KR20210067749A - Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst - Google Patents

Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst Download PDF

Info

Publication number
KR20210067749A
KR20210067749A KR1020190157669A KR20190157669A KR20210067749A KR 20210067749 A KR20210067749 A KR 20210067749A KR 1020190157669 A KR1020190157669 A KR 1020190157669A KR 20190157669 A KR20190157669 A KR 20190157669A KR 20210067749 A KR20210067749 A KR 20210067749A
Authority
KR
South Korea
Prior art keywords
catalyst
fibrous
perovskite catalyst
depolymerization
perovskite
Prior art date
Application number
KR1020190157669A
Other languages
Korean (ko)
Other versions
KR102348820B1 (en
Inventor
이찬민
이준영
황기섭
권혁준
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190157669A priority Critical patent/KR102348820B1/en
Publication of KR20210067749A publication Critical patent/KR20210067749A/en
Application granted granted Critical
Publication of KR102348820B1 publication Critical patent/KR102348820B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/06
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3706Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/47Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a fibrous perovskite catalyst represented by general formula: A_χA'_(1-χ)B_(1-y)B'_yO_(3-δ), a method for manufacturing the fibrous perovskite catalyst, and PET depolymerization applications providing high yields. Since a perovskite catalyst of the present invention has a large surface are to volume, it is advantageous for the reaction, and can be used in the depolymerization of waste PET to provide a high yield of BHET.

Description

섬유상 페로브스카이트 촉매를 이용한 해중합을 통한 폐 폴리에틸렌테레프타레이트의 화학적 재활용 방법{Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst}Chemical recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst

본 발명은 페로브스카이트 촉매를 이용한 해중합을 통한 폐 폴리에틸렌테레프타레이트의(이하, '폐 PET'로 약칭함) 화학적 재활용 방법에 관한 것이다. 구체적으로 종래의 폐PET 글리콜리시스 해중합반응에 본 발명에 따른 페로브스카이트 촉매를 사용하여 높은 수율의 BHET를 수득할 수 있는, 개선된 폐PET의 재활용 방법에 관한 것이다.The present invention relates to a method for chemical recycling of waste polyethylene terephthalate (hereinafter abbreviated as 'waste PET') through depolymerization using a perovskite catalyst. Specifically, it relates to an improved method of recycling waste PET, which can obtain high yield of BHET by using the perovskite catalyst according to the present invention in a conventional waste PET glycolysis depolymerization reaction.

폴리에스터는 가격에 비해 열안정성, 투명도, 강도 등의 물성이 우수하여 필름, 음료병, 섬유 등과 같은 다양한 분야에서 많은 효용성을 가지고 있어서 널리 사용되고 있다. 폴리에스터의 전체 세계 생산량은 2000년에 2천5백만에서 3천톤에 달했다. 이 값은 2012년 5,500만톤으로 증가했으며 대부분 폴리에틸렌테레프탈레이트(PET)로 구성되었다.Polyester has excellent physical properties such as thermal stability, transparency, and strength compared to its price, and is widely used because it has many utility in various fields such as films, beverage bottles, and textiles. The total world production of polyester was between 25 and 3,000 tonnes in 2000. This value increased to 55 million tonnes in 2012, mostly composed of polyethylene terephthalate (PET).

유리 섬유 고체를 위한 식품포장 및 병 시장뿐만 아니라 섬유 응용에 대한 수요가 높아 섬유 및 성형 수지에서 폴리에스테르 소비가 크게 증가했다.High demand for textile applications as well as food packaging and bottle markets for glass fiber solids has led to a significant increase in polyester consumption in textiles and molding resins.

소비가 엄청나게 증가했기 때문에 지속가능성을 위한 가장 실용적인 해결책은 자원과 환경적인 측면에서 폴리에스테르를 경제적으로 재활용 하는 것은 매우 중요하다.As consumption has increased tremendously, it is very important to economically recycle polyester in terms of resources and the environment, as the most practical solution for sustainability.

PET를 재활용할 수 있는 방법 4가지(1차 재이용, 2차 물질 재활용, 3차 화학적 재활용, 4차 열에너지회수)가 있는데 이러한 접근법 중 지속 가능성 관점에서 가장 접합한 방법은 3차(화학)재활용이다. 이 공정은 폴리머가 원래 제조된 모노머를 생성하기 때문이다.There are four ways to recycle PET (primary recycling, secondary material recycling, tertiary chemical recycling, and quaternary thermal energy recovery). Among these approaches, the most suitable method from the perspective of sustainability is tertiary (chemical) recycling. . This is because this process produces the monomers from which the polymer was originally prepared.

종래의 PET 화학적 재활용 방법은 올리고머 회수법인 글리콜리시스(glycolysis)와 모노머 회수법인 메탄올리시스(methanolysis), 가수분해(hydrolysis)로 구분된다. 구체적으로, PET를 화학적으로 재활용하기 위해, 글리콜계 화합물에 의한 글리콜리시스, 메탄올에 의한 메탄올리시스, 물에 의한 가수분해와 같은 분해반응을 통해 PET 고분자 사슬을 분해한 다음 분리정제 과정을 거쳐 MEG, DMT, PTA와 같은 단량체 혹은 폴리에스터 올리고머를 수득하였다. 이렇게 수득된 물질들은 폴리에스터를 합성하는데 사용될 수 있다.Conventional PET chemical recycling method is divided into oligomer recovery method glycolysis (glycolysis), monomer recovery method methanolysis (methanolysis), hydrolysis (hydrolysis). Specifically, in order to chemically recycle PET, the PET polymer chain is decomposed through decomposition reactions such as glycolysis by glycol-based compounds, methanolysis by methanol, and hydrolysis by water, and then through a separation and purification process. Monomers or polyester oligomers such as MEG, DMT, and PTA were obtained. The materials thus obtained can be used to synthesize polyesters.

