KR20210068530A - Organic electroluminescent material, manufacturing method thereof, and organic electroluminescent device - Google Patents

Organic electroluminescent material, manufacturing method thereof, and organic electroluminescent device Download PDF

Info

Publication number
KR20210068530A
KR20210068530A KR1020217013130A KR20217013130A KR20210068530A KR 20210068530 A KR20210068530 A KR 20210068530A KR 1020217013130 A KR1020217013130 A KR 1020217013130A KR 20217013130 A KR20217013130 A KR 20217013130A KR 20210068530 A KR20210068530 A KR 20210068530A
Authority
KR
South Korea
Prior art keywords
organic electroluminescent
compound
layer
organic
electroluminescent material
Prior art date
Application number
KR1020217013130A
Other languages
Korean (ko)
Other versions
KR102615340B1 (en
Inventor
지아환 펑
후이양 리
레이 다이
리페이 차이
Original Assignee
광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드 filed Critical 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드
Publication of KR20210068530A publication Critical patent/KR20210068530A/en
Application granted granted Critical
Publication of KR102615340B1 publication Critical patent/KR102615340B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • H01L51/0052
    • H01L51/0067
    • H01L51/0072
    • H01L51/0073
    • H01L51/0074
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 유기 전계 발광 재료, 이의 제조 방법 및 상기 유기 전계 발광 재료를 포함하는 유기 전계 발광 소자를 제공하며, 예를 들어 유기 발광 다이오드(OLED)가 있다. 상기 유기 전계 발광 재료는 이미다졸[1,5-a][1,8]나프티리딘(imidazole[1,5-a][1,8]naphthyridine) 기반의 화합물이며, 하기 식 I의 구조를 갖는다. 상기 화합물은 높은 안정성을 가지며, 제조된 유기 전계 발광 소자는 효율이 높다.

Figure pct00026
The present invention provides an organic electroluminescent material, a manufacturing method thereof, and an organic electroluminescent device including the organic electroluminescent material, for example, an organic light emitting diode (OLED). The organic electroluminescent material is a compound based on imidazole [1,5-a] [1,8] naphthyridine, and has the structure of the following formula I . The compound has high stability, and the prepared organic electroluminescent device has high efficiency.
Figure pct00026

Description

유기 전계 발광 재료, 이의 제조 방법 및 유기 전계 발광 소자Organic electroluminescent material, manufacturing method thereof, and organic electroluminescent device

본 발명은 유기 전계 발광 재료 분야에 관한 것으로, 보다 상세하게는 이미다졸[1,5-a][1,8]나프티리딘(imidazole[1,5-a][1,8]naphthyridine) 기반의 화합물을 제공하며, 발광 소자를 더 제공한다.The present invention relates to the field of organic electroluminescent materials, and more particularly, imidazole [1,5-a] [1,8] naphthyridine (imidazole [1,5-a] [1,8] naphthyridine) based A compound is provided, and a light emitting device is further provided.

OLED는 유기 발광 다이오드(Organic Light-Emitting Diode) 또는 유기 발광 소자(Organic Light-Emitting)이다. OLED는 자체 발광 소자로 백라이트가 필요 없고 빠른 응답 속도, 낮은 구동 전압, 높은 발광 효율, 고해상도, 넓은 시야각 등의 특성을 가지고 있어, 차세대 디스플레이 및 조명 기술로 자리 잡았다. 특히 휴대폰, 컴퓨터, TV, 커브드 및 폴더블 전자 제품에서 응용 전망이 높다.OLED is an organic light-emitting diode (Organic Light-Emitting Diode) or an organic light-emitting device (Organic Light-Emitting). OLED is a self-luminous device that does not require a backlight and has characteristics such as fast response speed, low driving voltage, high luminous efficiency, high resolution, and wide viewing angle, making it a next-generation display and lighting technology. In particular, application prospects are high in mobile phones, computers, TVs, and curved and foldable electronic products.

현재 형광 재료와 인광 재료의 2가지 유형의 발광 재료가 OLED에 적용된다. 초기 소자에 채택된 발광 재료는 주로 유기 소분자 형광 재료였으나, 스핀 통계 양자학에 따르면 형광 재료의 이론적 내부 양자 효율은 25%에 불과하다. 1998년 미국 프린스턴 대학의 Forrest 교수와 서던캘리포니아 대학의 Thompson 교수는 실온에서 금속 유기 배합물 분자 재료의 인광 전계 발광 현상을 발견하였다. 중금속 원자의 강한 자체 회전 궤도 결합을 이용하여 일중항에서 삼중항으로 전자의 계간 교차(ISC)를 효과적으로 촉진시켜, OLED 소자가 전기적 여기로 인해 생성되는 일중항과 삼중항 엘리시터(elicitor)를 충분히 이용하여 발광 재료의 이론적 내부 양자 효율을 100%까지 도달시킬 수 있다.Currently, two types of light-emitting materials are applied to OLEDs: fluorescent materials and phosphorescent materials. The light emitting material adopted for the initial device was mainly organic small molecule fluorescent material, but according to spin statistics quantum science, the theoretical internal quantum efficiency of the fluorescent material is only 25%. In 1998, Professor Forrest of Princeton University and Professor Thompson of the University of Southern California discovered the phenomenon of phosphorescence electroluminescence of metal-organic compound molecular materials at room temperature. By using the strong self-rotating orbital bonding of heavy metal atoms, it effectively promotes the intersystem crossing (ISC) of electrons from singlet to triplet, so that the singlet and triplet elicitor generated by the electrical excitation of the OLED device is sufficiently reduced. It is possible to achieve the theoretical internal quantum efficiency of light-emitting materials up to 100%.

OLED 재료에 있어서, 대부분의 유기 전계 발광 재료 정공 수송의 속도는 전자 수송의 속도보다 한두 수량급이 크기 때문에 발광층의 전자와 정공 수량의 불균형이 초래되기 쉬우므로 수득한 소자 효율도 비교적 낮다. 따라서 발광층 내의 호스트 재료 선택과 최적화는 유기 전계 발광 소자의 효율 및 수명을 향상시키는 데 매우 큰 영향을 미친다. CBP는 발명 이래 인광 소자의 발광층으로 광범위하게 응용되었다. 비록 그 중의 카르바졸 그룹이 CBP가 비교적 높은 삼중항 에너지 준위를 갖도록 만들어 인광 재료의 발광층에 사용될 수 있으나, 이는 주로 정공 수송형의 재료이므로 전자 수성의 속도가 비교적 낮아 캐리어 주입 및 수송의 불균형을 초래하기 상당히 쉽다. 또한 CBP의 유리 전이 온도 Tg가 비교적 낮아 소자의 안정적인 사용에 유리하지 않다. 따라서 안정성이 높고 캐리어 전송이 균형적인 발광층 호스트 재료를 개발하는 것은 유기 전계 발광 소자의 광범위한 사용에 있어 중대한 가치를 지닌다.In OLED materials, since the rate of hole transport in most organic electroluminescent materials is one or two orders of magnitude larger than the rate of electron transport, an imbalance in the number of electrons and holes in the light emitting layer is likely to occur, so the obtained device efficiency is also relatively low. Therefore, the selection and optimization of the host material in the light emitting layer has a great influence on improving the efficiency and lifespan of the organic electroluminescent device. CBP has been widely applied as a light emitting layer of a phosphorescent device since its invention. Although the carbazole group among them makes CBP have a relatively high triplet energy level, it can be used in the light emitting layer of phosphorescent materials, but since it is mainly a hole transport type material, the rate of electron transport is relatively low, resulting in an imbalance in carrier injection and transport. fairly easy to do In addition, the glass transition temperature Tg of CBP is relatively low, which is not advantageous for stable use of the device. Therefore, the development of a light emitting layer host material with high stability and balanced carrier transport is of great value for the widespread use of organic electroluminescent devices.

본 발명은 비교적 우수한 열 안정성과 높은 정공/전자 수송 균형 능력을 갖는 이미다졸[1,5-a][1,8]나프티리딘 기반의 화합물을 제공한다. 본 발명은 유기 발광 다이오드(OLED)에서 상기 재료의 응용을 더 제공하며, 상기 유기 전계 발광 화합물을 채택하여 제조한 소자는 전계 발광 효율이 높고 색순도가 우수하며 수명이 긴 장점이 있다.The present invention provides an imidazole[1,5-a][1,8]naphthyridine-based compound having relatively good thermal stability and high hole/electron transport balancing ability. The present invention further provides the application of the above material in an organic light emitting diode (OLED), and a device manufactured by adopting the organic electroluminescent compound has advantages of high electroluminescence efficiency, excellent color purity, and long lifespan.

유기 전계 발광 재료는 하기 구조식 I을 갖는 화합물이다.The organic electroluminescent material is a compound having the following structural formula (I).

Figure pct00001
Figure pct00001

여기에서 Ar은 C6-C30 치환 또는 비치환된 아릴, C5-C30의 치환 또는 비치환된 하나 이상의 헤테로 원자를 함유한 아릴, N-아릴 치환된 카르바졸릴, N-아릴 치환된 인데노카르바졸(indenocarbazole) 유도체 치환기, 디아릴아민(diarylamine), R1-R8 치환된 디아릴아민 및 이의 고리형 유도체 Cy으로부터 선택된다. Z는 C(R9)2, Si(R9)2, O, S、NR9, SO2이다. 여기에서 R1-R9는 독립적으로 수소, 듀테륨, 할로겐, 비치환된 알킬, 할로겐화 알킬, 중수소화 알킬, 시클로알킬, 비치환된 아릴, 알킬 치환된 아릴, 알콕시, 시아노, 카르바졸릴, 디페닐아민(diphenylamine)이거나, R1-R9는 독립적으로 인접한 그룹과 5-8원 고리를 형성한다wherein Ar is C6-C30 substituted or unsubstituted aryl, C5-C30 substituted or unsubstituted aryl containing one or more heteroatoms, N-aryl substituted carbazolyl, N-aryl substituted indenocarbazole (indenocarbazole) derivative substituents, diarylamine, R 1 -R 8 substituted diarylamine and its cyclic derivative Cy. Z is C(R 9 ) 2 , Si(R 9 ) 2 , O, S,NR 9 , SO 2 . wherein R 1 -R 9 are independently hydrogen, deuterium, halogen, unsubstituted alkyl, halogenated alkyl, deuterated alkyl, cycloalkyl, unsubstituted aryl, alkyl substituted aryl, alkoxy, cyano, carbazolyl, or diphenylamine, or R 1 -R 9 independently form a 5-8 membered ring with adjacent groups

Figure pct00002
;
Figure pct00002
;

L은 페닐렌(phenylene), 비페닐렌(biphenylene), 나프틸렌(naphthylene)으로부터 선택된다.L is selected from phenylene, biphenylene, and naphthylene.

R은 수소, 듀테륨, 치환 또는 비치환된 C6-C10의 아릴, C6-C10의 헤테로아릴로부터 선택된다.R is selected from hydrogen, deuterium, substituted or unsubstituted C6-C10 aryl, C6-C10 heteroaryl.

Ar은 페닐, 나프틸, 비페닐, 페난트릴(phenanthryl), 플루오레닐(fluorenyl), 아릴플로우레닐, 피레닐(pyrenyl), 디벤조푸라닐(dibenzofuranyl), 디벤조티에닐(dibenzothienyl), 벤즈이미다졸일(benzimidazolyl), 피리딜(pyridyl), 피리미디닐(pyrimidinyl), 퀴놀리닐(quinolinyl), 이소퀴놀리닐(isoquinolinyl), 트리아지닐(triazinyl), 피롤릴(pyrrolyl), 푸릴(furyl), 티아졸릴(thiazolyl), 퀴나졸리닐(quinazolinyl), 트리아졸릴(triazolyl), 벤조티아졸릴(benzothiazolyl), 벤조티아디아졸릴(benzothiadiazolyl), 1,2,4-트리아졸릴(1,2,4-triazolyl), 트리페닐아민(triphenylamine), 아릴카르바졸릴(arylcarbazolyl), N-아릴 치환의 카르바졸릴, 디페닐아민, 아제티디닐(azetidinyl), 아제티딘(acridine) 유도체 치환기, 페녹사지닐(phenoxazinyl) 및 이의 유도체 치환기, 페노티아지닐(phenothiazinyl) 및 이의 유도체 치환기로부터 선택된다. R은 수소, 페닐, 나프틸, 피리딜로부터 선택된다.Ar is phenyl, naphthyl, biphenyl, phenanthryl, fluorenyl, arylfluorenyl, pyrenyl, dibenzofuranyl, dibenzothienyl, benz Imidazolyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, triazinyl, pyrrolyl, furyl ), thiazolyl, quinazolinyl, triazolyl, benzothiazolyl, benzothiadiazolyl, 1,2,4-triazolyl (1,2,4) -triazolyl), triphenylamine, arylcarbazolyl, N-aryl substituted carbazolyl, diphenylamine, azetidinyl, azetidine (acridine) derivative substituent, phenoxazinyl (phenoxazinyl) and its derivative substituents, phenothiazinyl and its derivative substituents. R is selected from hydrogen, phenyl, naphthyl, pyridyl.

Ar은 바람직하게는 페닐, 나프틸, 비페닐, 페난트릴, 플루오레닐, 아릴플로우레닐, 피레닐, 디벤조푸라닐, 디벤조티에닐, 벤즈이미다졸일, 피리미디닐, 트리아지닐, 퀴나졸리닐, 1,2,4-트리아졸릴, N-페닐-카르바졸릴, 디페닐아민, 아제티디닐 및 아제티딘 유도체 치환기로부터 선택된다.Ar is preferably phenyl, naphthyl, biphenyl, phenanthryl, fluorenyl, arylfluorenyl, pyrenyl, dibenzofuranyl, dibenzothienyl, benzimidazolyl, pyrimidinyl, triazinyl, quina zolinyl, 1,2,4-triazolyl, N-phenyl-carbazolyl, diphenylamine, azetidinyl and azetidine derivative substituents.

구조 I의 화합물을 갖는 특정 구체적이고 비제한적인 예시는 하기와 같다.Certain specific, non-limiting examples with compounds of structure I are as follows.

Figure pct00003
Figure pct00003

Figure pct00004
Figure pct00004

Figure pct00005
Figure pct00005

상기 유기 전계 발광 재료의 제조 방법은 하기 단계를 포함한다.The method for producing the organic electroluminescent material includes the following steps.

(1) 화합물 A를 제공한다.(1) Compound A is provided.

(2) 알칼리 조건 하에서, 테트라키스(트리페닐포스핀)팔라듐(tetrakis(triphenylphosphine)palladium)를 촉매로 사용하고, Ar를 함유한 붕산 화합물 또는 Ar를 함유한 피나콜 보레이트(pinacol borate)를 화합물 A와 반응시켜 식 (I) 화합물을 수득한다.(2) under alkaline conditions, using tetrakis(triphenylphosphine)palladium as a catalyst, and using a boric acid compound containing Ar or pinacol borate containing Ar and to give the compound of formula (I).

A:

Figure pct00006
.A:
Figure pct00006
.

상기 화합물 A의 제조 방법은 하기와 같다.The preparation method of the compound A is as follows.

A) n-부틸리튬 작용 하에서, 2-브로모-1,8-디나프티리딘(2-bromo-1,8-dinaphthyridine)과 R의 포름산염 반응으로 화합물 B를 수득한다.A) Compound B is obtained by formate reaction of 2-bromo-1,8-dinaphthyridine with R under the action of n-butyllithium.

B) 화합물 B와 브롬화 L의 포름알데히드 화합물 CHO-L-Br 반응으로 화합물 A를 수득한다.B) Compound A is obtained by reaction of compound B with a formaldehyde compound CHO-L-Br of bromide L.

상기 R의 포름산염은 R의 포름산메틸(methyl formate)이다.The formate of R is methyl formate of R.

본 발명의 이미다졸[1,5-a][1,8]나프티리딘 화합물은 유기 전계 발광 소자, 태양 전지, 유기 박막 트랜지스터 또는 유기 센서 분야에 응용할 수 있다.The imidazole [1,5-a] [1,8] naphthyridine compound of the present invention can be applied to an organic electroluminescent device, a solar cell, an organic thin film transistor, or an organic sensor field.

본 발명은 유기 전계 발광 소자를 더 제공한다. 상기 소자는 양극, 음극 및 유기층을 포함한다. 유기층은 발광층, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층 중 적어도 한 층을 포함한다. 상기 유기층 중 적어도 한 층은 구조식 I에 따른 이미다졸[1,5-a][1,8]나프티리딘 화합물을 포함한다.The present invention further provides an organic electroluminescent device. The device includes an anode, a cathode and an organic layer. The organic layer includes at least one of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. At least one of the organic layers comprises an imidazole[1,5-a][1,8]naphthyridine compound according to formula (I).

Figure pct00007
Figure pct00007

여기에서 Ar, L, P의 정의는 전술한 바와 같다.Here, the definitions of Ar, L, and P are the same as described above.

여기에서 유기층은 발광층과 전자 수송층이다.Here, the organic layer is a light emitting layer and an electron transport layer.

또는 유기층은 발광층, 정공 주입층, 정공 수송층 및 전자 수송층이다.Alternatively, the organic layer is a light emitting layer, a hole injection layer, a hole transport layer and an electron transport layer.

또는 유기층은 발광층, 정공 주입층, 정공 수송층, 전자 수송층 및 전자 주입층이다.Alternatively, the organic layer is a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer and an electron injection layer.

또는 유기층은 발광층, 정공 수송층, 전자 수송층, 전자 주입층이다.Alternatively, the organic layer is a light emitting layer, a hole transport layer, an electron transport layer, or an electron injection layer.

또는 유기층은 발광층, 정공 수송층, 전자 주입층이다.Alternatively, the organic layer is a light emitting layer, a hole transport layer, or an electron injection layer.

바람직하게는 여기에서 구조식 I에 따른 이미다졸[1,5-a][1,8]나프티리딘 기반의 화합물이 소재한 층은 발광층이다.Preferably, the layer in which the imidazole[1,5-a][1,8]naphthyridine-based compound according to the structural formula (I) is located here is a light-emitting layer.

바람직하게는 여기에서 구조식 I에 따른 이미다졸[1,5-a][1,8]나프티리딘 함유 화합물은 구조식 1-36의 화합물이다.Preferably wherein the imidazole[1,5-a][1,8]naphthyridine containing compound according to formula I is a compound of formula 1-36.

구조식 I에 따른 이미다졸[1,5-a][1,8]나프티리딘 함유 화합물을 발광 소자 제조에 사용할 때 단독으로 사용할 수 있으며, 기타 화합물과 혼합하여 사용할 수도 있고, 구조식 I 중 2가지 이상의 화합물을 동시에 사용할 수도 있다.When the imidazole [1,5-a] [1,8] naphthyridine-containing compound according to Structural Formula I is used for manufacturing a light emitting device, it can be used alone or mixed with other compounds, and two or more of Structural Formula I The compounds may be used simultaneously.

본 발명의 유기 전계 발광 소자의 보다 바람직한 방식은 다음과 같다. 즉, 상기 유기 전계 발광 소자는 양극, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 및 음극을 포함하고, 여기에서 발광층은 구조식 I의 화합물을 포함하며, 보다 바람직하게는 발광층에 함유된 화합물은 구조 1-36의 화합물이다.A more preferred method of the organic electroluminescent device of the present invention is as follows. That is, the organic electroluminescent device includes an anode, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a cathode, wherein the light emitting layer comprises a compound of formula I, and more preferably, the compound contained in the light emitting layer has a structure It is a compound of 1-36.

본 발명의 유기 전계 발광 소자 유기층의 총 두께는 1 내지 1000nm, 바람직하게는 50 내지 500nm이다.The total thickness of the organic electroluminescent device organic layer of the present invention is 1 to 1000 nm, preferably 50 to 500 nm.

본 발명의 유기 전계 발광 소자는 본 발명의 구조식 I을 갖는 화합물을 사용할 때 기타 재료를 배합 사용하여 청색광, 녹색광, 황색광, 적색광 또는 백색광을 획득할 수 있다.The organic electroluminescent device of the present invention can obtain blue light, green light, yellow light, red light or white light by using other materials in combination when the compound having the structural formula I of the present invention is used.

본 발명의 유기 전계 발광 소자 중 유기층의 각 층은 진공 증착법, 분자빔 증착법, 용매에 용해하는 침지법, 바 코팅법 또는 잉크젯 인쇄 등 방법을 통해 제조할 수 있다. 금속 모터는 증착법 또는 스퍼터링법을 사용하여 제조할 수 있다.In the organic electroluminescent device of the present invention, each layer of the organic layer may be prepared through a vacuum deposition method, a molecular beam deposition method, a dipping method dissolved in a solvent, a bar coating method, or inkjet printing. The metal motor can be manufactured using a vapor deposition method or a sputtering method.

소자 실험에 따르면 본 발명의 구조식 I에 따른 이미다졸[1,5-a][1,8]나프티리딘 함유 화합물은 비교적 우수한 열 안정성과 높은 정공/전자 수송 균형 능력을 갖는다. 상기 유기 전계 발광 화합물에 의해 제조된 소자는 전계 발광 효율이 높고 색순도가 우수하며 수명이 긴 장점이 있다. According to device experiments, the imidazole[1,5-a][1,8]naphthyridine-containing compound according to Structural Formula I of the present invention has relatively good thermal stability and high hole/electron transport balancing ability. The device manufactured by the organic electroluminescent compound has advantages of high electroluminescence efficiency, excellent color purity, and long lifespan.

도 1은 화합물 29의 DSC 스펙트럼이다.
도 2는 유기 전계 발광 소자의 구조도이다.
1 is a DSC spectrum of compound 29.
2 is a structural diagram of an organic electroluminescent device.

이하에서는 본 발명의 실시방안을 구현하는 실시예를 설명한다. 이러한 실시예는 제한적인 것으로 해석되어서는 안 된다. 별도 설명이 없는 한 모든 백분율은 모두 중량을 기준으로 계산하며 모든 용매 혼합물 비율은 체적비이다.Hereinafter, an embodiment for implementing the implementation method of the present invention will be described. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

중간체의 합성synthesis of intermediates

중간체 1의 합성Synthesis of Intermediate 1

Figure pct00008
Figure pct00008

3구 플라스크에 2-브로모-1,8-디나프티리딘(10g, 47.84mmol), 무수 THF(100ml)를 첨가하고 질소 보호 하에서 -50℃로 20분간 교반한 후, 정압 액적 깔때기를 이용해 n-부틸리튬의 n-헥산 용액(2.2M, 26ml, 57mmol)을 점적한다. 점적 완료 후 계속해서 온도를 유지하며 30분간 교반하며, 이어서 메틸 벤조에이트(methyl benzoate)의 THF 용액(6.84g, 50.2mmol)을 점적한 다음 천천히 실온까지 승온하고 밤새 교반한다. 반응이 완료된 후, 포화 염화암모늄 용액으로 소광 반응을 수행하고 유기상을 분리한다. 무기상은 에틸 아세테이트를 이용해 추출하여 유기상을 합친다. 생성물은 칼럼 크로마토그래피로 정제하여 7.7g을 수득하였으며, 수율은 71%이다.2-bromo-1,8-dynaphthyridine (10 g, 47.84 mmol) and anhydrous THF (100 ml) were added to a three-necked flask, stirred at -50 ° C under nitrogen protection for 20 minutes, and then n using a static pressure droplet funnel -Butyllithium in n-hexane solution (2.2M, 26ml, 57mmol) is added dropwise. After completion of the dropwise addition, the temperature was continuously maintained and the mixture was stirred for 30 minutes. Then, a THF solution of methyl benzoate (6.84 g, 50.2 mmol) was added dropwise, and then the temperature was slowly raised to room temperature and stirred overnight. After the reaction is completed, quenching is performed with a saturated ammonium chloride solution and the organic phase is separated. The inorganic phase is extracted with ethyl acetate and the organic phase is combined. The product was purified by column chromatography to obtain 7.7 g, and the yield was 71%.

중간체 2의 합성Synthesis of Intermediate 2

Figure pct00009
Figure pct00009

합성 원료는 메틸 4-피콜리네이트(methyl 4-picolinate)이며, 합성 방법은 중간체 1과 일치하며, 수율은 68%이다.The raw material for synthesis is methyl 4-picolinate, the synthesis method is consistent with the intermediate 1, and the yield is 68%.

중간체 3의 합성Synthesis of Intermediate 3

Figure pct00010
Figure pct00010

플라스크에서 중간체 1(3g, 12.8mmol), p-브로모벤즈알데히드(p-bromobenzaldehyde)(2.37g, 12.8mmol), 아세트산암모늄(29.6g, 0.38mol), 아세트산 60mL를 첨가한다. 질소 분위기 하에서 130℃까지 가열하며, 반응은 15시간이다. 반응 완료 후, 냉각 감압하여 아세테이트를 제거하고 물을 첨가하며 디클로로메탄으로 추출하여 유기상을 수집하며 건조 및 농축하여 조생성물을 수득한다. 조생성물은 실리카겔 칼럼 크로마토그래피로 정제하여 3.5g을 수득하였으며, 수율은 70%이다.In a flask, add Intermediate 1 (3 g, 12.8 mmol), p-bromobenzaldehyde (2.37 g, 12.8 mmol), ammonium acetate (29.6 g, 0.38 mol), and acetic acid 60 mL. It is heated to 130° C. under a nitrogen atmosphere, and the reaction is 15 hours. After completion of the reaction, the acetate was removed under reduced pressure under cooling, water was added, and the organic phase was extracted with dichloromethane, collected, dried and concentrated to obtain a crude product. The crude product was purified by silica gel column chromatography to obtain 3.5 g, and the yield was 70%.

중간체 4의 합성Synthesis of Intermediate 4

Figure pct00011
Figure pct00011

합성 원료는 m-브로모벤즈알데히드(m-bromobenzaldehyde)이고, 합성 방법은 중간체 3과 일치하며 수율은 65%이다.The raw material for synthesis is m-bromobenzaldehyde, and the synthesis method is consistent with Intermediate 3, and the yield is 65%.

중간체 5의 합성Synthesis of Intermediate 5

Figure pct00012
Figure pct00012

플라스크에서 중간체 2(6g, 25.5mmol), m-브로모벤즈알데히드(4.7g, 25.5mmol), 아세트산암모늄(49g, 0.64mol), 아세트산 100mL를 첨가한다. 질소 분위기 하에서 130℃까지 가열하며, 반응은 16시간이다. 반응 완료 후, 냉각 감압하여 아세테이트를 제거하고 물을 첨가하며 디클로로메탄으로 추출하여 유기상을 수집하며 건조 및 농축하여 조생성물을 수득한다. 조생성물은 실리카겔 칼럼 크로마토그래피로 정제하여 6g을 수득하였으며, 수율은 59%이다.In a flask, add Intermediate 2 (6 g, 25.5 mmol), m-bromobenzaldehyde (4.7 g, 25.5 mmol), ammonium acetate (49 g, 0.64 mol), and 100 mL of acetic acid. It is heated to 130° C. under a nitrogen atmosphere, and the reaction is 16 hours. After completion of the reaction, the acetate was removed under reduced pressure under cooling, water was added, and the organic phase was extracted with dichloromethane, collected, dried and concentrated to obtain a crude product. The crude product was purified by silica gel column chromatography to obtain 6 g, and the yield was 59%.

실시예 1 - 화합물 18의 합성Example 1 - Synthesis of compound 18

Figure pct00013
Figure pct00013

둥근 바닥 플라스크에 중간체 4(1g, 2.5mmol), 2,4-디페닐-6-((3-피나콜 보레이트)페닐)-1,3,5-트리아진(1.2 g, 2.75mmol), 테트라키스(트리페닐포스핀)팔라듐(tetrakis(triphenylphosphine)palladium)(0.29g, 0.25mmol), 탄산칼륨(0.86g, 6.2mmol), 디옥산/물(10ml/2ml)을 첨가한다. 반응 혼합물은 질소 기체 분위기 하에서 110℃까지 승온하여 10시간 동안 교반한다. 반응 종료 후, 물을 첨가하여 세척하고 디클로로메탄으로 추출하며, 농축하여 조생성물을 수득하고, 실리카겔 칼럼 크로마토그래피로 정제하여 1.27g을 수득하였으며, 수율은 81%이다. Ms(ESI): 629.2 (M+1).Intermediate 4 (1 g, 2.5 mmol), 2,4-diphenyl-6-((3-pinacol borate) phenyl)-1,3,5-triazine (1.2 g, 2.75 mmol), tetra in a round bottom flask Add tetrakis(triphenylphosphine)palladium (0.29 g, 0.25 mmol), potassium carbonate (0.86 g, 6.2 mmol) and dioxane/water (10 ml/2 ml). The reaction mixture was heated to 110° C. under a nitrogen gas atmosphere and stirred for 10 hours. After completion of the reaction, washed with water, extracted with dichloromethane, and concentrated to obtain a crude product, purified by silica gel column chromatography to give 1.27 g, the yield is 81%. Ms(ESI): 629.2 (M+1).

실시예 2 - 화합물 21의 합성Example 2 - Synthesis of compound 21

Figure pct00014
Figure pct00014

둥근 바닥 플라스크에 중간체 3(1g, 2.5mmol), N-페닐-3-카르바졸보론산(0.79g, 2.75mmol), 테트라키스(트리페닐포스핀)팔라듐(0.29g, 0.25mmol), 탄산칼륨(0.86g , 6.2mmol), 톨루엔/물(10ml/2ml)을 첨가한다. 반응 혼합물은 질소 기체 분위기 하에서 110℃까지 승온하여 8시간 동안 교반한다. 반응 종료 후, 물을 첨가하여 세척하고 디클로로메탄으로 추출하며, 농축하여 조생성물을 수득하고, 실리카겔 칼럼 크로마토그래피로 정제하여 1.04g을 수득하였으며, 수율은 74%이다. Ms(ESI): 563.2 (M+1).Intermediate 3 (1 g, 2.5 mmol), N-phenyl-3-carbazoleboronic acid (0.79 g, 2.75 mmol), tetrakis (triphenylphosphine) palladium (0.29 g, 0.25 mmol), potassium carbonate in a round bottom flask (0.86 g , 6.2 mmol) and toluene/water (10 ml/2 ml) are added. The reaction mixture was heated to 110° C. under a nitrogen gas atmosphere and stirred for 8 hours. After completion of the reaction, washed with water, extracted with dichloromethane, and concentrated to obtain a crude product, purified by silica gel column chromatography to obtain 1.04 g, the yield is 74%. Ms(ESI): 563.2 (M+1).

실시예 3 - 화합물 29의 합성Example 3 - Synthesis of compound 29

Figure pct00015
Figure pct00015

둥근 바닥 플라스크에 중간체 5(2g, 5mmol), 3-(10H-스피로[아크리딘-9,9'-플루오렌]-10-일)페닐)보론산(3-(10H-spiro[acridine-9,9'-fluorene]-10-yl)phenyl)boronic acid)(2.47g, 6mmol), 테트라키스(트리페닐포스핀)팔라듐(0.58g, 0.5mmol), 탄산칼륨(1.7g, 12.5mmol), 디옥산/물(20ml/4ml)을 첨가한다. 반응 혼합물은 질소 기체 분위기 하에서 110℃까지 승온하여 10시간 동안 교반한다. 반응 종료 후,

Figure pct00016
물을 첨가하여 세척하고 디클로로메탄으로 추출하며, 농축하여 조생성물을 수득하고, 실리카겔 칼럼 크로마토그래피로 정제하여 3.08g을 수득하였으며, 수율은 85%이다. Ms(ESI): 728.3 (M+1). 유리 전이 온도는 99℃이며, 도 1은 화합물 29의 DSC 스펙트럼이다.Intermediate 5 (2g, 5mmol), 3-(10H-spiro[acridine-9,9'-fluoren]-10-yl)phenyl)boronic acid (3-(10H-spiro[acridine- 9,9'-fluorene]-10-yl)phenyl)boronic acid) (2.47g, 6mmol), tetrakis(triphenylphosphine)palladium (0.58g, 0.5mmol), potassium carbonate (1.7g, 12.5mmol) , dioxane/water (20ml/4ml) is added. The reaction mixture was heated to 110° C. under a nitrogen gas atmosphere and stirred for 10 hours. After completion of the reaction,
Figure pct00016
The product was washed by adding water, extracted with dichloromethane, and concentrated to give a crude product, which was purified by silica gel column chromatography to obtain 3.08 g, the yield was 85%. Ms(ESI): 728.3 (M+1). The glass transition temperature is 99°C, and FIG. 1 is a DSC spectrum of compound 29.

실시예 4-6Example 4-6

유기 전계 발광 소자의 제조Fabrication of organic electroluminescent devices

본 발명의 실시예에 따른 화합물을 사용하여 OLED를 제조한다.An OLED is manufactured using the compound according to an embodiment of the present invention.

먼저 투명 전도성 ITO 유리기판(110)(상면에 양극(120)이 있음)을 탈이온수, 에탄올, 아세톤, 탈이온수를 순서대로 거쳐 세척한 후 산소 플라즈마를 이용해 30초간 처리한다.First, the transparent conductive ITO glass substrate 110 (the anode 120 is on the upper surface) is washed with deionized water, ethanol, acetone, and deionized water in order, and then treated with oxygen plasma for 30 seconds.

그 다음 5nm 두께의 정공 주입층(130)(HATCN)을 증착한다.Then, a hole injection layer 130 (HATCN) having a thickness of 5 nm is deposited.

그 다음 정공 주입층 상에 50nm 두께의 정공 수송층(140)(TAPC)을 증착한다.Then, a 50 nm-thick hole transport layer 140 (TAPC) is deposited on the hole injection layer.

그 다음 정공 수송층 상에 10nm 두께의 실시예 화합물 도핑 10wt% Pt-1을 발광층(150)으로 증착한다.Next, 10 wt% Pt-1 doped with an embodiment compound having a thickness of 10 nm is deposited on the hole transport layer as the light emitting layer 150 .

그 다음 발광층 상에 50nm 두께의 전자 수송층(160)(TmPyPb)을 증착한다.Then, an electron transport layer 160 (TmPyPb) having a thickness of 50 nm is deposited on the emission layer.

마지막으로 1.2nm 두께의 LiF를 전자 주입층(160)으로, 100nm 두께의 Al을 소자 음극(180)으로 증착한다.Finally, LiF having a thickness of 1.2 nm is deposited as the electron injection layer 160 , and Al having a thickness of 100 nm is deposited as the device cathode 180 .

제조된 소자(구조는 도 2에 도시된 바와 같음)는 Photo Reasearch PR650 분광기를 이용해 전류 밀도가 1000cd/m2일 때의 효율을 측정하였으며, 이는 표 1과 같다.The manufactured device (the structure is as shown in FIG. 2) was measured for efficiency when the current density was 1000 cd/m 2 using a Photo Reasearch PR650 spectrometer, which is shown in Table 1.

비교예 1Comparative Example 1

발광층은 본 발명의 화합물 대신에 CBP를 이용한 것 이외에 다른 것은 실시예 4와 동일하다.The light emitting layer was the same as in Example 4 except that CBP was used instead of the compound of the present invention.

제조된 소자(구조는 도 2에 도시된 바와 같음)는 Photo Reasearch PR650 분광기를 이용해 전류 밀도가 1000cd/m2일 때의 효율을 측정하였으며, 이는 표 1과 같다.The manufactured device (the structure is as shown in FIG. 2) was measured for efficiency when the current density was 1000 cd/m 2 using a Photo Reasearch PR650 spectrometer, which is shown in Table 1.

표 1Table 1

Figure pct00017
Figure pct00017

표 1에서 알 수 있듯이, 동일한 조건에서 본 발명의 이미다졸[1,5-a][1,8]나프티리딘 기반의 화합물로 제조된 유기 전계 발광 소자의 효율이 비교예보다 높다. 전술한 바와 같이 본 발명의 화합물은 높은 안정성을 가지며 본 발명에서 제조된 유기 전계 발광 소자는 효율이 높다.As can be seen from Table 1, the efficiency of the organic electroluminescent device prepared with the imidazole [1,5-a] [1,8] naphthyridine-based compound of the present invention under the same conditions is higher than that of Comparative Example. As described above, the compound of the present invention has high stability and the organic electroluminescent device prepared in the present invention has high efficiency.

소자 중 상기 구조식은 하기와 같다.Among the elements, the structural formula is as follows.

Figure pct00018
Figure pct00018

따라서 본 발명의 이미다졸[1,5-a][1,8]나프티리딘 기반 화합물을 호스트로 사용하여 CBP로 제조된 소자보다 더욱 높은 효율을 얻을 수 있다. 동일한 시험 조건 하에서, CBP에 의해 제조된 소자가 1000cd/m2일 때 그 전류 효율은 41.9cd/A, 전력 효율은 29.1lm/W, 외부 양자 효율은 12.1%였다. 그러나 본 발명 실시예 화합물에 의해 제조된 소자는 모두 상기 효율보다 높은 효과를 획득할 수 있었다. 또한 CBP의 유리 전이 온도 Tg는 62℃이나, 본 발명 실시예 29 화합물은 더욱 높은 유리 전이 온도 Tg(99℃)를 가지며, 유리 전이 온도가 더욱 높고, 소자 발광층 형태 안정성이 우수하여 활용 전망이 더욱 밝아 유기 발광 다이오드의 호스트 재료에 대한 요건에 더욱 부합한다.Therefore, using the imidazole[1,5-a][1,8]naphthyridine-based compound of the present invention as a host, higher efficiency can be obtained than a device manufactured with CBP. Under the same test conditions, when the device manufactured by CBP was 1000 cd/m 2 , the current efficiency was 41.9 cd/A, the power efficiency was 29.1 lm/W, and the external quantum efficiency was 12.1%. However, all devices manufactured by the compound of the present invention were able to obtain an effect higher than the above-mentioned efficiency. In addition, the glass transition temperature T g of CBP is 62 ° C., but the compound of Example 29 of the present invention has a higher glass transition temperature T g (99 ° C), the glass transition temperature is higher, and the device light emitting layer morphological stability is excellent. It is brighter and more in line with the requirements for the host material of organic light emitting diodes.

110: 유리 기판
120: 양극
130: 정공 주입층
140: 정공 수송층
150: 발광층
160: 전자 수송층
170: 전자 주입층
180: 음극
110: glass substrate
120: positive electrode
130: hole injection layer
140: hole transport layer
150: light emitting layer
160: electron transport layer
170: electron injection layer
180: cathode

Claims (13)

유기 전계 발광 재료에 있어서,
하기 구조식 I을 갖는 화합물이고,
Figure pct00019

여기에서 Ar은 C6-C30 치환 또는 비치환된 아릴, C5-C30의 치환 또는 비치환된 하나 이상의 헤테로 원자를 함유한 아릴, N-아릴 치환된 카르바졸릴, N-아릴 치환된 인데노카르바졸(indenocarbazole) 유도체 치환기, 디아릴아민(diarylamine), R1-R8 치환된 디아릴아민 및 이의 고리형 유도체 Cy으로부터 선택되고, Z는 C(R9)2, Si(R9)2, O, S、NR9, SO2이고, 여기에서 R1-R9는 독립적으로 수소, 듀테륨, 할로겐, 비치환된 알킬, 할로겐화 알킬, 중수소화 알킬, 시클로알킬, 비치환된 아릴, 알킬 치환된 아릴, 알콕시, 시아노, 카르바졸릴, 디페닐아민(diphenylamine)이거나, R1-R9는 독립적으로 인접한 그룹과 5-8원 고리를 형성하고,
Figure pct00020
;
L은 페닐렌(phenylene), 비페닐렌(biphenylene), 나프틸렌(naphthylene)으로부터 선택되고;
R은 수소, 듀테륨, 치환 또는 비치환된 C6-C10의 아릴, C6-C10의 헤테로아릴로부터 선택되는 것을 특징으로 하는 유기 전계 발광 재료.
In the organic electroluminescent material,
It is a compound having the formula (I),
Figure pct00019

wherein Ar is C6-C30 substituted or unsubstituted aryl, C5-C30 substituted or unsubstituted aryl containing one or more heteroatoms, N-aryl substituted carbazolyl, N-aryl substituted indenocarbazole (indenocarbazole) derivative substituents, diarylamine, R 1 -R 8 substituted diarylamine and its cyclic derivatives Cy, Z is C(R 9 ) 2 , Si(R 9 ) 2 , O , S,NR 9 , SO 2 , wherein R 1 -R 9 are independently hydrogen, deuterium, halogen, unsubstituted alkyl, halogenated alkyl, deuterated alkyl, cycloalkyl, unsubstituted aryl, alkyl substituted aryl , alkoxy, cyano, carbazolyl, diphenylamine (diphenylamine), or R 1 -R 9 independently form a 5-8 membered ring with an adjacent group,
Figure pct00020
;
L is selected from phenylene, biphenylene, and naphthylene;
R is selected from hydrogen, deuterium, substituted or unsubstituted C6-C10 aryl, and C6-C10 heteroaryl.
제1항에 있어서,
Ar은 페닐, 나프틸, 비페닐, 페난트릴(phenanthryl), 플루오레닐(fluorenyl), 아릴플로우레닐, 피레닐(pyrenyl), 디벤조푸라닐(dibenzofuranyl), 디벤조티에닐(dibenzothienyl), 벤즈이미다졸일(benzimidazolyl), 피리딜(pyridyl), 피리미디닐(pyrimidinyl), 퀴놀리닐(quinolinyl), 이소퀴놀리닐(isoquinolinyl), 트리아지닐(triazinyl), 피롤릴(pyrrolyl), 푸릴(furyl), 티아졸릴(thiazolyl), 퀴나졸리닐(quinazolinyl), 트리아졸릴(triazolyl), 벤조티아졸릴(benzothiazolyl), 벤조티아디아졸릴(benzothiadiazolyl), 1,2,4-트리아졸릴(1,2,4-triazolyl), 트리페닐아민(triphenylamine), 아릴카르바졸릴(arylcarbazolyl), N-아릴 치환의 카르바졸릴, 디페닐아민, 아제티디닐(azetidinyl), 아제티딘(acridine) 유도체 치환기, 페녹사지닐(phenoxazinyl) 및 이의 유도체 치환기, 페노티아지닐(phenothiazinyl) 및 이의 유도체 치환기로부터 선택되고; R은 수소, 페닐, 나프틸, 피리딜로부터 선택되는 것을 특징으로 하는 유기 전계 발광 재료.
According to claim 1,
Ar is phenyl, naphthyl, biphenyl, phenanthryl, fluorenyl, arylfluorenyl, pyrenyl, dibenzofuranyl, dibenzothienyl, benz Imidazolyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, triazinyl, pyrrolyl, furyl ), thiazolyl, quinazolinyl, triazolyl, benzothiazolyl, benzothiadiazolyl, 1,2,4-triazolyl (1,2,4) -triazolyl), triphenylamine, arylcarbazolyl, N-aryl substituted carbazolyl, diphenylamine, azetidinyl, azetidine (acridine) derivative substituent, phenoxazinyl (phenoxazinyl) and its derivative substituents, phenothiazinyl and its derivative substituents; R is selected from hydrogen, phenyl, naphthyl, and pyridyl.
제2항에 있어서,
Ar은 페닐, 나프틸, 비페닐, 페난트릴, 플루오레닐, 아릴플로우레닐, 피레닐, 디벤조푸라닐, 디벤조티에닐, 벤즈이미다졸일, 피리미디닐, 트리아지닐, 퀴나졸리닐, 1,2,4-트리아졸릴, N-페닐-카르바졸릴, 디페닐아민, 아제티디닐 및 아제티딘 유도체 치환기로부터 선택되는 것을 특징으로 하는 유기 전계 발광 재료.
3. The method of claim 2,
Ar is phenyl, naphthyl, biphenyl, phenanthryl, fluorenyl, arylfluorenyl, pyrenyl, dibenzofuranyl, dibenzothienyl, benzimidazolyl, pyrimidinyl, triazinyl, quinazolinyl, An organic electroluminescent material selected from 1,2,4-triazolyl, N-phenyl-carbazolyl, diphenylamine, azetidinyl and azetidine derivative substituents.
제2항에 있어서,
아래의 구조식을 갖는 화합물인 것을 특징으로 하는 유기 전계 발광 재료.
Figure pct00021

Figure pct00022

Figure pct00023
3. The method of claim 2,
An organic electroluminescent material, characterized in that it is a compound having the following structural formula.
Figure pct00021

Figure pct00022

Figure pct00023
제4항에 있어서,
아래의 구조식을 갖는 화합물인 것을 특징으로 하는 유기 전계 발광 재료.
Figure pct00024
5. The method of claim 4,
An organic electroluminescent material, characterized in that it is a compound having the following structural formula.
Figure pct00024
(1) 화합물 A를 제공하는 단계;
(2) 알칼리 조건 하에서, 테트라키스(트리페닐포스핀)팔라듐(tetrakis(triphenylphosphine)palladium)를 촉매로 사용하고, Ar를 함유한 붕산 화합물 또는 Ar를 함유한 피나콜 보레이트(pinacol borate)를 화합물 A와 반응시켜 식 (I) 화합물을 수득하는 단계;
Figure pct00025

를 포함하는 것을 특징으로 하는 제1항 내지 제5항 중 어느 한 항에 따른 유기 전계 발광 재료의 제조 방법.
(1) providing compound A;
(2) under alkaline conditions, using tetrakis(triphenylphosphine)palladium as a catalyst, and using a boric acid compound containing Ar or pinacol borate containing Ar to obtain a compound of formula (I);
Figure pct00025

A method for producing an organic electroluminescent material according to any one of claims 1 to 5, comprising a.
제6항에 있어서,
상기 화합물 A의 제조 방법은 하기와 같은데,
A) n-부틸리튬 작용 하에서, 2-브로모-1,8-디나프티리딘(2-bromo-1,8-dinaphthyridine)과 R의 포름산염 반응으로 화합물 B를 수득하고;
B) 화합물 B와 브롬화 L의 포름알데히드 화합물 CHO-L-Br 반응으로 화합물 A를 수득하는 것을 특징으로 하는 제조 방법.
7. The method of claim 6,
The preparation method of the compound A is as follows,
A) under the action of n-butyllithium, 2-bromo-1,8-dinaphthyridine and R formate reaction to obtain compound B;
B) A process for producing compound A, characterized in that compound B and L bromide are reacted with formaldehyde compound CHO-L-Br to obtain compound A.
제7항에 있어서,
상기 R의 포름산염은 R의 포름산메틸(methyl formate)인 것을 특징으로 하는 제조 방법.
8. The method of claim 7,
The formate salt of R is a production method, characterized in that the methyl formate of R (methyl formate).
유기 전계 발광 소자에서 제1항 내지 제5항 중 어느 한 항에 따른 유기 전계 발광 재료의 응용.Application of the organic electroluminescent material according to any one of claims 1 to 5 in organic electroluminescent devices. 유기 전계 발광 소자에 있어서,
상기 소자는 양극, 음극 및 유기층을 포함하고, 유기층은 발광층, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층 중 적어도 한 층을 포함하고, 상기 유기층 중 적어도 한 층은 제1항 내지 제5항 중 어느 한 항에 따른 유기 전계 발광 재료를 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
In the organic electroluminescent device,
The device includes an anode, a cathode and an organic layer, the organic layer includes at least one of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, wherein at least one of the organic layers is An organic electroluminescent device comprising the organic electroluminescent material according to claim 1 .
제10항에 있어서,
유기층은 발광층, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층을 포함하고, 제1항 내지 제5항 중 어느 한 항에 따른 유기 전계 발광 재료가 소재한 층이 발광층인 것을 특징으로 하는 유기 전계 발광 소자.
11. The method of claim 10,
The organic layer includes a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, and the organic electroluminescent material according to any one of claims 1 to 5 is an organic electroluminescent layer, characterized in that the light emitting layer light emitting element.
제11항에 있어서,
제1항 내지 제5항 중 어느 한 항에 따른 유기 전계 발광 재료를 발광층에 단독으로 사용하거나 기타 화합물과 혼합 사용하는 것을 특징으로 하는 유기 전계 발광 소자.
12. The method of claim 11,
An organic electroluminescent device, characterized in that the organic electroluminescent material according to any one of claims 1 to 5 is used alone in the light emitting layer or mixed with other compounds.
제10항에 있어서,
상기 유기층의 총 두께는 1 내지 1000nm이고, 진공 증착법, 분자빔 증착법, 용매에 용해시키는 침지법, 바 코팅법 또는 잉크젯 인쇄 방법을 통해 제조하여 수득하는 것을 특징으로 하는 유기 전계 발광 소자.
11. The method of claim 10,
The total thickness of the organic layer is 1 to 1000 nm, vacuum deposition method, molecular beam deposition method, dipping method dissolved in a solvent, an organic electroluminescent device, characterized in that obtained by manufacturing a bar coating method or inkjet printing method.
KR1020217013130A 2018-12-17 2019-11-02 Organic electroluminescent material, method for producing the same, and organic electroluminescent device KR102615340B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811544417.9A CN111320626B (en) 2018-12-17 2018-12-17 Organic electroluminescent material, preparation method thereof and organic electroluminescent device
CN201811544417.9 2018-12-17
PCT/CN2019/115178 WO2020125239A1 (en) 2018-12-17 2019-11-02 Organic electroluminescent material, preparation method therefor and organic electroluminescent device

Publications (2)

Publication Number Publication Date
KR20210068530A true KR20210068530A (en) 2021-06-09
KR102615340B1 KR102615340B1 (en) 2023-12-19

Family

ID=71100401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217013130A KR102615340B1 (en) 2018-12-17 2019-11-02 Organic electroluminescent material, method for producing the same, and organic electroluminescent device

Country Status (6)

Country Link
US (1) US20220033421A1 (en)
JP (1) JP7130872B2 (en)
KR (1) KR102615340B1 (en)
CN (1) CN111320626B (en)
DE (1) DE112019005128T5 (en)
WO (1) WO2020125239A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583056A (en) * 2021-08-31 2021-11-02 浙江虹舞科技有限公司 6/5/6 tetradentate cyclometalated platinum or palladium complex luminescent material based on spirofluorene-spirofluorene structure and application thereof
CN114195796B (en) * 2021-12-20 2023-05-23 常州大学 Deep blue thermoexciton luminescent material, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140004549A (en) * 2012-07-02 2014-01-13 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366703C (en) * 2002-03-22 2008-02-06 出光兴产株式会社 Material for organic electroluminescent device and organic electroluminescent device using the same
EP2169028B1 (en) * 2002-03-22 2018-11-21 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP5509634B2 (en) * 2009-03-16 2014-06-04 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
KR20150069306A (en) * 2013-12-13 2015-06-23 도레이케미칼 주식회사 A novel phosphorescence complex having deep blue and organic light-emitting devices containing the same
CN107827913B (en) * 2017-11-23 2020-01-10 天津师范大学 1, 10-phenanthroline-containing N-heterocyclic carbene copper (I) complex and application thereof
CN108864091A (en) * 2018-09-03 2018-11-23 上海道亦化工科技有限公司 A kind of imidazopyridine derivatives and application thereof and luminescent device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140004549A (en) * 2012-07-02 2014-01-13 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same

Also Published As

Publication number Publication date
CN111320626B (en) 2022-09-02
DE112019005128T5 (en) 2021-07-01
US20220033421A1 (en) 2022-02-03
CN111320626A (en) 2020-06-23
JP2022513608A (en) 2022-02-09
KR102615340B1 (en) 2023-12-19
JP7130872B2 (en) 2022-09-05
WO2020125239A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
TWI594992B (en) Aromatic amine derivatives and organic electroluminescent devices
KR101826730B1 (en) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
KR20140056215A (en) Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
KR101981375B1 (en) Compounds for organic electroluminescent components and organic electroluminescent devices using the same
CN113105420B (en) Condensed ring arylamine compound, application thereof and organic electroluminescent device containing compound
CN113121493B (en) Arylamine compound, preparation method thereof, organic electroluminescent device and display device
KR20140072295A (en) Deuteriated organometallic complex and organic light-emitting diode including the same
CN113563871A (en) Host material, organic photoelectric device and display or lighting device
KR102615340B1 (en) Organic electroluminescent material, method for producing the same, and organic electroluminescent device
KR20190085878A (en) Multicyclic compound and organic light emitting device comprising the same
CN110800122A (en) Organic electroluminescent device
CN111689946A (en) Carbazole aromatic ring thermal activation delayed fluorescent material and organic electroluminescent device thereof
TW202106672A (en) Compound for capping layer and organic electroluminescent device including the same
KR20200011911A (en) Multicyclic compound and organic light emitting device comprising the same
KR20190085880A (en) Multicyclic compound and organic light emitting device comprising the same
CN113105491B (en) Pyridine diphenoxy boron fluoride compound, application thereof and organic electroluminescent device containing compound
CN111499557B (en) Organic main body material and electroluminescent device
CN113045542B (en) Preparation and application of thermal activation delayed fluorescence OLED material based on heptatomic ring diimide receptor
CN112939788A (en) Amantadine compound, application thereof and organic electroluminescent device containing amantadine compound
KR101895949B1 (en) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
CN112079833A (en) Organic electroluminescent compound and preparation method and application thereof
CN113816896B (en) 4-substituent carbazole compound and electroluminescent device
CN112661701B (en) Pterenes electron transport material, preparation method thereof and organic electroluminescent device
KR20220133814A (en) Compound, coating composition comprising same, organic light emitting device using same and method of manufacturing same
CN116283852A (en) Benzo five-membered heterocycle-containing double triarylamine compound, luminescent material and organic electroluminescent device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant