KR20210081307A - The Plasma Generation Apparatus And The Operational Method Of The Same - Google Patents
The Plasma Generation Apparatus And The Operational Method Of The Same Download PDFInfo
- Publication number
- KR20210081307A KR20210081307A KR1020210065461A KR20210065461A KR20210081307A KR 20210081307 A KR20210081307 A KR 20210081307A KR 1020210065461 A KR1020210065461 A KR 1020210065461A KR 20210065461 A KR20210065461 A KR 20210065461A KR 20210081307 A KR20210081307 A KR 20210081307A
- Authority
- KR
- South Korea
- Prior art keywords
- induction coil
- power
- initial discharge
- discharge induction
- main
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 230000006698 induction Effects 0.000 claims abstract description 339
- 239000003990 capacitor Substances 0.000 claims description 135
- 238000009616 inductively coupled plasma Methods 0.000 claims description 47
- 230000008878 coupling Effects 0.000 claims description 44
- 238000010168 coupling process Methods 0.000 claims description 44
- 238000005859 coupling reaction Methods 0.000 claims description 44
- 230000001939 inductive effect Effects 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 19
- 230000007704 transition Effects 0.000 claims description 19
- 238000004804 winding Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 2
- 208000028659 discharge Diseases 0.000 description 594
- 210000002381 plasma Anatomy 0.000 description 88
- 239000007789 gas Substances 0.000 description 65
- 238000010586 diagram Methods 0.000 description 44
- 230000005684 electric field Effects 0.000 description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 230000003685 thermal hair damage Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/26—Supports; Mounting means by structural association with other equipment or articles with electric discharge tube
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/4645—Radiofrequency discharges
- H05H1/4652—Radiofrequency discharges using inductive coupling means, e.g. coils
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Abstract
Description
본 발명은 플라즈마 발생 장치에 관한 것으로, 더 구체적으로 대기압 또는 대기압 이상에서 방전을 수행하는 유도 결합 플라즈마 장치에 관한 것이다.The present invention relates to a plasma generating device, and more particularly, to an inductively coupled plasma device for performing discharge at atmospheric pressure or above atmospheric pressure.
유도 결합 플라즈마는 통상적으로 수백 밀리토르(mTorr)의 압력에서 수 MHz의 구동 주파수를 사용하여 형성된다. 그러나, 이러한 유도 결합 플라즈마는 유도 전기장의 세기가 작아 대기압 방전 또는 수백 토르 이상의 압력에서 방전을 수행하기 어렵다. 따라서, 충분한 유도 전기장의 세기가 요구되고 초기 방전을 위한 별도의 수단이 요구된다. 설사, 대기압 방전이 유지되는 경우에도 유전체 튜브의 플라즈마로 부터오는 이온에 의한 열손상 때문에 장시간 방전을 수행할 수 없다.Inductively coupled plasmas are typically formed using a driving frequency of several MHz at a pressure of several hundred milliTorr (mTorr). However, in such an inductively coupled plasma, it is difficult to discharge at atmospheric pressure or at a pressure of several hundred torr or more because the intensity of the induced electric field is small. Therefore, sufficient strength of the induced electric field is required and a separate means for initial discharge is required. Even if the atmospheric pressure discharge is maintained, the discharge cannot be performed for a long time due to thermal damage caused by ions from the plasma of the dielectric tube.
유전체 튜브를 감싸는 유도 코일에 RF 전력을 인가하여 유도 결합 플라즈마 방전을 수행하는 경우, 유도 결합 플라즈마는 상기 유전체 튜브를 가열하고, 상기 유전체 튜브는 가열되어 파손된다. 따라서, 고출력의 유도 결합 플라즈마는 구조적 한계가 있다.When RF power is applied to an induction coil surrounding a dielectric tube to perform inductively coupled plasma discharge, the inductively coupled plasma heats the dielectric tube, and the dielectric tube is heated and damaged. Therefore, the high-power inductively coupled plasma has a structural limitation.
본 발명의 발명자는 한국 등록특허 KR 10-1657303 B1에서 플라즈마의 안정성을 유지하기 위하여 선회 유동(swirl)을 제안하였다. 그러나, 복수의 권선수를 가진 안테나는 방전 시 유도전기장의 증가와 동시에, 안테나 전압이 이온을 튜브벽으로 가속시켜 열손상을 유발시키므로 대기압 방전에 한계를 가진다.The inventor of the present invention proposes a swirl flow to maintain plasma stability in Korean Patent Registration KR 10-1657303 B1. However, an antenna having a plurality of windings has a limitation in atmospheric pressure discharge because the antenna voltage accelerates ions to the tube wall and causes thermal damage at the same time as the induced electric field increases during discharge.
본 발명의 발명자는 한국 등록특허 KR 0-1826883 B1에서 안테나들 사이에 축전기를 삽입하여 전압 분배 구조를 가지는 유도 결합 플라즈마 발생 장치를 제안하였다. 그러나, 한국 등록특허 KR 10-1826883 B1는 구동 주파수를 공진 조건에서 벗어난 상태에서 초기 방전을 유도하나, 전기장의 세기가 작아 대기압 방전을 안정적으로 점화시키기 어렵다.The inventor of the present invention proposes an inductively coupled plasma generating device having a voltage distribution structure by inserting a capacitor between antennas in Korean Patent Registration KR 0-1826883 B1. However, Korean Patent Registration KR 10-1826883 B1 induces an initial discharge in a state where the driving frequency is out of the resonance condition, but it is difficult to stably ignite the atmospheric pressure discharge due to the small strength of the electric field.
본 발명의 해결하고자 하는 일 기술적 과제는 대기압 수준 또는 수백 토르 이상의 압력에서 안정적인 유도 결합 플라즈마를 생성하는 플라즈마 발생 장치를 제공하는 것이다.One technical problem to be solved by the present invention is to provide a plasma generating apparatus for generating stable inductively coupled plasma at atmospheric pressure level or a pressure of several hundred torr or more.
본 발명의 일 실시예에 따른 대기압 플라즈마 발생 장치는, 유전체 방전 튜브; 상기 유전체 원통 튜브를 감싸고 복수의 권선수를 가지며 대기압 초기 방전을 발생시키는 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 직렬 연결되어 제1 공진 주파수를 제공하는 초기 방전 축전기를 포함하는 초기 방전 유도 코일 모듈; 상기 초기 방전 유도 코일의 상부 및 하부에 각각 배치되어 초기 방전 시드를 제공하는 제1 전극 및 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 DC 고전압을 인가하는 DC 전원; 제2 공진 주파수를 가지고 상기 초기 방전 유도 코일 모듈에서 발생시킨 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 메인 방전 유도 코일 모듈; 및 병렬 연결된 상기 초기 방전 유도 코일 모듈 및 상기 메인 방전 유도 코일 모듈에 RF 전력을 제공하고 구동 주파수를 변경하는 RF 전원을 포함한다. 메인 방전 유도 코일 모듈은, 상기 초기 방전 유도 코일과 이격되어 배치되고 상기 유전체 방전 튜브의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들; 상기 단위 안테나들 양단에 각각 배치된 제1 메인 축전기 및 제2 메인 축전기; 및 상기 단위 안테나들 사이에 각각 직렬 연결된 보조 축전기들;를 포함하한다. 상기 RF 전원은 상기 DC 고전압의 도움으로 상기 제1 공진 주파수에서 상기 초기 방전 유도 코일에 초기 방전을 유도한다. 상기 RF 전원은 상기 구동 주파수를 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 변경하여 메인 방전을 수행한다.Atmospheric pressure plasma generating apparatus according to an embodiment of the present invention, a dielectric discharge tube; An initial discharge induction coil module comprising an initial discharge induction coil surrounding the dielectric cylindrical tube and having a plurality of windings to generate an atmospheric pressure initial discharge, and an initial discharge capacitor connected in series with the initial discharge induction coil to provide a first resonant frequency ; first and second electrodes respectively disposed above and below the initial discharge induction coil to provide an initial discharge seed; a DC power supply for applying a DC high voltage between the first electrode and the second electrode; a main discharge induction coil module having a second resonant frequency and receiving the initial discharge generated by the initial discharge induction coil module to generate a main inductively coupled plasma; and an RF power supply that provides RF power to the initial discharge induction coil module and the main discharge induction coil module connected in parallel and changes a driving frequency. The main discharge induction coil module may include: a plurality of unit antennas spaced apart from the initial discharge induction coil, respectively disposed on a plurality of arrangement planes perpendicular to a central axis of the dielectric discharge tube, and connected in series with each other; a first main capacitor and a second main capacitor respectively disposed at both ends of the unit antennas; and auxiliary capacitors respectively connected in series between the unit antennas. The RF power source induces an initial discharge in the initial discharge induction coil at the first resonant frequency with the aid of the DC high voltage. The RF power source performs main discharge by changing the driving frequency from the first resonant frequency to the second resonant frequency.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일에 흐르는 전류 또는 전압을 감지하는 제1 감지 센서를 더 포함한다. 상기 RF 전원은 상기 제1 감지 센서의 출력을 이용하여 축전 결합 모드에서 유도 결합 모드로 천이를 감지하고 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 구동 주파수를 변경할 수 있다.In one embodiment of the present invention, it further comprises a first detection sensor for detecting the current or voltage flowing through the initial discharge induction coil. The RF power may detect a transition from the capacitive coupling mode to the inductive coupling mode using the output of the first detection sensor and change the driving frequency from the first resonant frequency to the second resonant frequency.
본 발명의 일 실시예에 있어서, 상기 제1 전극은 상기 초기 방전 유도 코일의 상부에 배치되고 양의 DC 고전압으로 대전될 수 있다. 상기 제2 전극은 상기 초기 방전 유도 코일의 하부에 배치되고 상기 유전체 방전 튜브를 감싸도록 "C" 자 형태이고 음의 DC 고전압으로 대전될 수 있다.In an embodiment of the present invention, the first electrode may be disposed on the initial discharge induction coil and be charged with a positive DC high voltage. The second electrode is disposed under the initial discharge induction coil, has a “C” shape to surround the dielectric discharge tube, and may be charged with a negative DC high voltage.
본 발명의 일 실시예에 있어서, 상기 DC 전원은, 상용 전원을 DC 전압으로 변환하는 AC-DC 변환기; 상기 DC 전압을 제공받아 양의 DC 고전압 펄스와 음의 DC 고전압 펄스를 생성하는 고전압 펄스 발생기; 및 상기 고전압 펄스 발생기를 제어하는 제어기를 포함할 수 있다.In one embodiment of the present invention, the DC power source, AC-DC converter for converting commercial power into DC voltage; a high voltage pulse generator that receives the DC voltage and generates a positive DC high voltage pulse and a negative DC high voltage pulse; and a controller for controlling the high voltage pulse generator.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제1 트랜스퍼머; 상기 제1 트랜스퍼머의 1차 코일에 연결된 제1 전력 트렌지스터; 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제2 트랜스퍼머; 및 상기 제2 트랜스퍼머의 1차 코일에 연결된 제2 전력 트렌지스터를 포함할 수 있다. 상기 제어기는 상기 제1 전력 트렌지스터와 상기 제2 전력 트렌지스터의 게이트를 제어할 수 있다. 상기 제1 트랜스퍼머의 2차 코일의 일단은 양의 DC 고전압 펄스를 출력하고, 상기 제1 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다. 상기 제2 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 제2 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In an embodiment of the present invention, the high voltage pulse generator comprises: a first transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a positive DC high voltage pulse; a first power transistor connected to the primary coil of the first transformer; a second transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a negative DC high voltage pulse; and a second power transistor connected to the primary coil of the second transformer. The controller may control gates of the first power transistor and the second power transistor. One end of the secondary coil of the first transformer may output a positive DC high voltage pulse, and the other end of the secondary coil of the first transformer may be grounded. One end of the secondary coil of the second transformer may output a negative DC high voltage pulse, and the other end of the secondary coil of the second transformer may be grounded.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일은 솔레노이드 형태이고, 복층으로 감길 수 있다.In an embodiment of the present invention, the initial discharge induction coil has a solenoid shape and may be wound in multiple layers.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일은 내부 솔레노이드 코일, 중간 솔레노이드 코일, 외부 솔레노이드 코일의 3층 구조일 수 있다.In one embodiment of the present invention, the initial discharge induction coil may have a three-layer structure of an internal solenoid coil, an intermediate solenoid coil, and an external solenoid coil.
본 발명의 일 실시예에 있어서, 상기 초기 방전 축전기은 상기 초기 방전 유도 코일의 양단에 각각 배치될 수 있다.In an embodiment of the present invention, the initial discharge capacitor may be disposed at both ends of the initial discharge induction coil, respectively.
본 발명의 일 실시예에 있어서, 상기 단위 안테나를 구성하는 코일의 단면은 사각형일 수 있다.In one embodiment of the present invention, the cross section of the coil constituting the unit antenna may be rectangular.
본 발명의 일 실시예에 있어서, 상기 단위 안테나는, 상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브와 접촉하여 배치되고 루프를 형성하는 제1 안테나; 상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나; 및 상기 제2 안테나를 감싸도록 배치되고 루프를 형성하는 제3 안테나를 포함할 수 있다.In an embodiment of the present invention, the unit antenna includes: a first antenna disposed in contact with the dielectric discharge tube in a plane of arrangement perpendicular to a central axis of the dielectric discharge tube and forming a loop; a second antenna disposed to surround the first antenna and forming a loop; and a third antenna disposed to surround the second antenna and forming a loop.
본 발명의 일 실시예에 있어서, 상기 단위 안테나들은 서로 다른 배치 평면에 배치되고 10 개일 수 있다.In an embodiment of the present invention, the unit antennas may be arranged on different arrangement planes and there may be ten.
본 발명의 일 실시예에 있어서, 상기 단위 안테나들은 5개의 단위 안테나들을 포함하는 제1 그룹과 다른 5 개의 단위 안테나들을 포함하는 제2 그룹으로 구분될 수 있다. 상기 제1 그룹을 구성하는 단위 안테나들은 방위각 방향을 따라 72도 간격으로 배치되고, 상기 제2 그룹을 구성하는 단위 안테나들은 방위각 방향을 따라 72도 간격으로 배치될 수 있다.In an embodiment of the present invention, the unit antennas may be divided into a first group including 5 unit antennas and a second group including 5 different unit antennas. The unit antennas constituting the first group may be disposed at intervals of 72 degrees along the azimuth direction, and the unit antennas constituting the second group may be disposed at intervals of 72 degrees along the azimuth direction.
본 발명의 일 실시예에 있어서, 상기 단위 안테나는 동일한 배치 평면에 배치되는 복수의 권선을 포함하고, 복수의 권선을 절연시키는 "ㅛ"자 형상의 절연 스페이서를 더 포함할 수 있다.In an embodiment of the present invention, the unit antenna may include a plurality of windings disposed on the same arrangement plane, and may further include an insulating spacer in the shape of a “ㅛ” to insulate the plurality of windings.
본 발명의 일 실시예에 있어서, 상기 제1 공진 주파수와 상기 제2 공진 주파수는 0.2 MHz 이상 이격될 수 있다.In an embodiment of the present invention, the first resonant frequency and the second resonant frequency may be spaced apart from each other by 0.2 MHz or more.
본 발명의 일 실시예에 있어서, 상기 제1 공진 주파수는 상기 제2 공진 주파수보다 클 수 있다.In an embodiment of the present invention, the first resonant frequency may be greater than the second resonant frequency.
본 발명의 일 실시예에 있어서, 상기 제1 메인 축전기의 정전 용량은 상기 제2 메인 축전기의 정전 용량과 동일하고, 상기 제1 메인 축전기의 정전 용량은 상기 보조 축전기의 정전 용량의 2 배일 수 있다.In one embodiment of the present invention, the capacitance of the first main capacitor may be equal to the capacitance of the second main capacitor, and the capacitance of the first main capacitor may be twice the capacitance of the auxiliary capacitor. .
본 발명의 일 실시예에 있어서, 상기 제1 공진 주파수에서 상기 초기 방전 유도 코일에 유도되는 제1 전압 강하는 상기 제2 공진 주파수에서 상기 단위 안테나에 유도되는 제2 전압 강하보다 클 수 있다.In an embodiment of the present invention, a first voltage drop induced in the initial discharge induction coil at the first resonant frequency may be greater than a second voltage drop induced in the unit antenna at the second resonant frequency.
본 발명의 일 실시예에 있어서, 상기 복수의 단위 안테나들의 인덕턴스의 총합은 상기 초기 방전 유도 코일의 인덕턴스보다 클 수 있다.In an embodiment of the present invention, the sum of the inductances of the plurality of unit antennas may be greater than the inductance of the initial discharge induction coil.
본 발명의 일 실시예에 따른 대기압 플라즈마 발생 장치의 동작 방법은,유전체 방전 튜브에 서로 이격되어 배치된 제1 전극 및 제2 전극에 DC 고전압을 인가하여 초기 방전 시드를 제공하는 단계; 상기 유전체 원통 튜브를 감싸고 복수의 권선수를 가지며 대기압 초기 방전을 발생시키는 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 직렬 연결되어 제1 공진 주파수를 제공하는 초기 방전 축전기를 포함하는 초기 방전 유도 코일 모듈에 상기 제1 공진 주파수의 교류 전력을 제공하여 초기 방전을 수행하는 단계; 상기 초기 방전 유도 코일 모듈과 병렬 연결된 메인 방전 유도 코일 모듈에 상기 제1 공진 주파수와 다른 제2 공진 주파수의 교류 전력을 제공하여 상기 초기 방전으로부터 메인 유도 결합 플라즈마를 유도하는 단계;를 포함한다.A method of operating an atmospheric pressure plasma generating apparatus according to an embodiment of the present invention comprises: providing an initial discharge seed by applying a DC high voltage to a first electrode and a second electrode spaced apart from each other in a dielectric discharge tube; An initial discharge induction coil module comprising an initial discharge induction coil surrounding the dielectric cylindrical tube and having a plurality of windings to generate an atmospheric pressure initial discharge, and an initial discharge capacitor connected in series with the initial discharge induction coil to provide a first resonant frequency performing an initial discharge by providing AC power of the first resonant frequency; Inducing a main inductively coupled plasma from the initial discharge by providing AC power having a second resonant frequency different from the first resonant frequency to a main discharge induction coil module connected in parallel with the initial discharge induction coil module.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일에 흐르는 전류 또는 상기 초기 방전 유도 코일의 양단에 인가되는 전압 강하를 감지하는 단계;를 더 포함한다. 상기 초기 방전 유도 코일에 흐르는 전류 또는 상기 초기 방전 유도 코일의 양단에 인가되는 전압 강하가 문턱값 이상인 경우, RF 전원은 상기 구동 주파수를 변경하여 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 변경하여 상기 단위 안테나들에서 메인 방전을 수행할 수 있다.In one embodiment of the present invention, the method further includes: sensing a current flowing through the initial discharge induction coil or a voltage drop applied to both ends of the initial discharge induction coil. When the current flowing through the initial discharge induction coil or the voltage drop applied to both ends of the initial discharge induction coil is equal to or greater than a threshold, the RF power source changes the driving frequency from the first resonant frequency to the second resonant frequency. A main discharge may be performed in the unit antennas.
본 발명의 일 실시예에 있어서, 상기 메인 방전 유도 코일 모듈은, 상기 초기 방전 유도 코일과 이격되어 배치되고 상기 유전체 방전 튜브를 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들; 상기 단위 안테나들 양단에 각각 배치된 제1 메인 축전기 및 제2 메인 축전기; 및 상기 단위 안테나들 사이에 각각 직렬 연결된 보조 축전기들;을 포함한다. RF 전원은 상기 DC 고전압의 도움으로 상기 제1 공진 주파수에서 상기 초기 방전 유도 코일에 초기 방전을 유도할 수 있다. 상기 RF 전원은 상기 구동 주파수를 변경하여 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 변경하여 상기 단위 안테나들에서 메인 방전을 수행할 수 있다.In an embodiment of the present invention, the main discharge induction coil module is disposed to be spaced apart from the initial discharge induction coil, and the dielectric discharge tube is disposed on a plurality of arrangement planes perpendicular to a central axis, respectively, and connected in series with each other. a plurality of unit antennas; a first main capacitor and a second main capacitor respectively disposed at both ends of the unit antennas; and auxiliary capacitors respectively connected in series between the unit antennas. The RF power source may induce an initial discharge in the initial discharge induction coil at the first resonant frequency with the aid of the DC high voltage. The RF power may change the driving frequency from the first resonant frequency to the second resonant frequency to perform main discharge in the unit antennas.
본 발명의 일 실시예에 따른 플라즈마 발생 장치는, 유전체 방전 튜브; 상기 유전체 방전 튜브 내부에 시드 전하를 생성하는 시드 전하 발생부; 상기 유전체 원통 튜브를 감싸고 상기 시드 전하를 제공받아 초기 방전을 발생시키는 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 연결되어 제1 공진 주파수를 제공하는 제1 임피던스 매칭 네트워크를 포함하는 초기 방전 유도 코일 모듈; 상기 초기 방전 유도 코일과 이격되어 배치되고 상기 유전체 원통 튜브를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 복수의 단위 안테나들 및 상기 단위 안테나들에 연결되어 제2 공진 주파수를 제공하는 제2 임피던스 매칭 네트워크를 포함하는 메인 방전 유도 코일 모듈; 및 상기 초기 방전 유도 코일 모듈 및 상기 메인 방전 유도 코일 모듈에 전력을 공급하는 RF 전원을 포함한다.A plasma generating apparatus according to an embodiment of the present invention includes: a dielectric discharge tube; a seed charge generator generating seed charges in the dielectric discharge tube; An initial discharge induction coil module comprising an initial discharge induction coil surrounding the dielectric cylindrical tube and receiving the seed charge to generate an initial discharge, and a first impedance matching network connected to the initial discharge induction coil to provide a first resonant frequency ; a plurality of unit antennas disposed spaced apart from the initial discharge induction coil, surrounding the dielectric cylindrical tube, receiving the initial discharge to generate a main inductively coupled plasma, and a second resonant frequency connected to the
본 발명의 일 실시예에 있어서, 상기 시드 전하 발생부는, 상기 유전체 방전 튜브에 배치되어 시드 전하를 제공하는 제1 전극 및 제2 전극; 및 상기 제1 전극 및 상기 제2 전극 사이에 DC 고전압을 인가하는 DC 전원을 포함할 수 있다.In an embodiment of the present invention, the seed charge generator may include: first and second electrodes disposed on the dielectric discharge tube to provide seed charge; and a DC power supply for applying a DC high voltage between the first electrode and the second electrode.
본 발명의 일 실시예에 있어서, 상기 시드 전하 발생부는, 상기 제1 전극은 상기 유전체 방전 튜브의 외측벽에 접촉하여 배치되고, 상기 제2 전극은 상기 유전체 방전 튜브의 중심축에 배치되고, 전기적으로 접지될 수 있다.In one embodiment of the present invention, the seed charge generating unit, The first electrode may be disposed in contact with an outer wall of the dielectric discharge tube, and the second electrode may be disposed on a central axis of the dielectric discharge tube and electrically grounded.
본 발명의 일 실시예에 있어서, 상기 제2 전극은 가스를 분사하는 노즐일 수 있다.In one embodiment of the present invention, the second electrode may be a nozzle for spraying a gas.
본 발명의 일 실시예에 있어서, 상기 DC 전원은, 상용 교류 전원을 DC 전압으로 변환하는 AC-DC 변환기; 상기 DC 전압을 제공받아 양의 DC 고전압 펄스 및 음의 DC 고전압 펄스 중에서 적어도 하나의 고전압 펄스를 생성하는 고전압 펄스 발생기; 및 상기 고전압 펄스 발생기를 제어하는 제어기를 포함할 수 있다.In one embodiment of the present invention, the DC power source, AC-DC converter for converting commercial AC power into DC voltage; a high voltage pulse generator receiving the DC voltage and generating at least one high voltage pulse from among a positive DC high voltage pulse and a negative DC high voltage pulse; and a controller for controlling the high voltage pulse generator.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 DC 전압을 제공받아 제1 고전압 펄스를 생성하는 제1 고전압 펄스 발생기; 및 상기 DC 전압을 제공받아 제2 고전압 펄스를 생성하는 제1 고전압 펄스 발생기;를 포함할 수 있다. In an embodiment of the present invention, the high voltage pulse generator may include: a first high voltage pulse generator configured to receive the DC voltage and generate a first high voltage pulse; and a first high voltage pulse generator configured to receive the DC voltage and generate a second high voltage pulse.
상기 고전압 펄스 발생기를 제어하는 제어기는, 상기 제1 고전압 펄스 발생기를 제어하는 제1 제어기; 및 상기 제2 고전압 펄스 발생기를 제어하는 제2 제어기를 포함할 수 있다. 상기 제1 고전압 펄스는 상기 제1 전극에 인가되고, 상기 제2 고전압 펄스는 상기 제2 전극에 인가되고, 상기 제1 전극과 상기 제2 전극은 상기 유전체 방전 튜브의 외측벽에 서로 이격되어 배치될 수 있다.The controller for controlling the high voltage pulse generator includes: a first controller for controlling the first high voltage pulse generator; and a second controller controlling the second high voltage pulse generator. The first high voltage pulse is applied to the first electrode, the second high voltage pulse is applied to the second electrode, and the first electrode and the second electrode are spaced apart from each other on the outer wall of the dielectric discharge tube. can
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제1 트랜스퍼머; 접지와 상기 제1 트랜스퍼머의 1차 코일 사이에 연결된 제1 전력 트렌지스터; 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제2 트랜스퍼머; 및 접지와 상기 제2 트랜스퍼머의 1차 코일에 연결된 제2 전력 트렌지스터를 포함할 수 있다. 상기 제어기는 상기 제1 전력 트렌지스터와 상기 제2 전력 트렌지스터의 게이트를 제어할 수 있다. 상기 제1 트랜스퍼머의 2차 코일의 일단은 양의 DC 고전압 펄스를 출력하고, 상기 제1 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다. 상기 제2 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 제2 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In an embodiment of the present invention, the high voltage pulse generator comprises: a first transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a positive DC high voltage pulse; a first power transistor connected between ground and a primary coil of the first transformer; a second transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a negative DC high voltage pulse; and a second power transistor connected to the ground and the primary coil of the second transformer. The controller may control gates of the first power transistor and the second power transistor. One end of the secondary coil of the first transformer may output a positive DC high voltage pulse, and the other end of the secondary coil of the first transformer may be grounded. One end of the secondary coil of the second transformer may output a negative DC high voltage pulse, and the other end of the secondary coil of the second transformer may be grounded.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머; 상기 트랜스퍼머의 상기 1차 코일에 병렬 연결된 인덕터; 접지된 일단을 가지고 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터; 상기 전력 트랜지스터와 병렬 연결된 저항; 상기 전력 트랜지스터와 병렬 연결된 축전기; 및 상기 전력 트랜지스터의 타단과 상기 병렬 연결된 저항 및 축전기 사이에 배치되는 다이오드;를 포함할 수 있다. 상기 제어기는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In one embodiment of the present invention, the high voltage pulse generator comprises: a transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a positive DC high voltage pulse; an inductor connected in parallel to the primary coil of the transformer; a power transistor having a grounded end and connected in series between the primary coil of the transformer; a resistor connected in parallel with the power transistor; a capacitor connected in parallel with the power transistor; and a diode disposed between the other end of the power transistor and the parallel-connected resistor and capacitor. The controller may control a gate of the power transistor, one end of the secondary coil of the transformer may output a negative DC high voltage pulse, and the other end of the secondary coil of the transformer may be grounded.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머; 상기 트랜스퍼머의 상기 1차 코일에 병렬 연결된 인덕터; 및 접지와 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터;를 포함할 수 있다. 상기 제어기는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In an embodiment of the present invention, the high voltage pulse generator comprises: a transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a negative DC high voltage pulse; an inductor connected in parallel to the primary coil of the transformer; and a power transistor connected in series between the ground and the primary coil of the transformer. The controller may control a gate of the power transistor, one end of the secondary coil of the transformer may output a negative DC high voltage pulse, and the other end of the secondary coil of the transformer may be grounded.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머; 상기 트랜스퍼머의 상기 1차 코일에 병렬 연결된 인덕터; 접지와 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터; 일단은 상기 AC-DC 변환기의 상기 DC 전압에 연결되고 상기 서로 병렬 연결된 저항과 축전기; 및 일단은 상기 전력 트렌지스터와 상기 1차 코일 사이에 연결되고, 타단은 상기 병렬 연결된 저항과 축전기의 타단에 연결된 다이오드; 를 포함할 수 있다. 상기 제어기는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In an embodiment of the present invention, the high voltage pulse generator comprises: a transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a negative DC high voltage pulse; an inductor connected in parallel to the primary coil of the transformer; a power transistor connected in series between ground and the primary coil of the transformer; One end is connected to the DC voltage of the AC-DC converter, the resistor and the capacitor connected in parallel with each other; and a diode having one end connected between the power transistor and the primary coil, and the other end connected to the other end of the parallel-connected resistor and the capacitor; may include. The controller may control a gate of the power transistor, one end of the secondary coil of the transformer may output a negative DC high voltage pulse, and the other end of the secondary coil of the transformer may be grounded.
본 발명의 일 실시예에 있어서, 상기 고전압 펄스 발생기는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머; 상기 트랜스퍼머의 상기 1차 코일에 병렬 연결된 인덕터; 접지와 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터; 상기 전력 트랜지스터와 병렬 연결된 저항; 상기 전력 트랜지스터와 병렬 연결된 축전기; 및 상기 전력 트랜지스터의 타단과 상기 병렬 연결된 저항 및 축전기 사이에 배치되는 다이오드;를 포함할 수 있다. 상기 1차 코일과 상기 2차 코일은 180도 위상 차이를 가지고, 상기 제어기는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 양의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.In one embodiment of the present invention, the high voltage pulse generator comprises: a transformer including a primary coil receiving the DC voltage of the AC-DC converter and a secondary coil generating a positive DC high voltage pulse; an inductor connected in parallel to the primary coil of the transformer; a power transistor connected in series between ground and the primary coil of the transformer; a resistor connected in parallel with the power transistor; a capacitor connected in parallel with the power transistor; and a diode disposed between the other end of the power transistor and the parallel-connected resistor and capacitor. The primary coil and the secondary coil have a phase difference of 180 degrees, the controller controls the gate of the power transistor, and one end of the secondary coil of the transformer outputs a positive DC high voltage pulse, and the transformer The other end of the secondary coil of the perm may be grounded.
본 발명의 일 실시예에 있어서, 상기 제1 임피던스 매칭 네트워크는 상기 초기 방전 유도 코일에 직렬 연결된 초기 방전 축전기를 포함할 수 있다.In an embodiment of the present invention, the first impedance matching network may include an initial discharge capacitor connected in series to the initial discharge induction coil.
본 발명의 일 실시예에 있어서, 상기 제1 임피던스 매칭 네트워크는 상기 초기 방전 유도 코일의 양단에 각각 연결된 한 쌍의 초기 방전 축전기를 포함할 수 있다.In an embodiment of the present invention, the first impedance matching network may include a pair of initial discharge capacitors respectively connected to both ends of the initial discharge induction coil.
본 발명의 일 실시예에 있어서, 상기 제1 임피던스 매칭 네트워크는 변압기 및 상기 초기 방전 유도 코일의 양단에 각각 연결된 한 쌍의 초기 방전 축전기를 포함하고, 상기 변압기의 1차 코일은 상기 RF 전원의 출력단에 연결되고, 상기 변압기의 2차 코일은 서로 직렬 연결된 초기 방전 유도 코일과 한 쌍의 초기 방전 축전기의 양단에 연결될 수 있다.In an embodiment of the present invention, the first impedance matching network includes a transformer and a pair of initial discharge capacitors respectively connected to both ends of the initial discharge induction coil, and the primary coil of the transformer is an output terminal of the RF power source. , and the secondary coil of the transformer may be connected to both ends of an initial discharge induction coil connected in series with each other and a pair of initial discharge capacitors.
본 발명의 일 실시예에 있어서, 상기 제1 임피던스 매칭 네트워크는, 상기 초기 방전 유도 코일에 병렬 연결된 제1 초기 방전 축전기; 서로 병렬 연결된 제1 초기 방전 축전기와 상기 초기 방전 유도 코일의 양단에 각각 연결된 제2 초기 방전 축전기 및 제3 초기 방전 축전기를 포함할 수 있다.In an embodiment of the present invention, the first impedance matching network may include: a first initial discharge capacitor connected in parallel to the initial discharge induction coil; It may include a first initial discharge capacitor connected to each other in parallel, and a second initial discharge capacitor and a third initial discharge capacitor connected to both ends of the initial discharge induction coil, respectively.
본 발명의 일 실시예에 있어서, 상기 메인 방전 유도 코일 모듈에서, 상기 복수의 단위 안테나들은 상기 유전체 방전 튜브의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되고, 보조 축전기들은 인접한 단위 안테나들 사이에 직렬 연결되고, 상기 제2 임피던스 매칭 네트워크는 직렬 연결된 상기 단위 안테나들의 양단에 각각 연결되는 제1 메인 축전기 및 제2 메인 축전기를 포함할 수 있다.In one embodiment of the present invention, in the main discharge induction coil module, the plurality of unit antennas are respectively disposed on a plurality of arrangement planes perpendicular to the central axis of the dielectric discharge tube and are connected in series with each other, and the auxiliary capacitors are Connected in series between adjacent unit antennas, the second impedance matching network may include a first main capacitor and a second main capacitor respectively connected to both ends of the series-connected unit antennas.
본 발명의 일 실시예에 있어서, 상기 RF 전원은, 상용 교류 전원을 직류 전원으로 변환하는 정류기; 상기 직류 전원을 수신하여 제어기의 스위칭 신호들에 응답하여 RF 전력으로 변환하는 인버터; 및 상기 스위칭 신호들을 제어하여 구동 주파수 및 전력을 제어하는 제어부를 포함할 수 있다. 상기 RF 전원은 초기 방전시 상기 제1 공진 주파수에서 동작하고, 메인 유도 결합 플라즈마 발생시 상기 제2 공진 주파수에서 동작할 수 있다.In one embodiment of the present invention, the RF power source, a rectifier for converting commercial AC power into DC power; an inverter that receives the DC power and converts it into RF power in response to switching signals of a controller; and a controller configured to control a driving frequency and power by controlling the switching signals. The RF power source may operate at the first resonant frequency during initial discharge and may operate at the second resonant frequency when a main inductively coupled plasma is generated.
본 발명의 일 실시예에 있어서, 상기 RF 전원은, 상기 초기 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제1 공진 주파수에서 동작하는 제1 RF 전원; 및 상기 메인 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제2 공진 주파수에서 동작하는 제2 RF 전원;을 포함할 수 있다. 상기 제1 RF 전원은, 교류 전원을 직류 전원으로 변환하는 제1 정류기; 상기 제1 정류기의 직류 전원을 제공받아 제1 공진 주파수의 교류 전력을 상기 초기 방전 유도 코일 모듈에 제공하는 제1 인버터; 및 상기 제1 인버터의 출력을 제어하는 제1 제어부를 포함할 수 있다. 상기 제2 RF 전원은, 교류 전원을 직류 전원으로 변환하는 제2 정류기; 상기 제2 정류기의 직류 전원을 제공받아 제2 공진 주파수의 교류 전력을 상기 메인 방전 유도 코일 모듈에 제공하는 제2 인버터; 및 상기 제2 인버터의 출력을 제어하는 제2 제어부를 포함할 수 있다.In one embodiment of the present invention, the RF power supply, the first RF power supply providing AC power to the initial discharge induction coil module and operating at the first resonant frequency; and a second RF power supply that provides AC power to the main discharge induction coil module and operates at the second resonant frequency. The first RF power source includes: a first rectifier for converting AC power into DC power; a first inverter receiving the DC power of the first rectifier and providing AC power of a first resonance frequency to the initial discharge induction coil module; and a first controller configured to control an output of the first inverter. The second RF power source includes: a second rectifier for converting AC power into DC power; a second inverter receiving the DC power of the second rectifier and providing AC power of a second resonance frequency to the main discharge induction coil module; and a second control unit for controlling an output of the second inverter.
본 발명의 일 실시예에 있어서, 상기 RF 전원은, 교류 전원을 직류 전원으로 변환하는 정류기; 상기 정류기의 직류 전원을 제공받아 상기 초기 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제1 공진 주파수에서 동작하는 제1 RF 전원; 및 상기 정류기의 직류 전원을 제공받아 상기 메인 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제2 공진 주파수에서 동작하는 제2 RF 전원을 포함할 수 있다.In an embodiment of the present invention, the RF power source includes: a rectifier for converting AC power into DC power; a first RF power supply receiving the DC power of the rectifier to provide AC power to the initial discharge induction coil module and operating at the first resonance frequency; and a second RF power source that receives the DC power from the rectifier to provide AC power to the main discharge induction coil module and operates at the second resonant frequency.
본 발명의 일 실시예에 있어서, 상기 제1 RF 전원은 상기 정류기의 직류 전원을 제공받아 제1 공진 주파수의 제1 교류 전력으로 변환하는 제1 인버터; 및 상기 제1 인버터를 제어하는 제1 제어부; 상기 제2 RF 전원은 상기 정류기의 직류 전원을 제공받아 제2 공진 주파수의 교류 전력으로 변환하는 제2 인버터; 및 상기 제2 인버터를 제어하는 제2 제어부;를 포함할 수 있다.In an embodiment of the present invention, the first RF power source includes: a first inverter that receives the DC power of the rectifier and converts it into a first AC power of a first resonance frequency; and a first control unit for controlling the first inverter; The second RF power source is a second inverter that receives the DC power of the rectifier and converts it into AC power having a second resonance frequency; and a second controller configured to control the second inverter.
본 발명의 일 실시예에 있어서, 상기 제1 RF 전원은 4 MHz 내지 5 MHz의 주파수 범위에서 동작하고, 상기 제2 RF 전원은 400 kHz 내지 4 MHz의 주파수 범위에서 동작할 수 있다.In an embodiment of the present invention, the first RF power source may operate in a frequency range of 4 MHz to 5 MHz, and the second RF power supply may operate in a frequency range of 400 kHz to 4 MHz.
본 발명의 일 실시예에 있어서, 상기 제1 인버터 및 상기 제2 인버터 각각은 풀브리지 구조 또는 하브 브리지 구조일 수 있다.In one embodiment of the present invention, each of the first inverter and the second inverter may have a full-bridge structure or a half-bridge structure.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일에 흐르는 전류를 감지하는 제1 감지 센서를 더 포함할 수 있다. 상기 RF 전원은 상기 제1 감지 센서의 출력을 이용하여 축전 결합 모드에서 유도 결합 모드로 천이를 감지하여 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 구동 주파수를 변경할 수 있다.In one embodiment of the present invention, the first detection sensor for sensing the current flowing in the initial discharge induction coil may be further included. The RF power may change the driving frequency from the first resonant frequency to the second resonant frequency by detecting a transition from the capacitive coupling mode to the inductive coupling mode using the output of the first detection sensor.
본 발명의 일 실시예에 있어서, 상기 메인 방전 유도 코일 모듈에 흐르는 전류를 감지하는 제2 감지 센서를 더 포함할 수 있다. 상기 RF 전원은 상기 제2 감지 센서의 출력을 이용하여 상기 메인 유도 결합 플라즈마가 형성된 것을 감지하여 상기 초기 방전 유도 코일 모듈에 제공하는 전력을 차단할 수 있다.In one embodiment of the present invention, a second detection sensor for detecting a current flowing through the main discharge induction coil module may be further included. The RF power may detect that the main inductively coupled plasma is formed by using the output of the second detection sensor to cut off the power provided to the initial discharge induction coil module.
본 발명의 일 실시예에 있어서, 상기 제1 전극은 상기 초기 방전 유도 코일의 상부에 배치되고 양의 DC 고전압으로 대전될 수 있다. 상기 제2 전극은 상기 초기 방전 유도 코일의 하부에 배치되고 상기 유전체 방전 튜브를 감싸도록 "C" 자 형태이고 음의 DC 고전압으로 대전될 수 있다.In an embodiment of the present invention, the first electrode may be disposed on the initial discharge induction coil and be charged with a positive DC high voltage. The second electrode is disposed under the initial discharge induction coil, has a “C” shape to surround the dielectric discharge tube, and may be charged with a negative DC high voltage.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일은 솔레노이드 형태이고, 복층으로 감길 수 있다.In an embodiment of the present invention, the initial discharge induction coil has a solenoid shape and may be wound in multiple layers.
본 발명의 일 실시예에 있어서, 상기 초기 방전 유도 코일은 내부 솔레노이드 코일, 중간 솔레노이드 코일, 외부 솔레노이드 코일의 3층 구조일 수 있다.In one embodiment of the present invention, the initial discharge induction coil may have a three-layer structure of an internal solenoid coil, an intermediate solenoid coil, and an external solenoid coil.
본 발명의 일 실시예에 있어서, 상기 단위 안테나는, 상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브와 접촉하여 배치되고 루프를 형성하는 제1 안테나; 상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나; 및 상기 제2 안테나를 감싸도록 배치되고 루프를 형성하는 제3 안테나를 포함할 수 있다.In an embodiment of the present invention, the unit antenna may include: a first antenna disposed in contact with the dielectric discharge tube in a plane of arrangement perpendicular to a central axis of the dielectric discharge tube and forming a loop; a second antenna disposed to surround the first antenna and forming a loop; and a third antenna disposed to surround the second antenna and forming a loop.
본 발명의 일 실시예에 있어서, 상기 단위 안테나는 동일한 배치 평면에 배치되는 복수의 권선을 포함하고, 복수의 권선을 절연시키는 "ㅛ"자 형상의 절연 스페이서를 더 포함할 수 있다. In an embodiment of the present invention, the unit antenna may include a plurality of windings disposed on the same arrangement plane, and may further include an insulating spacer in the shape of a “ㅛ” to insulate the plurality of windings.
본 발명의 일 실시예에 따른 플라즈마 발생 장치의 동작 방법은, 유전체 방전 튜브의 내부에 제1 가스를 주입하는 단계; 유전체 방전 튜브의 내부에 상기 제1 가스를 이용하여 시드 전하를 제공하는 단계; 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 연결된 제1 임피던스 매칭 네트워크를 사용하여 제1 공진 주파수의 교류 전력으로 상기 시드 전하로부터 상기 제1 가스의 초기 방전을 수행하는 단계; 및 복수의 단위 안테나와 제2 임피던스 매칭 네트워크를 사용하여 상기 제1 공진 주파수와 다른 제2 공진 주파수의 교류 전력으로 상기 제1 가스의 메인 유도 결합 플라즈마를 생성하는 단계;를 포함한다.A method of operating a plasma generating apparatus according to an embodiment of the present invention includes: injecting a first gas into the dielectric discharge tube; providing seed charges to the inside of the dielectric discharge tube using the first gas; performing an initial discharge of the first gas from the seed charge with AC power of a first resonant frequency using an initial discharge induction coil and a first impedance matching network connected to the initial discharge induction coil; and generating a main inductively coupled plasma of the first gas with AC power having a second resonant frequency different from the first resonant frequency using a plurality of unit antennas and a second impedance matching network.
본 발명의 일 실시예에 있어서, 상기 제1 가스를 제2 가스로 변경하면서 상기 메인 유도 결합 플라즈마를 유지하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, the method may further include maintaining the main inductively coupled plasma while changing the first gas to a second gas.
본 발명의 일 실시예에 있어서, 상기 제1 가스의 초기 방전 후, 복수의 단위 안테나와 제2 임피던스 매칭 네트워크를 사용하여 제2 공진 주파수 근처의 교류 전력으로 상기 초기 방전으로부터 상기 제1 가스의 예비 메인 유도 결합 플라즈마를 생성하는 단계를 더 포함할 수 있다. In one embodiment of the present invention, after the initial discharge of the first gas, a plurality of unit antennas and a second impedance matching network are used to reserve the first gas from the initial discharge with AC power near a second resonant frequency. The method may further include generating a main inductively coupled plasma.
본 발명의 일 실시예에 있어서, 상기 예비 메인 유도 결합 플라즈마가 생성된 경우, 상기 제1 공진 주파수의 교류 전력을 차단하는 단계를 더 포함할 수 있다.In one embodiment of the present invention, when the preliminary main inductively coupled plasma is generated, the step of blocking the AC power of the first resonant frequency may be further included.
본 발명의 일 실시예에 따른 대기압 플라즈마 발생 장치는 시드 발생용 전극, 이그니션에 유리한 초기 방전 유도 코일, 그리고 방전 유지에 유리한 메인 방전 유도 코일 모듈을 이용하여 대기압 또는 그 이상의 압력에서 안정적인 플라즈마 발생을 수행할 수 있다.Atmospheric pressure plasma generating apparatus according to an embodiment of the present invention performs stable plasma generation at atmospheric pressure or higher pressure using an electrode for seed generation, an initial discharge induction coil advantageous for ignition, and a main discharge induction coil module advantageous for maintaining discharge can do.
도 1은 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 응용예를 나타내는 개념도이다.
도 2a는 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 초기 방전 동작을 나타내는 개념도이다.
도 2b는 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 메인 방전 동작을 나타내는 개념도이다.
도 3은 도 2a의 대기압 플라즈마 장치를 회로적으로 표시한 개념도이다.
도 4는 도 2a의 대기압 플라즈마 장치의 초기 방전 동작에서 초기 방전 유도 코일 모듈에 인가되는 전압 분배를 표시한 개념도이다.
도 5는 도 2b의 대기압 플라즈마 장치의 메인 방전 동작에서 메인 방전 유도 코일 모듈에 인가되는 전압 분배를 표시한 개념도이다.
도 6은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나들의 배치 관계를 나타내는 평면도이다.
도 7은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나를 나타내는 평면도이다.
도 8은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나들 절연 상태를 나타내는 단면도이다.
도 9는 본 발명의 일 실시예에 따른 제1 전극과 제2 전극의 배치 관계를 나타내는 절단 사시도이다.
도 10은 본 발명의 다른 실시예에 따른 DC 전원을 나타내는 회로도이다.
도 11은 도 10의 고전압 펄스 발생기를 설명하는 회로도이다.
도 12는 본 발명의 다른 실시예에 따른 대기압 플라즈마 발생 장치의 메인 방전 유도 코일 모듈을 설명하는 단면도이다.
도 13은 도 12의 메인 방전 유도 코일 모듈의 단위 안테나들의 배치관계를 설명하는 평면도이다.
도 14는 도 12의 대기압 플라즈마 발생 장치의 초기 방전 모드를 설명하는 등가회로를 나타내는 도면이다.
도 15는 도 12의 대기압 플라즈마 발생 장치의 메인 방전 모드를 설명하는 등가회로를 나타내는 도면이다.
도 16은 도 12의 대기압 플라즈마 발생 장치의 초기 방전 모드와 메인 방전 모드를 나타내는 타이밍도이다.
도 17은 도 2a에 따른 플라즈마 발생 장치를 설명하는 개념도이다.
도 18은 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.
도 19는 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.
도 20은 도 19의 플라즈마 발생 장치의 방전을 설명하는 개념도이다.
도 21은 도 19의 신호를 나타내는 타이밍도이다.
도 22는 도 19의 플라즈마 발생 장치의 동작 방법을 설명하는 흐름도이다.
도 23은 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.
도 24 내지 도 28은 본 발명의 일 실시예들에 따른 제1 RF 전원에 연결된 초기 방전 유도 코일 모듈을 나타낸다.
도 29는 본 발명의 또 다른 실시예에 따른 제2 RF 전원에 연결된 메인 방전 유도 코일 모듈을 나타낸다.
도 30은 제1 인버터 또는 제2 인버터에 사용되는 풀브리지 인버터를 나타내는 회로도이다.
도 31는 발명의 일 실시예에 따른 하프브리지 인버터를 나타내는 회로도이다.
도 32는 본 발명의 또 다른 실시예에 따른 시드 전하 발생부를 나타내는 개념도이다.
도 33 내지 도 36은 본 발명의 또 다른 실시예들에 따른 고전압 펄스 발생부를 나타내는 개념도들이다.
도 37은 본 발명의 또 다른 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나를 나타내는 평면도이다.1 is a conceptual diagram illustrating an application example of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
2A is a conceptual diagram illustrating an initial discharge operation of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
2B is a conceptual diagram illustrating a main discharge operation of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
3 is a schematic diagram illustrating the atmospheric pressure plasma apparatus of FIG. 2A as a circuit.
FIG. 4 is a conceptual diagram illustrating voltage distribution applied to an initial discharge induction coil module in an initial discharge operation of the atmospheric pressure plasma apparatus of FIG. 2A .
FIG. 5 is a conceptual diagram illustrating voltage distribution applied to a main discharge induction coil module in a main discharge operation of the atmospheric pressure plasma apparatus of FIG. 2B .
6 is a plan view illustrating an arrangement relationship of unit antennas of a main discharge induction coil module according to an embodiment of the present invention.
7 is a plan view illustrating a unit antenna of a main discharge induction coil module according to an embodiment of the present invention.
8 is a cross-sectional view illustrating an insulation state of unit antennas of a main discharge induction coil module according to an embodiment of the present invention.
9 is a cut-away perspective view illustrating a disposition relationship between a first electrode and a second electrode according to an embodiment of the present invention.
10 is a circuit diagram illustrating a DC power supply according to another embodiment of the present invention.
11 is a circuit diagram illustrating the high voltage pulse generator of FIG. 10 .
12 is a cross-sectional view illustrating a main discharge induction coil module of an atmospheric pressure plasma generating apparatus according to another embodiment of the present invention.
13 is a plan view illustrating an arrangement relationship of unit antennas of the main discharge induction coil module of FIG. 12 .
14 is a diagram illustrating an equivalent circuit for explaining an initial discharge mode of the atmospheric pressure plasma generating apparatus of FIG. 12 .
15 is a diagram illustrating an equivalent circuit for explaining a main discharge mode of the atmospheric pressure plasma generating apparatus of FIG. 12 .
16 is a timing diagram illustrating an initial discharge mode and a main discharge mode of the atmospheric pressure plasma generator of FIG. 12 .
17 is a conceptual diagram illustrating the plasma generating apparatus according to FIG. 2A.
18 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
19 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
FIG. 20 is a conceptual diagram for explaining discharge of the plasma generating device of FIG. 19 .
21 is a timing diagram illustrating the signal of FIG. 19 .
22 is a flowchart illustrating a method of operating the plasma generating apparatus of FIG. 19 .
23 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
24 to 28 show an initial discharge induction coil module connected to a first RF power source according to embodiments of the present invention.
29 shows a main discharge induction coil module connected to a second RF power source according to another embodiment of the present invention.
30 is a circuit diagram illustrating a full-bridge inverter used in the first inverter or the second inverter.
31 is a circuit diagram illustrating a half-bridge inverter according to an embodiment of the present invention.
32 is a conceptual diagram illustrating a seed charge generator according to another embodiment of the present invention.
33 to 36 are conceptual views illustrating a high voltage pulse generator according to still another exemplary embodiment of the present invention.
37 is a plan view illustrating a unit antenna of a main discharge induction coil module according to another embodiment of the present invention.
본 발명의 일 실시예에 따른 플라즈마 발생 장치는 유전체 방전 튜브에 배치된 한 쌍의 전극, 초기 방전 유도 코일 모듈, 및 메인 방전 유도 코일 모듈을 포함한다. 초기 방전 유도 코일 모듈 및 메인 방전 유도 코일 모듈은 RF 전원에 병렬 연결되고, RF 전원은 공진 주파수에 따라 선택적으로 RF 전력을 초기 방전 유도 코일 모듈 또는 메인 방전 유도 코일 모듈에 제공한다.A plasma generating apparatus according to an embodiment of the present invention includes a pair of electrodes disposed in a dielectric discharge tube, an initial discharge induction coil module, and a main discharge induction coil module. The initial discharge induction coil module and the main discharge induction coil module are connected in parallel to an RF power source, and the RF power source selectively provides RF power to the initial discharge induction coil module or the main discharge induction coil module according to a resonance frequency.
초기 방전 모듈은 이그니션에 유리한 안테나를 구비하고, 메인 방전 모듈은 방전 유지에 유리한 안테나 특성을 가진다. 서로 병렬로 연결된 초기 방전 모듈과 메인 방전 모듈은 구동 주파수에 따라 서로 다른 임피던스 특성을 가진다. 초기 방전 모듈은 제1 공진 주파수를 가지며, 메인 방전 모듈은 제2 공진 주파수를 가진다. 제1 공진 주파수로 전류를 흘리면, 초기 방전 모듈로 전류가 주로 흐르게 된다. 공진이 아닌 루트는 제1 공진 주파수에서 임피던스가 상대적으로 커서 전류가 상대적으로 적게 흐른다. 제2 공진 주파수로 전류를 흘리면, 메인 방전 모듈로 전류가 주로 흐르게 된다. 방전 모듈이 3개 이상이더라도, 각 방전 모듈 별로 다른 공진 주파수를 부여하면, 원하는 방전 모듈로 전류를 부여할 수 있다. 이에 따라, 본 발명은 넓은 실 저항 범위에서 임피던스 매칭을 수행할 수 있고, 넓은 방전 제어 범위 (유량, power, 압력)를 구현할 수 있고, 다양한 용도의 방전 모듈에 전류를 스위칭하여 방전 기능을 변경할 수 있다.The initial discharge module has an antenna advantageous for ignition, and the main discharge module has an antenna characteristic for maintaining discharge. The initial discharge module and the main discharge module connected in parallel have different impedance characteristics depending on the driving frequency. The initial discharge module has a first resonant frequency, and the main discharge module has a second resonant frequency. When the current flows at the first resonant frequency, the current mainly flows to the initial discharge module. The non-resonant route has a relatively high impedance at the first resonant frequency, so that a relatively small amount of current flows. When the current flows at the second resonant frequency, the current mainly flows to the main discharge module. Even if there are three or more discharge modules, if a different resonant frequency is given to each discharge module, a current can be provided to a desired discharge module. Accordingly, the present invention can perform impedance matching in a wide real resistance range, implement a wide discharge control range (flow rate, power, pressure), and change the discharge function by switching the current in the discharge module for various purposes. have.
상기 한 쌍의 전극은 초기 방전 모듈의 초기 방전 유도 코일의 상부 및 하부에 각각 배치되어 대기압에서 DC 전압을 인가하여 초기 방전을 수행하기 위한 상기 유전체 방전 튜브의 중심축 방향으로 정전 수직 전기장(E_ig)을 생성하고, 시드 전하를 발생시킨다.The pair of electrodes are respectively disposed on the upper and lower portions of the initial discharge induction coil of the initial discharge module to apply a DC voltage at atmospheric pressure to perform the initial discharge by applying an electrostatic vertical electric field (E_ig) to the central axis of the dielectric discharge tube and generate a seed charge.
초기 방전 유도 코일 모듈은 상기 한 쌍의 전극 사이에 배치되고 상기 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 직렬 연결된 초기 방전 축전기를 포함한다. 상기 메인 방전 모듈과 상기 초기 방전 모듈은 병렬 연결된다. 상기 초기 방전 유도 코일 모듈은 제1 공진 주파수를 가지며, RF 전원으로부터 초기 방전 모드에서 상기 제1 공진 주파수의 RF 전력을 제공받아 초기 방전을 수행한다. 상기 메인 방전 모듈은 상기 제1 공진 주파수에서 높은 임피던스에 기인하여 방전을 수행하지 않는다. 상기 초기 방전 유도 코일에 의한 플라즈마는 축전 결합 모드(또는 E 모드)에서 유도 결합 모드(또는 H 모드)로 천이한다. 축전 결합 모드(또는 E 모드)에서 상기 초기 방전 유도 코일은 제1 공진 주파수에서 상기 초기 방전 유도 코일의 양단에 높은 전위차를 발생시키어 상기 유전체 방전 튜브의 중심축 방향으로 수직 전기장(E_z)을 생성할 수 있다. 유도 결합 모드(또는 H 모드)로 천이한 후에, 플라즈마 실저항은 증가하고 상기 초기 방전 유도 코일에 흐르는 제1 전류는 감소한다.The initial discharge induction coil module is disposed between the pair of electrodes and includes the initial discharge induction coil and an initial discharge capacitor connected in series with the initial discharge induction coil. The main discharge module and the initial discharge module are connected in parallel. The initial discharge induction coil module has a first resonant frequency, and receives RF power of the first resonant frequency from an RF power source in an initial discharge mode to perform initial discharge. The main discharge module does not discharge due to the high impedance at the first resonant frequency. The plasma by the initial discharge induction coil transitions from the capacitive coupling mode (or E mode) to the inductive coupling mode (or H mode). In the capacitive coupling mode (or E mode), the initial discharge induction coil generates a high potential difference at both ends of the initial discharge induction coil at a first resonant frequency to generate a vertical electric field (E_z) in the direction of the central axis of the dielectric discharge tube. can After transition to the inductive coupling mode (or H mode), the plasma real resistance increases and the first current flowing through the initial discharge induction coil decreases.
상기 메인 방전 모듈은 상기 초기 방전 유도 코일과 이격되어 배치되고 복수의 배치 평면들에 각각 배치되는 서로 직렬 연결되는 단위 안테나들, 상기 단위 안테나들의 양단에 각각 배치된 제1 메인 축전기 및 제2 메인 축전기; 및 상기 단위 안테나들 사이에 직렬 연결된 보조 축전기;를 포함한다. 상기 메인 방전 모듈과 상기 초기 방전 모듈은 병렬 연결된다. 상기 메인 방전 모듈은 제2 공진 주파수를 가진다. 상기 초기 방전 유도 코일에 의하여 축전 결합 모드(또는 E 모드)에서 상기 유도 결합 모드(또는 H 모드)로 천이한 경우, 상기 RF 전원은 구동 주파수를 제1 공진 주파수에서 제2 공진 주파수로 변경한다. 동시에 DC 전압을 상기 한 쌍의 전극에서 제거한다. 이에 따라, 상기 초기 방전 모듈은 높은 임피던스에 기인하여 전류가 흐르지 않아 방전을 수행하지 않고, 상기 메인 방전 모듈은 낮은 임피던스에 기인하여 전류가 흐르고 유도 결합 플라즈마를 안정적으로 발생시킨다. The main discharge module includes unit antennas arranged to be spaced apart from the initial discharge induction coil and connected to each other in series on a plurality of arrangement planes, a first main capacitor and a second main capacitor respectively arranged at both ends of the unit antennas. ; and an auxiliary capacitor connected in series between the unit antennas. The main discharge module and the initial discharge module are connected in parallel. The main discharge module has a second resonant frequency. When the initial discharge induction coil makes a transition from the capacitive coupling mode (or E mode) to the inductive coupling mode (or H mode), the RF power source changes the driving frequency from the first resonant frequency to the second resonant frequency. At the same time, the DC voltage is removed from the pair of electrodes. Accordingly, the initial discharge module does not perform a discharge because current does not flow due to the high impedance, and the main discharge module flows due to the low impedance and stably generates an inductively coupled plasma.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 도면들에 있어서, 구성요소는 명확성을 기하기 위하여 과장되어진 것이다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed subject matter may be thorough and complete, and that the spirit of the present invention may be sufficiently conveyed to those skilled in the art. In the drawings, components are exaggerated for clarity. Parts indicated with like reference numerals throughout the specification indicate like elements.
도 1은 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 응용예를 나타내는 개념도이다.1 is a conceptual diagram illustrating an application example of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
도 1을 참조하면, 기판 처리 장치(10)는 진공 용기(92) 내부에 기판 홀더(93)를 구비하고, 상기 기판 홀더(93) 상에 배치된 기판(94)에 증착 공정, 식각 공정, 확산 공정, 또는 이온 주입 공정을 수행할 수 있다. 상기 진공 용기(92)는 진공 펌프(95)에 의하여 배기되고, 배기 가스는 대기압 플라즈마 발생 장치(100)를 통하여 정재 처리되어 외부로 배출된다. 상기 배기 가스는 미세 입자, 맹독성 가스, 온실 가스와 같은 오염 물질을 포함한다.Referring to FIG. 1 , the
상기 배기 가스는 가스 스크러버를 통하여 정재된 후 배출된다. 가스 스크러버는 연소식 또는 플라즈마 방식을 포함한다.The exhaust gas is purified through a gas scrubber and then discharged. The gas scrubber includes a combustion type or a plasma type.
상압 방전 플라즈마 방식은 고전압 평판 플라즈마 방식과 아크토치 방식, 그리고 유도가열 플라즈마 방식을 예로 들 수 있다. 고전압 평판형 플라즈마의 경우, 높은 방전 유지능력을 가지지만, 높은 동작 압력에서 낮은 플라즈마 밀도, 및 고온 조건을 형성하기 어렵다. 따라서, 열화학적 분해에 의한 유해 물질 제거 효과가 낮다. The atmospheric discharge plasma method includes a high voltage flat plate plasma method, an arc torch method, and an induction heating plasma method. In the case of a high-voltage plate-type plasma, it has a high discharge holding capacity, but it is difficult to form a low plasma density and high temperature condition at a high operating pressure. Therefore, the effect of removing harmful substances by thermochemical decomposition is low.
한편, 아크 토치와 같은 고온 플라즈마는 높은 반응 온도를 제공하나, 처리 가스가 플라즈마 내부로 직접 분사되지 않아 분해 효율이 감소하고, 아크 발생을 위한 전극의 내구성이 취약하다.On the other hand, a high-temperature plasma such as an arc torch provides a high reaction temperature, but since the processing gas is not directly injected into the plasma, the decomposition efficiency is reduced, and the durability of the electrode for arc generation is weak.
본 발명의 일 실시예에 따른 대기압 플라즈마 장치는 100 토르 이상의 압력에서 유도 결합 플라즈마를 이용하여 높은 플라즈마 밀도 (10^16/cm^3) 및 높은 가스 온도(섭씨 3000도)를 구현할 수 있다. 따라서, 상기 대기압 플라즈마 장치는 진공 펌프의 후단에 배치되어 대기압 하에서 수십 slm(Standard liter per Minute) 이상의 가스에 섞여 흐르는 유해가스를 분해하여 처리할 수 있다. 상기 유해 가스는 CxFy 나 SxFy 가스 일 수 있다. 본 발명은 통상적으로 대기압 방전이 어려운 CxFy 가스를 대기압에서 유도 결합 방전을 수행할 수 있다. 본 발명의 일 실시예에 따른 대기압 플라즈마 장치는 CO2 개질(CO2 reforming)과 같은 공정에 사용될 수 있다.The atmospheric pressure plasma apparatus according to an embodiment of the present invention may implement a high plasma density (10^16/cm^3) and a high gas temperature (3000 degrees Celsius) by using an inductively coupled plasma at a pressure of 100 Torr or more. Accordingly, the atmospheric pressure plasma apparatus may be disposed at the rear end of the vacuum pump to decompose and process the harmful gas flowing in the gas mixed with tens of slm (Standard liter per Minute) or more under atmospheric pressure. The harmful gas may be CxFy or SxFy gas. The present invention can perform inductively coupled discharge at atmospheric pressure for CxFy gas, which is usually difficult to discharge at atmospheric pressure. Atmospheric pressure plasma apparatus according to an embodiment of the present invention can be used in a process such as CO2 reforming (CO2 reforming).
도 2a는 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 초기 방전 동작을 나타내는 개념도이다.2A is a conceptual diagram illustrating an initial discharge operation of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시예에 따른 대기압 플라즈마 장치의 메인 방전 동작을 나타내는 개념도이다.2B is a conceptual diagram illustrating a main discharge operation of an atmospheric pressure plasma apparatus according to an embodiment of the present invention.
도 3은 도 2a의 대기압 플라즈마 장치를 회로적으로 표시한 개념도이다.3 is a schematic diagram illustrating the atmospheric pressure plasma apparatus of FIG. 2A as a circuit.
도 4는 도 2a의 대기압 플라즈마 장치의 초기 방전 동작에서 초기 방전 유도 코일 모듈에 인가되는 전압 분배를 표시한 개념도이다.FIG. 4 is a conceptual diagram illustrating voltage distribution applied to an initial discharge induction coil module in an initial discharge operation of the atmospheric pressure plasma apparatus of FIG. 2A .
도 5는 도 2a의 대기압 플라즈마 장치의 메인 방전 동작에서 메인 방전 유도 코일 모듈에 인가되는 전압 분배를 표시한 개념도이다.FIG. 5 is a conceptual diagram illustrating voltage distribution applied to a main discharge induction coil module in a main discharge operation of the atmospheric pressure plasma apparatus of FIG. 2A .
도 6은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나들의 배치 관계를 나타내는 평면도이다.6 is a plan view illustrating an arrangement relationship of unit antennas of a main discharge induction coil module according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나를 나타내는 평면도이다.7 is a plan view illustrating a unit antenna of a main discharge induction coil module according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 메인 방전 유도 코일 모듈의 단위 안테나들 절연 상태를 나타내는 단면도이다.8 is a cross-sectional view illustrating an insulation state of unit antennas of a main discharge induction coil module according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 제1 전극과 제2 전극의 배치 관계를 나타내는 절단 사시도이다.9 is a cut-away perspective view illustrating a disposition relationship between a first electrode and a second electrode according to an embodiment of the present invention.
도 2 내지 도 9를 참조하면, 대기압 플라즈마 발생 장치(100)는, 유전체 방전 튜브(140); 상기 유전체 원통 튜브(140)를 감싸고 복수의 권선수를 가지며 대기압 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120)과 직렬 연결되어 제1 공진 주파수(fa)를 제공하는 초기 방전 축전기(122a,122b)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)의 상부 및 하부에 각각 배치되어 초기 방전 시드를 제공하는 제1 전극(114) 및 제2 전극(116); 상기 제1 전극(114)과 상기 제2 전극(116) 사이에 DC 고전압을 인가하는 DC 전원(112); 제2 공진 주파수(fb)를 가지고 상기 초기 방전 유도 코일 모듈(102)에서 발생시킨 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 메인 방전 유도 코일 모듈(103); 및 병렬 연결된 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(103)에 RF 전력을 제공하고 구동 주파수를 변경하는 RF 전원(150)을 포함한다. 2 to 9 , the atmospheric pressure
상기 메인 방전 유도 코일 모듈(103)은, 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 방전 튜브(140)의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들(132); 상기 단위 안테나들(132) 양단에 각각 배치된 제1 메인 축전기(133a) 및 제2 메인 축전기(133b); 및 상기 단위 안테나들(132) 사이에 각각 직렬 연결된 보조 축전기들(134);을 포함한다.The main discharge
상기 RF 전원(150)은 상기 DC 고전압의 도움으로 상기 제1 공진 주파수(fa)에서 상기 초기 방전 유도 코일(120)에 초기 방전을 유도한다. 상기 RF 전원(150)은 상기 구동 주파수를 상기 제1 공진 주파수(fa)에서 상기 제2 공진 주파수(fb)로 변경하여 메인 방전을 수행한다.The
대기압 유도 결합 플라즈마는 낮은 유도 전기장에 기인하여 이그니션 ( 또는 초기 방전)을 발생시키기 어렵다. 따라서, 안정적인 초기 방전을 위하여, 제1 전극(114) 및 제2 전극(116)에 의한 DC 방전의 도움을 받는다. 한편, DC 방전은 높은 플라즈마 밀도를 형성하기 어렵다. 유전체 방전 튜브의 외측에 배치된 전극은 높은 전기장(E_ig)에 의하여 유전체 방전 튜브(140)를 손상시킨다. Atmospheric pressure inductively coupled plasma is difficult to generate ignition (or initial discharge) due to the low induced electric field. Therefore, for a stable initial discharge, DC discharge is assisted by the
초기 방전 유도 코일(120)은 DC 방전에 의한 시드 전하의 도움으로 초기 유도 결합 플라즈마를 발생시킨다. 이를 위하여 유전체 방전 튜브(140)의 중심축 방향의 강한 정전 수직 전기장(E_z)이 요구된다. 이러한 강한 정전 수직 전기장(E_z)은 초기 방전 유도 코일의 구조에 의존한다. 상기 초기 방전 유도 코일(120)의 상기 정전 수직 전기장(E_z)은 축전 결합 모드를 발생시킬 수 있다. 상기 정전 수직 전기장(E_z)은 상기 초기 방전 유도 코일의 양단에 인가되는 높은 전위차(Va)에 의하여 발생될 수 있다. 상기 정전 수직 전기장(E_z)은 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 비례할 수 있다. 그러나, 상기 초기 방전 유도 코일(120)의 인덕턴스(La)가 너무 크면 높은 임피던스에 의하여, RF 전원(150)의 전력은 부하 (초기 방전 유도 코일)에 효율적으로 전달되지 않는다. 따라서, 초기 방전 축전기(122a,122b)는 상기 초기 방전 유도 코일(120)과 직렬 연결되어 제1 공진 주파수(fa)를 제공한다. 상기 RF 전원(150)이 상기 제1 공진 주파수에서 동작하면, 상기 RF 전원의 출력단에서 상기 초기 방전 유도 코일(120)을 바라본 임피던스(Za)의 허수부는 제거될 수 있다. 따라서, 상기 RF 전원(150)은 안정적으로 RF 전력을 상기 초기 방전 유도 코일에 전달할 수 있다. 또한, 상기 초기 방전 유도 코일(120)은 높은 인덕턴스를 가지므로, 상기 초기 방전 유도 코일(120)의 양단에 높은 전위차(Va)가 유도되어, 상기 정전 수직 전기장(E_z)은 축전 결합 모드를 발생시킬 수 있다. 상기 축전 결합 모드에서는, 상기 유전체 방전 튜브(140)의 중심축 방향으로 스트리머 방전이 국부적으로 형성된다. The initial
상기 축전 결합 모드에 의하여 플라즈마가 충분히 발생한 경우, 상기 초기 방전 유도 코일(120)에 흐르는 제1 전류(Ia)에 의하여 방위각 방향의 유도 전기장(E_a_ind)이 생성된다. 상기 유도 전기장(E_a_ind)에 의하여 플라즈마는 축전 결합 모드에서 유도 결합 모드로 천이(transition)한다. 상기 초기 방전 유도 코일(120)에 의한 유도 결합 모드에서, 플라즈마는 상기 유전체 방전 튜브(140) 내에서 전체적으로 발생된다. 상기 유도 결합 모드에서, 상기 초기 방전 유도 코일을 통하여 흐르는 제1 전류(Ia) 및 상기 초기 방전 유도 코일의 양단에 걸리는 전위차(Va)는 축전 결합 모드에 비하여 감소한다. When plasma is sufficiently generated by the capacitive coupling mode, an induced electric field E_a_ind in the azimuth direction is generated by the first current Ia flowing through the initial
그러나, 상기 초기 방전 유도 코일(120)에 의한 유도 결합 모드는 상기 초기 방전 유도 코일(120)의 높은 인덕턴스(La)에 의하여 상기 초기 방전 유도 코일의 양단에 여전히 높은 전위차를 유지한다. 따라서, 일정한 플라즈마 포텐셜(plasma potential)을 가지는 플라즈마와 상기 초기 방전 유도 코일(120) 사이에는 플라즈마 시스(plasma sheath)가 형성되고, 이온들이 상기 플라즈마 시스(plasma sheath)를 통하여 상기 유전체 방전 튜브(120)의 내벽으로 가속된다. 이에 따라, 상기 유전체 방전 튜브(120)는 열에 의하여 파손되고 방전 효율이 감소된다. However, in the inductive coupling mode by the initial
본 발명은 이러한 문제점을 극복하고자 초기 방전에 최적화된 초기 방전 유도 코일(120)과 유전체 방전 튜브의 열 파손을 억제하고 방전 효율을 증가시키는 메인 방전 유도 코일 모듈(103)이 사용된다. 초기 방전 단계에서는 RF 전력이 초기 방전 유도 코일(120)로 유입되어 축전 결합 모드에서 유도 결합 모드로 천이를 발생시킨다. 상기 메인 방전 유도 코일 모듈(103)은 초기 방전 유도 코일(120)에 의한 발생된 다량의 하전 입자를 사용하여 축전 결합 모드를 거치지 않고 바로 유도 결합 모드의 플라즈마를 발생시킨다.In the present invention, in order to overcome this problem, an initial
상기 메인 방전 유도 코일 모듈(103)은 상기 초기 방전 유도 코일 모듈(102)과 다른 전기적 특성 및 방전 특성을 가진다. 상기 메인 방전 유도 코일 모듈(103)은 메인 방전 유도 코일 모듈을 구성하는 복수의 단위 안테나들(132)을 포함한다. 상기 안테나들(132)은 서로 다른 배치 평면에 배치되어 서로 적층되고 상기 유전체 방전 튜브를 감싸도록 배치된다. The main discharge
상기 메인 방전 유도 코일 모듈(103)은 상기 초기 방전 유도 코일 없이 단독으로는 동작하기 어렵다. 하지만, 상기 초기 방전 유도 코일이 유도 결합 모드로 천이한 후, 상기 초기 방전 유도 코일(120)에 흐르는 제1 전류(Ia)가 제거됨과 동시에, 상기 메인 방전 유도 코일 모듈(103)에 제2 전류(Ib)가 흐른다. 상기 메인 방전 유도 코일 모듈(103)은 축전 결합 모드를 거치지 않고 바로 유도 결합 모드에서 안정적으로 방전할 수 있다. 단위 안테나들(132) 각각에 인가되는 제2 전위차(Vb)는 전압 분배에 의하여 상기 초기 방전 유도 코일(120)의 양단에 걸리는 전위차(Va)보다 작다. 단위 안테나들(132)의 인덕턴스의 총합(Lb)은 상기 초기 방전 유도 코일(120)의 인덕턴스(La)보다 크다. 따라서, 유도 전기장(E_b_ind)의 세기가 크며, 플라즈마 시스의 전위차 작아, 유전체 방전 튜브(140)의 열 파손이 억제되고, 방전 효율이 증가된다.The main discharge
상기 메인 방전 유도 코일 모듈(103)은, 상기 초기 방전 유도 코일과 이격되어 배치되고 상기 유전체 방전 튜브(140)를 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들(132); 상기 단위 안테나들 양단에 각각 배치된 제1 메인 축전기(133a) 및 제2 메인 축전기(133b); 및 상기 단위 안테나들 사이에 각각 직렬 연결된 보조 축전기들(134);를 포함한다. 상기 메인 방전 유도 코일 모듈(103)은 제2 공진 주파수(fb)를 가지며, 상기 단위 안테나들(132)의 개수에 비례하여, 전압 분배를 수행한다. 이에 따라, 유전체 방전 튜브의 열 손상이 억제되고, 방전 효율이 증가된다. The main discharge
RF 전원(150)은 구동 주파수를 변경할 수 있으며, 서로 병렬 연결된 상기 초기 방전 유도 코일 모듈(102)과 상기 메인 방전 유도 코일 모듈(103)에 RF 전력을 선택적으로 공급할 수 있다. 제1 공진 주파수(fa)에서, 상기 RF 전원(150)은 상기 초기 방전 유도 코일 모듈(102)에 주로 전력을 공급한다. 한편, 제2 공진 주파수(fb)에서, 상기 RF 전원(150)은 상기 메인 방전 유도 코일 모듈(103)에 주로 전력을 공급한다. The
유전체 방전 튜브(140)는 원통형 유전체 방전 튜브일 수 있다. 구체적으로, 상기 유전체 방전 튜브(140)의 재질은 세라믹, 사파이어, 혹은 쿼츠일 수 있다. 상기 세라믹은 알루미나 또는 AlN일 수 있다. 상기 유전체 방전 튜브(140)의 외경은 수 센치미터 내지 수십 센치미터일 수 있다. 상기 유전체 방전 튜브(140)의 내경은 외경보다 수 미리미터 내지 수십 미리미터 작을 수 있다. 상기 유전체 방전 튜브(140)의 길이는 수 센치미터 내지 수 미터일 수 있다. 상기 유전체 방전 튜브(140)의 양단은 상부 플랜지(142)와 하부 플랜지(144)와 각각 결합하여 밀봉될 수 있다. 상기 하부 플랜지(144)는 기판 처리 장치(10)의 배기 가스를 공정 가스로 공급받을 수 있다.The
도 9를 참조하면, 상기 초기 방전 유도 코일(120)은 유전체 방전 튜브(120)의 길이 방향에 대하여 단위 길이당 권선수를 최대화할 수 있다. 상기 초기 방전 유도 코일(120)은 다층 구조의 솔레노이드 코일일 수 있다. 구체적으로, 상기 초기 방전 유도 코일(120)은 솔레노이드 형태이고, 복층으로 감길 수 있다. 상기 초기 방전 유도 코일(120)은 내측 솔레노이드 코일(120a), 중간 솔레노이드 코일(120b), 외측 솔레노이드 코일(120c)의 3층 구조일 수 있다. 상기 내측 솔레노이드 코일(120a)은 상기 유전체 방전 튜브를 감싸는 4턴일 수 있다. 상기 중간 솔레노이드 코일(120b)은 상기 내측 솔레노이드 코일을 감싸는 4턴일 수 있다. 상기 외측 솔레이드 코일(120c)은 상기 중간 솔레노이드 코일(120b)을 감싸는 3턴일 수 있다. 상기 초기 방전 유도 코일(120)은 내부에 자기장을 보강 간섭하도록 감길 수 있다. 예를 들어, 상기 초기 방전 유도 코일(120)의 인덕턴스(La)는 8uH 일 수 있다. 상기 초기 방전 유도 코일(120)은 구리 파이프로 형성되고, 상기 초기 방전 유도 코일의 내부에는 냉매가 흐를 수 있다. 상기 초기 방전 유도 코일을 구성하는 파이프의 단면은 원형일 수 있다.Referring to FIG. 9 , the initial
초기 방전 축전기(122a,122b)는 상기 초기 방전 유도 코일의 양단 중에서 적어도 하나에 연결될 수 있다. 상기 초기 방전 축전기(122a,122b)와 상기 초기 방전 유도 코일(120)은 직렬 연결되어, 제1 공진 주파수(fa)를 제공할 수 있다. 제1 초기 방전 축전기(122a)의 정전 용량(Ca)은 제2 초기 방전 축전기(122b)의 정전 용량 (Ca)과 동일할 수 있다.The
상기 제1 공진 주파수(fa)는 3.3 MHz일 수 있다. 제1 공진 주파수(fa)는 상기 초기 방전 축전기(122a,122b)의 등가 정전 용량(C'a)과 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 정의될 수 있다. 상기 초기 방전 축전기(122a,122b)는 상기 초기 방전 유도 코일의 양단 중에서 하나에 배치될 수 있다. The first resonant frequency fa may be 3.3 MHz. The first resonant frequency fa may be defined by the equivalent capacitance C′a of the
DC 전원(112)은 고전압 DC 펄스를 생성할 수 있다. 상기 고전압 DC 펄스는 음의 DC 고전압 및 양의 DC 고전압일 수 있다. 상기 DC 전원(112)은 수십 kHz의 고전압 펄스를 생성할 수 있다. 상기 음의 DC 고전압은 음의 수십 kV이고, 상기 양의 DC 고전압은 양의 수십 kV일 수 있다. The
한 쌍의 전극(114,116)은 상기 초기 방전 유도 코일(120)의 상부 및 하부에 각각 배치된 제1 전극(114) 및 제2 전극(116)을 포함한다. 상기 제1 전극(114)은 양의 DC 고전압으로 대전되고 유전체 방전 튜브에 밀착되어 부착되는 사각판 형태일 수 있다. The pair of
제1 전극(114)은 상기 초기 방전 유도 코일(120)의 상부에서 상기 유전체 방전 튜브(140)의 외측벽에 접촉하여 배치되고 상기 양의 DC 고전압을 제공받는다. 상기 제1 전극(114)은 사각형 형상일 수 있다.The
상기 제2 전극(116)은 상기 초기 방전 유도 코일(120)의 하부에서 상기 유전체 방전 튜브(120)의 외측벽에 접촉하여 배치되고 상기 음의 DC 고전압을 제공받는다. 상기 제2 전극(116)은 상기 유전체 방전 튜브를 감싸도록 "C" 자 형태일 수 있다. 상기 제2 전극은 전자를 발생시킬 수 있도록 상기 제1 전극보다 더 넓은 면적을 가질 수 있다. 상기 제2 전극(116)이 띠 형상의 도전체를 상기 유전체 방전 튜브를 감싸도록 배치될 수 있다. 상기 제2 전극(116)은 상기 초기 방전 유도 코일에 의한 유도 전기장(E_a_ind) 또는 상기 단위 안테나들에 의한 유도 전기장(E_b_ind)에 의하여 가열될 수 있다. 따라서, 상기 유도 전기장(E_a_ind, E_b_ind)에 의한 와류(eddy current)가 흐르지 않도록 완벽한 루프를 형성하지 않고, "C" 형태를 가질 수 있다. 상기 제2 전극은 음의 DC 고전압으로 대전되고 유전체 방전 튜브에 밀착되어 부착되는 띠 형태일 수 있다. 또한, 상기 제2 전극은 방위각 방향의 유도 전기장이 흐르지 않도록 구불구불하게 형성되거나, 원통의 중심축 방향으로 연장되는 복수의 슬릿을 포함할 수 있다. The
제1 전극(114) 및 상기 제2 전극(116)에 인가되는 전압은 서로 반대 부호이고 동일한 절대값을 가질 수 있다. 제1 전극(114) 및 상기 제2 전극(116)에 DC 고전압을 인가하는 DC 전원(112)은 대기압에서 30 kV 수준을 인가할 수 있다. 이 경우, 제1 전극(114)과 상기 제2 전극(116)을 연결하는 수직 방향(유전체 방전 튜브의 중심축 방향)으로 수직 스트리머 및 상기 제2 전극(116) 상에 "C" 자 형태의 스트리머를 발생시킨다. 상기 제2 전극(116)이 완벽한 루프를 형성하는 경우, 상기 초기 방전 유도 코일(120)에 흐르는 제1 전류는 상기 제2 전극(116)에 와류를 생성하여 가열할 수 있다. 따라서, 와류를 억제하도록 상기 제2 전극(116)은 충분한 면적을 확보하면서 절단되거나 수직 방향의 슬릿을 구비할 수 있다.Voltages applied to the
상기 제1 전극(114)과 상기 초기 방전 유도 코일(120) 사이의 간격 또는 상기 제2 전극(116)과 상기 초기 방전 유도 코일(120) 사이의 간격은 대기압에서 고전압에 의하여 기생 방전 및 유도 전기장에 의한 유도 가열을 억제할 수 있도록 충분히 이격될 수 있다. 구체적으로, 상기 제1 전극(114)과 상기 초기 방전 유도 코일(120) 사이의 간격 또는 상기 제2 전극(116)과 상기 초기 방전 유도 코일 사이(120)의 간격은 수 cm 이상일 수 있다. 바람직하게는 상기 간격은 1 cm 이상일 수 있다. The distance between the
RF 전원(150)은 RF 전력을 출력할 수 있다. 상기 RF 전원(150)은 상용 교류 전원을 RF 전력으로 변환하여 부하에 전달할 수 있다. 예를 들어, RF 전력은 수백 kHz 내지 수십 MHz의 주파수 및 수 kW 이상의 전력을 가질 수 있다. 상기 RF 전원(150)은 정류기, 인버터, 및 제어기를 포함할 수 있다. 상기 정류기는 상용 교류 전원을 직류 전원으로 변환할 수 있다. 상기 인버터는 상기 직류 전원을 수신하여 제어기의 스위칭 신호들에 응답하여 RF 전력으로 변환할 수 있다. 상기 제어기는 스위칭 신호들을 제어하여 구동 주파수 및 전력을 제어할 수 있다. 상기 RF 전원은 구동 주파수를 변경하여 제1 공진 주파수(fa) 또는 제2 공진 주파수(fb)에서 임피던스 매칭을 수행할 수 있다. 상기 제1 공진 주파수(fa)와 상기 제2 공진 주파수(fb)는 서로 0.2 MHz 이상 이격될 수 있다. 상기 제1 공진 주파수(fa)가 상기 제2 공진 주파수(fb)에서 0.2 MHz 이내에 있는 경우, 두 전류 방향의 임피던스가 비슷하여 전력 스위칭이 불안정할 수 있다. 상기 제1 공진 주파수(fa)는 상기 제2 공진 주파수(fb)보다 클 수 있다.The
제1 감지 센서(152)는 상기 초기 방전 유도 코일(120)에 흐르는 전류 또는 전압을 감지할 수 있다. 제2 감지 센서(154)는 상기 메인 방전 유도 코일 모듈(103)에 흐르는 전류 또는 전압을 감지할 수 있다. 상기 RF 전원(150)은 상기 제1 감지 센서(152)의 출력을 이용하여 축전 결합 모드에서 유도 결합 모드로 천이를 감지하고 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 구동 주파수를 변경할 수 있다.The
도 6을 참조하면, 메인 방전 유도 코일 모듈(103)은 복수의 단위 안테나들, 상기 복수의 단위 안테나들(132) 사이에 각각 배치된 보조 축전기들(134), 및 상기 복수의 단위 안테나들 전체의 양단에 각각 배치된 제1 메인 축전기(133a) 및 제2 메인 축전기(133b)를 포함한다. 상기 단위 안테나(132)를 구성하는 코일의 단면은 사각형일 수 있다. 상기 단위 안테나들(132)은 시계 방향으로 90도 간격을 가지고 배열될 수 있다. 이에 따라, 상기 단위 안테나들(132)을 전기적으로 연결하는 단자들은 서로 간섭하지 않을 수 있다.Referring to FIG. 6 , the main discharge
도 7 및 도 8을 참조하면, 사각형 단면은 상기 유전체 방전 튜브(140)와 접촉 면적을 증가시키어 열 교환 효율을 향상시키어, 상기 유전체 방전 튜브(140)를 냉각시킬 수 있다. 메인 방전을 수행하는 경우, 플라즈마는 상기 유전체 방전 튜브(140)에 에너지를 전달하여 섭씨 수백도 이상으로 가열할 수 있다. 상기 유전체 방전 튜브(140)의 온도 상승은 재질 변성 또는 파손을 유발할 수 있다. 상기 단위 안테나(132)는 내부에 냉매가 흘러 냉각된다. 원형 단면의 코일은 상기 유전체 방전 튜브(140)와 선 접촉하여, 상기 유전체 방전 튜브(140)를 효율적으로 냉각시키기 어렵다. 한편, 상기 사각형 단면의 코일은 상기 유전체 방전 튜브(140)와 면접촉을 통하여 냉각효율이 증가한다. 상기 단위 안테나(132)의 내측 코일과 상기 유전체 방전 튜브(140)와 접촉을 안정적으로 유지하기 위하여, 상기 내측 코일은 반경이 감소하도록 조여진다. 실험적으로, 원형 단면 코일의 경우 5kW 이상의 RF 전력에서 상기 유전체 방전 튜브(140)의 파손이 발견되었다. 하지만, 사각 단면 코일의 경우, 8 kW 에서도 상기 유전체 방전 튜브(140)의 파손이 발견되지 않았다.7 and 8 , the rectangular cross-section increases the contact area with the
상기 단위 안테나(132)는, 상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브(140)와 접촉하여 배치되고 루프를 형성하는 제1 안테나(132a); 상기 제1 안테나(132a)와 연속적으로 연결되고 상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나(132b); 및 상기 제2 안테나(132b)와 연속적으로 연결되고 상기 제2 안테나를 감싸도록 배치되고 루프를 형성하는 제3 안테나(132c)를 포함할 수 있다.The
상기 단위 안테나(132)는 4각형 단면을 가지며, 상기 제1 안테나(132a)는 상기 유전체 방전 튜브와 밀착되어 상기 유전체 방전 튜브를 냉각한다. 상기 제1 안테나(132a)와 상기 제2 안테나(132b)는 "U" 자 형태의 제1 연결부(32a)에 의하여 연결될 수 있다. 상기 제2 안테나(132b)와 상기 제3 안테나(132c)는 "U" 자 형태의 제2 연결부(32b)에 의하여 연결될 수 있다.The
상기 제1 안테나(132a)를 상기 유전체 방전 튜브(140)와 접촉시키기 위하여 상기 제1 안테나(132a)의 양단을 서로 밀착시키는 클램프(35)가 배치될 수 있다. 상기 클램프(35)는 케이블 타이(cable tie)일 수 있다.In order to bring the
상기 단위 안테나(132)는 동일한 배치 평면에 배치되는 복수의 권선을 포함하고, 절연 스페이서(36)는 복수의 권선을 절연시키고 "ㅛ"자 형상일 수 있다. 상기 단위 안테나(132)를 구성하는 각 권선은 절연 스페이서(36)에 의하여 전기적으로 절연되고 일정한 간격을 유지할 수 있다. 상기 절연 스페이서(36)는 이웃한 단위 안테나들(132) 사이를 절연시킬 수 있다. 상기 절연 스페이서는 "ㅛ" 자 형상이고, 함몰된 부위(36a)에 상기 제2 안테나(132b)가 삽입될 수 있다.The
상기 제1 안테나(132a)의 적어도 일부는 세라믹 페이스트에 의하여 몰딩될 수 있다. 상기 제1 안테나(132a)의 적어도 일부를 감싸는 세라믹 몰드(37)는 상기 유전체 방전 튜브와 열적으로 접촉할 수 있다. 이에 따라, 상기 단위 안테나에 냉매가 흐르는 경우, 상기 냉각된 단위 안테나는 상기 세라믹 몰드(37)를 냉각하고, 상기 세라믹 몰드(37)는 상기 유전체 방전 튜브(140)를 간접적으로 냉각할 수 있다. At least a portion of the
상기 제1 메인 축전기(133a)의 정전 용량(2C1)은 상기 제2 메인 축전기(133b)의 정전 용량과 동일하고, 상기 제1 메인 축전기(133a)의 정전 용량은 상기 보조 축전기(134)의 정전 용량(C1)의 2 배일 수 있다.The electrostatic capacity 2C1 of the first
제2 공진 주파수(fb)는 상기 복수의 단위 안테나들의 인덕턴스의 총합(Lb)와 축전기들(133a, 133b, 134)의 등가 정전용량(C'b)에 의하여 주어질 수 있다. The second resonant frequency fb may be given by the sum Lb of the inductances of the plurality of unit antennas and the equivalent capacitance C′b of the
상기 제1 공진 주파수(fa)에서 상기 초기 방전 유도 코일(120)에 유도되는 제1 전압 강하(Va)는 상기 제2 공진 주파수(fb)에서 상기 단위 안테나에 유도되는 제2 전압 강하(Vb)보다 클 수 있다. 제2 전압 강하(Vb)는 제2 공진주파수(fb), 제2 전류(Ib). 및 단위 안테나의 인덕턴스(L1)의 곱으로 표시될 수 있다. 제1 전압 강하(Va)는 제1 공진주파수(fa), 제1 전류(Ia). 및 초기 방전 유도 코일의 인덕턴스(La)의 곱으로 표시될 수 있다. A first voltage drop Va induced in the initial
상기 복수의 단위 안테나들의 인덕턴스의 총합(Lb)은 상기 초기 방전 유도 코일의 인덕턴스(La)보다 클 수 있다.A sum Lb of inductances of the plurality of unit antennas may be greater than an inductance La of the initial discharge induction coil.
도 10은 본 발명의 다른 실시예에 따른 DC 전원을 나타내는 회로도이다.10 is a circuit diagram illustrating a DC power supply according to another embodiment of the present invention.
도 11은 도 10의 고전압 펄스 발생기를 설명하는 회로도이다.11 is a circuit diagram illustrating the high voltage pulse generator of FIG. 10 .
도 10 및 도 11을 참조하면, 상기 DC 전원(112)은, 상용 전원을 DC 전압(Vin)으로 변환하는 AC-DC 변환기(1120); 상기 DC 전압(Vin)을 제공받아 양의 DC 고전압 펄스와 음의 DC 고전압 펄스를 생성하는 고전압 펄스 발생기(1122); 및 상기 고전압 펄스 발생기를 제어하는 제어기(1124)를 포함한다.10 and 11 , the
상기 고전압 펄스 발생기(1122)는, 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제1 트랜스퍼머(1222a); 상기 제1 트랜스퍼머의 1차 코일에 연결된 제1 전력 트렌지스터(1222b); 상기 AC-DC 변환기의 상기 DC 전압을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 제2 트랜스퍼머(1222c); 및 상기 제2 트랜스퍼머의 1차 코일에 연결된 제2 전력 트렌지스터(1222d);를 포함한다. 상기 제어기(1124)는 상기 제1 전력 트렌지스터(1222b)와 상기 제2 전력 트렌지스터(1222d)의 게이트를 제어한다. 상기 제1 트랜스퍼머(1222a)의 2차 코일의 일단은 양의 DC 고전압 펄스를 출력하고, 상기 제1 트랜스퍼머(1222a)의 2차 코일의 타단은 접지된다. 상기 제2 트랜스퍼머(1222c)의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 제2 트랜스퍼머(1222c)의 2차 코일의 타단은 접지된다. The high
DC 전압(Vin)은 12V ~ 24V 직류 전압일 수 있다. 상기 제어기(1124)는 상기 제1 전력 트렌지스터(1222b)와 제2 전력 트렌지스터(1122d)의 온타임(on time)과 반복 주파수를 동기를 맞춰 제어한다. DC 고전압 펄스은 수십 kV이고, 반복 주파수는 수십 kHz일 수 있다. The DC voltage Vin may be a DC voltage of 12V to 24V. The
도 12는 본 발명의 다른 실시예에 따른 대기압 플라즈마 발생 장치의 메인 방전 유도 코일 모듈을 설명하는 단면도이다.12 is a cross-sectional view illustrating a main discharge induction coil module of an atmospheric pressure plasma generating apparatus according to another embodiment of the present invention.
도 13은 도 12의 메인 방전 유도 코일 모듈의 단위 안테나들의 배치관계를 설명하는 평면도이다.13 is a plan view illustrating an arrangement relationship of unit antennas of the main discharge induction coil module of FIG. 12 .
도 14는 도 12의 대기압 플라즈마 발생 장치의 초기 방전 모드를 설명하는 등가회로를 나타내는 도면이다.14 is a diagram illustrating an equivalent circuit for explaining an initial discharge mode of the atmospheric pressure plasma generating apparatus of FIG. 12 .
도 15는 도 12의 대기압 플라즈마 발생 장치의 메인 방전 모드를 설명하는 등가회로를 나타내는 도면이다.15 is a diagram illustrating an equivalent circuit for explaining a main discharge mode of the atmospheric pressure plasma generating apparatus of FIG. 12 .
도 16은 도 12의 대기압 플라즈마 발생 장치의 초기 방전 모드와 메인 방전 모드를 나타내는 타이밍도이다.16 is a timing diagram illustrating an initial discharge mode and a main discharge mode of the atmospheric pressure plasma generator of FIG. 12 .
도 12 내지 도 16을 참조하면, 대기압 플라즈마 발생 장치(200)는, 유전체 방전 튜브(140); 상기 유전체 원통 튜브(140)를 감싸고 복수의 권선수를 가지며 대기압 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120)과 직렬 연결되어 제1 공진 주파수(fa)를 제공하는 초기 방전 축전기(122a,122b)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)의 상부 및 하부에 각각 배치되어 초기 방전 시드를 제공하는 제1 전극(114) 및 제2 전극(116); 상기 제1 전극(114)과 상기 제2 전극(116) 사이에 DC 고전압을 인가하는 DC 전원(112); 제2 공진 주파수(fb)를 가지고 상기 초기 방전 유도 코일 모듈(102)에서 발생시킨 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 메인 방전 유도 코일 모듈(203); 및 병렬 연결된 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(203)에 RF 전력을 제공하고 구동 주파수를 변경하는 RF 전원(150)을 포함한다. 12 to 16 , the atmospheric pressure
상기 메인 방전 유도 코일 모듈(203)은, 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 방전 튜브(140)의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들(232a~232d; 332a~332e); 상기 단위 안테나들(232a~232d; 332a~332e) 전체의 양단에 각각 배치된 제1 메인 축전기(133a) 및 제2 메인 축전기(133b); 및 상기 단위 안테나들(232a~232d; 332a~332e) 사이에 각각 직렬 연결된 보조 축전기들(134);을 포함한다.The main discharge
상기 RF 전원(150)은 상기 DC 고전압의 도움으로 상기 제1 공진 주파수(fa)에서 상기 초기 방전 유도 코일(120)에 초기 방전을 유도한다. 상기 RF 전원(150)은 상기 구동 주파수를 상기 제1 공진 주파수(fa)에서 상기 제2 공진 주파수(fb)로 변경하여 메인 방전을 수행한다.The
상기 단위 안테나들(232a~232d; 332a~332e) 은 서로 다른 배치 평면에 배치되고 10 개일 수 있다. 상기 단위 안테나들(232a~232d; 332a~332e) 은 5개의 단위 안테나들을 포함하는 제1 그룹(232a~232d)과 다른 5 개의 단위 안테나들을 포함하는 제2 그룹(332a~332e)으로 구분된다. 상기 제1 그룹(232a~232d)을 구성하는 단위 안테나들은 방위각 방향을 따라 72도 간격으로 배치될 수 있다. 상기 제2 그룹(332a~332e)을 구성하는 단위 안테나들은 방위각 방향을 따라 72도 간격으로 배치될 수 있다. 이에 따라, 상기 단위 안테나들은 서로 이웃한 단위 안테나들의 전기적 연결을 위하여 간섭하지 않을 수 있다.The
구체적으로, 상기 초기 방전 축전기(122a,122b)의 등가 정전 용량(C'a)은 260pF이고, 상기 초기 방전 유도 코일의 인덕턴스(La)는 8uH이고, 상기 초기 방전 유도 코일의 기생 저항(Ra)은 0.5 오옴일 수 있다. 제1 공진 주파수(fa)는 3.3 MHz일 수 있다. Specifically, the equivalent capacitance C'a of the
상기 단위 안테나의 인덕턴스는 3.5 uH이고, 상기 단위 안테나들의 인덕턴스의 총합은 35uH일 수 있다. 또한 메인 방전 유도 코일 모듈(203)을 구성하는 상기 축전기들(133a, 133b, 134)의 등가 정전용량(C'b)은 156 pF일 수 있다. 상기 메인 방전 유도 코일 모듈(203)의 기생 저항(Rb)은 2.1 오옴일 수 있다. 제2 공진 주파수(fb)는 2.2 MHz일 수 있다. The inductance of the unit antenna may be 3.5 uH, and the sum of inductances of the unit antennas may be 35 uH. In addition, the equivalent capacitance (C′b) of the
도 14를 참조하면, 초기 방전 단계에서, 구동 주파수는 제1 공진 주파수인 3.3 MHz일 수 있다. 이 경우, 상기 초기 방전 유도 코일 모듈(102)에 흐르는 제1 전류(Ia)는 31.5A이고, 메인 방전 유도 코일 모듈(203)에 흐르는 제2 전류(Ib)는 0.04 A이다. 이에 따라, 전류비 (Ia: Ib) 또는 임피던스 비는 800:1 일 수 있다. 즉, 초기 방전 단계에서, 모든 전류는 상기 초기 방전 유도 코일 모듈(102)으로 흐르고 축전 결합 모드에서 유도 결합 모드로 천이할 수 있다. 상기 초기 방전 유도 코일 모듈(102)에 흐르는 제1 전류(Ia) 또는 전압을 감지하여, 유도 결합 모드로 천이한 경우, RF 전원은 제어신호에 따라 구동 주파수를 제2 공진 주파수(fb)로 변경한다.Referring to FIG. 14 , in the initial discharge stage, the driving frequency may be 3.3 MHz, which is the first resonant frequency. In this case, the first current Ia flowing through the initial discharge
도 15를 참조하면, 메인 방전 단계에서, 구동 주파수는 제2 공진 주파수인 2.2 MHz일 수 있다. 이 경우, 상기 초기 방전 유도 코일 모듈(102)에 흐르는 제1 전류(Ia)는 0.5A이고, 메인 방전 유도 코일 모듈(203)에 흐르는 제2 전류(Ib)는 49.5 A이다. 이에 따라, 전류비 (Ia: Ib) 또는 임피던스 비는 1:100 일 수 있다. 즉, 메인 방전 단계에서, 모든 전류는 상기 메인 방전 유도 코일 모듈(203)로 흐른다. 따라서, 안정적인 플라즈마가 유지된다. Referring to FIG. 15 , in the main discharge stage, the driving frequency may be 2.2 MHz, which is the second resonance frequency. In this case, the first current Ia flowing through the initial discharge
또한, 메인 방전 단계에서 단위 안테나의 양단에 인가되는 전위차(Vb)의 최대값(V2)은 초기 방전 단계에서 초기 방전 유도 코일의 양단에 인가되는 전위차(Va)의 최대값(Vo)에 비하여 약 5.2배가 작다. 따라서, 메인 방전동안 상기 유전체 방전 튜브의 열손상은 제거될 수 있다.In addition, the maximum value (V2) of the potential difference (Vb) applied to both ends of the unit antenna in the main discharging step is about the maximum value (Vo) of the potential difference (Va) applied to both ends of the initial discharge induction coil in the initial discharging step. 5.2 times smaller. Accordingly, thermal damage to the dielectric discharge tube during the main discharge can be eliminated.
도 17은 도 2a에 따른 플라즈마 발생 장치를 설명하는 개념도이다.17 is a conceptual diagram illustrating the plasma generating apparatus according to FIG. 2A.
도 17을 참조하면, 플라즈마 발생 장치(100)는, 유전체 방전 튜브(140); 상기 유전체 방전 튜브(140) 내부에 시드 전하를 생성하는 시드 전하 발생부(105); 상기 유전체 원통 튜브(140)를 감싸고 상기 시드 전하를 제공받아 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120)과 연결되어 제1 공진 주파수를 제공하는 제1 임피던스 매칭 네트워크(122)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 원통 튜브(140)를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 복수의 단위 안테나들(132) 및 상기 단위 안테나들(132)에 연결되어 제2 공진 주파수를 제공하는 제2 임피던스 매칭 네트워크(133)를 포함하는 메인 방전 유도 코일 모듈(103); 및 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(103)에 전력을 공급하는 RF 전원(150)을 포함한다.Referring to FIG. 17 , the
상기 시드 전하 발생부(105)는 제1 전극(114), 제2 전극(116),그리고 상기 제1 전극(114)과 상기 제2 전극(116) 사이에 DC 고전압을 인가하는 DC 전원(112)을 포함할 수 있다. The
DC 전원(112)은 상용 전원을 DC 전압(Vin)으로 변환하는 AC-DC 변환기(1120); 상기 DC 전압(Vin)을 제공받아 양의 DC 고전압 펄스와 음의 DC 고전압 펄스를 생성하는 고전압 펄스 발생기(1122); 및 상기 고전압 펄스 발생기를 제어하는 제어기(1124)를 포함한다.
상기 RF 전원(150)은 정류기(151), 인버터(156), 및 제어부(158)를 포함할 수 있다.The
도 2a 및 도 17을 참조하면, 초기 방전 축전기(122a,122b)는 초기 방전 유도 코일(120)의 양단에 각각 배치되어, 공진회로를 구성하면서 부하에 대한 임피던스 정합을 제공하여 임피던스 매칭을 수행할 수 있다. 즉, 제1 임피던스 매칭 네트워크(122)는 상기 초기 방전 축전기(122a,122b)를 포함할 수 있다. 2A and 17 , the
또한, 제1 메인 축전기(133a) 및 제2 메인 축전기(133b)는 메인 방전을 수행하는 직렬 연결된 단위 안테나들의 양단에 각각 배치되어, 공진회로를 구성하면서 부하에 대한 임피던스 정합을 제공하여 임피던스 매칭을 수행할 수 있다. 즉, 제2 임피던스 매칭 네트워크(133)는 상기 제1 메인 축전기(133a) 및 제2 메인 축전기(133b)를 포함할 수 있다. In addition, the first
초기 방전 유도 코일(120)과 메인 코일 유도 코일 모듈의 단위 안테나(132) 사이의 거리(d2)는 DC 고전압에 의하여 시드 전하를 발생시키는 제2 전극(116)을 보호하기 위하여 충분히 이격되어 배치될 수 있다. 컴팩트한 구조를 위하여, 상기 초기 방전 유도 코일(120)과 메인 코일 유도 코일 모듈(103)의 단위 안테나(132) 사이에 배치된 제2 전극(116)은 제거될 필요가 있다. 안정적으로 시드 전하를 발생시키기 위하여, 시드 전하 발생부(105)는 다양한 방법으로 시드 전하를 생성할 수 있다.The distance d2 between the initial
예시적으로, 상기 시드 전하 발생부(105)는 DC 고전압 차이를 가진 한 쌍의 전극을 포함할 수 있다. 하나의 전극은 상기 유전체 방전 튜브의 외측벽에 배치되고, 다른 하나의 전극은 상기 유전체 방전 튜브(140)의 중심축에 배치될 수 있다. 이에 따라, 상기 유전체 방전 튜브(140)의 반경 방향으로 DC 고전압 펄스에 의하여 강한 전기장이 인가되어 시드 전하를 생성할 수 있다. 상기 초기 방전 유도 코일(120)과 메인 코일 유도 코일 모듈의 단위 안테나(132) 사이에 배치된 제2 전극(116)이 제거된 경우, 플라즈마 발생 장치는 컴팩트한 구조를 가질 수 있다. 안정적으로 시드 전하를 발생시키기 위하여, 복수의 전극들이 상기 유전체 방전 튜브의 외부 및/또는 내부에 배치될 수 있다. 구체적으로, 제1 전극(114)은 DC 고전압을 제공받고 상기 유전체 방전 튜브(140)의 외측벽에 접촉하여 배치되고, 제2 전극은 접지되어 상기 유전체 방전 튜브(140) 내부에 배치될 수 있다. 상기 제2 전극은 접지되고, 점화 가스 및/또는 공정 가스를 토출하는 노즐 기능을 수행할 수 있다. 이에 따라, 전기장은 DC 고전압 펄스에 의하여 상기 유전체 방전 튜브의 반경 방향으로 생성되고, 상기 전기장은 시드 전하를 생성하여 상기 초기 방전 유도 코일 모듈의 초기 방전을 유도할 수 있다.For example, the
본 발명의 변형된 실시예에 따르면, 상기 시드 전하 발생부(105)는 초고주파를 전달받아 슬릿을 통하여 방사하는 도파관을 포함하고, 상기 도파관의 슬릿을 통하여 방사된 초고주파는 상기 유전체 방전 튜브 내부에 전달되어 대기압에서 시드 전하를 생성할 수 있다. According to a modified embodiment of the present invention, the seed
도 18은 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.18 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
도 18을 참조하면, 플라즈마 발생 장치(200)는, 유전체 방전 튜브(140); 상기 유전체 방전 튜브(140) 내부에 시드 전하를 생성하는 시드 전하 발생부(205); 상기 유전체 원통 튜브(140)를 감싸고 상기 시드 전하를 제공받아 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120)과 연결되어 제1 공진 주파수를 제공하는 제1 임피던스 매칭 네트워크(122)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 원통 튜브(140)를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 복수의 단위 안테나들(132) 및 상기 단위 안테나들(132)에 연결되어 제2 공진 주파수를 제공하는 제2 임피던스 매칭 네트워크(133)를 포함하는 메인 방전 유도 코일 모듈(103); 및 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(103)에 전력을 공급하는 RF 전원(150)을 포함한다.Referring to FIG. 18 , the
상기 유전체 방전 튜브(140)는 원통형 유전체 튜브일 수 있다.The
상기 시드 전하 발생부(205)는 상기 유전체 방전 튜브(140)에 배치되어 시드 전하를 제공하는 제1 전극(114) 및 제2 전극(216); 및 상기 제1 전극(114) 및 상기 제2 전극(216) 사이에 DC 고전압 펄스를 인가하는 DC 전원(212)을 포함할 수 있다. 상기 제1 전극(114)은 판 또는 띠 형태이고 상기 유전체 방전 튜브(140)의 외측벽에 접촉하여 구부러지도록 배치될 수 있다. 상기 제2 전극(216)은 상기 유전체 방전 튜브(140)의 중심축에 배치되고, 전기적으로 접지될 수 있다. 상기 제2 전극(216)은 원통 형상이고 가스를 분사하는 노즐 기능을 추가적으로 수행할 수 있다. The
상기 DC 전원(212)은 수 kHz 내지 수십 kHz의 DC 고전압 펄스(VDC)를 출력할 수 있다. 상기 DC 전원(112)의 출력 DC 전압은 수 kV 내지 수십 kV일 수 있다. 전기장(E_ig)은 DC 고전압 펄스(VDC)에 의하여 상기 유전체 방전 튜브(140)의 반경 방향으로 생성되고, 상기 전기장(E_ig)은 점화 가스가 주입된 상태에서 시드 전하를 생성하고, 상기 시드 전하는 상기 초기 방전 유도 코일 모듈의 점화 가스의 초기 방전을 유도할 수 있다. 상기 시드 전하 발생부(105)는 제1 전극(114), 제2 전극(116),그리고 상기 제1 전극(114)과 상기 제2 전극(116) 사이에 DC 고전압을 인가하는 DC 전원(112)을 포함할 수 있다. The
DC 전원(212)은 상용 전원을 DC 전압(Vin)으로 변환하는 AC-DC 변환기(2120); 상기 DC 전압(Vin)을 제공받아 양의 DC 고전압 펄스와 음의 DC 고전압 펄스를 생성하는 고전압 펄스 발생기(2122); 및 상기 고전압 펄스 발생기를 제어하는 제어기(2124)를 포함한다.
상기 초기 방전 유도 코일(120)과 상기 메인 코일 유도 코일 모듈의 단위 안테나(132) 사이에 배치된 전극이 제거됨에 따라, 컴팩트한 구조가 가능하다. 상기 초기 방전 유도 코일(120)과 상기 메인 코일 유도 코일 모듈의 단위 안테나(132) 사이의 거리(d2)는 3 cm 이하로 유지될 수 있다. 또한, 상기 초기 방전 유도 코일(120)과 제1 전극 사이의 거리(d1)는 3 cm 이하로 유지될 수 있다.As the electrode disposed between the initial
초기 방전 유도 코일 모듈(102)은 상기 제1 임피던스 매칭 네트워크(122)와 상기 초기 방전 유도 코일(120)을 포함한다. 상기 제1 임피던스 매칭 네트워크(122)는 상기 초기 방전 유도 코일(120)의 양단에 각각 연결된 한 쌍의 초기 방전 축전기(122a,122b)를 포함할 수 있다. 상기 초기 방전 유도 코일(120)은 인덕턴스를 증가시키기 위하여 복층 구조의 솔레노이드 형태일 수 있다. 상기 초기 방전 유도 코일 모듈(102)의 제1 공진 주파수(fa)는 4 MHz 내지 5 MHz 범위에 있고, 수십 암페어의 전류가 초기 방전 유도 코일 모듈(102)로 흐를 수 있다. 상기 초기 방전 유도 코일(120)은 상기 시드 전하의 도움을 받아 가스의 초기 방전을 생성하고, 축전 결합 모드(또는 E-모드)에서 유도 결합 모드(또는 H-모드)로 천이시킨다. 즉, 초기 방전 플라즈마는 스트리머 형태의 축전 결합 모드에서 상기 유전체 방전 튜브 (140) 내부에 전체적으로 플라즈마가 형성되는 벌크 플라즈마 형태의 유도 결합모드로 천이한다.The initial discharge
상기 메인 방전 유도 코일 모듈(103)은, 상기 유전체 방전 튜브의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되는 복수의 단위 안테나들(132); 상기 이웃한 단위 안테나들(132) 사이에 각각 직렬 연결된 보조 축전기들(134); 및 직렬 연결된 상기 단위 안테나들(132)에 연결된 제2 임피던스 매칭 네트워크(133)를 포함한다. 상기 메인 방전 유도 코일 모듈(103)은 가스의 초기 방전을 이용하여 메인 유도 결합 플라즈마를 생성할 수 있다.The main discharge
상기 제2 임피던스 매칭 네트워크(133)는 제1 메인 축전기(133a) 및 제2 메인 축전기(133b)를 포함할 수 있다. 상기, 제1 메인 축전기(133a) 및 상기 제2 메인 축전기(133b) 각각은 직렬 연결된 상기 단위 안테나들 양단에 각각 배치된다.The second
상기 메인 방전 유도 코일 모듈(103)은 제2 공진 주파수(fb)를 가지며, 상기 제2 공진 주파수에 임피던스 매칭을 수행하도록 상기 제2 임피던스 매칭 네트워크(133)를 구비한다. 상기 단위 안테나들(132)은 동일한 평면에서 적어도 하나의 턴을 가질 수 있다. 상기 단위 안테나들(132)은 서로 다른 배치 평면에 배치되고, 이웃한 단위 안테나들은 보조 축전기(134)를 통하여 서로 직렬 연결된다. The main discharge
상기 RF 전원(150)은, 상용 교류 전원을 직류 전원으로 변환하는 정류기(151); 상기 직류 전원을 수신하여 제어부(158)의 스위칭 신호들에 응답하여 RF 전력으로 변환하는 인버터(156); 및 상기 스위칭 신호들을 제어하여 구동 주파수 및 전력을 제어하는 제어부(158)를 포함할 수 있다. 상기 RF 전원(150)은 초기 방전시 상기 제1 공진 주파수(fa)에서 동작하고, 메인 유도 결합 플라즈마 발생시 상기 제2 공진 주파수(fb)에서 동작할 수 있다. 상기 RF 전원(150)은 가변 주파수 전원일 수 있다. 상기 RF 전원(150)은, 메인 유도 결합 플라즈마 발생시 점화 가스를 공정 가스로 변경하여 메인 유도 결합 플라즈마를 유지할 수 있다.The
상기 정류기(151)는 상용 교류 전원의 출력을 직류 전원으로 변환할 수 있다. 상기 정류기는 직류 전원을 접지 노드(GND)와 전원 노드(VP) 사이에 공급할 수 있다. 축전기는 접지 노드(GND)와 전원 노드(VP) 사이에 연결되어, 교류 성분을 접지 노드로 방전할 수 있다.The
인버터(156)는 제어부(158)로부터 스위칭 신호를 수신하여, 스위칭 신호들에 응답하여 직류 전원을 교류 전원으로 변환할 수 있다. 상기 제어부(158)는 인버터로부터 부하에 공급되는 전력량 및 구동 주파수를 조절하도록 스위칭 신호를 제어할 수 있다.The
RF 전원이 하나인 경우, 제1 공진 주파수(fa)와 제2 공진 주파수(fb)는 0.2 MHz 이상 충분히 이격되어야 한다. 그러나, 상기 RF 전원은 넓은 주파수 가변 범위에 대하여 안정적인 출력을 제공하는 것은 어렵다. 특히. 초기 방전은 구동 주파수가 높을수록 많은 전류를 흘릴수록 유리하다. 이에 따라, 초기 방전 유도 코일의 양단은 큰 전류와 큰 인덕턴스에 의하여 높은 전위차를 유지하여, 제1 공진 주파수(fa)에서 축적결합 모드 방전을 유발한다. 한편, 메인 유도 결합 플라즈마는 수 kW 이상의 고전력 및 단위 안테나의 낮은 전압 강하를 요구한다. 수 kW 이상의 고전력 RF 전원은 제1 공진 주파수(fa)보다 낮은 제2 공진 주파수(fb)에서 동작할 수 있다. 따라서, 제1 공진 주파수에서 동작하는 제1 RF 전원과 제2 공진 주파수에서 동작하는 제2 RF 전원은 서로 다른 특성을 가져 서로 분리될 수 있다.When there is only one RF power source, the first resonant frequency fa and the second resonant frequency fb should be sufficiently spaced apart by 0.2 MHz or more. However, it is difficult for the RF power supply to provide a stable output over a wide frequency variable range. Especially. The initial discharge is advantageous as the driving frequency is higher and the more current flows. Accordingly, both ends of the initial discharge induction coil maintain a high potential difference due to a large current and a large inductance to induce accumulation-coupled mode discharge at the first resonant frequency fa. On the other hand, the main inductively coupled plasma requires a high power of several kW or more and a low voltage drop of the unit antenna. A high-power RF power of several kW or more may operate at a second resonant frequency fb lower than the first resonant frequency fa. Accordingly, the first RF power source operating at the first resonant frequency and the second RF power source operating at the second resonant frequency may have different characteristics and may be separated from each other.
도 19는 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.19 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
도 20은 도 19의 플라즈마 발생 장치의 방전을 설명하는 개념도이다.FIG. 20 is a conceptual diagram for explaining the discharge of the plasma generating device of FIG. 19 .
도 21은 도 19의 신호를 나타내는 타이밍도이다.21 is a timing diagram illustrating the signal of FIG. 19 .
도 22는 도 19의 플라즈마 발생 장치의 동작 방법을 설명하는 흐름도이다.22 is a flowchart illustrating a method of operating the plasma generating apparatus of FIG. 19 .
도 19 내지 도 22를 참조하면, 플라즈마 발생 장치(300)는, 유전체 방전 튜브(140); 상기 유전체 방전 튜브(140) 내부에 시드 전하를 생성하는 시드 전하 발생부(205); 상기 유전체 원통 튜브(140)를 감싸고 상기 시드 전하를 제공받아 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120)과 연결되어 제1 공진 주파수를 제공하는 제1 임피던스 매칭 네트워크(122)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 원통 튜브(140)를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 복수의 단위 안테나들(132) 및 상기 단위 안테나들(132)에 연결되어 제2 공진 주파수를 제공하는 제2 임피던스 매칭 네트워크(133)를 포함하는 메인 방전 유도 코일 모듈(103); 및 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(103)에 전력을 공급하는 RF 전원(350)을 포함한다.19 to 22 , the
초기 방전을 유도하는 제1 RF 전원(350a)은 수 MHz 이상의 제1 공명 주파수(fa)에서 수십 암페어 이상의 고전류를 구동할 수 있도록 설계될 수 있다. 또한, 상기 메인 방전 플라즈마를 유도하는 제2 RF 전원(350b)은 수 MHz 이하 바람직하게는 400 kHz 내지 4 MHz 범위의 제2 공명 주파수(fb)에서 수 kW 이상의 고전력을 제공하도록 설계될 수 있다. 구체적으로, 상기 제1 RF 전원(350a)은 하프 브리지 인버터 회로를 통하여 구현될 수 있고, 상기 제2 RF 전원(350b)은 플 브리지 인버터 회로를 통하여 구현될 수 있다. 또한, 상기 제1 RF 전원(350a)은 고정된 제1 공명 주파수에서 동작하도록 제어될 수 있다. 또한, 상기 제2 RF 전원(350b)은 전력량 또는 임피던스를 조절하기 위하여 구동 주파수를 제어하여 제2 공명 주파수 근처에서 동작할 수 있다.The first
상기 RF 전원(350)은, 상기 초기 방전 유도 코일 모듈(102)에 교류 전력을 제공하고 상기 제1 공진 주파수(fa)에서 동작하는 제1 RF 전원(350a); 및 상기 메인 방전 유도 코일 모듈(103)에 교류 전력을 제공하고 상기 제2 공진 주파수(fb)에서 동작하는 제2 RF 전원(350b);을 포함한다.The
상기 제1 RF 전원(350a)은, 교류 전원을 직류 전원으로 변환하는 제1 정류기(351a); 상기 제1 정류기(351a)의 직류 전원을 제공받아 제1 공진 주파수(fa)의 교류 전력을 상기 초기 방전 유도 코일 모듈(102)에 제공하는 제1 인버터(356a); 및 상기 제1 인버터(356a)의 출력을 제어하는 제1 제어부(358a)를 포함할 수 있다. 상기 제1 RF 전원(350a)은 제1 공진 주파수(fa)에서 동작할 수 있다.The first
상기 제2 RF 전원(350b)은, 교류 전원을 직류 전원으로 변환하는 제2 정류기(351b); 상기 제2 정류기(351b)의 직류 전원을 제공받아 제2 공진 주파수(fb)의 교류 전력을 상기 메인 방전 유도 코일 모듈(103)에 제공하는 제2 인버터(356b); 및 상기 제2 인버터(356b)의 출력을 제어하는 제2 제어기(358b)를 포함할 수 있다. 상기 제2 RF 전원(350b)은 제2 공진 주파수(fb)의 주위에서 가변되면서 동작할 수 있다.The second
본 발명의 일 실시예에 따른 플라즈마 발생 장치의 동작 방법은, 유전체 방전 튜브(140)의 내부에 제1 가스를 주입하는 단계(S210); 유전체 방전 튜브의 내부에 상기 제1 가스를 이용하여 시드 전하를 제공하는 단계(S220); 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일과 연결된 제1 임피던스 매칭 네트워크(122)를 사용하여 제1 공진 주파수(fa)의 교류 전력으로 상기 시드 전하로부터 상기 제1 가스의 초기 방전을 수행하는 단계(S230); 및 복수의 단위 안테나(132)와 제2 임피던스 매칭 네트워크(133)를 사용하여 상기 제1 공진 주파수와 다른 제2 공진 주파수(fb)의 교류 전력으로 상기 초기 방전으로부터 상기 제1 가스의 메인 유도 결합 플라즈마를 생성하는 단계(S260);를 포함한다.A method of operating a plasma generating apparatus according to an embodiment of the present invention includes: injecting a first gas into the dielectric discharge tube 140 (S210); providing seed charges to the inside of the dielectric discharge tube using the first gas (S220); Initial discharge of the first gas is performed from the seed charge with AC power at a first resonance frequency fa using the initial
유전체 방전 튜브(140)의 내부에 제1 가스를 주입하는 단계(S210)에서, 제1 가스는 노즐 기능을 수행하는 제2 전극(216)을 통하여 상기 유전체 방전 튜브(140)의 상부로 주입될 수 있다. 상기 유전체 방전 튜브(140)의 압력은 수 토르 이상이고, 바람직하게는 대기압 이상일 수 있다. 상기 제1 가스는 점화에 유리한 아르곤 가스, 질소 가스, 수소 함유가스, 또는 이산화탄소 가스 또는 이들의 조합일 수 있다. In the step of injecting the first gas into the dielectric discharge tube 140 ( S210 ), the first gas is to be injected into the upper portion of the
유전체 방전 튜브(140)의 내부에 상기 제1 가스를 이용하여 시드 전하를 제공하는 단계(S220)에서, 시드 전하는 시드 전하 발생부(205)를 사용하여 형성할 수 있다. 예를 들어, 제1 전극(114)은 유전체 방전 튜브(140)의 외측벽에 부착되고, 제2 전극(216)은 상기 유전체 방전 튜브(140)의 중심축에 삽입되어 상기 제1 전극을 마주볼 수 있다. 상기 제2 전극(216)은 접지되고 제1 가스 또는 제2 가스를 분사하는 노즐 기능을 수행할 수 있다. 상기 제2 전극(216)은 접지된 상태에서, 상기 제1 전극(114)은 DC 고전압 펄스(VDC)에 의하여 시드 전하를 생성할 수 있다. 상기 제2 전극(216)은 음극으로 동작하고, 상기 제1 전극(114)은 양극으로 동작할 수 있다. DC 고전압 펄스(VDC)는 수십 kHz의 펄스 주파수를 가지고, 수십 kV의 전압을 가질 수 있다.In the step of providing the seed charge using the first gas to the inside of the dielectric discharge tube 140 ( S220 ), the seed charge may be formed using the
상기 시드 전하로부터 상기 제1 가스의 초기 방전을 수행하는 단계(S230)에서, 제1 공진 주파수(fa)의 교류 전력(PO1)은 초기 방전 유도 코일 모듈(102)을 제공될 수 있다. DC 고전압 펄스(VDC)가 인가된 상태에서, 제1 공진 주파수의 교류 전력(PO1)을 상기 초기 방전 유도 코일 모듈(102)에 인가하면, 상기 초기 방전 유도 코일(120)의 양단은 큰 인덕턴스에 기인하여 높은 전위차를 가진다. 상기 유전체 방전 튜브(140)의 중심축 방향으로 수직 전기장(E_z)을 생성할 수 있다. 수직 전기장(E_z)는 축전 결합 모드( 또는 E-mode) 플라즈마를 생성할 수 있다. 상기 축전 결합 모드는 유도 결합 모드(또는 H 모드)로 천이할 수 있다. 이에 따라, 초기 방전 유도 코일(120)에 흐르는 전류(Ia)는 부하인 초기 방전 플라즈마의 실저항 증가에 기인하여 감소하고, 제1 공진 주파수의 교류 전력(PO1)은 부하인 초기 방전 플라즈마의 실저항 증가에 의하여 증가할 수 있다. 상기 모드 천이는 제1 공진 주파수의 교류 전력(PO1) 또는 전류(Ia)를 모니터링하여 검출될 수 있다. 상기 전류(Ia)의 검출은 상기 제1 RF 전원의 출력단에 배치된 제1 감지 센서(152)가 사용될 수 있다. 상기 제1 감지 센서(152)는 전류를 감지하는 홀 센서일 수 있다. 또는, 상기 제1 감지 센서(152)는 제1 인버터(356a)의 입력단에 배치되어 제1 인버터(356a)의 입력 전류를 검출하여 직류 전원의 정보와 상기 입력 전류를 이용하여 교류 전력을 모니터할 수 있다.In the step of performing the initial discharge of the first gas from the seed charge ( S230 ), the AC power PO1 of the first resonant frequency fa may be provided to the initial discharge
DC 고전압 펄스(VDC)는 상기 모드 천이 이후 제거되거나, 상기 초기 방전의 상기 모드 천이 전에도 제거하여, 시드 전하 공급을 중지할 수 있다(S240).The DC high voltage pulse V DC may be removed after the mode transition or may be removed even before the mode transition of the initial discharge to stop supplying the seed charge ( S240 ).
복수의 단위 안테나와 제2 임피던스 매칭 네트워크를 사용하여 제2 공진 주파수 근처의 교류 전력으로 상기 초기 방전으로부터 상기 제1 가스의 예비 메인 유도 결합 플라즈마를 생성할 수 있다(S250). A preliminary main inductively coupled plasma of the first gas may be generated from the initial discharge with AC power near a second resonant frequency using a plurality of unit antennas and a second impedance matching network (S250).
메인 방전 유도 코일 모듈(103)은 상기 복수의 단위 안테나들(132), 이웃한 단위 안테나들 사이에 직렬 연결된 보조 축전기(134)와 제2 임피던스 매칭 네트워크(133)를 포함할 수 있다. 상기 메인 방전 유도 코일 모듈(103)은 초기 방전 유도 코일 모듈과 유사하게 축전 결합 모드(또는 E-mode)와 유도 결합 모드(또는 H-mode)를 가질 수 있다. 제2 RF 전원(350b)은 교류 전력(P02)을 출력할 수 있다.The main discharge
메인 방전이 안정적으로 유도 결합 모드(또는 H-mode)로 천이할 수 있도록, 제2 RF 전원(350b)은 초기에 상기 제2 공진 주파수(fb) 근처의 초기 주파수의 교류 전력(P1)을 공급할 수 있다. 상기 초기 주파수는 상기 제2 공진 주파수보다 수십 내지 수백 kHz 클 수 있다. 이에 따라, 상기 초기 주파수에서 메인 방전 유도 코일 모듈(103)의 단위 안테나의 양단에 걸리는 전위차는 상기 제2 공진 주파수(fb)에서 인가되는 전위차보다 클 수 있다. 상기 초기 주파수에서 단위 안테나의 양단에 걸리는 전위차는 안정적으로 초기 방전에 의하여 생성된 전하들을 이용하여 예비 메인 유도 결합 플라즈마를 생성할 수 있다. 상기 초기 주파수의 교류 전력(P1)은 초기 방전의 상기 E-모드 천이 이후 또는 동시에 공급될 수 있다.In order for the main discharge to stably transition to the inductively coupled mode (or H-mode), the second
이어서, 상기 제1 가스의 메인 유도 결합 플라즈마를 생성하는 단계(S260)에서, 제2 RF 전원(350b)은 제2 공진 주파수(fb)의 교류 전력(P2)을 메인 방전 유도 코일 모듈(103)에 공급할 수 있다. 즉, 제2 RF 전원(350b)은 주파수를 변경하여 제2 공명 주파수의 교류 전력(P2)을 메인 방전 유도 코일 모듈(103)에 공급할 수 있다. 이에 따라, 상기 제2 RF 전원(350b)의 교류 전력(P2)은 임피던스 정합되어 증가하고, 상기 메인 방전 유도 코일 모듈(103)은 안정적으로 유도 결합 모드(또는 H-mode)를 동작시킬 수 있다. 상기 메인 방전 유도 코일 모듈(103)에 흐르는 전류(Ib)는 상기 제2 공명 주파수로 변경됨에 따라, 임피던스 정합에 의하여 증가할 수 있다. 이에 따라, 제1 가스를 사용한 안정적인 메인 유도 결합 플라즈마가 유지된다. 상기 전류(Ib)의 검출은 상기 제2 RF 전원의 출력단에 배치된 제2 감지 센서(154)가 사용될 수 있다. 상기 제2 감지 센서(154)는 전류를 감지하는 홀 센서일 수 있다. 또는, 상기 제2 감지 센서(154)는 제2 인버터(356b)의 입력단에 배치되어 제2 인버터(356b)의 입력 전류를 검출하여 직류 전원의 정보와 상기 입력 전류를 이용하여 교류 전력을 모니터할 수 있다.Next, in the step of generating the main inductively coupled plasma of the first gas (S260), the second
이어서, 상기 메인 유도 결합 플라즈마가 생성된 경우, 상기 제1 공진 주파수의 교류 전력을 차단할 수 있다(S270). 상기 초기 방전 유도 코일 모듈에 제공되는 제1 공진 주파수의 교류 전력 차단은 상기 제2 공진 주파수로 변경하는 것과 동시에 또는 직전에 수행될 수 있다. 상기 메인 유도 결합 플라즈마의 생성 여부는, 상기 전류(Ib)의 검출 또는 제2 공진 주파수의 교류 전력(P2) 검출을 통하여 판단될 수 있다.Subsequently, when the main inductively coupled plasma is generated, the AC power of the first resonant frequency may be cut off ( S270 ). The interruption of AC power at the first resonant frequency provided to the initial discharge induction coil module may be performed simultaneously with or immediately before changing to the second resonant frequency. Whether the main inductively coupled plasma is generated may be determined by detecting the current Ib or detecting the AC power P2 of the second resonant frequency.
상기 제1 가스는 점화하기 유리한 점화 가스일 수 있다. 상기 제1 가스는 아르곤, 이산화탄소, 또는 질소일 수 있다. 한편, 제2 가스는 점화하기 어려운 공정 가스로 불소 포함 가스 등을 포함할 수 있다. 따라서, 초기 점화가 어려운 가스를 사용하는 경우, 가스는 초기 점화가 용이한 제1 가스로 우선 방전하고, 제2 가스로 변경될 수 있다(S280). 제1 가스의 메인 유도 결합 플라즈마는 거의 동일한 압력을 유지한 상태로 제2 가스의 메인 유도 결합 플라즈마로 변경될 수 있다. 통상적으로, 불소 포함가스의 플라즈마 실저항은 아르곤 가스의 플라즈마 실저항보다 작을 수 있다. 이에 따라, 가스가 제2 가스로 교체되면, 상기 메인 방전 유도 코일 모듈(103)에 흐르는 전류(Ib)는 증가하고, 제2 공진 주파수(fb)의 교류 전력(P3)이 증가할 수 있다.The first gas may be an ignition gas advantageous to ignite. The first gas may be argon, carbon dioxide, or nitrogen. Meanwhile, the second gas is a process gas that is difficult to ignite and may include a fluorine-containing gas or the like. Therefore, when using a gas that is difficult to ignite in the initial stage, the gas may first be discharged as a first gas that is easily ignited in the initial stage and may be changed to a second gas ( S280 ). The main inductively coupled plasma of the first gas may be changed to the main inductively coupled plasma of the second gas while maintaining approximately the same pressure. In general, the actual plasma resistance of the fluorine-containing gas may be smaller than the plasma resistance of the argon gas. Accordingly, when the gas is replaced with the second gas, the current Ib flowing through the main discharge
도 23은 본 발명의 또 다른 실시예에 따른 플라즈마 발생 장치를 설명하는 개념도이다.23 is a conceptual diagram illustrating a plasma generating apparatus according to another embodiment of the present invention.
도 23을 참조하면, 플라즈마 발생 장치(400)는, 유전체 방전 튜브(140); 상기 유전체 방전 튜브(140)에 배치되어 상기 유전체 방전 튜브(140) 내부에 시드 전하를 생성하는 시드 전하 발생부(205); 상기 유전체 원통 튜브(140)를 감싸고 상기 시드 전하를 제공받아 초기 방전을 발생시키는 초기 방전 유도 코일(120) 및 상기 초기 방전 유도 코일(120) 과 연결되어 제1 공진 주파수(fa)를 제공하는 제1 임피던스 매칭 네트워크(122)를 포함하는 초기 방전 유도 코일 모듈(102); 상기 초기 방전 유도 코일(120)과 이격되어 배치되고 상기 유전체 원통 튜브를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 적어도 하나의 단위 안테나(132) 및 상기 단위 안테나(132)와 연결되어 제2 공진 주파수(fb)를 제공하는 제2 임피던스 매칭 네트워크(133)를 포함하는 메인 방전 유도 코일 모듈(103); 및 상기 초기 방전 유도 코일 모듈(102) 및 상기 메인 방전 유도 코일 모듈(103)에 전력을 공급하는 RF 전원(450)을 포함한다.Referring to FIG. 23 , the
상기 RF 전원(450)은, 교류 전원을 직류 전원으로 변환하는 정류기(151); 상기 정류기(151)의 직류 전원을 제공받아 상기 초기 방전 유도 코일 모듈(102)에 교류 전력을 제공하고 상기 제1 공진 주파수에서 동작하는 제1 RF 전원(450a); 및 상기 정류기의 직류 전원을 제공받아 상기 메인 방전 유도 코일 모듈(103)에 교류 전력을 제공하고 상기 제2 공진 주파수에서 동작하는 제2 RF 전원(450b)을 포함한다.The RF power source 450 includes a
상기 제1 RF 전원(450a)은 상기 정류기(151)의 직류 전원을 제공받아 제1 공진 주파수의 제1 교류 전력으로 변환하는 제1 인버터(456a); 및 상기 제1 인버터를 제어하는 제1 제어부(458a);를 포함한다.The first
상기 제2 RF 전원(450b)은 상기 정류기의 직류 전원을 제공받아 제2 공진 주파수의 교류 전력으로 변환하는 제2 인버터(456b); 및 상기 제2 인버터를 제어하는 제2 제어부(458b);를 포함한다.The second
상기 제1 RF 전원의 정류기와 상기 제2 RF 전원의 정류기는 공통으로 사용될 수 있다. 상기 제1 RF 전원과 상기 제2 RF 전원이 동시에 동작하는 시간은 매우 짧아, 상기 제2 RF 전원의 동작에 문제를 발생시키지 않는다.The rectifier of the first RF power and the rectifier of the second RF power may be used in common. The time during which the first RF power supply and the second RF power supply operate simultaneously is very short, so that there is no problem in the operation of the second RF power supply.
도 24 및 도 25는 본 발명의 일 실시예에 따른 제1 RF 전원에 연결된 초기 방전 유도 코일 모듈을 나타낸다.24 and 25 show an initial discharge induction coil module connected to a first RF power source according to an embodiment of the present invention.
도 24 및 도 25를 참조하면, 제1 RF 전원(450a)은 양의 출력 및 음의 출력을 가지며, 상기 제1 임피던스 매칭 네트워크(122)를 통하여 초기 점화 유도 코일(120)에 연결된다. 상기 초기 점화 유도 코일(120)은 8 uH 수준의 큰 인덕턴스를 가진다. 상기 제1 임피던스 매칭 네트워크(122)는 적어도 하나의 초기 방전 축전기를 포함할 수 있다. 상기 제1 공진 주파수(fa)는 초기 방전 축전기의 등가 정전 용량(C'a)와 직렬 연결된 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 주어질 수 있다.24 and 25 , the first
도 26은 본 발명의 다른 실시예에 따른 제1 RF 전원에 연결된 초기 방전 유도 코일 모듈을 나타낸다.26 shows an initial discharge induction coil module connected to a first RF power source according to another embodiment of the present invention.
도 26을 참조하면, 제1 RF 전원(450a)은 양의 출력 및 음의 출력을 가지며, 상기 제1 임피던스 매칭 네트워크(122)를 통하여 초기 점화 유도 코일(120)에 연결된다. 상기 초기 점화 유도 코일(120)은 8 uH 수준의 큰 인덕턴스를 가진다. 상기 제1 임피던스 매칭 네트워크(122)는 한 쌍의 초기 방전 축전기(122a,122b)를 포함할 수 있다.Referring to FIG. 26 , the first
한 쌍의 초기 방전 축전기(122a,122b)는 상기 초기 방전 유도 코일의 양단에 각각 연결된다. 상기 제1 RF 전원의 양의 출력은 제1 초기 방전 축전기(122a)에 연결되고, 상기 제1 RF 전원의 음의 출력은 제2 초기 방전 축전기(122b)에 연결된다. 제1 공진 주파수(fa)는 상기 한 쌍의 초기 방전 축전기(122a,122b)의 등가 정전 용량(C'a)과 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 정의될 수 있다. 상기 제1 초기 방전 축전기(122a) 및 상기 제2 초기 방전 축전기(122b)의 정전 용량(Ca)은 동일하고, 등가 정전 용량(C'a)은 Ca/2 일 수 있다. 상기 제1 공진 주파수는 초기 방전 축전기의 등가 정전 용량(C'a)와 직렬 연결된 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 주어질 수 있다.A pair of
도 27은 본 발명의 또 다른 실시예에 따른 제1 RF 전원에 연결된 초기 방전 유도 코일 모듈을 나타낸다.27 shows an initial discharge induction coil module connected to a first RF power source according to another embodiment of the present invention.
도 27을 참조하면, 제1 RF 전원(450a)은 양의 출력 및 음의 출력을 가지며, 상기 제1 임피던스 매칭 네트워크(222)를 통하여 초기 점화 유도 코일(120)에 연결된다. 상기 제1 임피던스 매칭 네트워크(222)는 상기 제1 RF 전원(450a)의 출력단에 연결된 변압기(222c) 및 상기 초기 방전 유도 코일(120)의 양단에 각각 직렬 연결된 한 쌍의 초기 방전 축전기(222a,222b)를 포함할 수 있다. 상기 변압기(222c)의 1차 코일은 상기 RF 전원의 출력단에 연결되고, 상기 변압기(222c)의 2차 코일은 서로 직렬 연결된 초기 방전 유도 코일과 한 쌍의 초기 방전 축전기의 양단에 연결될 수 있다. 상기 변압기(222c)의 권선비(N:1)에 의존하여 부하 측의 임피던스를 변환할 수 있다. 제1 초기 방전 축전기 및 제1 초기 방전 축전기의 정전용량(Ca)은 동일할 수 있다. 상기 제1 공진 주파수는 초기 방전 축전기의 등가 정전 용량(C'a)와 직렬 연결된 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 주어질 수 있다.Referring to FIG. 27 , the first
도 28은 본 발명의 또 다른 실시예에 따른 제1 RF 전원에 연결된 초기 방전 유도 코일 모듈을 나타낸다.28 shows an initial discharge induction coil module connected to a first RF power source according to another embodiment of the present invention.
도 28을 참조하면, 제1 RF 전원(450a)은 양의 출력 및 음의 출력을 가지며, 상기 제1 임피던스 매칭 네트워크(322)를 통하여 초기 점화 유도 코일(120)에 연결된다.Referring to FIG. 28 , the first
상기 제1 임피던스 매칭 네트워크(322)는, 상기 초기 방전 유도 코일(120)에 병렬 연결된 제1 초기 방전 축전기(322a); 서로 병렬 연결된 제1 초기 방전 축전기와 상기 초기 방전 유도 코일의 양단에 각각 연결된 제2 초기 방전 축전기(322b) 및 제3 초기 방전 축전기(322c)를 포함한다. 제1 내지 제3 초기 방전 축전기(322a~322c)의 등가 정전용량은 C'a =1/2 Ca일 수 있다. 제1 초기 방전 축전기의 정전용량은 0.5 X (1-k) X Ca일 수 있다. 상기 제2 및 제3 초기 방전 축전기의 정전용량은 k X Ca일 수 있다. 여기서, 0< k < 1 범위에 일 수 있다. Ca는 도 26에서 설명된 초기 방전 축전기의 정전용량이다. 상기 제1 공진 주파수는 초기 방전 축전기의 등가 정전 용량(C'a)와 직렬 연결된 상기 초기 방전 유도 코일(120)의 인덕턴스(La)에 의하여 주어질 수 있다.The first
도 29는 본 발명의 또 다른 실시예에 따른 제2 RF 전원에 연결된 메인 방전 유도 코일 모듈을 나타낸다.29 shows a main discharge induction coil module connected to a second RF power source according to another embodiment of the present invention.
도 29를 참조하면, 상기 메인 방전 유도 코일 모듈(103)은, 서로 직렬 연결된 복수의 단위 안테나들(132), 인접한 단위 안테나들 사이에 직렬 연결된 보조 축전기(134), 및 직렬 연결된 복수의 단위 안테나들에 연결된 제2 임피던스 매칭 네트워크(133)를 포함할 수 있다. 상기 복수의 단위 안테나들(132)은 상기 유전체 방전 튜브의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결될 수 있다. 보조 축전기들(134)은 인접한 단위 안테나들 사이에 직렬 연결될 수 있다. 상기 제2 임피던스 매칭 네트워크(133)는 직렬 연결된 상기 단위 안테나들의 양단에 각각 연결되는 제1 메인 축전기(133a) 및 제2 메인 축전기(133b)를 포함할 수 있다.Referring to FIG. 29 , the main discharge
제2 공진 주파수(fb)는 단위 안테나들의 인덕턴스의 총합과 축전기들의 등가 정전 용량에 의하여 주어질 수 있다. 보조 축전기(134)의 정전용량이 C1인 경우, 상기 제1 메인 축전기(133a) 및 제2 메인 축전기(133b) 각각의 정전용량은 2C1일 수 있다. 단위 안테나들 각각의 인덕턴스는 L1일 수 있다.The second resonant frequency fb may be given by the sum of the inductances of the unit antennas and the equivalent capacitance of the capacitors. When the capacitance of the
도 30은 제1 인버터 또는 제2 인버터에 사용되는 풀브리지 인버터를 나타내는 회로도이다.30 is a circuit diagram illustrating a full-bridge inverter used in the first inverter or the second inverter.
인버터(456a, 456b)는 전원 노드(VP) 및 접지 노드(GND)로부터 직류 전원을 제공받는다. 상기 인버터(456a, 456b)는 제어기(458a,458b)로부터 스위칭 신호들(A,B,C,D)을 수신한다. 인버터(456a, 456b)는 스위칭 신호들(A,B,C,D)에 응답하여 직류 전원을 교류 전원으로 변환할 수 있다.The
제1 및 제2 트랜지스터들(TR1,TR2)은 전원 노드(VP)와 접지 노드(GND) 사이에 직렬 연결된 수 있다. 제1 다이오드(D1)는 제1 트랜지스터(TR1)와 병렬 연결되고, 제2 다이오드(D2)는 제2 트랜지스터(TR2)와 병렬 연결될 수 있다. 제1 축전기(C1)는 제1 트랜지스터(TR1)와 병렬 연결되고, 제2 축전기(C2)는 제2 트랜지스터(TR)와 병렬 연결될 수 있다.The first and second transistors TR1 and TR2 may be connected in series between the power node VP and the ground node GND. The first diode D1 may be connected in parallel with the first transistor TR1 , and the second diode D2 may be connected in parallel with the second transistor TR2 . The first capacitor C1 may be connected in parallel with the first transistor TR1 , and the second capacitor C2 may be connected in parallel with the second transistor TR.
제3 및 제4 트랜지스터들(TR1,TR2)는 전원 노드(VP)와 접지 노드(GND) 사이에 직렬 연결된 수 있다. 제3 다이오드(D3)는 제3 트랜지스터(TR3)와 병렬 연결되고, 제4 다이오드(D4)는 제4 트랜지스터(TR4)와 병렬 연결될 수 있다. 제3 축전기(C3)는 제3 트랜지스터(TR3)와 병렬 연결되고, 제4 축전기(C4)는 제4 트랜지스터(TR4)와 병렬 연결될 수 있다.The third and fourth transistors TR1 and TR2 may be connected in series between the power node VP and the ground node GND. The third diode D3 may be connected in parallel with the third transistor TR3 , and the fourth diode D4 may be connected in parallel with the fourth transistor TR4 . The third capacitor C3 may be connected in parallel with the third transistor TR3 , and the fourth capacitor C4 may be connected in parallel with the fourth transistor TR4 .
출력 전압(VO)의 구동 주파수를 조절하면, 출력 전압과 출력 전류 사이의 위상차이가 조절될 수 있다. When the driving frequency of the output voltage VO is adjusted, a phase difference between the output voltage and the output current may be adjusted.
도 31는 발명의 일 실시예에 따른 하프브리지 인버터를 나타내는 회로도이다.31 is a circuit diagram illustrating a half-bridge inverter according to an embodiment of the present invention.
도 31를 참조하면, 인버터(456a,456b)는 전원 노드(VP) 및 접지 노드(GND)로부터 직류 전원을 제공받는다. 상기 인버터(456a,456b)는 제어부(458a,458b)로부터 스위칭 신호들(A,B)을 수신한다. 인버터(456a,456b)는 스위칭 신호들(A,B)에 응답하여 직류 전원을 교류 전원으로 변환할 수 있다. Referring to FIG. 31 ,
제1 및 제2 트랜지스터들(TR1,TR2)는 전원 노드(VP)와 접지 노드(GND) 사이에 직렬 연결된 수 있다. 제1 다이오드(D1)는 제1 트랜지스터(TR1)와 병렬 연결되고, 제2 다이오드(D2)는 제2 트랜지스터(TR2)와 병렬 연결될 수 있다. 제1 축전기(C1)는 제1 트랜지스터(TR1)와 병렬 연결되고, 제2 축전기(C2)는 제2 트랜지스터(C2)와 병렬 연결될 수 있다. The first and second transistors TR1 and TR2 may be connected in series between the power node VP and the ground node GND. The first diode D1 may be connected in parallel with the first transistor TR1 , and the second diode D2 may be connected in parallel with the second transistor TR2 . The first capacitor C1 may be connected in parallel with the first transistor TR1 , and the second capacitor C2 may be connected in parallel with the second transistor C2 .
제1 전압 분배 축전기(C11) 및 상기 제2 전압 분배 축전기(C22)는 전원 노드(VP)와 접지 노드(GND) 사이에 직렬 연결된 수 있다. The first voltage division capacitor C11 and the second voltage division capacitor C22 may be connected in series between the power node VP and the ground node GND.
출력 전압(VO)의 구동 주파수를 조절하면, 출력 전압과 출력 전류 사이의 위상차이가 조절될 수 있다. When the driving frequency of the output voltage VO is adjusted, a phase difference between the output voltage and the output current may be adjusted.
도 32는 본 발명의 또 다른 실시예에 따른 시드 전하 발생부를 나타내는 개념도이다.32 is a conceptual diagram illustrating a seed charge generator according to another embodiment of the present invention.
도 32을 참조하면, 시드 전하 발생부(305)는 상기 유전체 방전 튜브(140)에 배치되어 시드 전하를 제공하는 제1 전극(314) 및 제2 전극(316); 및 상기 제1 전극 및 상기 제2 전극 사이에 DC 고전압을 인가하는 DC 전원(312)을 포함한다.Referring to FIG. 32 , the seed
상기 DC 전원(312)은, 상용 교류 전원을 DC 전압(Vin)으로 변환하는 AC-DC 변환기(3120); 상기 DC 전압(Vin)을 제공받아 양의 DC 고전압 펄스 및 음의 DC 고전압 펄스 중에서 적어도 하나의 고전압 펄스를 생성하는 고전압 펄스 발생기(3122a,3122b); 및 상기 고전압 펄스 발생기를 제어하는 제어부(3124a,3124b)를 포함한다. 상기 고전압 펄스 발생기(3122a,3122b)는, 상기 DC 전압을 제공받아 제1 고전압 펄스를 생성하는 제1 고전압 펄스 발생기(3122a); 및 상기 DC 전압을 제공받아 제2 고전압 펄스를 생성하는 제1 고전압 펄스 발생기(3122b);를 포함할 수 있다.The
상기 고전압 펄스 발생기를 제어하는 제어부(3124a,3124b)는, 상기 제1 고전압 펄스 발생기(3122a)를 제어하는 제1 제어기(3124a); 및 상기 제2 고전압 펄스 발생기(3122b)를 제어하는 제2 제어기(3124b)를 포함할 수 있다. 상기 제1 고전압 펄스는 상기 제1 전극(314) 에 인가되고, 상기 제2 고전압 펄스는 상기 제2 전극(316)에 인가될 수 있다. 상기 제1 전극(314)과 상기 제2 전극(316)은 상기 유전체 방전 튜브(140)의 외측벽에 서로 이격되어 배치될 수 있다. 상기 제1 고전압 펄스와 상기 제2 고전압 펄스는 서로 다른 극성을 가질 수 있다.The
다시. 도 10 및 도 11을 참조하면, DC 고전압을 인가하는 DC 전원(112)은 양의 고전압 펄스 또는/ 및 음의 고전압 펄스를 생성할 수 있다. 상기 음의 고전압 펄스 및 상기 양의 고전압 펄스는 제1 전극(314) 및 제2 전극(316)에 각각 인가될 수 있다.again. 10 and 11 , the
도 33은 본 발명의 일 실시예에 따른 음의 고전압 펄스 발생기를 나타내는 개념도이다.33 is a conceptual diagram illustrating a negative high voltage pulse generator according to an embodiment of the present invention.
도 33을 참조하면, 상기 고전압 펄스 발생기(2122)는, AC-DC 변환기(2120)의 상기 DC 전압(Vin)을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머(2122a); 상기 트랜스퍼머(2122a)의 상기 1차 코일에 병렬 연결된 인덕터(L); 접지된 일단을 가지고 상기 트랜스퍼머(2122a)의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터(2122b); 상기 전력 트랜지스터(2122b)와 병렬 연결된 저항(R); 상기 전력 트랜지스터와 병렬 연결된 축전기(C); 및 상기 전력 트랜지스터(2122b)의 타단과 상기 병렬 연결된 저항(R) 및 축전기(C) 사이에 배치되는 다이오드(D);를 포함한다. 제어기(2124)는 상기 전력 트렌지스터(2122b)의 게이트를 제어한다. Referring to FIG. 33 , the high
상기 트랜스퍼머(2122a)의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.One end of the secondary coil of the
도 34는 본 발명의 또 다른 실시예에 따른 음의 고전압 펄스 발생기를 나타내는 개념도이다.34 is a conceptual diagram illustrating a negative high voltage pulse generator according to another embodiment of the present invention.
도 34을 참조하면, 전압 펄스 발생기(2122')는, 상기 AC-DC 변환기(2120)의 상기 DC 전압(Vin)을 제공받는 1차 코일과 음의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머(2122a); 상기 트랜스퍼머(2122a)의 상기 1차 코일에 병렬 연결된 인덕터(L); 및 접지와 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터(2122b);를 포함한다. 제어기(2124)는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머(2122a)의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머(2122a)의 2차 코일의 타단은 접지될 수 있다.Referring to FIG. 34 , the
도 35는 본 발명의 또 다른 실시예에 따른 음의 고전압 펄스 발생기를 나타내는 개념도이다.35 is a conceptual diagram illustrating a negative high voltage pulse generator according to another embodiment of the present invention.
도 35를 참조하면, 상기 고전압 펄스 발생기(4122)는, 상기 AC-DC 변환기(2120)의 상기 DC 전압을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머(4122a); 상기 트랜스퍼머의 상기 1차 코일에 병렬 연결된 인덕터(L); 접지와 상기 트랜스퍼머의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터(4122b); 일단은 상기 AC-DC 변환기의 상기 DC 전압(Vin)에 연결되고 상기 서로 병렬 연결된 저항(R)과 축전기(C); 일단은 상기 전력 트렌지스터(4122b)와 상기 1차 코일 사이에 연결되고, 타단은 상기 병렬 연결된 저항(R)과 축전기(C)의 타단에 연결된 다이오드(D);를 포함한다. 상기 제어기(4124)는 상기 전력 트렌지스터(412b)의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 음의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지될 수 있다.Referring to FIG. 35 , the high
도 36는 본 발명의 또 다른 실시예에 따른 양의 고전압 펄스 발생기를 나타내는 개념도이다.36 is a conceptual diagram illustrating a positive high voltage pulse generator according to another embodiment of the present invention.
도 36을 참조하면, 상기 고전압 펄스 발생기(5122)는, 상기 AC-DC 변환기(2120)의 상기 DC 전압(Vin)을 제공받는 1차 코일과 양의 DC 고전압 펄스를 발생시키는 2차 코일을 포함하는 트랜스퍼머(5122a); 상기 트랜스퍼머(5122a)의 상기 1차 코일에 병렬 연결된 인덕터(L); 접지와 상기 트랜스퍼머(5122a)의 상기 1차 코일 사이에 직렬 연결된 전력 트렌지스터(5122b); 상기 전력 트랜지스터(5122b)와 병렬 연결된 저항(R); 상기 전력 트랜지스터(5122b)와 병렬 연결된 축전기(C); 및 상기 전력 트랜지스터(5122b)의 타단과 상기 병렬 연결된 저항(R) 및 축전기(C) 사이에 배치되는 다이오드(D);를 포함한다. 상기 1차 코일과 상기 2차 코일은 180도 위상 차이를 가지고, 상기 제어기(5124)는 상기 전력 트렌지스터의 게이트를 제어하고, 상기 트랜스퍼머의 2차 코일의 일단은 양의 DC 고전압 펄스를 출력하고, 상기 트랜스퍼머의 2차 코일의 타단은 접지된다.Referring to FIG. 36 , the high
도 37은 본 발명의 또 다른 실시예에 따른 단위 안테나를 설명하는 도면이다.37 is a view for explaining a unit antenna according to another embodiment of the present invention.
도 37을 참조하면, 단위 안테나(132')는, 상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브(140)와 접촉하여 배치되고 루프를 형성하는 제1 안테나(132a) 및 상기 제1 안테나(132a)와 연속적으로 연결되고 상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나(132b)를 포함할 수 있다. 상기 단위 안테나(132')는 4각형 단면을 가지며, 상기 제1 안테나(132a)는 상기 유전체 방전 튜브와 밀착되어 상기 유전체 방전 튜브를 냉각한다.Referring to FIG. 37 , the
이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.In the above, the present invention has been illustrated and described with respect to specific preferred embodiments, but the present invention is not limited to these embodiments, and those of ordinary skill in the art to which the present invention pertains in the claims. It includes all of the various types of embodiments that can be implemented within the scope that does not depart from the technical spirit.
102: 초기 방전 유도 코일 모듈
103: 메인 방전 유도 코일 모듈
120: 초기 방전 유도 코일
132: 단위 안테나102: initial discharge induction coil module
103: main discharge induction coil module
120: initial discharge induction coil
132: unit antenna
Claims (23)
상기 유전체 방전 튜브를 감싸고 초기 방전을 발생시키는 초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 연결되어 제1 공진 주파수를 제공하는 제1 임피던스 매칭 네트워크를 포함하는 초기 방전 유도 코일 모듈;
상기 초기 방전 유도 코일과 이격되어 배치되고 상기 유전체 방전 튜브를 감싸고 상기 초기 방전을 제공받아 메인 유도 결합 플라즈마를 발생시키는 복수의 단위 안테나들 및 상기 단위 안테나들에 연결되어 제2 공진 주파수를 제공하는 제2 임피던스 매칭 네트워크를 포함하는 메인 방전 유도 코일 모듈; 및
상기 초기 방전 유도 코일 모듈 및 상기 메인 방전 유도 코일 모듈에 전력을 공급하는 RF 전원을 포함하는 것을 특징으로 하는 플라즈마 발생 장치.dielectric discharge tube;
an initial discharge induction coil module including an initial discharge induction coil surrounding the dielectric discharge tube and generating an initial discharge, and a first impedance matching network connected to the initial discharge induction coil to provide a first resonant frequency;
a plurality of unit antennas disposed to be spaced apart from the initial discharge induction coil, surrounding the dielectric discharge tube, receiving the initial discharge to generate a main inductively coupled plasma, and a second resonance frequency connected to the unit antennas 2 main discharge induction coil module comprising an impedance matching network; and
and an RF power supply for supplying power to the initial discharge induction coil module and the main discharge induction coil module.
상기 제1 임피던스 매칭 네트워크는 상기 초기 방전 유도 코일에 직렬 연결된 초기 방전 축전기를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The first impedance matching network comprises an initial discharge capacitor connected in series to the initial discharge induction coil.
상기 제1 임피던스 매칭 네트워크는 상기 초기 방전 유도 코일의 양단에 각각 연결된 한 쌍의 초기 방전 축전기를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The first impedance matching network comprises a pair of initial discharge capacitors respectively connected to both ends of the initial discharge induction coil.
상기 제1 임피던스 매칭 네트워크는 변압기 및 상기 초기 방전 유도 코일의 양단에 각각 연결된 한 쌍의 초기 방전 축전기를 포함하고,
상기 변압기의 1차 코일은 상기 RF 전원의 출력단에 연결되고,
상기 변압기의 2차 코일은 서로 직렬 연결된 초기 방전 유도 코일과 한 쌍의 초기 방전 축전기의 양단에 연결되는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The first impedance matching network includes a transformer and a pair of initial discharge capacitors respectively connected to both ends of the initial discharge induction coil,
The primary coil of the transformer is connected to the output terminal of the RF power source,
The secondary coil of the transformer is connected to both ends of an initial discharge induction coil connected in series with each other and a pair of initial discharge capacitors.
상기 제1 임피던스 매칭 네트워크는:
상기 초기 방전 유도 코일에 병렬 연결된 제1 초기 방전 축전기;
서로 병렬 연결된 제1 초기 방전 축전기와 상기 초기 방전 유도 코일의 양단에 각각 연결된 제2 초기 방전 축전기 및 제3 초기 방전 축전기를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The first impedance matching network comprises:
a first initial discharge capacitor connected in parallel to the initial discharge induction coil;
A plasma generating apparatus comprising: a first initial discharge capacitor connected in parallel with each other; and a second initial discharge capacitor and a third initial discharge capacitor connected to both ends of the initial discharge induction coil, respectively.
상기 메인 방전 유도 코일 모듈에서,
상기 복수의 단위 안테나들은 상기 유전체 방전 튜브의 중심축에 수직한 복수의 배치 평면들에 각각 배치되고 서로 직렬 연결되고,
보조 축전기들은 인접한 단위 안테나들 사이에 직렬 연결되고,
상기 제2 임피던스 매칭 네트워크는 직렬 연결된 상기 단위 안테나들의 양단에 각각 연결되는 제1 메인 축전기 및 제2 메인 축전기를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
In the main discharge induction coil module,
The plurality of unit antennas are respectively disposed on a plurality of arrangement planes perpendicular to the central axis of the dielectric discharge tube and are connected in series with each other,
Auxiliary capacitors are connected in series between adjacent unit antennas,
The second impedance matching network comprises a first main capacitor and a second main capacitor respectively connected to both ends of the unit antennas connected in series.
상기 RF 전원은:
상용 교류 전원을 직류 전원으로 변환하는 정류기;
상기 직류 전원을 수신하여 제어기의 스위칭 신호들에 응답하여 RF 전력으로 변환하는 인버터; 및
상기 스위칭 신호들을 제어하여 구동 주파수 및 전력을 제어하는 제어부를 포함하고,
상기 RF 전원은 초기 방전시 상기 제1 공진 주파수에서 동작하고, 메인 유도 결합 플라즈마 발생시 상기 제2 공진 주파수에서 동작하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The RF power source is:
a rectifier that converts commercial AC power into DC power;
an inverter that receives the DC power and converts it into RF power in response to switching signals of a controller; and
A control unit for controlling a driving frequency and power by controlling the switching signals,
The RF power source operates at the first resonant frequency during initial discharge, and operates at the second resonant frequency when the main inductively coupled plasma is generated.
상기 RF 전원은:
상기 초기 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제1 공진 주파수에서 동작하는 제1 RF 전원; 및
상기 메인 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제2 공진 주파수에서 동작하는 제2 RF 전원;을 포함하고,
상기 제1 RF 전원은:
교류 전원을 직류 전원으로 변환하는 제1 정류기;
상기 제1 정류기의 직류 전원을 제공받아 제1 공진 주파수의 교류 전력을 상기 초기 방전 유도 코일 모듈에 제공하는 제1 인버터; 및
상기 제1 인버터의 출력을 제어하는 제1 제어부를 포함하고,
상기 제2 RF 전원은:
교류 전원을 직류 전원으로 변환하는 제2 정류기;
상기 제2 정류기의 직류 전원을 제공받아 제2 공진 주파수의 교류 전력을 상기 메인 방전 유도 코일 모듈에 제공하는 제2 인버터; 및
상기 제2 인버터의 출력을 제어하는 제2 제어부를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The RF power source is:
a first RF power supply providing AC power to the initial discharge induction coil module and operating at the first resonant frequency; and
and a second RF power supply that provides AC power to the main discharge induction coil module and operates at the second resonant frequency.
The first RF power source includes:
a first rectifier for converting AC power into DC power;
a first inverter receiving the DC power of the first rectifier and providing AC power of a first resonance frequency to the initial discharge induction coil module; and
A first control unit for controlling the output of the first inverter,
The second RF power source includes:
a second rectifier for converting AC power into DC power;
a second inverter receiving the DC power of the second rectifier and providing AC power of a second resonance frequency to the main discharge induction coil module; and
and a second control unit controlling an output of the second inverter.
상기 RF 전원은:
교류 전원을 직류 전원으로 변환하는 정류기;
상기 정류기의 직류 전원을 제공받아 상기 초기 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제1 공진 주파수에서 동작하는 제1 RF 전원; 및
상기 정류기의 직류 전원을 제공받아 상기 메인 방전 유도 코일 모듈에 교류 전력을 제공하고 상기 제2 공진 주파수에서 동작하는 제2 RF 전원을 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The RF power source is:
a rectifier that converts AC power to DC power;
a first RF power supply receiving the DC power of the rectifier to provide AC power to the initial discharge induction coil module and operating at the first resonance frequency; and
and a second RF power source that receives the DC power from the rectifier to provide AC power to the main discharge induction coil module and operates at the second resonant frequency.
상기 제1 RF 전원은 상기 정류기의 직류 전원을 제공받아 제1 공진 주파수의 제1 교류 전력으로 변환하는 제1 인버터; 및
상기 제1 인버터를 제어하는 제1 제어부;
상기 제2 RF 전원은 상기 정류기의 직류 전원을 제공받아 제2 공진 주파수의 교류 전력으로 변환하는 제2 인버터; 및
상기 제2 인버터를 제어하는 제2 제어부;를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.10. The method of claim 9,
The first RF power source includes: a first inverter that receives the DC power of the rectifier and converts it into a first AC power of a first resonance frequency; and
a first control unit for controlling the first inverter;
The second RF power source is a second inverter that receives the DC power of the rectifier and converts it into AC power having a second resonance frequency; and
and a second control unit for controlling the second inverter.
상기 제1 RF 전원은 4 MHz 내지 5 MHz의 주파수 범위에서 동작하고,
상기 제2 RF 전원은 400 kHz 내지 4 MHz의 주파수 범위에서 동작하는 것을 특징으로 하는 플라즈마 발생 장치.10. The method of claim 9,
The first RF power source operates in a frequency range of 4 MHz to 5 MHz,
The second RF power source plasma generating device, characterized in that it operates in a frequency range of 400 kHz to 4 MHz.
상기 제1 인버터 및 상기 제2 인버터 각각은 풀브리지 구조 또는 하브 브리지 구조인 것을 특징으로 하는 플라즈마 발생 장치.11. The method of claim 10,
Each of the first inverter and the second inverter has a full-bridge structure or a half-bridge structure.
상기 초기 방전 유도 코일에 흐르는 전류를 감지하는 제1 감지 센서를 더 포함하고,
상기 RF 전원은 상기 제1 감지 센서의 출력을 이용하여 축전 결합 모드에서 유도 결합 모드로 천이를 감지하여 상기 제1 공진 주파수에서 상기 제2 공진 주파수로 구동 주파수를 변경하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
Further comprising a first detection sensor for detecting the current flowing in the initial discharge induction coil,
The RF power source detects a transition from the capacitive coupling mode to the inductive coupling mode using the output of the first detection sensor to change the driving frequency from the first resonant frequency to the second resonant frequency. .
상기 메인 방전 유도 코일 모듈에 흐르는 전류를 감지하는 제2 감지 센서를 더 포함하고,
상기 RF 전원은 상기 제2 감지 센서의 출력을 이용하여 상기 메인 유도 결합 플라즈마가 형성된 것을 감지하여 상기 초기 방전 유도 코일 모듈에 제공하는 전력을 차단하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
Further comprising a second detection sensor for detecting the current flowing in the main discharge induction coil module,
The RF power source detects that the main inductively coupled plasma is formed by using the output of the second detection sensor to cut off the power provided to the initial discharge induction coil module.
상기 초기 방전 유도 코일은 솔레노이드 형태이고, 복층으로 감기는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The initial discharge induction coil is in the form of a solenoid, plasma generating device, characterized in that wound in multiple layers.
상기 초기 방전 유도 코일은 내부 솔레노이드 코일, 중간 솔레노이드 코일, 외부 솔레노이드 코일의 3층 구조인 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The initial discharge induction coil is a plasma generating device, characterized in that the three-layer structure of an internal solenoid coil, an intermediate solenoid coil, and an external solenoid coil.
상기 단위 안테나는:
상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브와 접촉하여 배치되고 루프를 형성하는 제1 안테나;
상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나; 및
상기 제2 안테나를 감싸도록 배치되고 루프를 형성하는 제3 안테나를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The unit antenna is:
a first antenna disposed in contact with the dielectric discharge tube in an arrangement plane perpendicular to the central axis and forming a loop;
a second antenna disposed to surround the first antenna and forming a loop; and
and a third antenna disposed to surround the second antenna and forming a loop.
상기 단위 안테나는 동일한 배치 평면에 배치되는 복수의 권선을 포함하고, 복수의 권선을 절연시키는 "ㅛ"자 형상의 절연 스페이서를 더 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The unit antenna includes a plurality of windings disposed on the same arrangement plane, and the plasma generating apparatus further comprises a "ㅛ"-shaped insulating spacer to insulate the plurality of windings.
상기 단위 안테나는:
상기 유전체 방전 튜브를 중심축에 수직한 배치 평면에서 상기 유전체 방전 튜브와 접촉하여 배치되고 루프를 형성하는 제1 안테나; 및
상기 제1 안테나를 감싸도록 배치되고 루프를 형성하는 제2 안테나; 를 포함하는 것을 특징으로 하는 플라즈마 발생 장치.According to claim 1,
The unit antenna is:
a first antenna disposed in contact with the dielectric discharge tube in an arrangement plane perpendicular to the central axis and forming a loop; and
a second antenna disposed to surround the first antenna and forming a loop; Plasma generator comprising a.
초기 방전 유도 코일 및 상기 초기 방전 유도 코일과 연결된 제1 임피던스 매칭 네트워크를 사용하여 제1 공진 주파수의 교류 전력으로 상기 제1 가스의 초기 방전을 수행하는 단계; 및
복수의 단위 안테나와 제2 임피던스 매칭 네트워크를 사용하여 상기 제1 공진 주파수와 다른 제2 공진 주파수의 교류 전력으로 상기 제1 가스의 메인 유도 결합 플라즈마를 생성하는 단계;를 포함하는 것을 특징으로 하는 플라즈마 발생 장치의 동작 방법.injecting a first gas into the dielectric discharge tube;
performing an initial discharge of the first gas with AC power of a first resonant frequency using an initial discharge induction coil and a first impedance matching network connected to the initial discharge induction coil; and
generating a main inductively coupled plasma of the first gas with AC power having a second resonant frequency different from the first resonant frequency using a plurality of unit antennas and a second impedance matching network; How the generator works.
상기 제1 가스를 제2 가스로 변경하면서 상기 메인 유도 결합 플라즈마를 유지하는 단계를 더 포함하는 것을 특징으로 하는 플라즈마 발생 장치의 동작 방법.21. The method of claim 20,
and maintaining the main inductively coupled plasma while changing the first gas to the second gas.
상기 제1 가스의 초기 방전 후, 복수의 단위 안테나와 제2 임피던스 매칭 네트워크를 사용하여 제2 공진 주파수 근처의 교류 전력으로 상기 초기 방전으로부터 상기 제1 가스의 예비 메인 유도 결합 플라즈마를 생성하는 단계를 더 포함하는 것을 특징으로 하는 플라즈마 발생 장치의 동작 방법.21. The method of claim 20,
After the initial discharge of the first gas, generating a preliminary main inductively coupled plasma of the first gas from the initial discharge with AC power near a second resonant frequency using a plurality of unit antennas and a second impedance matching network. The method of operating a plasma generating device, characterized in that it further comprises.
상기 예비 메인 유도 결합 플라즈마가 생성된 경우, 상기 제1 공진 주파수의 교류 전력을 차단하는 단계를 더 포함하는 것을 특징으로 하는 플라즈마 발생 장치의 동작 방법.23. The method of claim 22,
When the preliminary main inductively coupled plasma is generated, the method of operating a plasma generating device further comprising the step of blocking the AC power of the first resonant frequency.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210065461A KR102280501B1 (en) | 2019-12-23 | 2021-05-21 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020210093238A KR102377603B1 (en) | 2019-12-23 | 2021-07-16 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190172614A KR102257146B1 (en) | 2019-12-23 | 2019-12-23 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020210065461A KR102280501B1 (en) | 2019-12-23 | 2021-05-21 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190172614A Division KR102257146B1 (en) | 2018-12-31 | 2019-12-23 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210093238A Division KR102377603B1 (en) | 2019-12-23 | 2021-07-16 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210081307A true KR20210081307A (en) | 2021-07-01 |
KR102280501B1 KR102280501B1 (en) | 2021-07-22 |
Family
ID=76135341
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190172614A KR102257146B1 (en) | 2018-12-31 | 2019-12-23 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020210065461A KR102280501B1 (en) | 2019-12-23 | 2021-05-21 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020210093238A KR102377603B1 (en) | 2019-12-23 | 2021-07-16 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020220033668A KR102486662B1 (en) | 2019-12-23 | 2022-03-18 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020230001093A KR102604980B1 (en) | 2019-12-23 | 2023-01-04 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190172614A KR102257146B1 (en) | 2018-12-31 | 2019-12-23 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210093238A KR102377603B1 (en) | 2019-12-23 | 2021-07-16 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020220033668A KR102486662B1 (en) | 2019-12-23 | 2022-03-18 | The Plasma Generation Apparatus And The Operational Method Of The Same |
KR1020230001093A KR102604980B1 (en) | 2019-12-23 | 2023-01-04 | The Plasma Generation Apparatus And The Operational Method Of The Same |
Country Status (1)
Country | Link |
---|---|
KR (5) | KR102257146B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230153587A (en) * | 2022-04-29 | 2023-11-07 | (주)엘오티씨이에스 | Inductively coupled plasma apparatus for treating exhaust gas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050047293A (en) * | 2003-11-17 | 2005-05-20 | 삼성전자주식회사 | Ionized physical vapor deposition apparatus using helical self-resonant coil |
KR101657303B1 (en) * | 2015-05-22 | 2016-09-13 | 인투코어테크놀로지 주식회사 | Plasma Apparatus |
KR20180001804A (en) * | 2016-06-28 | 2018-01-05 | (주) 엔피홀딩스 | Plasma generator |
KR101826883B1 (en) * | 2016-11-03 | 2018-02-08 | 인투코어테크놀로지 주식회사 | Inductive Coil Structure And Inductively Coupled Plasma Apparatus |
KR20180116225A (en) * | 2016-01-22 | 2018-10-24 | 에스피피 테크놀로지스 컴퍼니 리미티드 | Plasma control device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102280380B1 (en) * | 2015-09-03 | 2021-07-22 | 인투코어테크놀로지 주식회사 | Inductively Coupled Plasma Apparatus |
-
2019
- 2019-12-23 KR KR1020190172614A patent/KR102257146B1/en active IP Right Grant
-
2021
- 2021-05-21 KR KR1020210065461A patent/KR102280501B1/en active IP Right Grant
- 2021-07-16 KR KR1020210093238A patent/KR102377603B1/en active IP Right Grant
-
2022
- 2022-03-18 KR KR1020220033668A patent/KR102486662B1/en active IP Right Grant
-
2023
- 2023-01-04 KR KR1020230001093A patent/KR102604980B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050047293A (en) * | 2003-11-17 | 2005-05-20 | 삼성전자주식회사 | Ionized physical vapor deposition apparatus using helical self-resonant coil |
KR101657303B1 (en) * | 2015-05-22 | 2016-09-13 | 인투코어테크놀로지 주식회사 | Plasma Apparatus |
KR20180116225A (en) * | 2016-01-22 | 2018-10-24 | 에스피피 테크놀로지스 컴퍼니 리미티드 | Plasma control device |
KR20180001804A (en) * | 2016-06-28 | 2018-01-05 | (주) 엔피홀딩스 | Plasma generator |
KR101826883B1 (en) * | 2016-11-03 | 2018-02-08 | 인투코어테크놀로지 주식회사 | Inductive Coil Structure And Inductively Coupled Plasma Apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR102377603B1 (en) | 2022-03-23 |
KR102280501B1 (en) | 2021-07-22 |
KR102604980B1 (en) | 2023-11-23 |
KR20230008263A (en) | 2023-01-13 |
KR20230161920A (en) | 2023-11-28 |
KR20220038044A (en) | 2022-03-25 |
KR102486662B1 (en) | 2023-01-10 |
KR102257146B1 (en) | 2021-05-27 |
KR20210093809A (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11791133B2 (en) | Plasma generating apparatus and method for operating same | |
US6432260B1 (en) | Inductively coupled ring-plasma source apparatus for processing gases and materials and method thereof | |
EP4027370A1 (en) | Induction coil structure and device for generating inductively coupled plasma | |
RU2461908C2 (en) | High-frequency generator for ionic and electronic sources | |
KR100803794B1 (en) | Inductive coupled plasma source with plasma discharging tube covered with magnetic core block | |
KR102604980B1 (en) | The Plasma Generation Apparatus And The Operational Method Of The Same | |
US9368328B2 (en) | Apparatus for generating and maintaining plasma for plasma processing | |
KR102602503B1 (en) | Plasma reforming apparatus for a target gas under atmospheric pressure | |
KR102486653B1 (en) | Atmospheric Pressure Plasma Generation Apparatus | |
KR102142867B1 (en) | Atmospheric Pressure Plasma Generation Apparatus | |
KR102716582B1 (en) | The Plasma Generation Apparatus And The Operational Method Of The Same | |
KR102479772B1 (en) | Atmospheric Pressure Plasma Generation Apparatus | |
JP3232511B2 (en) | High frequency high voltage power supply | |
KR20240150405A (en) | The Plasma Generation Apparatus And The Operational Method Of The Same | |
KR100743842B1 (en) | Plasma reactor having plasma chamber coupled with magnetic flux channel | |
KR101706775B1 (en) | Power supply device for plasma generator with resonant converter | |
KR101028215B1 (en) | Plasma generation apparatus | |
KR100805558B1 (en) | Inductively coupled plasma source having multi discharging tube coupled with magnetic core | |
KR100772447B1 (en) | Inductive coupled plasma source with built-in magnetic core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right |