특히, 글리콜리시스 해중합 반응은 다른 화학적 리사이클 공정에 비해 낮은 온도와 압력하에 해중합이 이루어지며 처리공정이 단순하다는 장점을 가지고 있다. 글리콜리시스 해중합 반응은 구체적으로 PET와 EG (ethylene glycol)의 반응으로 BHET(bis-hydroxyethyl terephthalate)와 EG를 회수하는 방법이다. 가압하에서, 온도범위 180 내지 240℃사이에서 과량의 글리콜, 보통 EG를 사용하여 BHET 및 올리고머를 생성시키는 것이다. 생성된 BHET는 새로운 PET 고분자생성에 이용되기 전에 보통 가압하에서 용융여과를 이용하여 정제되어야 한다. 해중합은 보통 아연 아세테이트, 리튬 아세테이트와 같은 전이금속 아세테이트 촉매 또는 아연계 촉매 존재하에서 이루어진다. 하지만 이러한 종래의 촉매는 수율이 낮은 문제점이 있다.In particular, the glycolysis depolymerization reaction has the advantage that depolymerization is performed under a lower temperature and pressure compared to other chemical recycling processes and the treatment process is simple. The glycolysis depolymerization reaction is specifically a method of recovering BHET (bis-hydroxyethyl terephthalate) and EG through the reaction of PET and EG (ethylene glycol). Under pressure, BHET and oligomers are produced using an excess of glycol, usually EG, in the temperature range of 180 to 240°C. The resulting BHET must be purified using melt filtration, usually under pressure, before it can be used to produce new PET polymers. Depolymerization is usually carried out in the presence of a transition metal acetate catalyst such as zinc acetate or lithium acetate, or a zinc-based catalyst. However, these conventional catalysts have a problem of low yield.

이에 따라, 종래의 전이금속 아세테이트 촉매 또는 아연계 촉매를 대신하여 폐 PET 글리콜리시스 해중합 방법으로 BHET를 높은 수율로 수득하기 위한 촉매 개발이 필요한 실정이다.Accordingly, there is a need to develop a catalyst for obtaining BHET in high yield by a waste PET glycolysis depolymerization method instead of a conventional transition metal acetate catalyst or a zinc-based catalyst.

본 발명의 하나의 목적은 폐 PET의 글리콜리시스 해중합 반응에서 높은 수율로 BHET 생성을 초래하는 고효율 촉매로서 이용할 수 있는 신규한 섬유상 페로브스카이트 촉매를 제공하는 것이다.One object of the present invention is to provide a novel fibrous perovskite catalyst that can be used as a high-efficiency catalyst leading to BHET production in high yield in the glycolytic depolymerization reaction of waste PET.

본 발명의 다른 목적은 본 발명에 따른 신규한 페로브스카이트 촉매의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a novel perovskite catalyst according to the present invention.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. Meanwhile, each description and embodiment disclosed in the present invention may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be considered that the scope of the present invention is limited by the specific descriptions described below.

본 발명의 제1양태로서, 전술한 목적을 달성하기 위해, 본 발명은 하기 일반식 1로 나타내는 화학조성을 갖는 섬유상 페로브스카이트 촉매를 제공한다:As a first aspect of the present invention, in order to achieve the above object, the present invention provides a fibrous perovskite catalyst having a chemical composition represented by the following general formula (1):

[일반식 1][General formula 1]

AχA’ (1-χ)B(1-y)B’yO3-δ A χ A' (1-χ) B (1-y) B' y O 3-δ

상기 식에서, A 및 A’는 각각 독립적으로 Li, Na, Mg, K, Ca, Sc, Mn, Fe, Co, Cu, Zn, Rb, Sr, Y, Mo, Tc, Cd, In, Te, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Hg, Tl, Pb, Bi, Po, Ra, Th, Pa, U, Np, 및 Pu로 이루어진 그룹에서 서로 다르게 선택된 원소이고, B 및 B’는 각각 독립적으로, Li, Be, Al, Si, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Th, Pa, U, Np 및 Pu로 이루어진 그룹에서 서로 다르게 선택된 원소이며, 여기서 x는 0.01 내지 0.99이고, y는 0.01 내지 0.99이며, δ는 산소 부족분(oxygen deficiency)을 나타낸다.where A and A' are each independently Li, Na, Mg, K, Ca, Sc, Mn, Fe, Co, Cu, Zn, Rb, Sr, Y, Mo, Tc, Cd, In, Te, Cs , Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Hg, Tl, Pb, Bi, Po, Ra, Th , Pa, U, Np, and an element differently selected from the group consisting of Pu, and B and B' are each independently Li, Be, Al, Si, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Th, Pa, Elements differently selected from the group consisting of U, Np and Pu, where x is 0.01 to 0.99, y is 0.01 to 0.99, and δ represents oxygen deficiency.

본 발명의 제2양태로서, 전술한 목적을 달성하기 위해, 본 발명은 전이금속 원소를 포함하는 무기화합물 시료를 용매에 용해하여 촉매 전구체 용액을 제조하는 제1단계;As a second aspect of the present invention, in order to achieve the above object, the present invention comprises a first step of dissolving an inorganic compound sample containing a transition metal element in a solvent to prepare a catalyst precursor solution;

상기 촉매 전구체 용액에 고분자를 첨가하고 교반하여 촉매 전구체 및 고분자의 혼합용액을 제조하는 제 2단계;a second step of preparing a mixed solution of a catalyst precursor and a polymer by adding a polymer to the catalyst precursor solution and stirring;

상기 혼합용액을 전기방사하여 섬유상 촉매를 제조하는 제3단계; 및a third step of preparing a fibrous catalyst by electrospinning the mixed solution; and

상기 전기방사된 섬유상 촉매를 소성하여 상기 촉매 중의 잔류 고분자 및 질산염을 제거하는 제4단계;를 포함하는, 일반식 1로 나타내는 화학조성을 갖는 페로브스카이트 촉매의 제조방법을 제공한다.A fourth step of calcining the electrospun fibrous catalyst to remove residual polymer and nitrate in the catalyst; provides a method for producing a perovskite catalyst having a chemical composition represented by Formula 1, including a.

이하, 본 발명을 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 용어, "페로브스카이트(Perovskite)"는 화학식 ABR3으로 나타내는 입방정계의 결정구조이다. 단위격자 안에 화학단위(ABR3)을 1개 포함한다. R은 보통 산소이거나 Cl, Br, I 같은 할로겐 원소이다. B는 보통은 배위수(coordination number)가 6인 금속이온인 경우가 많다. A는 배위수 12의 큰 원자로 Ca, K, Na, Pb, Sr 등의 금속이 사용된다. 특정 페로브스카이트 물질이 안정한지는 공차율(tolerance factor, t)에 의해 예측된다. t가 0.8~1.0일 때 페로브스카이트 구조가 안정한 것으로 알려져 있다. 조성에 따라 강유전성, 반도성, 초전도성, 혼합도전성, 전기광학효과, 촉매능 등 다양한 기능을 발휘한다.As used herein, the term "perovskite (Perovskite)" is a cubic crystal structure represented by the formula ABR 3 . One chemical unit (ABR 3 ) is included in the unit cell. R is usually oxygen or a halogen element such as Cl, Br, or I. B is usually a metal ion with a coordination number of 6. A is a large atom with a coordination number of 12, and metals such as Ca, K, Na, Pb, and Sr are used. Whether a particular perovskite material is stable is predicted by a tolerance factor (t). It is known that the perovskite structure is stable when t is 0.8~1.0. Depending on the composition, it exhibits various functions such as ferroelectricity, semiconductivity, superconductivity, mixed conductivity, electro-optical effect, and catalytic function.

본 발명의 용어,"전이금속"은 전이원소라고도 말하며, 주기율표의 3족에서 12족 원소들을 모두 포함된다.As used herein, the term "transition metal" is also referred to as a transition element, and includes all elements from Groups 3 to 12 of the periodic table.

본 발명의 용어,"해중합"은 천연 또는 합성의 중합체가 단위체로 분해하는 현상을 말한다. 이것은 중합 반응의 역반응에 해당한다. 가열하여 분해시키면 단위체를 생성하는데, 중합과 마찬가지로 공업적으로도 이 반응을 이용하기도 한다.As used herein, the term "depolymerization" refers to a phenomenon in which natural or synthetic polymers are decomposed into units. This corresponds to the reverse reaction of the polymerization reaction. When it is decomposed by heating, a unit is produced. Like polymerization, this reaction is also used industrially.

폴리에스터의 화학적 분해는 PET 해중합을 말하며, PET 해중합 반응은 글리콜리시스(glycolysis), 메탄올리시스(methanolysis), 가수분해(hydrolysis), 암모놀리시스 (ammonolysis) 등으로 분류된다.Chemical decomposition of polyester refers to PET depolymerization, and PET depolymerization is classified into glycolysis, methanolysis, hydrolysis, ammonolysis, and the like.

본 발명의 용어,"글리콜리시스(glycolysis)"는 가장 간단하고 오래된 PET(poly(ethyleneterephthalate)) 해중합 방법이다. 다른 공정에 비해 비교적 안정적인 온도와 압력 하에서 PET 해중합이 이루어지고 공정이 단순하다는 장점을 갖고있다. 하기 반응식 1과 같이, 보통 에틸렌글리콜(ethylene glycol, EG)을 사용하고, 촉매 존재하에 이루어진다. PET는 EG와 반응하여 PET의 단량체인 BHET(bis(hydroxyethyl terephthalate))를 회수하는데, BHET는 불포화 폴리에스터, PET, 폴리우레탄 등 많은 중합체의 합성에 폭넓게 사용되고 있다. As used herein, the term "glycolysis" is the simplest and oldest PET (poly(ethyleneterephthalate)) depolymerization method. Compared to other processes, PET depolymerization is carried out under a relatively stable temperature and pressure, and the process is simple. As shown in Reaction Scheme 1 below, ethylene glycol (EG) is usually used, and is performed in the presence of a catalyst. PET reacts with EG to recover bis(hydroxyethyl terephthalate) (BHET), a monomer of PET. BHET is widely used in the synthesis of many polymers such as unsaturated polyester, PET, and polyurethane.

[반응식 1][Scheme 1]

Figure pat00001
Figure pat00001

본 발명의 페로브스카이트 촉매는 부피대비 표면적이 넓기 때문에 반응에 유리하고 PET 글리콜리시스 해중합 반응에 사용되어 높은 수율로 BHET를 수득할 수 있다.Since the perovskite catalyst of the present invention has a large surface area to volume ratio, it is advantageous for the reaction and can be used in PET glycolysis depolymerization to obtain BHET in high yield.

본 발명의 제1양태 일반식 1의 x 및 y는 바람직하게, x는 0.15 내지 0.85이고, y는 0.25 내지 0.75일 수 있으나, 이로만 국한되는 것은 아니다.In the first aspect of the present invention, x and y in General Formula 1 are preferably, x is 0.15 to 0.85, and y may be 0.25 to 0.75, but is not limited thereto.

본 발명의 제1 양태의 바람직한 페로브스카이트 촉매로서, 하기 화학식 1의 화학조성을 갖는 촉매를 예로들 수 있으나, 이로만 국한되는 것은 아니다.As a preferred perovskite catalyst of the first aspect of the present invention, a catalyst having a chemical composition of the following formula (1) may be exemplified, but is not limited thereto.

[화학식 1][Formula 1]

La0.8Ce0.2Ti0.7Ni0.3O3 La 0.8 Ce 0.2 Ti 0.7 Ni 0.3 O 3

전술한 본 발명의 제2양태에 따라, 섬유상 페로브스카이트 촉매의 제조방법은, 전이금속 원소를 포함하는 무기화합물 시료를 용매에 용해하여 촉매 전구체 용액을 제조하는 제1단계;According to the second aspect of the present invention, the method for preparing a fibrous perovskite catalyst includes a first step of dissolving an inorganic compound sample containing a transition metal element in a solvent to prepare a catalyst precursor solution;

상기 촉매 전구체 용액에 고분자를 첨가하고 교반하여 촉매 전구체 및 고분자의 혼합용액을 제조하는 제 2단계;a second step of preparing a mixed solution of a catalyst precursor and a polymer by adding a polymer to the catalyst precursor solution and stirring;

상기 혼합용액을 전기방사하여 섬유상 촉매를 제조하는 제3단계; 및a third step of preparing a fibrous catalyst by electrospinning the mixed solution; and

상기 전기방사된 섬유상 촉매를 소성하여 상기 촉매 중의 잔류 고분자 및 질산염을 제거하는 제4단계;를 포함할 수 있다.A fourth step of calcining the electrospun fibrous catalyst to remove residual polymer and nitrate in the catalyst; may include.

구체적으로, 상기 제1단계의 전이금속 원소를 포함하는 무기화합물은 La(NO₃)₃6H₂O, Ce(NO₃)3, Sr(NO3)2, Ni(NO3)2, 티타늄 이소프로폭시드(Titanium(IV)isopropoxide), 또는 Cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) 등을 포함할 수 있으나, 이에 제한되지 않는다.Specifically, the inorganic compound containing the transition metal element of the first step is La(NO₃)₃6H₂O, Ce(NO₃) 3 , Sr(NO 3 ) 2 , Ni(NO 3 ) 2 , titanium isopropoxide (Titanium) (IV) isopropoxide), or Cerium (III) nitrate hexahydrate (Ce(NO 3 ) 3 ·6H 2 O), but is not limited thereto.

구체적으로, 상기 제1단계의 용매는 예를 들어, N,N-디메틸포름아미드(N,N-Dimethylformamid (DMF)), 에틸알코올(Ethyl alcohol), D.I-water, 디메틸아세트아미드(Dimethylacetamide(DMAc)), 테트라하이드로퓨란(Tetrahydrofuran (THF)) 등을 포함할 수 있으나, 이에 제한되지 않는다.Specifically, the solvent of the first step is, for example, N,N-dimethylformamide (N,N-Dimethylformamid (DMF)), ethyl alcohol (Ethyl alcohol), DI-water, dimethylacetamide (Dimethylacetamide (DMAc) )), tetrahydrofuran (Tetrahydrofuran (THF)) and the like may be included, but is not limited thereto.

제2단계의 고분자 첨가제로 폴리비닐피로리돈(Polyvinylpyrrolidone (PVP)), 폴리에틸렌옥사이드(Polyethylene oxide(PEO)), 폴리비닐리덴플로우라이드(Polyvinylidene fluoride(PVDF)), 폴리설폰(Polysulfone(PSF)) 등을 사용할 수 있으나, 이에 제한되지 않는다.Polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polysulfone (PSF), etc. can be used, but is not limited thereto.

상기 제2단계의 상기 고분자 첨가제는 상기 촉매 전구체 용액의 총 중량 대비 1 내지 99 중량% 첨가하는 것일 수 있으나, 필요에 따라, 고분자 첨가제의 첨가(혼합)량은 분산성 및/또는 점도를 조절하기 위해 적절히 변경할 수 있다.The polymer additive in the second step may be added in an amount of 1 to 99% by weight based on the total weight of the catalyst precursor solution, but if necessary, the amount of the polymer additive added (mixed) may be adjusted to adjust dispersibility and/or viscosity. can be changed appropriately for

상기 제2단계의 교반은 예컨대, 10 내지 30℃에서 1시간 내지 12시간 동안 수행되는 것일 수 있으나, 필요에 따라, 교반조건은 전구체 및 고분자 첨가제가 잘 분산되도록 변경할 수 있다.The stirring of the second step may be performed, for example, at 10 to 30° C. for 1 hour to 12 hours, but if necessary, the stirring conditions may be changed so that the precursor and the polymer additive are well dispersed.

상기 제3단계의 전기방사는 0% RH 내지 60% RH에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.The electrospinning of the third step may be performed at 0% RH to 60% RH, but is not limited thereto.

전기방사시 습도가 60% RH 초과할 경우 용매가 증발이 되지 않기 때문에 파이버(fiber)형태로 전기방사 되지 않아 나노섬유 형태의 촉매제조가 어려울 수 있다.When the humidity exceeds 60% RH during electrospinning, since the solvent is not evaporated, it is not electrospun in the form of a fiber, so it may be difficult to prepare a catalyst in the form of a nanofiber.

바람직하게는 10 Kv 내지 30 kV, 0.5 ml/h 내지 2.0 ml/h, 10% RH 내지 50% RH, 및 30 ℃ 내지 40 ℃ 조건에서 수행될 수 있다.Preferably, it may be carried out at 10 Kv to 30 kV, 0.5 ml/h to 2.0 ml/h, 10% RH to 50% RH, and 30° C. to 40° C. conditions.

상기 제4단계의 소성은 1 시간 내지 50시간 동안 500 ℃ 내지 1400 ℃ 조건에서 수행되는 것일 수 있으나, 필요에 따라, 조건을 변경할 수 있다.The sintering in the fourth step may be performed under conditions of 500° C. to 1400° C. for 1 hour to 50 hours, but the conditions may be changed if necessary.

소성 온도가 500 ℃ 미만일 경우 고분자가 모두 제거되지 않기 때문에 순수한 촉매를 얻을 수 없고, 1400 ℃ 초과할 경우 일부 전구체 원소가 용융됨에 따라 촉매의 구조를 무너트릴 수 있다.When the calcination temperature is less than 500 ℃, since all the polymer is not removed, a pure catalyst cannot be obtained, and when it exceeds 1400 ℃, some precursor elements are melted, thereby destroying the structure of the catalyst.

바람직하게는, 상기 소성은 5 시간 내지 7시간, 700 내지 900℃ 1℃/min 승온조건에서 수행될 수 있다.Preferably, the sintering may be performed for 5 to 7 hours, 700 to 900° C. 1° C./min temperature rise condition.

본 발명의 페로브스카이트 촉매는 부피 대비 표면적이 넓기 때문에 반응에 유리하고, 폐 PET 해중합 반응에 사용하여 BHET의 높은 수율을 제공할 수 있다.Since the perovskite catalyst of the present invention has a large surface area to volume ratio, it is advantageous for the reaction, and can be used in the depolymerization of waste PET to provide a high yield of BHET.

도 1은 PET 해중합 반응시 사용하는 마이크로웨이브 반응기 내부를 나타내는 모식도 이다.
도 2는 PET, BHET 및 PET 해중합 반응 후 생성되는 생성물의 FT-IR분석 결과를 나타낸 그래프이다.
도 3은 PET, BHET 및 PET 해중합 반응 후 생성되는 생성물의 TGA분석 결과를 나타낸 그래프이다.
도 4는 PET 해중합 반응을 나타내는 모식도이다.
도 5는 본 발명의 섬유상 페로브스카이트 촉매를 나타낸 SEM사진이다.
1 is a schematic diagram showing the inside of a microwave reactor used in the PET depolymerization reaction.
2 is a graph showing the results of FT-IR analysis of PET, BHET, and products produced after PET depolymerization.
3 is a graph showing the results of TGA analysis of PET, BHET, and products produced after depolymerization of PET.
4 is a schematic diagram showing a PET depolymerization reaction.
5 is a SEM photograph showing the fibrous perovskite catalyst of the present invention.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These Examples are for explaining the present invention in more detail, and the scope of the present invention is not limited by these Examples.

제조예 1: 나노섬유상 페로브스카이트 촉매 제조방법Preparation Example 1: Method for preparing nanofibrous perovskite catalyst

페브로스카이트(Perovskite)형(ABO3) 나노섬유상 촉매를 제조하였다.A perovskite type (ABO 3 ) nanofibrous catalyst was prepared.

구체적으로, 란탄질산염수화물(Lanthanum nitrate hexahydrate (La(NO₃)₃6H₂O)), 질산니켈(Nickel nitrate (Ni(NO3)2)), 세륨질산화수화물(Cerium(III)nitrate hexahydrate (Ce(NO3)3·6H2O)), 티타늄 이소프로폭시드(Titanium(IV)isopropoxide)를 화학양론비(stoichiometric ratio) (La0.8Ni0.3Ce0.2Ti0.7O3)에 따라 계산하여 N,N-디메틸포름아미드(N,N-Dimethylformamid (DMF)) 용매 7g에 12wt%로 용해하여 촉매 전구체 용액을 제조하였다.Specifically, lanthanum nitrate hexahydrate (La(NO₃)₃6H₂O)), nickel nitrate (Ni(NO 3 ) 2 )), cerium nitrate hexahydrate (Cerium(III) nitrate hexahydrate (Ce(NO 3 )) 3 6H 2 O)), titanium isopropoxide (Titanium(IV)isopropoxide) was calculated according to the stoichiometric ratio (La 0.8 Ni 0.3 Ce 0.2 Ti 0.7 O 3 ) N,N-dimethylform A catalyst precursor solution was prepared by dissolving 12 wt% in 7 g of amide (N,N-Dimethylformamid (DMF)) solvent.

제조한 촉매 전구체 용액에 고분자 첨가제로 폴리비닐피로리돈(Polyvinylpyrrolidone (PVP, MW=1,300,000)) 1g을 첨가하고 상온에서 3시간 교반하여 균일한 전구체-고분자 첨가제 혼합 용액을 제조하였다. 상기 제조한 전구체 혼합용액을 18 kV, 1.2 mL h-1 feed flow 조건에서 전기방사 하였다. 이때 사용된 tip 크기는 30G (0.15 mm, inner diameter)였고 tip과 drum collector 사이의 길이는 15 cm로 조절하였다. 또한, 전기방사 진행시 30% RH(상대습도)와 35℃ 분위기를 유지하였다. 전기방사된 섬유상 촉매로부터 잔류 PVP와 질산염(nitrate)을 제거하고 페로브스카이트 구조 형성을 위해 800℃에서 6시간 동안 소성을 진행하여 목표로한 화학조성을 갖는 섬유상 페로브스카이트 촉매(La0.8Ce0.2Ni0.3Ti0.7O3)를 수득하였다.1 g of polyvinylpyrrolidone (PVP, MW = 1,300,000)) was added to the prepared catalyst precursor solution as a polymer additive and stirred at room temperature for 3 hours to prepare a uniform precursor-polymer additive mixed solution. The prepared precursor mixed solution was electrospun under 18 kV, 1.2 mL h -1 feed flow conditions. The tip size used was 30G (0.15 mm, inner diameter), and the length between the tip and the drum collector was adjusted to 15 cm. In addition, 30% RH (relative humidity) and 35 ℃ atmosphere was maintained during electrospinning. Residual PVP and nitrate were removed from the electrospun fibrous catalyst and calcined at 800° C. for 6 hours to form a perovskite structure. The fibrous perovskite catalyst (La 0.8 Ce 0.2 Ni 0.3 Ti 0.7 O 3 ) was obtained.

도 5에 나타난 바와 같이, 상기 제조예 1로 제조한 섬유상 페로브스카이트 촉매를 확인하였다.As shown in FIG. 5 , the fibrous perovskite catalyst prepared in Preparation Example 1 was confirmed.

실시예 1: PET의 글리콜리시스 해중합Example 1: Glycolytic Depolymerization of PET

폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 0.1 g을 에틸렌글리콜(ethylene glycol) 30 g에 분산시키고 상기 제조예 1에서 제조한 섬유상 페로브스카이트 촉매를 PET 대비 0.1 %의 함량으로 첨가하고 음파처리(sonication)하여 분산시킨다. 그 다음, 도 1과 같은 마이크로웨이브 반응기에 환류냉각기를 연결하여 마그네틱바로 500 rpm으로 교반하면서 1000W, 196℃ 조건 하에 30분 동안 마이크로웨이브/촉매를 이용한 해중합 반응을 진행하였다.0.1 g of polyethylene terephthalate (PET) was dispersed in 30 g of ethylene glycol, and the fibrous perovskite catalyst prepared in Preparation Example 1 was added in an amount of 0.1% compared to PET, and sonication was performed. ) to disperse. Then, a reflux condenser was connected to the microwave reactor as shown in FIG. 1, and a depolymerization reaction using a microwave/catalyst was performed for 30 minutes under the conditions of 1000 W and 196° C. while stirring at 500 rpm with a magnetic bar.

위의 반응시간 30분동안 반응한 후 혼합물을 뜨거운 물을 이용하여 1차 필터를 실시하고, 걸러진 액상을 상온, 상압 조건 하에서 6시간 동안 교반 후 냉장고 2℃ 분위기에 48시간 동안 모노머의 재결정을 실시하였다. 이렇게 생성된 모노머 결정은 차가운 물을 이용하여 2차 필터를 실시하고 60℃ 오븐에서 건조하여 BHET(Bis(2-Hydroxyethyl) terephthalate)를 얻었다(수득율= 88%).After reacting for 30 minutes for the above reaction time, the mixture is first filtered using hot water, the filtered liquid phase is stirred for 6 hours under normal temperature and atmospheric pressure conditions, and then the monomer is recrystallized in a refrigerator 2℃ atmosphere for 48 hours. did. The resulting monomer crystals were subjected to a secondary filter using cold water and dried in an oven at 60° C. to obtain BHET (Bis(2-Hydroxyethyl) terephthalate) (yield = 88%).

얻어진 BHET 모노머의 수득율은 아래의 식(1)을 이용하여 계산되었다.The yield of the obtained BHET monomer was calculated using Equation (1) below.

Figure pat00002
Figure pat00002

시험예 1: FT-IR 분석Test Example 1: FT-IR analysis

마이크로웨이브/촉매 반응을 통한 PET 해중합에 따른 BHET 모노머 생성을 확인하기 위해 반응 전의 PET와 2차 필터된 상기 실시예 1의 생성물, 대조군으로서 시그마-알드리치의 BHET 시약에 대한 비교 분석을 실시하였다.In order to confirm the generation of BHET monomer according to PET depolymerization through microwave/catalytic reaction, a comparative analysis was performed on PET before the reaction, the product of Example 1 that was secondarily filtered, and Sigma-Aldrich's BHET reagent as a control.

도 2에 나타난 바와 같이, PET의 스펙트럼과 해중합 반응 후 생성물의 스펙트럼이 확연히 달라진 것을 확인할 수 있었으며, PET에서는 보이지 않았던 -OH기에 해당하는 3500 cm-1 및 BHET의 말단에 해당하는 -CH2OH에 해당하는 3000 cm-1 peaks가 생겼음을 확인하였다. 이는 대조군으로서 비교 측정한 BHET 시약과도 동일함을 확인하였다. 상기 실시예 1의 마이크로웨이브/페브로시카이트 촉매 해중합 반응을 통해 PET가 BHET 모노머로 분해되었음을 확인하였다.As shown in Figure 2, it was confirmed that the spectrum of PET and the spectrum of the product after depolymerization were significantly different, and 3500 cm -1 corresponding to the -OH group, which was not seen in PET, and -CH 2 OH corresponding to the end of BHET. It was confirmed that the corresponding 3000 cm -1 peaks were generated. It was confirmed that this was the same as the BHET reagent measured comparatively as a control. It was confirmed that PET was decomposed into BHET monomers through the microwave/perbroshite catalyzed depolymerization reaction of Example 1.

시험예 2: TGA 분석Test Example 2: TGA analysis

상기 실시예 1의 생성물 BHET 모노머를 TGA(열중량분석)로도 확인하였다.The product BHET monomer of Example 1 was also confirmed by TGA (thermogravimetric analysis).

도 3에 나타난 바와 같이, PET가 약 450℃ 부근에서 열분해되는 것에 반해 마이크로웨이브/페브로스카이트 촉매 해중합 반응 후 생성물(Product)의 경우, 약 230℃ 및 450℃ 부근의 두 구간에서의 열분해를 확인하였다. 이는 BHET 시약과 동일한 열분해 구간임을 확인하였다.As shown in Figure 3, in the case of the product after the microwave / perbroskite catalyzed depolymerization reaction, whereas PET is thermally decomposed at about 450 ° C, thermal decomposition in two sections around 230 ° C and 450 ° C was confirmed. did. It was confirmed that this is the same pyrolysis section as the BHET reagent.

시험예 3: BHET 수득율 분석 비교Test Example 3: BHET yield analysis comparison

마이크로웨이브/페브로스카이트 촉매 해중합 반응에 따른 BHET 모노머의 수득율을 분석하여 하기 표 1에 나타내었다.The yield of BHET monomers according to the microwave/perbroskite catalyzed depolymerization reaction was analyzed and shown in Table 1 below.

BHET yield (%)BHET yield (%) Non-catalystNon-catalyst -- Zinc계 상용 촉매Zinc-based commercial catalyst 7676 본 발명의 페로브스카이트형 나노섬유상 촉매Perovskite-type nanofibrous catalyst of the present invention 8888

상기 표 1에 나타난 바와 같이, 본 발명의 페로브스카이트형 나노섬유상 촉매를 사용한 경우의 BHET 수득율은 약 88%로 나타나는 것을 확인하였다. 기존의 마이크로웨이브/촉매 해중합 반응에 사용되는 Zinc계 상용 촉매를 사용한 경우의 BHET 수득율이 약 76%인 것에 비해, 본 발명의 촉매가 높은 수득율을 나타내는 것을 알 수 있다.As shown in Table 1, it was confirmed that the BHET yield when using the perovskite-type nanofibrous catalyst of the present invention was about 88%. Compared to the BHET yield of about 76% when using a Zinc-based commercial catalyst used for conventional microwave/catalytic depolymerization, it can be seen that the catalyst of the present invention exhibits a high yield.

본 발명의 시험예 1 내지 시험예 3의 결과를 종합하면, 본 발명의 섬유상 페브로스카이트 촉매는 그 구조상 넓은 촉매반응 표면을 제공할 수 있기 때문에, 반응에 유리하여 높은 폐PET 분해율과 현저히 개선된 BHET 수득율을 제공할 수 있다. 따라서, 본 발명의 섬유상 페로브스카이트 촉매는 폐플라스틱의 화학적 리사이클 분야에서 산업적 활용도가 클것으로 기대된다.Summarizing the results of Test Examples 1 to 3 of the present invention, since the fibrous perbroskite catalyst of the present invention can provide a wide catalytic reaction surface in its structure, it is advantageous for the reaction, resulting in a high waste PET decomposition rate and significantly improved BHET yields can be provided. Therefore, the fibrous perovskite catalyst of the present invention is expected to have great industrial application in the field of chemical recycling of waste plastics.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims described below and their equivalents.

Claims (10)

하기 일반식 1로 나타내는 화학조성을 갖는 섬유상 페로브스카이트 촉매로서,
[일반식 1]
AχA’ (1-χ)B(1-y)B’yO3-δ
상기 식에서, A 및 A’는 각각 독립적으로 Li, Na, Mg, K, Ca, Sc, Mn, Fe, Co, Cu, Zn, Rb, Sr, Y, Mo, Tc, Cd, In, Te, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Hg, Tl, Pb, Bi, Po, Ra, Th, Pa, U, Np, 및 Pu로 이루어진 그룹에서 서로 다르게 선택된 원소이고, B 및 B’는 각각 독립적으로, Li, Be, Al, Si, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Th, Pa, U, Np 및 Pu로 이루어진 그룹에서 서로 다르게 선택된 원소이되, 여기서 x는 0.01 내지 0.99이고, y는 0.01 내지 0.99이며, δ는 산소 부족분(oxygen deficiency)을 나타내는 것인, 페로브스카이트 촉매.
As a fibrous perovskite catalyst having a chemical composition represented by the following general formula 1,
[General formula 1]
A χ A' (1-χ) B (1-y) B' y O 3-δ
where A and A' are each independently Li, Na, Mg, K, Ca, Sc, Mn, Fe, Co, Cu, Zn, Rb, Sr, Y, Mo, Tc, Cd, In, Te, Cs , Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Hg, Tl, Pb, Bi, Po, Ra, Th , Pa, U, Np, and an element differently selected from the group consisting of Pu, and B and B' are each independently Li, Be, Al, Si, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Th, Pa, Elements differently selected from the group consisting of U, Np and Pu, wherein x is 0.01 to 0.99, y is 0.01 to 0.99, and δ represents oxygen deficiency.
제1항에 있어서,
상기 촉매는 PET 해중합 용도인 것인, 페로브스카이트 촉매.
According to claim 1,
The catalyst is a PET depolymerization use, the perovskite catalyst.
제1항에 있어서,
상기 페로브스카이트 촉매는 하기 화학식 1을 포함하는 것인, 페로브스카이트 촉매:
[화학식 1]
La0.8Ce0.2Ti0.7Ni0.3O3.
According to claim 1,
The perovskite catalyst is a perovskite catalyst comprising the following formula (1):
[Formula 1]
La 0.8 Ce 0.2 Ti 0.7 Ni 0.3 O 3.
전이금속 원소를 포함하는 무기화합물 시료를 용매에 용해하여 촉매 전구체 용액을 제조하는 제1단계;
상기 촉매 전구체 용액에 고분자를 첨가제를 첨가하고 교반하여 촉매 전구체 및 고분자 첨가제의 혼합용액을 제조하는 제 2단계;
상기 혼합용액을 전기방사하여 섬유상 촉매를 제조하는 제3단계; 및
상기 전기방사된 섬유상 촉매를 소성하여 상기 촉매 중의 잔류 고분자 첨가제 및 질산염을 제거하는 제4단계;를 포함하는, 제 1항에 따른 섬유상 페로브스카이트 촉매의 제조방법.
A first step of preparing a catalyst precursor solution by dissolving an inorganic compound sample containing a transition metal element in a solvent;
a second step of adding a polymer additive to the catalyst precursor solution and stirring to prepare a mixed solution of the catalyst precursor and the polymer additive;
a third step of preparing a fibrous catalyst by electrospinning the mixed solution; and
A method for producing a fibrous perovskite catalyst according to claim 1, comprising a; a fourth step of calcining the electrospun fibrous catalyst to remove residual polymer additives and nitrates in the catalyst.
제4항에 있어서,
상기 용매는 N,N-디메틸포름아미드(N,N-Dimethylformamid (DMF))인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The solvent is N,N-dimethylformamide (N,N-Dimethylformamid (DMF)), the method for producing a fibrous perovskite catalyst.
제4항에 있어서,
상기 고분자 첨가제는 폴리비닐피로리돈(Polyvinylpyrrolidone (PVP))인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The polymer additive is polyvinylpyrrolidone (PVP), a method for producing a fibrous perovskite catalyst.
제4항에 있어서,
상기 고분자 첨가제는 상기 전구체 용액의 총 중량 대비 1 내지 99중량% 첨가하는 것인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The polymer additive is added in an amount of 1 to 99% by weight based on the total weight of the precursor solution.
제4항에 있어서,
상기 교반은 10 내지 30℃에서 1시간 내지 12시간 동안 수행되는 것인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The stirring is carried out for 1 hour to 12 hours at 10 to 30 ℃, the method for producing a fibrous perovskite catalyst.
제4항에 있어서,
상기 전기방사는 0% RH 내지 60% RH 습도조건에서 수행되는 것인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The electrospinning method of producing a fibrous perovskite catalyst, which will be carried out in a humidity condition of 0% RH to 60% RH.
제4항에 있어서,
상기 소성은 1 시간 내지 50시간 동안 500℃ 내지 1400℃ 조건에서 수행되는 것인, 섬유상 페로브스카이트 촉매의 제조방법.
5. The method of claim 4,
The method for producing a fibrous perovskite catalyst, wherein the calcination is carried out at 500 ℃ to 1400 ℃ conditions for 1 to 50 hours.
KR1020190157669A 2019-11-29 2019-11-29 Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst KR102348820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190157669A KR102348820B1 (en) 2019-11-29 2019-11-29 Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190157669A KR102348820B1 (en) 2019-11-29 2019-11-29 Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst

Publications (2)

Publication Number Publication Date
KR20210067749A true KR20210067749A (en) 2021-06-08
KR102348820B1 KR102348820B1 (en) 2022-01-11

Family

ID=76399944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190157669A KR102348820B1 (en) 2019-11-29 2019-11-29 Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst

Country Status (1)

Country Link
KR (1) KR102348820B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230068533A (en) 2021-11-11 2023-05-18 한국화학연구원 Catalyst for Depolymerisation of Polyethylene Terephthalate and Preparing Method of the Same
JP2023546518A (en) * 2021-10-13 2023-11-02 ナショナル・インダストリアル・イノベイション・センター・オブ・ポリマー・マテリアルズ・カンパニー・リミテッド Method for preparing recycled polyester by closed-loop recovery of waste polyester with typical green and low carbon properties
SE2250571A1 (en) * 2022-05-12 2023-11-13 Scandcycle Ab Process and active catalyst for the glykolysis of polyethylene terephthalate (pet)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140104486A (en) * 2011-12-15 2014-08-28 사카이 가가쿠 고교 가부시키가이샤 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
KR20160059139A (en) * 2014-11-18 2016-05-26 주식회사 앰트 Transparent coating composition for shielding infrared ray using nanowires, manufacturing method of the composition, infrared ray shielding film and glass using the composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140104486A (en) * 2011-12-15 2014-08-28 사카이 가가쿠 고교 가부시키가이샤 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
KR20160059139A (en) * 2014-11-18 2016-05-26 주식회사 앰트 Transparent coating composition for shielding infrared ray using nanowires, manufacturing method of the composition, infrared ray shielding film and glass using the composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023546518A (en) * 2021-10-13 2023-11-02 ナショナル・インダストリアル・イノベイション・センター・オブ・ポリマー・マテリアルズ・カンパニー・リミテッド Method for preparing recycled polyester by closed-loop recovery of waste polyester with typical green and low carbon properties
KR20230068533A (en) 2021-11-11 2023-05-18 한국화학연구원 Catalyst for Depolymerisation of Polyethylene Terephthalate and Preparing Method of the Same
SE2250571A1 (en) * 2022-05-12 2023-11-13 Scandcycle Ab Process and active catalyst for the glykolysis of polyethylene terephthalate (pet)
WO2023217897A1 (en) * 2022-05-12 2023-11-16 Scandcycle Ab Process and active catalyst for the glykolysis of polyethylene terephthalate (pet)
SE546095C2 (en) * 2022-05-12 2024-05-21 Rewin Textiles AB Process and reactor system for the glycolysis of polyethylene terephthalate (pet)

Also Published As

Publication number Publication date
KR102348820B1 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
KR102348820B1 (en) Chemically recycling method of waste polyethylene terephthalate by depolymerization using fibrous perovskite catalyst
US11478774B2 (en) Metal organic frameworks and methods of making and using same
KR101100297B1 (en) Method for preparing metal compound powders
DK2479204T3 (en) POLYCONDENSATION CATALYST FOR PREPARING POLYESTERS AND PROCEDURE FOR PREPARING POLYESTERS USING THE SAME
US20220041836A1 (en) Catalysts and method for producing recycled polyester
CN102575027A (en) Polyester film for protection of back surfaces of solar cells
JP4609386B2 (en) Polycondensation catalyst for producing polyester and method for producing polyester using the same
WO2014146587A1 (en) Method for producing low-melting-point recycled polyester used for sheath-core polyester by methanol degradation
JP2022508272A (en) Full dull polyester drawn yarn and its manufacturing method
CN110204700B (en) Method for efficiently preparing polytrimethylene terephthalate (PTT)
JP4934962B2 (en) Polycondensation catalyst for producing polyester and method for producing polyester using the same
CN101698150A (en) Ester exchange catalyst for glycol to degrade polyethylene glycol terephthalate and preparation method thereof
CN112280022A (en) Preparation method and application of composition for heavy metal-free low-melting-point polyester
JP2022511950A (en) Manufacturing method of biodegradable polyester fiber
JP2004156055A (en) Polyester polymerization catalyst
CN110951063B (en) Catalyst composition for preparing polyester and preparation method of polyester
JP5370284B2 (en) Polycondensation catalyst for producing polyester and method for producing polyester using the same
CN109735919B (en) Heptanediol modified polyester fiber with tertiary butyl side group and preparation method thereof
JP5565248B2 (en) Polycondensation catalyst for producing polyester and method for producing polyester using the same
CN109722729A (en) Hexylene glycol modified polyester fiber and preparation method thereof with tert-butyl side group
CN116425992B (en) Method for converting waste polylactic acid into metal-organic framework material by utilizing solvothermal method
CN114849714B (en) Preparation method of solid base catalyst for alcoholysis of PET
CN115651172B (en) Preparation method of titanium-zinc composite polyester catalyst
CN109734889B (en) Sb in polyester synthesis process2O3Adding method of (1)
CN1047325C (en) Catalyst for preparing hydrocarbon with higher molecular weight from methane

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant