATTGTTAAGCCTCTTGTGATATTCTGTTGGAaaaAGGCCTCTCGAGGATTGTTAAGCCTCTTGTGATATTCTGTTGGA 214214 GmCTP62_FGmCTP62_F cgcGGATCCATGAAGGGTTCTTGTTGCCTTGcgcGGATCCATGAAGGGTTCTTGTTGCCTTG 291291 GmCTP62_RGmCTP62_R aaaAGGCCTCTCGAGACCATTACCCTTTCTCTTTTGTGCTACaaaAGGCCTCTCGAGACCATTACCCTTTCTCTTTTGTGCTAC 215215 GmCTP63_FGmCTP63_F cgcGGATCCATGGCAATTATCCTTGCAGCAAATATGcgcGGATCCATGGCAATTATCCTTGCAGCAAATATG 292292 GmCTP63_RGmCTP63_R aaaAGGCCTCTCGAGTTTGATGGCCCCAATAACCCCTTTATCaaaAGGCCTCTCGAGTTTGATGGCCCCAATAACCCCTTTATC 216216 GmCTP64_FGmCTP64_F cgcGGATCCATGACTCTGGCTATGGCTGTTTGcgcGGATCCATGACTCTGGCTATGGCTGTTTTG 293293 GmCTP64_RGmCTP64_R aaaAGGCCTCTCGAGAATGGTATCAGTCTCACCTTGATTCCaaaAGGCCTCTCGAGAATGGTATCAGTCTCACCTTGATTCC 217217 GmCTP65_FGmCTP65_F cgcGGATCCATGGCTTTTACTTCTTCATGTTCTCTTGCcgcGGATCCATGGCTTTTACTTCTTCATGTTCTCTTGC 294294 GmCTP65_RGmCTP65_R aaaAGGCCTCTCGAGAGTGCTGTTTGAGTTTGACGCCaaaAGGCCTCTCGAGAGTGCTGTTTGAGTTTGACGCC 218218 GmCTP67_FGmCTP67_F cgcGGATCCATGGTGTGTGCAATCTCATCATCcgcGGATCCATGGTGTGTGCAATCTCATCATC 295295 GmCTP67_RGmCTP67_R aaaAGGCCTCTCGAGCACGGATGCCGCTTCCaaaAGGCCTCTCGAGCACGGATGCCGCTTCC 219219 GmCTP68_FGmCTP68_F cgcGGATCCATGGGAATTGTTGGCTTTGAAATTAATGCcgcGGATCCATGGGAATTGTTGGCTTTGAAATTAATGC 296296 GmCTP68_RGmCTP68_R aaaAGGCCTCTCGAGGCCACCACTCAGTGAAGCAAaaaAGGCCTCTCGAGGCCACCACTCAGTGAAGCAA 220220 GmCTP69_FGmCTP69_F cgcGGATCCATGGCCACTGCCACCGcgcGGATCCATGGCCACTGCCACCG 297297 GmCTP69_RGmCTP69_R aaaAGGCCTCTCGAGGAAGTTCAAGAGCGCGTGGAATCaaaAGGCCTCTCGAGGAAGTTCAAGAGCGCGTGGAATC 221221 GmCTP70_FGmCTP70_F cgcGGATCCATGGCTGCTCTCACTTCTCTATCTTcgcGGATCCATGGCTGCTCTCACTTCTCTATCTT 298298 GmCTP70_RGmCTP70_R aaaAGGCCTCTCGAGTATCTCTGAGGAGGAAGCCAGAAAGCaaaAGGCCTCTCGAGTATCTCTGAGGAGGAAGCCAGAAAGC 222222 GmCTP71_FGmCTP71_F cgcGGATCCATGGCCACCACATTTGCATCCcgcGGATCCATGGCCACCACATTTGCATCC 299299 GmCTP71_RGmCTP71_R aaaAGGCCTCTCGAGAGGAGGAGGAAGAAGAAGGGGaaaAGGCCTCTCGAGAGGAGGAGGAAGAAGAAGGGG 223223 GmCTP72_FGmCTP72_F cgcGGATCCATGGCCCTGGCTATGGCcgcGGATCCATGGCCCTGGCTATGGC 300300 GmCTP72_RGmCTP72_R aaaAGGCCTCTCGAGTGGAATGGTATCAGCCTCTCCTTGATTTCaaaAGGCCTCTCGAGTGGAATGGTATCAGCCTCTCCTTGATTTC 224224 GmCTP73_FGmCTP73_F cgcGGATCCATGGAAACCTTCTCCATCTCTCGcgcGGATCCATGGAAACCTTCTCCATCTCTCG 301301 GmCTP73_RGmCTP73_R aaaAGGCCTCTCGAGAACTGAGTTTGCATCATCATTGGTTGaaaAGGCCTCTCGAGAACTGAGTTTGCATCATCATTGGTTG 225225 GmCTP75_FGmCTP75_F cgcGGATCCATGGCCACCATTCTACCGCcgcGGATCCATGGCCACCATTCTACCGC 302302 GmCTP75_RGmCTP75_R aaaAGGCCTCTCGAGCTTGGCTTCCACAGGATCAACCaaaAGGCCTCTCGAGCTTGGCTTCCACAGGATCAACC 226226 GmCTP76_FGmCTP76_F cgcGGATCCATGGCTGCCACCACCGcgcGGATCCATGGCTGCCACCACCG 303303 GmCTP76_RGmCTP76_R aaaAGGCCTCTCGAGCAGCCGGTCGCCGaaaAGGCCTCTCGAGCAGCCGGTCGCCG 227227 GmCTP77_FGmCTP77_F cgcGGATCCATGGCTTCTATCTCATGCATCACCcgcGGATCCATGGCTTCTATCTCATGCATCACC 304304 GmCTP77_RGmCTP77_R aaaAGGCCTCTCGAGACCTTTGGCATCAACACCGTTCaaaAGGCCTCTCGAGACCTTTGGCATCAACACCGTTC 228228 GmCTP78_FGmCTP78_F cgcGGATCCATGACTTTGACAACCGCGTTTTCcgcGGATCCATGACTTTGACAACCGCGTTTTC 305305 GmCTP78_RGmCTP78_R aaaAGGCCTCTCGAGGGAATGAAAAATCTTGCTGGTGGTGaaaAGGCCTCTCGAGGGAATGAAAAATCTTGCTGGTGGTG 229229 GmCTP79_FGmCTP79_F cgcGGATCCATGGCAACCATCATCGCCcgcGGATCCATGGCAACCATCATCGCC 306306 GmCTP79_RGmCTP79_R aaaAGGCCTCTCGAGGGATGCCCCCATCCCTATATTTGaaaAGGCCTCTCGAGGGATGCCCCCATCCCTATATTTG 230230 GmCTP80_FGmCTP80_F cgcGGATCCATGGCGCTGCCCCAcgcGGATCCATGGCGCTGCCCCA 307307 GmCTP80_RGmCTP80_R aaaAGGCCTCTCGAGACTAGATGCTTCTTGCCCTCTCTTCaaaAGGCCTCTCGAGACTAGATGCTTCTTGCCCTCTCTTC 231231 GmCTP81_FGmCTP81_F cgcGGATCCATGTCTCAGGTAGTGGCCACTCcgcGGATCCATGTCTCAGGTAGTGGCCACTC 308308 GmCTP81_RGmCTP81_R aaaAGGCCTCTCGAGTGAATCATCCTCGGGTGACACGaaaAGGCCTCTCGAGTGAATCATCCTCGGGTGACACG

상기 제한효소 처리는 다음의 조건 하에서 수행하였다:The restriction enzyme treatment was performed under the following conditions:

PCR product 30 ㎕, BamHI 및 StuI (New England Biolabs) 각 0.5 ㎕, 10X buffer 4 ㎕, water 5 ㎕; Restriction enzyme reaction 37℃, 2시간PCR product 30 μl, BamHI and StuI (New England Biolabs) 0.5 μl each, 10X buffer 4 μl, water 5 μl; Restriction enzyme reaction 37℃, 2 hours

Ligation reaction은 다음의 조건 하에서 수행하였다:The ligation reaction was carried out under the following conditions:

T4 DNA ligase (RBC) 1 ㎕, A buffer 1 ㎕, B buffer 1 ㎕, 상기의 제한효소로 처리한 PCR products와 vector, total 10 ㎕; 22℃, 30분. T4 DNA ligase (RBC) 1 μl, A buffer 1 μl, B buffer 1 μl, PCR products and vector treated with the above restriction enzymes, total 10 μl; 22°C, 30 min.

In-Fusion® HD Cloning Kit (Clontech)을 이용한 클로닝은 다음의 조건 하에서 수행하였다:Cloning using the In-Fusion® HD Cloning Kit (Clontech) was performed under the following conditions:

제조사(Clontech)의 매뉴얼에 따라 디자인 된 primer(표 3)를 이용하여 PCR로 증폭한 후(Takara prime star GXL PCR kit). 증폭된 PCR product를 정제하여 다음의 조건 하에서 반응 시켰다. PCR product 3 ㎕, H2O 4 ㎕ 5X In-Fusion HD Enzyme Premix 2 ㎕, 상기의 제한효소로 처리한 vector 1 ㎕ (100 ng); 50℃, 10분.After amplification by PCR using primers (Table 3) designed according to the manufacturer's (Clontech) manual (Takara prime star GXL PCR kit). The amplified PCR product was purified and reacted under the following conditions. PCR product 3 μl, H 2 O 4 μl 5X In-Fusion HD Enzyme Premix 2 μl, restriction enzyme-treated vector 1 μl (100 ng); 50°C, 10 min.

실시예 3. GmCTP를 이용한 목적 단백질의 쌍자엽식물의 엽록체로의 이동 확인Example 3. Confirmation of transfer of target protein to chloroplasts of dicots using GmCTP

식물세포의 세포벽을 제거한 원형질체에 고농도의 식물발현벡터를 주입하여, 유전자를 발현시키고 단백질의 세포 내 발현 위치를 분석하는 방법은 잘 알려져 있다(Nat. Protoc. (2007) 2, 1565-1572, BMC Biotechnology (2017) 17:29). 상기 실시예 2에서 제작한 77종의 GmCTP 중 37종의 GmCTP(도 2a 및 2b 참조)와 GFP가 융합된 융합 단백질 암호화 유전자를 포함하는 식물발현벡터를 쌍자엽 식물인 애기장대의 원형질체에 PEG (polyethylene glycol) 형질전환방법을 이용하여 주입 후, GFP의 세포 내 발현 위치를 관찰하였다.A method of expressing a gene by injecting a high concentration of a plant expression vector into a protoplast from which the cell wall of a plant cell has been removed, and analyzing the intracellular expression location of a protein is well known (Nat. Protoc. (2007) 2, 1565-1572, BMC). Biotechnology (2017) 17:29). A plant expression vector containing a fusion protein coding gene in which 37 kinds of GmCTP (see FIGS. 2a and 2b) and GFP among the 77 kinds of GmCTPs prepared in Example 2 were fused to the protoplasts of Arabidopsis, a dicotyledonous plant, PEG (polyethylene glycol), after injection, the intracellular expression location of GFP was observed.

애기장대(Arabidopsis thaliana) 원형질체에서의 GFP 발현확인은 다음의 과정으로 확인하였다: 야생형 애기장대 Colombia-0 (Col-0)를 4주간 배양한 뒤, 잎을 잘게 썰어 enzyme solution (1% Cellulase R-10, 0.25% Macerozyme R-10, 0.1% BSA, 0.4 M mannitol, 20 mM KCl, 10 mM CaCl2, 20 mM MES, pH 5.7)에 넣고 상온에서 6시간 배양하여 원형질체를 분리하였다. 분리된 원형질체를 W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl and 2 mM MES, pH 5.7)으로 washing 후, MMG solution (0.4 M mannitol, 15 mM MgCl2, 4 mM MES, pH 5.7)으로 1x106 cells/ml 농도로 희석하였다. 원형질체 200 ㎕에 식물발현벡터 20 ug을 넣고, PEG solution (0.4 M mannitol, 100 mM CaCl2, 40% PEG4000) 200 ㎕를 넣어 잘 섞은 뒤, 7분간 방치하고 W5 solution 800 ㎕를 넣어 잘 섞었다. 소형원심분리기(1,000 rpm, 1분)를 이용하여 원형질체를 회수하고, W5 solution이 1 mL가 들어있는 12-well plate에 넣어 상온에서 6시간 이상 배양하였다. 형광현미경(Olympus IX70)을 이용하여, GFP 단백질의 세포 내 발현위치를 확인하였다. GFP expression in Arabidopsis thaliana protoplasts was confirmed by the following procedure: After culturing wild-type Arabidopsis Colombia-0 (Col-0) for 4 weeks, the leaves were chopped and enzyme solution (1% Cellulase R- 10, 0.25% Macerozyme R-10, 0.1% BSA, 0.4 M mannitol, 20 mM KCl, 10 mM CaCl 2 , 20 mM MES, pH 5.7) and incubated for 6 hours at room temperature to separate protoplasts. After washing the isolated protoplasts with W5 solution (154 mM NaCl, 125 mM CaCl 2 , 5 mM KCl and 2 mM MES, pH 5.7), MMG solution (0.4 M mannitol, 15 mM MgCl 2 , 4 mM MES, pH 5.7) was diluted to a concentration of 1x10 6 cells/ml. 20 ug of the plant expression vector was added to 200 μl of the protoplast, 200 μl of PEG solution (0.4 M mannitol, 100 mM CaCl 2 , 40% PEG4000) was added, mixed well, left for 7 minutes, and 800 μl of W5 solution was added and mixed well. Protoplasts were recovered using a small centrifuge (1,000 rpm, 1 min), and placed in a 12-well plate containing 1 mL of W5 solution and incubated at room temperature for more than 6 hours. Using a fluorescence microscope (Olympus IX70), the intracellular expression location of the GFP protein was confirmed.

상기 얻어진 결과를 도 2a 및 2b에 나타내었다. 도 2a 및 2b에 나타난 바와 같이, GmCTP가 삽입되지 않은 p35S-GFP 벡터를 주입한 세포에서는 GFP가 세포질 내 전체에 퍼져있고, 엽록체에서 GFP가 관찰되지 않는 반면, 77종의 식물발현벡터를 도입한 세포 중 시험된 37종의 GmCTP(도 2a 및 2b 참조)에 GFP를 융합하여 발현시킨 세포에서 GFP가 엽록체에서만 관찰되었다. 이 결과로부터 쌍자엽식물에서 상기 37종의 GmCTP가 C-terminal 에 fusion 된 GFP를 엽록체로 이동시킬 수 있음을 확인할 수 있으며, GFP를 대체하여 원하는 목적 단백질 서열을 fusion 함으로써, 상기 목적 단백질을 엽록체로 이동시키는데 활용할 수 있음을 확인하였다. 이러한 방법을 이용하여 목적 단백질을 엽록체로 이동시킨 쌍자엽 형질전환 식물체, 세포주, 종자 등을 만들 수 있다.The obtained results are shown in FIGS. 2A and 2B. As shown in Figures 2a and 2b, in the cells injected with the p35S-GFP vector into which GmCTP is not inserted, GFP is spread throughout the cytoplasm and GFP is not observed in the chloroplast, whereas 77 plant expression vectors were introduced. Among the cells, GFP was observed only in the chloroplast in the cells in which GFP was fused to 37 GmCTP (see FIGS. 2A and 2B ) tested. From this result, it can be confirmed that the 37 kinds of GmCTP in dicotyledonous plants can move GFP fused to the C-terminal to the chloroplast, and the target protein is transferred to the chloroplast by replacing the GFP with the desired protein sequence. It was confirmed that it can be used for Using this method, a dicot transgenic plant, cell line, seed, etc. in which the target protein is transferred to the chloroplast can be prepared.

실시예 4. GmCTP를 이용한 목적 단백질의 단자엽식물의 엽록체로의 이동 확인Example 4. Confirmation of movement of target protein to chloroplast of monocot plants using GmCTP

상기 실시예 3에서 쌍자엽식물인 애기장대 원형질체에서 GmCTP을 이용하여 목적단백질을 엽록체로 이동시키는 기능을 확인한 것과 같이, 단자엽식물에서도 동일한 기능을 할 수 있는지 확인하기 위하여 옥수수 원형질체를 이용하여 분석하였다. 애기장대에서 기능이 확인된 GmCTP 중, GmCTP44, GmCTP45, 및 GmCTP65를 선정하고, 단백질 길이정보를 추가하여 GmCTP44-87 (GmCTP44의 아미노산 서열 중 N-terminal의 첫 번째부터 87번째 아미노산까지를 포함하는 CTP; 이후 같은 방식으로 명명함), GmCTP45-76, GmCTP65-65로 명명하였다. 상기 3종의 GmCTP와 GFP가 융합된 융합 단백질을 암호화하는 유전자를 포함하는 식물발현벡터를 옥수수의 원형질체에 PEG (polyethylene glycol) 형질전환방법을 이용하여 주입 후, GFP의 세포 내 발현 위치를 관찰하였다. As in Example 3, the function of moving the target protein to the chloroplast using GmCTP in Arabidopsis protoplasts, a dicot plant, was analyzed using corn protoplasts to confirm whether the same function could be performed in monocot plants. GmCTP44, GmCTP45, and GmCTP65 are selected among GmCTPs whose function has been confirmed in Arabidopsis, and protein length information is added to add GmCTP44-87 (CTP containing from the first to the 87th amino acid of the N-terminal among the amino acid sequence of GmCTP44). ; later named in the same way), GmCTP45-76, and GmCTP65-65. After injecting a plant expression vector containing a gene encoding a fusion protein in which the three types of GmCTP and GFP are fused into corn protoplasts using a PEG (polyethylene glycol) transformation method, the intracellular expression location of GFP was observed. .

옥수수 원형질체에서의 GFP 발현확인은 다음의 과정으로 확인하였다: 야생형 옥수수(일미찰)를 2주간 배양한 뒤, 잎을 잘게 썰어 enzyme solution (1% Cellulase R-10, 0.25% Macerozyme R-10, 0.1% BSA, 0.4 M mannitol, 20 mM KCl, 10 mM CaCl2, 20 mM MES, pH 5.7)에 넣고 상온에서 6시간 배양하여 원형질체를 분리하였다. 분리된 원형질체를 W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl and 2 mM MES, pH 5.7)으로 washing 후, MMG solution (0.4 M mannitol, 15 mM MgCl2, 4 mM MES, pH 5.7)으로 1x106 cells/ml 농도로 희석하였다. 원형질체 200 ㎕에 식물발현벡터 20 ug을 넣고, PEG solution (0.4 M mannitol, 100 mM CaCl2, 40% PEG4000) 200 ㎕를 넣어 잘 섞은 뒤, 7분간 방치하고 W5 solution 800 ㎕를 넣어 잘 섞었다. 소형원심분리기(1,000 rpm, 1분)를 이용하여 원형질체를 회수하고, W5 solution이 1 mL가 들어있는 12-well plate에 넣어 상온에서 6시간 이상 배양하였다. 형광현미경(Olympus IX70)을 이용하여, GFP 단백질의 세포 내 발현위치를 확인하였다.GFP expression in corn protoplasts was confirmed by the following procedure: After culturing wild-type corn (Ilmichalic) for 2 weeks, the leaves were chopped and the enzyme solution (1% Cellulase R-10, 0.25% Macerozyme R-10, 0.1 % BSA, 0.4 M mannitol, 20 mM KCl, 10 mM CaCl 2 , 20 mM MES, pH 5.7) and incubated for 6 hours at room temperature to separate protoplasts. After washing the isolated protoplasts with W5 solution (154 mM NaCl, 125 mM CaCl 2 , 5 mM KCl and 2 mM MES, pH 5.7), MMG solution (0.4 M mannitol, 15 mM MgCl 2 , 4 mM MES, pH 5.7) was diluted to a concentration of 1x10 6 cells/ml. 20 ug of the plant expression vector was added to 200 μl of the protoplast, 200 μl of PEG solution (0.4 M mannitol, 100 mM CaCl 2 , 40% PEG4000) was added, mixed well, left for 7 minutes, and 800 μl of W5 solution was added and mixed well. Protoplasts were recovered using a small centrifuge (1,000 rpm, 1 min), and placed in a 12-well plate containing 1 mL of W5 solution and incubated at room temperature for more than 6 hours. Using a fluorescence microscope (Olympus IX70), the intracellular expression location of the GFP protein was confirmed.

상기 얻어진 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이, GmCTP가 삽입되지 않은 p35S-GFP 벡터를 주입한 세포에서는 GFP가 세포질 내 전체에 퍼져있고, 엽록체에서 GFP 가 관찰되지 않은 반면, 상기 3종의 GmCTP(GmCTP44-87, GmCTP45-76, 및 GmCTP65-65)에 GFP를 융합하여 발현시키 경우 모두 엽록체에서 GFP 가 관찰되었다. 이 결과로부터 단자엽식물에서 시험된 3종의 GmCTP 모두가 C-terminal 에 fusion 된 GFP를 엽록체로 이동시킬 수 있음을 확인하였고, GFP 자리에 원하는 목적 단백질 서열을 fusion 하여 목적 단백질을 엽록체로 이동시키는데 활용할 수 있다. 이러한 방법을 이용하여 목적 단백질을 엽록체로 이동시킨 단자엽 형질전환 식물체, 세포주, 종자 등을 만들 수 있다.The obtained results are shown in FIG. 3 . As shown in FIG. 3 , in the cells injected with the p35S-GFP vector into which GmCTP was not inserted, GFP was spread throughout the cytoplasm and GFP was not observed in the chloroplast, whereas the three types of GmCTP (GmCTP44-87, GmCTP45) -76 and GmCTP65-65) were fused to GFP and expressed, both GFP was observed in the chloroplast. From this result, it was confirmed that all three types of GmCTP tested in monocotyledonous plants can transfer GFP fused to the C-terminal to the chloroplast, and it can be used to move the target protein to the chloroplast by fusion of the desired protein sequence to the GFP site. can Using this method, monocot transgenic plants, cell lines, seeds, etc. in which the target protein is transferred to the chloroplast can be prepared.

실시예 5. 엽록체 이동 기능에 필수적인 최소 GmCTP 서열 확인Example 5. Identification of minimal GmCTP sequence essential for chloroplast migration function

쌍자엽 및 단자엽 식물에서 엽록체 이동 기능이 확인된 3종의 GmCTP (GmCTP44, GmCTP45, 및 GmCTP65)에 대해서, 엽록체 이동 기능에 필수적인 최소 서열을 추가적으로 확보하기 위하여, 각 p35S-GmCTP-GFP 벡터를 이용하여 추정 cleavage site를 기준으로 아미노산 개수를 달리한 GmCTP44-67 (GmCTP44 단백질서열 중 N-terminal의 67번째 아미노산까지를 포함하는 CTP; 이후 같은 방식으로 명명함), GmCTP45-56, GmCTP45-57, GmCTP45-58, GmCTP45-59, GmCTP45-60, GmCTP65-45, GmCTP65-50, 및 GmCTP65-55를 포함하는 식물발현벡터를 제작하였다. For three GmCTPs (GmCTP44, GmCTP45, and GmCTP65) whose chloroplast migration function was confirmed in dicotyledonous and monocotyledonous plants, in order to additionally secure the minimum sequence essential for the chloroplast migration function, each p35S-GmCTP-GFP vector was estimated using each p35S-GmCTP-GFP vector GmCTP44-67 with a different number of amino acids based on the cleavage site (CTP including up to the 67th amino acid of the N-terminal in the GmCTP44 protein sequence; named in the same manner hereinafter), GmCTP45-56, GmCTP45-57, GmCTP45-58 , GmCTP45-59, GmCTP45-60, GmCTP65-45, GmCTP65-50, and plant expression vectors containing GmCTP65-55 were constructed.

Size-down cloning은 다음의 조건 하에서 수행하였다:Size-down cloning was performed under the following conditions:

GmCTP44, GmCTP45, 및 GmCTP65에 대하여, 실시예 2에서 제작한 각 p35S-GmCTP-GFP 벡터를 template으로 사용하고 표 4의 primer를 이용하여, site directed mutagenesis 방법으로 GmCTP 부분의 길이가 다른 벡터를 제작하였다.For GmCTP44, GmCTP45, and GmCTP65, each of the p35S-GmCTP-GFP vectors prepared in Example 2 was used as a template and the primers in Table 4 were used to prepare vectors having different lengths of the GmCTP region by site-directed mutagenesis. .

SEQ ID NOSEQ ID NO PrimerPrimer Sequence(5'→3')Sequence(5'→3') 309309 GFP_FGFP_F GTGAGCAAGGGCGAGGAGGTGAGCAAGGGCGAGGAG 310310 GmCTP44-67_RGmCTP44-67_R CTTGCTCACACATATTATAGTTGCTGGCTGCGTAGCTTGCTCACACATATTATAGTTGCTGGCTGCGTAG 311311 GmCTP45_56_RGmCTP45_56_R CTTGCTCACCACAATGGAAGAAGATCTATTCCTGTCTTGCTCACCACAATGGAAGAAGATCTATTCCTGT 312312 GmCTP45_57_RGmCTP45_57_R CTCGCCCTTGCTCACAACCACAATGGAAGAAGATCCTCGCCCTTGCTCACAACCACAATGGAAGAAGATC 313313 GmCTP45_58_RGmCTP45_58_R CTCGCCCTTGCTCACAGCAACCACAATGGAAGAAGCTCGCCCTTGCTCACAGCAACCACAATGGAAGAAG 314314 GmCTP45_59_RGmCTP45_59_R CTCGCCCTTGCTCACTGCAGCAACCACAATGGCTCGCCCTTGCTCACTGCAGCAACCACAATGG 315315 GmCTP45_60_RGmCTP45_60_R CTCGCCCTTGCTCACAACTGCAGCAACCACAATGCTCGCCCTTGCTCACAACTGCAGCAACCACAATG 316316 GmCTP65-45_RGmCTP65-45_R CTTGCTCACCAGTGGTTGTTGTCTTGGAGTCGGAACTTGCTCACCAGTGGTTGTTGTCTTGGAGTCGGAA 317317 GmCTP65-50_RGmCTP65-50_R TCGCCCTTGCTCACGGTTGAAGAAAACAACAGTGGTCGCCCTTGCTCACGGTTGAAGAAAACAACAGTGG 318318 GmCTP65-55_RGmCTP65-55_R CTCGCCCTTGCTCACTGCTAAGCAAGTTGAGGTTGCTCGCCCTTGCTCACTGCTAAGCAAGTTGAGGTTG

실시예 3 또는 실시예 4와 동일한 방법으로, GmCTP-GFP를 발현하도록 제작된 식물발현벡터를 이용하여 애기장대 또는 옥수수 원형질체에서 발현시킨 후 형광현미경으로 GFP의 세포 내 발현위치를 확인하여, 그 결과를 도 4 내지 도 6에 나타내었다. 도 4에서 보여지는 바와 같이, GmCTP44의 경우, cleavage site로 추정되는 67번째 아미노산까지 포함한 GmCTP44-67이 GFP를 엽록체로 정상적으로 이동시키는 것을 확인하였다. 도 5에서 보여지는 바와 같이, GmCTP45의 경우, cleavage site로 추정되는 56번째 아미노산까지 포함한 GmCTP45-56의 경우 GFP가 엽록체뿐만 아니라 세포질 등에서도 관찰되었으며, 58번째 아미노산까지 포함한 GmCTP45-58부터 엽록체로의 운반 기능을 정상적으로 수행하는 것으로 확인되었다. 도 6에서 보여지는 바와 같이, GmCTP65의 경우, cleavage site로 추정되는 45번째 아미노산까지 포함한 GmCTP65-45를 비롯하여, GmCTP65-55까지도 GFP가 엽록체에서 관찰되지 않고 세포질 등 세포 전체에서 관찰되어 정상적인 기능을 수행하지 못하는 것으로 확인되었다. In the same manner as in Example 3 or 4, expression of GmCTP-GFP in Arabidopsis or corn protoplasts was performed using a plant expression vector prepared to express GmCTP-GFP, and the intracellular expression location of GFP was confirmed under a fluorescence microscope. is shown in FIGS. 4 to 6 . As shown in FIG. 4 , in the case of GmCTP44, it was confirmed that GmCTP44-67 including the 67th amino acid presumed to be a cleavage site normally moves GFP to the chloroplast. As shown in FIG. 5 , in the case of GmCTP45, in the case of GmCTP45-56 including up to the 56th amino acid presumed to be a cleavage site, GFP was observed not only in the chloroplast but also in the cytoplasm, and from GmCTP45-58 including up to the 58th amino acid to the chloroplast. It was confirmed that the transport function was normally performed. As shown in FIG. 6 , in the case of GmCTP65, including GmCTP65-45 including up to the 45th amino acid presumed to be a cleavage site, and even GmCTP65-55, GFP is not observed in the chloroplast but in the entire cell, including the cytoplasm, and performs a normal function. was found not to be possible.

실시예 6. GmCTP65의 길이에 따른 엽록체 이동 효율 비교Example 6. Comparison of chloroplast migration efficiency according to the length of GmCTP65

실시예 3 및 4에서 GmCTP65-65의 경우, 애기장대 및 옥수수에서 엽록체 이동기능이 확인되었으나, 실시예 5에서 GmCTP65-45, GmCTP65-50 및 GmCTP65-55 의 경우, 애기장대에서는 엽록체 이동 기능이 확인되었으나, 옥수수에서의 엽록체 이동 기능이 확인되지 않았다는 것에 착안하여, GmCTP65의 길이에 따른 옥수수에서의 엽록체 이동효율을 비교하였다.In the case of GmCTP65-65 in Examples 3 and 4, the chloroplast migration function was confirmed in Arabidopsis and corn, but in the case of GmCTP65-45, GmCTP65-50 and GmCTP65-55 in Example 5, the chloroplast migration function was confirmed in Arabidopsis thaliana. However, focusing on the fact that the chloroplast migration function in maize was not confirmed, the chloroplast migration efficiency in maize according to the length of GmCTP65 was compared.

이를 위해, GmCTP65-70, GmCTP65-75 및 GmCTP65-80을 식물발현벡터에 클로닝하였다. 클로닝에 사용된 단백질 서열 및 DNA서열은 표 5 및 표 6와 같다.For this, GmCTP65-70, GmCTP65-75 and GmCTP65-80 were cloned into a plant expression vector. The protein sequences and DNA sequences used for cloning are shown in Tables 5 and 6.

실시예 3 및 4와 같은 방법으로 식물발현벡터를 애기장대 및 옥수수 원형질체에 발현시킨 후 형광현미경으로 GFP의 세포 내 발현위치를 확인하여, 그 결과를 도 7 에 나타내었다.After expressing plant expression vectors in Arabidopsis and corn protoplasts in the same manner as in Examples 3 and 4, the intracellular expression location of GFP was confirmed under a fluorescence microscope, and the results are shown in FIG. 7 .

GmCTP65-70, GmCTP65-75 및 GmCTP65-80 모두 애기장대 및 옥수수에서 엽록체 이동기능을 수행함을 확인하였다. 이 중, GmCTP65-80의 경우 가장 효율이 우수함을 확인하였다.It was confirmed that all of GmCTP65-70, GmCTP65-75 and GmCTP65-80 performed the chloroplast migration function in Arabidopsis thaliana and corn. Among them, it was confirmed that GmCTP65-80 had the best efficiency.

SEQ ID NOSEQ ID NO CTPCTP 아미노산 서열 (N→C)amino acid sequence (N→C) 319319 GmCTP65-70GmCTP65-70 MAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNSNNMAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNSNN 320320 GmCTP65-75GmCTP65-75 MAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNSNNNNPASMAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNNNNPAS 321321 GmCTP65-80GmCTP65-80 MAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNSNNNNPASASASSMAFTSSCSLASQFLPPIYHSAIPFHSTNCTNLSFPAVPTPRQQPLLFSSTSTCLAAAAASNSNSTSNNNNPASASASS

SEQ ID NOSEQ ID NO CTPCTP DNA 서열 (5'→3')DNA sequence (5'→3') 322322 GmCTP65-70GmCTP65-70 ATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGGCGGCGTCAAACTCAAACAGCACTTCGAATTCCAATAACATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGCGGCGTCAAACTCAAACAGCACTTCGAATTC 323323 GmCTP65-75GmCTP65-75 ATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGGCGGCGTCAAACTCAAACAGCACTTCGAATTCCAATAACAACAACCCTGCTTCAATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCTAGCGGCGGCGTCAAACTCAAACAGCACTTCGAATTC 324324 GmCTP65-80GmCTP65-80 ATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTTAGCAGCAGCGGCGGCGTCAAACTCAAACAGCACTTCGAATTCCAATAACAACAACCCTGCTTCAGCTTCAGCTTCGTCGATGGCTTTTACTTCTTCATGTTCTCTTGCTTCTCAGTTTCTCCCTCCCATATATCATTCTGCAATCCCTTTTCACTCAACGAACTGCACAAATTTGTCATTCCCCGCTGTTCCGACTCCAAGACAACAACCACTGTTGTTTTCTTCAACCTCAACTTGCTAGCTAGCTAGCGGCGGCGTCAAACTCACACAGCACACTTCGAATTCAGCTCAGCACACTTCGAATTC

실시예Example 7. 7. GmCTP를GmCTP 이용한 제초제 내성 식물체 제작 Production of herbicide-resistant plants using

쌍자엽 및 단자엽식물에서 목적 단백질을 엽록체로 이동시키는 것으로 확인된 3종의 GmCTP(GmCTP44-67, GmCTP45-58, 또는 GmCTP65-80)의 C-말단에 PPO(Protoporphyrinogen Oxidase)계 제초제 내성 유전자를 융합한 식물형질전환벡터 (도 8 내지 9 참조)를 제작하여 아그로박테리아(Agrobacteria)에 형질전환하였고, 아그로박테리아를 매개로 한 형질전환법을 이용하여 애기장대의 화기에 접종함으로써 형질전환체를 확보하였다. 본 실시예에서는 PPO계 제초제 내성 유전자를 대표하여 Thermosynechococcus elongatus BP-1 유래의 PPO의 변이체 (mCyPPO10: 서열번호 327), Halothece sp. PCC 7418 유래 PPO의 변이체 (mCyPPO8: 서열번호 328), 및 시네코코커스속 (Synechococcus sp.) JA-3-3Ab 균주에서 유래한 PPO의 변이체 (mCyPPO13-2: 서열번호 329)를 각각 암호화하는 유전자를 사용하였다. 또한 glyphosate 내성 유전자인 CP4EPSPS (glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase: 서열번호 330) 와 색소체 저해성 제초제 내성 유전자인 PfHPPD (Pseudomonas fluorescens 유래 hydroxyphenylpyruvate dioxygenase, G336W: 서열번호 331)를 각각 암호화하는 유전자를 사용하였다 (표 7 참조).A PPO (Protoporphyrinogen Oxidase) herbicide resistance gene was fused to the C-terminus of three GmCTPs (GmCTP44-67, GmCTP45-58, or GmCTP65-80), which were confirmed to move the target protein to the chloroplast in dicotyledonous and monocot plants. A plant transformation vector (refer to FIGS. 8 to 9) was prepared and transformed into Agrobacteria, and transformants were obtained by inoculating in the fire of Arabidopsis thaliana using a transformation method mediated by Agrobacteria. In this example, a mutant of PPO derived from Thermosynechococcus elongatus BP-1 (mCyPPO10: SEQ ID NO: 327), Halothece sp. Genes encoding a variant of PPO derived from PCC 7418 (mCyPPO8: SEQ ID NO: 328), and a variant of PPO derived from the Synechococcus sp. JA-3-3Ab strain (mCyPPO13-2: SEQ ID NO: 329), respectively was used. In addition, the glyphosate resistance gene CP4EPSPS (glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase: SEQ ID NO: 330) and the plastid inhibitory herbicide resistance gene PfHPPD (Pseudomonas fluorescens-derived hydroxyphenylpyruvate dioxygenase, G336W: SEQ ID NO: 331) encoding genes, respectively used (see Table 7).

이와 별도로 대조군으로 활용하기 위해, mCyPPO10 (서열번호 327)의 N-말단에 어떠한 CTP도 삽입되지 않은 식물형질전환벡터를 이용한 애기장대 형질전환체(ㅿCTP-mCyPPO10)를 제작하였다.Separately, to use as a control, Arabidopsis transformants (ㅿCTP-mCyPPO10) were prepared using a plant transformation vector in which no CTP was inserted at the N-terminus of mCyPPO10 (SEQ ID NO: 327).

SEQ ID NOSEQ ID NO GeneGene 아미노산 서열 (N→C)amino acid sequence (N→C) 327327 mCyPPO10mCyPPO10 IEVDVAIVGGGLSGLSVAWRLQRSAPHYSGVLLEASDRLGGNITTQAAEGFVWELGPNSFAPTPALLQLIAEVGLHSELIRGDRHLPRYIYWRGELYPLEPTRPLALATSNLLSPWGKVRAALGALGFVPPYLGSGDESVDSFFRRHLGQEVAERLVAPFVSGCYLGDPQQLSAAAAFRRIAQLEKLGGSLIAGALRLRRQQPPQPKPPAQVQMRPGELGSFREGLAALPRAIAQQLKAPLHLQTPVEAITPEPKGGYLLRSGEQTWHARSVVLATPAYQTAELVAPFQPAIARALATIPYPTVACVVLAYPAGLGRSVRPGFGVLVPRGQGIRTLGTIWSSCLFPQRTPAGWQVFTSMIGGATDPDLASLREEAIVEQVQQDLTRLLDLPAAKARLLGMKVWRRAIPQYIVGYPQQWQQVTHALTQTPGLFLCSNYAEGVALGDRVEHGNRTAAAVAAYLAGGQSIEVDVAIVGGGLSGLSVAWRLQRSAPHYSGVLLEASDRLGGNITTQAAEGFVWELGPNSFAPTPALLQLIAEVGLHSELIRGDRHLPRYIYWRGELYPLEPTRPLALATSNLLSPWGKVRAALGALGFVPPYLGSGDESVDSFFRRHLGQEVAERLVAPFVSGCYLGDPQQLSAAAAFRRIAQLEKLGGSLIAGALRLRRQQPPQPKPPAQVQMRPGELGSFREGLAALPRAIAQQLKAPLHLQTPVEAITPEPKGGYLLRSGEQTWHARSVVLATPAYQTAELVAPFQPAIARALATIPYPTVACVVLAYPAGLGRSVRPGFGVLVPRGQGIRTLGTIWSSCLFPQRTPAGWQVFTSMIGGATDPDLASLREEAIVEQVQQDLTRLLDLPAAKARLLGMKVWRRAIPQYIVGYPQQWQQVTHALTQTPGLFLCSNYAEGVALGDRVEHGNRTAAAVAAYLAGGQS 328328 mCyPPO8mCyPPO8 IDTLIVGAGISGLSAAYRLDEKQRQVLVAEKRDRAGGNITSQQSGDFLWEEGPNSFSPTPELLKLAVDAGLRNELIFADRGLPRYVYWEGKLRPVPMSPPTAVTSQLLSPIGKLRALTGALGFIPPQVSSQEETVADFFTRHLGSEVAQRLVSPFVSGVYCGDVDQLSAEAAFGRVTQLADVGGGLVAGAILCRRQKPKSTPKTAKPSDIPETKSGQLGSFKEGLQQLPSAIVSQLGDKVKFQWELKNISPHPESGYVATFSTPEGEQTVEAKTVILTTPAYVTASLVKDLSPQASQALNEISYPPMACVVLAYPDEALRFPLKGFGNLNPRSQGIRTLGTIWSSTLFPGRTPKGWHLLTNMIGGATDPAIAELSEDQIIEQVHQDLQQAVIKSGSIPKPLAVHLWSKAIPQYNLGHLKRLETIRNHLKPFSGLFLSSNYLDGVALGDCVRRGEESSQAVLDYLGIDTLIVGAGISGLSAAYRLDEKQRQVLVAEKRDRAGGNITSQQSGDFLWEEGPNSFSPTPELLKLAVDAGLRNELIFADRGLPRYVYWEGKLRPVPMSPPTAVTSQLLSPIGKLRALTGALGFIPPQVSSQEETVADFFTRHLGSEVAQRLVSPFVSGVYCGDVDQLSAEAAFGRVTQLADVGGGLVAGAILCRRQKPKSTPKTAKPSDIPETKSGQLGSFKEGLQQLPSAIVSQLGDKVKFQWELKNISPHPESGYVATFSTPEGEQTVEAKTVILTTPAYVTASLVKDLSPQASQALNEISYPPMACVVLAYPDEALRFPLKGFGNLNPRSQGIRTLGTIWSSTLFPGRTPKGWHLLTNMIGGATDPAIAELSEDQIIEQVHQDLQQAVIKSGSIPKPLAVHLWSKAIPQYNLGHLKRLETIRNHLKPFSGLFLSSNYLDGVALGDCVRRGEESSQAVLDYLG 329329 mCyPPO13-2mCyPPO13-2 NPATPEPLNAEVVVIGAGISGLTLAWRLQQGLSARGGSPQAVLLAEASSRVGGCISTQSKDGYRWEEGPNSFTPTPALLNLIAEVGLTDQLVLADAKLPRYIYWEGALLPVPLSPAAALGSRLLSVGGKLRALQGLLGFVPPPPGHEETVRQFFRRQLGSEVAERLVEPFTSGVYLGDPDQLSAVAAFPRVAGLEERYGSLFAGALQALRQRPQPSPAAIQPPPKRGQLGNLRQGLQQLPEALAQKLGDSLRLGWRALQLKRAGELYWVGFETPEGSRWVAARQVVLALPAYEAAALLQELNPPASQLLAEILYPPVAVVALAYPQEALPQPLRGFGHLIPRSQGLRTLGTIWASCLFPERAPQGYHSFLSLLGGATDAALARRRGIPPIPALSPEERAQIAHAELSQVLLTRRAEPVYLGERLWPRAIPQYTLGHRQRIAQVQAHLASQTPGIWVCANYLDGVALGDCVRRAEALAQQLLSQVNPATPEPLNAEVVVIGAGISGLTLAWRLQQGLSARGGSPQAVLLAEASSRVGGCISTQSKDGYRWEEGPNSFTPTPALLNLIAEVGLTDQLVLADAKLPRYIYWEGALLPVPLSPAAALGSRLLSVGGKLRALQGLLGFVPPPPGHEETVRQFFRRQLGSEVAERLVEPFTSGVYLGDPDQLSAVAAFPRVAGLEERYGSLFAGALQALRQRPQPSPAAIQPPPKRGQLGNLRQGLQQLPEALAQKLGDSLRLGWRALQLKRAGELYWVGFETPEGSRWVAARQVVLALPAYEAAALLQELNPPASQLLAEILYPPVAVVALAYPQEALPQPLRGFGHLIPRSQGLRTLGTIWASCLFPERAPQGYHSFLSLLGGATDAALARRRGIPPIPALSPEERAQIAHAELSQVLLTRRAEPVYLGERLWPRAIPQYTLGHRQRIAQVQAHLASQTPGIWVCANYLDGVALGDCVRRAEALAQQLLSQV 330330 CP4EPSPSCP4EPSPS LHGASSRPATARKSSGLSGTVRIPGDKSISHRSFMFGGLASGETRITGLLEGEDVINTGKAMQAMGARIRKEGDTWIIDGVGNGGLLAPEAPLDFGNAATGCRLTMGLVGVYDFDSTFIGDASLTKRPMGRVLNPLREMGVQVKSEDGDRLPVTLRGPKTPTPITYRVPMASAQVKSAVLLAGLNTPGITTVIEPIMTRDHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSSTAFPLVAALLVPGSDVTILNVLMNPTRTGLILTLQEMGADIEVINPRLAGGEDVADLRVRSSTLKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMNGLEELRVKESDRLSAVANGLKLNGVDCDEGETSLVVRGRPDGKGLGNASGAAVATHLDHRIAMSFLVMGLVSENPVTVDDATMIATSFPEFMDLMAGLGAKIELSDTKAALHGASSRPATARKSSGLSGTVRIPGDKSISHRSFMFGGLASGETRITGLLEGEDVINTGKAMQAMGARIRKEGDTWIIDGVGNGGLLAPEAPLDFGNAATGCRLTMGLVGVYDFDSTFIGDASLTKRPMGRVLNPLREMGVQVKSEDGDRLPVTLRGPKTPTPITYRVPMASAQVKSAVLLAGLNTPGITTVIEPIMTRDHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSSTAFPLVAALLVPGSDVTILNVLMNPTRTGLILTLQEMGADIEVINPRLAGGEDVADLRVRSSTLKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMNGLEELRVKESDRLSAVANGLKLNGVDCDEGETSLVVRGRPDGKGLGNASGAAVATHLDHRIAMSFLVMGLVSENPVTVDDATMIATSFPEFMDLMAGLGAKIELSDTKAA 331331 PfHPPDPfHPPD ADLYENPMGLMGFEFIEFASPTPGTLEPIFEIMGFTKVATHRSKNVHLYRQGEINLILNNEPNSIASYFAAEHGPSVCGMAFRVKDSQKAYNRALELGAQPIHIDTGPMELNLPAIKGIGGAPLYLIDRFGEGSSIYDIDFVYLEGVERNPVGAGLKVIDHLTHNVYRGRMVYWANFYEKLFNFREARYFDIKGEYTGLTSKAMSAPDGMIRIPLNEESSKGAGQIEEFLMQFNGEGIQHVAFLTDDLVKTWDALKKIGMRFMTAPPDTYYEMLEGRLPDHGEPVDQLQARGILLDGSSVEGDKRLLLQIFSETLMGPVFFEFIQRKGDDGFGEWNFKALFESIERDQVRRGVLTADADLYENPMGLMGFEFIEFASPTPGTLEPIFEIMGFTKVATHRSKNVHLYRQGEINLILNNEPNSIASYFAAEHGPSVCGMAFRVKDSQKAYNRALELGAQPIHIDTGPMELNLPAIKGIGGAPLYLIDRFGEGSSIYDIDFVYLEGVERNPVGAGLKVIDHLTHNVYRGRMVYWANFYEKLFNFREARYFDIKGEYTGLTSKAMSAPDGMIRIPLNEESSKGAGQIEEFLMQFNGEGIQHVAFLTDDLVKTWDALKKIGMRFMTAPPDTYYEMLEGRLPDHGEPVDQLQARGILLDGSSVEGDKRLLLQIFSETLMGPVFFEFIQRKGDDGFGEWNFKALFESIERDQVRRGVLTAD

애기장대 형질전환은 다음의 과정을 수행하였다: 상기에서 제작한 각각의 벡터를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) GV3101 competent cell에 freeze-thaw 방법으로 도입하여 형질전환 시켰다. 각각의 형질전환 Agrobacterium을 항생제 배지 (spectinomycin을 포함한 LB agar)에서 배양 및 선별하였다. 상기 선별된 콜로니를 LB broth에서 액체배양하였다. 이 배양액으로부터 Agrobacterium cell을 harvest 한 후, 5% (w/v) sucrose 용액에 흡광도 (OD600) 0.8의 농도로 현탁한 후, 0.05% (v/v) Silwet L-77 (Momentive Performance Materials)를 첨가하였다. Floral dipping 방법으로 야생형 애기장대(Col-0)에 형질전환하여, T1 종자를 수확하였다.Arabidopsis transformation was performed as follows: Each of the vectors prepared above was introduced into Agrobacterium tumefaciens GV3101 competent cells by freeze-thaw method to transform them. Each transformed Agrobacterium was cultured and selected in antibiotic medium (LB agar containing spectinomycin). The selected colonies were liquid-cultured in LB broth. After harvesting Agrobacterium cells from this culture medium, the absorbance (OD 600 ) was suspended in a 5% (w/v) sucrose solution at a concentration of 0.8, and then 0.05% (v/v) Silwet L-77 (Momentive Performance Materials) was added. added. Transformed into wild-type Arabidopsis thaliana (Col-0) by the Floral dipping method, T 1 seeds were harvested.

T1 종자를 파종하고 10일 후, 각 형질전환체의 선발마커에 따라 BASTA (50 mg/L) 또는 Glyphosate (0.06%)를 스프레이하여 선발된 식물체로부터 T2 종자를 수확하였다. 10 days after sowing T 1 seeds, T2 seeds were harvested from selected plants by spraying BASTA (50 mg/L) or Glyphosate (0.06%) according to the selection marker of each transformant.

T2 종자를 각 선발배지(25 uM glufosinate 또는 100 uM glyphosate 1/2 MS 배지)에 파종하여, 약 3:1 (Live:Dead) 의 분리비를 보이는 라인을 선발하여, 흙에 이식 후 3주간 배양하였다. 도입된 형질에 따라 tiafenacil (4.3 g ai/ha), glyphosate (1 kg ai/ha), 또는 isoxaflutole (24 g ai/ha)을 0.05%(v/v) Silwet L-77과 함께 골고루 분사하였다. 제초제 처리 결과, 대조군인 야생형 애기장대 (Col-0)와 ㅿCTP-mCyPPO10 형질전환체는 사멸하였고, GmCTP44-67, GmCTP45-58, 또는 GmCTP65-80을 적용한 형질전환체는 생존한 것을 확인하였다 (도 10 내지 도 13 참조). ㅿCTP-mCyPPO10 형질전환체는 선발배지 (25 uM glufosinate 1/2 MS)에서 형질전환이 제대로 되었음에도 Tiafenacil 처리시 사멸하는 것으로 미루어, CTP가 없는 mCyPPO10은 엽록체로 이동하지 못하여 3 계통 모두 저항성을 갖지 못하는 것으로 확인된다 (도 13 참조).T2 seeds were sown in each selection medium (25 uM glufosinate or 100 uM glyphosate 1/2 MS medium), and lines showing a separation ratio of about 3:1 (Live:Dead) were selected, transplanted into soil, and then cultured for 3 weeks. . Depending on the introduced trait, tiafenacil (4.3 g ai/ha), glyphosate (1 kg ai/ha), or isoxaflutole (24 g ai/ha) was evenly sprayed with 0.05% (v/v) Silwet L-77. As a result of the herbicide treatment, wild-type Arabidopsis thaliana (Col-0) and ㅿCTP-mCyPPO10 transformants were killed, and it was confirmed that transformants applied with GmCTP44-67, GmCTP45-58, or GmCTP65-80 survived ( 10-13). The ㅿCTP-mCyPPO10 transformant died when Tiafenacil was treated even though the transformation was done properly in the selection medium (25 uM glufosinate 1/2 MS). Therefore, mCyPPO10 without CTP cannot migrate to the chloroplast, so all three strains do not have resistance. confirmed to be (see FIG. 13).

또한, CTP45-mCy10+CTP45-CP4EPSPS 가 도입된 형질전환체는 tiafenacil (도 10)과glyphosate 모두에서 저항성을 보이는 것을 확인하였다 (도 13).In addition, it was confirmed that the transformant introduced with CTP45-mCy10+CTP45-CP4EPSPS showed resistance to both tiafenacil (FIG. 10) and glyphosate (FIG. 13).

실시예 8. AtPPO1의 CTP를 이용하여 목적 단백질을 쌍자엽식물의 엽록체로 이동시키는 방법Example 8. A method for transferring a target protein to the chloroplast of a dicotyledon using AtPPO1 CTP

AtPPO1 유전자는 애기장대의 PPO1 유전자로, 엽록체에서 엽록소를 합성하는데 중요한 기능을 수행하는 AtPPO1 단백질을 암호화한다. AtPPO1 단백질 (서열번호 326)의 N-terminal 부분에는 CTP 기능을 하는 서열이 있고, AtPPO1 단백질이 엽록체로 이동할 때, 특정 위치에서 절단된다. CTP cleavage site를 추정하는 tool(ChloroP, http://www.cbs.dtu.dk/services/ChloroP/)을 이용하여 AtPPO1 단백질 서열의 33~35번째 아미노산 위치가 절단부위라고 추정하였다. 33~35번째 아미노산을 기준으로 앞뒤로 아미노산 개수를 달리하여 AtPPO1TP-28 (AtPPO1 아미노산 서열 (서열번호 326) 중 N-terminal의 28번째 아미노산까지를 포함하는 CTP; 이후 같은 방식으로 명명함), AtPPO1TP-30, AtPPO1TP-31, AtPPO1TP-32 AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, 및 AtPPO1TP-52을 암호화하는 유전자를 각각 식물형질전환벡터의 CaMV35S promoter (p35S)와 CyPPO2 (Oscillatoria PCC7112에서 유래한 CTP 서열이 없는 PPO; 서열번호 325) 암호화 유전자 사이에 삽입하였고, CyPPO2의 C-말단에 HA (hemagglutinin) tag을 연결하였다 (도 14 참조).The AtPPO1 gene is a PPO1 gene of Arabidopsis, and encodes an AtPPO1 protein that performs an important function in chlorophyll synthesis in chloroplasts. The N-terminal portion of the AtPPO1 protein (SEQ ID NO: 326) has a sequence that functions as a CTP, and when the AtPPO1 protein moves to the chloroplast, it is cleaved at a specific position. Using a tool for estimating the CTP cleavage site (ChloroP, http://www.cbs.dtu.dk/services/ChloroP/), the 33rd to 35th amino acid positions of the AtPPO1 protein sequence were estimated as the cleavage site. AtPPO1TP-28 (CTP including up to the 28th amino acid of the N-terminal in the AtPPO1 amino acid sequence (SEQ ID NO: 326); hereinafter named in the same manner), AtPPO1TP- 30, AtPPO1TP-31, AtPPO1TP-32 AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, and AtPPO1TP-52 genes encoding the CaMV35S promoter (p35S) and CyPPO2 (CTP derived from Oscillatoria PCC7112) of the plant transformation vector, respectively. PPO without sequence; SEQ ID NO: 325) was inserted between the coding genes, and a hemagglutinin (HA) tag was linked to the C-terminus of CyPPO2 (see FIG. 14 ).

상기 AtPPO1TP-28, AtPPO1TP-30, AtPPO1TP-31, AtPPO1TP-32 AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, 및 AtPPO1 TP-52의 아미노산 서열을 다음의 표 8에 나타내었다:The amino acid sequences of AtPPO1TP-28, AtPPO1TP-30, AtPPO1TP-31, AtPPO1TP-32 AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, and AtPPO1 TP-52 are shown in Table 8 below:

SEQ ID NOSEQ ID NO CTPCTP 아미노산 서열 (N→C)amino acid sequence (N→C) 332332 AtPPO1TP-28AtPPO1TP-28 MELSLLRPTTQSLLPSFSKPNLRLNVYKMELSLLRPTTQSLLPSFSKPNLRLNVYK 333333 AtPPO1TP-30AtPPO1TP-30 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLMELSLLRPTTQSLLPSFSKPNLRLNVYKPL 334334 AtPPO1TP-31AtPPO1TP-31 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRMELSLLRPTTQSLLPSFSKPNLRLNVYKPLR 335335 AtPPO1TP-32AtPPO1TP-32 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLMELSLLRPTTQSLLPSFSKPNLRLNVYKPLRL 336336 AtPPO1TP-33AtPPO1TP-33 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRMELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLR 337337 AtPPO1TP-35AtPPO1TP-35 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCSMELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCS 338338 AtPPO1TP-37AtPPO1TP-37 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCSVAMELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCSVA 339339 AtPPO1TP-52AtPPO1TP-52 MELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCSVAGGPTVGSSKIEGGGGMELSLLRPTTQSLLPSFSKPNLRLNVYKPLRLRCSVAGGPTVGSSKIEGGGG

각 식물발현벡터를 실시예 7의 방법으로 애기장대에 형질전환하여, 애기장대 식물체에 형질전환하여 단백질을 추출하고 HA antibody를 이용하여 western blot을 수행하였다. 세포 내에서 AtPPO1TP가 정상적으로 CyPPO2를 엽록체로 이동시키면 특정 아미노산 위치에서 절단되어 western blot 시 단백질 밴드의 크기가 CyPPO2의 원래 크기와 유사하고, 절단되지 않으면 CyPPO2의 원래 크기에 AtPPO1TP 크기만큼 더해진 크기의 단백질이 검출된다. Each plant expression vector was transformed into Arabidopsis by the method of Example 7, transformed into Arabidopsis plants to extract proteins, and western blot was performed using an HA antibody. When AtPPO1TP normally moves CyPPO2 into the chloroplast within the cell, it is cleaved at a specific amino acid position and the size of the protein band is similar to the original size of CyPPO2 during western blot. detected.

상기 얻어진 western blot 결과 (n=2)를 도 15에 나타내었다. 도 15에 나타난 바와 같이, AtPPO1TP-28 (28aa) 내지 AtPPO1TP-32 (32aa)까지는 사이즈가 큰 단백질을 확인할 수 있는 반면, AtPPO1TP-33 (33aa)에서부터 사이즈가 작은 단백질이 확인되었다. 이러한 결과는 AtPPO1의 CTP 활성을 갖는 N-말단 부위의 cleavage site는 33번째 아미노산 잔기 이후 (C-말단쪽)임을 보여준다. 또한, AtPPO1TP-33, 및 AtPPO1TP-35를 사용한 결과에서 사이즈가 다른 2개 밴드가 확인되어, 같은 위치에서 cleavage 되지 않는 것을 알 수 있었고, AtPPO1TP-37에서 1개 밴드가 확인되어 정상적인 cleavage를 위해 최소 37번째 아미노산까지의 TP가 필요함을 확인하였다.The obtained western blot results (n=2) are shown in FIG. 15 . As shown in FIG. 15 , proteins having a large size were identified from AtPPO1TP-28 (28aa) to AtPPO1TP-32 (32aa), whereas proteins having a small size were identified from AtPPO1TP-33 (33aa). These results show that the cleavage site of the N-terminal site having CTP activity of AtPPO1 is after the 33rd amino acid residue (C-terminal side). In addition, two bands of different sizes were confirmed in the results using AtPPO1TP-33 and AtPPO1TP-35, and it was confirmed that cleavage was not performed at the same position, and one band was confirmed in AtPPO1TP-37, which is the minimum for normal cleavage. It was confirmed that TP up to the 37th amino acid is required.

한편, AtPPO1TP-25 (MELSLLRPTTQSLLPSFSKPNLRLN; 서열번호 340), AtPPO1TP-26 (MELSLLRPTTQSLLPSFSKPNLRLNV; 서열번호 341), AtPPO1TP-30 (서열번호 333), AtPPO1TP-31 (서열번호 334), AtPPO1TP-32 (서열번호 335), AtPPO1TP-33 (서열번호 336), AtPPO1TP-35 (서열번호 337), AtPPO1TP-37 (서열번호 338), 및 AtPPO1TP-52 (서열번호 339)의 암호화 유전자를 각각 식물형질전환벡터의 CaMV35S promoter (p35S)와 CyPPO2 유전자 사이에 삽입하고, CyPPO2 유전자 3' 말단쪽에 YFP를 삽입하였다 (도 16 참조).On the other hand, AtPPO1TP-25 (MELSLLRPTTQSLLPSFSKPNLRLN; SEQ ID NO: 340), AtPPO1TP-26 (MELSLLRPTTQSLLPSFSKPNLRLNV; SEQ ID NO: 341), AtPPO1TP-30 (SEQ ID NO: 333), AtPPO1TP-31 (SEQ ID NO: 334), AtPPO1TP-32 (SEQ ID NO: 335) , AtPPO1TP-33 (SEQ ID NO: 336), AtPPO1TP-35 (SEQ ID NO: 337), AtPPO1TP-37 (SEQ ID NO: 338), and AtPPO1TP-52 (SEQ ID NO: 339) of the coding genes of the plant transformation vector CaMV35S promoter ( p35S) and the CyPPO2 gene, and YFP was inserted at the 3' end of the CyPPO2 gene (see FIG. 16 ).

상기 준비된 식물형질전환벡터를 담배(Nicotiana benthamiana)에 Agro-infiltration 형질전환법으로 주입 후, 2일 동안 배양하여 발현시켜 단백질 발현 위치를 형광현미경으로 확인하여, 그 결과를 도 17a 및 17b에 나타내었다. 도 17a 및 17b에 나타난 바와 같이, AtPPO1TP-31, AtPPO1TP-32, AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37를 사용한 경우, 엽록체로 타겟팅되는 반면, AtPPO1TP-25, AtPPO1TP-26, AtPPO1TP-30를 사용한 경우에는 세포질에서도 발현이 확인되었다. 이 결과로부터 쌍자엽식물에서 AtPPO1TP-31, AtPPO1TP-32, AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37 등이 C-terminal 에 fusion된 목적 단백질 및 형광단백질을 엽록체로 이동시킬 수 있음을 확인하였다. 웨스턴블라팅 결과와 형광현미경 분석을 종합하여, 정상적인 CTP 기능을 위해서 최소 AtPPO1TP-37 이상의 서열이 요구된다고 판단된다. 이러한 방법을 이용하여 목적 단백질을 엽록체로 이동시킨 쌍자엽 형질전환 식물체, 세포주, 종자 등을 만들 수 있다.After injecting the prepared plant transformation vector into tobacco ( Nicotiana benthamiana ) by Agro-infiltration transformation, it was cultured for 2 days to be expressed, and the protein expression position was confirmed with a fluorescence microscope, and the results are shown in FIGS. 17a and 17b. . As shown in FIGS. 17A and 17B , when using AtPPO1TP-31, AtPPO1TP-32, AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, chloroplasts were targeted, whereas AtPPO1TP-25, AtPPO1TP-26, and AtPPO1TP-30 were used. When used, expression was also confirmed in the cytoplasm. From this result, it was confirmed that AtPPO1TP-31, AtPPO1TP-32, AtPPO1TP-33, AtPPO1TP-35, AtPPO1TP-37, etc. in dicotyledonous plants can transfer the target protein and fluorescent protein fused to the C-terminal to the chloroplast. Based on the Western blotting results and fluorescence microscopy analysis, it is determined that a sequence of at least AtPPO1TP-37 or higher is required for normal CTP function. Using this method, a dicot transgenic plant, cell line, seed, etc. in which the target protein is transferred to the chloroplast can be prepared.

실시예 9. AtPPO1TP-37을 이용한 제초제 내성 식물체 제작 및 내성 확인Example 9. Preparation of herbicide-resistant plants using AtPPO1TP-37 and confirmation of tolerance

실시예 8에서 제작한 애기장대 형질전환체 중, AtPPO1TP-37(서열번호 338) 뒤 (C-말단)에 CyPPO2(서열번호 325)를 fusion한 단백질을 암호화하는 유전자를 포함하는 T1 형질전환체를 4주간 배양하여 tiafenacil (2 g ai/ha)을 0.05%(v/v) Silwet L-77과 함께 골고루 분사하였다. 그 결과, 대조군인 야생형 애기장대(Col-0)는 제초제 처리 7일 후 완전히 사멸하는 반면, AtPPO1TP-37가 적용된 형질전환체는 생존하는 것을 확인하였다 (도 18). Among the Arabidopsis transformants prepared in Example 8, AtPPO1TP-37 (SEQ ID NO: 338) followed by (C-terminal) CyPPO2 (SEQ ID NO: 325) T 1 transformant containing a gene encoding a fusion protein was cultured for 4 weeks, and tiafenacil (2 g ai/ha) was evenly sprayed with 0.05% (v/v) Silwet L-77. As a result, it was confirmed that the control group, wild-type Arabidopsis thaliana (Col-0), completely died after 7 days of herbicide treatment, whereas the transformant to which AtPPO1TP-37 was applied survived (FIG. 18).

또한, 콩 형질전환체를 제작하기 위해 AtPPO1TP-37 뒤에 mCyPPO8(Halothece PCC7418에서 유래한 변이 PPO 유전자, 서열번호 328)을 fusion한 별도의 식물형질전환벡터를 제작하였다 (도 19). In addition, a separate plant transformation vector was prepared by fusion of AtPPO1TP-37 followed by mCyPPO8 (mutated PPO gene derived from Halothece PCC7418, SEQ ID NO: 328) to prepare soybean transformants (FIG. 19).

구체적으로, AtPPO1TP-37과 mCyPPO8을 PCR로 증폭하였다. pENTR Directional TOPO cloning kits (Invitrogen) 를 이용하여 pENTR-TOPO 벡터(Invitrogen)에 PCR product를 클로닝하여 Entry vector를 제작하였다. 상기 제작된 Entry vector로부터 Gateway LR Clonase II Enzyme Mix kit (Invitrogen)을 이용하여 콩 형질전환용 벡터를 제작하였다. Specifically, AtPPO1TP-37 and mCyPPO8 were amplified by PCR. Entry vector was prepared by cloning PCR product into pENTR-TOPO vector (Invitrogen) using pENTR Directional TOPO cloning kits (Invitrogen). From the prepared entry vector, a vector for soybean transformation was prepared using the Gateway LR Clonase II Enzyme Mix kit (Invitrogen).

상기 제작한 각 벡터를 electro-transformation 방법(Trans Res. (1993) 2:208-218)으로 Agrobacterium EHA105 에 형질전환하고, 이를 이용하여 콩(광안) 형질전환체를 확보하였다.Each of the prepared vectors was transformed into Agrobacterium EHA105 by the electro-transformation method (Trans Res. (1993) 2:208-218), and a soybean (Gwangan) transformant was obtained using this.

구체적으로, 멸균한 3차수에 침지해 놓은 종자를 하배축까지 수직으로 자르고 종피를 제거하였다. 배축을 떡잎 밑 약 1 ㎝되는 곳에서 자른 후 embryonic axis가 붙어있는 한 쪽을 8회 정도 상처를 내었다. 절편체를 형질전환된 EHA105와 섞고 20초간 초음파 처리(sonication)한 뒤, 30분 동안 접종시켰다. 절편체의 물기를 제거한 뒤, 고체 CCM(Co-cultivation medium; Gamborg B5 0.32 g/L, MES 4.26 g/L, Sucrose 30 g/L, Agar 0.7%)에 향축(adaxial) 부분이 아래로 향하도록 두었다. Micropore tape으로 봉한 뒤 25 ℃, 18시간 광주기에 5일 동안 공배양하였다. 제균을 위해서 액체 1/2 SIM(shoot induction medium; B5 salt 3.2 g/L, BA 1.67 mg/L, MES 3 mM, Agar 0.8%(w/v), Sucrose 3%(w/v), Cefotaxime 250 mg/L, Vancomycin 50 mg/L, Ticarcillin 100 mg/L, pH 5.6)에 10분간 세척하였다. 절편체의 물기를 제거한 뒤 선발항생제가 없는 SIM에 배축 부분이 배지에 고착되고 재분화 될 부분이 30도 정도의 각도로 위로 향하도록 치상하였다. 각각의 플레이트를 Micropore tape으로 봉한 뒤 25 ℃, 18시간 광주기에서 배양하였다. 2주 후 절편체의 신초부분만 절단하여 향축(adaxial) 부분이 밑으로 향하도록 하여 선발항생제 PPT 10 mg/L가 들어있는 SIM에 치상하였다. 2주 후 갈변한 신초와 신초 pad는 제거하고 SEM(shoot elongation medium, 신초 신장 배지; MS salt 4.4 g/L, MES 3 mM, GA3 0.5 mg/L, Asparagine 50 mg/L, Pyroglutamic acid 100 mg/L, IAA 0.1 mg/L, Zeatin 1 mg/L, Sucrose 3%, Agar 0.8%, Cefotaxime 250 mg/L, Vancomycin 50 mg/L, Ticarcillin 100 mg/L, DL-phosphinothricin 5 mg/L, pH 5.6)에 치상하였다. 신장된 신초가 4 cm 이상이 되면 절단하여 신초의 밑 부분을 1 mg/mL 농도의 IBA에 3분간 침지 후, RM (rooting medium, 뿌리 유도 배지; MS salt 4.4 g/L, MES 3 mM, Sucrose 3%, Agar 0.8%, Cefotaxime 50 mg/L, Vancomycin 50 mg/L, Ticarcillin 50 mg/L, Asparagine 25 mg/L, Pyroglutamic acid 25 mg/L, pH 5.6)으로 옮겼다. 뿌리가 충분히 자라게 되면 상토(바이오프러그, 팜한농)와 버미큘라이트를 2:1(v/v)로 섞어 넣은 작은 포트(6 ㎝ x 6 ㎝ x 5.6 ㎝)에 심었다. 10일 정도 경과 후, 형질전환체 선발을 위해 잎 표면에 100 mg/L DL-phosphinothricin로 leaf painting을 하고, 내성이 확인된 식물체로부터 T1 종자를 수확하였다.Specifically, the seeds immersed in sterilized tertiary water were cut vertically up to the hypocotyl, and the seed coat was removed. After cutting the hypocotyl at about 1 cm below the cotyledon, the side where the embryonic axis is attached was cut 8 times. The explants were mixed with the transformed EHA105, sonicated for 20 seconds, and inoculated for 30 minutes. After removing the water from the explants, place the adaxial part facing down on solid CCM (Co-cultivation medium; Gamborg B5 0.32 g/L, MES 4.26 g/L, Sucrose 30 g/L, Agar 0.7%). put After sealing with micropore tape, it was co-cultured for 5 days at 25 °C and 18 hours photoperiod. For sterilization, liquid 1/2 SIM (shoot induction medium; B5 salt 3.2 g/L, BA 1.67 mg/L, MES 3 mM, Agar 0.8% (w/v), Sucrose 3% (w/v), Cefotaxime 250 mg/L, Vancomycin 50 mg/L, Ticarcillin 100 mg/L, pH 5.6) for 10 minutes. After removing the moisture from the explants, the hypocotyl part was fixed to the medium in SIM without the selection antibiotic and the part to be redifferentiated was dented at an angle of about 30 degrees. Each plate was sealed with micropore tape, and then incubated at 25 °C and a photoperiod for 18 hours. After 2 weeks, only the shoot part of the explant was cut, and the adaxial part was facing down, and the puncture was applied to the SIM containing the selective antibiotic PPT 10 mg/L. After 2 weeks, the brown shoots and shoot pads were removed and SEM (shoot elongation medium; MS salt 4.4 g/L, MES 3 mM, GA3 0.5 mg/L, Asparagine 50 mg/L, Pyroglutamic acid 100 mg/ L, IAA 0.1 mg/L, Zeatin 1 mg/L, Sucrose 3%, Agar 0.8%, Cefotaxime 250 mg/L, Vancomycin 50 mg/L, Ticarcillin 100 mg/L, DL-phosphinothricin 5 mg/L, pH 5.6 ) was placed on When the elongated shoot becomes more than 4 cm, it is cut and the lower part of the shoot is immersed in IBA at a concentration of 1 mg/mL for 3 minutes, and then RM (rooting medium, root induction medium; MS salt 4.4 g/L, MES 3 mM, Sucrose) 3%, Agar 0.8%, Cefotaxime 50 mg/L, Vancomycin 50 mg/L, Ticarcillin 50 mg/L, Asparagine 25 mg/L, Pyroglutamic acid 25 mg/L, pH 5.6). When the roots grow sufficiently, they were planted in a small pot (6 cm x 6 cm x 5.6 cm) containing a mixture of top soil (Bioplug, Farm Hannong) and vermiculite in a 2:1 (v/v) ratio. After about 10 days, leaf painting was performed with 100 mg/L DL-phosphinothricin on the leaf surface for transformant selection, and T 1 seeds were harvested from the plants whose resistance was confirmed.

형질전환체 T1 세대 개체(파종 후 4주 정도 자란 V2~3 Stage의 식물체)에 15 g ai/ha의 tiafenacil을 스프레이하여 처리한 후, 4~5일 후의 약해수준을 평가하였다. 도 20과 같이, 야생형 콩은 완전히 사멸한 반면 AtPPO1TP-37와 제초제 내성 유전자가 도입된 형질전환 콩은 아무런 약해 없이 생존한 것을 확인하였다. 또한, mCyPPO8의 발현을 웨스턴블라팅으로 확인하였다. 이 결과로부터, AtPPO1TP-37를 PPO계 제초제 내성 유전자와 함께 사용하여, PPO계 제초제 내성 형질전환 콩 제작에 활용할 수 있음을 확인하였다.After treatment by spraying 15 g ai/ha of tiafenacil to the transformant T 1st generation individual (plants of V2~3 Stage grown about 4 weeks after sowing), the level of weakness after 4-5 days was evaluated. As shown in FIG. 20, while the wild-type soybean was completely killed, it was confirmed that the transgenic soybean into which AtPPO1TP-37 and the herbicide tolerance gene were introduced survived without any damage. In addition, expression of mCyPPO8 was confirmed by western blotting. From this result, it was confirmed that AtPPO1TP-37 was used together with the PPO-based herbicide tolerance gene, and could be utilized for the production of PPO-based herbicide-resistant transgenic soybeans.

또한, 콩 형질전환체를 제작하기 위해 AtPPO1TP-37 뒤에 mCyPPO10(서열번호 327)을 fusion한 별도의 식물형질전환벡터를 제작하였다 (도 21). 이를 이용하여 위와 동일한 방법으로 콩 형질전환체를 제작하였고, T1 식물체로부터 T2 종자를 확보하였다. T2 식물체 2개 이벤트를 대상으로 표 9의 제초제를 각각 처리한 결과, 야생형 콩 광안(Kwangan)은 모두 사멸하는 반면, 형질전환 이벤트는 분석된 모든 제초제 조합에서 강한 내성을 나타내었다 (도 22a (야생형) 및 22b (형질전환체)).In addition, a separate plant transformation vector was prepared by fusion of AtPPO1TP-37 followed by mCyPPO10 (SEQ ID NO: 327) to prepare a soybean transformant (FIG. 21). Using this, soybean transformants were prepared in the same manner as above, and T 2 seeds were obtained from T 1 plants. As a result of treating each of the herbicides in Table 9 for two T 2 plant events, wild-type soybean Gwangan (Kwangan) was all killed, whereas the transformation event exhibited strong tolerance in all the herbicide combinations analyzed (Fig. 22a (Fig. wild type) and 22b (transformants)).

HerbicideHerbicide DoseDose HerbicideHerbicide DoseDose FlumioxazinFlumioxazin 216 g ai/ha216 g ai/ha SulfentrazoneSulfentrazone 650 g ai/ha650 g ai/ha Carfentrazone-ethylCarfentrazone-ethyl 144 g ai/ha144 g ai/ha SaflufenacilSaflufenacil 100 g ai/ha100 g ai/ha Trifludimoxazin + SaflufeancilTrifludimoxazin + Saflufeancil 60 g ai g/ha + 120 g ai g/ha60 g ai g/ha + 120 g ai g/ha TiafenacilTiafenacil 150 g ai/ha150 g ai/ha Flumioxazin +
Glufosinate
Flumioxazin +
Glufosinate
108 g ai/ha +
770 g ai/ha
108 g ai/ha +
770 g ai/ha
Tiafenacil +
Glufosinate
Tiafenacil +
Glufosinate
75 g ai/ha +
770 g ai/ha
75 g ai/ha +
770 g ai/ha

<110> FarmHannong Co., Ltd. <120> Chloroplast Transit Peptides and Uses Thereof <130> DPP20205181KR <150> 10-2019-0174547 <151> 2019-12-24 <160> 341 <170> koPatentIn 3.0 <210> 1 <211> 69 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP01 <400> 1 Met Val Pro His Gly Ile Ile Val Arg Ser Ser Ile Pro Gly Ser Thr 1 5 10 15 Val Ser Gln Thr Gly Pro Ala Arg Lys Leu Lys Glu Ser Lys Phe Pro 20 25 30 Pro His His Ser Arg Leu Thr Tyr Leu Pro His Thr Pro Pro Lys Pro 35 40 45 Lys Leu Ser Lys Thr Met Ser Ser Phe Thr His Ala Thr Thr Leu Leu 50 55 60 His Ala His Ile Lys 65 <210> 2 <211> 57 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP02 <400> 2 Met Ala Thr Ala Thr Ala Ala Ala Thr Ser Ser Phe Met Gly Thr Arg 1 5 10 15 Leu Leu Glu Ala His Ser Gly Ala Gly Arg Val Gln Ala Arg Phe Gly 20 25 30 Phe Gly Lys Lys Lys Ala Ala Ala Pro Lys Lys Val Ser Arg Gly Ser 35 40 45 Gly Ser Ser Ser Asp Arg Pro Leu Trp 50 55 <210> 3 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP03 <400> 3 Met His Thr Gly Met Ala Ser Leu Thr Gln Leu His Tyr Lys Val His 1 5 10 15 Thr Ser Thr Phe Arg Arg Val His Ser Arg Ser Gln Gly Leu Leu Lys 20 25 30 Ser Gly Lys Leu Ser Gln Leu Gln Gly Ser Ala Phe Pro Ser Ile His 35 40 45 Ile Asn Gln Ser Cys Ile Cys Cys Thr Lys Leu Thr Pro Trp Glu Ser 50 55 60 Ser Pro Val Thr Tyr Ala Pro Thr Asp Asn Gln 65 70 75 <210> 4 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP04 <400> 4 Met Val Pro Lys Pro Ile Leu Val Thr Thr Pro Pro Pro Ala Thr Ser 1 5 10 15 Ala Pro Ser Pro Leu Leu Asn Ala Val Ser Pro Leu Lys Thr Glu Glu 20 25 30 Lys Pro Gln Thr Gln Thr Leu Lys Thr Pro Thr Thr Thr Thr Gln Lys 35 40 45 Ala Ile Thr Lys Pro Ser Pro Ser Ser Ser Thr Thr Lys Thr Thr Pro 50 55 60 Gln Gln Arg Val Glu Leu Lys Arg Lys Thr Asn Ser 65 70 75 <210> 5 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP05 <400> 5 Met Ala Thr Cys Phe Ala Pro Phe Ser Val Ser Gly Gly Ser His Glu 1 5 10 15 Leu Trp Leu Thr Lys Arg Val Gly Pro Lys Leu Thr Val Gln Arg Arg 20 25 30 Ser Asn Leu Val Ile Lys Arg Asn His Thr Ser Ser Ile Ser Ala Glu 35 40 45 Tyr Arg Asp Asn Arg Gly Gly Gly Gly Gly Asp Phe Val Ala Gly Phe 50 55 60 Leu Leu 65 <210> 6 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP06 <400> 6 Met Met Glu Val Met Ile Cys Glu Asn Phe Arg Tyr Ser Pro Leu Ser 1 5 10 15 Ile Leu Ser Ser Ser Pro Ser Pro Arg Cys His Leu Ser Val Pro Ser 20 25 30 Ser Ser Leu Arg Ile Lys Pro Ser Ser Ser Ser Ser Ser Ser Ser Ser 35 40 45 Val Ser Cys Ser Leu Met Glu Asn Gln Glu Thr Gln Arg Ser Lys Phe 50 55 60 Met Asp Phe Pro Phe Val 65 70 <210> 7 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP07 <400> 7 Met Ala Thr Ser Ala Ile Gln Gln Ser Ala Phe Ala Gly Gln Thr Ala 1 5 10 15 Leu Lys Gln Leu Asn Glu Leu Val Arg Lys Thr Gly Gly Ala Gly Lys 20 25 30 Gly Arg Thr Asn Met Arg Arg Thr Val Lys Ser Ala Pro 35 40 45 <210> 8 <211> 46 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP08 <400> 8 Met Ala Thr Trp Val Leu Ser Glu Cys Gly Leu Arg Pro Leu Pro Pro 1 5 10 15 Val Phe Pro Arg Ser Thr Arg Pro Ile Ser Cys Gln Lys Pro Ser Lys 20 25 30 Ser Arg Phe Leu Ser Thr Asn Lys Gly Val Pro Asp Leu Asn 35 40 45 <210> 9 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP09 <400> 9 Met Ile Ala Leu Lys Ala Ile Gln Ala Ser Ser Phe Ala Leu His His 1 5 10 15 Asn Asn Val Arg Leu Pro His Thr Arg Ala Ser Ser Val Leu Cys Phe 20 25 30 Cys Ser Lys Ser Asn Lys Asn Glu Pro Asp Asn Ser Gln 35 40 45 <210> 10 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP10 <400> 10 Met Ala Gln Ala Met Ala Ser Met Thr Ser Leu Arg Gly Ser Ser Gln 1 5 10 15 Ala Val Leu Glu Gly Ser Leu Gly Ser Thr Arg Leu Asn Val Gly Ser 20 25 30 Gly Ser Arg Val Ala Ser Val Thr Arg Ala Gly Phe Thr Val Arg Ala 35 40 45 Gln Gln Gln Gln Val Asn Gly Gly Glu Val Gln Ser Ser Arg Arg Ala 50 55 60 Val Leu Ser Leu Val Ala Ala Gly Leu Thr 65 70 <210> 11 <211> 89 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP11 <400> 11 Met Ser Ser Pro Cys Ser Cys Ala Cys Ala Ser Thr Asn Trp Ser Val 1 5 10 15 Asp Tyr Gly Tyr Gly Gly Gly Gly Val Leu Ser Asn Ser Lys Val Arg 20 25 30 Ser Arg Arg Ser Lys Glu Ile Ser Met Ala His Ser Val Cys Gly Ser 35 40 45 Arg Arg Ser Thr Ala Leu Val Ile Ser Ser Leu Pro Phe Gly Phe Leu 50 55 60 Phe Leu Ser Pro Pro Ala Glu Ala Arg Arg Asn Lys Lys Ala Ile Pro 65 70 75 80 Glu Asp Gln Tyr Ile Thr Ser Pro Ala 85 <210> 12 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP13 <400> 12 Met Ala Ile Arg Val Thr Phe Ser Phe Ser Gly Tyr Val Ala Gln Ser 1 5 10 15 Leu Ala Ser Ser Ala Gly Val Arg Val Ala Asn Ser Arg Cys Val Gln 20 25 30 Glu Cys Trp Ile Arg Thr Arg Leu Ser Gly Ala Thr 35 40 <210> 13 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP14 <400> 13 Met Ala Val Ser Ser Thr Thr Ala Thr Val Cys Ile Pro Ala Lys Asn 1 5 10 15 Ile Pro Thr Thr Gln Ala Pro Lys Ile Gly Phe Ser Ser Thr Ile Ala 20 25 30 Phe Ala Ala Lys Pro Arg Arg Arg Leu Leu Arg Ile Arg Ser Ser Ser 35 40 45 Ala Glu Thr Ser Gly Thr Glu Val Asp Ser Glu Thr Ser Ile Glu Val 50 55 60 Pro 65 <210> 14 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP15 <400> 14 Met Ala Ile Gly Val Ala Val Ser Gly Met Tyr Thr Leu Thr Pro Thr 1 5 10 15 Leu Ser Ser Phe Lys His Pro Thr Arg Leu Phe Ser Arg Ala Ala Phe 20 25 30 Thr Ala Lys Leu Pro Leu Gln Phe Arg Ala Ser Ser Thr Ser Phe Ile 35 40 45 Asp Thr Glu Thr Asn Pro Arg Glu Ser Asn Val Val Val Val Glu Lys 50 55 60 Asp Val Ser Ser Arg Ser Ser Asn Ser Leu Ala Cys Pro Val Cys Tyr 65 70 75 80 Asp <210> 15 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP16 <400> 15 Met Ala Gly Met Asn Ser Ser Val Leu Ala Cys Ser Tyr Ala Ile Ser 1 5 10 15 Gly Ala Ala Cys Ser Glu Leu Asn Gly Lys Val Thr Ser Val Ala Ser 20 25 30 Val Ala Ser Ser Gly Tyr Lys Leu Pro Leu Ile Lys Cys Glu Ala Arg 35 40 45 Val Pro 50 <210> 16 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP17 <400> 16 Met Leu Ile Thr Val Arg Glu Ala Ser Ser Cys Ser Ser Ser Pro Leu 1 5 10 15 Ser Phe Trp Leu Asn Arg Phe Asn Ala Lys Pro Ser Lys Thr Leu Lys 20 25 30 Thr Thr Ser Ile Cys Gln Ala Ser Phe Ser Val Gln Arg Arg Pro Thr 35 40 45 His Ser Trp Asn Thr Arg His Leu Ser Thr Ser Glu Leu Ala Asn Phe 50 55 60 Asp Pro Leu Gly Ile Asn Ser Asp Leu Ser Ser Gly Leu 65 70 75 <210> 17 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP18 <400> 17 Met Ala Ser Val Val Ala Ser Leu Pro Pro Pro Leu Leu Leu Pro Ala 1 5 10 15 Arg Lys Ser His Met Gly Asn Phe Pro Ser Ser Pro Val Ser Leu Leu 20 25 30 Ser Gly Arg Trp Asn Arg Val Ser Phe Val Val Lys Ala Ser Gly Glu 35 40 45 Ser Ser Glu Ser Ser Thr Thr Leu Thr Val Phe Lys Ser Val Gln Asn 50 55 60 <210> 18 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP19 <400> 18 Met Ala Ser Leu Ala Thr Leu Ala Ala Val Gln Pro Ala Thr Ile Asn 1 5 10 15 Gly Leu Ala Gly Ser Ser Leu Ser Gly Thr Lys Leu Ser Phe Lys Pro 20 25 30 Ser Arg His Ser Val Lys Ser Lys Asn Phe Ser Val Thr Lys His Tyr 35 40 45 Arg Ser Gly Ala Val Val Ala Lys Tyr Gly Asp Lys Ser Val Tyr Phe 50 55 60 Asp Leu Glu Asp 65 <210> 19 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP20 <400> 19 Met Ala Ala Thr Asn Ala Ser Ile Phe Ala Ser Ser Thr Gln Pro Cys 1 5 10 15 Leu Pro Val Pro Pro Thr Ile Pro Asn Thr Leu Ala Thr Pro Phe Leu 20 25 30 Asn Val Ser Ser Pro Arg Ser Tyr Leu Val Lys Lys Lys His Val Lys 35 40 45 Phe Ser Lys Lys Ile Ser Ala Ala Ala Val Ala Thr Thr Thr Thr Thr 50 55 60 Glu Glu Ile Gln Glu Tyr Lys Leu Pro Ser 65 70 <210> 20 <211> 61 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP21 <400> 20 Met Ser Ser Phe Tyr Met Ser Leu Asn Pro Ser Ile Ser Gln Ser Cys 1 5 10 15 Tyr Lys Pro Lys Gln Phe Phe Asn Leu Glu Arg Glu Ser Thr Leu Val 20 25 30 Gly Arg Ser Pro Val Ile Gln Ile Arg Cys Arg Arg Val Val Ser Ala 35 40 45 Cys Leu Asn Val Asp Val Asp Ala Pro Asp Ser Gly Lys 50 55 60 <210> 21 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP22 <400> 21 Met Pro Ser Leu Ser Val Phe Pro Ser Leu Pro Ser Leu Gln Asn Pro 1 5 10 15 Asn Leu Ser Gln Pro Asn Phe Phe Asn Phe Arg Leu Pro Ser Leu Cys 20 25 30 His Arg Pro Leu Val Lys Ser Thr Ala Thr Phe His Arg Arg Ile Leu 35 40 45 Cys Lys Ala Phe Arg Asp Ser Gly Glu Asp Ile Lys Ala Val Leu Lys 50 55 60 Ser Asp Asp Gly Gly Gly Ser Gly Asp Gly Gly Gly Asp Gly Gly Gly 65 70 75 80 <210> 22 <211> 79 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP23 <400> 22 Met Ala Thr Phe Phe Gly Ser Pro Pro Ile Phe Ser Leu Pro Leu Thr 1 5 10 15 Arg Thr His His Ile Ser Ser Ser Ser Gln Thr Pro Pro Pro Thr Pro 20 25 30 Pro Pro Gln Ser Gln Pro Pro Thr Ser Ser Pro Gln Gln Leu Arg Thr 35 40 45 Thr Asn Leu Asn Asp Glu Ser Met Gln Val Cys Thr Glu Ala Lys Gln 50 55 60 Gln Lys Pro Ile Lys Pro Ser Thr Lys Val Glu Ser Thr Asp Trp 65 70 75 <210> 23 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP24 <400> 23 Met Ala Ala Ala Thr Ser Ser Ala Val Leu Asn Gly Phe Gly Ser His 1 5 10 15 Phe Leu Cys Gly Gly Lys Arg Ser His Ala Leu Leu Ala Ala Ser Ile 20 25 30 Gly Gly Lys Val Gly Ala Ser Val Ser Pro Lys Arg Val Ile Val Ala 35 40 45 Val Ala Ala Ala Pro Lys Lys Ser Trp Ile Pro Ala Val Lys Gly Gly 50 55 60 Gly Ser Phe Ile Asp Pro 65 70 <210> 24 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP25 <400> 24 Met Ala Ala Ala Ser Ser Met Ala Leu Ser Ser Pro Ser Leu Ala Gly 1 5 10 15 Lys Ala Val Lys Leu Gly Pro Ser Ala Pro Glu Val Gly Arg Val Ser 20 25 30 Met Arg Lys Thr Val Thr Lys Gln Val Ser Ser Gly Ser Pro Trp Tyr 35 40 45 Gly Pro 50 <210> 25 <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP26 <400> 25 Met Ala Leu Ser Val Ser Ser Pro Ser Cys Val Arg Val Pro Ser Cys 1 5 10 15 Phe Trp Lys Pro Asn Gly Lys Ser Cys Lys Glu Arg Thr Lys Val Ser 20 25 30 Cys Ala Ala His Asn Asp Asn Lys Asn Pro Leu Val Gly Ile Gly Ile 35 40 45 Gly Val Val Thr 50 <210> 26 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP27 <400> 26 Met Ala Phe Ser Ala Ile Thr Thr Leu Pro Ser Pro Gln Phe Leu Arg 1 5 10 15 Leu Pro Gln Ser Ser Pro Ser Leu Arg Phe Ser Pro Pro Ile Leu Lys 20 25 30 Arg Pro Lys Pro Leu Ser Ile Arg Ser Val Ser Ile Pro Ala Ala Pro 35 40 45 Ala Ser Gly Ser Leu Ala Pro Ala Val Ser Leu Thr Asp Asn Ala Leu 50 55 60 Lys 65 <210> 27 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP28 <400> 27 Met Thr Val Ala Met Ala Val Trp Ser Ala Gly Leu His Phe Ser Ala 1 5 10 15 Ala Thr Lys Pro His Ser Ser Leu Arg Pro Leu Glu Lys Ile Ile Cys 20 25 30 Thr Ala Pro Phe Phe Lys Ala Ser Ser Gly Phe Ala Ala Thr Lys Pro 35 40 45 Phe Cys Ile Leu Asn Thr Thr Arg Leu Ser Tyr Ser Gly Thr Thr Ile 50 55 60 Ile Pro Arg Ala Ala Pro Val Thr Asp Val Glu Asp Gly Asn His Gly 65 70 75 80 Glu Thr Asp Thr Ile Pro Thr 85 <210> 28 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP29 <400> 28 Met Ser Met Asp Met Ala Cys Ser Leu Pro Gln Ser Arg Val Leu His 1 5 10 15 Gly Gly Leu Gly Thr Ser Tyr Arg His Arg Ser Val Gly Gln Leu Gly 20 25 30 Cys Phe Asp Phe Arg Gly Arg Gly Phe Gly Cys Ala Ser Phe Gly Asp 35 40 45 Ser Arg Ser Val Ser Arg Leu Gln Arg Ser Arg Met Asn Val Ser Ala 50 55 60 Cys Trp Asn Asn Ser Arg Val Ala Thr Gly Arg Glu Phe Lys Val Leu 65 70 75 80 Asn <210> 29 <211> 63 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP30 <400> 29 Met Ala Thr Ile Ser Ala Ala Ile Thr Thr Pro Ser Ile Thr Arg Ala 1 5 10 15 Cys Leu Val Gln Lys Arg Ser Leu Gly Phe Ser Ser Pro Val Leu Gly 20 25 30 Leu Pro Ala Met Gly Lys Val Gly Arg Val Ser Cys Ser Met Glu Glu 35 40 45 Lys Pro Ser Ser Val Lys Glu Ser Ser Ser Ser Met Leu Gly Met 50 55 60 <210> 30 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP31 <400> 30 Met Ala Ala Val Val Ser Ala Ser Ser His Leu Leu Phe Val Leu Arg 1 5 10 15 Ser Gln Pro Leu Ser Ser Ser Pro Ser Phe Ile Ser Leu Leu Lys Pro 20 25 30 Leu Leu Val Ser Ser Pro Tyr Ala Val Ser Thr Pro Leu Arg His Ile 35 40 45 Gln Val Pro Pro Leu Arg Lys Pro Leu Phe Ser Thr Ser Ser Ser Pro 50 55 60 Ser Leu Thr Val Ser Gln Asp Ser Glu Glu Leu Glu Glu Lys Glu Ile 65 70 75 80 Ala Asp Asp Asp Asp Glu Leu 85 <210> 31 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP32 <400> 31 Met Ala Arg Thr Leu Thr Leu Thr Pro Ile Ser Phe Thr Leu Ala Lys 1 5 10 15 Thr Leu Asn Pro Ile Phe Pro Phe His Asn Thr Leu Pro Phe Ser Ser 20 25 30 Ser Ile Leu Ser Arg Gln Lys Leu Thr Arg Arg Ser Leu Ser Arg Ser 35 40 45 Val Leu Arg Pro Thr Ala Gly Glu Leu Ser Gly Ser Val Asp Asp Asp 50 55 60 Glu Glu Ser Gly Glu Leu Asp Asp Leu 65 70 <210> 32 <211> 90 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP33 <400> 32 Met His Val Val Val Val Leu Asn Thr Gln Ser Tyr Cys Arg Gly Leu 1 5 10 15 Glu Pro Pro Ser Ser Ser Pro Ser Val Val Ser Asn Lys Gly Thr Arg 20 25 30 Thr Leu Ser Phe Arg Arg Leu Leu Leu Arg Pro Ser Leu Gly Ile His 35 40 45 Leu Ser Arg Ser Phe Ala Leu Lys Cys Val Val Thr Pro Asn Pro Ala 50 55 60 Val Glu Leu Pro Leu Thr Ala Glu Asn Val Glu Ser Val Leu Asp Glu 65 70 75 80 Ile Arg Pro Tyr Leu Ile Ala Asp Gly Gly 85 90 <210> 33 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP34 <400> 33 Met Gln Ser Leu Ser Pro Pro Thr Ser Asn Ala Leu Asn Leu Lys His 1 5 10 15 Val Phe Arg Pro Arg Leu Gly Ala Ser Ser Arg Ile Ser Val Lys Cys 20 25 30 Ala Phe Gly Phe Glu Pro Val Ser Tyr Gly Val Gly Ser Ser Arg Ala 35 40 45 Asp Trp Gln 50 <210> 34 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP35 <400> 34 Met Thr Leu His Leu Gln His Lys Asn Ile Asn Met Ala Ala Lys Leu 1 5 10 15 Thr Leu Ser Ser Pro Phe Ser Phe Lys Thr Ser Phe Leu Pro Lys Ser 20 25 30 Pro Ser Phe Ser Leu Gly Leu Tyr Ser Pro Arg Thr Asn Val Thr Gly 35 40 45 Val Lys Val His Ala Lys Leu Gly Gly Gly Asp Glu Gln Ala Lys Lys 50 55 60 Gly Gly Lys Lys Lys Phe Ile Thr 65 70 <210> 35 <211> 71 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP36 <400> 35 Met Ala Leu Ala Thr Asn Ser Lys Lys Pro His Cys Met Ala Ile Asn 1 5 10 15 Leu Ser Thr Thr Ala Ser Leu His Ser Lys Pro Ser Phe Leu Thr His 20 25 30 Lys His Asn Asn Leu Ile Lys Ile Tyr His Pro Ser Ser Ser Leu Leu 35 40 45 Thr Thr Cys Ala Gln Thr Gln Gly Thr Asp Thr Gly Val Thr Gln Glu 50 55 60 Asp Ala Ser Ala Gly Asn Gly 65 70 <210> 36 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP37 <400> 36 Met Val Val Cys Gly Tyr Glu Glu Gln Glu Glu Glu Arg Gln Arg Lys 1 5 10 15 Arg Lys Glu Phe Gly Leu Gly Leu His Leu Ser Ala Asp Asn Thr Leu 20 25 30 Arg Pro Phe Glu Lys Thr Thr Ile Leu Lys Ala Leu Ser Ile Ser Asp 35 40 45 Ala Thr Lys Pro Cys Tyr Ile Ser His Lys Thr Arg Leu Ser Ser Ser 50 55 60 Ser Ser Gly Ile Thr Met Ile Pro Arg Ala Thr Thr Val Ile Gly Thr 65 70 75 80 Val <210> 37 <211> 55 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP38 <400> 37 Met Phe Ser Ser Thr Arg Cys Ala Phe Leu Ser Asn Ser Gly Leu Gly 1 5 10 15 Gly Cys Ser Ser Leu Cys Asp Ala Gln Arg Lys Arg Ser Thr Arg Phe 20 25 30 Arg Val Val Ser Met Thr Pro Ser Ser Ser Arg Ser Gly Asp Arg Asn 35 40 45 Gly Ser Val Val Met Glu Thr 50 55 <210> 38 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP39 <400> 38 Met Asp Ser Ala Ser Phe Ala His Pro Leu Ile Ser His Val Ile Thr 1 5 10 15 Ser Ser Ser Leu His Arg Ser Tyr Gly Ile His His Ser Ala Arg Leu 20 25 30 Gly Leu Trp Lys Asn Lys Val Trp Asn Ser Ala Cys Cys Ala Ala Gly 35 40 45 Val Glu Asp Leu Phe Asp Asp Ser Asn Leu Lys Arg Asn Glu Asn Gly 50 55 60 <210> 39 <211> 78 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP41 <400> 39 Met Ala Ser Ser Cys Ala Ser Ser Ala Ile Ala Ala Val Ala Ile Ser 1 5 10 15 Thr Pro Ser Ser Gln Lys Asn Gly Ser Leu Leu Gly Ser Thr Lys Ala 20 25 30 Ser Phe Leu Ser Gly Arg Lys Leu Lys Val Asn Asn Phe Thr Ala Pro 35 40 45 Val Gly Ala Arg Ser Ser Thr Thr Val Cys Ala Val Ala Glu Pro Asp 50 55 60 Arg Pro Leu Trp Phe Pro Gly Ser Thr Pro Pro Pro Trp Leu 65 70 75 <210> 40 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP42 <400> 40 Met Ala Ala Ala Ala Ala Val Thr Val Leu Leu Pro Pro Arg Ile Pro 1 5 10 15 Thr Ala Thr Asn Val Thr Arg Cys Ser Ala Leu Pro Ser Leu Pro Pro 20 25 30 Arg Gly Thr Asn Thr Lys Thr Thr Leu Leu Leu Ser Ser Leu Asn His 35 40 45 Phe Ser Val Ser Arg Lys Ser Ser Leu Leu Gln Thr Arg Ala Ser Ser 50 55 60 Glu Glu Ser Ser Ser Val Asp Ala Asn Glu Val Phe Thr Asp Leu Lys 65 70 75 80 Glu <210> 41 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP43 <400> 41 Met Ala Ser Ser Ile Cys Ala Leu Ser Pro Ser Val Gln Ser Gln Leu 1 5 10 15 Thr Lys Thr Thr Leu Val Ala Pro Ile Pro Leu Tyr Gln Arg Ser Lys 20 25 30 Cys Glu Met Ser Arg Arg Ser Phe Ala Phe Lys Gly Ile Val Ala Ser 35 40 45 Gly Val Ser Val Ala Ala Ser Thr Leu Thr Ala Glu Ala Glu Pro Ser 50 55 60 Ser Lys 65 <210> 42 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP44 <400> 42 Met Leu Ala Ile Ser Ala Ile Ala Ser Leu Pro Val Leu Pro Pro Val 1 5 10 15 Arg Arg Gly Gly His Cys Ile Glu Gln Asn Val Val Ser Thr Leu Ser 20 25 30 Phe Pro Arg Arg Leu Gln Thr Thr Asn Asn Ser Ile Ser Leu Ser Ser 35 40 45 Thr Gln Phe Pro Phe Gly Arg Arg Ala Arg Ser Thr Gln Pro Ala Thr 50 55 60 Ile Ile Cys Ala Ala Ala Leu Asn Ala Arg Cys Gly Ala Glu Gln Thr 65 70 75 80 Gln Thr Val Thr Arg Gln Ala 85 <210> 43 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP45 <400> 43 Met Ala Ser Met Thr Thr Met Leu Gln Thr Met Val Pro Lys Asn Ala 1 5 10 15 Pro Asn Leu Pro Pro Arg Val Gly Val Ser Asn Asn Thr Thr Lys Ile 20 25 30 Ser Phe Ala Gly Ser Gly Arg Val Pro Cys Thr Arg Ile Gln Arg Asn 35 40 45 Arg Asn Arg Ser Ser Ser Ile Val Val Ala Ala Val Gly Asp Val Ser 50 55 60 Ser Asp Gly Thr Thr Tyr Leu Val Ala Gly Ala Ile 65 70 75 <210> 44 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP46 <400> 44 Met Ala Ser Ile Ser Ser Leu Ser Leu Thr Ser Val Ser Leu Pro Lys 1 5 10 15 Ser Gln Ser Leu Asp Pro Lys Lys Ile Ser Asp Ser Ser Ser Ser Ser 20 25 30 Gly Ser Arg Ser Gln Ser Cys Cys Cys Ala Pro Ser Phe Gln Arg Arg 35 40 45 Lys Met Leu Leu Ser Ser Ala Ala Ile Val Ala Gly Thr Leu Cys Ser 50 55 60 Asn Ser Val Ser Gly Val Ser Leu Ala 65 70 <210> 45 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP47 <400> 45 Met Glu Leu Ser Arg Leu Phe Val Ser Asp Thr Cys Phe Phe Ser Pro 1 5 10 15 Pro Ile Arg Cys Ser Pro Ser Pro Ala Leu Ser Thr Phe Phe Ala Val 20 25 30 Lys Asn Arg Arg Ser Arg Arg Arg Ser Ser Phe Cys Ser Ala Ser Asn 35 40 45 Pro Asp Thr Leu Val Ala Gly Gly Ala Ala Val Val Ala Gly Ala Gly 50 55 60 Glu Lys His Glu Glu Asp Leu Lys Ser Trp Met His Lys His Gly Leu 65 70 75 80 <210> 46 <211> 59 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP48 <400> 46 Met Ala Ser Val Phe Ser Ala Cys Ser Gly Ser Ala Val Leu Phe Tyr 1 5 10 15 Ser Arg Asn Ser Phe Pro Ser Lys Gly Ser Phe Ile His Leu Lys Arg 20 25 30 Pro Leu Ser Ala Asn Cys Val Ala Ser Leu Gly Thr Glu Val Ser Val 35 40 45 Ser Pro Ala Val Asp Thr Phe Trp Gln Trp Leu 50 55 <210> 47 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP49 <400> 47 Met Arg Ala Leu Asn Ser His Val Leu Leu Val Asp Leu His Ser His 1 5 10 15 His His Val Pro Thr Ser Thr Leu Ser Tyr Leu Arg Asn Ser Arg Phe 20 25 30 Ile Ser Ser Leu Arg Arg Arg Ser Pro Arg Thr Gly Ile Arg Cys Thr 35 40 45 Ala Ser Pro Glu Ile Arg Arg Pro Ser Asp Arg Phe Tyr Gly Ser Ser 50 55 60 Pro Ser 65 <210> 48 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP50 <400> 48 Met Val Ser Ala Ser Leu Gln Phe Trp Ser Trp Ile Ala Pro Thr Pro 1 5 10 15 Ile Ser His Arg Tyr Thr His Lys Phe Ala Ser Leu Thr Ser Leu Lys 20 25 30 Leu Ala Thr Pro Val Ser Ser Thr Asn Thr Val Tyr Leu Pro Lys Pro 35 40 45 Leu Val Val Arg Phe Ala Leu Thr Glu Ser Asp Ser Pro Lys Ser Ile 50 55 60 Glu Pro Asp Pro Gln Thr Leu Leu 65 70 <210> 49 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP51 <400> 49 Met Ala Ser Ile Asn Phe Asn Pro Phe Gly Gly Asn Trp Phe Ser Lys 1 5 10 15 Pro Pro Asn Pro Leu Pro Leu Pro Ser Leu Pro Asn Thr Leu Thr Asp 20 25 30 Ala Pro Ser Leu Pro Pro Asn Phe Ala Ala Ile Ser Leu Pro Asn Pro 35 40 45 Phe Arg Arg Arg Pro Lys Pro Lys Ser Ala Glu Pro Thr Glu Pro Gly 50 55 60 Pro Tyr Glu Gln Leu Ala Arg Gln Val Leu Trp Glu 65 70 75 <210> 50 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP52 <400> 50 Met Ala Thr Ile Asn Leu Ser Ser Ala Thr Thr Ser Leu Phe Gln Ser 1 5 10 15 Lys His Arg Thr Lys Arg Ile Pro Arg Leu Pro Thr Ile Ala Arg Ile 20 25 30 Thr Asn His Ile Glu Gly Thr His Leu Asn Ser Pro Asn Gly Ser Pro 35 40 45 Ile Leu Gly Asn Ala Asn Asn Ser Leu Glu Val Pro Ser Asn Asn Tyr 50 55 60 Ile Ser Leu His Ser Ser 65 70 <210> 51 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP53 <400> 51 Met Ala Val Gln Ala Phe Tyr His Leu Gly Ser Pro Leu Thr Ser Gln 1 5 10 15 Ser His Phe Pro Ser Pro Pro Leu Arg Leu Thr Leu Thr Ala Ser Ala 20 25 30 Pro Phe Lys Pro Arg Pro Leu Ala Ser Ile Gly Ile Ser Pro Leu Pro 35 40 45 Glu Arg Arg Arg Met Pro Val Ala Gly Ala Val Glu Glu Ser Gln Glu 50 55 60 Ser Ser Glu Pro Glu Ala Glu Ala Asp Leu Ala 65 70 75 <210> 52 <211> 55 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP54 <400> 52 Met Gly Leu Cys Thr Val Gln Pro Ile Thr Leu Ser Lys Leu Pro Asn 1 5 10 15 Ala Ser Ser Phe Leu Pro Lys Pro Lys Pro Ser Leu Pro Gln Ser Tyr 20 25 30 Thr Pro Ser Ala Ala His Leu Ser Arg Ser Val Cys Leu Arg Asn Leu 35 40 45 Ser Pro Lys Ala Thr Ser Ser 50 55 <210> 53 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP55 <400> 53 Met Ala Ser Ala Cys Ala Ser Ser Ala Ile Thr Ala Val Ala Ile Ser 1 5 10 15 Thr Pro Ser Ser Gly Gln Lys Asn Gly Ser Gly Gly Cys Phe Leu Ser 20 25 30 Gly Arg Lys Leu Arg Val Lys Lys Glu Arg Ala Ala Ile Gly Gly Arg 35 40 45 Ser Met Gly Thr Thr Val Cys Ala Val Ala Glu Pro Asp Arg Pro Leu 50 55 60 Trp Phe Pro Gly Ser Thr Pro Pro Pro Trp Leu 65 70 75 <210> 54 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP56 <400> 54 Met Met Met Ile Ser Thr Ser Thr Met Ala Leu Ala Ser Leu Leu Pro 1 5 10 15 Lys Thr Ala Pro His Val Leu Ser Leu Thr Asn Pro Ser Ala Ser Thr 20 25 30 Pro Phe Ile Leu Pro Phe Ser Phe His Cys Leu Pro His Pro Pro Leu 35 40 45 Leu Ser Ala Leu Lys Ala Ser Ser Ser Gly Gly Asp Asp Leu Arg Gly 50 55 60 Lys Pro Leu Leu Ser Gln Gly Ile Gly 65 70 <210> 55 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP57 <400> 55 Met Leu Gln Asn Pro Arg Val Leu Arg Tyr Ser Ala Gln Pro Phe Asn 1 5 10 15 Pro Pro Thr Arg Thr Ala Ala Ser Ser Leu Ser Pro Phe Gln Leu Ile 20 25 30 Pro Thr Ser Pro Ser Phe Pro Ile Leu Lys Gln Gln Cys Arg Phe Ser 35 40 45 Arg Arg Glu Leu Thr Ile Phe Ser Asn Ser Cys Leu Leu Leu Leu Leu 50 55 60 Gly Ser Gln Ala Val Asp Gly Ser Arg Ala Arg Ala Glu Glu Asp Val 65 70 75 80 Gly Asn Thr Ser Asn Ile Asp Gln Leu Glu Glu Asn Leu 85 90 <210> 56 <211> 79 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP58 <400> 56 Met Ala Ala Phe Phe Gly Ser Pro Pro Ile Phe Ser Leu Pro Pro Thr 1 5 10 15 Ile Ile Arg Thr His His Ile Ser Ser Ser Ser Gln Thr Pro Pro Pro 20 25 30 Thr Pro Ser Pro Gln Ser Gln Pro Pro Thr Ser Ser Pro Gln Gln Leu 35 40 45 Arg Thr Thr Asn Leu Asn Glu Glu Ser Val Gln Val Ser Thr Glu Ala 50 55 60 Lys Gln Gln Lys Pro Ile Lys Pro Val Thr Ser Ser Thr Lys Val 65 70 75 <210> 57 <211> 85 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP59 <400> 57 Met Ala Ala Val Pro Ser Thr Phe Ala Leu Thr Lys Ser Ala Leu Ser 1 5 10 15 Ile Asn Lys Leu Asp His Ser Leu Val Lys Ile Lys Pro Tyr Ser Phe 20 25 30 Ser Leu Asn Leu Asn Arg Leu Gly Arg Met Glu Thr Ser Leu Thr Arg 35 40 45 Arg Pro Leu Thr Ile Gln Ala Thr Tyr Ser Asp Gly Gly Arg Pro Ser 50 55 60 Ser Ala Ser Val Phe Val Gly Gly Phe Leu Leu Gly Gly Leu Ile Val 65 70 75 80 Gly Thr Leu Gly Cys 85 <210> 58 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP60 <400> 58 Met Pro Leu Pro Thr Val Val Ser Pro Phe Ser Ser Ser Ser Gly Thr 1 5 10 15 Phe Leu Ser Thr Val Thr Ala Arg Ser Ser Leu Pro Pro Lys Arg Asn 20 25 30 Val Ser Pro Ser Pro Ser Pro Phe Ser Thr Leu Ser Arg Arg Asp Ile 35 40 45 Ala Leu Leu Ser Phe Phe Ser Leu Ser Leu Ser Ala Pro Ser Ser Ala 50 55 60 Ile 65 <210> 59 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP61 <400> 59 Met Ala Ala Phe Thr Ser Ile Ala Val Gln Tyr Ser Ser Thr Ser Ser 1 5 10 15 Leu Gln Ser Leu Val Pro Ser Leu Glu Ala Thr Arg Asp His Asn Ser 20 25 30 Trp Trp Gly Arg Val Arg Ser Tyr Lys Pro Thr Ala Lys Ile Ser Leu 35 40 45 Gln Gln Asn Ile Thr Arg Gly Leu Thr Ile 50 55 <210> 60 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP62 <400> 60 Met Lys Gly Ser Cys Cys Leu Ala Asn Thr His Lys Leu Tyr Ser Ser 1 5 10 15 Leu Pro Leu Ser Asn Ser Asn Asn Asn His Ile Val Ser Cys Gln Lys 20 25 30 Gly Phe Thr Phe Lys Val Arg Asn Leu Gly Phe Asn Val Asp Lys Ser 35 40 45 Phe Trp Ser Asn His Val Ser Tyr Val Ala Gln Lys Arg Lys Gly Asn 50 55 60 Gly 65 <210> 61 <211> 91 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP63 <400> 61 Met Ala Ile Ile Leu Ala Ala Asn Met Cys Ser Ile Thr Asn Ser Lys 1 5 10 15 Thr Val Glu Val Ile Lys Arg Phe Asp Ile Glu Asp Lys Leu Gln Ser 20 25 30 Arg Ser Asn Ile Ala Leu Pro Arg Leu Glu Ala Ser Ser Ser Arg Arg 35 40 45 His Leu Leu Ile Ser Val Gly Pro Ser Leu Val Thr Leu Thr Cys Gly 50 55 60 Leu Ser Pro Ser Met Val Trp Ala Glu Glu Lys Ser Gly Glu Lys Glu 65 70 75 80 Glu Glu Asp Lys Gly Val Ile Gly Ala Ile Lys 85 90 <210> 62 <211> 82 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP64 <400> 62 Met Thr Leu Ala Met Ala Val Trp Ser Ala Gly Leu His Phe Ser Ala 1 5 10 15 Ala Arg Ser Ser Leu Arg Pro Leu Glu Lys Thr Ile Cys Thr Ala Pro 20 25 30 Phe Leu Lys Ala Ser Ser Gly Phe Ala Ala Thr Lys Pro Phe Cys Ile 35 40 45 Leu Asn Thr Thr Arg Leu Ser Tyr Ser Gly Thr Thr Ile Ile Pro Arg 50 55 60 Ala Ala Pro Val Thr Asp Val Lys Asp Gly Asn Gln Gly Glu Thr Asp 65 70 75 80 Thr Ile <210> 63 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65 <400> 63 Met Ala Phe Thr Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr 65 <210> 64 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP67 <400> 64 Met Val Cys Ala Ile Ser Ser Ser Pro Phe Ser Thr Leu Ser Phe Arg 1 5 10 15 Arg Leu Val Val Ser Asn Ala Thr Val Ser Pro Cys Lys Pro Arg Ala 20 25 30 Val Lys Leu Leu Thr Ala Leu Pro Ser Ala Gly Arg Arg Gln Leu Leu 35 40 45 Phe Phe Leu Thr Ala Thr Thr Ala Phe Thr Ala Arg Glu Ala Ala Ser 50 55 60 Val 65 <210> 65 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP68 <400> 65 Met Gly Ile Val Gly Phe Glu Ile Asn Ala Asn Ser Ala Ser Ala Ser 1 5 10 15 Ala Leu His Tyr Tyr Gly Ala Asn Ser Phe Ser Ser His Thr Val Pro 20 25 30 Phe Ser Leu Arg Pro Phe Phe Gly Asn Ala Leu Asn Val Asn Thr Arg 35 40 45 Val Ala Gly Lys Ile Arg Ala Ser His Ala Arg Lys Pro Lys Phe Gly 50 55 60 Ala Val Ile Val Ala Ser Leu Ser Gly Gly 65 70 <210> 66 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP69 <400> 66 Met Ala Thr Ala Thr Ala Ala Ala Ala Thr Ser Tyr Phe Phe Gly Thr 1 5 10 15 Arg Leu Asn Asn Val Asn Thr Thr Thr Leu Asn Asn Gly Arg Phe His 20 25 30 Ala Leu Leu Asn Phe 35 <210> 67 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP70 <400> 67 Met Ala Ala Leu Thr Ser Leu Ser Phe Ser Ala Val Thr His Cys Ser 1 5 10 15 Glu Arg Lys Val Thr Leu Ser Ser Thr Arg Phe Leu Ala Ser Ser Ser 20 25 30 Glu Ile <210> 68 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP71 <400> 68 Met Ala Thr Thr Phe Ala Ser Ser Ser Pro Arg Ile Ala Thr Phe Leu 1 5 10 15 Ser Ser Ser Ser Ser Ser Ser Thr Leu Arg Thr Thr Thr Thr Leu Pro 20 25 30 Ser Leu Gln Phe Thr Ser Pro Ser Lys Lys Leu Ile Leu Phe His Asn 35 40 45 Pro Val Leu Gln Lys His Ser Arg Phe Arg Pro Leu Leu Leu Pro Pro 50 55 60 Pro 65 <210> 69 <211> 82 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP72 <400> 69 Met Ala Leu Ala Met Ala Ala Cys Ser Leu Gly Leu His Leu Ser Ala 1 5 10 15 Asp Asn Thr Leu Arg Pro Phe Glu Lys Thr Thr Val Leu Lys Ala Leu 20 25 30 Ser Ile Ser Tyr Val Thr Lys Pro Cys Tyr Ile Ser His Lys Thr Arg 35 40 45 Leu Ser Ser Pro Ser Ser Ser Gly Ile Thr Met Ile Ala Arg Ala Thr 50 55 60 Ala Val Thr Gly Thr Val Glu Asp Gly Asn Gln Gly Glu Ala Asp Thr 65 70 75 80 Ile Pro <210> 70 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP73 <400> 70 Met Glu Thr Phe Ser Ile Ser Arg Asn Ser Ser Ser Leu Ile Ile Leu 1 5 10 15 Thr Arg Pro Ser Thr Arg His Lys Pro Ile Phe Leu Pro Gln Arg His 20 25 30 Gly Ser Leu Thr Phe Asn Thr Ile Arg Cys Thr Thr Thr Asp Asn Asn 35 40 45 Asn Asn Asn Thr Ser Asn Asn Asn Thr Thr Asn Asp Asp Ala Asn Ser 50 55 60 Val 65 <210> 71 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP75 <400> 71 Met Ala Thr Ile Leu Pro Pro Ser Asn Ala Gln Phe Val Ser Phe Asn 1 5 10 15 Ala Arg His Arg Ser Ser Ser Pro Thr Leu Pro Arg Trp Gly Trp Arg 20 25 30 Lys Glu Gln Asp Ala Ser Ile Val Ala Asn Arg Thr Arg Gly Gln Ala 35 40 45 Phe Gln Val Leu Val Ala Ser Gly Lys Glu Gly Ser Lys Asp Asp Val 50 55 60 Val Met Val Asp Pro Val Glu Ala Lys 65 70 <210> 72 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP76 <400> 72 Met Ala Ala Thr Thr Ala Thr Ala Thr Ser Tyr Phe Phe Gly Thr Arg 1 5 10 15 Leu Asn Asn Pro Thr Thr Leu Asn Asn Gly Arg Phe His Ala Leu Leu 20 25 30 Asn Phe Gly Lys Lys Lys Ala Ala Ala Pro Pro Pro Lys Lys Lys Glu 35 40 45 Val Lys Val Lys Pro Ser Gly Asp Arg Leu 50 55 <210> 73 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP77 <400> 73 Met Ala Ser Ile Ser Cys Ile Thr His His Pro Ile Thr Ser Lys Leu 1 5 10 15 Asn Asn Ala Phe Ser Ser Pro His Val Ser Ala Ser Asn Leu Ala Ser 20 25 30 Arg Phe Leu Gly Thr Arg Lys Arg Val Gly Leu His Ser Leu Thr Ser 35 40 45 Arg Ile Ile Gly Pro Ser Asn Gly Ser Lys Ala Thr Cys Trp Phe Arg 50 55 60 Phe Gly Lys Asn Gly Val Asp Ala Lys Gly 65 70 <210> 74 <211> 35 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP78 <400> 74 Met Thr Leu Thr Thr Ala Phe Ser Cys Ser Leu Ala Ala Ala Ser Leu 1 5 10 15 Ser Thr Ala Ala Ser Phe Arg Arg Asn Lys Cys Thr Thr Ser Lys Ile 20 25 30 Phe His Ser 35 <210> 75 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP79 <400> 75 Met Ala Thr Ile Ile Ala Gly Ile Pro Thr Thr Ser Ile Thr Arg Ala 1 5 10 15 Gly Leu Val Leu Lys Arg Pro Val Gly Ala Ser Ser Ser Thr Val Leu 20 25 30 Gly Leu Pro Ala Met Ala Lys Ala Gly Lys Val Arg Cys Ser Met Glu 35 40 45 Glu Lys Pro Ser Ser Ser Ser Asn Ile Gly Met Gly Ala Ser 50 55 60 <210> 76 <211> 67 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP80 <400> 76 Met Ala Leu Pro His Ser Ile Ile Leu Pro Phe Ser Ser Ile Ile Ser 1 5 10 15 Pro Cys Cys Leu Pro Lys His Lys Pro Thr Asn Phe Thr Leu Pro Phe 20 25 30 Lys Leu Asn Gly Asp Ser Cys Arg Ser Ile Arg Ile Pro Ser Arg Val 35 40 45 Gln Ala Leu Lys Ser Asp Gly Gly Lys Trp Lys Lys Arg Gly Gln Glu 50 55 60 Ala Ser Ser 65 <210> 77 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP81 <400> 77 Met Ser Gln Val Val Ala Thr Arg Ser Ile His Ser Ser Leu Thr Arg 1 5 10 15 Pro Thr Ser Gly Ser Ala His His Arg Ala Gln Thr Leu Leu Lys Pro 20 25 30 Pro Thr Phe Ala Ser Lys Leu Phe Gly Ala Gln Arg Asn Asn Pro Ser 35 40 45 Lys Val Cys Ser Arg Ser Cys Leu Val Asn Ala Arg Lys Ser Ala Pro 50 55 60 Ala Lys Val Val Pro Val Ser Pro Glu Asp Asp Ser 65 70 75 <210> 78 <211> 207 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01 coding gene <400> 78 atggttccac atggcataat agtaaggtct tccataccgg gcagcacggt cagccaaact 60 ggtcctgccc gaaaactcaa agagtccaaa ttcccacctc accactcaag gctcacttac 120 ttaccacaca cacctcctaa accaaaatta tccaaaacca tgtccagctt cactcatgcc 180 accacactcc tccatgccca catcaaa 207 <210> 79 <211> 171 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02 coding gene <400> 79 atggccaccg caacagcagc agccacctcg tccttcatgg ggacgcgcct cctggaggcc 60 cactccgggg cggggcgggt gcaggcccgg ttcgggtttg gcaagaagaa agccgccgcc 120 ccgaagaaag tttccagggg gtcgggctct agctccgata ggcccctgtg g 171 <210> 80 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03 coding gene <400> 80 atgcatacag gaatggcttc attaactcaa ctccattata aagtacatac ctccactttc 60 agaagggtgc attctagaag ccaaggatta ttgaaatctg gaaaactatc ccaacttcaa 120 ggatccgcct ttcctagtat tcacattaat caatcctgca tatgctgcac gaagttaact 180 ccatgggagt catcacctgt cacatatgct cctactgata atcaa 225 <210> 81 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04 coding gene <400> 81 atggtcccaa aaccaatctt agtcacaaca ccaccgccgg caacttctgc accctctcca 60 ctgctcaacg cagtttcacc cctcaaaaca gaagaaaaac cccaaacaca aaccctaaaa 120 acccccacca ccaccactca aaaagctata accaaaccaa gcccatcatc atccaccacc 180 aaaacgacgc cgcagcagcg cgtggagcta aagagaaaaa caaactca 228 <210> 82 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05 coding gene <400> 82 atggcaactt gtttcgctcc gttctccgtt tcaggtggat ctcatgagct gtggttaaca 60 aagcgagttg gacctaagct cactgttcaa aggagatcaa accttgtgat caagaggaac 120 cacacttctt caattagtgc agaataccgt gataatagag gaggtggagg tggggatttt 180 gttgctggct ttcttctg 198 <210> 83 <211> 207 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06 coding gene <400> 83 atggaagtga tgatctgtga gaatttccgg tattcaccac tctccatctt atcttcttct 60 ccttcacctc gttgccatct ctctgttcca tcttcttctt tgaggattaa accttcttct 120 tcatcttcat catcatcatc tgtgtcttgt tctctcatgg agaatcagga gacccaacgc 180 agcaaattca tggactttcc gttcgtt 207 <210> 84 <211> 135 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07 coding gene <400> 84 atggccacct ctgctattca gcaatcagca ttcgcaggtc aaactgctct gaagcagctc 60 aatgagttgg tccgcaagac cggtggcgcc ggcaaaggtc gcaccaacat gcgccgtacc 120 gtcaagagtg ctcct 135 <210> 85 <211> 138 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08 coding gene <400> 85 atggcaacct gggttttatc agaatgtggc ttaaggcctc ttccaccagt gtttccacgg 60 tcaacaagac ccatttcgtg ccaaaaacct tcaaagtcta gatttttaag cacaaacaag 120 ggtgtgccag atctgaat 138 <210> 86 <211> 135 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09 coding gene <400> 86 atgattgccc tgaaagccat tcaagcgtcc tccttcgctc tccaccacaa caacgtaaga 60 ctccctcaca caagagcttc ttctgttctg tgcttttgca gcaagtcgaa caagaacgag 120 cctgataatt cccaa 135 <210> 87 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10 coding gene <400> 87 atggctcaag caatggcatc aatgactagc ttacgtggtt cctctcaggc tgtgttggaa 60 ggtagccttg gctccacacg cttgaatgtg gggagtggaa gcagggtggc ctcagtcaca 120 cgtgcagggt tcacagttag agcacagcaa caacaagtga atggtggtga ggtacaaagt 180 agccgtaggg cagtgctttc acttgttgct gctggtttga cc 222 <210> 88 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11 coding gene <400> 88 atgagttccc cttgcagttg cgcttgcgct tctactaatt ggagcgttga ttatggttat 60 ggaggtggtg gcgtgctttc aaattcaaag gtaagaagca ggaggtccaa agaaatatcc 120 atggcacatt cagtttgtgg ttcgagaagg tccactgcac ttgtgatttc atccttgcct 180 ttcggcttcc ttttcctatc tccgccagct gaggccagac gcaacaagaa ggccatcccc 240 gaagaccaat acattactag cccagct 267 <210> 89 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13 coding gene <400> 89 atggctattc gtgtaacctt ttccttttcg ggctatgtcg cccagagcct cgcctcctcc 60 gccggcgtgc gcgtcgccaa ttcgcgttgc gtccaggaat gctggatccg tacgcgcctc 120 tctggcgcca cc 132 <210> 90 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14 coding gene <400> 90 atggctgtgt cctccaccac tgccacagta tgtattcctg ctaagaacat tccaaccact 60 caagcaccaa aaattggatt ctcaagtacc atcgcctttg ctgcgaaacc gcgaagaaga 120 ttattacgca tcagaagctc ctcagccgaa acatctggca cagaggtaga ttcagagact 180 tccattgaag ttcca 195 <210> 91 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15 coding gene <400> 91 atggctatag gcgtagcagt ttccggtatg tacacgctca ctccaactct ctcttcattc 60 aagcacccca cgcgcctctt ctcacgcgct gctttcactg caaagcttcc acttcaattt 120 cgagcttctt caacgtcctt catcgacacc gaaaccaatc caagagaatc caacgtagta 180 gtagttgaaa aggacgtaag cagtagaagc agcaattcgt tggcttgtcc cgtatgttac 240 gat 243 <210> 92 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16 coding gene <400> 92 atggctggca tgaactctag cgtattggcc tgtagctatg ccatatctgg tgcagcatgc 60 tccgagctca atgggaaggt cacttccgtg gcctctgttg catcctctgg ctacaagttg 120 ccattgatca aatgtgaggc cagagttccc 150 <210> 93 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17 coding gene <400> 93 atgttgataa cggttaggga agcttcttct tgttcttctt ctcccctcag cttctggctt 60 aatcgtttca acgcaaaacc ctccaaaaca ctcaaaacaa catccatttg ccaagctagt 120 ttctctgtcc aaagaagacc cactcattca tggaatactc gccatctctc taccagcagt 180 gagctagcaa attttgatcc cttgggtatt aactcagatt tatcttctgg t 231 <210> 94 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18 coding gene <400> 94 atggcttccg ttgttgcaag cttgccgcca ccattgctgc tccctgctag aaaatcacat 60 atgggcaact tcccaagttc ccctgtttct cttctttcag ggagatggaa tcgtgtttct 120 tttgttgtga aggcttctgg agaaagttct gaatcttcaa ctacccttac tgtttttaag 180 tctgttcaga at 192 <210> 95 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19 coding gene <400> 95 atggcttctc tagcaacctt ggctgctgtt caaccagcta cgatcaatgg ccttgctgga 60 agttccctct ctggaactaa gctctctttc aagccctctc gccacagtgt caaatccaag 120 aacttcagtg taactaagca ttacaggagt ggtgccgtgg tagcaaagta tggtgacaag 180 agtgtgtact ttgatttgga ggat 204 <210> 96 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20 coding gene <400> 96 atggctgcaa cgaatgcgtc aatctttgca tcttccacgc aaccatgctt gcctgtgcct 60 cctaccattc caaacacgct tgctactcct tttctcaatg tttcgtcacc aagaagttac 120 cttgtgaaga aaaagcatgt gaaatttagc aaaaaaatca gtgctgctgc tgttgcaaca 180 acaacaacaa ctgaggaaat tcaagagtac aagcttccat ca 222 <210> 97 <211> 183 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21 coding gene <400> 97 atgagttcat tttacatgtc tctgaaccct tcaatttctc aatcgtgtta caaacccaag 60 caatttttca atttggagag agagagtact ttggtgggaa gaagtcctgt tattcagatt 120 agatgccgga gggttgtgag tgcgtgtctt aacgtggatg ttgatgcacc tgatagtggg 180 aag 183 <210> 98 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22 coding gene <400> 98 atgccttctc tctccgtttt cccatcactc ccatcgcttc aaaaccctaa cttgagccaa 60 cccaatttct tcaatttccg cttaccgtcg ctctgtcacc gtcccctcgt caaaagcact 120 gcaacttttc accgtagaat cctctgcaaa gccttcagag attccggcga ggacatcaag 180 gcggtgctca agtccgacga cggtggtggc agcggcgacg gcggcggcga cggtgggggt 240 240 <210> 99 <211> 237 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23 coding gene <400> 99 atggctacat tctttggttc ccctccaatt ttctccctcc ccctcactag aactcaccac 60 atttcttcat catcacaaac tccaccacca actcctcctc cacaatctca gcctccaact 120 tcgtctccac agcagctaag aacaacaaat ttgaatgatg aatcaatgca agtgtgcact 180 gaagctaagc aacagaagcc catcaaacca tccactaagg ttgaatccac agattgg 237 <210> 100 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24 coding gene <400> 100 atggcagctg caacatctag tgctgtgtta aacgggtttg gatctcactt cttgtgtgga 60 ggaaagagga gccatgccct tcttgctgct agcattggag ggaaagttgg tgcttctgtt 120 agtcctaaaa gagttattgt ggcagttgct gctgcaccaa agaagtcatg gatccccgct 180 gtaaaaggtg gtgggagttt catagaccca 210 <210> 101 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25 coding gene <400> 101 atggcagcag cttcttccat ggctctctca tccccatcct tggctggcaa ggccgtgaag 60 ctgggcccat cagccccaga agtgggaagg gtgagcatga ggaagaccgt caccaagcag 120 gtctcctcag gaagcccatg gtacggccca 150 <210> 102 <211> 156 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26 coding gene <400> 102 atggcactct cagtctcctc accctcatgc gtacgcgttc cttcatgttt ttggaaacca 60 aatggcaaga gttgcaaaga gcgtactaag gtttcatgtg cagctcacaa tgataataag 120 aatccgttgg ttggaatcgg tattggggtt gtaacg 156 <210> 103 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27 coding gene <400> 103 atggctttct ctgcaatcac taccttgccc tctcctcaat ttctccgcct tcctcaatct 60 tcaccctctc ttcgattttc accgccaatt ctcaaacgcc ccaaacccct ctccattcga 120 tcagtttcaa tccccgctgc accagcatct ggttctctgg cccctgcagt ttcacttacg 180 gataatgcgc tgaag 195 <210> 104 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28 coding gene <400> 104 atgactgtgg ctatggctgt ttggagtgct ggtcttcact tcagtgctgc tacgaagcct 60 catagtagct tgaggccttt ggagaaaatc atttgcactg cccctttctt caaggcctca 120 tctgggtttg ctgctactaa gccattctgc atccttaaca caacaagatt gtcatattct 180 ggaactacaa ttatccctcg agcagcacct gttactgatg tggaggacgg gaatcatggt 240 gagactgata ccattccaac t 261 <210> 105 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29 coding gene <400> 105 atgagcatgg atatggcttg tagtttgccg cagtcaagag tgttgcatgg aggtctgggg 60 acgagttaca gacacagatc agtaggtcag ttaggctgct ttgattttag agggagaggt 120 tttggttgtg cttcttttgg ggactcgaga agtgtttcaa gactgcagag gagcaggatg 180 aatgtttctg cttgttggaa taattcaaga gtggctactg gcagggagtt taaagttttg 240 aat 243 <210> 106 <211> 189 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30 coding gene <400> 106 atggcaacca tctccgctgc tatcacaacc ccatcgatca cccgcgcatg tctagtgcaa 60 aaacgttctc ttgggttctc atctcccgtt cttggtttgc cagcaatggg taaggtggga 120 agagtgagtt gctccatgga ggaaaagcct tcttctgtga aggaaagcag ctcaagcatg 180 ttggggatg 189 <210> 107 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31 coding gene <400> 107 atggcggcag tagtatcagc atcttctcat ctattgtttg ttcttcgttc acaaccatta 60 tcatcatcac cctctttcat ttctcttctc aaacctcttc ttgtttcttc cccctatgct 120 gtatctacac cccttcggca tatccaagtt ccaccgcttc gaaaacctct cttctctact 180 tcctcttccc cctcccttac cgtttctcaa gatagtgaag aattggaaga aaaagagatt 240 gcagacgatg atgatgaatt g 261 <210> 108 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32 coding gene <400> 108 atggcacgca ctctaacact aacacctatc tctttcactc tcgctaaaac cctaaacccc 60 attttcccat tccacaacac tcttcccttc tcctcttcaa tcctttctcg ccagaagctc 120 actcgccgga gcctatcccg ctccgtcctc cgtcctaccg ccggcgaact ttccggcagc 180 gtcgacgacg atgaagaatc gggcgaattg gacgacctc 219 <210> 109 <211> 270 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33 coding gene <400> 109 atgcatgttg ttgtggtgct caacacgcaa tcctactgca gaggcctaga acctccttca 60 tcttctcctt ccgtcgtttc caacaaggga acaaggactt tgagtttcag gaggctgctg 120 ctgcgtcctt ctcttgggat tcatttatcg cgtagctttg ctttaaagtg tgttgttact 180 ccgaacccag ctgtggaatt gccattaact gctgaaaatg tagaaagtgt attggatgaa 240 attcgaccct atctcattgc agacggtggg 270 <210> 110 <211> 153 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34 coding gene <400> 110 atgcagagtc tttcaccacc tacttccaac gcgctcaatt tgaagcatgt ttttcgcccg 60 cgacttggcg cgtcaagccg aatctctgtc aaatgcgctt ttgggtttga gccggtgagc 120 tacggagtcg gctccagccg agccgattgg cag 153 <210> 111 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35 coding gene <400> 111 atgacattgc atttgcagca caaaaacatc aacatggctg ccaaactcac tctatcttct 60 cccttttcct tcaaaacttc atttctgcca aaatcaccat cattttctct aggtttatac 120 tcccccagaa ctaatgttac cggtgtcaaa gttcatgcta aattaggtgg tggagatgaa 180 caagccaaga aaggaggaaa gaagaaattc ataacc 216 <210> 112 <211> 213 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36 coding gene <400> 112 atggcattag caactaactc caaaaaacct cactgtatgg ccatcaatct cagcaccact 60 gcttctcttc actccaagcc ttcttttctg acccataaac acaacaacct catcaaaatc 120 taccatcctt cttcctcttt actcacaaca tgtgctcaaa cacaagggac tgacactgga 180 gttacacagg aagatgcttc tgctggtaat gga 213 <210> 113 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37 coding gene <400> 113 atggtggtct gcggctatga agaacaggaa gaagaaagac agaggaagag gaaagaattt 60 ggtcttggac ttcacttgag tgctgacaac accttgagac cttttgaaaa aaccactatc 120 ttgaaggccc tctctatctc tgatgctact aaaccatgtt acatttctca caaaacaaga 180 ttatcatctt catcttcagg aataacaatg atcccacgag caacaacagt tattggtact 240 gtg 243 <210> 114 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38 coding gene <400> 114 atgttctcct caaccagatg cgctttcctg agcaactcag gtttaggtgg gtgcagcagc 60 ttgtgtgatg cgcagagaaa gcgttcaact cgtttcaggg tggtgagtat gaccccaagc 120 agcagcaggt ccggtgatag aaacggcagc gttgtgatgg agacg 165 <210> 115 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39 coding gene <400> 115 atggactctg cttcattcgc tcatcctttg atttcccacg tcatcactag ctcaagcttg 60 catcgttcct acggtattca tcacagtgca agactaggcc tatggaagaa caaagtctgg 120 aactcagctt gttgtgctgc tggagtagaa gacttgtttg acgatagtaa tttgaagaga 180 aatgagaatg gt 192 <210> 116 <211> 234 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41 coding gene <400> 116 atggcttcct cgtgtgcttc ctctgccatt gcagctgttg ccatctccac accaagttcc 60 cagaagaatg gatcactctt gggaagcaca aaagcttctt ttcttagtgg gaggaaactg 120 aaggtgaaca actttacagc accagttgga gcacgatcca gcactacagt ttgcgcagtt 180 gctgagcctg ataggcctct gtggttccca ggcagcaccc ctcctccatg gcta 234 <210> 117 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42 coding gene <400> 117 atggcggcgg cggcggcagt gacggtgcta ctcccaccta ggattccgac cgccaccaac 60 gttacccgct gctctgcttt gccttctctg cctcctcgcg gcaccaacac taaaaccact 120 ttgctcttat cttccctcaa ccacttctca gtgtcccgaa aatcttctct gcttcagacc 180 agagcttctt cagaggaatc atcctcagta gatgccaatg aggtgttcac agatttgaag 240 gaa 243 <210> 118 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43 coding gene <400> 118 atggcttctt ccatctgtgc tctctcgcct tccgtccaat cacagctcac taaaaccacc 60 ctcgttgctc caatccctct ctatcaacga agcaagtgcg aaatgagcag gaggagtttt 120 gcgtttaagg gaattgtggc ctctggcgtt tcggtcgcgg cttctactct cacagccgaa 180 gcagaaccat cttccaaa 198 <210> 119 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44 coding gene <400> 119 atgttggcta ttagtgcaat tgcatctttg cccgtattac caccagtcag aagaggtggc 60 cactgcattg aacagaatgt tgtttccaca ttgagctttc caagacgact acagacaact 120 aataattcaa tatctctgag tagtacacag tttccattcg gtagaagagc tcgttctacg 180 cagccagcaa ctataatatg tgctgcagct ttgaatgcaa gatgtggtgc agagcaaacc 240 caaactgtta ctcgccaggc t 261 <210> 120 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45 coding gene <400> 120 atggcatcca tgacgactat gcttcagacc atggttccca agaatgcacc gaatctccct 60 cctcgtgttg gtgtttccaa caacactact aagatctcat ttgctggctc aggtagggta 120 ccgtgcaccc ggattcagag gaacaggaat agatcttctt ccattgtggt tgctgcagtt 180 ggagatgttt catctgatgg caccacttac cttgttgctg gtgccatt 228 <210> 121 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46 coding gene <400> 121 atggcatcaa tttcgtcctt atctctcact tctgtttccc tccccaaatc tcaatctctg 60 gaccccaaga aaatctctga ttcttcttcc tcctctgcag gcagcaggag tcaaagttgt 120 tgttgcgcgc catcgttcca acgaagaaag atgcttctat cttccgccgc catcgttgcc 180 ggaaccttgt gcagcaattc agtcagcgga gtcagtttgg ca 222 <210> 122 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47 coding gene <400> 122 atggaactct ctcgtctctt cgtttccgac acgtgcttct tctcccctcc gattcgctgc 60 tccccttcgc cggcgctgtc cacgtttttc gccgtcaaga accgccggag caggaggagg 120 agcagcttct gttccgcctc caatcccgac accttggtcg ccggcggtgc cgccgtcgtc 180 gctggggccg gcgagaagca cgaggaggac ttgaagtctt ggatgcacaa acacggcctc 240 240 <210> 123 <211> 177 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48 coding gene <400> 123 atggctagtg tcttttctgc atgttcaggt tctgctgttc ttttctacag cagaaactcc 60 tttccctcaa aaggatcttt cattcacctc aaaaggcctc tctctgccaa ctgtgtagct 120 tctttgggga ctgaggtatc agtgtctcca gcagtagaca ctttctggca gtggctt 177 <210> 124 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49 coding gene <400> 124 atgagagcgc taaattcgca cgtgctcctc gtagatcttc actcccacca tcacgtgccc 60 acctcaaccc tctcctacct cagaaactcc cgcttcatat catccctccg tcgacgctcc 120 ccaagaaccg gaatccgatg tacggcgtcg ccggagattc gccgcccctc cgatcgcttc 180 tacggctcct cgccgtcg 198 <210> 125 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50 coding gene <400> 125 atggtttcag cttcgcttca attctggtct tggatagcac ctactcctat atcccaccgt 60 tacacccata aatttgcttc cctaacctca ctcaaattag ccactcctgt ttcttctact 120 aataccgttt atcttcccaa gcctctagtt gtgcgttttg ctctaactga gtccgactcg 180 cccaaatcca tagaacctga ccctcaaact cttctc 216 <210> 126 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51 coding gene <400> 126 atggcttcca tcaacttcaa ccccttcggt ggaaactggt tctcaaaacc ccctaatccc 60 ctccctctcc cttccctccc caacaccctc accgacgcac cctccctccc tcccaacttc 120 gccgcaatct ccctcccaaa ccccttccgc cgcaggccca agcccaagtc cgccgagccc 180 accgaacccg ggccctacga gcagctggcc cggcaggtcc tctgggag 228 <210> 127 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52 coding gene <400> 127 atggcaacca ttaacctttc ttccgctact acgtctctct tccaatccaa acaccgaacg 60 aaacgcattc cacgcctccc tacaatcgcc agaataacaa accacatcga aggaactcat 120 cttaactccc ccaacggctc tcccatcctt ggcaacgcaa acaattccct tgaggttccc 180 tccaataact atatctcgct acactcttca 210 <210> 128 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53 coding gene <400> 128 atggctgtgc aagctttcta tcacttaggg tcaccgctga cgtcacagtc acactttcca 60 tcaccccctc tccgactcac actcactgct tccgcgccct tcaagccccg acccctcgct 120 tccatcggaa tctcgccgct cccggagagg cgccggatgc cggtggccgg cgccgtggag 180 gaaagccaag agagttccga accggaagcg gaagcggatt tggca 225 <210> 129 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54 coding gene <400> 129 atggggcttt gtacagttca gcctatcact ctctcgaagc ttcctaacgc ctcctctttt 60 cttcctaaac ctaaaccctc tcttcctcag tcttacactc cctccgccgc acacttatct 120 cggtcagttt gcttaaggaa tctgtcgcca aaggcaacat cttct 165 <210> 130 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55 coding gene <400> 130 atggcttccg cttgtgcttc ctctgcaatt acagctgttg ccatctctac gccgagttcc 60 gggcagaaga atggatcagg aggttgtttt cttagtggaa ggaaattgag ggtgaaaaag 120 gagagagcag caattggagg acgatcgatg ggcactacag tgtgcgcagt tgctgagcct 180 gacagacctc tatggttccc aggcagcacc cctcctccat ggctt 225 <210> 131 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56 coding gene <400> 131 atgatgatga tttcaacttc aaccatggct ttggcttctt tactacccaa aacggcaccg 60 catgtccttt ccctcacaaa cccttccgct tccactccct tcatcttacc tttcagtttc 120 cactgtttgc ctcaccctcc tcttctctct gccctcaaag ctagttcctc cggtggcgac 180 gatttacgcg gcaagcccct gctttctcag ggaattgga 219 <210> 132 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57 coding gene <400> 132 atgctgcaaa acccaagagt attgcgatat tccgctcagc cattcaatcc tccaactcgc 60 acggcagcat catcactttc tccattccaa ttaataccca cttctccatc ttttccaatc 120 ctcaaacagc aatgcagatt ctcacgtaga gagctcacaa tctttagcaa ctcttgcttg 180 ctactactct tgggttctca ggcagtggat ggatccagag caagagcaga agaagacgtt 240 ggtaacacaa gtaacattga tcaactagaa gagaatctg 279 <210> 133 <211> 237 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58 coding gene <400> 133 atggctgctt tctttggttc cccaccaatt ttctccctcc cccctactat tattagaact 60 catcacattt cttcatcatc acaaactcca ccaccaacac cttcaccaca atctcagcct 120 ccaacttcgt ctccacagca gctaagaaca acaaatttga atgaggaatc agtgcaagtg 180 tccactgaag ctaagcaaca gaagcccatc aaaccagtca cttcatccac taaggtt 237 <210> 134 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59 coding gene <400> 134 atggctgctg ttccctctac tttcgctcta accaaatctg cattgtccat aaacaagctg 60 gaccactctc tggtcaagat caaaccatac agcttctctc tgaatctaaa ccgtctaggg 120 aggatggaaa catctttaac cagaaggcct ctaacaattc aagccacata tagtgatggt 180 ggaaggccca gcagtgctag tgtatttgtt ggtgggtttc tcttgggagg attaatagtt 240 ggcactcttg gttgt 255 <210> 135 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60 coding gene <400> 135 atgccactgc caacggtcgt ttccccattt tcttcttcct caggcacctt cttatccaca 60 gttaccgcgc gctcttcact ccctccaaaa cgcaacgtct ccccttcccc ttcccccttc 120 tccactctct ctcgcagaga cattgctctg ctttccttct tctccctctc cctctcagca 180 ccatcctccg ccatc 195 <210> 136 <211> 174 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61 coding gene <400> 136 atggcagctt ttacatcaat tgctgtacag tactcatcca catcatcttt acagtctttg 60 gtgccttctt tagaggctac acgcgatcat aactcatggt gggggagagt gagatcatac 120 aaacccacag caaaaatttc actccaacag aatatcacaa gaggcttaac aatc 174 <210> 137 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62 coding gene <400> 137 atgaagggtt cttgttgcct tgccaataca cacaagctct attcctctct tcctttgagc 60 aactccaaca acaaccacat cgtttcatgc caaaaaggtt tcacttttaa ggtgaggaat 120 ttgggcttca acgtggacaa gagcttttgg tcaaaccatg tttcctatgt agcacaaaag 180 agaaagggta atggt 195 <210> 138 <211> 273 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63 coding gene <400> 138 atggcaatta tccttgcagc aaatatgtgt tccattacaa attccaaaac agttgaagtg 60 atcaaaagat ttgatattga agataaactg caatccagat ctaatattgc actgcctcgc 120 ctggaagctt catcaagtcg caggcatctc ttaatcagtg ttggcccttc attggttacc 180 ttaacatgtg gtttatcacc atcaatggta tgggctgaag agaagtctgg tgagaaagag 240 gaagaagata aaggggttat tggggccatc aaa 273 <210> 139 <211> 246 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64 coding gene <400> 139 atgactctgg ctatggctgt ttggagtgct ggtcttcact tcagtgctgc tcgtagtagc 60 ttgagacctt tggagaaaac catttgcact gcccctttct tgaaggcgtc atctgggttt 120 gctgctacta agccattctg catccttaac acaacaagat tgtcatattc tggaactaca 180 attatccctc gagcagcacc tgttactgat gtgaaggatg ggaatcaagg tgagactgat 240 accatt 246 <210> 140 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65 coding gene <400> 140 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcact 195 <210> 141 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67 coding gene <400> 141 atggtgtgtg caatctcatc atcaccgttc tcaactctct cgtttcggcg tctcgtcgtg 60 agcaatgcga cggtgtctcc gtgcaagccg cgtgccgtga aactcttaac ggcgcttccg 120 agcgcggggc ggaggcagtt gctgtttttt ctaacggcga cgacagcgtt cacggcgagg 180 gaagcggcat ccgtg 195 <210> 142 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68 coding gene <400> 142 atgggaattg ttggctttga aattaatgcg aattctgctt ctgcttctgc tttgcattat 60 tatggtgcta attcgttctc ttcccacacg gttccttttt ctctgagacc ctttttcggg 120 aatgctctga acgtgaacac gagggttgca gggaagattc gggcctctca tgctagaaag 180 cccaaattcg gagcagttat tgttgcttca ctgagtggtg gc 222 <210> 143 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69 coding gene <400> 143 atggccactg ccaccgccgc cgccgccacg tcatactttt tcggcacccg tctcaacaac 60 gttaacacga caaccttaaa caacggaaga ttccacgcgc tcttgaactt c 111 <210> 144 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70 coding gene <400> 144 atggctgctc tcacttctct atctttctca gcagtgactc attgctcaga aagaaaagtg 60 accctttcct ccactcgctt tctggcttcc tcctcagaga ta 102 <210> 145 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71 coding gene <400> 145 atggccacca catttgcatc ctcatctcca agaattgcaa ccttcctctc ttcttcttct 60 tcttcttcta ctcttagaac tactaccact cttccatctc tccaatttac ctccccatcc 120 aaaaagttaa tcctttttca caacccagta cttcaaaaac atagcagatt ccgacccctt 180 cttcttcctc ctcct 195 <210> 146 <211> 246 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72 coding gene <400> 146 atggccctgg ctatggctgc ttgcagtctt ggacttcact tgagtgctga taacaccttg 60 agaccttttg aaaaaaccac cgtcttgaag gccctctcta tctcttatgt tactaaacca 120 tgttacattt ctcacaaaac aagattatca tcaccttcat cttcaggaat aacaatgatc 180 gcacgagcaa cagcagttac tggtactgtg gaggatggaa atcaaggaga ggctgatacc 240 attcca 246 <210> 147 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73 coding gene <400> 147 atggaaacct tctccatctc tcgaaactca tcttccctca tcattctcac tagaccatca 60 accaggcaca agccaatctt cctgccacag cgtcacggtt ctctcacttt caacaccatc 120 agatgcacca ccactgataa taacaataac aatactagta acaacaacac aaccaatgat 180 gatgcaaact cagtt 195 <210> 148 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75 coding gene <400> 148 atggccacca ttctaccgcc aagcaacgct cagtttgttt ccttcaacgc tcgccaccgc 60 tcttcctctc ccactctccc aaggtgggga tggagaaaag agcaagacgc aagcatagtt 120 gccaatagaa cccgaggtca agcatttcaa gtcctggtag cttcaggaaa ggaaggttca 180 aaagatgatg tggtcatggt tgatcctgtg gaagccaag 219 <210> 149 <211> 174 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76 coding gene <400> 149 atggctgcca ccaccgccac cgccacgtca tacttttttg gcacccgcct caacaacccg 60 acaaccttaa acaacggaag attccacgcg ctcctcaact tcggcaaaaa gaaggcggcg 120 gcgccgccac cgaagaaaaa ggaagtgaaa gtgaaaccct ccggcgaccg gctg 174 <210> 150 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77 coding gene <400> 150 atggcttcta tctcatgcat cacccaccac cccatcactt ccaagctcaa taatgccttc 60 tcttcacccc acgtctctgc ctcaaacttg gcctcacggt ttctgggcac cagaaaaaga 120 gttgggttgc atagcctcac ctctagaata attggaccct ctaatggctc caaagccaca 180 tgctggttca ggttcggcaa gaacggtgtt gatgccaaag gt 222 <210> 151 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78 coding gene <400> 151 atgactttga caaccgcgtt ttcttgttcg ctcgccgctg cttctctctc caccgccgcc 60 agtttccgcc ggaataaatg caccaccagc aagatttttc attcc 105 <210> 152 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79 coding gene <400> 152 atggcaacca tcatcgccgg catcccaact acatcgatca ctcgcgcagg tcttgtgctc 60 aaacgacctg ttggagcctc gtcctctacc gttcttggat tgccagcaat ggctaaggca 120 gggaaagtga ggtgctccat ggaggaaaag ccttcaagca gctcaaatat agggatgggg 180 gcatcc 186 <210> 153 <211> 201 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80 coding gene <400> 153 atggcgctgc cccattccat cattctgccc ttctcgtcca tcatttcacc atgttgtctt 60 cccaaacata aacctaccaa tttcaccctt ccctttaagc tgaatggtga tagctgtaga 120 tcaataagaa tcccaagcag agttcaagca ctcaaatctg atggtggtaa atggaagaag 180 agagggcaag aagcatctag t 201 <210> 154 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81 coding gene <400> 154 atgtctcagg tagtggccac tcgatccatt cactcctccc tcacgcgccc cacctcagga 60 tctgcacacc acagggccca aacgttgttg aagcctccaa cttttgcttc caaattgttc 120 ggagcacaaa ggaacaaccc ctccaaagtt tgctcccgaa gttgcctcgt caatgcgagg 180 aaatctgcac ccgctaaagt tgttcccgtg tcacccgagg atgattca 228 <210> 155 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01_F primer <400> 155 cgcggatcca tggttccaca tggcataata gtaagg 36 <210> 156 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02_F primer <400> 156 cgcggatcca tggccaccgc aacag 25 <210> 157 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03_F primer <400> 157 tccctctccc cttgctccgt ggatccatgc atacaggaat ggcttc 46 <210> 158 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04_F primer <400> 158 cgcggatcca tggtcccaaa accaatctta gtcac 35 <210> 159 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05_F primer <400> 159 cgcggatcca tggcaacttg tttcgctcc 29 <210> 160 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06_F primer <400> 160 cgcggatcca tgatggaagt gatgatctgt gagaattt 38 <210> 161 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07_F primer <400> 161 cgcggatcca tggccacctc tgctattcag 30 <210> 162 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08_F primer <400> 162 tccctctccc cttgctccgt cgcggatcca tggcaacctg ggttttatca gaa 53 <210> 163 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09_F primer <400> 163 cgcggatcca tgattgccct gaaagccatt caa 33 <210> 164 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10_F primer <400> 164 cgcggatcca tggctcaagc aatggcatca a 31 <210> 165 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11_F primer <400> 165 cgcggatcca tgagttcccc ttgcagttgc 30 <210> 166 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13_F primer <400> 166 tccctctccc cttgctccgt ggatccatgg ctattcgtgt aaccttttcc tt 52 <210> 167 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14_F primer <400> 167 cgcggatcca tggctgtgtc ctccacca 28 <210> 168 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15_F primer <400> 168 cgcggatcca tggctatagg cgtagcagtt t 31 <210> 169 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16_F primer <400> 169 cgcggatcca tggctggcat gaactctagc 30 <210> 170 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17_F primer <400> 170 cgcggatcca tgttgataac ggttagggaa gcttc 35 <210> 171 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18_F primer <400> 171 cgcggatcca tggcttccgt tgttgcaag 29 <210> 172 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19_F primer <400> 172 cgcggatcca tggcttctct agcaaccttg g 31 <210> 173 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20_F primer <400> 173 cgcggatcca tggctgcaac gaatgcg 27 <210> 174 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21_F primer <400> 174 cgcggatcca tgagttcatt ttacatgtct ctgaaccc 38 <210> 175 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22_F primer <400> 175 cgcggatcca tgccttctct ctccgttttc c 31 <210> 176 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23_F primer <400> 176 cgcggatcca tggctacatt ctttggttcc cc 32 <210> 177 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24_F primer <400> 177 tccctctccc cttgctccgt ggatccatgg cagctgcaac atctagt 47 <210> 178 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25_F primer <400> 178 cgcggatcca tggcagcagc ttcttcca 28 <210> 179 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26_F primer <400> 179 cgcggatcca tggcactctc agtctcctca 30 <210> 180 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27_F primer <400> 180 cgcggatcca tggctttctc tgcaatcact acc 33 <210> 181 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28_F primer <400> 181 tccctctccc cttgctccgt ggatccatga ctgtggctat ggctgtt 47 <210> 182 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29_F primer <400> 182 tccctctccc cttgctccgt ggatccatga gcatggatat ggcttgtagt tt 52 <210> 183 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30_F primer <400> 183 cgcggatcca tggcaaccat ctccgct 27 <210> 184 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31_F primer <400> 184 cgcggatcca tggcggcagt agtatcagc 29 <210> 185 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32_F primer <400> 185 cgcggatcca tggcacgcac tctaacacta ac 32 <210> 186 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33_F primer <400> 186 tccctctccc cttgctccgt ggatccatgc atgttgttgt ggtgctc 47 <210> 187 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34_F primer <400> 187 cgcggatcca tgcagagtct ttcaccacct ac 32 <210> 188 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35_F primer <400> 188 cgcggatcca tgacattgca tttgcagcac aa 32 <210> 189 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36_F primer <400> 189 cgcggatcca tggcattagc aactaactcc aaaaaac 37 <210> 190 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37_F primer <400> 190 cgcggatcca tggtggtctg cggctatg 28 <210> 191 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38_F primer <400> 191 cgcggatcca tgttctcctc aaccagatgc g 31 <210> 192 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39_F primer <400> 192 tccctctccc cttgctccgt ggatccatgg actctgcttc attcgctc 48 <210> 193 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41_F primer <400> 193 tccctctccc cttgctccgt ggatccatgg cttcctcgtg tgcttc 46 <210> 194 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42_F primer <400> 194 cgcggatcca tggcggcggc gg 22 <210> 195 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43_F primer <400> 195 cgcggatcca tggcttcttc catctgtgct c 31 <210> 196 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44_F primer <400> 196 cgcggatcca tgttggctat tagtgcaatt gcatc 35 <210> 197 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_F primer <400> 197 cgcggatcca tggcatccat gacgactatg c 31 <210> 198 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46_F primer <400> 198 cgcggatcca tggcatcaat ttcgtcctta tctct 35 <210> 199 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47_F primer <400> 199 cgcggatcca tggaactctc tcgtctcttc gt 32 <210> 200 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48_F primer <400> 200 tccctctccc cttgctccgt ggatccatgg ctagtgtctt ttctgcatgt 50 <210> 201 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49_F primer <400> 201 cgcggatcca tgagagcgct aaattcgcac 30 <210> 202 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50_F primer <400> 202 cgcggatcca tggtttcagc ttcgcttcaa ttc 33 <210> 203 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51_F primer <400> 203 cgcggatcca tggcttccat caacttcaac c 31 <210> 204 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52_F primer <400> 204 cgcggatcca tggcaaccat taacctttct tcc 33 <210> 205 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53_F primer <400> 205 cgcggatcca tggctgtgca agctttctat c 31 <210> 206 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54_F primer <400> 206 cgcggatcca tggggctttg tacagttcag c 31 <210> 207 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55_F primer <400> 207 cgcggatcca tggcttccgc ttgtgc 26 <210> 208 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56_F primer <400> 208 cgcggatcca tgatgatgat ttcaacttca accatgg 37 <210> 209 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57_F primer <400> 209 tccctctccc cttgctccgt ggatccatgc tgcaaaaccc aagagtatt 49 <210> 210 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58_F primer <400> 210 cgcggatcca tggctgcttt ctttggttcc 30 <210> 211 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59_F primer <400> 211 tccctctccc cttgctccgt ggatccatgg ctgctgttcc ctctac 46 <210> 212 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60_F primer <400> 212 cgcggatcca tgccactgcc aacggtc 27 <210> 213 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61_F primer <400> 213 cgcggatcca tggcagcttt tacatcaatt gctg 34 <210> 214 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62_F primer <400> 214 cgcggatcca tgaagggttc ttgttgcctt g 31 <210> 215 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63_F primer <400> 215 cgcggatcca tggcaattat ccttgcagca aatatg 36 <210> 216 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64_F primer <400> 216 cgcggatcca tgactctggc tatggctgtt tg 32 <210> 217 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65_F primer <400> 217 cgcggatcca tggcttttac ttcttcatgt tctcttgc 38 <210> 218 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67_F primer <400> 218 cgcggatcca tggtgtgtgc aatctcatca tc 32 <210> 219 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68_F primer <400> 219 cgcggatcca tgggaattgt tggctttgaa attaatgc 38 <210> 220 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69_F primer <400> 220 cgcggatcca tggccactgc caccg 25 <210> 221 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70_F primer <400> 221 cgcggatcca tggctgctct cacttctcta tctt 34 <210> 222 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71_F primer <400> 222 cgcggatcca tggccaccac atttgcatcc 30 <210> 223 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72_F primer <400> 223 cgcggatcca tggccctggc tatggc 26 <210> 224 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73_F primer <400> 224 cgcggatcca tggaaacctt ctccatctct cg 32 <210> 225 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75_F primer <400> 225 cgcggatcca tggccaccat tctaccgc 28 <210> 226 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76_F primer <400> 226 cgcggatcca tggctgccac caccg 25 <210> 227 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77_F primer <400> 227 cgcggatcca tggcttctat ctcatgcatc acc 33 <210> 228 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78_F primer <400> 228 cgcggatcca tgactttgac aaccgcgttt tc 32 <210> 229 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79_F primer <400> 229 cgcggatcca tggcaaccat catcgcc 27 <210> 230 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80_F primer <400> 230 cgcggatcca tggcgctgcc cca 23 <210> 231 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81_F primer <400> 231 cgcggatcca tgtctcaggt agtggccact c 31 <210> 232 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01_R primer <400> 232 aaaaggcctc tcgagtttga tgtgggcatg gaggagtg 38 <210> 233 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02_R primer <400> 233 aaaaggcctc tcgagccaca ggggcctatc gga 33 <210> 234 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03_R primer <400> 234 cagctcctcg cccttgctca caggcctctc gagttgatta tcagtaggag catatgtgac 60 agg 63 <210> 235 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04_R primer <400> 235 aaaaggcctc tcgagtgagt ttgtttttct ctttagctcc acg 43 <210> 236 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05_R primer <400> 236 aaaaggcctc tcgagcagaa gaaagccagc aacaaaatcc 40 <210> 237 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06_R primer <400> 237 aaaaggcctc tcgagaacga acggaaagtc catgaatttg 40 <210> 238 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07_R primer <400> 238 aaaaggcctc tcgagaggag cactcttgac ggtac 35 <210> 239 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08_R primer <400> 239 cagctcctcg cccttgctca caggcctctc gagattcaga tctggcacac ccttg 55 <210> 240 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09_R primer <400> 240 aaaaggcctc tcgagttggg aattatcagg ctcgttcttg tt 42 <210> 241 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10_R primer <400> 241 aaaaggcctc tcgagggtca aaccagcagc aacaag 36 <210> 242 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11_R primer <400> 242 aaaaggcctc tcgagagctg ggctagtaat gtattggtct tc 42 <210> 243 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13_R primer <400> 243 cagctcctcg cccttgctca caggcctctc gagggtggcg ccagagagg 49 <210> 244 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14_R primer <400> 244 aaaaggcctc tcgagtggaa cttcaatgga agtctctgaa tctacc 46 <210> 245 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15_R primer <400> 245 aaaaggcctc tcgagatcgt aacatacggg acaagccaa 39 <210> 246 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16_R primer <400> 246 aaaaggcctc tcgaggggaa ctctggcctc acatttg 37 <210> 247 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17_R primer <400> 247 aaaaggcctc tcgagaccag aagataaatc tgagttaata cccaag 46 <210> 248 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18_R primer <400> 248 aaaaggcctc tcgagattct gaacagactt aaaaacagta agggtag 47 <210> 249 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19_R primer <400> 249 aaaaggcctc tcgagatcct ccaaatcaaa gtacacactc ttg 43 <210> 250 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20_R primer <400> 250 aaaaggcctc tcgagtgatg gaagcttgta ctcttgaatt tcctc 45 <210> 251 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21_R primer <400> 251 aaaaggcctc tcgagcttcc cactatcagg tgcatcaac 39 <210> 252 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22_R primer <400> 252 aaaaggcctc tcgagacccc caccgtcgcc 30 <210> 253 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23_R primer <400> 253 aaaaggcctc tcgagccaat ctgtggattc aaccttagtg g 41 <210> 254 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24_R primer <400> 254 cagctcctcg cccttgctca caggcctctc gagtgggtct atgaaactcc caccac 56 <210> 255 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25_R primer <400> 255 aaaaggcctc tcgagtgggc cgtaccatgg gc 32 <210> 256 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26_R primer <400> 256 aaaaggcctc tcgagcgtta caaccccaat accgattcca 40 <210> 257 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27_R primer <400> 257 aaaaggcctc tcgagcttca gcgcattatc cgtaagtg 38 <210> 258 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28_R primer <400> 258 cagctcctcg cccttgctca caggcctctc gagagttgga atggtatcag tctcaccat 59 <210> 259 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29_R primer <400> 259 cagctcctcg cccttgctca caggcctctc gagattcaaa actttaaact ccctgccagt 60 ag 62 <210> 260 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30_R primer <400> 260 aaaaggcctc tcgagcatcc ccaacatgct tgagc 35 <210> 261 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31_R primer <400> 261 aaaaggcctc tcgagcaatt catcatcatc gtctgcaatc tc 42 <210> 262 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32_R primer <400> 262 aaaaggcctc tcgaggaggt cgtccaattc gcccg 35 <210> 263 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33_R primer <400> 263 cagctcctcg cccttgctca caggcctctc gagcccaccg tctgcaatga gatag 55 <210> 264 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34_R primer <400> 264 aaaaggcctc tcgagctgcc aatcggctcg g 31 <210> 265 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35_R primer <400> 265 aaaaggcctc tcgagggtta tgaatttctt ctttcctcct ttcttgg 47 <210> 266 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36_R primer <400> 266 aaaaggcctc tcgagtccat taccagcaga agcatcttcc 40 <210> 267 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37_R primer <400> 267 aaaaggcctc tcgagcacag taccaataac tgttgttgct c 41 <210> 268 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38_R primer <400> 268 aaaaggcctc tcgagcgtct ccatcacaac gctgc 35 <210> 269 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39_R primer <400> 269 cagctcctcg cccttgctca caggcctctc gagaccattc tcatttctct tcaaattact 60 atcgt 65 <210> 270 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41_R primer <400> 270 cagctcctcg cccttgctca caggcctctc gagtagccat ggaggagggg tg 52 <210> 271 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42_R primer <400> 271 aaaaggcctc tcgagttcct tcaaatctgt gaacacctca ttgg 44 <210> 272 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43_R primer <400> 272 aaaaggcctc tcgagtttgg aagatggttc tgcttcggc 39 <210> 273 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44_R primer <400> 273 aaaaggcctc tcgagagcct ggcgagtaac agttt 35 <210> 274 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_R primer <400> 274 aaaaggcctc tcgagaatgg caccagcaac aagg 34 <210> 275 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46_R primer <400> 275 aaaaggcctc tcgagtgcca aactgactcc gctgac 36 <210> 276 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47_R primer <400> 276 aaaaggcctc tcgaggaggc cgtgtttgtg catc 34 <210> 277 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48_R primer <400> 277 cagctcctcg cccttgctca caggcctctc gagaagccac tgccagaaag tgtcta 56 <210> 278 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49_R primer <400> 278 aaaaggcctc tcgagcgacg gcgaggagcc g 31 <210> 279 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50_R primer <400> 279 aaaaggcctc tcgaggagaa gagtttgagg gtcaggttct 40 <210> 280 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51_R primer <400> 280 aaaaggcctc tcgagctccc agaggacctg ccg 33 <210> 281 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52_R primer <400> 281 aaaaggcctc tcgagtgaag agtgtagcga gatatagtta ttggag 46 <210> 282 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53_R primer <400> 282 aaaaggcctc tcgagtgcca aatccgcttc cgc 33 <210> 283 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54_R primer <400> 283 aaaaggcctc tcgagagaag atgttgcctt tggcga 36 <210> 284 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55_R primer <400> 284 aaaaggcctc tcgagaagcc atggaggagg gg 32 <210> 285 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56_R primer <400> 285 aaaaggcctc tcgagtccaa ttccctgaga aagcagg 37 <210> 286 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57_R primer <400> 286 cagctcctcg cccttgctca caggcctctc gagcagattc tcttctagtt gatcaatgtt 60 acttg 65 <210> 287 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58_R primer <400> 287 aaaaggcctc tcgagaacct tagtggatga agtgactgg 39 <210> 288 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59_R primer <400> 288 cagctcctcg cccttgctca caggcctctc gagacaacca agagtgccaa ctattaatcc 60 60 <210> 289 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60_R primer <400> 289 aaaaggcctc tcgaggatgg cggaggatgg tgc 33 <210> 290 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61_R primer <400> 290 aaaaggcctc tcgaggattg ttaagcctct tgtgatattc tgttgga 47 <210> 291 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62_R primer <400> 291 aaaaggcctc tcgagaccat taccctttct cttttgtgct ac 42 <210> 292 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63_R primer <400> 292 aaaaggcctc tcgagtttga tggccccaat aaccccttta tc 42 <210> 293 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64_R primer <400> 293 aaaaggcctc tcgagaatgg tatcagtctc accttgattc c 41 <210> 294 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65_R primer <400> 294 aaaaggcctc tcgagagtgc tgtttgagtt tgacgcc 37 <210> 295 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67_R primer <400> 295 aaaaggcctc tcgagcacgg atgccgcttc c 31 <210> 296 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68_R primer <400> 296 aaaaggcctc tcgaggccac cactcagtga agcaa 35 <210> 297 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69_R primer <400> 297 aaaaggcctc tcgaggaagt tcaagagcgc gtggaatc 38 <210> 298 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70_R primer <400> 298 aaaaggcctc tcgagtatct ctgaggagga agccagaaag c 41 <210> 299 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71_R primer <400> 299 aaaaggcctc tcgagaggag gaggaagaag aagggg 36 <210> 300 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72_R primer <400> 300 aaaaggcctc tcgagtggaa tggtatcagc ctctccttga tttc 44 <210> 301 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73_R primer <400> 301 aaaaggcctc tcgagaactg agtttgcatc atcattggtt g 41 <210> 302 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75_R primer <400> 302 aaaaggcctc tcgagcttgg cttccacagg atcaacc 37 <210> 303 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76_R primer <400> 303 aaaaggcctc tcgagcagcc ggtcgccg 28 <210> 304 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77_R primer <400> 304 aaaaggcctc tcgagacctt tggcatcaac accgttc 37 <210> 305 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78_R primer <400> 305 aaaaggcctc tcgagggaat gaaaaatctt gctggtggtg 40 <210> 306 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79_R primer <400> 306 aaaaggcctc tcgagggatg cccccatccc tatatttg 38 <210> 307 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80_R primer <400> 307 aaaaggcctc tcgagactag atgcttcttg ccctctcttc 40 <210> 308 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81_R primer <400> 308 aaaaggcctc tcgagtgaat catcctcggg tgacacg 37 <210> 309 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GFP_F primer <400> 309 gtgagcaagg gcgaggag 18 <210> 310 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44-67_R primer <400> 310 cttgctcaca catattatag ttgctggctg cgtag 35 <210> 311 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_56_R primer <400> 311 cttgctcacc acaatggaag aagatctatt cctgt 35 <210> 312 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_57_R primer <400> 312 ctcgcccttg ctcacaacca caatggaaga agatc 35 <210> 313 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_58_R primer <400> 313 ctcgcccttg ctcacagcaa ccacaatgga agaag 35 <210> 314 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_59_R primer <400> 314 ctcgcccttg ctcactgcag caaccacaat gg 32 <210> 315 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_60_R primer <400> 315 ctcgcccttg ctcacaactg cagcaaccac aatg 34 <210> 316 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-45_R primer <400> 316 cttgctcacc agtggttgtt gtcttggagt cggaa 35 <210> 317 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-50_R primer <400> 317 tcgcccttgc tcacggttga agaaaacaac agtgg 35 <210> 318 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-55_R primer <400> 318 ctcgcccttg ctcactgcta agcaagttga ggttg 35 <210> 319 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-70 <400> 319 Met Ala Phe Thr Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn 65 70 <210> 320 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-75 <400> 320 Met Ala Phe Thr Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn Asn Asn Pro Ala Ser 65 70 75 <210> 321 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-80 <400> 321 Met Ala Phe Thr Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn Asn Asn Pro Ala Ser Ala Ser Ala Ser Ser 65 70 75 80 <210> 322 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-70 coding gene <400> 322 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac 210 <210> 323 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-75 coding gene <400> 323 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac aacaaccctg cttca 225 <210> 324 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-80 coding gene <400> 324 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac aacaaccctg cttcagcttc agcttcgtcg 240 240 <210> 325 <211> 486 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PPO from Oscillatoria nigroviridis PCC 7112 (CyPPO2) <400> 325 Met Glu Leu Leu Asp Thr Leu Ile Val Gly Ala Gly Ile Ser Gly Leu 1 5 10 15 Ser Leu Ala His Ala Leu His Lys Glu Ala Thr Ser Ala Ser Pro Leu 20 25 30 Lys Ile Leu Val Ala Glu Ser Gln Gly Arg Val Gly Gly Asn Ile Thr 35 40 45 Thr Val Thr Ala Glu Gly Phe Leu Trp Glu Glu Gly Pro Asn Ser Phe 50 55 60 Ser Pro Thr Pro Glu Leu Met Lys Leu Ala Val Asp Val Gly Leu Lys 65 70 75 80 Gln Glu Leu Ile Phe Ala Asp Arg Lys Leu Pro Arg Phe Val Tyr Trp 85 90 95 Glu Asn Lys Leu Gln Pro Val Pro Met Thr Pro Pro Ala Met Ile Gln 100 105 110 Ser Gln Leu Leu Ser Phe Pro Gly Lys Leu Arg Ala Leu Phe Gly Ala 115 120 125 Leu Gly Phe Val Ala Pro Ala Met Gly Asp Arg Leu Ser Gln Gln Gly 130 135 140 Asn Glu Glu Thr Val Ser Gln Phe Phe Arg Arg His Leu Gly Thr Glu 145 150 155 160 Val Met Gln Arg Leu Val Glu Pro Phe Val Ser Gly Val Tyr Ala Gly 165 170 175 Asp Pro Gln Gln Leu Ser Ala Ala Ala Ala Phe Gly Arg Val Ala Lys 180 185 190 Met Ala Asp Val Gly Gly Gly Leu Val Ala Gly Ala Leu Leu Ser Ala 195 200 205 Lys Asn Arg Pro Lys Lys Met Pro Ala Asp Pro Asn Val Pro Lys Thr 210 215 220 Lys Pro Gly Glu Leu Gly Ser Phe Lys Gln Gly Leu Lys Ala Leu Pro 225 230 235 240 Glu Ala Ile Ala Ala Lys Leu Gly Asp Arg Val Lys Leu Asn Trp His 245 250 255 Leu Thr Arg Leu Gln Arg Thr Glu Arg Glu Thr Tyr Ile Ala Glu Phe 260 265 270 Ser Thr Pro Asp Gly Gln Gln Glu Val Glu Ala Arg Thr Val Val Leu 275 280 285 Thr Thr Pro Ala Tyr Val Thr Ala Asp Leu Leu Gln Pro Leu Glu Pro 290 295 300 Gln Val Ser Ser Ala Leu Gln Ala Phe Thr Tyr Pro Thr Val Ala Ser 305 310 315 320 Val Val Leu Ala Tyr Pro Gln Ser Asp Val Lys Gly Lys Leu Val Gly 325 330 335 Phe Gly Asn Leu Ile Pro Arg Gly Gln Gly Ile Arg Cys Leu Gly Thr 340 345 350 Ile Trp Thr Ser Ser Leu Phe Pro Asp Arg Ala Pro Ala Gly Trp Gln 355 360 365 Thr Leu Thr Ser Tyr Ile Gly Gly Ala Thr Asp Ser Glu Ile Gly Asn 370 375 380 Leu Asp Ser Glu Gln Ile Val Arg Glu Val His Arg Asp Leu Ser Arg 385 390 395 400 Ile Leu Leu Lys Pro Asp Val Pro Gln Pro Lys Val Leu Thr Val Lys 405 410 415 Leu Trp Lys Arg Ala Ile Pro Gln Tyr Asn Leu Gly His Phe Asp Arg 420 425 430 Leu Gln Gln Ile Asp Glu Gly Leu Lys Ser Leu Pro Gly Val Tyr Leu 435 440 445 Cys Ser Asn Tyr Val Gly Gly Val Ala Leu Gly Asp Cys Val Arg Arg 450 455 460 Gly Phe Asp Arg Ala Arg Glu Val Gly Glu Tyr Leu Gln Lys Lys Gln 465 470 475 480 Ser Asp Thr Arg Ser Ile 485 <210> 326 <211> 537 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PPO from Arabidopsis thaliana (AtPPO1) <400> 326 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala Gly Gly Pro Thr Val Gly Ser Ser Lys Ile Glu 35 40 45 Gly Gly Gly Gly Thr Thr Ile Thr Thr Asp Cys Val Ile Val Gly Gly 50 55 60 Gly Ile Ser Gly Leu Cys Ile Ala Gln Ala Leu Ala Thr Lys His Pro 65 70 75 80 Asp Ala Ala Pro Asn Leu Ile Val Thr Glu Ala Lys Asp Arg Val Gly 85 90 95 Gly Asn Ile Ile Thr Arg Glu Glu Asn Gly Phe Leu Trp Glu Glu Gly 100 105 110 Pro Asn Ser Phe Gln Pro Ser Asp Pro Met Leu Thr Met Val Val Asp 115 120 125 Ser Gly Leu Lys Asp Asp Leu Val Leu Gly Asp Pro Thr Ala Pro Arg 130 135 140 Phe Val Leu Trp Asn Gly Lys Leu Arg Pro Val Pro Ser Lys Leu Thr 145 150 155 160 Asp Leu Pro Phe Phe Asp Leu Met Ser Ile Gly Gly Lys Ile Arg Ala 165 170 175 Gly Phe Gly Ala Leu Gly Ile Arg Pro Ser Pro Pro Gly Arg Glu Glu 180 185 190 Ser Val Glu Glu Phe Val Arg Arg Asn Leu Gly Asp Glu Val Phe Glu 195 200 205 Arg Leu Ile Glu Pro Phe Cys Ser Gly Val Tyr Ala Gly Asp Pro Ser 210 215 220 Lys Leu Ser Met Lys Ala Ala Phe Gly Lys Val Trp Lys Leu Glu Gln 225 230 235 240 Asn Gly Gly Ser Ile Ile Gly Gly Thr Phe Lys Ala Ile Gln Glu Arg 245 250 255 Lys Asn Ala Pro Lys Ala Glu Arg Asp Pro Arg Leu Pro Lys Pro Gln 260 265 270 Gly Gln Thr Val Gly Ser Phe Arg Lys Gly Leu Arg Met Leu Pro Glu 275 280 285 Ala Ile Ser Ala Arg Leu Gly Ser Lys Val Lys Leu Ser Trp Lys Leu 290 295 300 Ser Gly Ile Thr Lys Leu Glu Ser Gly Gly Tyr Asn Leu Thr Tyr Glu 305 310 315 320 Thr Pro Asp Gly Leu Val Ser Val Gln Ser Lys Ser Val Val Met Thr 325 330 335 Val Pro Ser His Val Ala Ser Gly Leu Leu Arg Pro Leu Ser Glu Ser 340 345 350 Ala Ala Asn Ala Leu Ser Lys Leu Tyr Tyr Pro Pro Val Ala Ala Val 355 360 365 Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg Thr Glu Cys Leu Ile Asp 370 375 380 Gly Glu Leu Lys Gly Phe Gly Gln Leu His Pro Arg Thr Gln Gly Val 385 390 395 400 Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser Leu Phe Pro Asn Arg Ala 405 410 415 Pro Pro Gly Arg Ile Leu Leu Leu Asn Tyr Ile Gly Gly Ser Thr Asn 420 425 430 Thr Gly Ile Leu Ser Lys Ser Glu Gly Glu Leu Val Glu Ala Val Asp 435 440 445 Arg Asp Leu Arg Lys Met Leu Ile Lys Pro Asn Ser Thr Asp Pro Leu 450 455 460 Lys Leu Gly Val Arg Val Trp Pro Gln Ala Ile Pro Gln Phe Leu Val 465 470 475 480 Gly His Phe Asp Ile Leu Asp Thr Ala Lys Ser Ser Leu Thr Ser Ser 485 490 495 Gly Tyr Glu Gly Leu Phe Leu Gly Gly Asn Tyr Val Ala Gly Val Ala 500 505 510 Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu Thr Ala Ile Glu Val Asn 515 520 525 Asn Phe Met Ser Arg Tyr Ala Tyr Lys 530 535 <210> 327 <211> 466 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO10, modified PPO from Thermosynechococcus elongatus BP-1 (CyPPO10) <400> 327 Ile Glu Val Asp Val Ala Ile Val Gly Gly Gly Leu Ser Gly Leu Ser 1 5 10 15 Val Ala Trp Arg Leu Gln Arg Ser Ala Pro His Tyr Ser Gly Val Leu 20 25 30 Leu Glu Ala Ser Asp Arg Leu Gly Gly Asn Ile Thr Thr Gln Ala Ala 35 40 45 Glu Gly Phe Val Trp Glu Leu Gly Pro Asn Ser Phe Ala Pro Thr Pro 50 55 60 Ala Leu Leu Gln Leu Ile Ala Glu Val Gly Leu His Ser Glu Leu Ile 65 70 75 80 Arg Gly Asp Arg His Leu Pro Arg Tyr Ile Tyr Trp Arg Gly Glu Leu 85 90 95 Tyr Pro Leu Glu Pro Thr Arg Pro Leu Ala Leu Ala Thr Ser Asn Leu 100 105 110 Leu Ser Pro Trp Gly Lys Val Arg Ala Ala Leu Gly Ala Leu Gly Phe 115 120 125 Val Pro Pro Tyr Leu Gly Ser Gly Asp Glu Ser Val Asp Ser Phe Phe 130 135 140 Arg Arg His Leu Gly Gln Glu Val Ala Glu Arg Leu Val Ala Pro Phe 145 150 155 160 Val Ser Gly Cys Tyr Leu Gly Asp Pro Gln Gln Leu Ser Ala Ala Ala 165 170 175 Ala Phe Arg Arg Ile Ala Gln Leu Glu Lys Leu Gly Gly Ser Leu Ile 180 185 190 Ala Gly Ala Leu Arg Leu Arg Arg Gln Gln Pro Pro Gln Pro Lys Pro 195 200 205 Pro Ala Gln Val Gln Met Arg Pro Gly Glu Leu Gly Ser Phe Arg Glu 210 215 220 Gly Leu Ala Ala Leu Pro Arg Ala Ile Ala Gln Gln Leu Lys Ala Pro 225 230 235 240 Leu His Leu Gln Thr Pro Val Glu Ala Ile Thr Pro Glu Pro Lys Gly 245 250 255 Gly Tyr Leu Leu Arg Ser Gly Glu Gln Thr Trp His Ala Arg Ser Val 260 265 270 Val Leu Ala Thr Pro Ala Tyr Gln Thr Ala Glu Leu Val Ala Pro Phe 275 280 285 Gln Pro Ala Ile Ala Arg Ala Leu Ala Thr Ile Pro Tyr Pro Thr Val 290 295 300 Ala Cys Val Val Leu Ala Tyr Pro Ala Gly Leu Gly Arg Ser Val Arg 305 310 315 320 Pro Gly Phe Gly Val Leu Val Pro Arg Gly Gln Gly Ile Arg Thr Leu 325 330 335 Gly Thr Ile Trp Ser Ser Cys Leu Phe Pro Gln Arg Thr Pro Ala Gly 340 345 350 Trp Gln Val Phe Thr Ser Met Ile Gly Gly Ala Thr Asp Pro Asp Leu 355 360 365 Ala Ser Leu Arg Glu Glu Ala Ile Val Glu Gln Val Gln Gln Asp Leu 370 375 380 Thr Arg Leu Leu Asp Leu Pro Ala Ala Lys Ala Arg Leu Leu Gly Met 385 390 395 400 Lys Val Trp Arg Arg Ala Ile Pro Gln Tyr Ile Val Gly Tyr Pro Gln 405 410 415 Gln Trp Gln Gln Val Thr His Ala Leu Thr Gln Thr Pro Gly Leu Phe 420 425 430 Leu Cys Ser Asn Tyr Ala Glu Gly Val Ala Leu Gly Asp Arg Val Glu 435 440 445 His Gly Asn Arg Thr Ala Ala Ala Val Ala Ala Tyr Leu Ala Gly Gly 450 455 460 Gln Ser 465 <210> 328 <211> 465 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO8, modified PPO from Halothece sp. PCC 7418 (CyPPO8) <400> 328 Ile Asp Thr Leu Ile Val Gly Ala Gly Ile Ser Gly Leu Ser Ala Ala 1 5 10 15 Tyr Arg Leu Asp Glu Lys Gln Arg Gln Val Leu Val Ala Glu Lys Arg 20 25 30 Asp Arg Ala Gly Gly Asn Ile Thr Ser Gln Gln Ser Gly Asp Phe Leu 35 40 45 Trp Glu Glu Gly Pro Asn Ser Phe Ser Pro Thr Pro Glu Leu Leu Lys 50 55 60 Leu Ala Val Asp Ala Gly Leu Arg Asn Glu Leu Ile Phe Ala Asp Arg 65 70 75 80 Gly Leu Pro Arg Tyr Val Tyr Trp Glu Gly Lys Leu Arg Pro Val Pro 85 90 95 Met Ser Pro Pro Thr Ala Val Thr Ser Gln Leu Leu Ser Pro Ile Gly 100 105 110 Lys Leu Arg Ala Leu Thr Gly Ala Leu Gly Phe Ile Pro Pro Gln Val 115 120 125 Ser Ser Gln Glu Glu Thr Val Ala Asp Phe Phe Thr Arg His Leu Gly 130 135 140 Ser Glu Val Ala Gln Arg Leu Val Ser Pro Phe Val Ser Gly Val Tyr 145 150 155 160 Cys Gly Asp Val Asp Gln Leu Ser Ala Glu Ala Ala Phe Gly Arg Val 165 170 175 Thr Gln Leu Ala Asp Val Gly Gly Gly Leu Val Ala Gly Ala Ile Leu 180 185 190 Cys Arg Arg Gln Lys Pro Lys Ser Thr Pro Lys Thr Ala Lys Pro Ser 195 200 205 Asp Ile Pro Glu Thr Lys Ser Gly Gln Leu Gly Ser Phe Lys Glu Gly 210 215 220 Leu Gln Gln Leu Pro Ser Ala Ile Val Ser Gln Leu Gly Asp Lys Val 225 230 235 240 Lys Phe Gln Trp Glu Leu Lys Asn Ile Ser Pro His Pro Glu Ser Gly 245 250 255 Tyr Val Ala Thr Phe Ser Thr Pro Glu Gly Glu Gln Thr Val Glu Ala 260 265 270 Lys Thr Val Ile Leu Thr Thr Pro Ala Tyr Val Thr Ala Ser Leu Val 275 280 285 Lys Asp Leu Ser Pro Gln Ala Ser Gln Ala Leu Asn Glu Ile Ser Tyr 290 295 300 Pro Pro Met Ala Cys Val Val Leu Ala Tyr Pro Asp Glu Ala Leu Arg 305 310 315 320 Phe Pro Leu Lys Gly Phe Gly Asn Leu Asn Pro Arg Ser Gln Gly Ile 325 330 335 Arg Thr Leu Gly Thr Ile Trp Ser Ser Thr Leu Phe Pro Gly Arg Thr 340 345 350 Pro Lys Gly Trp His Leu Leu Thr Asn Met Ile Gly Gly Ala Thr Asp 355 360 365 Pro Ala Ile Ala Glu Leu Ser Glu Asp Gln Ile Ile Glu Gln Val His 370 375 380 Gln Asp Leu Gln Gln Ala Val Ile Lys Ser Gly Ser Ile Pro Lys Pro 385 390 395 400 Leu Ala Val His Leu Trp Ser Lys Ala Ile Pro Gln Tyr Asn Leu Gly 405 410 415 His Leu Lys Arg Leu Glu Thr Ile Arg Asn His Leu Lys Pro Phe Ser 420 425 430 Gly Leu Phe Leu Ser Ser Asn Tyr Leu Asp Gly Val Ala Leu Gly Asp 435 440 445 Cys Val Arg Arg Gly Glu Glu Ser Ser Gln Ala Val Leu Asp Tyr Leu 450 455 460 Gly 465 <210> 329 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO13-1, modified PPO derived from Synechococcus sp.JA-3-3Ab (CyPPO13) <400> 329 Asn Pro Ala Thr Pro Glu Pro Leu Asn Ala Glu Val Val Val Ile Gly 1 5 10 15 Ala Gly Ile Ser Gly Leu Thr Leu Ala Trp Arg Leu Gln Gln Gly Leu 20 25 30 Ser Ala Arg Gly Gly Ser Pro Gln Ala Val Leu Leu Ala Glu Ala Ser 35 40 45 Ser Arg Val Gly Gly Cys Ile Ser Thr Gln Ser Lys Asp Gly Tyr Arg 50 55 60 Trp Glu Glu Gly Pro Asn Ser Phe Thr Pro Thr Pro Ala Leu Leu Asn 65 70 75 80 Leu Ile Ala Glu Val Gly Leu Thr Asp Gln Leu Val Leu Ala Asp Ala 85 90 95 Lys Leu Pro Arg Tyr Ile Tyr Trp Glu Gly Ala Leu Leu Pro Val Pro 100 105 110 Leu Ser Pro Ala Ala Ala Leu Gly Ser Arg Leu Leu Ser Val Gly Gly 115 120 125 Lys Leu Arg Ala Leu Gln Gly Leu Leu Gly Phe Val Pro Pro Pro Pro 130 135 140 Gly His Glu Glu Thr Val Arg Gln Phe Phe Arg Arg Gln Leu Gly Ser 145 150 155 160 Glu Val Ala Glu Arg Leu Val Glu Pro Phe Thr Ser Gly Val Tyr Leu 165 170 175 Gly Asp Pro Asp Gln Leu Ser Ala Val Ala Ala Phe Pro Arg Val Ala 180 185 190 Gly Leu Glu Glu Arg Tyr Gly Ser Leu Phe Ala Gly Ala Leu Gln Ala 195 200 205 Leu Arg Gln Arg Pro Gln Pro Ser Pro Ala Ala Ile Gln Pro Pro Pro 210 215 220 Lys Arg Gly Gln Leu Gly Asn Leu Arg Gln Gly Leu Gln Gln Leu Pro 225 230 235 240 Glu Ala Leu Ala Gln Lys Leu Gly Asp Ser Leu Arg Leu Gly Trp Arg 245 250 255 Ala Leu Gln Leu Lys Arg Ala Gly Glu Leu Tyr Trp Val Gly Phe Glu 260 265 270 Thr Pro Glu Gly Ser Arg Trp Val Ala Ala Arg Gln Val Val Leu Ala 275 280 285 Leu Pro Ala Tyr Glu Ala Ala Ala Leu Leu Gln Glu Leu Asn Pro Pro 290 295 300 Ala Ser Gln Leu Leu Ala Glu Ile Leu Tyr Pro Pro Val Ala Val Val 305 310 315 320 Ala Leu Ala Tyr Pro Gln Glu Ala Leu Pro Gln Pro Leu Arg Gly Phe 325 330 335 Gly His Leu Ile Pro Arg Ser Gln Gly Leu Arg Thr Leu Gly Thr Ile 340 345 350 Trp Ala Ser Cys Leu Phe Pro Glu Arg Ala Pro Gln Gly Tyr His Ser 355 360 365 Phe Leu Ser Leu Leu Gly Gly Ala Thr Asp Ala Ala Ile Ala Arg Arg 370 375 380 Arg Gly Ile Pro Pro Ile Pro Ala Leu Ser Pro Glu Glu Arg Ala Gln 385 390 395 400 Ile Ala His Ala Glu Leu Ser Gln Val Leu Leu Thr Arg Arg Ala Glu 405 410 415 Pro Val Tyr Leu Gly Glu Arg Leu Trp Pro Arg Ala Ile Pro Gln Tyr 420 425 430 Thr Leu Gly His Arg Gln Arg Ile Ala Gln Val Gln Ala His Leu Ala 435 440 445 Ser Gln Thr Pro Gly Ile Trp Val Cys Ala Asn Tyr Leu Asp Gly Val 450 455 460 Ala Leu Gly Asp Cys Val Arg Arg Ala Glu Ala Leu Ala Gln Gln Leu 465 470 475 480 Leu Ser Gln Val <210> 330 <211> 454 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_CP4EPSPS from Roundup Ready Glycine Max <400> 330 Leu His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly 1 5 10 15 Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His Arg 20 25 30 Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly 35 40 45 Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met Gln Ala 50 55 60 Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile Asp Gly 65 70 75 80 Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp Phe Gly 85 90 95 Asn Ala Ala Thr Gly Cys Arg Leu Thr Met Gly Leu Val Gly Val Tyr 100 105 110 Asp Phe Asp Ser Thr Phe Ile Gly Asp Ala Ser Leu Thr Lys Arg Pro 115 120 125 Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val Lys 130 135 140 Ser Glu Asp Gly Asp Arg Leu Pro Val Thr Leu Arg Gly Pro Lys Thr 145 150 155 160 Pro Thr Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val Lys 165 170 175 Ser Ala Val Leu Leu Ala Gly Leu Asn Thr Pro Gly Ile Thr Thr Val 180 185 190 Ile Glu Pro Ile Met Thr Arg Asp His Thr Glu Lys Met Leu Gln Gly 195 200 205 Phe Gly Ala Asn Leu Thr Val Glu Thr Asp Ala Asp Gly Val Arg Thr 210 215 220 Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp Val 225 230 235 240 Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu Leu 245 250 255 Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro Thr 260 265 270 Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile Glu 275 280 285 Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu Arg 290 295 300 Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg Ala 305 310 315 320 Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala Phe 325 330 335 Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val Lys 340 345 350 Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn Gly 355 360 365 Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg Pro 370 375 380 Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr His 385 390 395 400 Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val Ser 405 410 415 Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser Phe 420 425 430 Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu Leu 435 440 445 Ser Asp Thr Lys Ala Ala 450 <210> 331 <211> 357 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PfHPPD, HPPD derived from Pseudomonas fluorescens <400> 331 Ala Asp Leu Tyr Glu Asn Pro Met Gly Leu Met Gly Phe Glu Phe Ile 1 5 10 15 Glu Phe Ala Ser Pro Thr Pro Gly Thr Leu Glu Pro Ile Phe Glu Ile 20 25 30 Met Gly Phe Thr Lys Val Ala Thr His Arg Ser Lys Asn Val His Leu 35 40 45 Tyr Arg Gln Gly Glu Ile Asn Leu Ile Leu Asn Asn Glu Pro Asn Ser 50 55 60 Ile Ala Ser Tyr Phe Ala Ala Glu His Gly Pro Ser Val Cys Gly Met 65 70 75 80 Ala Phe Arg Val Lys Asp Ser Gln Lys Ala Tyr Asn Arg Ala Leu Glu 85 90 95 Leu Gly Ala Gln Pro Ile His Ile Asp Thr Gly Pro Met Glu Leu Asn 100 105 110 Leu Pro Ala Ile Lys Gly Ile Gly Gly Ala Pro Leu Tyr Leu Ile Asp 115 120 125 Arg Phe Gly Glu Gly Ser Ser Ile Tyr Asp Ile Asp Phe Val Tyr Leu 130 135 140 Glu Gly Val Glu Arg Asn Pro Val Gly Ala Gly Leu Lys Val Ile Asp 145 150 155 160 His Leu Thr His Asn Val Tyr Arg Gly Arg Met Val Tyr Trp Ala Asn 165 170 175 Phe Tyr Glu Lys Leu Phe Asn Phe Arg Glu Ala Arg Tyr Phe Asp Ile 180 185 190 Lys Gly Glu Tyr Thr Gly Leu Thr Ser Lys Ala Met Ser Ala Pro Asp 195 200 205 Gly Met Ile Arg Ile Pro Leu Asn Glu Glu Ser Ser Lys Gly Ala Gly 210 215 220 Gln Ile Glu Glu Phe Leu Met Gln Phe Asn Gly Glu Gly Ile Gln His 225 230 235 240 Val Ala Phe Leu Thr Asp Asp Leu Val Lys Thr Trp Asp Ala Leu Lys 245 250 255 Lys Ile Gly Met Arg Phe Met Thr Ala Pro Pro Asp Thr Tyr Tyr Glu 260 265 270 Met Leu Glu Gly Arg Leu Pro Asp His Gly Glu Pro Val Asp Gln Leu 275 280 285 Gln Ala Arg Gly Ile Leu Leu Asp Gly Ser Ser Val Glu Gly Asp Lys 290 295 300 Arg Leu Leu Leu Gln Ile Phe Ser Glu Thr Leu Met Gly Pro Val Phe 305 310 315 320 Phe Glu Phe Ile Gln Arg Lys Gly Asp Asp Gly Phe Gly Glu Trp Asn 325 330 335 Phe Lys Ala Leu Phe Glu Ser Ile Glu Arg Asp Gln Val Arg Arg Gly 340 345 350 Val Leu Thr Ala Asp 355 <210> 332 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-28 <400> 332 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys 20 25 <210> 333 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-30 <400> 333 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu 20 25 30 <210> 334 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-31 <400> 334 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg 20 25 30 <210> 335 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-32 <400> 335 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 <210> 336 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-33 <400> 336 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg <210> 337 <211> 35 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-35 <400> 337 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser 35 <210> 338 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-37 <400> 338 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala 35 <210> 339 <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-52 <400> 339 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala Gly Gly Pro Thr Val Gly Ser Ser Lys Ile Glu 35 40 45 Gly Gly Gly Gly 50 <210> 340 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-25 <400> 340 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn 20 25 <210> 341 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-26 <400> 341 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val 20 25 <110> FarmHannong Co., Ltd. <120> Chloroplast Transit Peptides and Uses Thereof <130> DPP20205181KR <150> 10-2019-0174547 <151> 2019-12-24 <160> 341 <170> enPatentIn 3.0 <210> 1 <211> 69 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP01 <400> 1 Met Val Pro His Gly Ile Ile Val Arg Ser Ser Ile Pro Gly Ser Thr 1 5 10 15 Val Ser Gln Thr Gly Pro Ala Arg Lys Leu Lys Glu Ser Lys Phe Pro 20 25 30 Pro His His Ser Arg Leu Thr Tyr Leu Pro His Thr Pro Pro Lys Pro 35 40 45 Lys Leu Ser Lys Thr Met Ser Ser Phe Thr His Ala Thr Thr Leu Leu 50 55 60 His Ala His Ile Lys 65 <210> 2 <211> 57 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP02 <400> 2 Met Ala Thr Ala Thr Ala Ala Ala Thr Ser Ser Phe Met Gly Thr Arg 1 5 10 15 Leu Leu Glu Ala His Ser Gly Ala Gly Arg Val Gln Ala Arg Phe Gly 20 25 30 Phe Gly Lys Lys Lys Ala Ala Ala Pro Lys Lys Val Ser Arg Gly Ser 35 40 45 Gly Ser Ser Ser Asp Arg Pro Leu Trp 50 55 <210> 3 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP03 <400> 3 Met His Thr Gly Met Ala Ser Leu Thr Gln Leu His Tyr Lys Val His 1 5 10 15 Thr Ser Thr Phe Arg Arg Val His Ser Arg Ser Gln Gly Leu Leu Lys 20 25 30 Ser Gly Lys Leu Ser Gln Leu Gln Gly Ser Ala Phe Pro Ser Ile His 35 40 45 Ile Asn Gln Ser Cys Ile Cys Cys Thr Lys Leu Thr Pro Trp Glu Ser 50 55 60 Ser Pro Val Thr Tyr Ala Pro Thr Asp Asn Gln 65 70 75 <210> 4 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP04 <400> 4 Met Val Pro Lys Pro Ile Leu Val Thr Thr Pro Pro Ala Thr Ser 1 5 10 15 Ala Pro Ser Pro Leu Leu Asn Ala Val Ser Pro Leu Lys Thr Glu Glu 20 25 30 Lys Pro Gln Thr Gln Thr Leu Lys Thr Pro Thr Thr Thr Thr Gln Lys 35 40 45 Ala Ile Thr Lys Pro Ser Pro Ser Ser Ser Thr Thr Lys Thr Thr Pro 50 55 60 Gln Gln Arg Val Glu Leu Lys Arg Lys Thr Asn Ser 65 70 75 <210> 5 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP05 <400> 5 Met Ala Thr Cys Phe Ala Pro Phe Ser Val Ser Gly Gly Ser His Glu 1 5 10 15 Leu Trp Leu Thr Lys Arg Val Gly Pro Lys Leu Thr Val Gln Arg Arg 20 25 30 Ser Asn Leu Val Ile Lys Arg Asn His Thr Ser Ser Ile Ser Ala Glu 35 40 45 Tyr Arg Asp Asn Arg Gly Gly Gly Gly Gly Asp Phe Val Ala Gly Phe 50 55 60 Leu Leu 65 <210> 6 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP06 <400> 6 Met Met Glu Val Met Ile Cys Glu Asn Phe Arg Tyr Ser Pro Leu Ser 1 5 10 15 Ile Leu Ser Ser Ser Pro Ser Pro Arg Cys His Leu Ser Val Pro Ser 20 25 30 Ser Ser Leu Arg Ile Lys Pro Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser 35 40 45 Val Ser Cys Ser Leu Met Glu Asn Gln Glu Thr Gln Arg Ser Lys Phe 50 55 60 Met Asp Phe Pro Phe Val 65 70 <210> 7 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP07 <400> 7 Met Ala Thr Ser Ala Ile Gln Gln Ser Ala Phe Ala Gly Gln Thr Ala 1 5 10 15 Leu Lys Gln Leu Asn Glu Leu Val Arg Lys Thr Gly Gly Ala Gly Lys 20 25 30 Gly Arg Thr Asn Met Arg Arg Thr Val Lys Ser Ala Pro 35 40 45 <210> 8 <211> 46 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP08 <400> 8 Met Ala Thr Trp Val Leu Ser Glu Cys Gly Leu Arg Pro Leu Pro Pro 1 5 10 15 Val Phe Pro Arg Ser Thr Arg Pro Ile Ser Cys Gln Lys Pro Ser Lys 20 25 30 Ser Arg Phe Leu Ser Thr Asn Lys Gly Val Pro Asp Leu Asn 35 40 45 <210> 9 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP09 <400> 9 Met Ile Ala Leu Lys Ala Ile Gln Ala Ser Ser Phe Ala Leu His His 1 5 10 15 Asn Asn Val Arg Leu Pro His Thr Arg Ala Ser Ser Val Leu Cys Phe 20 25 30 Cys Ser Lys Ser Asn Lys Asn Glu Pro Asp Asn Ser Gln 35 40 45 <210> 10 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP10 <400> 10 Met Ala Gln Ala Met Ala Ser Met Thr Ser Leu Arg Gly Ser Ser Gln 1 5 10 15 Ala Val Leu Glu Gly Ser Leu Gly Ser Thr Arg Leu Asn Val Gly Ser 20 25 30 Gly Ser Arg Val Ala Ser Val Thr Arg Ala Gly Phe Thr Val Arg Ala 35 40 45 Gln Gln Gln Gln Val Asn Gly Gly Glu Val Gln Ser Ser Arg Arg Ala 50 55 60 Val Leu Ser Leu Val Ala Ala Gly Leu Thr 65 70 <210> 11 <211> 89 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP11 <400> 11 Met Ser Ser Pro Cys Ser Cys Ala Cys Ala Ser Thr Asn Trp Ser Val 1 5 10 15 Asp Tyr Gly Tyr Gly Gly Gly Gly Val Leu Ser Asn Ser Lys Val Arg 20 25 30 Ser Arg Arg Ser Lys Glu Ile Ser Met Ala His Ser Val Cys Gly Ser 35 40 45 Arg Arg Ser Thr Ala Leu Val Ile Ser Ser Leu Pro Phe Gly Phe Leu 50 55 60 Phe Leu Ser Pro Pro Ala Glu Ala Arg Arg Asn Lys Lys Ala Ile Pro 65 70 75 80 Glu Asp Gln Tyr Ile Thr Ser Pro Ala 85 <210> 12 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP13 <400> 12 Met Ala Ile Arg Val Thr Phe Ser Phe Ser Gly Tyr Val Ala Gln Ser 1 5 10 15 Leu Ala Ser Ser Ala Gly Val Arg Val Ala Asn Ser Arg Cys Val Gln 20 25 30 Glu Cys Trp Ile Arg Thr Arg Leu Ser Gly Ala Thr 35 40 <210> 13 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP14 <400> 13 Met Ala Val Ser Ser Thr Thr Ala Thr Val Cys Ile Pro Ala Lys Asn 1 5 10 15 Ile Pro Thr Thr Gln Ala Pro Lys Ile Gly Phe Ser Ser Thr Ile Ala 20 25 30 Phe Ala Ala Lys Pro Arg Arg Arg Leu Leu Arg Ile Arg Ser Ser Ser 35 40 45 Ala Glu Thr Ser Gly Thr Glu Val Asp Ser Glu Thr Ser Ile Glu Val 50 55 60 Pro 65 <210> 14 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP15 <400> 14 Met Ala Ile Gly Val Ala Val Ser Gly Met Tyr Thr Leu Thr Pro Thr 1 5 10 15 Leu Ser Ser Phe Lys His Pro Thr Arg Leu Phe Ser Arg Ala Ala Phe 20 25 30 Thr Ala Lys Leu Pro Leu Gln Phe Arg Ala Ser Ser Thr Ser Phe Ile 35 40 45 Asp Thr Glu Thr Asn Pro Arg Glu Ser Asn Val Val Val Val Val Glu Lys 50 55 60 Asp Val Ser Ser Arg Ser Ser Asn Ser Leu Ala Cys Pro Val Cys Tyr 65 70 75 80 Asp <210> 15 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP16 <400> 15 Met Ala Gly Met Asn Ser Ser Val Leu Ala Cys Ser Tyr Ala Ile Ser 1 5 10 15 Gly Ala Ala Cys Ser Glu Leu Asn Gly Lys Val Thr Ser Val Ala Ser 20 25 30 Val Ala Ser Ser Gly Tyr Lys Leu Pro Leu Ile Lys Cys Glu Ala Arg 35 40 45 Val Pro 50 <210> 16 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP17 <400> 16 Met Leu Ile Thr Val Arg Glu Ala Ser Ser Cys Ser Ser Ser Pro Leu 1 5 10 15 Ser Phe Trp Leu Asn Arg Phe Asn Ala Lys Pro Ser Lys Thr Leu Lys 20 25 30 Thr Thr Ser Ile Cys Gln Ala Ser Phe Ser Val Gln Arg Arg Pro Thr 35 40 45 His Ser Trp Asn Thr Arg His Leu Ser Thr Ser Glu Leu Ala Asn Phe 50 55 60 Asp Pro Leu Gly Ile Asn Ser Asp Leu Ser Ser Gly Leu 65 70 75 <210> 17 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP18 <400> 17 Met Ala Ser Val Val Ala Ser Leu Pro Pro Leu Leu Leu Pro Ala 1 5 10 15 Arg Lys Ser His Met Gly Asn Phe Pro Ser Ser Pro Val Ser Leu Leu 20 25 30 Ser Gly Arg Trp Asn Arg Val Ser Phe Val Val Lys Ala Ser Gly Glu 35 40 45 Ser Ser Glu Ser Ser Thr Thr Leu Thr Val Phe Lys Ser Val Gln Asn 50 55 60 <210> 18 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP19 <400> 18 Met Ala Ser Leu Ala Thr Leu Ala Ala Val Gln Pro Ala Thr Ile Asn 1 5 10 15 Gly Leu Ala Gly Ser Ser Leu Ser Gly Thr Lys Leu Ser Phe Lys Pro 20 25 30 Ser Arg His Ser Val Lys Ser Lys Asn Phe Ser Val Thr Lys His Tyr 35 40 45 Arg Ser Gly Ala Val Val Val Ala Lys Tyr Gly Asp Lys Ser Val Tyr Phe 50 55 60 Asp Leu Glu Asp 65 <210> 19 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP20 <400> 19 Met Ala Ala Thr Asn Ala Ser Ile Phe Ala Ser Ser Thr Gln Pro Cys 1 5 10 15 Leu Pro Val Pro Pro Thr Ile Pro Asn Thr Leu Ala Thr Pro Phe Leu 20 25 30 Asn Val Ser Ser Pro Arg Ser Tyr Leu Val Lys Lys Lys His Val Lys 35 40 45 Phe Ser Lys Lys Ile Ser Ala Ala Ala Val Ala Thr Thr Thr Thr 50 55 60 Glu Glu Ile Gln Glu Tyr Lys Leu Pro Ser 65 70 <210> 20 <211> 61 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP21 <400> 20 Met Ser Ser Phe Tyr Met Ser Leu Asn Pro Ser Ile Ser Gln Ser Cys 1 5 10 15 Tyr Lys Pro Lys Gln Phe Phe Asn Leu Glu Arg Glu Ser Thr Leu Val 20 25 30 Gly Arg Ser Pro Val Ile Gln Ile Arg Cys Arg Arg Val Val Ser Ala 35 40 45 Cys Leu Asn Val Asp Val Asp Ala Pro Asp Ser Gly Lys 50 55 60 <210> 21 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP22 <400> 21 Met Pro Ser Leu Ser Val Phe Pro Ser Leu Pro Ser Leu Gln Asn Pro 1 5 10 15 Asn Leu Ser Gln Pro Asn Phe Phe Asn Phe Arg Leu Pro Ser Leu Cys 20 25 30 His Arg Pro Leu Val Lys Ser Thr Ala Thr Phe His Arg Arg Ile Leu 35 40 45 Cys Lys Ala Phe Arg Asp Ser Gly Glu Asp Ile Lys Ala Val Leu Lys 50 55 60 Ser Asp Asp Gly Gly Gly Ser Gly Asp Gly Gly Gly Asp Gly Gly Gly 65 70 75 80 <210> 22 <211> 79 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP23 <400> 22 Met Ala Thr Phe Phe Gly Ser Pro Pro Ile Phe Ser Leu Pro Leu Thr 1 5 10 15 Arg Thr His His Ile Ser Ser Ser Ser Gln Thr Pro Pro Thr Pro 20 25 30 Pro Pro Gln Ser Gln Pro Pro Thr Ser Ser Pro Gln Gln Leu Arg Thr 35 40 45 Thr Asn Leu Asn Asp Glu Ser Met Gln Val Cys Thr Glu Ala Lys Gln 50 55 60 Gln Lys Pro Ile Lys Pro Ser Thr Lys Val Glu Ser Thr Asp Trp 65 70 75 <210> 23 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP24 <400> 23 Met Ala Ala Ala Thr Ser Ser Ala Val Leu Asn Gly Phe Gly Ser His 1 5 10 15 Phe Leu Cys Gly Gly Lys Arg Ser His Ala Leu Leu Ala Ala Ser Ile 20 25 30 Gly Gly Lys Val Gly Ala Ser Val Ser Pro Lys Arg Val Ile Val Ala 35 40 45 Val Ala Ala Ala Pro Lys Lys Ser Trp Ile Pro Ala Val Lys Gly Gly 50 55 60 Gly Ser Phe Ile Asp Pro 65 70 <210> 24 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP25 <400> 24 Met Ala Ala Ala Ser Ser Met Ala Leu Ser Ser Pro Ser Leu Ala Gly 1 5 10 15 Lys Ala Val Lys Leu Gly Pro Ser Ala Pro Glu Val Gly Arg Val Ser 20 25 30 Met Arg Lys Thr Val Thr Lys Gln Val Ser Ser Gly Ser Pro Trp Tyr 35 40 45 Gly Pro 50 <210> 25 <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP26 <400> 25 Met Ala Leu Ser Val Ser Ser Pro Ser Cys Val Arg Val Pro Ser Cys 1 5 10 15 Phe Trp Lys Pro Asn Gly Lys Ser Cys Lys Glu Arg Thr Lys Val Ser 20 25 30 Cys Ala Ala His Asn Asp Asn Lys Asn Pro Leu Val Gly Ile Gly Ile 35 40 45 Gly Val Val Thr 50 <210> 26 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP27 <400> 26 Met Ala Phe Ser Ala Ile Thr Thr Leu Pro Ser Pro Gln Phe Leu Arg 1 5 10 15 Leu Pro Gln Ser Ser Pro Ser Leu Arg Phe Ser Pro Pro Ile Leu Lys 20 25 30 Arg Pro Lys Pro Leu Ser Ile Arg Ser Val Ser Ile Pro Ala Ala Pro 35 40 45 Ala Ser Gly Ser Leu Ala Pro Ala Val Ser Leu Thr Asp Asn Ala Leu 50 55 60 Lys 65 <210> 27 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP28 <400> 27 Met Thr Val Ala Met Ala Val Trp Ser Ala Gly Leu His Phe Ser Ala 1 5 10 15 Ala Thr Lys Pro His Ser Ser Leu Arg Pro Leu Glu Lys Ile Ile Cys 20 25 30 Thr Ala Pro Phe Phe Lys Ala Ser Ser Gly Phe Ala Ala Thr Lys Pro 35 40 45 Phe Cys Ile Leu Asn Thr Thr Arg Leu Ser Tyr Ser Gly Thr Thr Ile 50 55 60 Ile Pro Arg Ala Ala Pro Val Thr Asp Val Glu Asp Gly Asn His Gly 65 70 75 80 Glu Thr Asp Thr Ile Pro Thr 85 <210> 28 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP29 <400> 28 Met Ser Met Asp Met Ala Cys Ser Leu Pro Gln Ser Arg Val Leu His 1 5 10 15 Gly Gly Leu Gly Thr Ser Tyr Arg His Arg Ser Val Gly Gln Leu Gly 20 25 30 Cys Phe Asp Phe Arg Gly Arg Gly Phe Gly Cys Ala Ser Phe Gly Asp 35 40 45 Ser Arg Ser Val Ser Arg Leu Gln Arg Ser Arg Met Asn Val Ser Ala 50 55 60 Cys Trp Asn Asn Ser Arg Val Ala Thr Gly Arg Glu Phe Lys Val Leu 65 70 75 80 Asn <210> 29 <211> 63 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP30 <400> 29 Met Ala Thr Ile Ser Ala Ala Ile Thr Thr Pro Ser Ile Thr Arg Ala 1 5 10 15 Cys Leu Val Gln Lys Arg Ser Leu Gly Phe Ser Ser Pro Val Leu Gly 20 25 30 Leu Pro Ala Met Gly Lys Val Gly Arg Val Ser Cys Ser Met Glu Glu 35 40 45 Lys Pro Ser Ser Val Lys Glu Ser Ser Ser Ser Met Leu Gly Met 50 55 60 <210> 30 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP31 <400> 30 Met Ala Ala Val Val Ser Ala Ser Ser His Leu Leu Phe Val Leu Arg 1 5 10 15 Ser Gln Pro Leu Ser Ser Ser Pro Ser Phe Ile Ser Leu Leu Lys Pro 20 25 30 Leu Leu Val Ser Ser Pro Tyr Ala Val Ser Thr Pro Leu Arg His Ile 35 40 45 Gln Val Pro Pro Leu Arg Lys Pro Leu Phe Ser Thr Ser Ser Ser Pro 50 55 60 Ser Leu Thr Val Ser Gln Asp Ser Glu Glu Leu Glu Glu Lys Glu Ile 65 70 75 80 Ala Asp Asp Asp Asp Glu Leu 85 <210> 31 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP32 <400> 31 Met Ala Arg Thr Leu Thr Leu Thr Pro Ile Ser Phe Thr Leu Ala Lys 1 5 10 15 Thr Leu Asn Pro Ile Phe Pro Phe His Asn Thr Leu Pro Phe Ser Ser 20 25 30 Ser Ile Leu Ser Arg Gln Lys Leu Thr Arg Arg Ser Leu Ser Arg Ser 35 40 45 Val Leu Arg Pro Thr Ala Gly Glu Leu Ser Gly Ser Val Asp Asp Asp 50 55 60 Glu Glu Ser Gly Glu Leu Asp Asp Leu 65 70 <210> 32 <211> 90 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP33 <400> 32 Met His Val Val Val Val Leu Asn Thr Gln Ser Tyr Cys Arg Gly Leu 1 5 10 15 Glu Pro Pro Ser Ser Ser Pro Ser Val Val Ser Asn Lys Gly Thr Arg 20 25 30 Thr Leu Ser Phe Arg Arg Leu Leu Leu Arg Pro Ser Leu Gly Ile His 35 40 45 Leu Ser Arg Ser Phe Ala Leu Lys Cys Val Val Thr Pro Asn Pro Ala 50 55 60 Val Glu Leu Pro Leu Thr Ala Glu Asn Val Glu Ser Val Leu Asp Glu 65 70 75 80 Ile Arg Pro Tyr Leu Ile Ala Asp Gly Gly 85 90 <210> 33 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP34 <400> 33 Met Gln Ser Leu Ser Pro Pro Thr Ser Asn Ala Leu Asn Leu Lys His 1 5 10 15 Val Phe Arg Pro Arg Leu Gly Ala Ser Ser Arg Ile Ser Val Lys Cys 20 25 30 Ala Phe Gly Phe Glu Pro Val Ser Tyr Gly Val Gly Ser Ser Arg Ala 35 40 45 Asp Trp Gln 50 <210> 34 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP35 <400> 34 Met Thr Leu His Leu Gln His Lys Asn Ile Asn Met Ala Ala Lys Leu 1 5 10 15 Thr Leu Ser Ser Pro Phe Ser Phe Lys Thr Ser Phe Leu Pro Lys Ser 20 25 30 Pro Ser Phe Ser Leu Gly Leu Tyr Ser Pro Arg Thr Asn Val Thr Gly 35 40 45 Val Lys Val His Ala Lys Leu Gly Gly Gly Asp Glu Gln Ala Lys Lys 50 55 60 Gly Gly Lys Lys Lys Phe Ile Thr 65 70 <210> 35 <211> 71 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP36 <400> 35 Met Ala Leu Ala Thr Asn Ser Lys Lys Pro His Cys Met Ala Ile Asn 1 5 10 15 Leu Ser Thr Thr Ala Ser Leu His Ser Lys Pro Ser Phe Leu Thr His 20 25 30 Lys His Asn Asn Leu Ile Lys Ile Tyr His Pro Ser Ser Ser Leu Leu 35 40 45 Thr Thr Cys Ala Gln Thr Gln Gly Thr Asp Thr Gly Val Thr Gln Glu 50 55 60 Asp Ala Ser Ala Gly Asn Gly 65 70 <210> 36 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP37 <400> 36 Met Val Val Cys Gly Tyr Glu Glu Gln Glu Glu Glu Arg Gln Arg Lys 1 5 10 15 Arg Lys Glu Phe Gly Leu Gly Leu His Leu Ser Ala Asp Asn Thr Leu 20 25 30 Arg Pro Phe Glu Lys Thr Thr Ile Leu Lys Ala Leu Ser Ile Ser Asp 35 40 45 Ala Thr Lys Pro Cys Tyr Ile Ser His Lys Thr Arg Leu Ser Ser Ser 50 55 60 Ser Ser Gly Ile Thr Met Ile Pro Arg Ala Thr Thr Val Ile Gly Thr 65 70 75 80 Val <210> 37 <211> 55 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP38 <400> 37 Met Phe Ser Ser Thr Arg Cys Ala Phe Leu Ser Asn Ser Gly Leu Gly 1 5 10 15 Gly Cys Ser Ser Leu Cys Asp Ala Gln Arg Lys Arg Ser Thr Arg Phe 20 25 30 Arg Val Val Ser Met Thr Pro Ser Ser Ser Arg Ser Gly Asp Arg Asn 35 40 45 Gly Ser Val Val Met Glu Thr 50 55 <210> 38 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP39 <400> 38 Met Asp Ser Ala Ser Phe Ala His Pro Leu Ile Ser His Val Ile Thr 1 5 10 15 Ser Ser Ser Leu His Arg Ser Tyr Gly Ile His His Ser Ala Arg Leu 20 25 30 Gly Leu Trp Lys Asn Lys Val Trp Asn Ser Ala Cys Cys Ala Ala Gly 35 40 45 Val Glu Asp Leu Phe Asp Asp Ser Asn Leu Lys Arg Asn Glu Asn Gly 50 55 60 <210> 39 <211> 78 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP41 <400> 39 Met Ala Ser Ser Cys Ala Ser Ser Ala Ile Ala Ala Val Ala Ile Ser 1 5 10 15 Thr Pro Ser Ser Gln Lys Asn Gly Ser Leu Leu Gly Ser Thr Lys Ala 20 25 30 Ser Phe Leu Ser Gly Arg Lys Leu Lys Val Asn Asn Phe Thr Ala Pro 35 40 45 Val Gly Ala Arg Ser Ser Thr Thr Val Cys Ala Val Ala Glu Pro Asp 50 55 60 Arg Pro Leu Trp Phe Pro Gly Ser Thr Pro Pro Pro Trp Leu 65 70 75 <210> 40 <211> 81 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP42 <400> 40 Met Ala Ala Ala Ala Ala Val Thr Val Leu Leu Pro Pro Arg Ile Pro 1 5 10 15 Thr Ala Thr Asn Val Thr Arg Cys Ser Ala Leu Pro Ser Leu Pro Pro 20 25 30 Arg Gly Thr Asn Thr Lys Thr Thr Leu Leu Leu Ser Ser Leu Asn His 35 40 45 Phe Ser Val Ser Arg Lys Ser Ser Leu Leu Gln Thr Arg Ala Ser Ser 50 55 60 Glu Glu Ser Ser Ser Val Asp Ala Asn Glu Val Phe Thr Asp Leu Lys 65 70 75 80 Glu <210> 41 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP43 <400> 41 Met Ala Ser Ser Ile Cys Ala Leu Ser Pro Ser Val Gln Ser Gln Leu 1 5 10 15 Thr Lys Thr Thr Leu Val Ala Pro Ile Pro Leu Tyr Gln Arg Ser Lys 20 25 30 Cys Glu Met Ser Arg Arg Ser Phe Ala Phe Lys Gly Ile Val Ala Ser 35 40 45 Gly Val Ser Val Ala Ala Ser Thr Leu Thr Ala Glu Ala Glu Pro Ser 50 55 60 Ser Lys 65 <210> 42 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP44 <400> 42 Met Leu Ala Ile Ser Ala Ile Ala Ser Leu Pro Val Leu Pro Pro Val 1 5 10 15 Arg Arg Gly Gly His Cys Ile Glu Gln Asn Val Val Ser Thr Leu Ser 20 25 30 Phe Pro Arg Arg Leu Gln Thr Thr Asn Asn Ser Ile Ser Leu Ser Ser 35 40 45 Thr Gln Phe Pro Phe Gly Arg Arg Ala Arg Ser Thr Gln Pro Ala Thr 50 55 60 Ile Ile Cys Ala Ala Ala Leu Asn Ala Arg Cys Gly Ala Glu Gln Thr 65 70 75 80 Gln Thr Val Thr Arg Gln Ala 85 <210> 43 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP45 <400> 43 Met Ala Ser Met Thr Thr Met Leu Gln Thr Met Val Pro Lys Asn Ala 1 5 10 15 Pro Asn Leu Pro Pro Arg Val Gly Val Ser Asn Asn Thr Thr Lys Ile 20 25 30 Ser Phe Ala Gly Ser Gly Arg Val Pro Cys Thr Arg Ile Gln Arg Asn 35 40 45 Arg Asn Arg Ser Ser Ser Ile Val Val Ala Ala Val Gly Asp Val Ser 50 55 60 Ser Asp Gly Thr Thr Tyr Leu Val Ala Gly Ala Ile 65 70 75 <210> 44 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP46 <400> 44 Met Ala Ser Ile Ser Ser Leu Ser Leu Thr Ser Val Ser Leu Pro Lys 1 5 10 15 Ser Gln Ser Leu Asp Pro Lys Lys Ile Ser Asp Ser Ser Ser Ser Ser Ser 20 25 30 Gly Ser Arg Ser Gln Ser Cys Cys Cys Ala Pro Ser Phe Gln Arg Arg 35 40 45 Lys Met Leu Leu Ser Ser Ala Ala Ile Val Ala Gly Thr Leu Cys Ser 50 55 60 Asn Ser Val Ser Gly Val Ser Leu Ala 65 70 <210> 45 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP47 <400> 45 Met Glu Leu Ser Arg Leu Phe Val Ser Asp Thr Cys Phe Phe Ser Pro 1 5 10 15 Pro Ile Arg Cys Ser Pro Ser Pro Ala Leu Ser Thr Phe Phe Ala Val 20 25 30 Lys Asn Arg Arg Ser Arg Arg Arg Ser Ser Phe Cys Ser Ala Ser Asn 35 40 45 Pro Asp Thr Leu Val Ala Gly Gly Ala Ala Val Val Ala Gly Ala Gly 50 55 60 Glu Lys His Glu Glu Asp Leu Lys Ser Trp Met His Lys His Gly Leu 65 70 75 80 <210> 46 <211> 59 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP48 <400> 46 Met Ala Ser Val Phe Ser Ala Cys Ser Gly Ser Ala Val Leu Phe Tyr 1 5 10 15 Ser Arg Asn Ser Phe Pro Ser Lys Gly Ser Phe Ile His Leu Lys Arg 20 25 30 Pro Leu Ser Ala Asn Cys Val Ala Ser Leu Gly Thr Glu Val Ser Val 35 40 45 Ser Pro Ala Val Asp Thr Phe Trp Gln Trp Leu 50 55 <210> 47 <211> 66 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP49 <400> 47 Met Arg Ala Leu Asn Ser His Val Leu Leu Val Asp Leu His Ser His 1 5 10 15 His His Val Pro Thr Ser Thr Leu Ser Tyr Leu Arg Asn Ser Arg Phe 20 25 30 Ile Ser Ser Leu Arg Arg Arg Ser Pro Arg Thr Gly Ile Arg Cys Thr 35 40 45 Ala Ser Pro Glu Ile Arg Arg Pro Ser Asp Arg Phe Tyr Gly Ser Ser 50 55 60 Pro Ser 65 <210> 48 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP50 <400> 48 Met Val Ser Ala Ser Leu Gln Phe Trp Ser Trp Ile Ala Pro Thr Pro 1 5 10 15 Ile Ser His Arg Tyr Thr His Lys Phe Ala Ser Leu Thr Ser Leu Lys 20 25 30 Leu Ala Thr Pro Val Ser Ser Thr Asn Thr Val Tyr Leu Pro Lys Pro 35 40 45 Leu Val Val Arg Phe Ala Leu Thr Glu Ser Asp Ser Pro Lys Ser Ile 50 55 60 Glu Pro Asp Pro Gln Thr Leu Leu 65 70 <210> 49 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP51 <400> 49 Met Ala Ser Ile Asn Phe Asn Pro Phe Gly Gly Asn Trp Phe Ser Lys 1 5 10 15 Pro Pro Asn Pro Leu Pro Leu Pro Ser Leu Pro Asn Thr Leu Thr Asp 20 25 30 Ala Pro Ser Leu Pro Pro Asn Phe Ala Ala Ile Ser Leu Pro Asn Pro 35 40 45 Phe Arg Arg Arg Pro Lys Pro Lys Ser Ala Glu Pro Thr Glu Pro Gly 50 55 60 Pro Tyr Glu Gln Leu Ala Arg Gln Val Leu Trp Glu 65 70 75 <210> 50 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP52 <400> 50 Met Ala Thr Ile Asn Leu Ser Ser Ala Thr Thr Ser Leu Phe Gln Ser 1 5 10 15 Lys His Arg Thr Lys Arg Ile Pro Arg Leu Pro Thr Ile Ala Arg Ile 20 25 30 Thr Asn His Ile Glu Gly Thr His Leu Asn Ser Pro Asn Gly Ser Pro 35 40 45 Ile Leu Gly Asn Ala Asn Asn Ser Leu Glu Val Pro Ser Asn Asn Tyr 50 55 60 Ile Ser Leu His Ser Ser 65 70 <210> 51 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP53 <400> 51 Met Ala Val Gln Ala Phe Tyr His Leu Gly Ser Pro Leu Thr Ser Gln 1 5 10 15 Ser His Phe Pro Ser Pro Pro Leu Arg Leu Thr Leu Thr Ala Ser Ala 20 25 30 Pro Phe Lys Pro Arg Pro Leu Ala Ser Ile Gly Ile Ser Pro Leu Pro 35 40 45 Glu Arg Arg Arg Met Pro Val Ala Gly Ala Val Glu Glu Ser Gln Glu 50 55 60 Ser Ser Glu Pro Glu Ala Glu Ala Asp Leu Ala 65 70 75 <210> 52 <211> 55 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP54 <400> 52 Met Gly Leu Cys Thr Val Gln Pro Ile Thr Leu Ser Lys Leu Pro Asn 1 5 10 15 Ala Ser Ser Phe Leu Pro Lys Pro Lys Pro Ser Leu Pro Gln Ser Tyr 20 25 30 Thr Pro Ser Ala Ala His Leu Ser Arg Ser Val Cys Leu Arg Asn Leu 35 40 45 Ser Pro Lys Ala Thr Ser Ser 50 55 <210> 53 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP55 <400> 53 Met Ala Ser Ala Cys Ala Ser Ser Ala Ile Thr Ala Val Ala Ile Ser 1 5 10 15 Thr Pro Ser Ser Gly Gln Lys Asn Gly Ser Gly Gly Cys Phe Leu Ser 20 25 30 Gly Arg Lys Leu Arg Val Lys Lys Glu Arg Ala Ala Ile Gly Gly Arg 35 40 45 Ser Met Gly Thr Thr Val Cys Ala Val Ala Glu Pro Asp Arg Pro Leu 50 55 60 Trp Phe Pro Gly Ser Thr Pro Pro Trp Leu 65 70 75 <210> 54 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP56 <400> 54 Met Met Met Ile Ser Thr Ser Thr Met Ala Leu Ala Ser Leu Leu Pro 1 5 10 15 Lys Thr Ala Pro His Val Leu Ser Leu Thr Asn Pro Ser Ala Ser Thr 20 25 30 Pro Phe Ile Leu Pro Phe Ser Phe His Cys Leu Pro His Pro Pro Leu 35 40 45 Leu Ser Ala Leu Lys Ala Ser Ser Ser Gly Gly Asp Asp Leu Arg Gly 50 55 60 Lys Pro Leu Leu Ser Gln Gly Ile Gly 65 70 <210> 55 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP57 <400> 55 Met Leu Gln Asn Pro Arg Val Leu Arg Tyr Ser Ala Gln Pro Phe Asn 1 5 10 15 Pro Pro Thr Arg Thr Ala Ala Ser Ser Leu Ser Pro Phe Gln Leu Ile 20 25 30 Pro Thr Ser Pro Ser Phe Pro Ile Leu Lys Gln Gln Cys Arg Phe Ser 35 40 45 Arg Arg Glu Leu Thr Ile Phe Ser Asn Ser Cys Leu Leu Leu Leu Leu 50 55 60 Gly Ser Gln Ala Val Asp Gly Ser Arg Ala Arg Ala Glu Glu Asp Val 65 70 75 80 Gly Asn Thr Ser Asn Ile Asp Gln Leu Glu Glu Asn Leu 85 90 <210> 56 <211> 79 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP58 <400> 56 Met Ala Ala Phe Phe Gly Ser Pro Pro Ile Phe Ser Leu Pro Pro Thr 1 5 10 15 Ile Ile Arg Thr His His Ile Ser Ser Ser Ser Gln Thr Pro Pro Pro 20 25 30 Thr Pro Ser Pro Gln Ser Gln Pro Pro Thr Ser Ser Pro Gln Gln Leu 35 40 45 Arg Thr Thr Asn Leu Asn Glu Glu Ser Val Gln Val Ser Thr Glu Ala 50 55 60 Lys Gln Gln Lys Pro Ile Lys Pro Val Thr Ser Ser Thr Lys Val 65 70 75 <210> 57 <211> 85 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP59 <400> 57 Met Ala Ala Val Pro Ser Thr Phe Ala Leu Thr Lys Ser Ala Leu Ser 1 5 10 15 Ile Asn Lys Leu Asp His Ser Leu Val Lys Ile Lys Pro Tyr Ser Phe 20 25 30 Ser Leu Asn Leu Asn Arg Leu Gly Arg Met Glu Thr Ser Leu Thr Arg 35 40 45 Arg Pro Leu Thr Ile Gln Ala Thr Tyr Ser Asp Gly Gly Arg Pro Ser 50 55 60 Ser Ala Ser Val Phe Val Gly Gly Phe Leu Leu Gly Gly Leu Ile Val 65 70 75 80 Gly Thr Leu Gly Cys 85 <210> 58 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP60 <400> 58 Met Pro Leu Pro Thr Val Val Ser Pro Phe Ser Ser Ser Ser Gly Thr 1 5 10 15 Phe Leu Ser Thr Val Thr Ala Arg Ser Ser Leu Pro Pro Lys Arg Asn 20 25 30 Val Ser Pro Ser Pro Ser Pro Phe Ser Thr Leu Ser Arg Arg Asp Ile 35 40 45 Ala Leu Leu Ser Phe Phe Ser Leu Ser Leu Ser Ala Pro Ser Ser Ala 50 55 60 Ile 65 <210> 59 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP61 <400> 59 Met Ala Ala Phe Thr Ser Ile Ala Val Gln Tyr Ser Ser Thr Ser Ser 1 5 10 15 Leu Gln Ser Leu Val Pro Ser Leu Glu Ala Thr Arg Asp His Asn Ser 20 25 30 Trp Trp Gly Arg Val Arg Ser Tyr Lys Pro Thr Ala Lys Ile Ser Leu 35 40 45 Gln Gln Asn Ile Thr Arg Gly Leu Thr Ile 50 55 <210> 60 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP62 <400> 60 Met Lys Gly Ser Cys Cys Leu Ala Asn Thr His Lys Leu Tyr Ser Ser 1 5 10 15 Leu Pro Leu Ser Asn Ser Asn Asn Asn His Ile Val Ser Cys Gln Lys 20 25 30 Gly Phe Thr Phe Lys Val Arg Asn Leu Gly Phe Asn Val Asp Lys Ser 35 40 45 Phe Trp Ser Asn His Val Ser Tyr Val Ala Gln Lys Arg Lys Gly Asn 50 55 60 Gly 65 <210> 61 <211> 91 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP63 <400> 61 Met Ala Ile Ile Leu Ala Ala Asn Met Cys Ser Ile Thr Asn Ser Lys 1 5 10 15 Thr Val Glu Val Ile Lys Arg Phe Asp Ile Glu Asp Lys Leu Gln Ser 20 25 30 Arg Ser Asn Ile Ala Leu Pro Arg Leu Glu Ala Ser Ser Ser Arg Arg 35 40 45 His Leu Leu Ile Ser Val Gly Pro Ser Leu Val Thr Leu Thr Cys Gly 50 55 60 Leu Ser Pro Ser Met Val Trp Ala Glu Glu Lys Ser Gly Glu Lys Glu 65 70 75 80 Glu Glu Asp Lys Gly Val Ile Gly Ala Ile Lys 85 90 <210> 62 <211> 82 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP64 <400> 62 Met Thr Leu Ala Met Ala Val Trp Ser Ala Gly Leu His Phe Ser Ala 1 5 10 15 Ala Arg Ser Ser Leu Arg Pro Leu Glu Lys Thr Ile Cys Thr Ala Pro 20 25 30 Phe Leu Lys Ala Ser Ser Gly Phe Ala Ala Thr Lys Pro Phe Cys Ile 35 40 45 Leu Asn Thr Thr Arg Leu Ser Tyr Ser Gly Thr Thr Ile Ile Pro Arg 50 55 60 Ala Ala Pro Val Thr Asp Val Lys Asp Gly Asn Gln Gly Glu Thr Asp 65 70 75 80 Thr Ile <210> 63 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65 <400> 63 Met Ala Phe Thr Ser Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr 65 <210> 64 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP67 <400> 64 Met Val Cys Ala Ile Ser Ser Ser Pro Phe Ser Thr Leu Ser Phe Arg 1 5 10 15 Arg Leu Val Val Ser Asn Ala Thr Val Ser Pro Cys Lys Pro Arg Ala 20 25 30 Val Lys Leu Leu Thr Ala Leu Pro Ser Ala Gly Arg Arg Gln Leu Leu 35 40 45 Phe Phe Leu Thr Ala Thr Thr Ala Phe Thr Ala Arg Glu Ala Ala Ser 50 55 60 Val 65 <210> 65 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP68 <400> 65 Met Gly Ile Val Gly Phe Glu Ile Asn Ala Asn Ser Ala Ser Ala Ser 1 5 10 15 Ala Leu His Tyr Tyr Gly Ala Asn Ser Phe Ser Ser His Thr Val Pro 20 25 30 Phe Ser Leu Arg Pro Phe Phe Gly Asn Ala Leu Asn Val Asn Thr Arg 35 40 45 Val Ala Gly Lys Ile Arg Ala Ser His Ala Arg Lys Pro Lys Phe Gly 50 55 60 Ala Val Ile Val Ala Ser Leu Ser Gly Gly 65 70 <210> 66 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP69 <400> 66 Met Ala Thr Ala Thr Ala Ala Ala Ala Thr Ser Tyr Phe Phe Gly Thr 1 5 10 15 Arg Leu Asn Asn Val Asn Thr Thr Thr Leu Asn Asn Gly Arg Phe His 20 25 30 Ala Leu Leu Asn Phe 35 <210> 67 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP70 <400> 67 Met Ala Ala Leu Thr Ser Leu Ser Phe Ser Ala Val Thr His Cys Ser 1 5 10 15 Glu Arg Lys Val Thr Leu Ser Ser Thr Arg Phe Leu Ala Ser Ser Ser 20 25 30 Glu Ile <210> 68 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP71 <400> 68 Met Ala Thr Thr Phe Ala Ser Ser Ser Pro Arg Ile Ala Thr Phe Leu 1 5 10 15 Ser Ser Ser Ser Ser Ser Ser Ser Thr Leu Arg Thr Thr Thr Thr Leu Pro 20 25 30 Ser Leu Gln Phe Thr Ser Pro Ser Lys Lys Leu Ile Leu Phe His Asn 35 40 45 Pro Val Leu Gln Lys His Ser Arg Phe Arg Pro Leu Leu Leu Pro Pro 50 55 60 Pro 65 <210> 69 <211> 82 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP72 <400> 69 Met Ala Leu Ala Met Ala Ala Cys Ser Leu Gly Leu His Leu Ser Ala 1 5 10 15 Asp Asn Thr Leu Arg Pro Phe Glu Lys Thr Thr Val Leu Lys Ala Leu 20 25 30 Ser Ile Ser Tyr Val Thr Lys Pro Cys Tyr Ile Ser His Lys Thr Arg 35 40 45 Leu Ser Ser Pro Ser Ser Ser Ser Gly Ile Thr Met Ile Ala Arg Ala Thr 50 55 60 Ala Val Thr Gly Thr Val Glu Asp Gly Asn Gln Gly Glu Ala Asp Thr 65 70 75 80 Ile Pro <210> 70 <211> 65 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP73 <400> 70 Met Glu Thr Phe Ser Ile Ser Arg Asn Ser Ser Ser Leu Ile Ile Leu 1 5 10 15 Thr Arg Pro Ser Thr Arg His Lys Pro Ile Phe Leu Pro Gln Arg His 20 25 30 Gly Ser Leu Thr Phe Asn Thr Ile Arg Cys Thr Thr Thr Asp Asn Asn 35 40 45 Asn Asn Asn Thr Ser Asn Asn Asn Thr Thr Asn Asp Asp Ala Asn Ser 50 55 60 Val 65 <210> 71 <211> 73 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP75 <400> 71 Met Ala Thr Ile Leu Pro Ser Asn Ala Gln Phe Val Ser Phe Asn 1 5 10 15 Ala Arg His Arg Ser Ser Ser Pro Thr Leu Pro Arg Trp Gly Trp Arg 20 25 30 Lys Glu Gln Asp Ala Ser Ile Val Ala Asn Arg Thr Arg Gly Gln Ala 35 40 45 Phe Gln Val Leu Val Ala Ser Gly Lys Glu Gly Ser Lys Asp Asp Val 50 55 60 Val Met Val Asp Pro Val Glu Ala Lys 65 70 <210> 72 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP76 <400> 72 Met Ala Ala Thr Thr Ala Thr Ala Thr Ser Tyr Phe Phe Gly Thr Arg 1 5 10 15 Leu Asn Asn Pro Thr Thr Leu Asn Asn Gly Arg Phe His Ala Leu Leu 20 25 30 Asn Phe Gly Lys Lys Lys Ala Ala Ala Pro Pro Lys Lys Lys Glu 35 40 45 Val Lys Val Lys Pro Ser Gly Asp Arg Leu 50 55 <210> 73 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP77 <400> 73 Met Ala Ser Ile Ser Cys Ile Thr His His Pro Ile Thr Ser Lys Leu 1 5 10 15 Asn Asn Ala Phe Ser Ser Pro His Val Ser Ala Ser Asn Leu Ala Ser 20 25 30 Arg Phe Leu Gly Thr Arg Lys Arg Val Gly Leu His Ser Leu Thr Ser 35 40 45 Arg Ile Ile Gly Pro Ser Asn Gly Ser Lys Ala Thr Cys Trp Phe Arg 50 55 60 Phe Gly Lys Asn Gly Val Asp Ala Lys Gly 65 70 <210> 74 <211> 35 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP78 <400> 74 Met Thr Leu Thr Thr Ala Phe Ser Cys Ser Leu Ala Ala Ala Ser Leu 1 5 10 15 Ser Thr Ala Ala Ser Phe Arg Arg Asn Lys Cys Thr Thr Ser Lys Ile 20 25 30 Phe His Ser 35 <210> 75 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP79 <400> 75 Met Ala Thr Ile Ile Ala Gly Ile Pro Thr Thr Ser Ile Thr Arg Ala 1 5 10 15 Gly Leu Val Leu Lys Arg Pro Val Gly Ala Ser Ser Ser Thr Val Leu 20 25 30 Gly Leu Pro Ala Met Ala Lys Ala Gly Lys Val Arg Cys Ser Met Glu 35 40 45 Glu Lys Pro Ser Ser Ser Ser Asn Ile Gly Met Gly Ala Ser 50 55 60 <210> 76 <211> 67 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP80 <400> 76 Met Ala Leu Pro His Ser Ile Ile Leu Pro Phe Ser Ser Ile Ile Ser 1 5 10 15 Pro Cys Cys Leu Pro Lys His Lys Pro Thr Asn Phe Thr Leu Pro Phe 20 25 30 Lys Leu Asn Gly Asp Ser Cys Arg Ser Ile Arg Ile Pro Ser Arg Val 35 40 45 Gln Ala Leu Lys Ser Asp Gly Gly Lys Trp Lys Lys Arg Gly Gln Glu 50 55 60 Ala Ser Ser 65 <210> 77 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP81 <400> 77 Met Ser Gln Val Val Ala Thr Arg Ser Ile His Ser Ser Leu Thr Arg 1 5 10 15 Pro Thr Ser Gly Ser Ala His His Arg Ala Gln Thr Leu Leu Lys Pro 20 25 30 Pro Thr Phe Ala Ser Lys Leu Phe Gly Ala Gln Arg Asn Asn Pro Ser 35 40 45 Lys Val Cys Ser Arg Ser Cys Leu Val Asn Ala Arg Lys Ser Ala Pro 50 55 60 Ala Lys Val Val Pro Val Ser Pro Glu Asp Asp Ser 65 70 75 <210> 78 <211> 207 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01 coding gene <400> 78 atggttccac atggcataat agtaaggtct tccataccgg gcagcacggt cagccaaact 60 ggtcctgccc gaaaactcaa agagtccaaa ttcccacctc accactcaag gctcacttac 120 ttaccacaca cacctcctaa accaaaatta tccaaaacca tgtccagctt cactcatgcc 180 accacactcc tccatgccca catcaaa 207 <210> 79 <211> 171 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02 coding gene <400> 79 atggccaccg caacagcagc agccacctcg tccttcatgg ggacgcgcct cctggaggcc 60 cactccgggg cggggcgggt gcaggcccgg ttcgggtttg gcaagaagaa agccgccgcc 120 ccgaagaaag tttccagggg gtcgggctct agctccgata ggcccctgtg g 171 <210> 80 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03 coding gene <400> 80 atgcatacag gaatggcttc attaactcaa ctccattata aagtacatac ctccactttc 60 agaagggtgc attctagaag ccaaggatta ttgaaatctg gaaaactatc ccaacttcaa 120 ggatccgcct ttcctagtat tcacattaat caatcctgca tatgctgcac gaagttaact 180 ccatgggagt catcacctgt cacatatgct cctactgata atcaa 225 <210> 81 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04 coding gene <400> 81 atggtcccaa aaccaatctt agtcacaaca ccaccgccgg caacttctgc accctctcca 60 ctgctcaacg cagtttcacc cctcaaaaca gaagaaaaac cccaaacaca aaccctaaaa 120 accccccacca ccaccactca aaaagctata accaaaccaa gcccatcatc atccaccacc 180 aaaacgacgc cgcagcagcg cgtggagcta aagagaaaaa caaactca 228 <210> 82 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05 coding gene <400> 82 atggcaactt gtttcgctcc gttctccgtt tcaggtggat ctcatgagct gtggttaaca 60 aagcgagttg gacctaagct cactgttcaa aggagatcaa accttgtgat caagaggaac 120 cacacttctt caattagtgc agaataccgt gataatagag gaggtggagg tggggatttt 180 gttgctggct ttcttctg 198 <210> 83 <211> 207 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06 coding gene <400> 83 atggaagtga tgatctgtga gaatttccgg tattcaccac tctccatctt atcttcttct 60 ccttcacctc gttgccatct ctctgttcca tcttcttctt tgaggattaa accttcttct 120 tcatcttcat catcatcatc tgtgtcttgt tctctcatgg agaatcagga gacccaacgc 180 agcaaattca tggactttcc gttcgtt 207 <210> 84 <211> 135 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07 coding gene <400> 84 atggccacct ctgctattca gcaatcagca ttcgcaggtc aaactgctct gaagcagctc 60 aatgagttgg tccgcaagac cggtggcgcc ggcaaaggtc gcaccaacat gcgccgtacc 120 gtcaagagtg ctcct 135 <210> 85 <211> 138 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08 coding gene <400> 85 atggcaacct gggttttatc agaatgtggc ttaaggcctc ttccaccagt gtttccacgg 60 tcaacaagac ccatttcgtg ccaaaaacct tcaaagtcta gatttttaag cacaaacaag 120 ggtgtgccag atctgaat 138 <210> 86 <211> 135 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09 coding gene <400> 86 atgattgccc tgaaagccat tcaagcgtcc tccttcgctc tccaccacaa caacgtaaga 60 ctccctcaca caagagcttc ttctgttctg tgcttttgca gcaagtcgaa caagaacgag 120 cctgataatt cccaa 135 <210> 87 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10 coding gene <400> 87 atggctcaag caatggcatc aatgactagc ttacgtggtt cctctcaggc tgtgttggaa 60 ggtagccttg gctccacacg cttgaatgtg gggagtggaa gcagggtggc ctcagtcaca 120 cgtgcagggt tcacagttag agcacagcaa caacaagtga atggtggtga ggtacaaagt 180 agccgtaggg cagtgctttc acttgttgct gctggtttga cc 222 <210> 88 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11 coding gene <400> 88 atgagttccc cttgcagttg cgcttgcgct tctactaatt ggagcgttga ttatggttat 60 ggaggtggtg gcgtgctttc aaattcaaag gtaagaagca ggaggtccaa agaaatatcc 120 atggcacatt cagtttgtgg ttcgagaagg tccactgcac ttgtgatttc atccttgcct 180 ttcggcttcc ttttcctatc tccgccagct gaggccagac gcaacaagaa ggccatcccc 240 gaagaccaat acattactag cccagct 267 <210> 89 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13 coding gene <400> 89 atggctattc gtgtaacctt ttccttttcg ggctatgtcg cccagagcct cgcctcctcc 60 gccggcgtgc gcgtcgccaa ttcgcgttgc gtccaggaat gctggatccg tacgcgcctc 120 tctggcgcca cc 132 <210> 90 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14 coding gene <400> 90 atggctgtgt cctccaccac tgccacagta tgtattcctg ctaagaacat tccaaccact 60 caagcaccaa aaattggatt ctcaagtacc atcgcctttg ctgcgaaacc gcgaagaaga 120 ttattacgca tcagaagctc ctcagccgaa acatctggca cagaggtaga ttcagagact 180 tccattgaag ttcca 195 <210> 91 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15 coding gene <400> 91 atggctatag gcgtagcagt ttccggtatg tacacgctca ctccaactct ctcttcattc 60 aagcacccca cgcgcctctt ctcacgcgct gctttcactg caaagcttcc acttcaattt 120 cgagcttctt caacgtcctt catcgacacc gaaaccaatc caagagaatc caacgtagta 180 gtagttgaaa aggacgtaag cagtagaagc agcaattcgt tggcttgtcc cgtatgttac 240 gat 243 <210> 92 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16 coding gene <400> 92 atggctggca tgaactctag cgtattggcc tgtagctatg ccatatctgg tgcagcatgc 60 tccgagctca atgggaaggt cacttccgtg gcctctgttg catcctctgg ctacaagttg 120 ccattgatca aatgtgaggc cagagttccc 150 <210> 93 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17 coding gene <400> 93 atgttgataa cggttaggga agcttcttct tgttcttctt ctcccctcag cttctggctt 60 aatcgtttca acgcaaaacc ctccaaaaca ctcaaaacaa catccatttg ccaagctagt 120 ttctctgtcc aaagaagacc cactcattca tggaatactc gccatctctc taccagcagt 180 gagctagcaa attttgatcc cttgggtatt aactcagatt tatcttctgg t 231 <210> 94 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18 coding gene <400> 94 atggcttccg ttgttgcaag cttgccgcca ccattgctgc tccctgctag aaaatcacat 60 atgggcaact tcccaagttc ccctgtttct cttctttcag ggagatggaa tcgtgtttct 120 tttgttgtga aggcttctgg agaaagttct gaatcttcaa ctacccttac tgtttttaag 180 tctgttcaga at 192 <210> 95 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19 coding gene <400> 95 atggcttctc tagcaacctt ggctgctgtt caaccagcta cgatcaatgg ccttgctgga 60 agttccctct ctggaactaa gctctctttc aagccctctc gccacagtgt caaatccaag 120 aacttcagtg taactaagca ttacaggagt ggtgccgtgg tagcaaagta tggtgacaag 180 agtgtgtact ttgatttgga ggat 204 <210> 96 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20 coding gene <400> 96 atggctgcaa cgaatgcgtc aatctttgca tcttccacgc aaccatgctt gcctgtgcct 60 cctaccattc caaacacgct tgctactcct tttctcaatg tttcgtcacc aagaagttac 120 cttgtgaaga aaaagcatgt gaaatttagc aaaaaaatca gtgctgctgc tgttgcaaca 180 acaacaacaa ctgaggaaat tcaagagtac aagcttccat ca 222 <210> 97 <211> 183 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21 coding gene <400> 97 atgagttcat tttacatgtc tctgaaccct tcaatttctc aatcgtgtta caaacccaag 60 caatttttca atttggagag agagagtact ttggtgggaa gaagtcctgt tattcagatt 120 agatgccgga gggttgtgag tgcgtgtctt aacgtggatg ttgatgcacc tgatagtggg 180 aag 183 <210> 98 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22 coding gene <400> 98 atgccttctc tctccgtttt cccatcactc ccatcgcttc aaaaccctaa cttgagccaa 60 cccaatttct tcaatttccg cttaccgtcg ctctgtcacc gtcccctcgt caaaagcact 120 gcaacttttc accgtagaat cctctgcaaa gccttcagag attccggcga ggacatcaag 180 gcggtgctca agtccgacga cggtggtggc agcggcgacg gcggcggcga cggtgggggt 240 240 <210> 99 <211> 237 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23 coding gene <400> 99 atggctacat tctttggttc ccctccaatt ttctccctcc ccctcactag aactcaccac 60 atttcttcat catcacaaac tccaccacca actcctcctc cacaatctca gcctccaact 120 tcgtctccac agcagctaag aacaacaaat ttgaatgatg aatcaatgca agtgtgcact 180 gaagctaagc aacagaagcc catcaaacca tccactaagg ttgaatccac agattgg 237 <210> 100 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24 coding gene <400> 100 atggcagctg caacatctag tgctgtgtta aacgggtttg gatctcactt cttgtgtgga 60 ggaaagagga gccatgccct tcttgctgct agcattggag ggaaagttgg tgcttctgtt 120 agtcctaaaa gagttattgt ggcagttgct gctgcaccaa agaagtcatg gatccccgct 180 gtaaaaggtg gtgggagttt catagaccca 210 <210> 101 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25 coding gene <400> 101 atggcagcag cttcttccat ggctctctca tccccatcct tggctggcaa ggccgtgaag 60 ctgggcccat cagccccaga agtgggaagg gtgagcatga ggaagaccgt caccaagcag 120 gtctcctcag gaagcccatg gtacggccca 150 <210> 102 <211> 156 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26 coding gene <400> 102 atggcactct cagtctcctc accctcatgc gtacgcgttc cttcatgttt ttggaaacca 60 aatggcaaga gttgcaaaga gcgtactaag gtttcatgtg cagctcacaa tgataataag 120 aatccgttgg ttggaatcgg tattggggtt gtaacg 156 <210> 103 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27 coding gene <400> 103 atggctttct ctgcaatcac taccttgccc tctcctcaat ttctccgcct tcctcaatct 60 tcaccctctc ttcgattttc accgccaatt ctcaaacgcc ccaaacccct ctccattcga 120 tcagtttcaa tccccgctgc accagcatct ggttctctgg cccctgcagt ttcacttacg 180 gataatgcgc tgaag 195 <210> 104 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28 coding gene <400> 104 atgactgtgg ctatggctgt ttggagtgct ggtcttcact tcagtgctgc tacgaagcct 60 catagtagct tgaggccttt ggagaaaatc atttgcactg cccctttctt caaggcctca 120 tctgggtttg ctgctactaa gccattctgc atccttaaca caacaagatt gtcatattct 180 ggaactacaa ttatccctcg agcagcacct gttactgatg tggaggacgg gaatcatggt 240 gagactgata ccattccaac t 261 <210> 105 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29 coding gene <400> 105 atgagcatgg atatggcttg tagtttgccg cagtcaagag tgttgcatgg aggtctgggg 60 acgagttaca gacacagatc agtaggtcag ttaggctgct ttgattttag agggagaggt 120 tttggttgtg cttcttttgg ggactcgaga agtgtttcaa gactgcagag gagcaggatg 180 aatgtttctg cttgttggaa taattcaaga gtggctactg gcagggagtt taaagttttg 240 aat 243 <210> 106 <211> 189 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30 coding gene <400> 106 atggcaacca tctccgctgc tatcacaacc ccatcgatca cccgcgcatg tctagtgcaa 60 aaacgttctc ttgggttctc atctcccgtt cttggtttgc cagcaatggg taaggtggga 120 agagtgagtt gctccatgga ggaaaagcct tcttctgtga aggaaagcag ctcaagcatg 180 ttggggatg 189 <210> 107 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31 coding gene <400> 107 atggcggcag tagtatcagc atcttctcat ctattgtttg ttcttcgttc acaaccatta 60 tcatcatcac cctctttcat ttctcttctc aaacctcttc ttgtttcttc cccctatgct 120 gtatctacac cccttcggca tatccaagtt ccaccgcttc gaaaacctct cttctctact 180 tcctcttccc cctcccttac cgtttctcaa gatagtgaag aattggaaga aaaagagatt 240 gcagacgatg atgatgaatt g 261 <210> 108 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32 coding gene <400> 108 atggcacgca ctctaacact aacacctatc tctttcactc tcgctaaaac cctaaacccc 60 attttcccat tccacaacac tcttcccttc tcctcttcaa tcctttctcg ccagaagctc 120 actcgccgga gcctatcccg ctccgtcctc cgtcctaccg ccggcgaact ttccggcagc 180 gtcgacgacg atgaagaatc gggcgaattg gacgacctc 219 <210> 109 <211> 270 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33 coding gene <400> 109 atgcatgttg ttgtggtgct caacacgcaa tcctactgca gaggcctaga acctccttca 60 tcttctcctt ccgtcgtttc caacaaggga acaaggactt tgagtttcag gaggctgctg 120 ctgcgtcctt ctcttgggat tcatttatcg cgtagctttg ctttaaagtg tgttgttact 180 ccgaacccag ctgtggaatt gccattaact gctgaaaatg tagaaagtgt attggatgaa 240 attcgaccct atctcattgc agacggtggg 270 <210> 110 <211> 153 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34 coding gene <400> 110 atgcagagtc tttcaccacc tacttccaac gcgctcaatt tgaagcatgt ttttcgcccg 60 cgacttggcg cgtcaagccg aatctctgtc aaatgcgctt ttgggtttga gccggtgagc 120 tacggagtcg gctccagccg agccgattgg cag 153 <210> 111 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35 coding gene <400> 111 atgacattgc atttgcagca caaaaacatc aacatggctg ccaaactcac tctatcttct 60 cccttttcct tcaaaacttc atttctgcca aaatcaccat cattttctct aggtttatac 120 tcccccagaa ctaatgttac cggtgtcaaa gttcatgcta aattaggtgg tggagatgaa 180 caagccaaga aaggaggaaa gaagaaattc ataacc 216 <210> 112 <211> 213 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36 coding gene <400> 112 atggcattag caactaactc caaaaaacct cactgtatgg ccatcaatct cagcaccact 60 gcttctcttc actccaagcc ttcttttctg acccataaac acaacaacct catcaaaatc 120 taccatcctt cttcctcttt actcacaaca tgtgctcaaa cacaagggac tgacactgga 180 gttacacagg aagatgcttc tgctggtaat gga 213 <210> 113 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37 coding gene <400> 113 atggtggtct gcggctatga agaacaggaa gaagaaagac agaggaagag gaaagaattt 60 ggtcttggac ttcacttgag tgctgacaac accttgagac cttttgaaaa aaccactatc 120 ttgaaggccc tctctatctc tgatgctact aaaccatgtt acattctca caaaacaaga 180 ttatcatctt catcttcagg aataacaatg atcccacgag caacaacagt tattggtact 240 gtg 243 <210> 114 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38 coding gene <400> 114 atgttctcct caaccagatg cgctttcctg agcaactcag gtttaggtgg gtgcagcagc 60 ttgtgtgatg cgcagagaaa gcgttcaact cgtttcaggg tggtgagtat gaccccaagc 120 agcagcaggt ccggtgatag aaacggcagc gttgtgatgg agacg 165 <210> 115 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39 coding gene <400> 115 atggactctg cttcattcgc tcatcctttg atttcccacg tcatcactag ctcaagcttg 60 catcgttcct acggtattca tcacagtgca agactaggcc tatggaagaa caaagtctgg 120 aactcagctt gttgtgctgc tggagtagaa gacttgtttg acgatagtaa tttgaagaga 180 aatgagaatg gt 192 <210> 116 <211> 234 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41 coding gene <400> 116 atggcttcct cgtgtgcttc ctctgccatt gcagctgttg ccatctccac accaagttcc 60 cagaagaatg gatcactctt gggaagcaca aaagcttctt ttcttagtgg gaggaaactg 120 aaggtgaaca actttacagc accagttgga gcacgatcca gcactacagt ttgcgcagtt 180 gctgagcctg ataggcctct gtggttccca ggcagcaccc ctcctccatg gcta 234 <210> 117 <211> 243 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42 coding gene <400> 117 atggcggcgg cggcggcagt gacggtgcta ctcccaccta ggattccgac cgccaccaac 60 gttacccgct gctctgcttt gccttctctg cctcctcgcg gcaccaacac taaaaccact 120 ttgctcttat cttccctcaa ccacttctca gtgtcccgaa aatcttctct gcttcagacc 180 agagcttctt cagaggaatc atcctcagta gatgccaatg aggtgttcac agatttgaag 240 gaa 243 <210> 118 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43 coding gene <400> 118 atggcttctt ccatctgtgc tctctcgcct tccgtccaat cacagctcac taaaaccacc 60 ctcgttgctc caatccctct ctatcaacga agcaagtgcg aaatgagcag gaggagtttt 120 gcgtttaagg gaattgtggc ctctggcgtt tcggtcgcgg cttctactct cacagccgaa 180 gcagaaccat cttccaaa 198 <210> 119 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44 coding gene <400> 119 atgttggcta ttagtgcaat tgcatctttg cccgtattac caccagtcag aagaggtggc 60 cactgcattg aacagaatgt tgtttccaca ttgagctttc caagacgact acagacaact 120 aataattcaa tatctctgag tagtacacag tttccattcg gtagaagagc tcgttctacg 180 cagccagcaa ctataatatg tgctgcagct ttgaatgcaa gatgtggtgc agagcaaacc 240 caaactgtta ctcgccaggc t 261 <210> 120 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45 coding gene <400> 120 atggcatcca tgacgactat gcttcagacc atggttccca agaatgcacc gaatctccct 60 cctcgtgttg gtgtttccaa caacactact aagatctcat ttgctggctc aggtagggta 120 ccgtgcaccc ggattcagag gaacaggaat agatcttctt ccattgtggt tgctgcagtt 180 ggagatgttt catctgatgg caccacttac cttgttgctg gtgccatt 228 <210> 121 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46 coding gene <400> 121 atggcatcaa tttcgtcctt atctctcact tctgtttccc tccccaaatc tcaatctctg 60 gaccccaaga aaatctctga ttcttcttcc tcctctgcag gcagcaggag tcaaagttgt 120 tgttgcgcgc catcgttcca acgaagaaag atgcttctat cttccgccgc catcgttgcc 180 ggaaccttgt gcagcaattc agtcagcgga gtcagtttgg ca 222 <210> 122 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47 coding gene <400> 122 atggaactct ctcgtctctt cgtttccgac acgtgcttct tctcccctcc gattcgctgc 60 tccccttcgc cggcgctgtc cacgtttttc gccgtcaaga accgccggag caggaggagg 120 agcagcttct gttccgcctc caatcccgac accttggtcg ccggcggtgc cgccgtcgtc 180 gctggggccg gcgagaagca cgaggaggac ttgaagtctt ggatgcacaa acacggcctc 240 240 <210> 123 <211> 177 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48 coding gene <400> 123 atggctagtg tcttttctgc atgttcaggt tctgctgttc ttttctacag cagaaactcc 60 tttccctcaa aaggatcttt cattcacctc aaaaggcctc tctctgccaa ctgtgtagct 120 tctttgggga ctgaggtatc agtgtctcca gcagtagaca ctttctggca gtggctt 177 <210> 124 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49 coding gene <400> 124 atgagagcgc taaattcgca cgtgctcctc gtagatcttc actcccacca tcacgtgccc 60 acctcaaccc tctcctacct cagaaactcc cgcttcatat catccctccg tcgacgctcc 120 ccaagaaccg gaatccgatg tacggcgtcg ccggagattc gccgcccctc cgatcgcttc 180 tacggctcct cgccgtcg 198 <210> 125 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50 coding gene <400> 125 atggtttcag cttcgcttca attctggtct tggatagcac ctactcctat atcccaccgt 60 tacacccata aatttgcttc cctaacctca ctcaaattag ccactcctgt ttcttctact 120 aataccgttt atcttcccaa gcctctagtt gtgcgttttg ctctaactga gtccgactcg 180 cccaaatcca tagaacctga ccctcaaact cttctc 216 <210> 126 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51 coding gene <400> 126 atggcttcca tcaacttcaa ccccttcggt ggaaactggt tctcaaaacc ccctaatccc 60 ctccctctcc cttccctccc caacaccctc accgacgcac cctccctccc tcccaacttc 120 gccgcaatct ccctcccaaa ccccttccgc cgcaggccca agcccaagtc cgccgagccc 180 accgaacccg ggccctacga gcagctggcc cggcaggtcc tctgggag 228 <210> 127 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52 coding gene <400> 127 atggcaacca ttaacctttc ttccgctact acgtctctct tccaatccaa acaccgaacg 60 aaacgcattc cacgcctccc tacaatcgcc agaataacaa accacatcga aggaactcat 120 cttaactccc ccaacggctc tcccatcctt ggcaacgcaa acaattccct tgaggttccc 180 tccaataact atatctcgct acactcttca 210 <210> 128 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53 coding gene <400> 128 atggctgtgc aagctttcta tcacttaggg tcaccgctga cgtcacagtc acactttcca 60 tcaccccctc tccgactcac actcactgct tccgcgccct tcaagccccg acccctcgct 120 tccatcggaa tctcgccgct cccggagagg cgccggatgc cggtggccgg cgccgtggag 180 gaaagccaag agagttccga accggaagcg gaagcggatt tggca 225 <210> 129 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54 coding gene <400> 129 atggggcttt gtacagttca gcctatcact ctctcgaagc ttcctaacgc ctcctctttt 60 cttcctaaac ctaaaccctc tcttcctcag tcttacactc cctccgccgc acacttatct 120 cggtcagttt gcttaaggaa tctgtcgcca aaggcaacat cttct 165 <210> 130 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55 coding gene <400> 130 atggcttccg cttgtgcttc ctctgcaatt acagctgttg ccatctctac gccgagttcc 60 gggcagaaga atggatcagg aggttgtttt cttagtggaa ggaaattgag ggtgaaaaag 120 gagagagcag caattggagg acgatcgatg ggcactacag tgtgcgcagt tgctgagcct 180 gacagacctc tatggttccc aggcagcacc cctcctccat ggctt 225 <210> 131 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56 coding gene <400> 131 atgatgatga tttcaacttc aaccatggct ttggcttctt tactacccaa aacggcaccg 60 catgtccttt ccctcacaaa cccttccgct tccactccct tcatcttacc tttcagtttc 120 cactgtttgc ctcaccctcc tcttctctct gccctcaaag ctagttcctc cggtggcgac 180 gatttacgcg gcaagcccct gctttctcag ggaattgga 219 <210> 132 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57 coding gene <400> 132 atgctgcaaa acccaagagt attgcgatat tccgctcagc cattcaatcc tccaactcgc 60 acggcagcat catcactttc tccattccaa ttaataccca cttctccatc ttttccaatc 120 ctcaaacagc aatgcagatt ctcacgtaga gagctcacaa tctttagcaa ctcttgcttg 180 ctactactct tgggttctca ggcagtggat ggatccagag caagagcaga agaagacgtt 240 ggtaacacaa gtaacattga tcaactagaa gagaatctg 279 <210> 133 <211> 237 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58 coding gene <400> 133 atggctgctt tctttggttc cccaccaatt ttctccctcc cccctactat tattagaact 60 catcacattt cttcatcatc acaaactcca ccaccaacac cttcaccaca atctcagcct 120 ccaacttcgt ctccacagca gctaagaaca acaaatttga atgaggaatc agtgcaagtg 180 tccactgaag ctaagcaaca gaagcccatc aaaccagtca cttcatccac taaggtt 237 <210> 134 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59 coding gene <400> 134 atggctgctg ttccctctac tttcgctcta accaaatctg cattgtccat aaacaagctg 60 gaccactctc tggtcaagat caaaccatac agcttctctc tgaatctaaa ccgtctaggg 120 aggatggaaa catctttaac cagaaggcct ctaacaattc aagccacata tagtgatggt 180 ggaaggccca gcagtgctag tgtatttgtt ggtgggtttc tcttgggagg attaatagtt 240 ggcactcttg gttgt 255 <210> 135 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60 coding gene <400> 135 atgccactgc caacggtcgt ttccccattt tcttcttcct caggcacctt cttatccaca 60 gttaccgcgc gctcttcact ccctccaaaa cgcaacgtct ccccttcccc ttcccccttc 120 tccactctct ctcgcagaga cattgctctg ctttccttct tctccctctc cctctcagca 180 ccatcctccg ccatch 195 <210> 136 <211> 174 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61 coding gene <400> 136 atggcagctt ttacatcaat tgctgtacag tactcatcca catcatcttt acagtctttg 60 gtgccttctt tagaggctac acgcgatcat aactcatggt gggggagagt gagatcatac 120 aaacccacag caaaaatttc actccaacag aatatcacaa gaggcttaac aatc 174 <210> 137 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62 coding gene <400> 137 atgaagggtt cttgttgcct tgccaataca cacaagctct attcctctct tcctttgagc 60 aactccaaca acaaccacat cgtttcatgc caaaaaggtt tcacttttaa ggtgaggaat 120 ttgggcttca acgtggacaa gagcttttgg tcaaaccatg tttcctatgt agcacaaaag 180 agaaagggta atggt 195 <210> 138 <211> 273 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63 coding gene <400> 138 atggcaatta tccttgcagc aaatatgtgt tccattacaa attccaaaac agttgaagtg 60 atcaaaagat ttgatattga agataaactg caatccagat ctaatattgc actgcctcgc 120 ctggaagctt catcaagtcg caggcatctc ttaatcagtg ttggcccttc attggttacc 180 ttaacatgtg gtttatcacc atcaatggta tgggctgaag agaagtctgg tgagaaagag 240 gaagaagata aaggggttat tggggccatc aaa 273 <210> 139 <211> 246 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64 coding gene <400> 139 atgactctgg ctatggctgt ttggagtgct ggtcttcact tcagtgctgc tcgtagtagc 60 ttgagacctt tggagaaaac catttgcact gcccctttct tgaaggcgtc atctgggttt 120 gctgctacta agccattctg catccttaac acaacaagat tgtcatattc tggaactaca 180 attatccctc gagcagcacc tgttactgat gtgaaggatg ggaatcaagg tgagactgat 240 accatt 246 <210> 140 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65 coding gene <400> 140 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcact 195 <210> 141 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67 coding gene <400> 141 atggtgtgtg caatctcatc atcaccgttc tcaactctct cgtttcggcg tctcgtcgtg 60 agcaatgcga cggtgtctcc gtgcaagccg cgtgccgtga aactcttaac ggcgcttccg 120 agcgcggggc ggaggcagtt gctgtttttt ctaacggcga cgacagcgtt cacggcgagg 180 gaagcggcat ccgtg 195 <210> 142 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68 coding gene <400> 142 atgggaattg ttggctttga aattaatgcg aattctgctt ctgcttctgc tttgcattat 60 tatggtgcta attcgttctc ttcccacacg gttccttttt ctctgagacc ctttttcggg 120 aatgctctga acgtgaacac gagggttgca gggaagattc gggcctctca tgctagaaag 180 cccaaattcg gagcagttat tgttgcttca ctgagtggtg gc 222 <210> 143 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69 coding gene <400> 143 atggccactg ccaccgccgc cgccgccacg tcatactttt tcggcacccg tctcaacaac 60 gttaacacga caaccttaaa caacggaaga ttccacgcgc tcttgaactt c 111 <210> 144 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70 coding gene <400> 144 atggctgctc tcacttctct atctttctca gcagtgactc attgctcaga aagaaaagtg 60 accctttcct ccactcgctt tctggcttcc tcctcagaga ta 102 <210> 145 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71 coding gene <400> 145 atggccacca catttgcatc ctcatctcca agaattgcaa ccttcctctc ttcttcttct 60 tcttcttcta ctcttagaac tactaccact cttccatctc tccaatttac ctccccatcc 120 aaaaagttaa tcctttttca caacccagta cttcaaaaac atagcagatt ccgacccctt 180 cttcttcctc ctcct 195 <210> 146 <211> 246 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72 coding gene <400> 146 atggccctgg ctatggctgc ttgcagtctt ggacttcact tgagtgctga taacaccttg 60 agaccttttg aaaaaaccac cgtcttgaag gccctctcta tctcttatgt tactaaacca 120 tgttacattt ctcacaaaac aagattatca tcaccttcat cttcaggaat aacaatgatc 180 gcacgagcaa cagcagttac tggtactgtg gaggatggaa atcaaggaga ggctgatacc 240 attcca 246 <210> 147 <211> 195 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73 coding gene <400> 147 atggaaacct tctccatctc tcgaaactca tcttccctca tcattctcac tagaccatca 60 accaggcaca agccaatctt cctgccacag cgtcacggtt ctctcacttt caacaccatc 120 agatgcacca ccactgataa taacaataac aatactagta acaacaacac aaccaatgat 180 gatgcaaact cagtt 195 <210> 148 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75 coding gene <400> 148 atggccacca ttctaccgcc aagcaacgct cagtttgttt ccttcaacgc tcgccaccgc 60 tcttcctctc ccactctccc aaggtgggga tggagaaaag agcaagacgc aagcatagtt 120 gccaatagaa cccgaggtca agcatttcaa gtcctggtag cttcaggaaa ggaaggttca 180 aaagatgatg tggtcatggt tgatcctgtg gaagccaag 219 <210> 149 <211> 174 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76 coding gene <400> 149 atggctgcca ccaccgccac cgccacgtca tacttttttg gcacccgcct caacaacccg 60 acaaccttaa acaacggaag attccacgcg ctcctcaact tcggcaaaaa gaaggcggcg 120 gcgccgccac cgaagaaaaa ggaagtgaaa gtgaaaccct ccggcgaccg gctg 174 <210> 150 <211> 222 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77 coding gene <400> 150 atggcttcta tctcatgcat cacccaccac cccatcactt ccaagctcaa taatgccttc 60 tcttcacccc acgtctctgc ctcaaacttg gcctcacggt ttctgggcac cagaaaaaga 120 gttgggttgc atagcctcac ctctagaata attggaccct ctaatggctc caaagccaca 180 tgctggttca ggttcggcaa gaacggtgtt gatgccaaag gt 222 <210> 151 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78 coding gene <400> 151 atgactttga caaccgcgtt ttcttgttcg ctcgccgctg cttctctctc caccgccgcc 60 agtttccgcc ggaataaatg caccaccagc aagatttttc attcc 105 <210> 152 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79 coding gene <400> 152 atggcaacca tcatcgccgg catcccaact acatcgatca ctcgcgcagg tcttgtgctc 60 aaacgacctg ttggagcctc gtcctctacc gttcttggat tgccagcaat ggctaaggca 120 gggaaagtga ggtgctccat ggaggaaaag ccttcaagca gctcaaatat agggatgggg 180 gcatcc 186 <210> 153 <211> 201 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80 coding gene <400> 153 atggcgctgc cccattccat cattctgccc ttctcgtcca tcatttcacc atgttgtctt 60 cccaaacata aacctaccaa tttcaccctt ccctttaagc tgaatggtga tagctgtaga 120 tcaataagaa tcccaagcag agttcaagca ctcaaatctg atggtggtaa atggaagaag 180 agagggcaag aagcatctag t 201 <210> 154 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81 coding gene <400> 154 atgtctcagg tagtggccac tcgatccatt cactcctccc tcacgcgccc cacctcagga 60 tctgcacacc acagggccca aacgttgttg aagcctccaa cttttgcttc caaattgttc 120 ggagcacaaa ggaacaaccc ctccaaagtt tgctcccgaa gttgcctcgt caatgcgagg 180 aaatctgcac ccgctaaagt tgttcccgtg tcacccgagg atgattca 228 <210> 155 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01_F primer <400> 155 cgcggatcca tggttccaca tggcataata gtaagg 36 <210> 156 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02_F primer <400> 156 cgcggatcca tggccaccgc aacag 25 <210> 157 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03_F primer <400> 157 tccctctccc cttgctccgt ggatccatgc atacaggaat ggcttc 46 <210> 158 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04_F primer <400> 158 cgcggatcca tggtcccaaa accaatctta gtcac 35 <210> 159 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05_F primer <400> 159 cgcggatcca tggcaacttg tttcgctcc 29 <210> 160 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06_F primer <400> 160 cgcggatcca tgatggaagt gatgatctgt gagaattt 38 <210> 161 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07_F primer <400> 161 cgcggatcca tggccacctc tgctattcag 30 <210> 162 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08_F primer <400> 162 tccctctccc cttgctccgt cgcggatcca tggcaacctg ggttttatca gaa 53 <210> 163 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09_F primer <400> 163 cgcggatcca tgattgccct gaaagccatt caa 33 <210> 164 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10_F primer <400> 164 cgcggatcca tggctcaagc aatggcatca a 31 <210> 165 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11_F primer <400> 165 cgcggatcca tgagttcccc ttgcagttgc 30 <210> 166 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13_F primer <400> 166 tccctctccc cttgctccgt ggatccatgg ctattcgtgt aaccttttcc tt 52 <210> 167 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14_F primer <400> 167 cgcggatcca tggctgtgtc ctccacca 28 <210> 168 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15_F primer <400> 168 cgcggatcca tggctatagg cgtagcagtt t 31 <210> 169 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16_F primer <400> 169 cgcggatcca tggctggcat gaactctagc 30 <210> 170 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17_F primer <400> 170 cgcggatcca tgttgataac ggttagggaa gcttc 35 <210> 171 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18_F primer <400> 171 cgcggatcca tggcttccgt tgttgcaag 29 <210> 172 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19_F primer <400> 172 cgcggatcca tggcttctct agcaaccttg g 31 <210> 173 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20_F primer <400> 173 cgcggatcca tggctgcaac gaatgcg 27 <210> 174 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21_F primer <400> 174 cgcggatcca tgagttcatt ttacatgtct ctgaaccc 38 <210> 175 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22_F primer <400> 175 cgcggatcca tgccttctct ctccgttttc c 31 <210> 176 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23_F primer <400> 176 cgcggatcca tggctacatt ctttggttcc cc 32 <210> 177 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24_F primer <400> 177 tccctctccc cttgctccgt ggatccatgg cagctgcaac atctagt 47 <210> 178 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25_F primer <400> 178 cgcggatcca tggcagcagc ttcttcca 28 <210> 179 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26_F primer <400> 179 cgcggatcca tggcactctc agtctcctca 30 <210> 180 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27_F primer <400> 180 cgcggatcca tggctttctc tgcaatcact acc 33 <210> 181 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28_F primer <400> 181 tccctctccc cttgctccgt ggatccatga ctgtggctat ggctgtt 47 <210> 182 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29_F primer <400> 182 tccctctccc cttgctccgt ggatccatga gcatggatat ggcttgtagt tt 52 <210> 183 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30_F primer <400> 183 cgcggatcca tggcaaccat ctccgct 27 <210> 184 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31_F primer <400> 184 cgcggatcca tggcggcagt agtatcagc 29 <210> 185 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32_F primer <400> 185 cgcggatcca tggcacgcac tctaacacta ac 32 <210> 186 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33_F primer <400> 186 tccctctccc cttgctccgt ggatccatgc atgttgttgt ggtgctc 47 <210> 187 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34_F primer <400> 187 cgcggatcca tgcagagtct ttcaccacct ac 32 <210> 188 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35_F primer <400> 188 cgcggatcca tgacattgca tttgcagcac aa 32 <210> 189 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36_F primer <400> 189 cgcggatcca tggcattagc aactaactcc aaaaaac 37 <210> 190 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37_F primer <400> 190 cgcggatcca tggtggtctg cggctatg 28 <210> 191 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38_F primer <400> 191 cgcggatcca tgttctcctc aaccagatgc g 31 <210> 192 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39_F primer <400> 192 tccctctccc cttgctccgt ggatccatgg actctgcttc attcgctc 48 <210> 193 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41_F primer <400> 193 tccctctccc cttgctccgt ggatccatgg cttcctcgtg tgcttc 46 <210> 194 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42_F primer <400> 194 cgcggatcca tggcggcggc gg 22 <210> 195 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43_F primer <400> 195 cgcggatcca tggcttcttc catctgtgct c 31 <210> 196 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44_F primer <400> 196 cgcggatcca tgttggctat tagtgcaatt gcatc 35 <210> 197 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_F primer <400> 197 cgcggatcca tggcatccat gacgactatg c 31 <210> 198 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46_F primer <400> 198 cgcggatcca tggcatcaat ttcgtcctta tctct 35 <210> 199 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47_F primer <400> 199 cgcggatcca tggaactctc tcgtctcttc gt 32 <210> 200 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48_F primer <400> 200 tccctctccc cttgctccgt ggatccatgg ctagtgtctt ttctgcatgt 50 <210> 201 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49_F primer <400> 201 cgcggatcca tgagagcgct aaattcgcac 30 <210> 202 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50_F primer <400> 202 cgcggatcca tggtttcagc ttcgcttcaa ttc 33 <210> 203 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51_F primer <400> 203 cgcggatcca tggcttccat caacttcaac c 31 <210> 204 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52_F primer <400> 204 cgcggatcca tggcaaccat taacctttct tcc 33 <210> 205 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53_F primer <400> 205 cgcggatcca tggctgtgca agctttctat c 31 <210> 206 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54_F primer <400> 206 cgcggatcca tggggctttg tacagttcag c 31 <210> 207 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55_F primer <400> 207 cgcggatcca tggcttccgc ttgtgc 26 <210> 208 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56_F primer <400> 208 cgcggatcca tgatgatgat ttcaacttca accatgg 37 <210> 209 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57_F primer <400> 209 tccctctccc cttgctccgt ggatccatgc tgcaaaaccc aagagtatt 49 <210> 210 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58_F primer <400> 210 cgcggatcca tggctgcttt ctttggttcc 30 <210> 211 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59_F primer <400> 211 tccctctccc cttgctccgt ggatccatgg ctgctgttcc ctctac 46 <210> 212 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60_F primer <400> 212 cgcggatcca tgccactgcc aacggtc 27 <210> 213 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61_F primer <400> 213 cgcggatcca tggcagcttt tacatcaatt gctg 34 <210> 214 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62_F primer <400> 214 cgcggatcca tgaagggttc ttgttgcctt g 31 <210> 215 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63_F primer <400> 215 cgcggatcca tggcaattat ccttgcagca aatatg 36 <210> 216 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64_F primer <400> 216 cgcggatcca tgactctggc tatggctgtt tg 32 <210> 217 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65_F primer <400> 217 cgcggatcca tggcttttac ttcttcatgt tctcttgc 38 <210> 218 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67_F primer <400> 218 cgcggatcca tggtgtgtgc aatctcatca tc 32 <210> 219 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68_F primer <400> 219 cgcggatcca tgggaattgt tggctttgaa attaatgc 38 <210> 220 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69_F primer <400> 220 cgcggatcca tggccactgc caccg 25 <210> 221 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70_F primer <400> 221 cgcggatcca tggctgctct cacttctcta tctt 34 <210> 222 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71_F primer <400> 222 cgcggatcca tggccaccac atttgcatcc 30 <210> 223 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72_F primer <400> 223 cgcggatcca tggccctggc tatggc 26 <210> 224 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73_F primer <400> 224 cgcggatcca tggaaacctt ctccatctct cg 32 <210> 225 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75_F primer <400> 225 cgcggatcca tggccaccat tctaccgc 28 <210> 226 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76_F primer <400> 226 cgcggatcca tggctgccac caccg 25 <210> 227 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77_F primer <400> 227 cgcggatcca tggcttctat ctcatgcatc acc 33 <210> 228 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78_F primer <400> 228 cgcggatcca tgactttgac aaccgcgttt tc 32 <210> 229 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79_F primer <400> 229 cgcggatcca tggcaaccat catcgcc 27 <210> 230 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80_F primer <400> 230 cgcggatcca tggcgctgcc cca 23 <210> 231 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81_F primer <400> 231 cgcggatcca tgtctcaggt agtggccact c 31 <210> 232 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP01_R primer <400> 232 aaaaggcctc tcgagtttga tgtgggcatg gaggagtg 38 <210> 233 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP02_R primer <400> 233 aaaaggcctc tcgagccaca ggggcctatc gga 33 <210> 234 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP03_R primer <400> 234 cagctcctcg cccttgctca caggcctctc gagttgatta tcagtaggag catatgtgac 60 agg 63 <210> 235 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP04_R primer <400> 235 aaaaggcctc tcgagtgagt ttgtttttct ctttagctcc acg 43 <210> 236 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP05_R primer <400> 236 aaaaggcctc tcgagcagaa gaaagccagc aacaaaatcc 40 <210> 237 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP06_R primer <400> 237 aaaaggcctc tcgagaacga acggaaagtc catgaatttg 40 <210> 238 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP07_R primer <400> 238 aaaaggcctc tcgagaggag cactcttgac ggtac 35 <210> 239 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP08_R primer <400> 239 cagctcctcg cccttgctca caggcctctc gagattcaga tctggcacac ccttg 55 <210> 240 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP09_R primer <400> 240 aaaaggcctc tcgagttggg aattatcagg ctcgttcttg tt 42 <210> 241 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP10_R primer <400> 241 aaaaggcctc tcgagggtca aaccagcagc aacaag 36 <210> 242 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP11_R primer <400> 242 aaaaggcctc tcgagagctg ggctagtaat gtattggtct tc 42 <210> 243 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP13_R primer <400> 243 cagctcctcg cccttgctca caggcctctc gagggtggcg ccagagagg 49 <210> 244 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP14_R primer <400> 244 aaaaggcctc tcgagtggaa cttcaatgga agtctctgaa tctacc 46 <210> 245 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP15_R primer <400> 245 aaaaggcctc tcgagatcgt aacatacggg acaagccaa 39 <210> 246 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP16_R primer <400> 246 aaaaggcctc tcgaggggaa ctctggcctc acatttg 37 <210> 247 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP17_R primer <400> 247 aaaaggcctc tcgagaccag aagataaatc tgagttaata cccaag 46 <210> 248 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP18_R primer <400> 248 aaaaggcctc tcgagattct gaacagactt aaaaacagta agggtag 47 <210> 249 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP19_R primer <400> 249 aaaaggcctc tcgagatcct ccaaatcaaa gtacacactc ttg 43 <210> 250 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP20_R primer <400> 250 aaaaggcctc tcgagtgatg gaagcttgta ctcttgaatt tcctc 45 <210> 251 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP21_R primer <400> 251 aaaaggcctc tcgagcttcc cactatcagg tgcatcaac 39 <210> 252 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP22_R primer <400> 252 aaaaggcctc tcgagacccc caccgtcgcc 30 <210> 253 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP23_R primer <400> 253 aaaaggcctc tcgagccaat ctgtggattc aaccttagtg g 41 <210> 254 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP24_R primer <400> 254 cagctcctcg cccttgctca caggcctctc gagtgggtct atgaaactcc caccac 56 <210> 255 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP25_R primer <400> 255 aaaaggcctc tcgagtgggc cgtaccatgg gc 32 <210> 256 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP26_R primer <400> 256 aaaaggcctc tcgagcgtta caaccccaat accgattcca 40 <210> 257 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP27_R primer <400> 257 aaaaggcctc tcgagcttca gcgcattatc cgtaagtg 38 <210> 258 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP28_R primer <400> 258 cagctcctcg cccttgctca caggcctctc gagagttgga atggtatcag tctcaccat 59 <210> 259 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP29_R primer <400> 259 cagctcctcg cccttgctca caggcctctc gagattcaaa actttaaact ccctgccagt 60 ag 62 <210> 260 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP30_R primer <400> 260 aaaaggcctc tcgagcatcc ccaacatgct tgagc 35 <210> 261 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP31_R primer <400> 261 aaaaggcctc tcgagcaatt catcatcatc gtctgcaatc tc 42 <210> 262 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP32_R primer <400> 262 aaaaggcctc tcgaggaggt cgtccaattc gccccg 35 <210> 263 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP33_R primer <400> 263 cagctcctcg cccttgctca caggcctctc gagcccaccg tctgcaatga gatag 55 <210> 264 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP34_R primer <400> 264 aaaaggcctc tcgagctgcc aatcggctcg g 31 <210> 265 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP35_R primer <400> 265 aaaaggcctc tcgagggtta tgaatttctt ctttcctcct ttcttgg 47 <210> 266 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP36_R primer <400> 266 aaaaggcctc tcgagtccat taccagcaga agcatcttcc 40 <210> 267 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP37_R primer <400> 267 aaaaggcctc tcgagcacag taccaataac tgttgttgct c 41 <210> 268 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP38_R primer <400> 268 aaaaggcctc tcgagcgtct ccatcacaac gctgc 35 <210> 269 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP39_R primer <400> 269 cagctcctcg cccttgctca caggcctctc gagaccattc tcatttctct tcaaattact 60 atcgt 65 <210> 270 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP41_R primer <400> 270 cagctcctcg cccttgctca caggcctctc gagtagccat ggaggagggg tg 52 <210> 271 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP42_R primer <400> 271 aaaaggcctc tcgagttcct tcaaatctgt gaacacctca ttgg 44 <210> 272 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP43_R primer <400> 272 aaaaggcctc tcgagtttgg aagatggttc tgcttcggc 39 <210> 273 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44_R primer <400> 273 aaaaggcctc tcgagagcct ggcgagtaac agttt 35 <210> 274 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_R primer <400> 274 aaaaggcctc tcgagaatgg caccagcaac aagg 34 <210> 275 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP46_R primer <400> 275 aaaaggcctc tcgagtgcca aactgactcc gctgac 36 <210> 276 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP47_R primer <400> 276 aaaaggcctc tcgaggaggc cgtgtttgtg catc 34 <210> 277 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP48_R primer <400> 277 cagctcctcg cccttgctca caggcctctc gagaagccac tgccagaaag tgtcta 56 <210> 278 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP49_R primer <400> 278 aaaaggcctc tcgagcgacg gcgaggagcc g 31 <210> 279 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP50_R primer <400> 279 aaaaggcctc tcgaggagaa gagtttgagg gtcaggttct 40 <210> 280 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP51_R primer <400> 280 aaaaggcctc tcgagctccc agaggacctg ccg 33 <210> 281 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP52_R primer <400> 281 aaaaggcctc tcgagtgaag agtgtagcga gatatagtta ttggag 46 <210> 282 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP53_R primer <400> 282 aaaaggcctc tcgagtgcca aatccgcttc cgc 33 <210> 283 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP54_R primer <400> 283 aaaaggcctc tcgagagaag atgttgcctt tggcga 36 <210> 284 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP55_R primer <400> 284 aaaaggcctc tcgagaagcc atggaggagg gg 32 <210> 285 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP56_R primer <400> 285 aaaaggcctc tcgagtccaa ttccctgaga aagcagg 37 <210> 286 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP57_R primer <400> 286 cagctcctcg cccttgctca caggcctctc gagcagattc tcttctagtt gatcaatgtt 60 acttg 65 <210> 287 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP58_R primer <400> 287 aaaaggcctc tcgagaacct tagtggatga agtgactgg 39 <210> 288 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP59_R primer <400> 288 cagctcctcg cccttgctca caggcctctc gagacaacca agagtgccaa ctattaatcc 60 60 <210> 289 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP60_R primer <400> 289 aaaaggcctc tcgaggatgg cggaggatgg tgc 33 <210> 290 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP61_R primer <400> 290 aaaaggcctc tcgaggattg ttaagcctct tgtgatattc tgttgga 47 <210> 291 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP62_R primer <400> 291 aaaaggcctc tcgagaccat taccctttct cttttgtgct ac 42 <210> 292 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP63_R primer <400> 292 aaaaggcctc tcgagtttga tggccccaat aaccccttta tc 42 <210> 293 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP64_R primer <400> 293 aaaaggcctc tcgagaatgg tatcagtctc accttgattc c 41 <210> 294 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65_R primer <400> 294 aaaaggcctc tcgagagtgc tgtttgagtt tgacgcc 37 <210> 295 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP67_R primer <400> 295 aaaaggcctc tcgagcacgg atgccgcttc c 31 <210> 296 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP68_R primer <400> 296 aaaaggcctc tcgaggccac cactcagtga agcaa 35 <210> 297 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP69_R primer <400> 297 aaaaggcctc tcgaggaagt tcaagagcgc gtggaatc 38 <210> 298 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP70_R primer <400> 298 aaaaggcctc tcgagtatct ctgaggagga agccagaaag c 41 <210> 299 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP71_R primer <400> 299 aaaaggcctc tcgagaggag gaggaagaag aagggg 36 <210> 300 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP72_R primer <400> 300 aaaaggcctc tcgagtggaa tggtatcagc ctctccttga tttc 44 <210> 301 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP73_R primer <400> 301 aaaaggcctc tcgagaactg agtttgcatc atcattggtt g 41 <210> 302 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP75_R primer <400> 302 aaaaggcctc tcgagcttgg cttccacagg atcaacc 37 <210> 303 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP76_R primer <400> 303 aaaaggcctc tcgagcagcc ggtcgccg 28 <210> 304 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP77_R primer <400> 304 aaaaggcctc tcgagacctt tggcatcaac accgttc 37 <210> 305 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP78_R primer <400> 305 aaaaggcctc tcgagggaat gaaaaatctt gctggtggtg 40 <210> 306 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP79_R primer <400> 306 aaaaggcctc tcgagggatg cccccatccc tatatttg 38 <210> 307 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP80_R primer <400> 307 aaaaggcctc tcgagactag atgcttcttg ccctctcttc 40 <210> 308 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP81_R primer <400> 308 aaaaggcctc tcgagtgaat catcctcggg tgacacg 37 <210> 309 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GFP_F primer <400> 309 gtgagcaagg gcgaggag 18 <210> 310 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP44-67_R primer <400> 310 cttgctcaca catattatag ttgctggctg cgtag 35 <210> 311 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_56_R primer <400> 311 cttgctcacc acaatggaag aagatctatt cctgt 35 <210> 312 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_57_R primer <400> 312 ctcgcccttg ctcacaacca caatggaaga agatc 35 <210> 313 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_58_R primer <400> 313 ctcgcccttg ctcacagcaa ccacaatgga agaag 35 <210> 314 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_59_R primer <400> 314 ctcgcccttg ctcactgcag caaccacaat gg 32 <210> 315 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP45_60_R primer <400> 315 ctcgcccttg ctcacaactg cagcaaccac aatg 34 <210> 316 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-45_R primer <400> 316 cttgctcacc agtggttgtt gtcttggagt cggaa 35 <210> 317 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-50_R primer <400> 317 tcgcccttgc tcacggttga agaaaacaac agtgg 35 <210> 318 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-55_R primer <400> 318 ctcgcccttg ctcactgcta agcaagttga ggttg 35 <210> 319 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-70 <400> 319 Met Ala Phe Thr Ser Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn 65 70 <210> 320 <211> 75 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-75 <400> 320 Met Ala Phe Thr Ser Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn Asn Asn Pro Ala Ser 65 70 75 <210> 321 <211> 80 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-80 <400> 321 Met Ala Phe Thr Ser Ser Ser Cys Ser Leu Ala Ser Gln Phe Leu Pro Pro 1 5 10 15 Ile Tyr His Ser Ala Ile Pro Phe His Ser Thr Asn Cys Thr Asn Leu 20 25 30 Ser Phe Pro Ala Val Pro Thr Pro Arg Gln Gln Pro Leu Leu Phe Ser 35 40 45 Ser Thr Ser Thr Cys Leu Ala Ala Ala Ala Ala Ser Asn Ser Asn Ser 50 55 60 Thr Ser Asn Ser Asn Asn Asn Asn Pro Ala Ser Ala Ser Ala Ser Ser 65 70 75 80 <210> 322 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-70 coding gene <400> 322 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac 210 <210> 323 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-75 coding gene <400> 323 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac aacaaccctg cttca 225 <210> 324 <211> 240 <212> DNA <213> Artificial Sequence <220> <223> Synthetic_GmCTP65-80 coding gene <400> 324 atggctttta cttcttcatg ttctcttgct tctcagtttc tccctcccat atatcattct 60 gcaatccctt ttcactcaac gaactgcaca aatttgtcat tccccgctgt tccgactcca 120 agacaacaac cactgttgtt ttcttcaacc tcaacttgct tagcagcagc ggcggcgtca 180 aactcaaaca gcacttcgaa ttccaataac aacaaccctg cttcagcttc agcttcgtcg 240 240 <210> 325 <211> 486 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PPO from Oscillatoria nigroviridis PCC 7112 (CyPPO2) <400> 325 Met Glu Leu Leu Asp Thr Leu Ile Val Gly Ala Gly Ile Ser Gly Leu 1 5 10 15 Ser Leu Ala His Ala Leu His Lys Glu Ala Thr Ser Ala Ser Pro Leu 20 25 30 Lys Ile Leu Val Ala Glu Ser Gin Gly Arg Val Gly Gly Asn Ile Thr 35 40 45 Thr Val Thr Ala Glu Gly Phe Leu Trp Glu Glu Gly Pro Asn Ser Phe 50 55 60 Ser Pro Thr Pro Glu Leu Met Lys Leu Ala Val Asp Val Gly Leu Lys 65 70 75 80 Gln Glu Leu Ile Phe Ala Asp Arg Lys Leu Pro Arg Phe Val Tyr Trp 85 90 95 Glu Asn Lys Leu Gln Pro Val Pro Met Thr Pro Pro Ala Met Ile Gln 100 105 110 Ser Gln Leu Leu Ser Phe Pro Gly Lys Leu Arg Ala Leu Phe Gly Ala 115 120 125 Leu Gly Phe Val Ala Pro Ala Met Gly Asp Arg Leu Ser Gln Gln Gly 130 135 140 Asn Glu Glu Thr Val Ser Gin Phe Phe Arg Arg His Leu Gly Thr Glu 145 150 155 160 Val Met Gln Arg Leu Val Glu Pro Phe Val Ser Gly Val Tyr Ala Gly 165 170 175 Asp Pro Gln Gln Leu Ser Ala Ala Ala Ala Phe Gly Arg Val Ala Lys 180 185 190 Met Ala Asp Val Gly Gly Gly Leu Val Ala Gly Ala Leu Leu Ser Ala 195 200 205 Lys Asn Arg Pro Lys Lys Met Pro Ala Asp Pro Asn Val Pro Lys Thr 210 215 220 Lys Pro Gly Glu Leu Gly Ser Phe Lys Gln Gly Leu Lys Ala Leu Pro 225 230 235 240 Glu Ala Ile Ala Ala Lys Leu Gly Asp Arg Val Lys Leu Asn Trp His 245 250 255 Leu Thr Arg Leu Gln Arg Thr Glu Arg Glu Thr Tyr Ile Ala Glu Phe 260 265 270 Ser Thr Pro Asp Gly Gln Gln Glu Val Glu Ala Arg Thr Val Val Leu 275 280 285 Thr Thr Pro Ala Tyr Val Thr Ala Asp Leu Leu Gln Pro Leu Glu Pro 290 295 300 Gln Val Ser Ser Ala Leu Gln Ala Phe Thr Tyr Pro Thr Val Ala Ser 305 310 315 320 Val Val Leu Ala Tyr Pro Gln Ser Asp Val Lys Gly Lys Leu Val Gly 325 330 335 Phe Gly Asn Leu Ile Pro Arg Gly Gly Gly Ile Arg Cys Leu Gly Thr 340 345 350 Ile Trp Thr Ser Ser Leu Phe Pro Asp Arg Ala Pro Ala Gly Trp Gln 355 360 365 Thr Leu Thr Ser Tyr Ile Gly Gly Ala Thr Asp Ser Glu Ile Gly Asn 370 375 380 Leu Asp Ser Glu Gln Ile Val Arg Glu Val His Arg Asp Leu Ser Arg 385 390 395 400 Ile Leu Leu Lys Pro Asp Val Pro Gln Pro Lys Val Leu Thr Val Lys 405 410 415 Leu Trp Lys Arg Ala Ile Pro Gln Tyr Asn Leu Gly His Phe Asp Arg 420 425 430 Leu Gln Gln Ile Asp Glu Gly Leu Lys Ser Leu Pro Gly Val Tyr Leu 435 440 445 Cys Ser Asn Tyr Val Gly Gly Val Ala Leu Gly Asp Cys Val Arg Arg 450 455 460 Gly Phe Asp Arg Ala Arg Glu Val Gly Glu Tyr Leu Gln Lys Lys Gln 465 470 475 480 Ser Asp Thr Arg Ser Ile 485 <210> 326 <211> 537 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PPO from Arabidopsis thaliana (AtPPO1) <400> 326 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala Gly Gly Pro Thr Val Gly Ser Ser Lys Ile Glu 35 40 45 Gly Gly Gly Gly Thr Thr Ile Thr Thr Asp Cys Val Ile Val Gly Gly 50 55 60 Gly Ile Ser Gly Leu Cys Ile Ala Gln Ala Leu Ala Thr Lys His Pro 65 70 75 80 Asp Ala Ala Pro Asn Leu Ile Val Thr Glu Ala Lys Asp Arg Val Gly 85 90 95 Gly Asn Ile Ile Thr Arg Glu Glu Asn Gly Phe Leu Trp Glu Glu Gly 100 105 110 Pro Asn Ser Phe Gln Pro Ser Asp Pro Met Leu Thr Met Val Val Asp 115 120 125 Ser Gly Leu Lys Asp Asp Leu Val Leu Gly Asp Pro Thr Ala Pro Arg 130 135 140 Phe Val Leu Trp Asn Gly Lys Leu Arg Pro Val Pro Ser Lys Leu Thr 145 150 155 160 Asp Leu Pro Phe Phe Asp Leu Met Ser Ile Gly Gly Lys Ile Arg Ala 165 170 175 Gly Phe Gly Ala Leu Gly Ile Arg Pro Ser Pro Pro Gly Arg Glu Glu 180 185 190 Ser Val Glu Glu Phe Val Arg Arg Asn Leu Gly Asp Glu Val Phe Glu 195 200 205 Arg Leu Ile Glu Pro Phe Cys Ser Gly Val Tyr Ala Gly Asp Pro Ser 210 215 220 Lys Leu Ser Met Lys Ala Ala Phe Gly Lys Val Trp Lys Leu Glu Gln 225 230 235 240 Asn Gly Gly Ser Ile Ile Ile Gly Gly Thr Phe Lys Ala Ile Gln Glu Arg 245 250 255 Lys Asn Ala Pro Lys Ala Glu Arg Asp Pro Arg Leu Pro Lys Pro Gln 260 265 270 Gly Gln Thr Val Gly Ser Phe Arg Lys Gly Leu Arg Met Leu Pro Glu 275 280 285 Ala Ile Ser Ala Arg Leu Gly Ser Lys Val Lys Leu Ser Trp Lys Leu 290 295 300 Ser Gly Ile Thr Lys Leu Glu Ser Gly Gly Tyr Asn Leu Thr Tyr Glu 305 310 315 320 Thr Pro Asp Gly Leu Val Ser Val Gln Ser Lys Ser Val Val Met Thr 325 330 335 Val Pro Ser His Val Ala Ser Gly Leu Leu Arg Pro Leu Ser Glu Ser 340 345 350 Ala Ala Asn Ala Leu Ser Lys Leu Tyr Tyr Pro Val Ala Ala Val 355 360 365 Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg Thr Glu Cys Leu Ile Asp 370 375 380 Gly Glu Leu Lys Gly Phe Gly Gln Leu His Pro Arg Thr Gln Gly Val 385 390 395 400 Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser Leu Phe Pro Asn Arg Ala 405 410 415 Pro Pro Gly Arg Ile Leu Leu Leu Asn Tyr Ile Gly Gly Ser Thr Asn 420 425 430 Thr Gly Ile Leu Ser Lys Ser Glu Gly Glu Leu Val Glu Ala Val Asp 435 440 445 Arg Asp Leu Arg Lys Met Leu Ile Lys Pro Asn Ser Thr Asp Pro Leu 450 455 460 Lys Leu Gly Val Arg Val Trp Pro Gln Ala Ile Pro Gln Phe Leu Val 465 470 475 480 Gly His Phe Asp Ile Leu Asp Thr Ala Lys Ser Ser Leu Thr Ser Ser 485 490 495 Gly Tyr Glu Gly Leu Phe Leu Gly Gly Asn Tyr Val Ala Gly Val Ala 500 505 510 Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu Thr Ala Ile Glu Val Asn 515 520 525 Asn Phe Met Ser Arg Tyr Ala Tyr Lys 530 535 <210> 327 <211> 466 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO10, modified PPO from Thermosynechococcus elongatus BP-1 (CyPPO10) <400> 327 Ile Glu Val Asp Val Ala Ile Val Gly Gly Gly Leu Ser Gly Leu Ser 1 5 10 15 Val Ala Trp Arg Leu Gln Arg Ser Ala Pro His Tyr Ser Gly Val Leu 20 25 30 Leu Glu Ala Ser Asp Arg Leu Gly Gly Asn Ile Thr Thr Gln Ala Ala 35 40 45 Glu Gly Phe Val Trp Glu Leu Gly Pro Asn Ser Phe Ala Pro Thr Pro 50 55 60 Ala Leu Leu Gln Leu Ile Ala Glu Val Gly Leu His Ser Glu Leu Ile 65 70 75 80 Arg Gly Asp Arg His Leu Pro Arg Tyr Ile Tyr Trp Arg Gly Glu Leu 85 90 95 Tyr Pro Leu Glu Pro Thr Arg Pro Leu Ala Leu Ala Thr Ser Asn Leu 100 105 110 Leu Ser Pro Trp Gly Lys Val Arg Ala Ala Leu Gly Ala Leu Gly Phe 115 120 125 Val Pro Pro Tyr Leu Gly Ser Gly Asp Glu Ser Val Asp Ser Phe Phe 130 135 140 Arg Arg His Leu Gly Gin Glu Val Ala Glu Arg Leu Val Ala Pro Phe 145 150 155 160 Val Ser Gly Cys Tyr Leu Gly Asp Pro Gln Gln Leu Ser Ala Ala Ala 165 170 175 Ala Phe Arg Arg Ile Ala Gln Leu Glu Lys Leu Gly Gly Ser Leu Ile 180 185 190 Ala Gly Ala Leu Arg Leu Arg Arg Gln Gln Pro Pro Gln Pro Lys Pro 195 200 205 Pro Ala Gln Val Gln Met Arg Pro Gly Glu Leu Gly Ser Phe Arg Glu 210 215 220 Gly Leu Ala Ala Leu Pro Arg Ala Ile Ala Gln Gln Leu Lys Ala Pro 225 230 235 240 Leu His Leu Gln Thr Pro Val Glu Ala Ile Thr Pro Glu Pro Lys Gly 245 250 255 Gly Tyr Leu Leu Arg Ser Gly Glu Gln Thr Trp His Ala Arg Ser Val 260 265 270 Val Leu Ala Thr Pro Ala Tyr Gln Thr Ala Glu Leu Val Ala Pro Phe 275 280 285 Gln Pro Ala Ile Ala Arg Ala Leu Ala Thr Ile Pro Tyr Pro Thr Val 290 295 300 Ala Cys Val Val Leu Ala Tyr Pro Ala Gly Leu Gly Arg Ser Val Arg 305 310 315 320 Pro Gly Phe Gly Val Leu Val Pro Arg Gly Gin Gly Ile Arg Thr Leu 325 330 335 Gly Thr Ile Trp Ser Ser Cys Leu Phe Pro Gln Arg Thr Pro Ala Gly 340 345 350 Trp Gln Val Phe Thr Ser Met Ile Gly Gly Ala Thr Asp Pro Asp Leu 355 360 365 Ala Ser Leu Arg Glu Glu Ala Ile Val Glu Gln Val Gln Gln Asp Leu 370 375 380 Thr Arg Leu Leu Asp Leu Pro Ala Ala Lys Ala Arg Leu Leu Gly Met 385 390 395 400 Lys Val Trp Arg Arg Ala Ile Pro Gln Tyr Ile Val Gly Tyr Pro Gln 405 410 415 Gln Trp Gln Gln Val Thr His Ala Leu Thr Gln Thr Pro Gly Leu Phe 420 425 430 Leu Cys Ser Asn Tyr Ala Glu Gly Val Ala Leu Gly Asp Arg Val Glu 435 440 445 His Gly Asn Arg Thr Ala Ala Ala Val Ala Ala Tyr Leu Ala Gly Gly 450 455 460 Gln Ser 465 <210> 328 <211> 465 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO8, modified PPO from Halothece sp. PCC 7418 (CyPPO8) <400> 328 Ile Asp Thr Leu Ile Val Gly Ala Gly Ile Ser Gly Leu Ser Ala Ala 1 5 10 15 Tyr Arg Leu Asp Glu Lys Gln Arg Gln Val Leu Val Ala Glu Lys Arg 20 25 30 Asp Arg Ala Gly Gly Asn Ile Thr Ser Gln Gln Ser Gly Asp Phe Leu 35 40 45 Trp Glu Glu Gly Pro Asn Ser Phe Ser Pro Thr Pro Glu Leu Leu Lys 50 55 60 Leu Ala Val Asp Ala Gly Leu Arg Asn Glu Leu Ile Phe Ala Asp Arg 65 70 75 80 Gly Leu Pro Arg Tyr Val Tyr Trp Glu Gly Lys Leu Arg Pro Val Pro 85 90 95 Met Ser Pro Pro Thr Ala Val Thr Ser Gln Leu Leu Ser Pro Ile Gly 100 105 110 Lys Leu Arg Ala Leu Thr Gly Ala Leu Gly Phe Ile Pro Gln Val 115 120 125 Ser Ser Gln Glu Glu Thr Val Ala Asp Phe Phe Thr Arg His Leu Gly 130 135 140 Ser Glu Val Ala Gln Arg Leu Val Ser Pro Phe Val Ser Gly Val Tyr 145 150 155 160 Cys Gly Asp Val Asp Gln Leu Ser Ala Glu Ala Ala Phe Gly Arg Val 165 170 175 Thr Gln Leu Ala Asp Val Gly Gly Gly Leu Val Ala Gly Ala Ile Leu 180 185 190 Cys Arg Arg Gln Lys Pro Lys Ser Thr Pro Lys Thr Ala Lys Pro Ser 195 200 205 Asp Ile Pro Glu Thr Lys Ser Gly Gln Leu Gly Ser Phe Lys Glu Gly 210 215 220 Leu Gln Gln Leu Pro Ser Ala Ile Val Ser Gln Leu Gly Asp Lys Val 225 230 235 240 Lys Phe Gln Trp Glu Leu Lys Asn Ile Ser Pro His Pro Glu Ser Gly 245 250 255 Tyr Val Ala Thr Phe Ser Thr Pro Glu Gly Glu Gln Thr Val Glu Ala 260 265 270 Lys Thr Val Ile Leu Thr Thr Pro Ala Tyr Val Thr Ala Ser Leu Val 275 280 285 Lys Asp Leu Ser Pro Gln Ala Ser Gln Ala Leu Asn Glu Ile Ser Tyr 290 295 300 Pro Pro Met Ala Cys Val Val Leu Ala Tyr Pro Asp Glu Ala Leu Arg 305 310 315 320 Phe Pro Leu Lys Gly Phe Gly Asn Leu Asn Pro Arg Ser Gln Gly Ile 325 330 335 Arg Thr Leu Gly Thr Ile Trp Ser Thr Leu Phe Pro Gly Arg Thr 340 345 350 Pro Lys Gly Trp His Leu Leu Thr Asn Met Ile Gly Gly Ala Thr Asp 355 360 365 Pro Ala Ile Ala Glu Leu Ser Glu Asp Gln Ile Ile Glu Gln Val His 370 375 380 Gln Asp Leu Gln Gln Ala Val Ile Lys Ser Gly Ser Ile Pro Lys Pro 385 390 395 400 Leu Ala Val His Leu Trp Ser Lys Ala Ile Pro Gln Tyr Asn Leu Gly 405 410 415 His Leu Lys Arg Leu Glu Thr Ile Arg Asn His Leu Lys Pro Phe Ser 420 425 430 Gly Leu Phe Leu Ser Ser Asn Tyr Leu Asp Gly Val Ala Leu Gly Asp 435 440 445 Cys Val Arg Arg Gly Glu Glu Ser Ser Gln Ala Val Leu Asp Tyr Leu 450 455 460 Gly 465 <210> 329 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_mCyPPO13-1, modified PPO derived from Synechococcus sp.JA-3-3Ab (CyPPO13) <400> 329 Asn Pro Ala Thr Pro Glu Pro Leu Asn Ala Glu Val Val Val Ile Gly 1 5 10 15 Ala Gly Ile Ser Gly Leu Thr Leu Ala Trp Arg Leu Gln Gln Gly Leu 20 25 30 Ser Ala Arg Gly Gly Ser Pro Gln Ala Val Leu Leu Ala Glu Ala Ser 35 40 45 Ser Arg Val Gly Gly Cys Ile Ser Thr Gln Ser Lys Asp Gly Tyr Arg 50 55 60 Trp Glu Glu Gly Pro Asn Ser Phe Thr Pro Thr Pro Ala Leu Leu Asn 65 70 75 80 Leu Ile Ala Glu Val Gly Leu Thr Asp Gln Leu Val Leu Ala Asp Ala 85 90 95 Lys Leu Pro Arg Tyr Ile Tyr Trp Glu Gly Ala Leu Leu Pro Val Pro 100 105 110 Leu Ser Pro Ala Ala Ala Leu Gly Ser Arg Leu Leu Ser Val Gly Gly 115 120 125 Lys Leu Arg Ala Leu Gln Gly Leu Leu Gly Phe Val Pro Pro Pro Pro 130 135 140 Gly His Glu Glu Thr Val Arg Gln Phe Phe Arg Arg Gln Leu Gly Ser 145 150 155 160 Glu Val Ala Glu Arg Leu Val Glu Pro Phe Thr Ser Gly Val Tyr Leu 165 170 175 Gly Asp Pro Asp Gln Leu Ser Ala Val Ala Ala Phe Pro Arg Val Ala 180 185 190 Gly Leu Glu Glu Arg Tyr Gly Ser Leu Phe Ala Gly Ala Leu Gln Ala 195 200 205 Leu Arg Gln Arg Pro Gln Pro Ser Pro Ala Ala Ile Gln Pro Pro Pro 210 215 220 Lys Arg Gly Gln Leu Gly Asn Leu Arg Gln Gly Leu Gln Gln Leu Pro 225 230 235 240 Glu Ala Leu Ala Gln Lys Leu Gly Asp Ser Leu Arg Leu Gly Trp Arg 245 250 255 Ala Leu Gln Leu Lys Arg Ala Gly Glu Leu Tyr Trp Val Gly Phe Glu 260 265 270 Thr Pro Glu Gly Ser Arg Trp Val Ala Ala Arg Gln Val Val Leu Ala 275 280 285 Leu Pro Ala Tyr Glu Ala Ala Ala Leu Leu Gln Glu Leu Asn Pro Pro 290 295 300 Ala Ser Gln Leu Leu Ala Glu Ile Leu Tyr Pro Val Ala Val Val 305 310 315 320 Ala Leu Ala Tyr Pro Gln Glu Ala Leu Pro Gln Pro Leu Arg Gly Phe 325 330 335 Gly His Leu Ile Pro Arg Ser Gln Gly Leu Arg Thr Leu Gly Thr Ile 340 345 350 Trp Ala Ser Cys Leu Phe Pro Glu Arg Ala Pro Gln Gly Tyr His Ser 355 360 365 Phe Leu Ser Leu Leu Gly Gly Ala Thr Asp Ala Ala Ile Ala Arg Arg 370 375 380 Arg Gly Ile Pro Pro Ile Pro Ala Leu Ser Pro Glu Glu Arg Ala Gln 385 390 395 400 Ile Ala His Ala Glu Leu Ser Gln Val Leu Leu Thr Arg Arg Ala Glu 405 410 415 Pro Val Tyr Leu Gly Glu Arg Leu Trp Pro Arg Ala Ile Pro Gln Tyr 420 425 430 Thr Leu Gly His Arg Gln Arg Ile Ala Gln Val Gln Ala His Leu Ala 435 440 445 Ser Gln Thr Pro Gly Ile Trp Val Cys Ala Asn Tyr Leu Asp Gly Val 450 455 460 Ala Leu Gly Asp Cys Val Arg Arg Ala Glu Ala Leu Ala Gln Gln Leu 465 470 475 480 Leu Ser Gln Val <210> 330 <211> 454 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_CP4EPSPS from Roundup Ready Glycine Max <400> 330 Leu His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly 1 5 10 15 Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His Arg 20 25 30 Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly 35 40 45 Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met Gln Ala 50 55 60 Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile Asp Gly 65 70 75 80 Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp Phe Gly 85 90 95 Asn Ala Ala Thr Gly Cys Arg Leu Thr Met Gly Leu Val Gly Val Tyr 100 105 110 Asp Phe Asp Ser Thr Phe Ile Gly Asp Ala Ser Leu Thr Lys Arg Pro 115 120 125 Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val Lys 130 135 140 Ser Glu Asp Gly Asp Arg Leu Pro Val Thr Leu Arg Gly Pro Lys Thr 145 150 155 160 Pro Thr Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val Lys 165 170 175 Ser Ala Val Leu Leu Ala Gly Leu Asn Thr Pro Gly Ile Thr Thr Val 180 185 190 Ile Glu Pro Ile Met Thr Arg Asp His Thr Glu Lys Met Leu Gln Gly 195 200 205 Phe Gly Ala Asn Leu Thr Val Glu Thr Asp Ala Asp Gly Val Arg Thr 210 215 220 Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp Val 225 230 235 240 Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu Leu 245 250 255 Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro Thr 260 265 270 Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile Glu 275 280 285 Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu Arg 290 295 300 Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg Ala 305 310 315 320 Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala Phe 325 330 335 Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val Lys 340 345 350 Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn Gly 355 360 365 Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg Pro 370 375 380 Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr His 385 390 395 400 Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val Ser 405 410 415 Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser Phe 420 425 430 Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu Leu 435 440 445 Ser Asp Thr Lys Ala Ala 450 <210> 331 <211> 357 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_PfHPPD, HPPD derived from Pseudomonas fluorescens <400> 331 Ala Asp Leu Tyr Glu Asn Pro Met Gly Leu Met Gly Phe Glu Phe Ile 1 5 10 15 Glu Phe Ala Ser Pro Thr Pro Gly Thr Leu Glu Pro Ile Phe Glu Ile 20 25 30 Met Gly Phe Thr Lys Val Ala Thr His Arg Ser Lys Asn Val His Leu 35 40 45 Tyr Arg Gln Gly Glu Ile Asn Leu Ile Leu Asn Asn Glu Pro Asn Ser 50 55 60 Ile Ala Ser Tyr Phe Ala Ala Glu His Gly Pro Ser Val Cys Gly Met 65 70 75 80 Ala Phe Arg Val Lys Asp Ser Gln Lys Ala Tyr Asn Arg Ala Leu Glu 85 90 95 Leu Gly Ala Gln Pro Ile His Ile Asp Thr Gly Pro Met Glu Leu Asn 100 105 110 Leu Pro Ala Ile Lys Gly Ile Gly Gly Ala Pro Leu Tyr Leu Ile Asp 115 120 125 Arg Phe Gly Glu Gly Ser Ser Ile Tyr Asp Ile Asp Phe Val Tyr Leu 130 135 140 Glu Gly Val Glu Arg Asn Pro Val Gly Ala Gly Leu Lys Val Ile Asp 145 150 155 160 His Leu Thr His Asn Val Tyr Arg Gly Arg Met Val Tyr Trp Ala Asn 165 170 175 Phe Tyr Glu Lys Leu Phe Asn Phe Arg Glu Ala Arg Tyr Phe Asp Ile 180 185 190 Lys Gly Glu Tyr Thr Gly Leu Thr Ser Lys Ala Met Ser Ala Pro Asp 195 200 205 Gly Met Ile Arg Ile Pro Leu Asn Glu Glu Ser Ser Lys Gly Ala Gly 210 215 220 Gln Ile Glu Glu Phe Leu Met Gln Phe Asn Gly Glu Gly Ile Gln His 225 230 235 240 Val Ala Phe Leu Thr Asp Asp Leu Val Lys Thr Trp Asp Ala Leu Lys 245 250 255 Lys Ile Gly Met Arg Phe Met Thr Ala Pro Pro Asp Thr Tyr Tyr Glu 260 265 270 Met Leu Glu Gly Arg Leu Pro Asp His Gly Glu Pro Val Asp Gln Leu 275 280 285 Gln Ala Arg Gly Ile Leu Leu Asp Gly Ser Ser Val Glu Gly Asp Lys 290 295 300 Arg Leu Leu Leu Gln Ile Phe Ser Glu Thr Leu Met Gly Pro Val Phe 305 310 315 320 Phe Glu Phe Ile Gln Arg Lys Gly Asp Asp Gly Phe Gly Glu Trp Asn 325 330 335 Phe Lys Ala Leu Phe Glu Ser Ile Glu Arg Asp Gln Val Arg Arg Gly 340 345 350 Val Leu Thr Ala Asp 355 <210> 332 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-28 <400> 332 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys 20 25 <210> 333 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-30 <400> 333 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu 20 25 30 <210> 334 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-31 <400> 334 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg 20 25 30 <210> 335 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-32 <400> 335 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 <210> 336 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-33 <400> 336 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg <210> 337 <211> 35 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-35 <400> 337 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser 35 <210> 338 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-37 <400> 338 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala 35 <210> 339 <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-52 <400> 339 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30 Arg Cys Ser Val Ala Gly Gly Pro Thr Val Gly Ser Ser Lys Ile Glu 35 40 45 Gly Gly Gly Gly 50 <210> 340 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-25 <400> 340 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn 20 25 <210> 341 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> Synthetic_AtPPO1TP-26 <400> 341 Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15 Phe Ser Lys Pro Asn Leu Arg Leu Asn Val 20 25

Claims (21)

서열번호 1 내지 77 중에서 선택된 아미노산 서열을 포함하는 폴리펩타이드, 절단부위를 포함하는 상기 폴리펩타이드의 단편, 상기 폴리펩타이드에 1 내지 50개 아미노산이 추가된 폴리펩타이드 연장체, 애기장대 프로토포르피리노겐 옥시데이즈 1의 N-말단 부위, 및 상기 폴리펩타이드, 폴리펩타이드의 단편, 폴리펩타이드 연장체 또는 애기장대 프로토포르피리노겐 옥시데이즈 1의 N-말단 부위와 95% 이상의 서열 상동성 (sequence identity)을 가지는 폴리펩타이드로 이루어진 군에서 선택된, 엽록체 전이 펩타이드.A polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 1 to 77, a fragment of the polypeptide including a cleavage site, a polypeptide extension with 1 to 50 amino acids added to the polypeptide, Arabidopsis protoporphyrinogen oxidase 1, and a polypeptide having at least 95% sequence identity with the N-terminal region of the polypeptide, a fragment of a polypeptide, a polypeptide elongate or Arabidopsis protoporphyrinogen oxidase 1 A chloroplast transit peptide selected from the group consisting of. 제1항에 있어서, 상기 폴리펩타이드는 서열번호 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, 및 77 중에서 선택된 아미노산 서열을 포함하는 것인, 엽록체 전이 펩타이드.According to claim 1, wherein the polypeptide is SEQ ID NO: 2, 3, 5, 14, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 34, 39, 40, 42, 43, 47, 48, 52, 53, 54, 57, 59, 60, 62, 63, 65, 69, 70, 71, 73, 75, 76, and 77. 제1항에 있어서, 상기 폴리펩타이드는 서열번호 42, 43, 및 63 중에서 선택된 아미노산 서열을 포함하는 것인, 엽록체 전이 펩타이드.The chloroplast transit peptide of claim 1, wherein the polypeptide comprises an amino acid sequence selected from SEQ ID NOs: 42, 43, and 63. 제1항에 있어서,
상기 폴리펩타이드의 단편은 서열번호 1 내지 77 중에서 선택된 아미노산 서열 중 첫 번째 아미노산 잔기부터 연속하는 30개 이상의 아미노산을 포함하는 것인
엽록체 전이 펩타이드.
According to claim 1,
The fragment of the polypeptide comprises at least 30 amino acids consecutive from the first amino acid residue in the amino acid sequence selected from SEQ ID NOs: 1 to 77
Chloroplast transit peptide.
제1항에 있어서, 상기 폴리펩타이드 연장체는 서열번호 63의 아미노산 서열의 C-말단에 1 내지 35개의 아미노산으로 이루어진 연장서열을 추가로 포함하는 것인, 엽록체 전이 펩타이드.The chloroplast transit peptide according to claim 1, wherein the polypeptide extension further comprises an extension sequence consisting of 1 to 35 amino acids at the C-terminus of the amino acid sequence of SEQ ID NO: 63. 제5항에 있어서, 상기 폴리펩타이드 연장체는 서열번호 319, 320 또는 321의 아미노산 서열을 포함하는 것인, 엽록체 전이 펩타이드.The chloroplast transit peptide according to claim 5, wherein the polypeptide extension comprises the amino acid sequence of SEQ ID NO: 319, 320 or 321. 제1항에 있어서, 상기 애기장대 프로토포르피리노겐 옥시데이즈 1의 N-말단 부위는 서열번호 326의 아미노산 서열 중 첫 번째 아미노산 잔기부터 연속하는 31개 이상의 아미노산을 포함하는 것인, 엽록체 전이 펩타이드.The chloroplast transit peptide according to claim 1, wherein the N-terminal region of Arabidopsis protoporphyrinogen oxidase 1 comprises 31 or more consecutive amino acids from the first amino acid residue in the amino acid sequence of SEQ ID NO: 326. 제7항에 있어서, 상기 애기장대 프로토포르피리노겐 옥시데이즈 1의 N-말단 부위는 서열번호 326의 아미노산 서열 중, 적어도 서열번호 334, 335, 336, 337, 338, 또는 339의 아미노산 서열을 포함하는 것인, 엽록체 전이 펩타이드.The method of claim 7, wherein the N-terminal portion of Arabidopsis protoporphyrinogen oxidase 1 comprises at least the amino acid sequence of SEQ ID NO: 334, 335, 336, 337, 338, or 339 among the amino acid sequence of SEQ ID NO: 326 Which, chloroplast transit peptide. 제1항 내지 제8항 중 어느 한 항의 폴리펩타이드를 암호화하는 폴리뉴클레오타이드.A polynucleotide encoding the polypeptide of any one of claims 1 to 8. 제9항의 폴리뉴클레오타이드를 포함하는 재조합 벡터.A recombinant vector comprising the polynucleotide of claim 9 . 제1항 내지 제8항 중 어느 한 항의 엽록체 전이 펩타이드 및 목적 단백질을 포함하는 융합 단백질.A fusion protein comprising the chloroplast transit peptide of any one of claims 1 to 8 and a target protein. 제11항에 있어서, 상기 목적 단백질은 상기 엽록체 전이 펩타이드의 C-말단에 연결된 것인, 융합 단백질.The fusion protein according to claim 11, wherein the target protein is linked to the C-terminus of the chloroplast transit peptide. 제11항에 있어서, 상기 목적단백질은 제초제 내성 단백질, 의료용 단백질, 화장품 원료 단백질, 및 대사물질 합성효소로 이루어진 군에서 선택된 1종 이상인, 융합 단백질.The fusion protein according to claim 11, wherein the target protein is at least one selected from the group consisting of a herbicide resistance protein, a medical protein, a cosmetic raw protein, and a metabolite synthase. 제13항에 있어서, 상기 목적 단백질은 프로토포르피리노겐 옥시데이즈, EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) 단백질, PAT (phosphinothricin-N-acetyltransferase), DMO (dicamba monooxygenase), 2,4-D 모노옥시게나아제, AAD (aryloxyalkanoate dioxygenase), ALS (acetolactate synthase), AHAS (acetohydroxyacid synthase), AtAHASL (Arabidopsis thaliana acetohydroxyacid synthase large subunit), 광계 II (photosystem II) 단백질 D1, 시토크롬 P450 (cytochrome P450), HPPD (hydroxyphenylpyruvate dioxygenase), 및 니트릴레이즈 (nitrilase), 면역글로불린, 호르몬, 성장인자, 수용체, 조직 플라스미노겐 활성인자 (tPA), 에리트로포이에틴 (EPO), 사이토카인, 인터페론, 종양 괴사 인자 (TNF), TNF-관련 세포자멸사 유도 리간드 (TRAIL), 콜로니 자극 인자 (CSF), 단핵구 화학주성 단백질 (MCP), 및 이소프레노이드, 페놀 화합물, 플라보노이드, 카로티노이드, 토코페롤, 및 레티놀로 이루어진 군에서 선택된 대사산물의 대사 경로에 관여하는 효소로 이루어진 군에서 선택된 1종 이상인, 융합 단백질.The method of claim 13, wherein the target protein is protoporphyrinogen oxidase, EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) protein, PAT (phosphinothricin-N-acetyltransferase), DMO (dicamba monooxygenase), 2,4-D Monooxygenase, AAD (aryloxyalkanoate dioxygenase), ALS (acetolactate synthase), AHAS (acetohydroxyacid synthase), AtAHASL ( Arabidopsis thaliana acetohydroxyacid synthase large subunit), photosystem II (photosystem II) protein D1, cytochrome P450 (HPPD) (hydroxyphenylpyruvate dioxygenase), and nitrilase, immunoglobulin, hormone, growth factor, receptor, tissue plasminogen activator (tPA), erythropoietin (EPO), cytokine, interferon, tumor necrosis factor (TNF) , TNF-related apoptosis inducing ligand (TRAIL), colony stimulating factor (CSF), monocyte chemotactic protein (MCP), and metabolites selected from the group consisting of isoprenoids, phenolic compounds, flavonoids, carotenoids, tocopherols, and retinol At least one selected from the group consisting of enzymes involved in the metabolic pathway of, a fusion protein. 제11항의 융합 단백질을 암호화하는 폴리뉴클레오타이드.A polynucleotide encoding the fusion protein of claim 11 . 제15항의 폴리뉴클레오타이드를 포함하는 재조합 벡터.A recombinant vector comprising the polynucleotide of claim 15 . 제11항의 융합 단백질; 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드; 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터; 및 상기 재조합 벡터를 포함하는 재조합 세포로 이루어진 군에서 선택된 1종 이상을 포함하는, 목적 단백질의 엽록체 수송용 또는 엽록체 발현용 조성물.The fusion protein of claim 11; a polynucleotide encoding the fusion protein; a recombinant vector comprising the polynucleotide; And a composition for chloroplast transport or chloroplast expression of a target protein, comprising at least one selected from the group consisting of recombinant cells comprising the recombinant vector. 제11항의 융합 단백질; 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드; 또는 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터를 엽록체를 포함하는 세포에 도입하는 단계를 포함하는, 목적 단백질의 엽록체 수송 방법.The fusion protein of claim 11; a polynucleotide encoding the fusion protein; Or, a chloroplast transport method of a target protein comprising the step of introducing a recombinant vector containing the polynucleotide into a cell containing a chloroplast. 제11항의 융합 단백질 또는 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드를 포함하는, 식물 또는 조류의 형질전환체.A transformant of a plant or alga comprising the fusion protein of claim 11 or a polynucleotide encoding the fusion protein. 제19항에 있어서, 상기 형질전환체는 조류 또는 식물의 세포, 원형질체, 캘러스, 배축, 종자, 자엽, 신초 식물체 전체, 이의 클론 또는 자손인, 형질 전환체.The transformant according to claim 19, wherein the transformant is an algae or plant cell, protoplast, callus, hypocotyl, seed, cotyledon, whole shoot plant, clone or progeny thereof. 제11항의 융합 단백질 또는 상기 융합 단백질을 암호화하는 폴리뉴클레오타이드를 조류 또는 식물의 세포, 원형질체, 캘러스, 배축, 종자, 자엽, 신초, 또는 식물체 전체에 형질전환하는 단계를 포함하는,
목적 단백질의 엽록체 수송능을 갖는 식물 또는 조류의 제조 방법.
The fusion protein of claim 11 or a polynucleotide encoding the fusion protein comprising the step of transforming an algae or plant cell, protoplast, callus, hypocotyl, seed, cotyledon, shoot, or whole plant,
A method for producing a plant or algae having a chloroplast transport ability of a target protein.
KR1020200181984A 2019-12-24 2020-12-23 Chloroplast Transit Peptides and Uses Thereof KR20210082101A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190174547 2019-12-24
KR20190174547 2019-12-24

Publications (1)

Publication Number Publication Date
KR20210082101A true KR20210082101A (en) 2021-07-02

Family

ID=76575604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200181984A KR20210082101A (en) 2019-12-24 2020-12-23 Chloroplast Transit Peptides and Uses Thereof

Country Status (3)

Country Link
KR (1) KR20210082101A (en)
AR (1) AR120895A1 (en)
WO (1) WO2021133049A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010039484A (en) * 1999-10-11 2001-05-15 백경환 Process for increasing crop yield or biomass using protoporphyrinogen oxidase gene
US7838729B2 (en) * 2007-02-26 2010-11-23 Monsanto Technology Llc Chloroplast transit peptides for efficient targeting of DMO and uses thereof
BR112013003221A2 (en) * 2010-08-13 2019-09-24 Pioneer Hi Bred Int chimeric polynucleotide, nucleic acid construct, cell, plant, plant explant, transgenic seed, chimeric polypeptide, method of directing a polypeptide of interest to a chloroplast, expression cassette, plant cell, isolated polypeptide
EP3337311A4 (en) * 2015-08-20 2019-01-02 Dow Agrosciences LLC Chloroplast transit peptides

Also Published As

Publication number Publication date
WO2021133049A1 (en) 2021-07-01
AR120895A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
US11130960B2 (en) Methods for conferring or enhancing herbicide resistance on plants and/or alga with protoporphyrinogen oxidase variants
KR102305484B1 (en) Methods and Compositions for Conferring and/or Enhancing Herbicide Tolerance Using Variants of Protoporphyrinogen IX Oxidase from Cyanobacteria
KR102250017B1 (en) Methods and Compositions for Conferring and/or Enhancing Herbicide Tolerance Using Protoporphyrinogen Oxidase or Variant Thereof
KR102227354B1 (en) Methods and Compositions for Conferring and/or Enhancing Herbicide Tolerance Using PPO Variants
KR20210082101A (en) Chloroplast Transit Peptides and Uses Thereof
KR20230141283A (en) Methods and Compositions for Conferring and/or Enhancing Trifludimoxazin Tolerance Using Protoporphyrinogen Oxidase Variant

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application