KR20210073656A - Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same - Google Patents

Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same Download PDF

Info

Publication number
KR20210073656A
KR20210073656A KR1020190163734A KR20190163734A KR20210073656A KR 20210073656 A KR20210073656 A KR 20210073656A KR 1020190163734 A KR1020190163734 A KR 1020190163734A KR 20190163734 A KR20190163734 A KR 20190163734A KR 20210073656 A KR20210073656 A KR 20210073656A
Authority
KR
South Korea
Prior art keywords
asphalt concrete
waste plastic
ferronickel slag
asphalt
ascon
Prior art date
Application number
KR1020190163734A
Other languages
Korean (ko)
Inventor
박영준
김용운
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020190163734A priority Critical patent/KR20210073656A/en
Publication of KR20210073656A publication Critical patent/KR20210073656A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • C08K11/005Waste materials, e.g. treated or untreated sewage sludge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Road Paving Structures (AREA)

Abstract

The present invention provides an ASCON additive capable of improving the durability of asphalt concrete, a manufacturing method thereof and an ASCON composition comprising the same. More specifically, the present invention provides an ASCON additive comprising a ferronickel slag/waste plastic complex including waste plastics and ferronickel slag, a manufacturing method thereof and an ASCON composition comprising the same.

Description

고내구성의 아스팔트 콘크리트를 위한 아스콘 첨가제, 이의 제조 방법 및 이를 포함하는 아스콘 조성물{Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same}Ascon additives for high durability asphalt concrete, manufacturing method thereof, and ascon composition comprising the same

본 발명은 아스팔트 콘크리트의 내구성 향상을 위한 아스콘 첨가제, 이의 제조 방법 및 이를 포함하는 아스콘 조성물에 관한 것이다. The present invention relates to an asphalt concrete additive for improving durability of asphalt concrete, a manufacturing method thereof, and an asphalt concrete composition comprising the same.

아스팔트 도로에 사용되는 아스콘(asphalt concrete)은 주성분이 골재(자갈)이고, 아스팔트가 5~10중량%으로, 아스팔트의 역할은 골재에 코팅되어 골재가 서로 접착하게 만들어 아스팔트 도로를 형성하게 된다. 아스팔트의 종류는 석유 정제품인 일반 아스팔트와 개질 아스팔트가 있으며, 개질 아스팔트는 내구 성능 향상을 위한 고분자 및 여러 첨가제를 포함하고 있다. 그러나, 개질 아스팔트는 성능이 우수한 반면 가격이 일반 아스팔트에 비하여 2~3배의 고가인 단점이 있다. Ascon (asphalt concrete) used for asphalt road, the main component is aggregate (gravel), asphalt is 5 to 10% by weight, the role of asphalt is to be coated on the aggregate to make the aggregate adhere to each other to form an asphalt road. There are two types of asphalt: general asphalt, which is a refined petroleum product, and modified asphalt. The modified asphalt contains polymers and various additives to improve durability. However, while the modified asphalt has excellent performance, it has a disadvantage that the price is 2-3 times higher than that of general asphalt.

아스팔트 내구성 향상을 위한 개질재는 크게 계면활성재류와 고분자로 나눌 수 있다. 계면활성제류의 개질재는 아스팔트의 표면 장력을 낮추어 골재와의 혼합성을 향상시키는 기능이 있으며, 고분자 계열의 개질재는 골재 사이에 접착되어 도로의 응집력을 향상시키는 효과가 있다. 고분자 계열의 개질재 종류는 열가소성수지, 열경화성 수지, 고무 등이 있으며, 대표적인 예로서는 스티렌 부타디엔 고무(Styrene Butadiene Rubber, SBR), 스티렌 부타디엔 스티렌(Styrene Butadiene Styrene, SBS), 에틸렌 비닐아세테이트(Ethylene vinylacetate, EVA), 폴리에틸렌(Polyethylene, PE), 폴리프로필렌(Polypropylene, PP), 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 에폭시수지, 우레탄수지, 아크릴수지, 페놀수지 등이 있다. Modifiers for improving asphalt durability can be broadly divided into surfactants and polymers. Surfactant modifiers lower the surface tension of asphalt to improve mixability with aggregates, and polymer-based modifiers have the effect of improving cohesion of roads by bonding between aggregates. The types of polymer-based modifiers include thermoplastic resins, thermosetting resins, and rubber. Typical examples are Styrene Butadiene Rubber (SBR), Styrene Butadiene Styrene (SBS), Ethylene vinylacetate, EVA. ), polyethylene (PE), polypropylene (Polypropylene, PP), polyethylene terephthalate (PET), epoxy resin, urethane resin, acrylic resin, phenol resin, etc.

한편, 폐플라스틱으로 인한 환경 문제가 이슈로 폐플라스틱을 아스팔트 첨가제로 사용하기 위한 많은 시도가 있었다. 국내에서는 폐플라스틱으로부터 폐플라스틱 재생 과립(작은 알맹이 가루)을 만든 후 이것으로부터 페플라스틱 섬유를 뽑아내어 이를 아스팔트 포장에 섞고 이때 폐플라스틱 섬유와 골재의 맞물림 효과를 극대화하여 도로(아스팔트)의 내구성 및 수명을 높인 사례(대한민국 등록특허 제1871413호)가 있으나, 공정이 복잡하고 가격 경쟁력이 낮아 실용화에 많은 난관이 있었다. 해외에서는 폐플라스틱에 첨가제를 혼합한 후 펠렛 형태로 가공한 다음 이것을 아스팔트에 혼합한 후 용융시키고, 여기에 골재를 혼합하여 최종 아스팔트 콘크리트를 제조하는 기술(PCT 공개 제2017/129962호)이 있으나, 폐플라스틱이 아스팔트에 용해되는 시간이 길고, 폐플라스틱의 비중이 낮아 도로 포설시 도로 표층으로 부상하여 분리되어 개질재로서의 역할을 하지 못하는 단점이 있다. On the other hand, there have been many attempts to use the waste plastic as an asphalt additive due to the environmental problem caused by the waste plastic. In Korea, waste plastic recycling granules (small grain powder) are made from waste plastics, and waste plastic fibers are extracted from them and mixed with asphalt pavement. At this time, the durability and lifespan of roads (asphalt) are maximized by maximizing the interlocking effect between waste plastic fibers and aggregates. There is a case of increasing the price (Korean Patent Registration No. 1871413), but there were many difficulties in commercialization due to the complicated process and low price competitiveness. Overseas, there is a technology (PCT Publication No. 2017/129962) for mixing waste plastic with additives, processing it into pellets, mixing it with asphalt, melting it, and mixing aggregate with it to produce final asphalt concrete (PCT Publication No. 2017/129962), The dissolution time of the waste plastic in the asphalt is long, and the specific gravity of the waste plastic is low, so that it floats to the surface layer of the road when the road is being laid, and is separated and cannot serve as a modifier.

따라서, 폐플라스틱을 사용하여 경제적이면서도 아스콘 내에 균일하게 혼합되어 아스팔트 콘크리트의 내구성을 향상시킬 수 있는 기술 개발이 여전히 요구되고 있다. Therefore, there is still a need to develop a technology capable of improving the durability of asphalt concrete by using waste plastics and being economically and uniformly mixed in asphalt concrete.

본 발명은 아스팔트 콘크리트의 내구성을 향상시킬 수 있는 아스콘 첨가제, 이의 제조 방법 및 이를 포함하는 아스콘 조성물을 제공한다. The present invention provides an asphalt concrete additive capable of improving the durability of asphalt concrete, a manufacturing method thereof, and an asphalt concrete composition comprising the same.

본 발명의 일 견지에 있어서, 본 발명은 폐플라스틱 및 페로니켈 슬래그 입자를 포함하는 페로니켈 슬래그/폐플라스틱 복합체를 포함하는, 아스콘 첨가제를 제공하는 것이다. In one aspect of the present invention, the present invention is to provide an asphalt concrete additive comprising a ferronickel slag/waste plastic composite including waste plastic and ferronickel slag particles.

본 발명의 다른 견지에 있어서, 본 발명은 폐플라스틱에 전자빔 또는 플라즈마를 처리하여 폐플라스틱의 표면에 관능기를 형성하는 단계; 페로니켈 슬래그를 가열하는 단계; 및 상기 폐플라스틱을 상기 페로니켈 슬래그의 표면에 분사시켜 페로니켈 슬래그/폐플라스틱 복합체를 형성하는 단계를 포함하는, 아스콘 첨가제 제조 방법을 제공하는 것이다. In another aspect of the present invention, the present invention comprises the steps of forming a functional group on the surface of the waste plastic by treating the waste plastic with an electron beam or plasma; heating the ferronickel slag; and spraying the waste plastic onto the surface of the ferronickel slag to form a ferronickel slag/waste plastic composite.

본 발명의 또 다른 견지에 있어서, 본 발명은 본 발명의 아스콘 첨가제; 아스팔트; 및 골재를 포함하는, 아스콘 조성물을 제공하는 것이다. In another aspect of the present invention, the present invention is an asphalt concrete additive of the present invention; asphalt; And to provide an asphalt concrete composition comprising the aggregate.

본 발명의 아스콘 첨가제에 의해 아스팔트와 골재의 응집력 및 결합력이 높아져, 아스팔트 콘크리트에 수분이 침투하더라도 골재의 탈락을 방지할 수 있어, 상기 아스팔트 콘크리트의 내구성을 향상시킬 수 있다. 나아가, 상기와 같이 골재의 탈락이 방지되어 아스팔트 도로의 포트홀을 방지시킬 수 있다. The asphalt concrete additive of the present invention increases the cohesive force and bonding force between the asphalt and the aggregate, so that even if moisture penetrates the asphalt concrete, it is possible to prevent the aggregate from falling off, thereby improving the durability of the asphalt concrete. Furthermore, it is possible to prevent the drop-off of the aggregate as described above, thereby preventing the pothole of the asphalt road.

도 1은 종래 아스팔트 콘크리트에서 포트홀이 발생되는 과정을 개략적으로 나타낸다.
도 2는 본 발명의 아스콘 조성물에 의해 형성된 아스팔트 콘크리트를 개략적으로 나타낸다.
도 3은 본 발명의 아스콘 첨가제를 포함하는 아스콘 조성물에 의해 제조된 아스팔트 콘크리트를 제조 과정을 개략적으로 나타낸다.
1 schematically shows a process in which a porthole is generated in conventional asphalt concrete.
Figure 2 schematically shows the asphalt concrete formed by the asphalt concrete composition of the present invention.
Figure 3 schematically shows the manufacturing process of asphalt concrete prepared by the asphalt concrete composition containing the asphalt concrete additive of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명에 있어서, 아스콘은 아스팔트 콘크리트의 줄임말로 아스팔트 콘크리트와 아스콘은 동일한 의미를 나타낸다. In the present invention, asphalt concrete is an abbreviation for asphalt concrete, and asphalt concrete and asphalt concrete have the same meaning.

본 발명은 도 1과 같은 골재의 탈락이 발생하지 않도록 내구성이 향상된 아스팔트 콘트리트를 제조할 수 있는 아스콘 첨가제를 제공한다. The present invention provides an asphalt concrete additive capable of producing an asphalt concrete with improved durability so that the drop-off of the aggregate as shown in FIG. 1 does not occur.

상세하게, 본 발명은 폐플라스틱 및 페로니켈 슬래그 입자를 포함하는 페로니켈 슬래그/폐플라스틱 복합체를 포함하는, 아스콘 첨가제를 제공할 수 있다. In detail, the present invention may provide an asphalt concrete additive comprising a ferronickel slag/waste plastic composite including waste plastic and ferronickel slag particles.

상기 폐플라스틱은 플라즈마 또는 전자빔에 의해 관능기가 형성된 것일 수 있으며, 상기 관능기는 하이드록시기 또는 카르복시기일 수 있으나, 이에 제한되는 것은 아니다. The waste plastic may have a functional group formed by plasma or electron beam, and the functional group may be a hydroxyl group or a carboxyl group, but is not limited thereto.

관능기가 형성된 폐플라스틱은 페로니켈 슬래그와 아스팔트를 접합시키는 역할을 할 수 있으며, 상기 관능기에 의해 아스팔트 간의 접착력을 향상시킬 수 있어, 본 발명의 아스콘 조성물에 의해 형성되는 아스팔트 콘크리트의 내구성을 현저히 향상시킬 수 있다. The waste plastic in which the functional group is formed can serve to bond the ferronickel slag and the asphalt, and the functional group can improve the adhesion between the asphalt, so that the durability of the asphalt concrete formed by the asphalt concrete composition of the present invention can be significantly improved. can

나아가, 상기 페로니켈 슬래그/폐플라스틱 복합체는 상기 폐플라스틱이 상기 페로니켈 슬래그의 표면을 코팅한 형태일 수 있으며, 폐플라스틱에 형성된 관능기로 인해 상기 폐플라스틱이 페로니켈 슬래그의 표면에 부착된 것일 수 있다. 예를 들어 사용된 폐플라스틱의 80 내지 90%가 페로니켈 슬래그의 표면에 위치한 것일 수 있다. Furthermore, the ferronickel slag/waste plastic composite may be in a form in which the waste plastic is coated with the surface of the ferronickel slag, and the waste plastic may be attached to the surface of the ferronickel slag due to a functional group formed in the waste plastic have. For example, 80 to 90% of the used waste plastic may be located on the surface of the ferronickel slag.

상기 페로니켈 슬래그/폐플라스틱 복합체 총 중량을 기준으로, 상기 폐플라스틱은 5 내지 10중량%일 수 있으며, 예를 들어, 상기 페로니켈 슬래그는 95중량%이고, 폐플라스틱은 5중량%일 수 있다. Based on the total weight of the ferronickel slag/waste plastic composite, the waste plastic may be 5 to 10% by weight, for example, the ferronickel slag may be 95% by weight, and the waste plastic may be 5% by weight .

상기 폐플라스틱의 함량이 5중량% 미만인 경우에는 골재 사이를 결합할 수 있는 접착 성분이 부족하여 아스팔트 콘크리트의 내구성 향상 효과가 미미하며, 폐플라스틱의 함량이 10중량%를 초과하는 경우에는 페로니켈 슬래그에 코팅되지 않고 남은 성분이 존재하여 아스콘 조성물의 점도를 향상시켜 아스콘 조성물의 유동성을 저해할 수 있다. When the content of the waste plastic is less than 5% by weight, the adhesive component capable of bonding between the aggregates is insufficient, so the effect of improving the durability of asphalt concrete is insignificant, and when the content of the waste plastic exceeds 10% by weight, ferronickel slag Uncoated components may be present in the composition to improve the viscosity of the asphalt concrete composition, thereby inhibiting the flowability of the asphalt concrete composition.

나아가, 상기 폐플라스틱은 0.1 내지 3mm의 입경일 수 있으나, 이에 제한되는 것은 아니며, 페로니켈 슬래그의 표면에 균일하게 코팅될 수 있는 크기라면, 어느 형태의 폐플라스틱이라도 사용할 수 있다. Furthermore, the waste plastic may have a particle diameter of 0.1 to 3 mm, but is not limited thereto, and any type of waste plastic may be used as long as it has a size that can be uniformly coated on the surface of the ferronickel slag.

본 발명의 폐플라스틱은 폐비닐을 포함하는 것이며, 상기 폐플라스틱은 폴리스티렌, 폴리카보네이트, 폴리프로필렌 및 폴리에틸렌으로 이루어진 그룹으로부터 선택되는 적어도 하나를 포함하는 폐플라스틱일 수 있으나, 이에 제한되는 것은 아니다. The waste plastic of the present invention includes waste vinyl, and the waste plastic may be a waste plastic including at least one selected from the group consisting of polystyrene, polycarbonate, polypropylene and polyethylene, but is not limited thereto.

또한, 상기 페로니켈 슬래그는 0.1 내지 6mm의 입경, 바람직하게는 0.1 내지 3mm의 입경일 수 있다. 상기 페로니켈 슬래그의 입경이 0.1mm 미만인 경우에는 폐플라스틱의 코팅 자체가 어렵게 되는 문제가 생길 수 있으며, 6mm를 초과하는 경우에는 페로니켈 슬래그/폐플라스틱 복합체가 골재 사이에 위치하는 것이 어려워져 골재를 결합하는 역할을 수행하기 곤란하게 된다. In addition, the ferronickel slag may have a particle diameter of 0.1 to 6 mm, preferably 0.1 to 3 mm. If the particle diameter of the ferronickel slag is less than 0.1mm, there may be a problem that the coating of the waste plastic itself becomes difficult, and if it exceeds 6mm, it becomes difficult for the ferronickel slag/waste plastic composite to be positioned between the aggregates. It becomes difficult to perform the role of binding.

상기 페로니켈 슬래그는 제철소의 제강과정에서 발생하는 용융제강슬래그로부터 획득된 것일 수 있다. 관능기가 형성된 폐플라스틱은 녹는점 이상으로 가열되면서, 가열된 상기 페로니켈 슬래그와 접촉하게 되어, 상기 페로니켈 슬래그의 표면에 용이하게 코팅될 수 있다. The ferronickel slag may be obtained from molten steelmaking slag generated during the steelmaking process of an ironworks. The waste plastic in which the functional group is formed comes into contact with the heated ferronickel slag while being heated above its melting point, so that it can be easily coated on the surface of the ferronickel slag.

한편, 본 발명은 아스콘 첨가제를 제조하는 방법을 제공한다. On the other hand, the present invention provides a method for preparing an asphalt concrete additive.

상세하게, 본 발명은 폐플라스틱에 전자빔 또는 플라즈마를 처리하여 폐플라스틱의 표면에 관능기를 형성하는 단계; 페로니켈 슬래그를 가열하는 단계; 및 상기 폐플라스틱을 페로니켈 슬래그의 표면에 분사시켜 페로니켈 슬래그/폐플라스틱 복합체를 형성하는 단계를 포함하는, 아스콘 첨가제 제조 방법을 제공한다. Specifically, the present invention comprises the steps of forming a functional group on the surface of the waste plastic by treating the waste plastic with an electron beam or plasma; heating the ferronickel slag; and spraying the waste plastic onto the surface of the ferronickel slag to form a ferronickel slag/waste plastic composite.

상기 전자빔은 15 내지 25kGy로 5분 내지 10분간 조사될 수 있으며, 상기 플라즈마는 200 내지 300W의 출력으로 산소 등의 기체를 이용한 플라즈마를 통해 상기 폐플라스틱의 표면에 관능기를 형성하는 단계를 수행할 수 있다. The electron beam may be irradiated for 5 minutes to 10 minutes at 15 to 25 kGy, and the plasma may perform the step of forming a functional group on the surface of the waste plastic through plasma using a gas such as oxygen with an output of 200 to 300 W. have.

나아가, 상기 페로니켈 슬래그는 관능기가 형성된 상기 폐플라스틱으로 코팅되기 전에 가열될 수 있다. 이 때, 가열은 상기 페로니켈 슬래그를 원통형 코팅기에 장입한 후 회전과 동시에 수행할 수 있으며, 160 내지 180℃의 온도에서 수행할 수 있다. 상기 온도가 160℃ 미만인 경우에는 폐플라스틱이 페로니켈 슬래그의 표면에 균일하게 융착되지 못할 수 있고, 180℃를 초과하는 경우 폐플라스틱이 열분해되거나 페로니켈 슬래그에 코팅된 후 냉각되는 시간이 오래 걸리는 문제가 발생할 수 있다. Furthermore, the ferronickel slag may be heated before being coated with the waste plastic having functional groups formed thereon. At this time, the heating may be performed simultaneously with rotation after loading the ferronickel slag into the cylindrical coating machine, and may be performed at a temperature of 160 to 180°C. If the temperature is less than 160 ℃, the waste plastic may not be uniformly fused to the surface of the ferronickel slag, and if it exceeds 180 ℃, the waste plastic is thermally decomposed or it takes a long time to cool after being coated on the ferronickel slag may occur.

나아가, 본 발명은 본 발명의 아스콘 첨가제를 포함하는 아스콘 조성물을 제공할 수 있다. Furthermore, the present invention may provide an asphalt concrete composition comprising the asphalt concrete additive of the present invention.

상세하게, 본 발명의 아스콘 첨가제; 아스팔트; 및 골재를 포함하는, 아스콘 조성물을 제공할 수 있다. Specifically, the asphalt concrete additive of the present invention; asphalt; And it may provide an asphalt concrete composition comprising an aggregate.

상기 아스콘 조성물은 상기 아스팔트 100중량부를 기준으로, 상기 아스콘 첨가제 400 내지 600중량부, 골재 1000 내지 2000중량부를 포함할 수 있다. 상기 아스콘 첨가제의 함량이 400중량부 미만인 경우에는 골재 간의 충분한 결합력을 부여하기 어려우며, 600중량부를 초과하는 경우에는 아스콘 조성물의 유동성이 저하되어, 도로 포장 작업 효율이 떨어질 수 있다. 나아가 골재의 함량이 2000중량부를 초과하는 경우에는 골재의 함량에 비해 아스콘 첨가제의 함량이 적어 상기 골재가 충분히 접착되지 않는 문제가 발생할 수 있으며, 골재의 함량이 1000중량부 미만인 경우에는, 골재의 함량 자체가 적어 제조되는 아스팔트 콘크리트의 물성이 약해지는 문제가 발생할 수 있다. The asphalt concrete composition may include 400 to 600 parts by weight of the asphalt concrete additive and 1000 to 2000 parts by weight of aggregate based on 100 parts by weight of the asphalt. When the content of the asphalt concrete additive is less than 400 parts by weight, it is difficult to provide sufficient bonding strength between the aggregates, and when it exceeds 600 parts by weight, the fluidity of the asphalt concrete composition is lowered, and the efficiency of road paving work may be reduced. Furthermore, when the content of aggregate exceeds 2000 parts by weight, the content of the asphalt concrete additive is small compared to the content of the aggregate, which may cause a problem that the aggregate is not sufficiently adhered, and when the content of the aggregate is less than 1000 parts by weight, the content of the aggregate There may be a problem in that the physical properties of asphalt concrete produced because of its small amount are weakened.

나아가, 상기 아스콘 조성물은 가열 및 혼합 설비를 이용하여 상기 아스콘 조성물을 균일하게 혼합하고, 그 후 균일하게 혼합된 아스콘 조성물을 타설, 다짐 및 양생하는 단계를 통해 아스팔트 콘크리트 도로를 시공할 수 있다. Furthermore, the asphalt concrete composition can be uniformly mixed with the asphalt concrete composition using heating and mixing equipment, and then the asphalt concrete road can be constructed through the steps of pouring, compacting and curing the uniformly mixed asphalt concrete composition.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are merely examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.

실시예Example

실시예 1Example 1

(1) 페로니켈 슬래그/폐플라스틱 복합체 제조(1) Manufacturing of ferronickel slag/waste plastic composite

두께 30~50㎛, 길이 2mm이하이고, 판 형태이며, 폴리에틸렌이 주성분인 폐플라스틱 10g을 가로x세로 각각 30cm의 스테인리스 강판 위에 퍼뜨린 후 20kGy의 전자빔을 5분간 조사하였다. 이와는 별도로 평균 입자 크기가 0.1~3mm인 페로니켈 슬래그 190g을 가열 교반기에 투입한 후 표면 온도가 170℃가 되도록 가열하면서 상기 폐플라스틱을 투입하여 회전 중인 페로니켈 슬래드 입자에 코팅되도록 5분간 교반한 후 상온으로 냉각하여 페로니켈 슬래그/폐플라스틱 복합체를 제조하였다. 10 g of waste plastic, which is 30-50 μm thick, less than 2 mm long, and has a plate shape, containing polyethylene as the main component, was spread on a stainless steel plate of 30 cm in width and length, and then irradiated with an electron beam of 20 kGy for 5 minutes. Separately, 190 g of ferronickel slag having an average particle size of 0.1 to 3 mm was put into a heating stirrer, and while heating to a surface temperature of 170 ° C., the waste plastic was added and stirred for 5 minutes to coat the rotating ferronickel slag particles. After cooling to room temperature, a ferronickel slag/waste plastic composite was prepared.

(2) 아스콘 조성물 제조(2) Ascon composition preparation

25℃ 침입도가 72dmm인 석유계 아스팔트 100 중량부에 대하여, 상기 (1)에서 제조된 페로니켈 슬래그/폐플라스틱 복합체 500 중량부, 입경 6~13 mm의 굵은 골재 1,400중량부, 입경 0.01~0.06 mm의 미분말 골재 100중량부(KS F 2357에 적합한 골재 사용)를 160℃에서 혼합한 후 300~500rpm의 속도로 5~10분간 교반하여 아스콘 조성물을 제조하였다.With respect to 100 parts by weight of petroleum asphalt having a penetration degree of 72dmm at 25° C., 500 parts by weight of the ferronickel slag/waste plastic composite prepared in (1) above, 1,400 parts by weight of coarse aggregate having a particle diameter of 6 to 13 mm, a particle diameter of 0.01 to 0.06 After mixing 100 parts by weight of fine powder aggregate of mm (use an aggregate suitable for KS F 2357) at 160° C., it was stirred at a speed of 300 to 500 rpm for 5 to 10 minutes to prepare an asphalt concrete composition.

실시예 2Example 2

실시예 1에 있어서, 폐플라스틱을 전자빔이 아닌 상압 플라즈마(출력: 200~300W)로 처리한 것을 제외하고는, 실시예 1과 동일하게 아스콘 조성물을 제조하였다.In Example 1, an asphalt concrete composition was prepared in the same manner as in Example 1, except that the waste plastic was treated with atmospheric plasma (output: 200 to 300 W) rather than an electron beam.

실시예 3Example 3

실시예 1에 있어서, 폴레에틸렌 대신 폴리프로필렌 폐플라스틱을 사용한 것을을 제외하고는, 실시예 1과 동일하게 아스콘 조성물을 제조하였다. In Example 1, an asphalt concrete composition was prepared in the same manner as in Example 1, except that polypropylene waste plastic was used instead of polyethylene.

실시예 4Example 4

실시예 1에 있어서, 폴레에틸렌 대신 폴리에틸렌 비닐아세테이트을 사용하였다. In Example 1, polyethylene vinyl acetate was used instead of polyethylene.

비교예 1Comparative Example 1

실시예 1에 있어서, 페로니켈 슬래그/폐플라스틱 복합체가 아닌 각 성분을 블렌드 방식으로 제조한 것을 제외하고는, 실시예 1과 동일하게 아스콘 조성물을 제조하였다. In Example 1, an asphalt concrete composition was prepared in the same manner as in Example 1, except that each component, not the ferronickel slag/waste plastic composite, was prepared by a blending method.

즉, 25℃ 침입도가 72dmm인 석유계 아스팔트 100 중량부에 대하여, 페로니켈 슬래그 475중량부, 폐플라스틱 25중량부, 골재 1,400중량부, 미분말 골재 100중량부를 160℃에서 혼합한 후 300~500rpm의 속도로 5~10분간 교반하여 아스콘 조성물을 제조하였다. That is, 475 parts by weight of ferronickel slag, 25 parts by weight of waste plastic, 1,400 parts by weight of aggregate, and 100 parts by weight of fine powder aggregate with respect to 100 parts by weight of petroleum asphalt having a penetration degree of 25° C. of 72 dmm at 160° C. 300 to 500 rpm Ascon composition was prepared by stirring at a speed of 5 to 10 minutes.

비교예 2Comparative Example 2

실시예 1에 있어서, 전자빔으로 폐플라스틱 조사하지 않는 것을 제외하고는, 실시예 1과 동일하게 아스콘 조성물을 제조하였다. In Example 1, an asphalt concrete composition was prepared in the same manner as in Example 1, except that the waste plastic was not irradiated with an electron beam.

실험예 Experimental example

실시예 1 내지 4 및 비교예 1, 2의 아스콘 조성물로 제조된 아스콘의 내구성을 평가하기 위해 하기와 같은 실험을 수행하였다. In order to evaluate the durability of asphalt concrete prepared with the asphalt concrete compositions of Examples 1 to 4 and Comparative Examples 1 and 2, the following experiment was performed.

[동적 수침 후 골재 피복율][Aggregate coverage after dynamic water immersion]

실시예 1 내지 4 및 비교예 1, 2의 아스콘 조성물로 제조된 아스콘 시편의 수분에 대한 저항성(내수성)은 AASHTO T 283(RESISTANCE OF COMPACTED ASPHALT MIXTURES TO MOISTURE-INDUCED DAMAGE) 시험 방법에 의거하여 평가하였다. The resistance to moisture (water resistance) of the asphalt concrete specimens prepared with the asphalt concrete compositions of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated based on the AASHTO T 283 (RESISTANCE OF COMPACTED ASPHALT MIXTURES TO MOISTURE-INDUCED DAMAGE) test method. .

구체적으로, 각 아스콘 조성물을 160℃에서 2분간 혼합 후 지름 101.6mm의 몰드에 넣고 140℃에서 공극 7±1%가 되도록 선회 다짐하여 시편을 제조한 다음 수침 전후의 인장강도를 측정하여 비교하였으며, 골재 피복율이 높을수록 우수한 것으로 판정하였으며, 그 결과를 표 1에 정리하였다. Specifically, each asphalt concrete composition was mixed at 160 ° C. for 2 minutes, put into a mold with a diameter of 101.6 mm, and at 140 ° C., the specimen was prepared by turning and compacting so that the voids were 7 ± 1%. Then, the tensile strength before and after water immersion was measured and compared. It was determined that the higher the aggregate coverage, the better, and the results are summarized in Table 1.

[소성 변형 저항성][Plastic deformation resistance]

실시예 1 내지 4 및 비교예 1, 2의 아스콘 조성물로 제조된 아스콘 시편의 소성 변형 저항성은 KS F 2374(아스팔트 혼합물의 휠 트래킹 시험) 시험 방법에 의거하여 동적 안정도로 평가하였다. The plastic deformation resistance of asphalt concrete specimens prepared from the asphalt concrete compositions of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated for dynamic stability based on the KS F 2374 (wheel tracking test of asphalt mixture) test method.

구체적으로, 각 아스콘 혼합물을 125℃에서 2분간 혼합 후 가로 x 세로 x 높이가 300mm x 300mm x 50mm인 몰드에 넣고 115℃에서 공극 4±1%가 되도록 다짐하여 시편을 제조하였다. 이후 시편을 60℃의 온도에서 45분 이후 1mm 변형되는데 소요되는 휠의 통과회수를 산출하였다. 휠의 통과 회수가 증가할수록 아스콘의 소성에 대한 저항성이 우수한 것으로 판단하였으며, 그 결과를 표 1에 정리하였다. Specifically, each asphalt concrete mixture was mixed at 125 ° C. for 2 minutes, then put into a mold having a width x length x height of 300 mm x 300 mm x 50 mm and compacted at 115 ° C so that the voids were 4±1% to prepare a specimen. Thereafter, the number of passes of the wheel required to deform the specimen by 1 mm after 45 minutes at a temperature of 60° C. was calculated. As the number of passes of the wheel increased, it was judged that the asphalt concrete had excellent resistance to firing, and the results are summarized in Table 1.

동적 수침 후 골재 피복율 (%)Aggregate coverage after dynamic water immersion (%) 소성 변형 저항성(회/mm)Plastic deformation resistance (ash/mm) 실시 예 1Example 1 7474 16521652 실시 예 2Example 2 6868 17211721 실시 예 3Example 3 7070 16871687 실시 예 4Example 4 7575 16201620 비교 예 1Comparative Example 1 4545 743743 비교 예 2Comparative Example 2 2020 350350

상기 표 1에서 알 수 있듯이, 실시예 1 내지 4에서 제조된 아스콘 시편은 동적 수침 후 골재 피복율 및 동적 안정도가 비교예 1 및 2에 비해 현저히 우수한 것을 확인할 수 있었다. As can be seen from Table 1, it was confirmed that the asphalt concrete specimens prepared in Examples 1 to 4 had significantly superior aggregate coverage and dynamic stability after dynamic water immersion compared to Comparative Examples 1 and 2.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible within the scope without departing from the technical spirit of the present invention described in the claims. It will be apparent to those of ordinary skill in the art.

Claims (11)

폐플라스틱 및 페로니켈 슬래그 입자를 포함하는 페로니켈 슬래그/폐플라스틱 복합체를 포함하는, 아스콘 첨가제.
An ascon additive comprising a ferronickel slag/waste plastic composite comprising waste plastic and ferronickel slag particles.
제1항에 있어서,
상기 폐플라스틱은 플라즈마 또는 전자빔 처리에 의해 관능기가 형성된 것인, 아스콘 첨가제.
According to claim 1,
The waste plastic is a functional group formed by plasma or electron beam treatment, asphalt concrete additive.
제1항에 있어서,
상기 페로니켈 슬래그/폐플라스틱 복합체는 상기 폐플라스틱이 상기 페로니켈 슬래그의 표면을 코팅한 것인, 아스콘 첨가제.
According to claim 1,
The ferronickel slag / waste plastic composite is that the waste plastic is coated on the surface of the ferronickel slag, asphalt concrete additive.
제1항에 있어서,
상기 페로니켈 슬래그/폐플라스틱 복합체 총 중량을 기준으로, 상기 폐플라스틱은 5 내지 10중량%인, 아스콘 첨가제.
According to claim 1,
Based on the total weight of the ferronickel slag / waste plastic composite, the waste plastic is 5 to 10% by weight, asphalt concrete additive.
제1항에 있어서,
상기 폐플라스틱은 0.1 내지 3mm의 입경인, 아스콘 첨가제.
According to claim 1,
The waste plastic is a particle diameter of 0.1 to 3mm, asphalt concrete additive.
제1항에 있어서,
상기 폐플라스틱은 폴리스티렌, 폴리카보네이트, 폴리프로필렌 및 폴리에틸렌으로 이루어진 그룹으로부터 선택되는 적어도 하나를 포함하는, 아스콘 첨가제.
According to claim 1,
The waste plastic includes at least one selected from the group consisting of polystyrene, polycarbonate, polypropylene and polyethylene, ascon additive.
제1항에 있어서,
상기 페로니켈 슬래그는 0.1 내지 6mm의 입경인, 아스콘 첨가제.
According to claim 1,
The ferronickel slag has a particle diameter of 0.1 to 6mm, asphalt concrete additive.
폐플라스틱에 전자빔 또는 플라즈마를 처리하여 폐플라스틱의 표면에 관능기를 형성하는 단계;
페로니켈 슬래그를 가열하는 단계; 및
상기 폐플라스틱을 상기 페로니켈 슬래그의 표면에 분사시켜 페로니켈 슬래그/폐플라스틱 복합체를 형성하는 단계를 포함하는, 아스콘 첨가제 제조 방법.
forming a functional group on the surface of the waste plastic by treating the waste plastic with an electron beam or plasma;
heating the ferronickel slag; and
Spraying the waste plastic on the surface of the ferronickel slag to form a ferronickel slag/waste plastic composite, ascon additive manufacturing method.
제8항에 있어서,
상기 가열은 160 내지 180℃의 온도에서 수행되는, 아스콘 첨가제 제조 방법.
9. The method of claim 8,
The heating is performed at a temperature of 160 to 180 ℃, asphalt concrete additive manufacturing method.
제1항 내지 제7항 중 어느 한 항의 아스콘 첨가제;
아스팔트; 및
골재를 포함하는, 아스콘 조성물.
The ascon additive of any one of claims 1 to 7;
asphalt; and
An asphalt concrete composition comprising aggregate.
제10항에 있어서,
상기 아스팔트 100중량부를 기준으로, 상기 아스콘 첨가제는 400 내지 600중량부, 골재는 1000 내지 2000중량부인, 아스콘 조성물.
11. The method of claim 10,
Based on 100 parts by weight of the asphalt, the asphalt concrete additive is 400 to 600 parts by weight, the aggregate is 1000 to 2000 parts by weight, asphalt concrete composition.
KR1020190163734A 2019-12-10 2019-12-10 Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same KR20210073656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190163734A KR20210073656A (en) 2019-12-10 2019-12-10 Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190163734A KR20210073656A (en) 2019-12-10 2019-12-10 Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same

Publications (1)

Publication Number Publication Date
KR20210073656A true KR20210073656A (en) 2021-06-21

Family

ID=76599797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190163734A KR20210073656A (en) 2019-12-10 2019-12-10 Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same

Country Status (1)

Country Link
KR (1) KR20210073656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677246A (en) * 2021-07-23 2023-02-03 中国科学院过程工程研究所 Method for preparing cement admixture by using steel slag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677246A (en) * 2021-07-23 2023-02-03 中国科学院过程工程研究所 Method for preparing cement admixture by using steel slag
CN115677246B (en) * 2021-07-23 2024-03-01 中国科学院过程工程研究所 Method for preparing cement admixture by utilizing steel slag

Similar Documents

Publication Publication Date Title
KR101654614B1 (en) Recycled cold asphalt concrete mixture and construction method therewith
CA2286539C (en) Rubber-modified asphalt paving binder
CN1083862C (en) Asphalt additive and asphalt composition
JP6830832B2 (en) Asphalt composition
JP2016508539A (en) Components of superior high viscoelastic warm mixing modifier and method for producing the same, and components of virgin and recycled modified warm mixed asphalt concrete mixture and method for producing the same
KR100669079B1 (en) Powder type asphalt modifier and asphalt concrete using asphalt pavement and porous pavement
CN109610259A (en) A kind of road ultra-thin wearing layer and preparation method thereof
CN111847973B (en) Compound double-modified asphalt mixture additive
CN102863807A (en) Epoxy asphalt and preparation method thereof, as well as concrete containing same
JP6939616B2 (en) Modified asphalt composition and modified asphalt mixture and method for producing them
CN112074578A (en) Engineered crumb rubber compositions for asphalt binders and paving mix applications
KR20210073656A (en) Ascon additives for high durability asphalt concrete, method for manufacturing thereof, and ascon composition comprising the same
CN112062504A (en) Cold-mix concrete and preparation method thereof
CN113200732B (en) Environment-friendly anti-rutting asphalt mixture and preparation method thereof
RU2624470C2 (en) Hybrid polymer coating for the rocky or ceramic substrates, rocky or ceramic substrates and method of its production
KR101465702B1 (en) Modified asphalt composition and method for preparing modified asphalt
KR102007726B1 (en) Water-Impermeable Waterproof Asphalt Concrete Composition Comprising SIS And SBS And Constructing Methods Using Mixing System Device
CN114276780A (en) Sizing material for improving surface adhesion of S-CLF coiled material and preparation method thereof
KR102570964B1 (en) Asphalt modifier composition, asphalt concrete composition including the same and construction method using the same
KR102120811B1 (en) Warm-mix asphalt mixture and Asphalt construction method using thereof
KR102047471B1 (en) Warm-mix asphalt mixture with high durability and Asphalt construction method using thereof
CN113698136B (en) Asphalt paving composition and uniform asphalt paving method
CN113582575B (en) Multi-element solid waste environment-friendly base material and preparation method thereof
CN114920487B (en) Liquid asphalt, preparation method thereof, repairing material and application thereof
CN116903297B (en) Warm mix asphalt mixture containing reclaimed materials and preparation method thereof

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination